WO2023233561A1 - Optically integrated spectroscopic sensor, measurement system, and measurement method - Google Patents

Optically integrated spectroscopic sensor, measurement system, and measurement method Download PDF

Info

Publication number
WO2023233561A1
WO2023233561A1 PCT/JP2022/022240 JP2022022240W WO2023233561A1 WO 2023233561 A1 WO2023233561 A1 WO 2023233561A1 JP 2022022240 W JP2022022240 W JP 2022022240W WO 2023233561 A1 WO2023233561 A1 WO 2023233561A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
spectroscopic sensor
optical integrated
integrated spectroscopic
optical
Prior art date
Application number
PCT/JP2022/022240
Other languages
French (fr)
Japanese (ja)
Inventor
彰裕 藤江
裕之 河野
康人 橋場
浩志 大塚
俊行 安藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/022240 priority Critical patent/WO2023233561A1/en
Priority to JP2022568687A priority patent/JPWO2023233561A1/ja
Publication of WO2023233561A1 publication Critical patent/WO2023233561A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration

Definitions

  • the present disclosure relates to optical sensing technology.
  • Patent Document 1 describes a sensor that non-destructively performs chemical analysis of a test object.
  • This sensor includes a light source, a grating waveguide, and a light receiving section.
  • Multi-wavelength light such as white light outputted from a light source is coupled to a grating waveguide via a spatial optical system, and is guided within the grating waveguide while undergoing repeated total reflection.
  • Evanescent light generated in the process of total reflection is absorbed by the test object according to the characteristics of the test object, and the output light from the grating waveguide is output to the light receiving section via the spatial optical system.
  • the present disclosure has been made based on the recognition of the above-mentioned problems, and one aspect of the present disclosure aims to provide an optical integrated spectroscopic sensor that can suppress stray light.
  • An optical integrated spectroscopic sensor includes a light emitting section having at least one light source that emits a light beam, and a light receiving section having at least one light receiving element that receives scattered reflected light of the emitted light beam.
  • a light shielding section provided on the surface of the sensor chip, having at least one window that transmits the emitted light beam and the scattered reflected light, and shielding light around the at least one window; Equipped with.
  • stray light can be suppressed.
  • FIG. 1 is a configuration diagram showing an optical integrated spectroscopic sensor and a measurement system according to Embodiment 1.
  • FIG. 3 is a configuration diagram showing an example of an internal structure of a light receiving section according to Embodiment 1.
  • FIG. 3 is a flowchart showing the flow of measurement according to Embodiment 1.
  • FIG. 3 is a flowchart showing the operation of the optical integrated spectroscopic sensor according to the first embodiment.
  • 3 is a flowchart showing a measurement method according to Embodiment 1.
  • FIG. 3 is a graph showing the relationship between the wavelength and light intensity of an optical signal before and after placement of an inspection target according to Embodiment 1.
  • FIG. 1 is a diagram showing an example of how to use the optical integrated spectroscopic sensor according to Embodiment 1.
  • FIG. 1 is a diagram showing an example of how to use the optical integrated spectroscopic sensor according to Embodiment 1.
  • FIG. 1 is a diagram showing an example of how to use the optical integrated spectroscopic sensor according to Embodiment 1.
  • FIG. FIG. 2 is a configuration diagram showing an optical integrated spectroscopic sensor and a measurement system according to a second embodiment.
  • FIG. 7 is a diagram showing a modification of the multiplexing waveguide according to the second embodiment.
  • FIG. 7 is a configuration diagram showing a modification of the optical integrated spectroscopic sensor according to the second embodiment.
  • FIG. 1 is a configuration diagram showing an optical integrated spectroscopic sensor and a measurement system according to the first embodiment.
  • the measurement system includes an optical integrated spectroscopic sensor 1 and an analysis device 4, and uses the measurement system to optically measure an object 3 to be inspected.
  • the optical integrated spectroscopic sensor 1 is used to optically measure the internal or surface state of the inspection object 3, and the optical integrated spectroscopic sensor 1 transmits the measurement results to the analysis device 4.
  • the optical integrated spectroscopic sensor 1 is placed close to the inspection object 3, for example, via the thin film sheet 2, and the measurement is performed. That is, by bringing the optical integrated spectroscopic sensor 1 and the thin film sheet 2 into close contact, and by bringing the thin film sheet 2 and the test object 3 into close contact, the optical integrated spectroscopic sensor 1 and the test object 3 are placed close to each other.
  • the inspection object 3 is an object to be optically measured using the optical integrated spectroscopic sensor 1, and examples of the inspection object 3 include solids and powders made of materials that emit scattered reflected light by scattering or reflection. More specific examples of the inspection object 3 include food, building walls, metal objects, and turbine blades.
  • the state of the inspection object 3 for example, the state such as temperature, water concentration, or pressure is measured.
  • the thin film sheet 2 is a flat, thin insulating sheet made of polyethylene, for example.
  • the thin film sheet 2 is assumed to be a thin and soft member that can be placed over the inspection object 3, but the thin film sheet 2 may be a rigid plate-shaped member.
  • the thin film sheet 2 is made of, for example, a material that transmits light having the wavelength emitted from the light emitting section 101.
  • the optical integrated spectroscopic sensor 1 is an optical sensor that optically measures the internal state of the inspection object 3.
  • the optical integrated spectroscopic sensor 1 includes a sensor chip 1C and a light shielding section 13 provided on the surface of the sensor chip 1C.
  • the light shielding part 13 has a window 12.
  • the sensor chip 1C includes a substrate 10, optical or electrical elements provided on the substrate 10, and all or part of a protective layer 11 for protecting the elements on the substrate 10.
  • the light shielding section 13 having the substrate 10, the mold section 11, and the window section 12 is configured as one package.
  • the optical integrated spectroscopic sensor 1 converts a measurement result indicating the state of the inspection object 3 into a wireless signal and transmits the wireless signal.
  • the substrate 10 is a substrate on which a light emitting section 101, a light receiving section 102, a wireless signal converter 103, and a power source 104 are mounted. All or part of the light emitting section 101, the light receiving section 102, the wireless signal converter 103, and the power source 104 may be integrated, and a chip obtained by the integration may be mounted on the substrate 10. Elements such as the light emitting section 101 may be mounted on the substrate 10 by forming all or part of the section 102, the wireless signal converter 103, and the power source 104 on the substrate 10 using silicon photonics technology.
  • a light emitting unit 101 on the substrate 10 emits a light beam for acquiring information on the inspection object 3, a light receiving section 102 on the substrate 10 receives the scattered reflected light from the inspection object 3, and a wireless signal conversion on the substrate 10 is performed.
  • the device 103 generates a wireless signal to be transmitted to the analysis device 4.
  • a wireless signal converter 103 on the substrate 10 receives a power supply signal from the analysis device 4, and a power supply 104 on the substrate 10 supplies power for driving the optical integrated spectroscopic sensor 1.
  • the protective layer 11 is a member for protecting components or elements mounted on the substrate 10, and is formed on the substrate 10.
  • the protective layer 11 is formed of, for example, a resin molding material. In the following description, it is assumed that the protective layer 11 is a mold layer formed of a resin mold resin, but the protective layer 11 does not need to be a mold layer. Since the protective layer 11 only needs to be able to transmit light having the wavelength emitted from the light emitting section 101, the protective layer 11 may be formed of, for example, a transparent plate.
  • the protective layer 11 components or elements placed on the substrate 10 can be protected. Further, by providing the protective layer 11, the optical path length from the light emitting section 101 to the light receiving section 102 can be kept constant without being affected by the surrounding environment.
  • the light shielding part 13 is a light shielding part that blocks light rays.
  • the light shielding part 13 is formed with a window 12 that transmits light rays, and among the light rays traveling from the light emitting part 101 to the light shielding part 13 , the light rays directed toward the window 12 are transmitted through the window 12 , and the light rays directed to the window 12 pass through the window 12 .
  • Light rays directed toward the part are blocked. Further, scattered reflected light from the inspection object 3 passes through the window 12, and stray light unnecessary for measurement is blocked.
  • the light shielding section 13 is a light shielding section that has the window 12 that transmits the light rays emitted from the light emitting section 101 and the scattered reflected light, and blocks light around the window 12.
  • the light-shielding portion 13 can be formed, for example, by printing a light-shielding ink having light-shielding properties such as black ink on the surface of the protective layer 11 (the surface opposite to the substrate 10).
  • the light shielding part 13 may be a plate-like member in which the window 12 is formed.
  • the light shielding portion 13 may be formed of a film or masking tape having light shielding properties. Further, a light shielding portion 13 may be formed on the side surface of the protective layer 11.
  • the window 12 is an opening formed in the light shielding part 13 and has a finite opening diameter or opening width. The size of the aperture is formed to be larger than the beam diameter of the light beam in order to transmit the light beam, but the upper limit of the size depends on the specific application.
  • the shape of the window 12 may be any shape, for example, round, square, or slit. A transparent plate may be fitted into the opening formed in the window 12. By providing such a light shielding part 13, stray light unnecessary for measurement can be suppressed.
  • the light emitting unit 101 is a light emitting unit having at least one light source that emits a light beam.
  • the light emitting unit 101 is arranged so that the light beam emitted from the light emitting unit 101 is directed toward the window 12.
  • a laser light source or an LED light source can be used as the light source.
  • the number of emission wavelengths may be a single wavelength or multiple wavelengths.
  • the emission wavelength needs to include a wavelength that has characteristic optical properties such as reflection or absorption with respect to the information (for example, water content) of the inspection object 3 that is desired to be acquired.
  • the emission wavelength from the light emitting section 101 needs to include the 1450 nm band, which is the absorption wavelength of moisture.
  • the light emitting unit 101 emits light beams with multiple wavelengths, and that the optical integrated spectroscopic sensor 1 acquires information regarding a plurality of items related to internal information of the inspection object 3.
  • the light receiving section 102 is a light receiving section having at least one light receiving element that receives scattered reflected light.
  • the light receiving section 102 includes a grating waveguide 1021, a linear waveguide 1022, a wavelength selective switch 1023, and a photoelectric conversion section 1024.
  • the grating waveguide 1021 receives scattered reflected light that is measurement light, and couples the received scattered reflected light to the linear waveguide 1022 as received light.
  • the linear waveguide 1022 guides the received light to the wavelength selective switch 1023.
  • the wavelength selective switch 1023 switches the optical path of the received light for each wavelength and separates the received light into optical signals for each wavelength.
  • the photoelectric conversion unit 1024 converts optical signals of each wavelength into electrical signals.
  • the grating waveguide 1021 is a waveguide in which a diffraction grating is formed.
  • the grating waveguide 1021 has a function of diffracting measurement light having different arrival angles for each wavelength and coupling it to the linear waveguide 1022.
  • Diffraction gratings with a plurality of types of grating periods are formed in the grating waveguide 1021 according to the number of wavelengths of measurement light. When the measurement light has a single wavelength, the grating period may be uniform.
  • the linear waveguide 1022 is a linear waveguide that propagates the received light from the grating waveguide 1021 to the wavelength selective switch 1023.
  • the wavelength selective switch 1023 is a waveguide that has the function of switching paths for each wavelength. The path is switched for each wavelength in accordance with the operating wavelength of the photoelectric conversion unit 1024.
  • FIG. 2 is an example of a waveguide configuration of the wavelength selective switch 1023. For example, it is possible to arrange ring resonators for the number of wavelengths and switch the optical path depending on the resonance wavelength of the ring resonators.
  • the wavelength selective switch 1023 includes three ring resonators in order to separate optical signals of three mutually different wavelengths ⁇ 1 , ⁇ 2 , and ⁇ 3 .
  • the wavelength selective switch 1023 branches the received light into a plurality of optical signals with different wavelengths by switching paths, and guides the branched optical signal to the photoelectric conversion unit 1024 .
  • the photoelectric conversion unit 1024 converts the received optical signal into an electrical signal, and outputs the converted electrical signal to the wireless signal converter 103.
  • the photoelectric conversion unit 1024 is a light receiving element, and is realized by a photodiode. In order to receive the entire wavelength range of the optical signal to be analyzed, a plurality of photoelectric conversion units 1024 may be arranged, or a single photoelectric conversion unit 1024 that operates in a wide band may be arranged.
  • the wireless signal converter 103 converts the electrical signal output from the photoelectric conversion unit 1024 into a wireless signal, and transmits the wireless signal to the analysis device 4.
  • the analysis device 4 is a device that receives a wireless signal transmitted from the optical integrated spectroscopic sensor 1, analyzes the received wireless signal, and displays the analysis result of the test object 3 to the user.
  • the analysis device 4 is a device that generates a power supply signal for the optical integrated spectroscopic sensor 1, converts it into a wireless signal in the wireless signal converter 405, and then transmits the power supply signal to the optical integrated spectroscopic sensor 1.
  • the analysis device 4 includes a wireless signal converter 401 that receives a wireless signal transmitted from the optical integrated spectroscopic sensor 1 and converts the wireless signal into an electrical signal, and an output from the wireless signal converter 401.
  • the present invention includes an analysis unit 402 that analyzes the generated electrical signal, a display device 403 that displays the analysis results, a power supply unit 404 that generates a power supply signal, and a wireless signal converter 405 that converts the generated power supply signal into a wireless signal.
  • the analysis unit 402 is realized by a dedicated processing circuit or by a combination of a memory that stores a program and a processor that reads and executes the program stored in the memory.
  • the radio signal converter 401 of the analysis device 4 converts the radio signal transmitted from the radio signal converter 103 into an electrical signal, and transmits the electrical signal to the analysis unit 402.
  • the analysis unit 402 analyzes the signal characteristics of the received signal, such as intensity, phase, and frequency, received by the optical integrated spectroscopic sensor 1, and specifies the internal state of the inspection object 3.
  • FIG. 6 is a graph showing the relationship between the wavelength and intensity of the optical signal before and after placement of the inspection object 3 according to the first embodiment.
  • the analysis unit 402 can identify the internal information of the inspection object 3 by detecting a change in the intensity of the received signal before and after the inspection object is placed.
  • FIG. 6 shows that the light intensity at wavelengths ⁇ 1 , ⁇ 2 , ⁇ N-1 , and ⁇ N decreases after placing the test object 3 than before placing the test object 3. There is.
  • the display device 403 is a display that displays the analysis results by the analysis unit 402.
  • the power supply unit 404 is a power supply that generates a power supply signal for driving the optical integrated spectroscopic sensor 1 .
  • the wireless signal converter 405 converts the power feeding signal generated by the power feeding unit 404 into a wireless signal, and emits the wireless signal toward the optical integrated spectroscopic sensor 1 .
  • the analysis device 4 only needs to have a function of receiving and analyzing wireless signals, a function of displaying analysis results, and a function of generating and transmitting a power supply signal, and can be realized using a portable device such as a smartphone, for example. It's okay.
  • FIG. 3 is an example of a processing flow mainly for showing the flow of signals.
  • the optical integrated spectroscopic sensor 1 is placed close to the inspection object 3 via the thin film sheet 2, and the measurement is performed.
  • the thin film sheet 2 is a sheet to ensure insulation of the optical integrated spectroscopic sensor 1, so if there is no risk of electrical conduction, the optical integrated spectroscopic sensor 1 can be placed on the inspection target 3 without using the thin film sheet 2. It may also be in direct contact.
  • the light emitting unit 101 emits a light beam.
  • the light emitted by the light emitting unit 101 includes a light beam with a wavelength that has an absorption characteristic (also referred to as a reflection characteristic) in water, and a beam with a wavelength that has an absorption characteristic in protein. rays of light.
  • the light beam emitted from the light emitting section 101 passes through the protective layer 11 and reaches the light shielding section 13 having the window 12 (Step S2).
  • step S3 step S17
  • the window 12 is slit-shaped, light rays within the opening width of the slit are transmitted through the window 12.
  • the light beam that has passed through the window 12 passes through the thin film sheet 2 and enters the inspection object 3 (steps S4 to S5).
  • a light beam having a wavelength that has absorption characteristics in water is absorbed by the test object 3 in proportion to the moisture content of the test object 3, and a light beam with an intensity proportional to the moisture content of the test object 3 is emitted from the test object 3 as internally scattered light. be done.
  • a light beam with a wavelength that has absorption characteristics in proteins is absorbed by the test object 3 in proportion to the amount of protein in the test object 3, and a light beam with an intensity proportional to the amount of protein in the test object 3 is absorbed by the test object 3 as internally scattered light. 3 (step S6).
  • step S6 The internally scattered light generated in step S6 propagates in the reverse order of steps S1 to S5 and enters the grating waveguide 1021 (steps S7 to S9). Among the internally scattered lights generated in step S6, the light path of those that are not within the aperture diameter or the aperture width of the window 12 is blocked by the light shielding part 13 (step S17).
  • the propagation angle of the light beam incident on the grating waveguide 1021 is changed according to the incident angle and exit angle determined by the shape of the diffraction grating in the grating waveguide 1021, and the light beams of each wavelength are coupled to the same linear waveguide 1022. (Step S10).
  • the light beam coupled to the linear waveguide 1022 is branched into respective optical paths by the wavelength selection switch 1023 in accordance with the operating wavelength of the photoelectric conversion unit 1024, and converted into an electrical signal by the photoelectric conversion unit 1024 (step S11 ⁇ Step S12).
  • the electrical signal converted by the photoelectric conversion unit 1024 is converted into a wireless signal by the wireless signal converter 103 and transmitted wirelessly, and the wireless signal enters the analysis device 4 and is converted back to an electric signal by the wireless signal converter 401. (Steps S13 to S14).
  • the analysis unit 402 analyzes the amount of change in the intensity of the received signal, and specifies the amount of water and protein inside the test object 3 (step S15).
  • FIG. 6 is an example of a spectrum diagram of a received signal analyzed by the analysis section 402. For example, assuming that ⁇ 1 is the absorption wavelength of moisture and ⁇ 2 is the absorption wavelength of protein, by analyzing the intensity changes of the spectra of ⁇ 1 and ⁇ 2 before and after placing the inspection object 3, the internal The amount of water and protein contained in the product can be determined.
  • the display device 403 displays the analysis results indicating the internal information of the inspection object 3 to the user (step S16).
  • step T1 the light emitting unit 101 emits a light beam.
  • This light ray includes a light ray with a wavelength that is absorbed by water and a light ray of a wavelength that is absorbed by protein.
  • step T2 the grating waveguide 1021 of the light receiving unit 102 receives the internally scattered light that is the measurement light.
  • the light received by the grating waveguide 1021 is guided to the wavelength selective switch 1023 via the linear waveguide 1022 as received light.
  • step T3 the wavelength selection switch 1023 of the light receiving section 102 separates the received light according to wavelength.
  • step T4 the photoelectric conversion unit 1024 of the light receiving unit 102 converts the separated optical signal into an electrical signal.
  • step T5 the wireless signal converter 103 converts the electrical signal into a wireless signal and transmits the wireless signal.
  • step U1 a person or a robot places the optical integrated spectroscopic sensor 1 in close proximity to the inspection object 3.
  • a thin film sheet 2 may be placed between the optical integrated spectroscopic sensor 1 and the inspection object 3. If there is no risk of electrical conduction, it is not necessary to arrange the thin film sheet 2.
  • step U2 a person or a robot brings the analysis device 4 close to the optical integrated spectroscopic sensor 1 and wirelessly supplies power to operate the optical integrated spectroscopic sensor 1, and the inspection target 3 acquired by the optical integrated spectroscopic sensor 1 A signal based on the measurement light from the optical integrated spectroscopic sensor 1 is acquired using the analyzer 4.
  • step U3 the acquired signal is analyzed using the analysis device 4, and the analysis result is displayed on the display device 403.
  • Embodiment 1 has the following effects compared to the conventional technology.
  • the optical path of light other than the light used for measurement is blocked, so the optical path of the light used for measurement can be limited and the beam can be irradiated to a specific location without using a spatial optical system. It becomes possible to do so.
  • a spatial optical system is not used, it is possible to downsize the sensor system that transmits and receives light as the optical integrated spectroscopic sensor 1.
  • the light shielding section 13 it is possible to prevent stray light unnecessary for measurement from entering the light receiving section 102.
  • the interface between the optical sensor and the inspection target must satisfy total internal reflection conditions, and it is not possible to directly print a blocking section on the interface.
  • information is acquired using scattered reflected light as probe light, it becomes possible to directly print a blocking section on the boundary surface, which contributes to miniaturization of the measurement system.
  • ⁇ Application example> 7 and 8 are configuration diagrams showing an application example of the optical integrated spectroscopic sensor 1 according to the first embodiment.
  • the integrated optical spectroscopic sensor 1 may be placed on the food tray 6 to analyze the freshness of the food 31 accommodated on the food tray 6.
  • an optical integrated spectroscopic sensor 1 may be placed on the blade 32 of the turbine to detect damage to the blade 32 of the turbine.
  • FIG. 9 is a configuration diagram showing an optical integrated spectroscopic sensor 1A and a measurement system according to the second embodiment.
  • the optical integrated spectroscopic sensor 1A includes a sensor chip 1CA and a light shielding part 13 provided on the surface of the sensor chip 1CA.
  • the sensor chip 1CA includes a substrate 10, optical or electrical elements provided on the substrate 10, and all or part of a protective layer 11 for protecting the elements on the substrate 10.
  • Embodiment 2 compared to Embodiment 1, the configuration of the light receiving section of Embodiment 1 is adopted as the configuration of the light emitting section, and the temperature is adjusted for the grating waveguide located at the output end of the light emitting section. parts are connected. With this configuration, a function of varying the emission angle of the light beam emitted from the light emitting section is provided.
  • the configuration according to the second embodiment shown in FIG. 9 will be explained in more detail.
  • the thin film sheet 2, the inspection object 3, the analysis device 4, the protective layer 11, the light shielding part 13 having the window 12, the wireless signal converter 103, and the power supply 104 are the same as those in Embodiment 1; Explanation will be omitted.
  • the substrate 10 is a substrate on which a light emitting section 101A, a light receiving section 102A, a wireless signal converter 103, and a power source 104 are mounted. All or part of the light emitting section 101A, the light receiving section 102A, the wireless signal converter 103, and the power source 104 may be integrated, and a chip obtained by the integration may be mounted on the substrate 10. Elements such as the light emitting section 101A may be mounted on the substrate 10 by forming all or part of the section 102A, the wireless signal converter 103, and the power source 104 on the substrate 10 using silicon photonics technology.
  • the light emitting section 101A on the substrate 10 emits a light beam for acquiring information on the inspection object 3, the light receiving section 102A on the substrate 10 receives the scattered reflected light from the inspection object 3, and the wireless signal conversion on the substrate 10 is performed.
  • the device 103 generates a wireless signal to be transmitted to the analysis device 4. Further, a wireless signal converter 103 on the substrate 10 receives a power supply signal from the analysis device 4, and a power supply 104 on the substrate 10 supplies power for driving the optical integrated spectroscopic sensor 1A.
  • the light emitting unit 101A is a light emitting unit that has at least one light source that emits a light beam.
  • the light emitting unit 101A is composed of a light source 101A1, a multiplexing waveguide 101A2, a linear waveguide 101A3, a grating waveguide 101A4, and a temperature adjustment unit 1015, and is a mechanism that generates light for acquiring information on the inspection object 3. .
  • the light source 101A1 is a light source that emits a light beam.
  • a laser light source or an LED light source can be used as the light source.
  • the number of emission wavelengths may be a single wavelength or multiple wavelengths.
  • the emission wavelength needs to include a wavelength that has characteristic optical properties such as reflection or absorption with respect to the information (for example, water content) of the inspection object 3 that is desired to be acquired.
  • the emission wavelength from the light emitting section 101 needs to include the 1450 nm band, which is the absorption wavelength of moisture.
  • the following description will be made assuming a mode in which a plurality of light sources 101A1 with single wavelength outputs having different wavelengths are arranged and a plurality of items related to internal information of the inspection object 3 are acquired.
  • the multiplexing waveguide 101A2 multiplexes the light emitted from a plurality of parallelly arranged single-wavelength output light sources 101A1, and propagates the multiplexed light to the linear waveguide 1033.
  • FIG. 10 is a diagram showing an example of a modification of the multiplexing waveguide 101A2.
  • the light source 101A1 may be placed on the substrate 10.
  • a prism 101A6 is arranged as shown in FIG. 10, the optical path of the emitted light from the light source 101A1 is bent toward the substrate by the prism 101A6, and the emitted light is linearly guided by the coupling waveguide 101A7 formed by the grating waveguide. It may also be coupled to wavepath 1013.
  • the linear waveguide 101A3 is a waveguide that propagates the multiplexed light from the multiplexing waveguide 101A2 to the grating waveguide 101A4.
  • the grating waveguide 101A4 emits a light beam to a desired measurement location on the inspection object 3.
  • the output angle is determined based on the shape of the diffraction grating formed in the grating waveguide 101A4.
  • a diffraction grating is formed in the grating waveguide 101A4 so that light beams with different wavelengths are emitted toward the same window 12.
  • the temperature adjustment unit 1015 has a function of controlling the temperature of the grating waveguide 101A4, changing the optical constant of the diffraction grating, and changing the output angle in a desired direction.
  • the temperature adjustment unit 1015 is realized using a Peltier element and a microcomputer, for example.
  • the light receiving unit 102A is a light receiving unit that has at least one light receiving element that receives scattered reflected light.
  • the light receiving section 102A includes a grating waveguide, a linear waveguide, a wavelength selective switch, and a photoelectric conversion section.
  • the wavelength selective switch switches the optical path of the received light for each wavelength to separate the received light into optical signals for each wavelength
  • the photoelectric conversion section photoelectrically converts the separated optical signals.
  • the emission direction of the measurement light can be varied by the grating constant of the grating waveguide 101A4, so that the beam can be irradiated to a desired location on the inspection object 3.
  • FIG. 11 is a configuration diagram showing a modification of the optical integrated spectroscopic sensor 1A of the second embodiment.
  • the emission direction can be changed for each area of the diffraction grating. Therefore, by configuring the grating waveguide 101A8 to have a waveguide structure in which the diffraction direction differs for each wavelength, it becomes possible to emit light rays in a plurality of directions from the light emitting section 101A. As in the example shown in FIG.
  • a waveguide structure may be formed in the grating waveguide 101A8 so that a light beam with a wavelength ⁇ 1 is emitted toward one window 12 and a light beam with a wavelength ⁇ 2 is emitted toward the other window 12.
  • Three or more windows 12 may be provided to acquire internal information of three or more locations of the inspection object 3 at once.
  • the optical integrated spectroscopic sensor 1A is modified so that the grating waveguide 101A8 has a waveguide structure with different diffraction directions for each wavelength, and the light shielding part 13 has a plurality of windows 12 according to the number of diffraction directions. You may.
  • the optical integrated spectroscopic sensor of Appendix 1 includes a light emitting unit (101; 101A) having at least one light source that emits a light beam, and a light receiving unit (101; 101A) having at least one light receiving element that receives scattered reflected light of the emitted light beam. 102; 102A); and at least one window (12) provided on the surface of the sensor chip and transmitting the emitted light beam and the scattered reflected light, and the area around the at least one window.
  • a light shielding part (13) that shields light.
  • the optically integrated spectroscopic sensor of Appendix 2 is the optically integrated spectroscopic sensor described in Appendix 1, in which the sensor chip further includes a protective layer (11) that protects the light emitting section and the light receiving section, and the light shielding layer portion is provided on the surface of the protective layer.
  • the optical integrated spectroscopic sensor of Appendix 3 is the optical integrated spectroscopic sensor described in Appendix 2, in which the protective layer is a mold layer formed of a resin molding material.
  • the optically integrated spectral sensor of Appendix 4 is the optically integrated spectral sensor described in any one of Supplementary Notes 1 to 3, in which the light-shielding portion is formed of light-shielding ink.
  • the optical integrated spectroscopic sensor of Appendix 5 is the optical integrated spectroscopic sensor described in any one of Appendixes 1 to 4, in which the light receiving section (102) converts light of different wavelengths into optical signals for each wavelength. a wavelength selective switch (1023) that branches the optical signal into an electrical signal, and at least one photoelectric conversion unit (1024) that converts the optical signal guided by the wavelength selective switch into an electrical signal;
  • the light emitting section (101) is configured to be able to emit light beams of a plurality of wavelengths.
  • the optical integrated spectroscopic sensor of Appendix 6 is the optical integrated spectroscopic sensor described in Appendix 5, which converts the electrical signal converted by the photoelectric conversion unit into a wireless signal and transmits the converted wireless signal.
  • the wireless signal converter (103) further includes a wireless signal converter (103).
  • the optically integrated spectroscopic sensor of Appendix 7 is the optically integrated spectroscopic sensor described in Appendix 1, in which the light emitting section (101A) includes a plurality of light sources (101A1) that emit light beams with different wavelengths, and a plurality of light sources that emit light beams having different wavelengths. It includes a multiplexing waveguide (101A2) that multiplexes a plurality of light beams, and a grating waveguide (101A4) that outputs the multiplexed light beams.
  • the light emitting section (101A) includes a plurality of light sources (101A1) that emit light beams with different wavelengths, and a plurality of light sources that emit light beams having different wavelengths. It includes a multiplexing waveguide (101A2) that multiplexes a plurality of light beams, and a grating waveguide (101A4) that outputs the multiplexed light beams.
  • the optical integrated spectroscopic sensor according to appendix 8 is the optical integrated spectroscopic sensor described in appendix 7, in which the grating waveguide has a waveguide structure in which the diffraction direction differs for each wavelength, and the at least one window is A plurality of windows are provided according to the number of diffraction directions.
  • the optical integrated spectroscopic sensor according to appendix 9 is the optical integrated spectroscopic sensor described in appendix 7 or 8, wherein the sensor chip further includes a protective layer (11) that protects the light emitting part and the light receiving part, The light shielding layer is provided on the surface of the protective layer.
  • Appendix 10 The optical integrated spectroscopic sensor of Appendix 10 is the optical integrated spectroscopic sensor described in Appendix 9, in which the protective layer is a mold layer formed of a resin molding material.
  • the optical integrated spectroscopic sensor of Appendix 11 is the optical integrated spectroscopic sensor described in Appendix 7, in which the light-shielding layer is formed of a light-shielding ink.
  • the optical integrated spectroscopic sensor of Appendix 12 is the optical integrated spectroscopic sensor described in any one of Appendixes 7 to 11, which converts the electrical signal converted by the photoelectric conversion unit into a wireless signal, It further includes a wireless signal converter (103) that transmits the converted wireless signal.
  • Appendix 13 The measurement system set forth in Appendix 13 includes the light-integrating spectral sensor described in any one of Supplementary notes 1 to 12, and an analysis unit that performs analysis based on the reflected light acquired by the light-integrating spectral sensor.
  • the measurement method of appendix 14 includes the step (U1) of bringing the optically integrated spectroscopic sensor described in any one of appendices 1 to 12 into contact with the test object directly or through a thin film sheet; a step (U2) of operating a spectroscopic sensor to acquire a signal based on the scattered reflected light of the inspection target acquired by the optical integrated spectroscopic sensor from the optical integrated spectroscopic sensor using an analysis device; and a step (U3) of analyzing the signal using the analysis device.
  • the optical integrated spectroscopic sensor of the present disclosure can be used as an optical sensor for optically measuring an inspection target such as food.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

This optically integrated spectroscopic sensor comprises: a sensor chip that is provided with a light-emitting unit (101; 101A) having at least one light source which emits a light beam, and a light-receiving unit (102; 102A) having at least one light-receiving element which receives scattered reflection light of the emitted light beam; and a light-blocking unit (13) that is disposed on the surface of the sensor chip, that has at least one window (12) which transmits the emitted light beam and the scattered reflection light, and that blocks light around the at least one window.

Description

光集積型分光センサ、測定システム、および測定方法Optical integrated spectroscopic sensor, measurement system, and measurement method
 本開示は、光センシング技術に関する。 The present disclosure relates to optical sensing technology.
 近年、検査対象の状態の測定または試薬の化学分析を非破壊で行う技術が普及している。例えば、特許文献1には、検査対象の化学分析を非破壊で行うセンサが記載されている。このセンサは、光源と、グレーティング導波路と、受光部と、を備える。光源より出力された白色光などの多波長の光が空間光学系を介してグレーティング導波路に結合され、全反射を繰り返しながらグレーティング導波路内で導波される。全反射する過程で生じるエバネッセント光が検査対象の特性に応じて検査対象に吸収され、グレーティング導波路からの出射光が空間光学系を介して受光部に出力される。 In recent years, techniques for non-destructively measuring the state of a test object or chemically analyzing a reagent have become widespread. For example, Patent Document 1 describes a sensor that non-destructively performs chemical analysis of a test object. This sensor includes a light source, a grating waveguide, and a light receiving section. Multi-wavelength light such as white light outputted from a light source is coupled to a grating waveguide via a spatial optical system, and is guided within the grating waveguide while undergoing repeated total reflection. Evanescent light generated in the process of total reflection is absorbed by the test object according to the characteristics of the test object, and the output light from the grating waveguide is output to the light receiving section via the spatial optical system.
特表平06-502012号公報Special Publication No. 06-502012
 特許文献1に記載されたセンサを検査対象に密着配置して測定を行う場合、センサと検査対象の距離が短いので、測定光以外に迷光が受光部に入り込むという課題がある。 When measuring by placing the sensor described in Patent Document 1 in close contact with the object to be inspected, there is a problem that stray light in addition to the measurement light enters the light receiving section because the distance between the sensor and the object to be inspected is short.
 本開示は上記課題の認識に基づいてなされたものであり、本開示の一側面は迷光を抑制できる光集積型分光センサを提供することを目的とする。 The present disclosure has been made based on the recognition of the above-mentioned problems, and one aspect of the present disclosure aims to provide an optical integrated spectroscopic sensor that can suppress stray light.
 本開示の実施形態の一側面による光集積型分光センサは、光線を出射する少なくとも1つの光源を有する発光部と、出射された光線の散乱反射光を受信する少なくとも1つの受光素子を有する受光部とを備えたセンサチップと、前記センサチップの表面に設けられ、出射された光線および散乱反射光を透過させる少なくとも1つの窓を有し、前記少なくとも1つの窓の周囲を遮光する遮光部と、を備える。 An optical integrated spectroscopic sensor according to an aspect of an embodiment of the present disclosure includes a light emitting section having at least one light source that emits a light beam, and a light receiving section having at least one light receiving element that receives scattered reflected light of the emitted light beam. a light shielding section provided on the surface of the sensor chip, having at least one window that transmits the emitted light beam and the scattered reflected light, and shielding light around the at least one window; Equipped with.
 本開示の実施形態の一側面による光集積型分光センサによれば、迷光を抑制できる。 According to the optical integrated spectroscopic sensor according to one aspect of the embodiment of the present disclosure, stray light can be suppressed.
実施の形態1に係る光集積型分光センサおよび測定システムを示す構成図である。1 is a configuration diagram showing an optical integrated spectroscopic sensor and a measurement system according to Embodiment 1. FIG. 実施の形態1に係る受光部の内部構造の一例を示す構成図である。3 is a configuration diagram showing an example of an internal structure of a light receiving section according to Embodiment 1. FIG. 実施の形態1に係る測定の流れを示すフローチャートである。3 is a flowchart showing the flow of measurement according to Embodiment 1. FIG. 実施の形態1に係る光集積型分光センサの動作を示すフローチャートである。3 is a flowchart showing the operation of the optical integrated spectroscopic sensor according to the first embodiment. 実施の形態1に係る測定方法を示すフローチャートである。3 is a flowchart showing a measurement method according to Embodiment 1. FIG. 実施の形態1に係る検査対象の配置前後の光信号の波長と光強度の関係を示すグラフである。3 is a graph showing the relationship between the wavelength and light intensity of an optical signal before and after placement of an inspection target according to Embodiment 1. FIG. 実施の形態1に係る光集積型分光センサの使用方法の一例を示した図である。1 is a diagram showing an example of how to use the optical integrated spectroscopic sensor according to Embodiment 1. FIG. 実施の形態1に係る光集積型分光センサの使用方法の一例を示した図である。1 is a diagram showing an example of how to use the optical integrated spectroscopic sensor according to Embodiment 1. FIG. 実施の形態2に係る光集積型分光センサおよび測定システムを示す構成図である。FIG. 2 is a configuration diagram showing an optical integrated spectroscopic sensor and a measurement system according to a second embodiment. 実施の形態2に係る合波導波路の変形例について示した図である。FIG. 7 is a diagram showing a modification of the multiplexing waveguide according to the second embodiment. 実施の形態2の光集積型分光センサの変形例を示す構成図である。FIG. 7 is a configuration diagram showing a modification of the optical integrated spectroscopic sensor according to the second embodiment.
 以下、添付の図面を参照して、本開示における種々の実施形態について詳細に説明する。なお、図面において同一または類似の符号を付された構成要素は、同一または類似の構成または機能を有するものであり、そのような構成要素についての重複する説明は省略する。 Hereinafter, various embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. Note that components given the same or similar symbols in the drawings have the same or similar configurations or functions, and overlapping explanations of such components will be omitted.
実施の形態1.
<構成>
 図1から図8を参照して、本開示の実施の形態1による光集積型分光センサ、測定システム、および測定方法について説明をする。図1は、実施の形態1に係る光集積型分光センサおよび測定システムを示す構成図である。図1に示されているように、測定システムは光集積型分光センサ1および解析装置4を備え、測定システムを用いて検査対象3を光学測定する。光集積型分光センサ1を用いて検査対象3の内部または表面の状態を光学測定し、光集積型分光センサ1は測定結果を解析装置4へ送信する。測定の際、光集積型分光センサ1を、例えば薄膜シート2を介して、検査対象3に近接して配置して測定を行う。すなわち、光集積型分光センサ1と薄膜シート2が密接し、薄膜シート2と検査対象3が密接することにより、光集積型分光センサ1と検査対象3が近接して配置される。
Embodiment 1.
<Configuration>
An integrated optical spectroscopic sensor, a measurement system, and a measurement method according to Embodiment 1 of the present disclosure will be described with reference to FIGS. 1 to 8. FIG. 1 is a configuration diagram showing an optical integrated spectroscopic sensor and a measurement system according to the first embodiment. As shown in FIG. 1, the measurement system includes an optical integrated spectroscopic sensor 1 and an analysis device 4, and uses the measurement system to optically measure an object 3 to be inspected. The optical integrated spectroscopic sensor 1 is used to optically measure the internal or surface state of the inspection object 3, and the optical integrated spectroscopic sensor 1 transmits the measurement results to the analysis device 4. At the time of measurement, the optical integrated spectroscopic sensor 1 is placed close to the inspection object 3, for example, via the thin film sheet 2, and the measurement is performed. That is, by bringing the optical integrated spectroscopic sensor 1 and the thin film sheet 2 into close contact, and by bringing the thin film sheet 2 and the test object 3 into close contact, the optical integrated spectroscopic sensor 1 and the test object 3 are placed close to each other.
(検査対象)
 検査対象3は光集積型分光センサ1を用いて光学測定する対象物であり、検査対象3の例には、散乱または反射による散乱反射光を発する材質でできた固体および粉末が含まれる。検査対象3のより具体的な例には、食品、建物の壁、金属物、およびタービンのブレードが含まれる。検査対象3の状態として、例えば、温度、水分濃度または圧力などの状態が測定される。
(Target for inspection)
The inspection object 3 is an object to be optically measured using the optical integrated spectroscopic sensor 1, and examples of the inspection object 3 include solids and powders made of materials that emit scattered reflected light by scattering or reflection. More specific examples of the inspection object 3 include food, building walls, metal objects, and turbine blades. As the state of the inspection object 3, for example, the state such as temperature, water concentration, or pressure is measured.
(薄膜シート)
 薄膜シート2は、例えばポリエチレンからなる平面状で薄膜の絶縁シートである。以下の説明では、薄膜シート2として検査対象3に被せることができるような薄くて柔らかい部材を想定して説明をするが、薄膜シート2は剛性のある板状の部材であってもよい。薄膜シート2は、例えば、発光部101からの出射波長の光線を透過する材質で形成される。
(Thin film sheet)
The thin film sheet 2 is a flat, thin insulating sheet made of polyethylene, for example. In the following description, the thin film sheet 2 is assumed to be a thin and soft member that can be placed over the inspection object 3, but the thin film sheet 2 may be a rigid plate-shaped member. The thin film sheet 2 is made of, for example, a material that transmits light having the wavelength emitted from the light emitting section 101.
(光集積型分光センサ)
 光集積型分光センサ1は、検査対象3の内部の状態を光学測定する光学センサである。光集積型分光センサ1は、センサチップ1Cと、センサチップ1Cの表面に設けられた遮光部13とを備える。遮光部13は窓12を有する。センサチップ1Cは、基板10、基板10上に備えられる光学的又は電気的素子、および基板10上の素子を保護するための保護層11の全部または一部を備える。基板10、モールド部11、および窓部12を有する遮光部13は、1つのパッケージとして構成される。光集積型分光センサ1は、検査対象3の状態を示す測定結果を無線信号に変換して送信する。
(Optical integrated spectroscopic sensor)
The optical integrated spectroscopic sensor 1 is an optical sensor that optically measures the internal state of the inspection object 3. The optical integrated spectroscopic sensor 1 includes a sensor chip 1C and a light shielding section 13 provided on the surface of the sensor chip 1C. The light shielding part 13 has a window 12. The sensor chip 1C includes a substrate 10, optical or electrical elements provided on the substrate 10, and all or part of a protective layer 11 for protecting the elements on the substrate 10. The light shielding section 13 having the substrate 10, the mold section 11, and the window section 12 is configured as one package. The optical integrated spectroscopic sensor 1 converts a measurement result indicating the state of the inspection object 3 into a wireless signal and transmits the wireless signal.
(基板)
 基板10は、発光部101、受光部102、無線信号変換器103、および電源104を搭載するための基板である。発光部101、受光部102、無線信号変換器103、および電源104の全部または一部を一体化して、一体化により得られたチップを基板10に搭載してもよいし、発光部101、受光部102、無線信号変換器103、および電源104の全部または一部をシリコンフォトニクス技術を用いて基板10に形成することにより発光部101等の素子を基板10に搭載してもよい。基板10上の発光部101が検査対象3の情報を取得するための光線を出射し、検査対象3からの散乱反射光を基板10上の受光部102が受信し、基板10上の無線信号変換器103が解析装置4へ送信するための無線信号を生成する。また、基板10上の無線信号変換器103が解析装置4からの給電信号を受信し、基板10上の電源104が光集積型分光センサ1を駆動させるための電源を給電する。
(substrate)
The substrate 10 is a substrate on which a light emitting section 101, a light receiving section 102, a wireless signal converter 103, and a power source 104 are mounted. All or part of the light emitting section 101, the light receiving section 102, the wireless signal converter 103, and the power source 104 may be integrated, and a chip obtained by the integration may be mounted on the substrate 10. Elements such as the light emitting section 101 may be mounted on the substrate 10 by forming all or part of the section 102, the wireless signal converter 103, and the power source 104 on the substrate 10 using silicon photonics technology. A light emitting unit 101 on the substrate 10 emits a light beam for acquiring information on the inspection object 3, a light receiving section 102 on the substrate 10 receives the scattered reflected light from the inspection object 3, and a wireless signal conversion on the substrate 10 is performed. The device 103 generates a wireless signal to be transmitted to the analysis device 4. Further, a wireless signal converter 103 on the substrate 10 receives a power supply signal from the analysis device 4, and a power supply 104 on the substrate 10 supplies power for driving the optical integrated spectroscopic sensor 1.
(保護層)
 保護層11は、基板10上に搭載される部品または素子を保護するための部材であり、基板10上に形成される。保護層11は、例えば、樹脂製のモールド材により形成される。以下の説明では、保護層11が樹脂製のモールド樹脂により形成されたモールド層である場合を想定して説明するが、保護層11はモールド層でなくてもよい。保護層11は発光部101からの出射波長の光線を透過可能であればよいので、保護層11は、例えば、透明な板により形成されていてもよい。保護層11を設けることにより、基板10上に配置される部品または素子を保護することができる。また、保護層11を設けることにより、発光部101から受光部102までの光路長を、周囲環境の影響を受けることなく、一定に保持することができる。
(protective layer)
The protective layer 11 is a member for protecting components or elements mounted on the substrate 10, and is formed on the substrate 10. The protective layer 11 is formed of, for example, a resin molding material. In the following description, it is assumed that the protective layer 11 is a mold layer formed of a resin mold resin, but the protective layer 11 does not need to be a mold layer. Since the protective layer 11 only needs to be able to transmit light having the wavelength emitted from the light emitting section 101, the protective layer 11 may be formed of, for example, a transparent plate. By providing the protective layer 11, components or elements placed on the substrate 10 can be protected. Further, by providing the protective layer 11, the optical path length from the light emitting section 101 to the light receiving section 102 can be kept constant without being affected by the surrounding environment.
(遮光部)
 遮光部13は、光線を遮光する遮光部である。遮光部13には光線を透過させる窓12が形成されており、発光部101から遮光部13に向かう光線のうち、窓12に向かう光線は窓12を透過し、遮光部13の窓12以外の部分に向かう光線は遮光される。また、検査対象3からの散乱反射光は窓12を透過し、測定に不要な迷光は遮光される。迷光の例には、遮光部13と発光部101を搭載した基板10との間で生じる迷光、および遮光部13と検査対象3の間で生じる迷光が含まれる。このように、遮光部13は、発光部101から出射された光線および散乱反射光を透過させる窓12を有し、窓12の周囲を遮光する遮光部である。遮光部13は、例えば、保護層11の表面(基板10と反対側の面)に黒色インク等の遮光性を有する遮光性インクを印刷することにより形成することができる。別の例として、遮光部13は、窓12が形成された板状部材であってもよい。更に別の例として、遮光部13は、遮光性を有するフィルムまたはマスキングテープにより形成されてもよい。また、保護層11の側面に遮光部13が形成されていてもよい。窓12は、有限の開口径または開口幅を持つ、遮光部13に形成された開口である。開口の大きさは、光線を透過させるために光線のビーム径以上に形成されるが、大きさの上限は具体的なアプリケーションによる。窓12の形状は任意の形状であってよく、例えば、丸でも、四角でも、スリットでもよい。窓12には、形成された開口に透明な板材が嵌め込まれていてもよい。このような遮光部13を設けることにより、測定に不要な迷光を抑制することができる。
(light shielding part)
The light shielding part 13 is a light shielding part that blocks light rays. The light shielding part 13 is formed with a window 12 that transmits light rays, and among the light rays traveling from the light emitting part 101 to the light shielding part 13 , the light rays directed toward the window 12 are transmitted through the window 12 , and the light rays directed to the window 12 pass through the window 12 . Light rays directed toward the part are blocked. Further, scattered reflected light from the inspection object 3 passes through the window 12, and stray light unnecessary for measurement is blocked. Examples of stray light include stray light that occurs between the light shielding section 13 and the substrate 10 on which the light emitting section 101 is mounted, and stray light that occurs between the light shielding section 13 and the inspection object 3. In this way, the light shielding section 13 is a light shielding section that has the window 12 that transmits the light rays emitted from the light emitting section 101 and the scattered reflected light, and blocks light around the window 12. The light-shielding portion 13 can be formed, for example, by printing a light-shielding ink having light-shielding properties such as black ink on the surface of the protective layer 11 (the surface opposite to the substrate 10). As another example, the light shielding part 13 may be a plate-like member in which the window 12 is formed. As yet another example, the light shielding portion 13 may be formed of a film or masking tape having light shielding properties. Further, a light shielding portion 13 may be formed on the side surface of the protective layer 11. The window 12 is an opening formed in the light shielding part 13 and has a finite opening diameter or opening width. The size of the aperture is formed to be larger than the beam diameter of the light beam in order to transmit the light beam, but the upper limit of the size depends on the specific application. The shape of the window 12 may be any shape, for example, round, square, or slit. A transparent plate may be fitted into the opening formed in the window 12. By providing such a light shielding part 13, stray light unnecessary for measurement can be suppressed.
(発光部)
 発光部101は、光線を出射する少なくとも1つの光源を有する発光部である。発光部101は、発光部101から出射される光線が窓12に向かうように配置されている。光源として、レーザ光源、またはLED光源を用いることができる。出射波長数は単波長でも多波長でもよい。ただし、出射波長は、取得したい検査対象3の情報(例えば、水分量)に対して、反射または吸収など、特徴的な光学特性を有する波長を含んでいる必要がある。例えば、検査対象3の内部に含有される水分量を取得する場合、発光部101からの出射波長は、水分の吸収波長である1450nm帯を含む必要がある。以下では、発光部101は多波長の光線を出射し、光集積型分光センサ1は検査対象3の内部情報に関する複数の項目に関する情報を取得することを想定して説明をする。
(light emitting part)
The light emitting unit 101 is a light emitting unit having at least one light source that emits a light beam. The light emitting unit 101 is arranged so that the light beam emitted from the light emitting unit 101 is directed toward the window 12. A laser light source or an LED light source can be used as the light source. The number of emission wavelengths may be a single wavelength or multiple wavelengths. However, the emission wavelength needs to include a wavelength that has characteristic optical properties such as reflection or absorption with respect to the information (for example, water content) of the inspection object 3 that is desired to be acquired. For example, when acquiring the amount of moisture contained inside the inspection object 3, the emission wavelength from the light emitting section 101 needs to include the 1450 nm band, which is the absorption wavelength of moisture. In the following description, it is assumed that the light emitting unit 101 emits light beams with multiple wavelengths, and that the optical integrated spectroscopic sensor 1 acquires information regarding a plurality of items related to internal information of the inspection object 3.
(受光部)
 受光部102は、散乱反射光を受信する少なくとも1つの受光素子を有する受光部である。受光部102は、グレーティング導波路1021、線状導波路1022、波長選択スイッチ1023、および光電変換部1024から構成される。グレーティング導波路1021は、測定光である散乱反射光を受信して、受信した散乱反射光を受信光として線状導波路1022に結合させる。線状導波路1022は、受信光を波長選択スイッチ1023に導波する。波長選択スイッチ1023は、受信光の光経路を波長毎に切り替えて、受信光を波長毎の光信号に分離する。光電変換部1024は、各波長の光信号を電気信号に変換する。
(Light receiving section)
The light receiving section 102 is a light receiving section having at least one light receiving element that receives scattered reflected light. The light receiving section 102 includes a grating waveguide 1021, a linear waveguide 1022, a wavelength selective switch 1023, and a photoelectric conversion section 1024. The grating waveguide 1021 receives scattered reflected light that is measurement light, and couples the received scattered reflected light to the linear waveguide 1022 as received light. The linear waveguide 1022 guides the received light to the wavelength selective switch 1023. The wavelength selective switch 1023 switches the optical path of the received light for each wavelength and separates the received light into optical signals for each wavelength. The photoelectric conversion unit 1024 converts optical signals of each wavelength into electrical signals.
(グレーティング導波路)
 グレーティング導波路1021は、回折格子が形成された導波路である。グレーティング導波路1021は、波長毎に到来角が異なる測定光を回折させることにより線状導波路1022に結合させる機能を持つ。グレーティング導波路1021には、測定光の波長の数に応じて、複数種類のグレーティング周期の回折格子が形成される。測定光が単波長の場合は、グレーティング周期は均一でよい。
(Grating waveguide)
The grating waveguide 1021 is a waveguide in which a diffraction grating is formed. The grating waveguide 1021 has a function of diffracting measurement light having different arrival angles for each wavelength and coupling it to the linear waveguide 1022. Diffraction gratings with a plurality of types of grating periods are formed in the grating waveguide 1021 according to the number of wavelengths of measurement light. When the measurement light has a single wavelength, the grating period may be uniform.
(線状導波路)
 線状導波路1022は、グレーティング導波路1021からの受信光を波長選択スイッチ1023に伝搬する線状の導波路である。
(linear waveguide)
The linear waveguide 1022 is a linear waveguide that propagates the received light from the grating waveguide 1021 to the wavelength selective switch 1023.
(波長選択スイッチ)
 波長選択スイッチ1023は、波長毎に経路を切り替える機能を有する導波路である。光電変換部1024の動作波長に合わせて、波長毎に経路が切り替えられる。図2は波長選択スイッチ1023の導波路構成の一例である。例えば、リング共振器を波長数分配置し、リング共振器の共振波長により光経路を切り替えることができる。図2の例では、互いに異なる3つの波長λ、λ、λの光信号を分離するため、波長選択スイッチ1023は3つのリング共振器を備えている。波長選択スイッチ1023は、経路の切り替えにより、受信光を波長の異なる複数の光信号に分岐し、分岐後の光信号を光電変換部1024へ導波する。
(wavelength selection switch)
The wavelength selective switch 1023 is a waveguide that has the function of switching paths for each wavelength. The path is switched for each wavelength in accordance with the operating wavelength of the photoelectric conversion unit 1024. FIG. 2 is an example of a waveguide configuration of the wavelength selective switch 1023. For example, it is possible to arrange ring resonators for the number of wavelengths and switch the optical path depending on the resonance wavelength of the ring resonators. In the example of FIG. 2, the wavelength selective switch 1023 includes three ring resonators in order to separate optical signals of three mutually different wavelengths λ 1 , λ 2 , and λ 3 . The wavelength selective switch 1023 branches the received light into a plurality of optical signals with different wavelengths by switching paths, and guides the branched optical signal to the photoelectric conversion unit 1024 .
(光電変換部)
 光電変換部1024は、受信した光信号を電気信号に変換し、変換後の電気信号を無線信号変換器103に向けて出力する。光電変換部1024は受光素子であり、フォトダイオードにより実現される。解析対象である光信号の波長範囲の全てを受信するため、複数の光電変換部1024を配置してもよいし、広帯域な動作をする単一の光電変換部1024を配置してもよい。
(Photoelectric conversion section)
The photoelectric conversion unit 1024 converts the received optical signal into an electrical signal, and outputs the converted electrical signal to the wireless signal converter 103. The photoelectric conversion unit 1024 is a light receiving element, and is realized by a photodiode. In order to receive the entire wavelength range of the optical signal to be analyzed, a plurality of photoelectric conversion units 1024 may be arranged, or a single photoelectric conversion unit 1024 that operates in a wide band may be arranged.
(無線信号変換器)
 無線信号変換器103は、光電変換部1024から出力された電気信号を無線信号に変換し、無線信号を解析装置4へ送信する。
(Wireless signal converter)
The wireless signal converter 103 converts the electrical signal output from the photoelectric conversion unit 1024 into a wireless signal, and transmits the wireless signal to the analysis device 4.
(解析装置)
 解析装置4は、光集積型分光センサ1から送信された無線信号を受信し、受信した無線信号を解析し、ユーザに検査対象3の解析結果を表示する装置である。また、解析装置4は、光集積型分光センサ1のための給電信号を生成し、無線信号変換器405において無線信号に変換した後、光集積型分光センサ1に給電信号を送信する装置である。これらの機能を実現するため、解析装置4は、光集積型分光センサ1から送信された無線信号を受信して無線信号を電気信号に変換する無線信号変換器401、無線信号変換器401から出力された電気信号を解析する解析部402、解析結果を表示する表示装置403、給電信号を生成する給電部404、および生成された給電信号を無線信号に変換する無線信号変換器405を備える。解析部402は、専用の処理回路により、またはプログラムを格納したメモリとメモリに格納されたプログラムを読み出して実行するプロセッサとの組合せにより実現される。
(Analysis device)
The analysis device 4 is a device that receives a wireless signal transmitted from the optical integrated spectroscopic sensor 1, analyzes the received wireless signal, and displays the analysis result of the test object 3 to the user. The analysis device 4 is a device that generates a power supply signal for the optical integrated spectroscopic sensor 1, converts it into a wireless signal in the wireless signal converter 405, and then transmits the power supply signal to the optical integrated spectroscopic sensor 1. . In order to realize these functions, the analysis device 4 includes a wireless signal converter 401 that receives a wireless signal transmitted from the optical integrated spectroscopic sensor 1 and converts the wireless signal into an electrical signal, and an output from the wireless signal converter 401. The present invention includes an analysis unit 402 that analyzes the generated electrical signal, a display device 403 that displays the analysis results, a power supply unit 404 that generates a power supply signal, and a wireless signal converter 405 that converts the generated power supply signal into a wireless signal. The analysis unit 402 is realized by a dedicated processing circuit or by a combination of a memory that stores a program and a processor that reads and executes the program stored in the memory.
(無線信号変換器)
 解析装置4の無線信号変換器401は、無線信号変換器103から送信された無線信号を電気信号に変換し、解析部402へ電気信号を送信する。
(Wireless signal converter)
The radio signal converter 401 of the analysis device 4 converts the radio signal transmitted from the radio signal converter 103 into an electrical signal, and transmits the electrical signal to the analysis unit 402.
(解析部)
 解析部402は、光集積型分光センサ1で受信された、強度、位相、周波数などの受信信号の信号特性を解析し、検査対象3の内部状態を特定する。図6は実施の形態1に係る検査対象3の配置前後の光信号の波長と強度との関係を示すグラフである。例えば、解析部402において、検査対象配置前後の受信信号の強度変化を検出することにより、検査対象3の内部情報を特定することができる。図6では、波長λ、λ、λN-1、λにおける光強度が、検査対象3を配置する前よりも、検査対象3を配置した後において減少していることが示されている。
(Analysis Department)
The analysis unit 402 analyzes the signal characteristics of the received signal, such as intensity, phase, and frequency, received by the optical integrated spectroscopic sensor 1, and specifies the internal state of the inspection object 3. FIG. 6 is a graph showing the relationship between the wavelength and intensity of the optical signal before and after placement of the inspection object 3 according to the first embodiment. For example, the analysis unit 402 can identify the internal information of the inspection object 3 by detecting a change in the intensity of the received signal before and after the inspection object is placed. FIG. 6 shows that the light intensity at wavelengths λ 1 , λ 2 , λ N-1 , and λ N decreases after placing the test object 3 than before placing the test object 3. There is.
(表示装置)
 表示装置403は、解析部402による解析結果を表示するディスプレイである。
(display device)
The display device 403 is a display that displays the analysis results by the analysis unit 402.
(給電部)
 給電部404は、光集積型分光センサ1を駆動するための給電信号を生成する電源である。
(Power supply part)
The power supply unit 404 is a power supply that generates a power supply signal for driving the optical integrated spectroscopic sensor 1 .
(無線信号変換器)
 無線信号変換器405は、給電部404で生成された給電信号を無線信号に変換し、光集積型分光センサ1に向けて無線信号を出射する。
(Wireless signal converter)
The wireless signal converter 405 converts the power feeding signal generated by the power feeding unit 404 into a wireless signal, and emits the wireless signal toward the optical integrated spectroscopic sensor 1 .
 解析装置4は、無線信号の受信および解析の機能と、解析結果の表示機能と、給電信号の生成および送信の機能とを備えていればよく、例えばスマートフォンなどの携帯型装置を用いて実現してもよい。 The analysis device 4 only needs to have a function of receiving and analyzing wireless signals, a function of displaying analysis results, and a function of generating and transmitting a power supply signal, and can be realized using a portable device such as a smartphone, for example. It's okay.
<処理フロー>
(信号のフロー)
<Processing flow>
(signal flow)
 次に、図3を参照して、光集積型分光センサ1および解析装置4を用いて行う測定の流れについて説明する。図3は、主に信号の流れを示すための、処理フローの一例である。一例として、検査対象3の内部に含有されている水分量及びタンパク質量を測定する場合に即して説明をする。なお、測定を行う際、典型的には、光集積型分光センサ1を薄膜シート2を介して検査対象3に近接配置して測定を行う。薄膜シート2は光集積型分光センサ1の絶縁を確保するためのシートであるので、電気伝導のおそれがない場合は、薄膜シート2を介さないで、光集積型分光センサ1を検査対象3に直接当接してもよい。 Next, with reference to FIG. 3, the flow of measurements performed using the optical integrated spectroscopic sensor 1 and the analysis device 4 will be described. FIG. 3 is an example of a processing flow mainly for showing the flow of signals. As an example, a case will be explained in which the amount of water and the amount of protein contained inside the test object 3 are measured. Note that when performing measurements, typically, the optical integrated spectroscopic sensor 1 is placed close to the inspection object 3 via the thin film sheet 2, and the measurement is performed. The thin film sheet 2 is a sheet to ensure insulation of the optical integrated spectroscopic sensor 1, so if there is no risk of electrical conduction, the optical integrated spectroscopic sensor 1 can be placed on the inspection target 3 without using the thin film sheet 2. It may also be in direct contact.
 ステップS1において、発光部101が光線を出射する。水分量及びタンパク質量の測定を行うため、発光部101が出射する光線には、水分に吸収特性(反射特性と称してもよい。)を有する波長の光線と、タンパク質に吸収特性を有する波長の光線とが含まれるものとする。 In step S1, the light emitting unit 101 emits a light beam. In order to measure the amount of water and protein, the light emitted by the light emitting unit 101 includes a light beam with a wavelength that has an absorption characteristic (also referred to as a reflection characteristic) in water, and a beam with a wavelength that has an absorption characteristic in protein. rays of light.
 発光部101から出射された光線は、保護層11を透過し、窓12を有する遮光部13に到達する(ステップS2)。 The light beam emitted from the light emitting section 101 passes through the protective layer 11 and reaches the light shielding section 13 having the window 12 (Step S2).
 遮光部13に到達した光線のうち、窓12の開口径内にある光線は窓12を透過し、それ以外の光線は遮光部13に照射され、光路が遮断される(ステップS3、ステップS17)。窓12がスリット状の場合には、スリットの開口幅内にある光線が窓12を透過する。 Among the light rays that have reached the light shielding part 13, those within the aperture diameter of the window 12 are transmitted through the window 12, and the other light rays are irradiated onto the light shielding part 13, and the optical path is blocked (step S3, step S17). . When the window 12 is slit-shaped, light rays within the opening width of the slit are transmitted through the window 12.
 窓12を透過した光線は、薄膜シート2を透過し、検査対象3に入射する(ステップS4~ステップS5)。 The light beam that has passed through the window 12 passes through the thin film sheet 2 and enters the inspection object 3 (steps S4 to S5).
 水分に吸収特性を有する波長の光線は、検査対象3の水分量に比例して検査対象3に吸収され、検査対象3の水分量に比例した強度の光線が内部散乱光として検査対象3から出射される。同様に、タンパク質に吸収特性を有する波長の光線は、検査対象3のタンパク質量に比例して検査対象3に吸収され、検査対象3のタンパク質量に比例した強度の光線が内部散乱光として検査対象3から出射される(ステップS6)。 A light beam having a wavelength that has absorption characteristics in water is absorbed by the test object 3 in proportion to the moisture content of the test object 3, and a light beam with an intensity proportional to the moisture content of the test object 3 is emitted from the test object 3 as internally scattered light. be done. Similarly, a light beam with a wavelength that has absorption characteristics in proteins is absorbed by the test object 3 in proportion to the amount of protein in the test object 3, and a light beam with an intensity proportional to the amount of protein in the test object 3 is absorbed by the test object 3 as internally scattered light. 3 (step S6).
 ステップS6で発生した内部散乱光は、ステップS1~S5と逆の順番で伝搬し、グレーティング導波路1021に入射する(ステップS7~ステップS9)。ステップS6で発生した内部散乱光のうち、窓12の開口径内または開口幅内にないものは遮光部13により光路が遮断される(ステップS17)。 The internally scattered light generated in step S6 propagates in the reverse order of steps S1 to S5 and enters the grating waveguide 1021 (steps S7 to S9). Among the internally scattered lights generated in step S6, the light path of those that are not within the aperture diameter or the aperture width of the window 12 is blocked by the light shielding part 13 (step S17).
 グレーティング導波路1021に入射した光線はグレーティング導波路1021における回折格子の形状で決定される入射角度および出射角度に従い伝搬角度が変化され、それぞれの波長の光線が同一の線状導波路1022に結合する(ステップS10)。 The propagation angle of the light beam incident on the grating waveguide 1021 is changed according to the incident angle and exit angle determined by the shape of the diffraction grating in the grating waveguide 1021, and the light beams of each wavelength are coupled to the same linear waveguide 1022. (Step S10).
 線状導波路1022に結合した光線は、光電変換部1024の動作波長に対応して、波長選択スイッチ1023でそれぞれの光路に分岐され、光電変換部1024で電気信号に変換される(ステップS11~ステップS12)。 The light beam coupled to the linear waveguide 1022 is branched into respective optical paths by the wavelength selection switch 1023 in accordance with the operating wavelength of the photoelectric conversion unit 1024, and converted into an electrical signal by the photoelectric conversion unit 1024 (step S11~ Step S12).
 光電変換部1024で変換された電気信号は、無線信号変換器103で無線信号に変換されて無線伝送され、無線信号が解析装置4に入射して無線信号変換器401で電気信号に再度変換される(ステップS13~ステップS14)。 The electrical signal converted by the photoelectric conversion unit 1024 is converted into a wireless signal by the wireless signal converter 103 and transmitted wirelessly, and the wireless signal enters the analysis device 4 and is converted back to an electric signal by the wireless signal converter 401. (Steps S13 to S14).
 解析部402で受信信号の強度変化量が解析され、検査対象3の内部の水分量およびタンパク質量が特定される(ステップS15)。 The analysis unit 402 analyzes the amount of change in the intensity of the received signal, and specifies the amount of water and protein inside the test object 3 (step S15).
 図6は解析部402で解析する受信信号のスペクトル図の一例である。例えば、λを水分の吸収波長とし、λをタンパク質の吸収波長とし、検査対象3の配置前後におけるλおよびλそれぞれのスペクトルの強度変化量を解析することにより、検査対象3の内部に含有される水分量およびタンパク質量を特定することができる。 FIG. 6 is an example of a spectrum diagram of a received signal analyzed by the analysis section 402. For example, assuming that λ 1 is the absorption wavelength of moisture and λ 2 is the absorption wavelength of protein, by analyzing the intensity changes of the spectra of λ 1 and λ 2 before and after placing the inspection object 3, the internal The amount of water and protein contained in the product can be determined.
 表示装置403により、検査対象3の内部情報を示す解析結果がユーザに対して表示される(ステップS16)。 The display device 403 displays the analysis results indicating the internal information of the inspection object 3 to the user (step S16).
(光集積型分光センサの動作のフロー)
 次に、光集積型分光センサ1の動作について、図4を参照して説明をする。なお、想定する状況は図3の場合と同様である。
(Operation flow of optical integrated spectroscopic sensor)
Next, the operation of the optical integrated spectroscopic sensor 1 will be explained with reference to FIG. 4. Note that the assumed situation is the same as in the case of FIG.
 ステップT1において、発光部101が光線を出射する。この光線には、水分に吸収特性を有する波長の光線と、タンパク質に吸収特性を有する波長の光線とが含まれる。 In step T1, the light emitting unit 101 emits a light beam. This light ray includes a light ray with a wavelength that is absorbed by water and a light ray of a wavelength that is absorbed by protein.
 ステップT2において、受光部102のグレーティング導波路1021が測定光である内部散乱光を受信する。グレーティング導波路1021により受信された光は、受信光として、線状導波路1022を介して波長選択スイッチ1023へ導波される。 In step T2, the grating waveguide 1021 of the light receiving unit 102 receives the internally scattered light that is the measurement light. The light received by the grating waveguide 1021 is guided to the wavelength selective switch 1023 via the linear waveguide 1022 as received light.
 ステップT3において、受光部102の波長選択スイッチ1023が受信光を波長により分離する。 In step T3, the wavelength selection switch 1023 of the light receiving section 102 separates the received light according to wavelength.
 ステップT4において、受光部102の光電変換部1024が分離後の光信号を電気信号に変換する。 In step T4, the photoelectric conversion unit 1024 of the light receiving unit 102 converts the separated optical signal into an electrical signal.
 ステップT5において、無線信号変換器103が電気信号を無線信号に変換して、無線信号を送信する。 In step T5, the wireless signal converter 103 converts the electrical signal into a wireless signal and transmits the wireless signal.
(測定方法のフロー)
 次に、測定方法のフローについて、図5を参照して説明する。
(Measurement method flow)
Next, the flow of the measurement method will be explained with reference to FIG.
 ステップU1において、人またはロボットが、光集積型分光センサ1を検査対象3に密接するように配置する。光集積型分光センサ1と検査対象3の間に薄膜シート2を配置してもよい。電気伝導のおそれがない場合は、薄膜シート2を配置しなくてもよい。 In step U1, a person or a robot places the optical integrated spectroscopic sensor 1 in close proximity to the inspection object 3. A thin film sheet 2 may be placed between the optical integrated spectroscopic sensor 1 and the inspection object 3. If there is no risk of electrical conduction, it is not necessary to arrange the thin film sheet 2.
 ステップU2において、人またはロボットが、解析装置4を光集積型分光センサ1に近づけて無線給電を行って光集積型分光センサ1を動作させて、光集積型分光センサ1が取得した検査対象3からの測定光に基づく信号を、解析装置4を用いて光集積型分光センサ1から取得する。 In step U2, a person or a robot brings the analysis device 4 close to the optical integrated spectroscopic sensor 1 and wirelessly supplies power to operate the optical integrated spectroscopic sensor 1, and the inspection target 3 acquired by the optical integrated spectroscopic sensor 1 A signal based on the measurement light from the optical integrated spectroscopic sensor 1 is acquired using the analyzer 4.
 ステップU3において、取得した信号の解析を解析装置4を用いて行い、解析結果が表示装置403に表示される。 In step U3, the acquired signal is analyzed using the analysis device 4, and the analysis result is displayed on the display device 403.
<効果>
 実施の形態1は従来技術と比較して以下の効果がある。窓12を有する遮光部13を備えることにより、測定で用いる光以外の光路が遮断されるので、空間光学系を用いることなく、測定で用いる光の光路を限定し、特定の箇所にビームを照射することが可能となる。また、空間光学系を用いないので、光の送受信を行うセンサシステムを光集積型分光センサ1として小型化することが可能となる。また、遮光部13を備えることにより、測定に不要な迷光が受光部102に混入することを防ぐことができる。さらに、エバネッセント光をプローブ光として検査対象の内部情報を取得するような従来技術では、光学センサと検査対象の境界面が全反射条件を満たす必要があり、境界面に遮断部を直接印刷することが困難であるが、本開示では、散乱反射光をプローブ光として情報を取得するので、境界面に遮断部を直接印刷することが可能となり、測定系の小型化に寄与する。
<Effect>
Embodiment 1 has the following effects compared to the conventional technology. By providing the light shielding part 13 with the window 12, the optical path of light other than the light used for measurement is blocked, so the optical path of the light used for measurement can be limited and the beam can be irradiated to a specific location without using a spatial optical system. It becomes possible to do so. Furthermore, since a spatial optical system is not used, it is possible to downsize the sensor system that transmits and receives light as the optical integrated spectroscopic sensor 1. Further, by providing the light shielding section 13, it is possible to prevent stray light unnecessary for measurement from entering the light receiving section 102. Furthermore, with conventional technology that uses evanescent light as probe light to acquire internal information of the inspection target, the interface between the optical sensor and the inspection target must satisfy total internal reflection conditions, and it is not possible to directly print a blocking section on the interface. However, in the present disclosure, since information is acquired using scattered reflected light as probe light, it becomes possible to directly print a blocking section on the boundary surface, which contributes to miniaturization of the measurement system.
<適用例>
 図7および図8は、実施の形態1に係る光集積型分光センサ1の適用例を示す構成図である。一例として、図7に示されているように、食品トレー6上に光集積型分光センサ1を配置して、食品トレー6上に収容された食品31の鮮度解析を行ってもよい。また、他の例として、図8に示されているように、タービンの羽根32に光集積型分光センサ1を配置して、タービンの羽根32の破損検出を行ってもよい。
<Application example>
7 and 8 are configuration diagrams showing an application example of the optical integrated spectroscopic sensor 1 according to the first embodiment. As an example, as shown in FIG. 7, the integrated optical spectroscopic sensor 1 may be placed on the food tray 6 to analyze the freshness of the food 31 accommodated on the food tray 6. Further, as another example, as shown in FIG. 8, an optical integrated spectroscopic sensor 1 may be placed on the blade 32 of the turbine to detect damage to the blade 32 of the turbine.
 実施の形態2.
<構成>
 次に図9から図11を参照して、本開示の実施の形態2による光集積型分光センサ1Aおよび測定システムについて説明をする。図9は、実施の形態2に係る光集積型分光センサ1Aおよび測定システムを示す構成図である。光集積型分光センサ1Aは、センサチップ1CAと、センサチップ1CAの表面に設けられた遮光部13とを備える。センサチップ1CAは、基板10、基板10上に備えられる光学的又は電気的素子、および基板10上の素子を保護するための保護層11の全部または一部を備える。実施の形態2では、実施の形態1と比較し、実施の形態1の受光部の構成が発光部の構成として採用されるとともに、発光部の出力端に位置するグレーティング導波路に対して温度調整部が接続される。このように構成することにより、発光部から出射される光線の出射角度を可変とする機能が提供される。
Embodiment 2.
<Configuration>
Next, with reference to FIGS. 9 to 11, an optical integrated spectroscopic sensor 1A and a measurement system according to a second embodiment of the present disclosure will be described. FIG. 9 is a configuration diagram showing an optical integrated spectroscopic sensor 1A and a measurement system according to the second embodiment. The optical integrated spectroscopic sensor 1A includes a sensor chip 1CA and a light shielding part 13 provided on the surface of the sensor chip 1CA. The sensor chip 1CA includes a substrate 10, optical or electrical elements provided on the substrate 10, and all or part of a protective layer 11 for protecting the elements on the substrate 10. In Embodiment 2, compared to Embodiment 1, the configuration of the light receiving section of Embodiment 1 is adopted as the configuration of the light emitting section, and the temperature is adjusted for the grating waveguide located at the output end of the light emitting section. parts are connected. With this configuration, a function of varying the emission angle of the light beam emitted from the light emitting section is provided.
 図9に示す実施の形態2による構成について、より詳細に説明をする。薄膜シート2、検査対象3、解析装置4、保護層11、窓12を有する遮光部13、無線信号変換器103、および電源104については実施の形態1と同様であるので、これらについての重複する説明は省略する。 The configuration according to the second embodiment shown in FIG. 9 will be explained in more detail. The thin film sheet 2, the inspection object 3, the analysis device 4, the protective layer 11, the light shielding part 13 having the window 12, the wireless signal converter 103, and the power supply 104 are the same as those in Embodiment 1; Explanation will be omitted.
 基板10は、発光部101A、受光部102A、無線信号変換器103、および電源104を搭載するための基板である。発光部101A、受光部102A、無線信号変換器103、および電源104の全部または一部を一体化して、一体化により得られたチップを基板10に搭載してもよいし、発光部101A、受光部102A、無線信号変換器103、および電源104の全部または一部をシリコンフォトニクス技術を用いて基板10に形成することにより発光部101A等の素子を基板10に搭載してもよい。基板10上の発光部101Aが検査対象3の情報を取得するための光線を出射し、検査対象3からの散乱反射光を基板10上の受光部102Aが受信し、基板10上の無線信号変換器103が解析装置4へ送信するための無線信号を生成する。また、基板10上の無線信号変換器103が解析装置4からの給電信号を受信し、基板10上の電源104が光集積型分光センサ1Aを駆動させるための電源を給電する。 The substrate 10 is a substrate on which a light emitting section 101A, a light receiving section 102A, a wireless signal converter 103, and a power source 104 are mounted. All or part of the light emitting section 101A, the light receiving section 102A, the wireless signal converter 103, and the power source 104 may be integrated, and a chip obtained by the integration may be mounted on the substrate 10. Elements such as the light emitting section 101A may be mounted on the substrate 10 by forming all or part of the section 102A, the wireless signal converter 103, and the power source 104 on the substrate 10 using silicon photonics technology. The light emitting section 101A on the substrate 10 emits a light beam for acquiring information on the inspection object 3, the light receiving section 102A on the substrate 10 receives the scattered reflected light from the inspection object 3, and the wireless signal conversion on the substrate 10 is performed. The device 103 generates a wireless signal to be transmitted to the analysis device 4. Further, a wireless signal converter 103 on the substrate 10 receives a power supply signal from the analysis device 4, and a power supply 104 on the substrate 10 supplies power for driving the optical integrated spectroscopic sensor 1A.
 発光部101Aは、光線を出射する少なくとも1つの光源を有する発光部である。発光部101Aは、光源101A1、合波導波路101A2、線状導波路101A3、グレーティング導波路101A4、および温度調整部1015から構成され、検査対象3の情報を取得するための光を生成する機構である。 The light emitting unit 101A is a light emitting unit that has at least one light source that emits a light beam. The light emitting unit 101A is composed of a light source 101A1, a multiplexing waveguide 101A2, a linear waveguide 101A3, a grating waveguide 101A4, and a temperature adjustment unit 1015, and is a mechanism that generates light for acquiring information on the inspection object 3. .
 光源101A1は、光線を出射する光源である。光源として、レーザ光源、またはLED光源を用いることができる。出射波長数は単波長でも多波長でもよい。ただし、出射波長は、取得したい検査対象3の情報(例えば、水分量)に対して、反射または吸収など、特徴的な光学特性を有する波長を含んでいる必要がある。例えば、検査対象3の内部に含有される水分量を取得する場合、発光部101からの出射波長は、水分の吸収波長である1450nm帯を含む必要がある。以下では、互いに波長が異なる単波長出力の光源101A1を複数個配置し、検査対象3の内部情報に関する複数の項目を取得する態様を想定して説明をする。 The light source 101A1 is a light source that emits a light beam. A laser light source or an LED light source can be used as the light source. The number of emission wavelengths may be a single wavelength or multiple wavelengths. However, the emission wavelength needs to include a wavelength that has characteristic optical properties such as reflection or absorption with respect to the information (for example, water content) of the inspection object 3 that is desired to be acquired. For example, when acquiring the amount of moisture contained inside the inspection object 3, the emission wavelength from the light emitting section 101 needs to include the 1450 nm band, which is the absorption wavelength of moisture. The following description will be made assuming a mode in which a plurality of light sources 101A1 with single wavelength outputs having different wavelengths are arranged and a plurality of items related to internal information of the inspection object 3 are acquired.
 合波導波路101A2は、複数の並列に配置された単波長出力の光源101A1からの出射光を合波し、線状導波路1033に合波光を伝搬する。 The multiplexing waveguide 101A2 multiplexes the light emitted from a plurality of parallelly arranged single-wavelength output light sources 101A1, and propagates the multiplexed light to the linear waveguide 1033.
 図10は、合波導波路101A2の変形例の一例を示す図である。図10に示されるように、光源101A1は、基板10上に配置されてもよい。この場合、図10に示すようにプリズム101A6を配置し、光源101A1からの出射光の光路をプリズム101A6で基板方向に折り曲げ、グレーティング導波路により形成される結合導波路101A7により出射光を線状導波路1013に結合してもよい。 FIG. 10 is a diagram showing an example of a modification of the multiplexing waveguide 101A2. As shown in FIG. 10, the light source 101A1 may be placed on the substrate 10. In this case, a prism 101A6 is arranged as shown in FIG. 10, the optical path of the emitted light from the light source 101A1 is bent toward the substrate by the prism 101A6, and the emitted light is linearly guided by the coupling waveguide 101A7 formed by the grating waveguide. It may also be coupled to wavepath 1013.
 線状導波路101A3は、合波導波路101A2からの合波光をグレーティング導波路101A4に伝搬する導波路である。 The linear waveguide 101A3 is a waveguide that propagates the multiplexed light from the multiplexing waveguide 101A2 to the grating waveguide 101A4.
 グレーティング導波路101A4は、検査対象3における所望の測定箇所に光線を出射する。出射角度は、グレーティング導波路101A4に形成される回折格子の形状に基づいて決定される。グレーティング導波路101A4には、波長の異なる光線が同一の窓12に向けて出射されるように回折格子が形成される。 The grating waveguide 101A4 emits a light beam to a desired measurement location on the inspection object 3. The output angle is determined based on the shape of the diffraction grating formed in the grating waveguide 101A4. A diffraction grating is formed in the grating waveguide 101A4 so that light beams with different wavelengths are emitted toward the same window 12.
 温度調整部1015は、グレーティング導波路101A4の温度を制御し、回折格子の光学定数を変化させ、出射角度を所望の方向に変化させる機能を持つ。温度調整部1015は、一例として、ペルチェ素子とマイコンを用いて実現される。 The temperature adjustment unit 1015 has a function of controlling the temperature of the grating waveguide 101A4, changing the optical constant of the diffraction grating, and changing the output angle in a desired direction. The temperature adjustment unit 1015 is realized using a Peltier element and a microcomputer, for example.
 受光部102Aは、散乱反射光を受信する少なくとも1つの受光素子を有する受光部である。受光部102Aは、実施の形態1の受光部102と同様に、グレーティング導波路、線状導波路、波長選択スイッチ、および光電変換部から構成される。実施の形態1の場合と同様、波長選択スイッチが受信光の光経路を波長毎に切り替えて受信光を波長毎の光信号に分離し、光電変換部が分離された光信号を光電変換する。 The light receiving unit 102A is a light receiving unit that has at least one light receiving element that receives scattered reflected light. Like the light receiving section 102 of Embodiment 1, the light receiving section 102A includes a grating waveguide, a linear waveguide, a wavelength selective switch, and a photoelectric conversion section. As in the first embodiment, the wavelength selective switch switches the optical path of the received light for each wavelength to separate the received light into optical signals for each wavelength, and the photoelectric conversion section photoelectrically converts the separated optical signals.
<効果>
 実施の形態2は実施の形態1と比較して、グレーティング導波路101A4の格子定数により、測定光の出射方向を可変できるので、検査対象3の所望の箇所にビームを照射できる効果がある。
<Effect>
In the second embodiment, compared to the first embodiment, the emission direction of the measurement light can be varied by the grating constant of the grating waveguide 101A4, so that the beam can be irradiated to a desired location on the inspection object 3.
<変形例>
 図11は実施の形態2の光集積型分光センサ1Aの変形例を示す構成図である。グレーティング導波路のエリア毎に回折格子の寸法を変えることで、回折格子のエリア毎に出射方向を変えることができる。したがって、グレーティング導波路101A8が波長毎に回折方向が異なる導波路構造を有するように構成することで、発光部101Aから複数の方向に光線を出射することが可能となる。図11に示す例のように、遮光部13が2つの窓12を有するように遮光部13を形成し、2つの受光部102Aを設けることにより、発光部101から2つの窓12に向けて光線を出射して検査対象3の2個所の内部情報を一括で取得することができる。例えば、一方の窓12に向けて波長λの光線を出射し、他方の窓12に向けて波長λの光線を出射するように、グレーティング導波路101A8に導波路構造を形成してよい。窓12を3つ以上設けて、検査対象3の3個所以上の内部情報を一括で取得してもよい。このように、グレーティング導波路101A8が波長毎に回折方向が異なる導波路構造を有し、回折方向の数に応じて遮光部13が複数の窓12を有するように光集積型分光センサ1Aを変形してもよい。
<Modified example>
FIG. 11 is a configuration diagram showing a modification of the optical integrated spectroscopic sensor 1A of the second embodiment. By changing the dimensions of the diffraction grating for each area of the grating waveguide, the emission direction can be changed for each area of the diffraction grating. Therefore, by configuring the grating waveguide 101A8 to have a waveguide structure in which the diffraction direction differs for each wavelength, it becomes possible to emit light rays in a plurality of directions from the light emitting section 101A. As in the example shown in FIG. 11, by forming the light blocking part 13 so that the light blocking part 13 has two windows 12 and providing two light receiving parts 102A, light rays from the light emitting part 101 are directed toward the two windows 12. It is possible to emit internal information at two locations on the inspection object 3 at once. For example, a waveguide structure may be formed in the grating waveguide 101A8 so that a light beam with a wavelength λ 1 is emitted toward one window 12 and a light beam with a wavelength λ 2 is emitted toward the other window 12. Three or more windows 12 may be provided to acquire internal information of three or more locations of the inspection object 3 at once. In this way, the optical integrated spectroscopic sensor 1A is modified so that the grating waveguide 101A8 has a waveguide structure with different diffraction directions for each wavelength, and the light shielding part 13 has a plurality of windows 12 according to the number of diffraction directions. You may.
<付記>
 以上で説明した種々の実施形態のいくつかの側面について、以下のとおりまとめる。
<Additional notes>
Some aspects of the various embodiments described above are summarized as follows.
(付記1)
 付記1の光集積型分光センサは、光線を出射する少なくとも1つの光源を有する発光部(101;101A)と、出射された光線の散乱反射光を受信する少なくとも1つの受光素子を有する受光部(102;102A)とを備えたセンサチップと、前記センサチップの表面に設けられ、出射された光線および散乱反射光を透過させる少なくとも1つの窓(12)を有し、前記少なくとも1つの窓の周囲を遮光する遮光部(13)と、を備える。
(Additional note 1)
The optical integrated spectroscopic sensor of Appendix 1 includes a light emitting unit (101; 101A) having at least one light source that emits a light beam, and a light receiving unit (101; 101A) having at least one light receiving element that receives scattered reflected light of the emitted light beam. 102; 102A); and at least one window (12) provided on the surface of the sensor chip and transmitting the emitted light beam and the scattered reflected light, and the area around the at least one window. A light shielding part (13) that shields light.
(付記2)
 付記2の光集積型分光センサは、付記1に記載された光集積型分光センサであって、前記センサチップは前記発光部および前記受光部を保護する保護層(11)を更に備え、前記遮光部は前記保護層の表面に設けられている。
(Additional note 2)
The optically integrated spectroscopic sensor of Appendix 2 is the optically integrated spectroscopic sensor described in Appendix 1, in which the sensor chip further includes a protective layer (11) that protects the light emitting section and the light receiving section, and the light shielding layer portion is provided on the surface of the protective layer.
(付記3)
 付記3の光集積型分光センサは、付記2に記載された光集積型分光センサであって、前記保護層は樹脂製のモールド材により形成されたモールド層である。
(Additional note 3)
The optical integrated spectroscopic sensor of Appendix 3 is the optical integrated spectroscopic sensor described in Appendix 2, in which the protective layer is a mold layer formed of a resin molding material.
(付記4)
 付記4の光集積型分光センサは、付記1から3のいずれか1つに記載された光集積型分光センサであって、前記遮光部は遮光性インクにより形成されている。
(Additional note 4)
The optically integrated spectral sensor of Appendix 4 is the optically integrated spectral sensor described in any one of Supplementary Notes 1 to 3, in which the light-shielding portion is formed of light-shielding ink.
(付記5)
 付記5の光集積型分光センサは、付記1から4のいずれか1つに記載された光集積型分光センサであって、前記受光部(102)は、異なる波長の光を波長毎の光信号に分岐して、分岐された光信号を導波する波長選択スイッチ(1023)と、前記波長選択スイッチにより導波される光信号を電気信号に変換する少なくとも1つの光電変換部(1024)と、を備え、前記発光部(101)は複数の波長の光線を出射可能に構成されている。
(Appendix 5)
The optical integrated spectroscopic sensor of Appendix 5 is the optical integrated spectroscopic sensor described in any one of Appendixes 1 to 4, in which the light receiving section (102) converts light of different wavelengths into optical signals for each wavelength. a wavelength selective switch (1023) that branches the optical signal into an electrical signal, and at least one photoelectric conversion unit (1024) that converts the optical signal guided by the wavelength selective switch into an electrical signal; The light emitting section (101) is configured to be able to emit light beams of a plurality of wavelengths.
(付記6)
 付記6の光集積型分光センサは、付記5に記載された光集積型分光センサであって、前記光電変換部により変換された電気信号を無線信号に変換して、変換された無線信号を送信する無線信号変換器(103)、を更に備える。
(Appendix 6)
The optical integrated spectroscopic sensor of Appendix 6 is the optical integrated spectroscopic sensor described in Appendix 5, which converts the electrical signal converted by the photoelectric conversion unit into a wireless signal and transmits the converted wireless signal. The wireless signal converter (103) further includes a wireless signal converter (103).
(付記7)
 付記7の光集積型分光センサは、付記1に記載された光集積型分光センサであって、前記発光部(101A)は、互いに波長が異なる光線を出射する複数の光源(101A1)と、出射された複数の光線を合波する合波導波路(101A2)と、合波された光線を出射するグレーティング導波路(101A4)と、を備える。
(Appendix 7)
The optically integrated spectroscopic sensor of Appendix 7 is the optically integrated spectroscopic sensor described in Appendix 1, in which the light emitting section (101A) includes a plurality of light sources (101A1) that emit light beams with different wavelengths, and a plurality of light sources that emit light beams having different wavelengths. It includes a multiplexing waveguide (101A2) that multiplexes a plurality of light beams, and a grating waveguide (101A4) that outputs the multiplexed light beams.
(付記8)
 付記8の光集積型分光センサは、付記7に記載された光集積型分光センサであって、前記グレーティング導波路は波長毎に回折方向が異なる導波路構造を有し、前記少なくとも1つの窓は回折方向の数に応じて設けられた複数の窓である。
(Appendix 8)
The optical integrated spectroscopic sensor according to appendix 8 is the optical integrated spectroscopic sensor described in appendix 7, in which the grating waveguide has a waveguide structure in which the diffraction direction differs for each wavelength, and the at least one window is A plurality of windows are provided according to the number of diffraction directions.
(付記9)
 付記9の光集積型分光センサは、付記7または8に記載された光集積型分光センサであって、前記センサチップは前記発光部および前記受光部を保護する保護層(11)を更に備え、前記遮光層は前記保護層の表面に設けられている。
(Appendix 9)
The optical integrated spectroscopic sensor according to appendix 9 is the optical integrated spectroscopic sensor described in appendix 7 or 8, wherein the sensor chip further includes a protective layer (11) that protects the light emitting part and the light receiving part, The light shielding layer is provided on the surface of the protective layer.
(付記10)
 付記10の光集積型分光センサは、付記9に記載された光集積型分光センサであって、前記保護層は樹脂製のモールド材により形成されたモールド層である。
(Appendix 10)
The optical integrated spectroscopic sensor of Appendix 10 is the optical integrated spectroscopic sensor described in Appendix 9, in which the protective layer is a mold layer formed of a resin molding material.
(付記11)
 付記11の光集積型分光センサは、付記7に記載された光集積型分光センサであって、前記遮光層は遮光性インクにより形成されている。
(Appendix 11)
The optical integrated spectroscopic sensor of Appendix 11 is the optical integrated spectroscopic sensor described in Appendix 7, in which the light-shielding layer is formed of a light-shielding ink.
(付記12)
 付記12の光集積型分光センサは、付記7から11のいずれか1つに記載された光集積型分光センサであって、前記光電変換部により変換された電気信号を無線信号に変換して、変換された無線信号を送信する無線信号変換器(103)、を更に備える。
(Appendix 12)
The optical integrated spectroscopic sensor of Appendix 12 is the optical integrated spectroscopic sensor described in any one of Appendixes 7 to 11, which converts the electrical signal converted by the photoelectric conversion unit into a wireless signal, It further includes a wireless signal converter (103) that transmits the converted wireless signal.
(付記13)
 付記13の測定システムは、付記1から12のいずれか1つに記載された光集積型分光センサと、前記光集積型分光センサにより取得された反射光に基づいて解析を行う解析部を備えた解析装置(4)と、を備える。
(Appendix 13)
The measurement system set forth in Appendix 13 includes the light-integrating spectral sensor described in any one of Supplementary notes 1 to 12, and an analysis unit that performs analysis based on the reflected light acquired by the light-integrating spectral sensor. An analysis device (4).
(付記14)
 付記14の測定方法は、付記1から12のいずれか1つに記載された光集積型分光センサを、検査対象に直接にまたは薄膜シートを介して当接するステップ(U1)と、前記光集積型分光センサを動作させて、前記光集積型分光センサが取得した前記検査対象の散乱反射光に基づく信号を、解析装置を用いて前記光集積型分光センサから取得するステップ(U2)と、取得した信号を、前記解析装置を用いて解析するステップ(U3)と、を備える。
(Appendix 14)
The measurement method of appendix 14 includes the step (U1) of bringing the optically integrated spectroscopic sensor described in any one of appendices 1 to 12 into contact with the test object directly or through a thin film sheet; a step (U2) of operating a spectroscopic sensor to acquire a signal based on the scattered reflected light of the inspection target acquired by the optical integrated spectroscopic sensor from the optical integrated spectroscopic sensor using an analysis device; and a step (U3) of analyzing the signal using the analysis device.
 なお、実施形態を組み合わせたり、各実施形態を適宜、変形、省略したりすることが可能である。 Note that it is possible to combine the embodiments, or to modify or omit each embodiment as appropriate.
 本開示の光集積型分光センサは、食品等の検査対象を光学測定する光センサとして用いることができる。 The optical integrated spectroscopic sensor of the present disclosure can be used as an optical sensor for optically measuring an inspection target such as food.
 1(1A) 光集積型分光センサ、1C(1CA) センサチップ、2 薄膜シート、3 検査対象、4 解析装置、6 食品トレー、10 基板、11 保護層、12 窓、13 遮光部、31 食品、32 羽根、101(101A) 発光部、101A1 光源、101A2 合波導波路、101A3 線状導波路、101A4 グレーティング導波路、101A6 プリズム、101A7 結合導波路、101A8 グレーティング導波路、102(102A) 受光部、103 無線信号変換器、104 電源、401 無線信号変換器、402 解析部、403 表示装置、404 給電部、405 無線信号変換器、1013 線状導波路、1015 温度調整部、1017 結合導波路、1021 グレーティング導波路、1022 線状導波路、1023 波長選択スイッチ、1024 光電変換部、1033 線状導波路。 1 (1A) Optical integrated spectroscopic sensor, 1C (1CA) sensor chip, 2 thin film sheet, 3 inspection object, 4 analysis device, 6 food tray, 10 substrate, 11 protective layer, 12 window, 13 light shielding part, 31 food, 32 Blade, 101 (101A) Light emitting part, 101A1 Light source, 101A2 Combined waveguide, 101A3 Linear waveguide, 101A4 Grating waveguide, 101A6 Prism, 101A7 Coupling waveguide, 101A8 Grating waveguide, 102 (102 A) Light receiving section, 103 Wireless signal converter, 104 Power source, 401 Wireless signal converter, 402 Analysis unit, 403 Display device, 404 Power supply unit, 405 Wireless signal converter, 1013 Linear waveguide, 1015 Temperature adjustment unit, 1017 Coupling waveguide, 1021 Grating Waveguide, 1022 Linear waveguide, 1023 Wavelength selective switch, 1024 Photoelectric conversion unit, 1033 Linear waveguide.

Claims (14)

  1.  光線を出射する少なくとも1つの光源を有する発光部と、出射された光線の散乱反射光を受信する少なくとも1つの受光素子を有する受光部とを備えたセンサチップと、
     前記センサチップの表面に設けられ、出射された光線および散乱反射光を透過させる少なくとも1つの窓を有し、前記少なくとも1つの窓の周囲を遮光する遮光部と、
    を備える光集積型分光センサ。
    A sensor chip comprising: a light emitting section having at least one light source that emits a light beam; and a light receiving section having at least one light receiving element that receives scattered reflected light of the emitted light beam;
    a light shielding section provided on the surface of the sensor chip, having at least one window that transmits the emitted light beam and the scattered reflected light, and shielding light around the at least one window;
    A light-integrated spectroscopic sensor equipped with
  2.  前記センサチップは前記発光部および前記受光部を保護する保護層を更に備え、
     前記遮光部は前記保護層の表面に設けられている、
    請求項1に記載された光集積型分光センサ。
    The sensor chip further includes a protective layer that protects the light emitting part and the light receiving part,
    The light shielding portion is provided on the surface of the protective layer.
    The optical integrated spectroscopic sensor according to claim 1.
  3.  前記保護層は樹脂製のモールド材により形成されたモールド層である、
    請求項2に記載された光集積型分光センサ。
    The protective layer is a mold layer formed of a resin mold material,
    The optical integrated spectroscopic sensor according to claim 2.
  4.  前記遮光部は遮光性インクにより形成されている、
    請求項1から3のいずれか1項に記載された光集積型分光センサ。
    The light shielding portion is formed of light shielding ink.
    The optical integrated spectroscopic sensor according to any one of claims 1 to 3.
  5.  前記受光部は、
      異なる波長の光を波長毎の光信号に分岐して、分岐された光信号を導波する波長選択スイッチと、
      前記波長選択スイッチにより導波される光信号を電気信号に変換する少なくとも1つの光電変換部と、
    を備え、
     前記発光部は複数の波長の光線を出射可能に構成されている、
    請求項1から4のいずれか1項に記載された光集積型分光センサ。
    The light receiving section is
    a wavelength selective switch that branches light of different wavelengths into optical signals of each wavelength and guides the branched optical signals;
    at least one photoelectric conversion unit that converts an optical signal guided by the wavelength selective switch into an electrical signal;
    Equipped with
    The light emitting section is configured to be able to emit light beams of a plurality of wavelengths,
    The optical integrated spectroscopic sensor according to any one of claims 1 to 4.
  6.  前記光電変換部により変換された電気信号を無線信号に変換して、変換された無線信号を送信する無線信号変換器、
    を更に備える、
    請求項5に記載された光集積型分光センサ。
    a wireless signal converter that converts the electrical signal converted by the photoelectric conversion unit into a wireless signal and transmits the converted wireless signal;
    further comprising;
    The optical integrated spectroscopic sensor according to claim 5.
  7.  前記発光部は、
      互いに波長が異なる光線を出射する複数の光源と、
      出射された複数の光線を合波する合波導波路と、
      合波された光線を出射するグレーティング導波路と、
    を備える、
    請求項1に記載された光集積型分光センサ。
    The light emitting part is
    multiple light sources that emit light rays with different wavelengths;
    a combining waveguide that combines the plurality of emitted light beams;
    a grating waveguide that emits the combined light beam;
    Equipped with
    The optical integrated spectroscopic sensor according to claim 1.
  8.  前記グレーティング導波路は波長毎に回折方向が異なる導波路構造を有し、
     前記少なくとも1つの窓は回折方向の数に応じて設けられた複数の窓である、
    請求項7に記載された光集積型分光センサ。
    The grating waveguide has a waveguide structure with different diffraction directions for each wavelength,
    The at least one window is a plurality of windows provided according to the number of diffraction directions,
    The optical integrated spectroscopic sensor according to claim 7.
  9.  前記センサチップは前記発光部および前記受光部を保護する保護層を更に備え、
     前記遮光部は前記保護層の表面に設けられている、
    請求項7または8に記載された光集積型分光センサ。
    The sensor chip further includes a protective layer that protects the light emitting part and the light receiving part,
    The light shielding portion is provided on the surface of the protective layer.
    The optical integrated spectroscopic sensor according to claim 7 or 8.
  10.  前記保護層は樹脂製のモールド材により形成されたモールド層である、
    請求項9に記載された光集積型分光センサ。
    The protective layer is a mold layer formed of a resin mold material,
    The optical integrated spectroscopic sensor according to claim 9.
  11.  前記遮光部は遮光性インクにより形成されている、
    請求項7に記載された光集積型分光センサ。
    The light shielding portion is formed of light shielding ink.
    The optical integrated spectroscopic sensor according to claim 7.
  12.  前記光電変換部により変換された電気信号を無線信号に変換して、変換された無線信号を送信する無線信号変換器、
    を更に備える、
    請求項7から11のいずれか1項に記載された光集積型分光センサ。
    a wireless signal converter that converts the electrical signal converted by the photoelectric conversion unit into a wireless signal and transmits the converted wireless signal;
    further comprising;
    The optical integrated spectroscopic sensor according to any one of claims 7 to 11.
  13.  請求項1から12のいずれか1項に記載された光集積型分光センサと、
     前記光集積型分光センサにより取得された反射光に基づいて解析を行う解析部を備えた解析装置と、
    を備える、
    測定システム。
    The optical integrated spectroscopic sensor according to any one of claims 1 to 12,
    an analysis device including an analysis unit that performs analysis based on the reflected light acquired by the optical integrated spectroscopic sensor;
    Equipped with
    measurement system.
  14.  請求項1から12のいずれか1項に記載された光集積型分光センサを、検査対象に直接にまたは薄膜シートを介して当接するステップと、
     前記光集積型分光センサを動作させて、前記光集積型分光センサが取得した前記検査対象の散乱反射光に基づく信号を、解析装置を用いて前記光集積型分光センサから取得するステップと、
     取得した信号を、前記解析装置を用いて解析するステップと、
    を備える、
    測定方法。
    A step of bringing the optical integrated spectroscopic sensor according to any one of claims 1 to 12 into contact with an object to be inspected directly or through a thin film sheet;
    operating the optical integrated spectroscopic sensor to obtain a signal based on the scattered reflected light of the inspection object acquired by the optical integrated spectroscopic sensor from the optical integrated spectroscopic sensor using an analysis device;
    analyzing the acquired signal using the analysis device;
    Equipped with
    Measuring method.
PCT/JP2022/022240 2022-06-01 2022-06-01 Optically integrated spectroscopic sensor, measurement system, and measurement method WO2023233561A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/022240 WO2023233561A1 (en) 2022-06-01 2022-06-01 Optically integrated spectroscopic sensor, measurement system, and measurement method
JP2022568687A JPWO2023233561A1 (en) 2022-06-01 2022-06-01

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/022240 WO2023233561A1 (en) 2022-06-01 2022-06-01 Optically integrated spectroscopic sensor, measurement system, and measurement method

Publications (1)

Publication Number Publication Date
WO2023233561A1 true WO2023233561A1 (en) 2023-12-07

Family

ID=89026041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022240 WO2023233561A1 (en) 2022-06-01 2022-06-01 Optically integrated spectroscopic sensor, measurement system, and measurement method

Country Status (2)

Country Link
JP (1) JPWO2023233561A1 (en)
WO (1) WO2023233561A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10503279A (en) * 1994-07-08 1998-03-24 フォースクニングスセンター・リセー Optical measuring method and device
JP2011245069A (en) * 2010-05-28 2011-12-08 Dainippon Screen Mfg Co Ltd Non-invasive optical sensor
CN109154959A (en) * 2017-05-17 2019-01-04 深圳市汇顶科技股份有限公司 Optical fingerprint sensor with non-contact imaging capability
JP2019049530A (en) * 2017-07-12 2019-03-28 ドクトル・ヨハネス・ハイデンハイン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツングDr. Johannes Heidenhain Gesellschaft Mit Beschrankter Haftung Diffractive biosensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10503279A (en) * 1994-07-08 1998-03-24 フォースクニングスセンター・リセー Optical measuring method and device
JP2011245069A (en) * 2010-05-28 2011-12-08 Dainippon Screen Mfg Co Ltd Non-invasive optical sensor
CN109154959A (en) * 2017-05-17 2019-01-04 深圳市汇顶科技股份有限公司 Optical fingerprint sensor with non-contact imaging capability
JP2019049530A (en) * 2017-07-12 2019-03-28 ドクトル・ヨハネス・ハイデンハイン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツングDr. Johannes Heidenhain Gesellschaft Mit Beschrankter Haftung Diffractive biosensor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DE GOEDE M.: "High quality factor AlOmicroring resonators for on-chip sensing applications", PROCEEDINGS OF SPIE, SPIE, US, vol. 10535, 23 February 2018 (2018-02-23), US , pages 1053504-1 - 1053504-7, XP060103389, ISBN: 978-1-5106-1533-5, DOI: 10.1117/12.2290004 *
ZOU JUN, LE ZICHUN, HE JIAN-JUN: "Temperature Self-Compensated Optical Waveguide Biosensor Based on Cascade of Ring Resonator and Arrayed Waveguide Grating Spectrometer", JOURNAL OF LIGHTWAVE TECHNOLOGY, IEEE, USA, vol. 34, no. 21, 1 November 2016 (2016-11-01), USA, pages 4856 - 4863, XP055776641, ISSN: 0733-8724, DOI: 10.1109/JLT.2016.2603338 *

Also Published As

Publication number Publication date
JPWO2023233561A1 (en) 2023-12-07

Similar Documents

Publication Publication Date Title
KR100242670B1 (en) Method and device for spectral remission and transmission measurement
US7433552B2 (en) Obtaining analyte information
US8594470B2 (en) Transmittting light with lateral variation
CA1082485A (en) Spectrophotometer with photodiode array
US7522786B2 (en) Transmitting light with photon energy information
JP3054756B2 (en) measuring device
EP2116827B1 (en) Spectroscope
US6904205B2 (en) Resolution enhanced optical spectrometer having a fixed number of photodetector elements
EP1801553A1 (en) Propagating light to be sensed
US9631976B2 (en) Miniature spectrometer and apparatus employing same
US20040069948A1 (en) Device and method for analysing the qualitative and/or quantitative composition of liquids
EP1598658A2 (en) Sample analyzer
JP2002062189A (en) Detector for spectrophotometry and integrating sphere- measuring instrument using it, and spectrophotometer
WO2003091676A1 (en) Small packaged spectroscopic sensor unit
CN111727367A (en) Chemical sensing device using fluorescent sensing material
WO2013137145A1 (en) Non-destructive measuring device
KR20170089403A (en) Thickness measuring apparatus and thickness measuring method
JP2010133833A (en) Photometric device
KR20160099620A (en) ATR infrared spectrometer
WO2023233561A1 (en) Optically integrated spectroscopic sensor, measurement system, and measurement method
KR101901905B1 (en) Spectrometer using grating coupler array and method of spectrum analysis thereof
JP2010091441A (en) Light quantity monitoring apparatus and light quantity monitoring method
US7508519B2 (en) Apparatus for sensing plural gases
JP2004361256A (en) Surface plasmon resonance sensor and surface plasmon resonance measuring apparatus
US10114154B2 (en) Optical head for receiving light and optical system using the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022568687

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944848

Country of ref document: EP

Kind code of ref document: A1