WO2023231929A1 - 通信方法和装置 - Google Patents

通信方法和装置 Download PDF

Info

Publication number
WO2023231929A1
WO2023231929A1 PCT/CN2023/096616 CN2023096616W WO2023231929A1 WO 2023231929 A1 WO2023231929 A1 WO 2023231929A1 CN 2023096616 W CN2023096616 W CN 2023096616W WO 2023231929 A1 WO2023231929 A1 WO 2023231929A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
node
report
spcr
secondary base
Prior art date
Application number
PCT/CN2023/096616
Other languages
English (en)
French (fr)
Inventor
曾宇
耿婷婷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023231929A1 publication Critical patent/WO2023231929A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point

Definitions

  • the present application relates to the field of communications, and in particular, to a communications method and device.
  • a terminal may communicate with multiple base stations, that is, dual connectivity (DC) communication.
  • DC dual connectivity
  • the terminal can communicate with the primary base station and the secondary base station, and the secondary base station accessed by the UE may also be switched, that is, from the source secondary base station to the target secondary base station.
  • the UE can record the information during the handover process from the source secondary base station to the target secondary base station in the secondary cell successful handover report (successfulPSCell change report, SPCR), and report it to the network node.
  • the SPCR can contain information related to these potential problems, which can be called potential failure information.
  • the main base station, the source secondary base station and the target secondary base station can all configure trigger conditions for recording SPCR for the terminal. For example, both the primary base station and the source secondary base station configure trigger conditions for recording SPCR to the terminal. Therefore, the terminal may send the SPCR to the wrong network node, resulting in the inability to accurately optimize the mobility of the terminal.
  • This application provides a communication method and device that enables the SPCR recorded by the terminal to be sent to the correct network node.
  • a communication method including:
  • the terminal receives first information from the first node, the first information indicates a trigger condition for recording the first report, wherein the terminal accesses the main base station; when the trigger condition is satisfied, the terminal Record the first report, the first report includes information during the handover of the terminal from the source secondary base station to the target secondary base station, and there is a corresponding relationship between the first report and the first node; The terminal sends the first report to the first node.
  • the terminal when the trigger condition is met, the terminal records the first report. Since there is a corresponding relationship between the first report and the first node, the first report can be sent to the first node correctly and timely, so that The first report can be effectively used to adjust mobility parameters, thereby improving the utilization efficiency of the first report and improving the mobility optimization effect of the terminal. In addition, based on the mobility parameters adjusted according to the first report, the success rate of the subsequent secondary base station handover process can be improved and the continuity of dual-connectivity communication can be ensured.
  • the first report includes identification information of the first node.
  • the method further includes:
  • the terminal records the identification information of the first node, and the identification information of the first node is information independent of the first report.
  • the terminal sends the first report to the first node, including:
  • the terminal directly sends the first report to the first node.
  • the terminal sends the first report to the first node, including:
  • the terminal sends the first report to the first node through at least one intermediate node; the method further includes:
  • the terminal sends the identification information of the first node to a first intermediate node, where the first intermediate node is a node of the at least one intermediate node to which the terminal accesses.
  • the method further includes:
  • the terminal determines whether the first intermediate node supports the radio access technology (RAT) corresponding to the first report; the first intermediate node supports the RAT corresponding to the first report, and the third A report includes identification information of the first node; or, the first intermediate node does not support the RAT corresponding to the first report, and the identification information of the first node is information independent of the first report. ; Alternatively, the first intermediate node supports the RAT corresponding to the first report, and the identification information of the first node is information independent of the first report.
  • RAT radio access technology
  • the terminal's determination of whether the first intermediate node supports the RAT corresponding to the first report can also be understood as the terminal's determination of whether the first intermediate node can parse the first report.
  • the first node is the main base station, and the triggering condition is a potential failure of the communication link between the terminal and the main base station;
  • the first node is the source secondary base station, and the triggering condition is a potential failure of the communication link between the terminal and the source secondary base station; or the first node is the target secondary base station.
  • the triggering condition is a potential failure of the communication link between the terminal and the target secondary base station.
  • a communication method including:
  • the first intermediate node receives a first report from the terminal.
  • the first report corresponds to the first node.
  • the first report includes information during the handover process of the terminal from the source secondary base station to the target secondary base station.
  • the terminal The source main base station is accessed; the first intermediate node sends the first report to the first node.
  • the first intermediate node can promptly and correctly send the first report to the first node, avoiding sending the first report to the wrong node, so that the first report
  • the first report can be effectively used to adjust mobility parameters, thereby improving the utilization efficiency of the first report and improving the mobility optimization effect of the terminal.
  • the first intermediate node supports the RAT corresponding to the first report, and the first report further includes identification information of the first node.
  • the method further includes:
  • the first intermediate node receives identification information of the first node from the terminal, and the identification information of the first node is information independent of the first report.
  • the first intermediate node sends the first report to the first node, including:
  • the first intermediate node sends the first report directly to the first node.
  • the first intermediate node sends the first report to the first node, including:
  • the first intermediate node sends the first report to the first node through the second intermediate node.
  • the first intermediate node sends a request to the third intermediate node through the second intermediate node.
  • a node sends the first report, including:
  • the first intermediate node obtains the identification information of the first node from the first report; the first intermediate node The first report and the identification information of the first node are sent to the second intermediate node, where the identification information of the first node is information independent of the first report.
  • the first intermediate node is the source main base station, the target secondary base station or the target main base station, and the target main base station is the terminal from which the base station is connected.
  • the first node is the source main base station, and the identifier of the first node is the identifier of the main cell managed by the source main base station; or, the first node
  • the node is the source secondary base station, and the identity of the first node is the identity of the primary and secondary cells managed by the source secondary base station; or the first node is the target secondary base station, and the identity of the first node Identity of the primary and secondary cells managed by the target secondary base station.
  • a communication method includes:
  • the first node sends first information, the first information indicates the triggering condition for recording the first report, and the first node is the primary base station, the source secondary base station or the target secondary base station to which the terminal accesses; the first node Receive the first report from the terminal, the first report includes information in the process of the terminal switching from the source secondary base station to the target secondary base station, and the first report satisfies the trigger Sent by the terminal under certain conditions; the first node optimizes the secondary base station handover process according to the first report.
  • the first node can receive the first report from the terminal correctly and timely, so that the first report can be effectively used to adjust mobility parameters, thereby improving the utilization efficiency of the first report and improving the mobility of the terminal. Optimization effect.
  • the success rate of the subsequent secondary base station handover process can be improved and the continuity of dual connection communication can be ensured, so that the first node can optimize the secondary base station handover process based on the first report.
  • the first node is the main base station, and the triggering condition is a potential failure of the communication link between the terminal and the main base station;
  • the first node is the source secondary base station, and the triggering condition is a potential failure of the communication link between the terminal and the source secondary base station; or the first node is the target secondary base station.
  • the triggering condition is a potential failure of the communication link between the terminal and the target secondary base station.
  • a fourth aspect provides a communication device, including: a transceiver unit and a processing unit connected to the transceiver unit.
  • a transceiver unit configured to receive first information from the first node, the first information indicating a trigger condition for recording the first report, wherein the terminal accesses the main base station; when the trigger condition is met, process A unit configured to record the first report, where the first report includes information during the handover of the terminal from the source secondary base station to the target secondary base station, and there is a correspondence between the first report and the first node. Relationship: a transceiver unit, configured to send the first report to the first node.
  • the first report includes identification information of the first node.
  • the processing unit is configured to record identification information of the first node, where the identification information of the first node is information independent of the first report.
  • the transceiving unit is configured to directly send the first report to the first node.
  • the transceiver unit is configured to send the first report to the first node through at least one intermediate node; the transceiver unit is configured to send the first report to the first intermediate node.
  • Identification information of the first node, and the first intermediate node is a node of the at least one intermediate node to which the terminal accesses.
  • the processing unit is configured to determine whether the first intermediate node supports the RAT corresponding to the first report; the first intermediate node supports the first The RAT corresponding to the report, the first report includes the identification information of the first node; or the first intermediate node does not support the RAT corresponding to the first report, and the identification information of the first node is independent Information related to the first report; or, the first intermediate node supports the RAT corresponding to the first report, and the identification information of the first node is information independent of the first report.
  • the first node is the main base station, and the triggering condition is a potential failure of the communication link between the terminal and the main base station;
  • the first node is the source secondary base station, and the triggering condition is a potential failure of the communication link between the terminal and the source secondary base station; or the first node is the target secondary base station.
  • the triggering condition is a potential failure of the communication link between the terminal and the target secondary base station.
  • a communication device including: a transceiver unit and a processing unit connected to the transceiver unit.
  • a transceiver unit configured to receive a first report from the terminal, the first report corresponding to the first node, the first report including potential failure information in the process of the terminal switching from the source secondary base station to the target secondary base station, The terminal has accessed the source main base station; a transceiver unit is configured to send the first report to the first node.
  • the first intermediate node supports the RAT corresponding to the first report, and the first report further includes identification information of the first node.
  • the transceiver unit is configured to receive identification information of the first node from the terminal, where the identification information of the first node is independent of the first node. A reported information.
  • the transceiving unit is configured to directly send the first report to the first node.
  • the transceiving unit is configured to send the first report to the first node through a second intermediate node.
  • the second intermediate node does not support the RAT corresponding to the first report.
  • the transceiver unit is configured to obtain the identification information of the first node from the first report; the transceiver unit is configured to send the first report and the first node to the second intermediate node
  • the identification information of the first node is information independent of the first report.
  • the first intermediate node is the source main base station, the target secondary base station or the target main base station, and the target main base station is the slave base station of the terminal.
  • the first node is the source primary base station, and the identifier of the first node is the identifier of the primary cell managed by the source primary base station; or the first node is the source secondary base station,
  • the identity of the first node is the identity of the primary and secondary cells managed by the source secondary base station; or the first node is the target secondary base station, and the identity of the first node is the identity of the primary and secondary cells managed by the target secondary base station.
  • the identification of the primary and secondary communities are the identification of the primary and secondary communities.
  • a communication device including: a transceiver unit and a processing unit connected to the transceiver unit.
  • a transceiver unit configured to send first information, the first information indicating a trigger condition for recording a first report, and the first node is a primary base station, a source secondary base station, or a target secondary base station that the terminal accesses; a transceiver unit, configured to Receive the first report from the terminal, the first report includes information in the process of the terminal switching from the source secondary base station to the target secondary base station, and the first report satisfies the trigger sent by the terminal under certain conditions; a processing unit configured to optimize the secondary base station handover process according to the first report.
  • the first node is the main base station, and the triggering condition is a potential failure of the communication link between the terminal and the main base station;
  • the first node is the source secondary base station, and the triggering condition is a potential failure of the communication link between the terminal and the source secondary base station; or the first node is the target secondary base station.
  • the triggering condition is a potential failure of the communication link between the terminal and the target secondary base station.
  • a communication device including a communication interface and a processor.
  • the processor executes the computer program or instructions stored in the memory, so that the communication device performs the method in any one of the possible implementations of the first to third aspects.
  • the memory may be located in the processor, or may be implemented in a chip independent of the processor, which is not specifically limited in this application.
  • a computer-readable storage medium including a computer program.
  • the computer program When the computer program is run on a computer, it causes the computer to execute the method in any one of the possible implementations of the first to third aspects.
  • a chip or chip system in a ninth aspect, includes a processing circuit, and the processing circuit is configured to execute the method in any one of the possible implementations of the first to third aspects.
  • a computer program product includes: a computer program (which may also be called a code, or an instruction).
  • a computer program which may also be called a code, or an instruction.
  • the computer program When the computer program is run, it causes the computer to execute any one of the first to third aspects. possible implementation methods.
  • a communication system including a terminal, a first intermediate node and a first node.
  • the terminal is used to execute the method in any possible implementation manner of the first aspect.
  • the first intermediate node is used to execute the method in any possible implementation manner of the second aspect.
  • the first node is used to execute the method in any possible implementation manner of the third aspect.
  • Figure 1 shows a communication system to which this application is applicable.
  • Figure 2 is a schematic interaction diagram of the method proposed in this application.
  • FIG. 3 is a schematic interaction diagram of the method proposed in this application.
  • FIG. 4 is a schematic block diagram of the communication device provided by this application.
  • FIG. 5 is a schematic block diagram of the communication device provided by this application.
  • 3GPP third generation partnership project
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • 5G fifth generation
  • NR new radio, NR
  • B corresponding to A means that B is associated with A, and B can be determined based on A.
  • determining B based on A does not mean determining B only based on A.
  • B can also be determined based on A and/or other information.
  • Multiple appearing in the embodiments of this application refers to two or more than two.
  • Figure 1 shows a dual connection communication system applicable to this application.
  • the system includes UE, main base station, source secondary base station and target secondary base station.
  • the dual-connectivity communication system can be a new radio dual connectivity (NR-DC) system.
  • the main base station is an NR base station connected to the 5G core network
  • the secondary base station is an NR base station.
  • the dual-connectivity communication system can be a next generation (NG) radio access network (radio access network, RAN) evolved universal terrestrial radio access (E-UTRA) and NR Dual connectivity (NG-RAN E-UTRA-NR dual connectivity, NGEN-DC) system.
  • NG next generation
  • RAN radio access network
  • E-UTRA evolved universal terrestrial radio access
  • NR Dual connectivity NG-RAN E-UTRA-NR dual connectivity, NGEN-DC
  • the main base station is an LTE base station connected to the 5G core network
  • the secondary base station is an NR base station.
  • the dual connectivity communication system can be an E-UTRA and NR dual connectivity (E-UTRA-NRdual connectivity, EN-DC) system.
  • the main base station is an LTE base station connected to the 4G core network
  • the secondary base station is an NR base station. .
  • the dual connectivity communication system can be a dual connectivity (NR-E-UTRA dual connectivity, NE-DC) system of NR and E-UTRA.
  • the main base station is an NR base station connected to the 5G core network
  • the secondary base station is LTE. base station.
  • MR-DC multi-radio dual connectivity
  • a group of serving cells associated with a master base station may be called a master cell group (MCG).
  • the primary cell group includes a primary cell (PCell).
  • the main base station can also be called the master node (MN).
  • a group of serving cells associated with a secondary base station may be called a secondary cell group (SCG), and the primary cell in the secondary cell group may be called a primary SCG cell (PSCell).
  • the secondary base station can also be called a secondary node (SN).
  • a control plane connection can be established between the main base station and the core network, and a data plane connection can be established between the main base station and the secondary base station respectively with the core network.
  • the primary and secondary cells managed by the source secondary base station are called S-PSCell (source PSCell), and the primary and secondary cells managed by the target secondary base station are called T-PSCell (target PSCell).
  • the terminal can be various types of equipment that provide voice and/or data connectivity to users, and can also be called terminal equipment, user equipment (UE), mobile station, mobile terminal, etc.
  • Terminals can be widely used in various scenarios, such as device-to-device (D2D), vehicle to everything (V2X) communication, machine-type communication (MTC), Internet of Things ( internet of things (IOT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, etc.
  • Terminals can be mobile phones, tablets, computers with wireless transceiver functions, wearable devices, aerospace equipment, etc.
  • the chip used in the above device may also be called a terminal.
  • UE is used as a terminal for explanation.
  • the network node in the embodiment of the present application may be an access network device such as a base station.
  • the base station may be a base station in the global system of mobile communication (GSM) or code division multiple access (CDMA).
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • BTS base transceiver station
  • WCDMA wideband code division multiple access
  • evolutional nodeB, eNB or eNodeB evolution base station
  • the network node can also be a module or unit that completes some functions of the base station.
  • it can be a centralized unit (central unit, CU) or a distributed unit (DU).
  • CU and DU respectively complete part of the protocol stack functions of the base station.
  • the functions of CU can be implemented by multiple entities.
  • the functions of the control plane (CP) and the user plane (UP) of the CU can be separated to form the CU control plane (CU-CP) and the CU user plane. (CU-UP).
  • CU-CP and CU-UP can be implemented by different functional entities and connected through the E1 interface, and CU-CP and CU-UP can be coupled with DU.
  • Potential failures may occur during the handover process of the UE from the source secondary base station to the target secondary base station.
  • potential failure may refer to: the UE successfully switches from the source secondary base station to the target secondary base station, but there are some problems during the handover process that may cause the handover process to fail in the future.
  • the UE switches from the source secondary base station to the target secondary base station.
  • the time of the secondary base station exceeds the preset time.
  • the UE may be triggered to record an SPCR, and the SPCR may contain information related to the aforementioned potential failure, which may be called potential failure information.
  • the above potential failure can be caused by: a potential failure in the communication link between the UE and the primary base station, or a potential failure in the communication link between the UE and the source secondary base station, or a potential failure in the communication link between the UE and the target secondary base station.
  • a potential failure occurs.
  • the reason for potential failure of any of the above communication links may be that the signal quality of the communication link is lower than the preset threshold. It can be understood that if the signal quality of one or more of the above communication links is poor, the UE may need to wait for the signal quality to improve, or may need to try more times to access the target secondary base station. Therefore, the UE switches from the source secondary base station to the target secondary base station. The time of the secondary base station may exceed the preset time.
  • Whether the time for the UE to switch from the source secondary base station to the target secondary base station exceeds the preset time can be reflected by whether the preset timer running time times out.
  • Timer T304 (hereinafter referred to as T304):
  • the running time of T304 indicates the time period during which the UE does not access the target secondary base station after receiving the secondary base station handover command. If the running duration of T304 is greater than or equal to threshold 1, the UE determines that handover failure has occurred, that is, the UE determines that access to the target secondary base station has failed; if the running duration of T304 is greater than or equal to threshold 2, the UE determines that there is a possibility of handover failure. Trigger recording SPCR. Here threshold 1 is greater than threshold 2.
  • Timer T310 (hereinafter referred to as T310):
  • the running time of T310 indicates the length of time that the UE detects physical layer problems (physical layer problems) with the base station (for example, the source secondary base station or the main base station) (the problem is usually that the continuously received downlink out-of-synchronization indication exceeds a certain threshold) .
  • the base station for example, the source secondary base station or the main base station
  • the timer T310 will be stopped.
  • the UE determines that a wireless link failure occurs between the UE and the base station (for example, the source secondary base station or the primary base station); if the running duration of T310 is greater than or equal to the threshold 4, the UE determines that the wireless link failure occurs between the UE and the base station (for example, the source secondary base station or the primary base station).
  • the base station for example, the source secondary base station or the primary base station
  • threshold 3 is greater than threshold 4.
  • Timer T312 (hereinafter referred to as T312):
  • T312 starts during operation of T310.
  • the running duration of T312 indicates the duration of synchronization recovery between the UE and the base station (eg, source secondary base station or primary base station). If the running time of T312 is greater than or equal to the threshold 5, the UE determines that a wireless link failure occurs between the UE and the base station (for example, the source secondary base station or the main base station); if the running time of T312 is greater than or equal to the threshold 6, the UE determines that the UE and the base station (for example, the source secondary base station or the main base station) fail. There is a possibility of wireless link failure between base stations (eg, source secondary base station or primary base station), triggering recording of SPCR.
  • threshold 5 is greater than threshold 6.
  • the primary base station, the source secondary base station, and the target secondary base station may all configure trigger conditions for recording SPCR for the UE.
  • both the primary base station and the source secondary base station configure the T312 timeout threshold for the UE. If T312 times out, the UE records the SPCR. However, since the T312 timeout threshold can be configured by the primary base station or the source secondary base station, the UE cannot determine whether to send the SPCR to the primary base station or the source secondary base station. Therefore, the UE may send the recorded SPCR to the primary base station or the source secondary base station. Sent to the wrong base station.
  • Figure 2 shows the method 200 provided by this application.
  • this method there is a corresponding relationship between the SPCR recorded by the UE and the node that triggers the recording of the SPCR, so that the UE can send the SPCR to the correct node.
  • the method 200 includes:
  • the first node sends the first information. Accordingly, the UE receives the first information from the first node.
  • the first information indicates a trigger condition for recording the first report.
  • the first report may be SPCR, or the name of the first report may be another name, which is not limited in this application.
  • the following description takes the first report as SPCR.
  • the first node is the source main base station to which the UE accesses (hereinafter referred to as main base station #1).
  • the first node may directly send the first information (denoted as first information #1) to the UE.
  • the primary base station #1 may send a secondary base station switching command to the UE, where the secondary base station switching command includes the first information #1.
  • the UE can perform the secondary base station switching process according to the secondary base station switching command.
  • the primary base station #1 determines to perform RRC reconfiguration on the UE, thereby sending a secondary base station switching command to the UE. For example, when the load of the source secondary base station is too large, the primary base station #1 determines to perform RRC reconfiguration on the UE.
  • the trigger condition #1 for recording the SPCR may be a potential failure of the communication link between the UE and the primary base station #1.
  • trigger condition #1 can be T312 timeout or T310 timeout.
  • the first information #1 includes the timeout threshold of T312 and/or the timeout threshold of T310.
  • source main base station here is only to distinguish it from the “target main base station” below, and does not mean that the main base station accessed by the UE will definitely switch, or even if the UE performs the main base station switching process,
  • the source main base station and the target main base station may also be the same base station.
  • the first node is the target secondary base station.
  • the first node may send the first information (denoted as first information #2) to the UE through the main base station #1 accessed by the UE.
  • the target secondary base station sends a radio resource control (RRC) reconfiguration message to the primary base station #1, and the first information #2 is included in the RRC reconfiguration message in the form of a container.
  • RRC radio resource control
  • the primary base station #1 then sends a secondary base station switching command to the UE, and the first information #2 is included in the secondary base station switching command in the form of a container.
  • the trigger condition #2 for recording the SPCR may be a potential failure of the communication link between the UE and the target secondary base station.
  • trigger condition #2 could be T304 timeout.
  • the first information #2 includes the timeout threshold of T304.
  • the first node is the source secondary base station to which the UE accesses.
  • the first node may send the first information (denoted as first message #3) to the UE through the main base station #1 accessed by the UE.
  • the source secondary base station sends an RRC reconfiguration message to the primary base station #1, and the first information #3 is included in the RRC reconfiguration message in the form of a container.
  • the primary base station #1 then sends a secondary base station switching command to the UE, and the first information #3 is included in the secondary base station switching command in the form of a container.
  • the trigger condition #3 for recording the SPCR may be a potential failure of the communication link between the UE and the source secondary base station.
  • trigger condition #3 could be T312 timeout or T310 timeout.
  • the first information #3 includes the timeout threshold of T312 and/or the timeout threshold of T310.
  • T312 timeout threshold in trigger condition #1 and the T312 timeout threshold in trigger condition #3 may be different or the same.
  • the T312 timeout threshold configured by the primary base station #1 and the T312 timeout threshold configured by the source secondary base station may be different or the same.
  • T310 timeout threshold in trigger condition #1 and the T310 timeout threshold in trigger condition #3 can be different or the same.
  • the primary base station #1 sends a secondary base station switching command to the UE.
  • the secondary base station switching command includes one or more of the first information #1, the first information #2, and the first information #3, so that the UE can obtain One or more of trigger condition #1 to trigger condition #3.
  • step S201 is performed by the UE before performing secondary base station handover.
  • the UE can first obtain the first information from the first node, and then the primary base station #1 can send a secondary base station switching command to the UE, and the UE executes the secondary base station switching process according to the secondary base station switching command.
  • the SPCR includes information about the UE during the handover process of the secondary base station, including one or more of the following:
  • the neighboring cell may be a neighboring cell of an S-PSCell managed by the source SeNB and/or a neighboring cell of a T-PSCell managed by the target SeNB.
  • the above information may be related to the potential failure that exists in the process of handover of the UE to the target secondary base station, and may also be called potential failure information.
  • the SPCR may include identification information of the first node.
  • the UE records the identification information of the first node in the SPCR.
  • the identification information of the first node is information independent of the SPCR.
  • the UE sends a message including the identification information of the first node and the SPCR.
  • the identification information of the first node and the SPCR may also be included in different messages.
  • the SPCR may be used as a container, and the SPCR may not include the identification information of the first node.
  • the UE records the identification information of the first node as an independent information element outside the SPCR. It should be understood that if the identification information of the first node is recorded outside the SPCR, on the one hand, at least one intermediate node below can obtain the identification information of the first node without parsing the SPCR, thereby reducing the transmission delay of the SPCR. On the other hand, It can also avoid the situation where at least one intermediate node below cannot parse the SPCR due to different base station standards.
  • the UE not only records the SPCR, but also records the identification information of the first node corresponding to the SPCR, so that the SPCR can be associated with the first node. Since the SPCR is triggered to be recorded by the trigger condition sent by the first node, the SPCR may contain potential failure information related to the first node. Therefore, the first node may be considered as the destination node corresponding to the SPCR, that is to say , finally the SPCR can be sent to the first node, and the first node optimizes mobility parameters based on the SPCR to solve potential failure problems.
  • the identification information of the first node is used to characterize the source of the trigger condition corresponding to the SPCR.
  • the source may be the above-mentioned primary base station #1, source secondary base station or target secondary base station.
  • the identification information of the first node may be a cell global identity (CGI) or a closed access group (CAG) identity.
  • CGI cell global identity
  • CAG closed access group
  • the format of the SPCR corresponds to the format of the first node as the destination node, so the destination node can parse the SPCR. It can be understood that if the standard of the network node that receives the SPCR does not correspond to the format of the SPCR, the network node cannot parse the SPCR.
  • the format of the SPCR may refer to the format of radio resource control (RRC) layer signaling that carries the first report. For example, the design of cells in RRC layer signaling of different formats may be different. For example, if the first node is an LTE base station, the SPCR is in the LTE format; if the first node is an NR base station, the SPCR is in the NR format.
  • RRC radio resource control
  • the UE sends the SPCR to the first node. Accordingly, the first node receives the SPCR from the UE.
  • the UE sends SPCR#1 to the main base station #1.
  • the UE sends SPCR#2 to the target secondary base station.
  • the UE sends SPCR#3 to the source secondary base station.
  • S204 The first node optimizes the secondary base station handover process according to the SPCR.
  • the SPCR includes neighboring cell channel measurement quantities, and the first node can select a cell with better channel quality based on the neighboring cell channel measurement quantities for subsequent secondary base station switching by other UEs.
  • the primary base station #1 determines that the UE's access time to the target secondary base station is too long, and the channel measurement results of the neighboring station are better than the channel measurement results of the target secondary base station, then for the UE that subsequently switches to the secondary base station, The main base station #1 can preferentially switch these UEs to neighboring stations with better channel measurement results.
  • the primary base station #1 or the source secondary base station determines that the handover time is too late, causing the UE to successfully access the target secondary base station. Downlink desynchronization has occurred multiple times between the UE and the source secondary base station, then the primary secondary base station Base station #1 or the source secondary base station may advance the time for other UEs to perform secondary base station handover.
  • the target secondary base station determines that the handover time is too early, resulting in potential failure.
  • the target secondary base station can send indication information to the primary base station #1 to postpone the time for other UEs to perform secondary base station handover.
  • the UE can send the SPCR to the first node correctly and timely, so that the SPCR can be effectively used for mobility parameter optimization, thereby improving the utilization efficiency of the SPCR and improving the mobility optimization effect.
  • the mobility parameters optimized based on the first node can improve the success rate of the subsequent secondary base station handover process and ensure the continuity of dual-connection communication.
  • the UE sends the SPCR directly to the first node.
  • trigger condition #1 the UE records SPCR#1 and the identification information of primary base station #1 (for example, the CGI of the PCell managed by primary base station #1).
  • SPCR#1 corresponds to primary base station #1, and SPCR#1 should eventually be sent to primary base station #1.
  • the UE may record the identification information of the primary base station #1 into SPCR#1, or record it as independent information outside SPCR#1 without limitation.
  • the UE sends SPCR#1 to the primary base station #1 according to the recorded identification information of the primary base station #1.
  • the UE records SPCR#2 and the identification information of the target secondary base station (for example, the CGI of the T-PSCell managed by the target secondary base station).
  • the UE can record the identification information of the target secondary base station into SPCR#2, or record it as independent information outside SPCR#2 without limitation.
  • the UE sends SPCR#2 to the target secondary base station according to the recorded identification information of the target secondary base station.
  • the UE sends the SPCR to the first node through at least one intermediate node.
  • the at least one intermediate node includes a first intermediate node, and optionally also includes a second intermediate node.
  • the UE also sends the identification information of the first node to the first intermediate node. It should be understood that if the at least one intermediate node includes a second intermediate node, the UE also sends the identification information of the second intermediate node to the first intermediate node.
  • the first intermediate node is a node to which the UE accesses.
  • the UE determines whether the first intermediate node supports the RAT corresponding to the SPCR based on the first intermediate node and the standard of the first node. In other words, the UE determines whether the first intermediate node can parse the SPCR. Specifically, if the first intermediate node and the first node are base stations of the same standard, the first intermediate node supports the RAT corresponding to the SPCR, that is, the first intermediate node can parse the SPCR. If the first intermediate node and the first node are base stations of different standards, the first intermediate node does not support the RAT corresponding to the SPCR, that is, the first intermediate node cannot parse the SPCR.
  • the first intermediate node and the first node are both LTE base stations, or both are NR base stations, then the first intermediate node and the first node are base stations of the same standard; if one of them is an LTE base station and the other is an NR base station, Then the first intermediate node and the first node are base stations of different standards; if one of them is an NR base station and the other is a base station in the future 6G system, then the first intermediate node and the first node are base stations of different standards.
  • the SPCR includes the identification information of the first node. That is, when recording the SPCR in S204, the UE also records the identification information of the first node into the SPCR; or, the UE may also record the identification information of the first node as information independent of the SPCR.
  • the UE may use the identification information of the first node as It is an information record independent of the SPCR, that is, the identification information of the first node is recorded outside the SPCR.
  • SPCR serves as a container, and uses the identification information of the first node as an information element outside the container.
  • the UE may send a message including the container and the identification information of the first node to the first intermediate node.
  • the first intermediate node may be the aforementioned primary base station #1, the target secondary base station, or the primary base station #2 (an example of the target primary base station).
  • the main base station #2 is the main base station that the UE accesses after the main base station handover occurs (that is, the main base station #1 is switched from the main base station #1 to the main base station #2).
  • Method 2 is described below based on different scenarios.
  • NR-DC scenario the main base station #1 is an NR base station connected to the 5G core network, and the source secondary base station and the target secondary base station are NR base stations.
  • the first intermediate node is the main base station #1.
  • the UE records SPCR#3 in NR format. Since the source secondary base station has the same standard as the primary base station #1, and the UE determines that the primary base station #1 can parse the SPCR#3, then in S202, the UE can record the identification information of the source secondary base station into SPCR#3. Of course, the UE can also record the identification information of the source secondary base station outside SPCR#3.
  • the identification information of the source secondary base station may be the CGI of the S-PSCell managed by the source secondary base station.
  • the specific sending process includes:
  • Step 1 UE sends SPCR#3 to primary base station #1.
  • Step 2 The primary base station #1 sends SPCR#3 to the source secondary base station according to the identification information of the source secondary base station included in SPCR#3.
  • the UE and the main base station #1 may send SPCR#3 through one message or multiple messages, which is not limited in this application.
  • the first intermediate node is the main base station #2, and the main base station #2 is an NR base station.
  • the UE determines that the main base station #2 can parse the SPCR, and the UE can record the identification information of the first node in the SPCR.
  • the UE can also record the identification information of the first node outside the SPCR. The following description takes recording the identification information of the first node in the SPCR as an example.
  • SPCR#1 may include identification information of primary base station #1.
  • the UE sends SPCR#1 to the primary base station #2. Further, the main base station #2 sends the SPCR#1 to the main base station #1 according to the identification information of the main base station #1 in the SPCR#1. For example, the main base station #2 sends SPCR#1 to the main base station #1 through the Xn interface.
  • SPCR#2 may include identification information of the target secondary base station.
  • the UE sends SPCR#2 to the primary base station #2. Further, the main base station #2 sends SPCR#2 to the target secondary base station according to the identification information of the target secondary base station in SPCR#2. For example, the primary base station #2 sends SPCR#2 to the target secondary base station through the Xn interface.
  • SPCR#3 may include identification information of the source secondary base station.
  • the UE sends SPCR#3 to the primary base station #2. Further, the primary base station #2 sends SPCR#3 to the source secondary base station according to the identification information of the source secondary base station in SPCR#3. For example, the primary base station #2 sends SPCR#3 to the source secondary base station through the Xn interface.
  • Example 4 If trigger condition #2 is met, the UE records SPCR#2.
  • SPCR#2 includes identification information of the target secondary base station.
  • the UE sends SPCR#2 to the target secondary base station through two intermediate nodes, namely primary base station #2 (first intermediate node) and primary base station #1 (second intermediate node).
  • the specific sending process includes:
  • Step 1 UE sends SPCR#2 to primary base station #2.
  • SPCR#2 may include identification information of the target secondary base station, identification information of the primary base station #1, and indication information.
  • the indication information is used to indicate that the primary base station #1 is an intermediate node transmitting SPCR#2, and the target The secondary base station is the destination node corresponding to SPCR#2. That is, the main base station #2 can be notified through direct (explicit) instructions which nodes the intermediate node and the destination node are respectively.
  • the indication information is used to indicate that the main base station #1 is an intermediate node transmitting SPCR#2.
  • rules can be configured in advance in the UE and primary base station #2, and the default target secondary base station is the destination node corresponding to SPCR#2.
  • the indication information is used to indicate that the target secondary base station is the destination node corresponding to SPCR#2.
  • rules can be configured in advance in the UE and the main base station #2.
  • the main base station #1 is the intermediate node that transmits SPCR#2.
  • the UE does not send the above indication information to the main base station #2.
  • the rules for determining the intermediate node and the destination node are pre-configured in the UE and the main base station #2, and the main base station #2 is notified through indirect (implicit) indication which node the intermediate node and the destination node are respectively.
  • the intermediate node and the destination node are determined according to the order of the identification information of the target secondary base station and the identification information of the primary base station #1 in a group of bits. For example, the first 5 bits in a group of bits are used to indicate the intermediate node transmitting SPCR#2, and the last 5 bits are used to indicate the destination node corresponding to SPCR#2.
  • the base station identifier included in the SPCR is the identifier of the destination node
  • the base station identifiers outside the SPCR are the identifiers of the intermediate nodes. That is, the identification information of the primary base station #1 is outside SPCR#2, and the identification information of the target secondary base station is within SPCR#2.
  • the UE may send the above information to the main base station #2 through one or more messages, which is not limited in this application.
  • Step 2 Primary base station #2 sends SPCR#2 to primary base station #1.
  • Step 3 The primary base station #1 sends SPCR#2 to the target secondary base station according to the identification information of the target secondary base station in SPCR#2. For example, the primary base station #1 sends SPCR#2 to the target secondary base station through the Xn interface.
  • Example 5 Since trigger condition #3 is met, the UE records SPCR#3.
  • SPCR#3 includes identification information of the source secondary base station.
  • the UE sends SPCR#3 to the source secondary base station through two intermediate nodes, namely the primary base station #2 and the primary base station #1.
  • the specific sending process includes:
  • Step 1 The UE sends SPCR#3 and the identification information of the primary base station #1 to the primary base station #2.
  • SPCR#3 includes identification information of the source secondary base station.
  • Example 4 Similar to Example 4, in order to indicate that the primary base station #1 is the intermediate node that sends SPCR#3, and that the source secondary base station is the destination node corresponding to SPCR#3, there are two ways of direct indication and indirect indication, which will not be described again here.
  • Step 2 Primary base station #2 sends SPCR#3 to primary base station #1.
  • Step 3 The primary base station #1 sends SPCR#3 to the source secondary base station according to the identification information of the source secondary base station in SPCR#3. For example, the primary base station #1 sends SPCR#3 to the source secondary base station through the Xn interface.
  • the first intermediate node is the main base station #2, and the main base station #2 is not an NR base station.
  • the main base station #2 is an LTE base station.
  • the UE determines that the main base station #2 cannot parse the SPCR, and the UE can record the identification information of the first node outside the SPCR.
  • Example 1 If trigger condition #1 is met, the UE records the identification information of SPCR#1 and primary base station #1.
  • the UE sends the SPCR#1 and the identification information of the primary base station #1 to the primary base station #2. Further, the main base station #2 sends SPCR#1 to the main base station #1 according to the identification information of the main base station #1.
  • the UE may send the SPCR#1 and the identification information of the main base station #1 to the main base station #2 through one message or multiple messages, which is not limited in this application.
  • Example 2 If trigger condition #2 is met, the UE records SPCR#2 and the identification information of the target secondary base station.
  • the UE sends SPCR#2 and the identification information of the target secondary base station to the primary base station #2. Further, the primary base station #2 sends SPCR#2 to the target secondary base station according to the identification information of the target secondary base station.
  • Example 3 If trigger condition #3 is met, the UE records SPCR#3 and the identification information of the source secondary base station.
  • the UE sends SPCR#3 and the identification information of the source secondary base station to the primary base station #2. Further, the primary base station #2 sends SPCR#3 to the source secondary base station according to the identification information of the source secondary base station.
  • Example 4 If trigger condition #2 is met, the UE records SPCR#2 and the identification information of the target secondary base station.
  • the UE sends SPCR#2 to the target secondary base station through two intermediate nodes, namely the primary base station #2 and the primary base station #1.
  • the specific sending process includes:
  • Step 1 The UE sends SPCR#2, the identification information of the target secondary base station, and the identification information of the primary base station #1 to the primary base station #2.
  • the identification information of the target secondary base station may be outside SPCR#2 or within SPCR#2.
  • the identification information of primary base station #1 is outside SPCR#2.
  • a direct indication or an indirect indication may be used. For details, refer to the above.
  • Step 2 Primary base station #2 sends SPCR#2 and the identification of the target secondary base station to primary base station #1.
  • Step 3 The primary base station #1 sends SPCR#2 to the target secondary base station according to the identification information of the target secondary base station.
  • Example 5 Since trigger condition #3 is met, the UE records SPCR#3 and the identification information of the source secondary base station.
  • the UE sends SPCR#3 to the source secondary base station through two intermediate nodes, namely the primary base station #2 and the primary base station #1.
  • the specific sending process includes:
  • Step 1 The UE sends SPCR#3, the identification information of the source secondary base station, and the identification information of the primary base station #1 to the primary base station #2.
  • the identification information of the source secondary base station may be outside SPCR#3 or within SPCR#3.
  • the identification information of primary base station #1 is outside SPCR#3.
  • a direct indication or an indirect indication may be used. Please refer to the above for details.
  • Step 2 Primary base station #2 sends SPCR#3 and the identification information of the source secondary base station to primary base station #1.
  • Step 3 The primary base station #1 sends SPCR#3 to the source secondary base station according to the identification information of the source secondary base station.
  • ##Scenario 2 NGEN-DC scenario
  • the main base station #1 is the LTE base station connected to the 5G core network
  • the source secondary base station and the target secondary base station are NR base stations.
  • the first intermediate node is the target secondary base station.
  • Example 1 If trigger condition #1 is met, the UE records SPCR#1 in LTE format. Since the standard of the target secondary base station and the primary base station #1 are different, the UE determines that the target secondary base station cannot parse the SPCR#1, and then in S202, the UE records the identification information of the primary base station #1 as independent information.
  • the specific sending process includes:
  • Step 1 The UE sends the identification information of SPCR#1 and primary base station #1 to the target secondary base station.
  • Step 2 The target secondary base station sends SPCR#1 to the primary base station #1 based on the identification information of the primary base station #1. For example, the target secondary base station sends SPCR#1 to the primary base station #1 through the X2 interface or the core network.
  • Example 2 If trigger condition #3 is met, the UE records SPCR#3 in NR format. Since the standard of the target secondary base station and the source secondary base station are the same, and the UE determines that the target secondary base station can parse the SPCR#3, then in S202, the UE can record the identification information of the source secondary base station into SPCR#3. Of course, the UE can also record the identification information of the source secondary base station as independent information outside SPCR#3.
  • the specific sending process includes:
  • Step 1 The UE sends SPCR#3 to the target secondary base station.
  • Step 2 The target secondary base station sends SPCR#3 to the source secondary base station according to the identification information of the source secondary base station in SPCR#3.
  • the target secondary base station sends SPCR#3 to the source secondary base station through the Xn interface or the core network.
  • the first intermediate node is the main base station #1.
  • Example 1 If trigger condition #2 is met, the UE records SPCR#2 in NR format. Since the standards of the primary base station #1 and the target secondary base station are different, the UE determines that the primary base station #1 cannot parse the SPCR#2, and then in S202, the UE records the identification information of the target secondary base station as independent information.
  • the specific sending process includes:
  • Step 1 The UE sends SPCR#2 and the identification information of the target secondary base station to the primary base station #1.
  • Step 2 The primary base station #1 sends SPCR#2 to the target secondary base station according to the identification information of the target secondary base station.
  • the primary base station #1 sends SPCR#2 to the target secondary base station through the X2 interface or the core network.
  • Example 2 If trigger condition #3 is met, the UE records SPCR#3 in NR format. Since the standards of the primary base station #1 and the source secondary base station are different, the UE determines that the primary base station #1 cannot parse the SPCR#3, and then in S202, the UE records the identification information of the source secondary base station as independent information.
  • the specific sending process includes:
  • Step 1 The UE sends SPCR#3 and the identification information of the source secondary base station to the primary base station #1.
  • Step 2 The primary base station #1 sends SPCR#3 to the source secondary base station according to the identification information of the source secondary base station. For example, the primary base station #1 sends SPCR#3 to the source secondary base station through the X2 interface or the core network.
  • the first intermediate node is the main base station #2, and the main base station #2 is an NR base station.
  • Example 1 If trigger condition #1 is met, the UE records SPCR#1 in LTE format. Since the main base station #2 and the main base station #1 have different standards, the UE determines that the main base station #2 cannot parse the SPCR#1, and then in S202, the UE records the identification information of the main base station #1 as independent information.
  • the specific sending process includes:
  • Step 1 The UE sends SPCR#1 and the identification information of the primary base station #1 to the primary base station #2.
  • Step 2 The main base station #2 sends SPCR#1 to the main base station #1 according to the identification information of the main base station #1. That is, the master base station #2 does not read the content of the SPCR#1, but sends the SPCR#1 to the master base station #1 based on the identification information of the master base station #1 other than the SPCR#1. For example, the main base station #2 sends SPCR#1 to the main base station #1 through the X2 interface or the core network.
  • Example 2 If trigger condition #2 is met, the UE records SPCR#2 in NR format. Since the main base station #2 and the target secondary base station have the same standard, and the UE determines that the main base station #2 can parse the SPCR#2, then in S202, the UE can record the identification information of the target secondary base station into SPCR#2. Of course, the UE can also record the identification information of the target secondary base station as independent information outside SPCR#2.
  • the specific sending process includes:
  • Step 1 UE sends SPCR#2 to primary base station #2.
  • Step 2 The primary base station #2 sends SPCR#2 to the target secondary base station based on the identification information of the target secondary base station in SPCR#2. For example, the primary base station #2 sends SPCR#2 to the target secondary base station through the Xn interface or the core network.
  • Example 3 If trigger condition #2 is met, the UE records SPCR#2 in NR format. The UE sends SPCR#2 to the target secondary base station through two intermediate nodes, namely the primary base station #2 and the primary base station #1.
  • this method can be used to transmit.
  • the specific sending process includes:
  • Step 1 The UE sends SPCR#2, the identification information of the primary base station #1, and the identification information of the target secondary base station to the primary base station #2.
  • the UE determines that the main base station #2 can parse SPCR#2.
  • the identification information of the primary base station #1 and the identification information of the target secondary base station may be included in SPCR#2.
  • the identification information of the primary base station #1 and the identification information of the target secondary base station may be outside SPCR#2.
  • a direct indication or an indirect indication may be used. Please refer to the above for details.
  • Step 2 The main base station #2 sends SPCR#2 and the identification information of the target secondary base station to the main base station #1.
  • the identification information of the target secondary base station is outside SPCR#2.
  • the primary base station #2 determines the primary base station #1 cannot parse SPCR#2. Further, before step 2, the primary base station #2 obtains the identification information of the target secondary base station from SPCR#2.
  • Step 3 The primary base station #1 sends SPCR#2 to the target secondary base station according to the identification information of the target secondary base station.
  • Example 4 If trigger condition #3 is met, the UE records SPCR#3 in NR format. Since the primary base station #2 and the source secondary base station have the same standard, and the UE determines that the primary base station #2 can parse the SPCR#3, then in S202, the UE can record the identification information of the source secondary base station into SPCR#3. Of course, the UE can also record the identification information of the source secondary base station as independent information outside SPCR#3.
  • the specific sending process includes:
  • Step 1 UE sends SPCR#3 to primary base station #2.
  • Step 2 The primary base station #2 sends SPCR#3 to the source secondary base station according to the identification information of the source secondary base station in SPCR#3.
  • the primary base station #2 sends SPCR#3 to the source secondary base station through the Xn interface or the core network.
  • Example 5 If trigger condition #3 is met, the UE records SPCR#3 in NR format. The UE sends SPCR#3 to the source secondary base station through two intermediate nodes, namely the primary base station #2 and the primary base station #1.
  • this transmission method can be used when there is no direct interface between the primary base station #2 and the source secondary base station.
  • the specific sending process includes:
  • Step 1 The UE sends SPCR#3, the identification information of the primary base station #1, and the identification information of the source secondary base station to the primary base station #2.
  • the UE determines that the main base station #2 can parse SPCR#3.
  • the identification information of the primary base station #1 and the identification information of the source secondary base station may be included in SPCR#3.
  • the identification information of the primary base station #1 and the identification information of the source secondary base station may be outside SPCR#3.
  • a direct indication or an indirect indication may be used. Please refer to the above for details.
  • Step 2 Primary base station #2 sends SPCR#3 and the identification information of the source secondary base station to primary base station #1.
  • the identification information of the source secondary base station is outside SPCR#3.
  • the primary base station #2 determines the primary base station #1 cannot parse SPCR#3. Further, before step 2, the primary base station #2 obtains the identification information of the source secondary base station from SPCR#3.
  • Step 3 The primary base station #1 sends SPCR#3 to the source secondary base station according to the identification information of the source secondary base station.
  • the first intermediate node is the main base station #2, and the main base station #2 is an LTE base station.
  • Example 1 If trigger condition #1 is met, the UE records SPCR#1 in LTE format. Since the main base station #2 has the same standard as the main base station #1, and the UE determines that the main base station #2 can parse the SPCR#1, then in S202, the UE can record the identification information of the main base station #1 into SPCR#1. Of course, the UE may also record the identification information of the primary base station #1 as independent information outside the SPCR#1.
  • the specific sending process includes:
  • Step 1 UE sends SPCR#1 to primary base station #2.
  • Step 2 The main base station #2 sends SPCR#1 to the main base station #1 based on the identification information of the main base station #1 in SPCR#1. For example, the main base station #2 sends SPCR#1 to the main base station #1 through the Xn interface or the core network.
  • Example 2 If trigger condition #2 is met, the UE records SPCR#2 in NR format. Since the standards of the primary base station #2 and the target secondary base station are different, the UE determines that the primary base station #2 cannot parse the SPCR#2, and then in S202, the UE records the identification information of the target secondary base station as independent information.
  • the specific sending process includes:
  • Step 1 The UE sends SPCR#2 and the identification information of the target secondary base station to the primary base station #2.
  • Step 2 The primary base station #2 sends SPCR#2 to the target secondary base station according to the identification information of the target secondary base station. That is, the main base station #2 does not read the contents of SPCR#2. For example, the primary base station #2 sends SPCR#2 to the target secondary base station through the X2 interface or the core network.
  • the UE can also send the target secondary base station through the primary base station #2 and the primary base station #1. SPCR#2. See above for details.
  • Example 3 If trigger condition #3 is met, the UE records SPCR#3 in NR format. Since the standards of the primary base station #2 and the source secondary base station are different, the UE determines that the primary base station #2 cannot parse the SPCR#3, and then in S202, the UE records the identification information of the source secondary base station as independent information.
  • the specific sending process includes:
  • Step 1 The UE sends SPCR#3 and the identification information of the source secondary base station to the primary base station #2.
  • Step 2 The primary base station #2 sends SPCR#3 to the source secondary base station according to the identification information of the source secondary base station. That is, the main base station #2 does not read the contents of SPCR#3. For example, the primary base station #2 sends SPCR#3 to the source secondary base station through the X2 interface or the core network.
  • the UE may also send SPCR#3 to the source secondary base station through the primary base station #2 and the primary base station #1. See above for details.
  • ##Scenario 3 EN-DC scenario
  • the main base station #1 is an LTE base station connected to the 4G core network
  • the source secondary base station and the target secondary base station are NR base stations.
  • the first intermediate node is the target secondary base station.
  • Example 1 If trigger condition #1 is met, the UE records SPCR#1 in LTE format. Since the standard of the target secondary base station and the primary base station #1 are different, the UE determines that the target secondary base station cannot parse the SPCR#1, and then in S202, the UE records the identification information of the primary base station #1 as independent information.
  • the specific sending process includes:
  • Step 1 The UE sends the identification information of SPCR#1 and primary base station #1 to the target secondary base station.
  • Step 2 The target secondary base station sends SPCR#1 to the primary base station #1 based on the identification information of the primary base station #1. For example, the target secondary base station sends SPCR#1 to the primary base station #1 through the X2 interface.
  • Example 2 If trigger condition #3 is met, the UE records SPCR#3 in NR format.
  • the UE determines that the target SeNB can parse SPCR#3.
  • the UE can record the identification information of the source SeNB into SPCR#3.
  • the UE sends SPCR#3 to the source secondary base station through two intermediate nodes, namely the target secondary base station and the primary base station #1.
  • the specific sending process includes:
  • Step 1 The UE sends SPCR#3 and the identity of the primary base station #1 to the target secondary base station.
  • SPCR#3 may include identification information of primary base station #1, or the identification information of primary base station #1 may be outside SPCR#3.
  • a direct indication or an indirect indication may be used. Please refer to the above for details.
  • Step 2 Since the standards of the primary base station #1 and the source secondary base station are different, the target secondary base station determines that the primary base station #1 cannot parse SPCR#3.
  • Step 3 The target secondary base station obtains the identification information of the source secondary base station from SPCR#3.
  • Step 4 The target secondary base station sends SPCR#3 and the identification information of the source secondary base station to the primary base station #1.
  • the identification information of the source secondary base station is information independent of SPCR#3.
  • the target secondary base station may retain the identification information of the source secondary base station in the SPCR#3 sent to the primary base station #1, or the target secondary base station may delete the identification information of the source secondary base station in SPCR#3.
  • Step 5 The primary base station #1 sends SPCR#3 to the source secondary base station according to the identification information of the source secondary base station.
  • the UE records the identification information of the source secondary base station as independent information outside SPCR#3.
  • the specific sending process includes:
  • Step 1 The UE sends SPCR#3, the identification information of the primary base station #1, and the identification information of the source secondary base station to the target secondary base station.
  • the identification information of primary base station #1 may be outside SPCR#3.
  • a direct indication or an indirect indication may be used. Please refer to the above for details.
  • Step 2 The target secondary base station sends SPCR#3 and the identification information of the source secondary base station to the primary base station #1.
  • Step 3 The primary base station #1 sends SPCR#3 to the source secondary base station according to the identification information of the source secondary base station.
  • the UE can send the SPCR to the source secondary base station through the target secondary base station and the main secondary base station #1.
  • the first intermediate node is the main base station #1.
  • Example 1 If trigger condition #2 is met, the UE records SPCR#2 in NR format. Since the standards of the primary base station #1 and the target secondary base station are different, the UE determines that the primary base station #1 cannot parse the SPCR#2, and then in S202, the UE records the identification information of the target secondary base station as independent information.
  • the specific sending process includes:
  • Step 1 The UE sends SPCR#2 and the identification information of the target secondary base station to the primary base station #1.
  • Step 2 The primary base station #1 sends SPCR#2 to the target secondary base station according to the identification information of the target secondary base station.
  • the primary base station #1 sends SPCR#2 to the target secondary base station through the X2 interface or the core network.
  • Example 2 If trigger condition #3 is met, the UE records SPCR#3 in NR format. Since the standards of the primary base station #1 and the source secondary base station are different, the UE determines that the primary base station #1 cannot parse the SPCR#3, and then in S202, the UE records the identification information of the source secondary base station as independent information.
  • the specific sending process includes:
  • Step 1 The UE sends SPCR#3 and the identification information of the source secondary base station to the primary base station #1.
  • Step 2 The primary base station #1 sends SPCR#3 to the source secondary base station according to the identification information of the source secondary base station. For example, the primary base station #1 sends SPCR#3 to the source secondary base station through the X2 interface or the core network.
  • the first intermediate node is the main base station #2, and the main base station #2 is an NR base station.
  • Example 1 If trigger condition #1 is met, the UE records SPCR#1 in LTE format. Since the main base station #2 and the main base station #1 have different standards, the UE determines that the main base station #2 cannot parse the SPCR#1, and then in S202, the UE records the identification information of the main base station #1 as independent information.
  • the specific sending process includes:
  • Step 1 The UE sends SPCR#1 and the identification information of the primary base station #1 to the primary base station #2.
  • Step 2 The main base station #2 sends SPCR#1 to the main base station #1 according to the identification information of the main base station #1.
  • Example 2 If trigger condition #2 is met, the UE records SPCR#2 in NR format. Since the primary base station #2 and the target secondary base station have the same standard, the UE determines that the primary base station #2 can parse the SPCR#2. In S202, the UE can record the identification information of the target secondary base station into SPCR#2. Of course, the UE can also record the identification information of the target secondary base station outside SPCR#2.
  • the SPCR is sent through two intermediate nodes.
  • the sending process includes:
  • Step 1 The UE sends SPCR#2 and the identification information of the primary base station #1 to the primary base station #2.
  • the identification information of the primary base station #1 may be outside SPCR#2, or within SPCR#2.
  • a direct indication or an indirect indication may be used. Please refer to the above for details.
  • Step 2 Since the standards of the primary base station #1 and the target secondary base station are different, the primary base station #2 determines that the primary base station #1 cannot parse SPCR#2.
  • Step 3 The primary base station #2 obtains the identification information of the target secondary base station from SPCR#2.
  • Step 4 The main base station #2 sends the identification information of SPCR#2 and the target secondary base station to the main base station #1, and the identification information of the target secondary base station is used as information independent of SPCR#2.
  • the SPCR#2 sent by the main base station #2 to the main base station #1 may retain the identification information of the target secondary base station, or the main base station #2 may delete the identification information of the target secondary base station in the SPCR#2.
  • Step 5 The primary base station #1 sends SPCR#2 to the target secondary base station according to the identification information of the target secondary base station.
  • Example 3 If trigger condition #3 is met, the UE records SPCR#3 in NR format. Since the primary base station #2 and the source secondary base station have the same standard, the UE determines that the primary base station #2 can parse the SPCR#3. In S202, the UE can record the identification information of the source secondary base station into SPCR#3. Of course, the UE can also record the identification information of the source secondary base station outside SPCR#3.
  • the sending process of SPCR through two intermediate nodes includes:
  • Step 1 The UE sends SPCR#3 and the identification information of the primary base station #1 to the primary base station #2.
  • the identification information of the primary base station #1 may be outside SPCR#3, or within SPCR#3.
  • a direct indication or an indirect indication may be used. Please refer to the above for details.
  • Step 2 Since the standards of the primary base station #1 and the source secondary base station are different, the primary base station #2 determines that the primary base station #1 cannot parse SPCR#3.
  • Step 3 Primary base station #2 obtains the identification information of the source secondary base station from SPCR#3.
  • Step 4 The main base station #2 sends the identification information of SPCR#3 and the source secondary base station to the main base station #1, and the identification information of the source secondary base station is used as information independent of SPCR#2.
  • the primary base station #2 may retain the identification information of the source secondary base station in the SPCR#3 sent to the primary base station #1, or the primary base station #2 may delete the identification information of the source secondary base station in the SPCR#3.
  • Step 5 The primary base station #1 sends SPCR#3 to the source secondary base station according to the identification information of the source secondary base station.
  • the first intermediate node is the main base station #2, and the main base station #2 is an LTE base station.
  • Example 1 If trigger condition #1 is met, the UE records SPCR#1 in LTE format. Since the main base station #2 has the same standard as the main base station #1, and the UE determines that the main base station #2 can parse the SPCR#1, then in S202, the UE can record the identification information of the main base station #1 into SPCR#1. Of course, the UE can also record the identification information of the primary base station #1 outside the SPCR#1.
  • the specific sending process includes:
  • Step 1 UE sends SPCR#1 to primary base station #2.
  • Step 2 The main base station #2 sends SPCR#1 to the main base station #1 based on the identification information of the main base station #1 in SPCR#1.
  • Example 2 If trigger condition #2 is met, the UE records SPCR#2 in NR format. Since the standards of the primary base station #2 and the target secondary base station are different, the UE determines that the primary base station #2 cannot parse the SPCR#2. In S202, the UE records the identification information of the target secondary base station as independent information.
  • the specific sending process includes:
  • Step 1 The UE sends SPCR#2, the identification information of the target secondary base station, and the identification information of the primary base station #1 to the primary base station #2.
  • the identification information of the target secondary base station and the identification information of the primary base station #1 are outside SPCR#2.
  • a direct indication or an indirect indication may be used. Please refer to the above for details.
  • Step 2 The primary base station #2 sends the identification information of SPCR#2 and the target secondary base station to the primary base station #1.
  • Step 3 The primary base station #1 sends SPCR#2 to the target secondary base station according to the identification information of the target secondary base station.
  • Example 3 If trigger condition #3 is met, the UE records SPCR#3 in NR format. Since the standards of the primary base station #2 and the source secondary base station are different, the UE determines that the primary base station #2 cannot parse the SPCR#3. In S202, the UE records the identification information of the source secondary base station as independent information.
  • the specific sending process includes:
  • Step 1 The UE sends SPCR#3, the identification information of the source secondary base station, and the identification information of the primary base station #1 to the primary base station #2.
  • the identification information of the source secondary base station and the identification information of the primary base station #1 are outside SPCR#3.
  • a direct indication or an indirect indication may be used. Please refer to the above for details.
  • Step 2 Primary base station #2 sends SPCR#3 and the identification information of the source secondary base station to primary base station #1.
  • Step 3 The primary base station #1 sends SPCR#3 to the source secondary base station according to the identification information of the source secondary base station.
  • NE-DC scenario the main base station #1 is an NR base station connected to the 5G core network, and the source secondary base station and the target secondary base station are LTE base stations.
  • the first intermediate node is the target secondary base station.
  • Example 1 If trigger condition #1 is met, the UE records SPCR#1 in NR format. Since the standard of the target secondary base station and the primary base station #1 are different, the UE determines that the target secondary base station cannot parse the SPCR#1, and then in S202, the UE records the identification information of the primary base station #1 as independent information.
  • Example 1 in Scenario 3 For the specific sending process, please refer to Example 1 in Scenario 3, a.
  • Example 2 If trigger condition #3 is met, the UE records SPCR#3 in LTE format.
  • the UE determines that the target SeNB can parse SPCR#3.
  • the UE can record the identification information of the source SeNB into SPCR#3.
  • the UE sends SPCR#3 to the source secondary base station through two intermediate nodes, namely the target secondary base station and the primary base station #1.
  • the target secondary base station For the specific sending process, please refer to Example 2 in a of Scenario 3.
  • the UE records the identification information of the source secondary base station as independent information outside SPCR#3.
  • the specific sending process please refer to Example 2 in Scenario 3, a.
  • the first intermediate node is the main base station #1.
  • Example 1 If trigger condition #2 is met, the UE records SPCR#2 in LTE format. Since the main base station #1 and The standard of the target secondary base station is different, and the UE determines that the primary base station #1 cannot parse the SPCR#2, and then in S202, the UE records the identification information of the target secondary base station as independent information.
  • Example 2 If trigger condition #3 is met, the UE records SPCR#3 in LTE format. Since the standards of the primary base station #1 and the source secondary base station are different, the UE determines that the primary base station #1 cannot parse the SPCR#3, and then in S202, the UE records the identification information of the source secondary base station as independent information.
  • the first intermediate node is the main base station #2, and the main base station #2 is an NR base station.
  • Example 1 If trigger condition #1 is met, the UE records SPCR#1 in NR format. Since the main base station #2 has the same standard as the main base station #1, and the UE determines that the main base station #2 can parse the SPCR#1, then in S202, the UE can record the identification information of the main base station #1 into SPCR#1. Of course, the UE can also record the identification information of the primary base station #1 outside the SPCR#1.
  • the specific sending process can refer to Example 1 in d of Scenario 3.
  • Example 2 If trigger condition #2 is met, the UE records SPCR#2 in LTE format. Since the standards of the primary base station #2 and the target secondary base station are different, the UE determines that the primary base station #2 cannot parse the SPCR#2. In S202, the UE records the identification information of the target secondary base station as independent information.
  • Example 3 If trigger condition #3 is met, the UE records SPCR#3 in LTE format. Since the standards of the primary base station #2 and the source secondary base station are different, the UE determines that the primary base station #2 cannot parse the SPCR#3. In S202, the UE records the identification information of the source secondary base station as independent information.
  • the first intermediate node is the main base station #2, and the main base station #2 is an LTE base station.
  • Example 1 If trigger condition #1 is met, the UE records SPCR#1 in NR format. Since the main base station #2 and the main base station #1 have different standards, the UE determines that the main base station #2 cannot parse the SPCR#1, and then in S202, the UE records the identification information of the main base station #1 as independent information.
  • Example 2 If trigger condition #2 is met, the UE records SPCR#2 in LTE format. Since the primary base station #2 and the target secondary base station have the same standard, the UE determines that the primary base station #2 can parse the SPCR#2. In S202, the UE can record the identification information of the target secondary base station into SPCR#2. Of course, the UE can also record the identification information of the target secondary base station outside SPCR#2.
  • the process of sending the SPCR through two intermediate nodes can refer to Example 2 in c of Scenario 3.
  • Example 3 If trigger condition #3 is met, the UE records SPCR#3 in LTE format. Since the primary base station #2 and the source secondary base station have the same standard, the UE determines that the primary base station #2 can parse the SPCR#3. In S202, the UE can record the identification information of the source secondary base station into SPCR#3. Of course, the UE can also record the identification information of the source secondary base station outside SPCR#3.
  • the process of sending the SPCR through two intermediate nodes can refer to Example 3 in c of Scenario 3.
  • Figure 4 shows a communication device provided by an embodiment of the present application.
  • the communication device includes a transceiver unit 401 and a processing unit 402.
  • the transceiver unit 401 can be used to implement corresponding information transceiver functions.
  • the transceiver unit 401 may also be called a communication interface or communication unit.
  • Processing unit 402 may be used to perform processing operations.
  • the device also includes a storage unit, which can be used to store instructions and/or data.
  • the processing unit 402 can read the instructions and/or data in the storage unit, so that the device implements the foregoing method embodiments. the action of the device.
  • the device may be an access network device, or a component (such as a chip) of the access network device.
  • the transceiver unit and the processing unit in the access network device are used to implement the relevant operations of the first node in the above method embodiments.
  • the transceiver unit is used to implement S201
  • the processing unit is used to implement S204.
  • the transceiver unit and processing unit in the access network device are used to implement related operations of the source main base station (main base station #1) in each of the above method embodiments.
  • the transceiver unit is used to send a secondary base station switching command to the UE.
  • the transceiver unit and processing unit in the access network device are used to implement related operations of the first intermediate node that can be used to implement the above method embodiments.
  • the transceiver unit is used to receive the SPCR from the UE.
  • the processing unit is configured to determine whether the second intermediate node is capable of parsing the SPCR.
  • the device may be the UE in the aforementioned embodiment, or may be a component of the UE (such as a chip).
  • the transceiver unit and the processing unit may be used to implement related operations of the UE in each of the above method embodiments.
  • the transceiver unit is used to implement S203
  • the processing unit is used to implement S202.
  • unit may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor (such as a shared processor, a proprietary processor, or a group of processors) used to execute one or more software or firmware programs. processor, etc.) and memory, merged logic circuitry, and/or other suitable components to support the described functionality.
  • ASIC application specific integrated circuit
  • processor such as a shared processor, a proprietary processor, or a group of processors
  • memory merged logic circuitry, and/or other suitable components to support the described functionality.
  • the device may be specifically the first network element in the above embodiments, and may be used to execute various processes corresponding to the first network element in the above method embodiments and/or Steps, or the device can be specifically the network management network element in the above embodiments, and can be used to execute various processes and/or steps corresponding to the network management network element in the above method embodiments. To avoid duplication, they will not be repeated here. Repeat.
  • the above communication device has the function of realizing the corresponding steps performed by the device in the above method.
  • Functions can be implemented by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the transceiver unit can be replaced by a transceiver (for example, the transmitting unit in the transceiver unit can be replaced by a transmitter, and the receiving unit in the transceiver unit can be replaced by a receiver. ), other units, such as a processing unit, can be replaced by a processor to respectively perform the sending and receiving operations and related processing operations in each method embodiment.
  • transceiver unit 401 may also be a transceiver circuit (for example, it may include a receiving circuit and a transmitting circuit), and the processing unit may be a processing circuit.
  • the device in Figure 4 can be the device in the aforementioned method embodiment, or it can be a chip or core.
  • System on chip such as system on chip (SoC).
  • the transceiver unit may be an input-output circuit or a communication interface; the processing unit may be a processor, microprocessor, or integrated circuit integrated on the chip. No limitation is made here.
  • An embodiment of the present application also provides a communication device, as shown in Figure 5 , including: a processor 501 and a communication interface 502.
  • the processor 501 is used to execute computer programs or instructions stored in the memory 503, or read data stored in the memory 503, to execute the methods in each of the above method embodiments.
  • the communication interface 502 is used for receiving and/or transmitting signals.
  • the processor 501 is used to control the communication interface 502 to receive and/or send signals.
  • the communication device further includes a memory 503, which is used to store computer programs or instructions and/or data.
  • the memory 503 may be integrated with the processor 501, or may be provided separately. By way of example, there are one or more memories 503 .
  • the processor 501, the communication interface 502 and the memory 503 are connected to each other through a bus 504; the bus 504 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) ) bus, etc.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the above-mentioned bus 504 can be divided into an address bus, a data bus, a control bus, etc. For ease of presentation, only one thick line is used in Figure 5, but it does not mean that there is only one bus or one type of bus.
  • the processor 501 is used to execute computer programs or instructions stored in the memory 503.
  • the device may be an access network device, or a component (such as a chip) of the access network device.
  • the communication interface and processor in the access network device are used to implement related operations of the first node in each of the above method embodiments.
  • the communication interface is used to implement S201
  • the processor is used to implement S204.
  • the communication interface and processor in the access network device are used to implement related operations of the source main base station (main base station #1) in each of the above method embodiments.
  • the communication interface is used to send a secondary base station switching command to the UE.
  • the communication interface and processor in the access network device are used to implement related operations of the first intermediate node that can be used to implement the above method embodiments.
  • the communication interface is used to receive the SPCR from the UE.
  • the processor is used to determine whether the second intermediate node is capable of parsing the SPCR.
  • the device may be the UE in the aforementioned embodiment, or may be a component of the UE (such as a chip).
  • the communication interface and processor may be used to implement the relevant operations of the UE in each of the above method embodiments.
  • the communication interface is used to implement S203
  • the processor is used to implement S202.
  • the processor (such as processor 501) mentioned in the embodiment of this application can be a central processing unit (CPU), a network processor (network processor, NP) or a combination of CPU and NP.
  • the processor may further include hardware chips.
  • the above-mentioned hardware chip can be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the above-mentioned PLD can be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL) or any combination thereof.
  • the memory (such as memory 503) mentioned in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which is used as an external cache.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or integrated. to another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • a unit described as a separate component may or may not be physically separate.
  • a component shown as a unit may or may not be a physical unit, that is, it may be located in one place, or it may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in various embodiments of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • Functions may be stored in a computer-readable storage medium when implemented in the form of software functional units and sold or used as independent products.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods of various embodiments of the application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .
  • the terminal and/or the access network device may perform some or all of the steps in the embodiment of the present application. These steps or operations are only examples. In the embodiment of the present application, other operations may also be performed. Or variations of various operations. In addition, various steps may be performed in a different order than those presented in the embodiments of the present application, and it may not be necessary to perform all operations in the embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法和装置,该方法包括:终端接收来自第一节点的第一信息,第一信息指示记录第一报告的触发条件,终端接入了主基站;在触发条件满足的情况下,终端记录第一报告,第一报告包括终端从源辅基站切换到目标辅基站的过程中的信息,第一报告与第一节点之间存在对应关系;终端向第一节点发送第一报告。根据本申请的方法,在触发条件满足的情况下,终端记录第一报告,由于第一报告与第一节点之间存在对应关系,则终端可以将第一报告正确及时地将第一报告发送到第一节点,从而由第一节点根据第一报告进行移动性参数优化。

Description

通信方法和装置
本申请要求于2022年06月01日提交中国专利局、申请号为202210621195.6、申请名称为“通信方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,具体地,涉及一种通信方法和装置。
背景技术
在无线网络中,一个终端可能和多个基站通信,即进行双连接(dual connectivity,DC)通信。在DC中,终端可以与主基站和辅基站进行通信,并且UE接入的辅基站也可能发生切换,即,由源辅基站切换到目标辅基站。UE可以将源辅基站切换到目标辅基站过程中的信息记录在辅小区成功切换报告(successfulPSCell change report,SPCR)中,并上报给网络节点。
即使终端成功切换到了目标辅基站,在切换过程中可能存在导致将来发生辅基站切换失败的潜在问题,如果网络节点识别出此类潜在问题,可以据此对终端进行移动性优化。因此,SPCR中可以包含与这些潜在问题相关的信息,这些信息可以称为潜在失败信息。
由于主基站、源辅基站和目标辅基站都能够给终端配置记录SPCR的触发条件。例如,主基站和源辅基站均向终端配置了记录SPCR的触发条件,因此,终端可能会将SPCR发送到错误的网络节点,导致无法准确地对终端进行移动性优化。
发明内容
本申请提供一种通信方法和装置,能够使得终端记录的SPCR发送到正确的网络节点。
第一方面,提供了一种通信方法,包括:
终端接收来自第一节点的第一信息,所述第一信息指示用于记录第一报告的触发条件,其中,所述终端接入主基站;在所述触发条件满足的情况下,所述终端记录所述第一报告,所述第一报告包括所述终端从源辅基站切换到目标辅基站的过程中的信息,所述第一报告与所述第一节点之间存在对应关系;所述终端向所述第一节点发送所述第一报告。
根据本申请的方法,在触发条件满足的情况下,终端记录第一报告,由于第一报告与第一节点之间存在对应关系,从而能够正确及时地将第一报告发送到第一节点,使得该第一报告能有效用于调整移动性参数,从而提高第一报告的利用效率,提升对终端的移动性优化效果。此外,基于根据第一报告调整的移动性参数,可以提高后续辅基站切换流程的成功率,保障双连接通信的连续性。
结合第一方面,在第一方面的某些实现方式中,所述第一报告中包括所述第一节点的标识信息。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:
所述终端记录所述第一节点的标识信息,所述第一节点的标识信息是独立于所述第一报告的信息。
结合第一方面,在第一方面的某些实现方式中,所述终端向所述第一节点发送所述第一报告,包括:
所述终端直接向所述第一节点发送所述第一报告。
结合第一方面,在第一方面的某些实现方式中,所述终端向所述第一节点发送所述第一报告,包括:
所述终端通过至少一个中间节点向所述第一节点发送所述第一报告;所述方法还包括:
所述终端向第一中间节点发送所述第一节点的标识信息,所述第一中间节点为所述至少一个中间节点中所述终端接入的节点。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:
所述终端判断所述第一中间节点是否支持所述第一报告对应的无线接入技术(radio access Technology,RAT);所述第一中间节点支持所述第一报告对应的RAT,所述第一报告中包括所述第一节点的标识信息;或者,所述第一中间节点不支持所述第一报告对应的RAT,所述第一节点的标识信息是独立于所述第一报告的信息;或者,所述第一中间节点支持所述第一报告对应的RAT,所述第一节点的标识信息是独立于所述第一报告的信息。
在本申请中,终端判断第一中间节点是否支持所述第一报告对应的RAT也可以理解为终端判断第一中间节点是否能够解析第一报告。
结合第一方面,在第一方面的某些实现方式中,所述第一节点为所述主基站,所述触发条件为所述终端与所述主基站之间的通信链路出现潜在失败;或者,所述第一节点为所述源辅基站,所述触发条件为所述终端与所述源辅基站之间的通信链路出现潜在失败;或者,所述第一节点为所述目标辅基站,所述触发条件为所述终端与所述目标辅基站之间的通信链路出现潜在失败。
第二方面,提供一种通信方法,包括:
第一中间节点接收来自终端的第一报告,所述第一报告与第一节点对应,所述第一报告包括所述终端从源辅基站切换到目标辅基站的过程中的信息,所述终端接入了源主基站;所述第一中间节点向所述第一节点发送所述第一报告。
根据本申请的方法,由于所述第一报告与第一节点对应,第一中间节点可以将第一报告及时正确地发送给第一节点,避免将第一报告发送到错误的节点,使得该第一报告能有效用于调整移动性参数,从而提高第一报告的利用效率,提升对终端的移动性优化效果。
结合第二方面,在第二方面的某些实现方式中,所述第一中间节点支持所述第一报告对应的RAT,所述第一报告中还包括所述第一节点的标识信息。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:
所述第一中间节点接收来自所述终端的所述第一节点的标识信息,所述第一节点的标识信息是独立于所述第一报告的信息。
结合第二方面,在第二方面的某些实现方式中,所述第一中间节点向所述第一节点发送所述第一报告,包括:
所述第一中间节点直接向所述第一节点发送所述第一报告。
结合第二方面,在第二方面的某些实现方式中,所述第一中间节点向所述第一节点发送所述第一报告,包括:
所述第一中间节点通过第二中间节点向所述第一节点发送所述第一报告。
结合第二方面,在第二方面的某些实现方式中,如果所述第一报告中包括所述第一节点的标识信息,所述第一中间节点通过所述第二中间节点向所述第一节点发送所述第一报告,包括:
在所述第二中间节点不支持所述第一报告对应的RAT的情况下,所述第一中间节点从所述第一报告中获取所述第一节点的标识信息;所述第一中间节点向所述第二中间节点发送所述第一报告和所述第一节点的标识信息,所述第一节点的标识信息是独立于所述第一报告的信息。
结合第二方面,在第二方面的某些实现方式中,所述第一中间节点为所述源主基站、所述目标辅基站或者目标主基站,所述目标主基站为所述终端从所述源主基站切换后接入的主基站;所述第一节点为所述源主基站,所述第一节点的标识为所述源主基站管理的主小区的标识;或者,所述第一节点为所述源辅基站,所述第一节点的标识为所述源辅基站管理的主辅小区的标识;或者,所述第一节点为所述目标辅基站,所述第一节点的标识为所述目标辅基站管理的主辅小区的标识。
第三方面,一种通信方法,包括:
第一节点发送第一信息,所述第一信息指示用于记录第一报告的触发条件,所述第一节点为终端接入的主基站、源辅基站或目标辅基站;所述第一节点接收来自所述终端的所述第一报告,所述第一报告包括所述终端从所述源辅基站切换到所述目标辅基站的过程中的信息,所述第一报告为满足所述触发条件的情况下所述终端发送的;所述第一节点根据所述第一报告对辅基站切换流程进行优化。
根据本申请的方法,第一节点能够正确及时地从终端接收到第一报告,使得该第一报告能有效用于调整移动性参数,从而提高第一报告的利用效率,提升对终端的移动性优化效果。此外,基于根据第一报告调整的移动性参数,可以提高后续辅基站切换流程的成功率,保障双连接通信的连续性,从而第一节点可以根据第一报告对辅基站切换流程进行优化。
结合第三方面,在第三方面的某些实现方式中,所述第一节点为所述主基站,所述触发条件为所述终端与所述主基站之间的通信链路出现潜在失败;或者,所述第一节点为所述源辅基站,所述触发条件为所述终端与所述源辅基站之间的通信链路出现潜在失败;或者,所述第一节点为所述目标辅基站,所述触发条件为所述终端与所述目标辅基站之间的通信链路出现潜在失败。
第四方面,提供一种通信装置,包括:收发单元以及与收发单元连接的处理单元。
收发单元,用于接收来自第一节点的第一信息,所述第一信息指示记录第一报告的触发条件,其中,所述终端接入主基站;在所述触发条件满足的情况下,处理单元,用于记录所述第一报告,所述第一报告包括所述终端从源辅基站切换到目标辅基站的过程中的信息,所述第一报告与所述第一节点之间存在对应关系;收发单元,用于向所述第一节点发送所述第一报告。
结合第四方面,在第四方面的某些实现方式中,所述第一报告中包括所述第一节点的标识信息。
结合第四方面,在第四方面的某些实现方式中,处理单元,用于记录所述第一节点的标识信息,所述第一节点的标识信息是独立于所述第一报告的信息。
结合第四方面,在第四方面的某些实现方式中,收发单元,用于直接向所述第一节点发送所述第一报告。
结合第四方面,在第四方面的某些实现方式中,收发单元,用于通过至少一个中间节点向所述第一节点发送所述第一报告;收发单元,用于向第一中间节点发送所述第一节点的标识信息,所述第一中间节点为所述至少一个中间节点中所述终端接入的节点。
结合第四方面,在第四方面的某些实现方式中,处理单元,用于判断所述第一中间节点是否支持所述第一报告对应的RAT;所述第一中间节点支持所述第一报告对应的RAT,所述第一报告中包括所述第一节点的标识信息;或者,所述第一中间节点不支持所述第一报告对应的RAT,所述第一节点的标识信息是独立于所述第一报告的信息;或者,所述第一中间节点支持所述第一报告对应的RAT,所述第一节点的标识信息是独立于所述第一报告的信息。
结合第四方面,在第四方面的某些实现方式中,所述第一节点为所述主基站,所述触发条件为所述终端与所述主基站之间的通信链路出现潜在失败;或者,所述第一节点为所述源辅基站,所述触发条件为所述终端与所述源辅基站之间的通信链路出现潜在失败;或者,所述第一节点为所述目标辅基站,所述触发条件为所述终端与所述目标辅基站之间的通信链路出现潜在失败。
第五方面,提供一种通信装置,包括:收发单元以及与收发单元连接的处理单元。
收发单元,用于接收来自终端的第一报告,所述第一报告与第一节点对应,所述第一报告包括所述终端从源辅基站切换到目标辅基站的过程中的潜在失败信息,所述终端接入了源主基站;收发单元,用于向所述第一节点发送所述第一报告。
结合第五方面,在第五方面的某些实现方式中,第一中间节点支持所述第一报告对应的RAT,所述第一报告中还包括所述第一节点的标识信息。
结合第五方面,在第五方面的某些实现方式中,收发单元,用于接收来自所述终端的所述第一节点的标识信息,所述第一节点的标识信息是独立于所述第一报告的信息。
结合第五方面,在第五方面的某些实现方式中,收发单元,用于直接向所述第一节点发送所述第一报告。
结合第五方面,在第五方面的某些实现方式中,收发单元,用于通过第二中间节点向所述第一节点发送所述第一报告。
结合第五方面,在第五方面的某些实现方式中,如果所述第一报告中包括所述第一节点的标识信息,在所述第二中间节点不支持所述第一报告对应的RAT的情况下,收发单元,用于从所述第一报告中获取所述第一节点的标识信息;收发单元,用于向所述第二中间节点发送所述第一报告和所述第一节点的标识信息,所述第一节点的标识信息是独立于所述第一报告的信息。
结合第五方面,在第五方面的某些实现方式中,所述第一中间节点为所述源主基站、所述目标辅基站或者目标主基站,所述目标主基站为所述终端从所述源主基站切换后接入 的主基站;所述第一节点为所述源主基站,所述第一节点的标识为所述源主基站管理的主小区的标识;或者,所述第一节点为所述源辅基站,所述第一节点的标识为所述源辅基站管理的主辅小区的标识;或者,所述第一节点为所述目标辅基站,所述第一节点的标识为所述目标辅基站管理的主辅小区的标识。
第六方面,提供一种通信装置,包括:收发单元以及与收发单元连接的处理单元。
收发单元,用于发送第一信息,所述第一信息指示记录第一报告的触发条件,所述第一节点为终端接入的主基站、源辅基站或目标辅基站;收发单元,用于接收来自所述终端的所述第一报告,所述第一报告包括所述终端从所述源辅基站切换到所述目标辅基站的过程中的信息,所述第一报告为满足所述触发条件的情况下所述终端发送的;处理单元,用于根据所述第一报告对辅基站切换流程进行优化。
结合第六方面,在第六方面的某些实现方式中,所述第一节点为所述主基站,所述触发条件为所述终端与所述主基站之间的通信链路出现潜在失败;或者,所述第一节点为所述源辅基站,所述触发条件为所述终端与所述源辅基站之间的通信链路出现潜在失败;或者,所述第一节点为所述目标辅基站,所述触发条件为所述终端与所述目标辅基站之间的通信链路出现潜在失败。
第七方面,提供一种通信设备,包括通信接口和处理器。当该通信设备运行时,处理器执行存储器存储的计算机程序或指令,使得该通信设备执行第一方面至第三方面中任一种可能实现方式中的方法。该存储器可以位于处理器中,也可以为与处理器通过相互独立的芯片来实现,本申请对此不具体限定。
第八方面,提供一种计算机可读存储介质,包括计算机程序,当计算机程序在计算机上运行时,使得计算机执行第一方面至第三方面中任一种可能实现方式中的方法。
第九方面,提供一种芯片或芯片系统,芯片或芯片系统包括处理电路,处理电路用于执行该第一方面至第三方面中任一种可能实现方式中的方法。
第十方面,提供了一种计算机程序产品,计算机程序产品包括:计算机程序(也可以称为代码,或指令),当计算机程序被运行时,使得计算机执行第一方面至第三方面中任一种可能实现方式中的方法。
第十一方面,提供了一种通信系统,包括终端、第一中间节点和第一节点。
该终端用于执行第一方面中任一种可能实现方式中的方法。该第一中间节点用于执行第二方面中任一种可能实现方式中的方法。该第一节点用于执行第三方面中任一种可能实现方式中的方法。
附图说明
图1示出了本申请适用的通信系统。
图2为本申请所提出的方法的一例示意性交互图。
图3为本申请所提出的方法的一例示意性交互图。
图4为本申请提供的通信装置的一种示意性框图。
图5为本申请提供的通信设备的一种示意性框图。
具体实施方式
本申请实施例的技术方案可以应用于各种第三代合作伙伴计划(the 3rd generation partnership project,3GPP)通信系统,例如:长期演进(long term evolution,LTE)系统、例如,LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、第五代(5th Generation,5G)通信系统又称新无线(new radio,NR)通信系统、未来演进的通信系统,例如:第六代(6th Generation,6G)通信系统等。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,本申请中出现的符号“/”可以表示“和/或”,例如A/B表示A和/或B。
应理解,在本发明实施例中,“与A对应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本申请实施例中出现的“多个”是指两个或两个以上。
本申请实施例中出现的第一、第二等描述,仅作示意与区分描述对象之用,没有次序之分,也不表示本申请实施例中对描述的对象个数的特别限定,不能构成对本申请实施例的任何限制。
图1示出了本申请适用的双连接通信系统。该系统中包括UE、主基站、源辅基站和目标辅基站。
该双连接通信系统可以为新无线双连接(new radio dual connectivity,NR-DC)系统,该系统中主基站为连接5G核心网的NR基站,辅基站为NR基站。
或者,该双连接通信系统可以为下一代(next generation,NG)无线接入网络(radio access network,RAN)演进的通用陆基无线接入(evolved universal terrestrial radio access,E-UTRA)及NR的双连接(NG-RAN E-UTRA-NR dual connectivity,NGEN-DC)系统,该系统中主基站为连接5G核心网的LTE基站,辅基站为NR基站。
或者,该双连接通信系统可以为E-UTRA及NR的双连接(E-UTRA-NRdual connectivity,EN-DC)系统,该系统中主基站为连接4G核心网的LTE基站,辅基站为NR基站。
或者,该双连接通信系统可以为NR及E-UTRA的双连接(NR-E-UTRA dual connectivity,NE-DC)系统,该系统中主基站为连接5G核心网的NR基站,辅基站为LTE基站。
以上这些双连接通信系统可以统称为多空口双连接(multi-radio dual connectivity,MR-DC)通信系统。
在双连接通信系统中,与主基站关联的一组服务小区可称为主小区组(master cell group,MCG)。主小区组中包括主小区(primary cell,PCell)。主基站也可以称为主节点(master node,MN)。与辅基站关联的(associated)一组服务小区可被称为辅小区组(secondary cell group,SCG),辅小区组中的主小区可以称为主辅小区(primary SCG cell,PSCell)。辅基站也可以称为辅节点(secondary node,SN)。主基站与核心网之间可以建立控制面连接,主基站与辅基站可以分别与核心网可以建立数据面连接。
在终端切换辅基站的场景中,源辅基站管理的主辅小区称为S-PSCell(source PSCell),目标辅基站管理的主辅小区称为T-PSCell(target PSCell)。
本申请中,终端可以是向用户提供语音和/或数据连通性的各类设备,也可以称为终端设备、用户设备(user equipment,UE)、移动台、移动终端等。终端可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、航空航天设备等。在本申请实施例中,应用于上述设备中的芯片也可以称为终端。本申请中以UE作为终端进行说明。
本申请实施例中的网络节点可以是基站等接入网设备,该基站可以是全球移动通讯(global system ofmobile communication,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站,还可以是LTE系统中的演进型基站(evolutional nodeB,eNB或eNodeB),第五代(5th generation,5G)移动通信系统中的下一代基站(next generation NodeB,gNB)、第六代(6th generation,6G)移动通信系统中的下一代基站、未来移动通信系统中的基站等。本申请的实施例对网络节点所采用的具体技术和具体设备形态不做限定。例如,网络节点也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。其中,CU和DU分别完成基站的一部分协议栈功能。此外,CU的功能可以由多个实体实现例如,将CU的控制面(control plane,CP)和用户面(user plane,UP)的功能分离,形成CU控制面(CU-CP)和CU用户面(CU-UP)。例如,CU-CP和CU-UP可以由不同的功能实体来实现,并通过E1接口相连,CU-CP和CU-UP可以与DU相耦合。
UE从源辅基站切换到目标辅基站的过程中可能出现潜在失败的情况。本申请中,潜在失败可以是指:UE成功从源辅基站切换到了目标辅基站,但是在切换过程中存在一些可能导致未来出现切换过程失败的问题,比如,存在UE从源辅基站切换到目标辅基站的时间超过预设时长的问题。出现潜在失败的情况下,UE可以被触发记录SPCR,SPCR中可以包含与前述潜在失败相关的信息,这些信息可以称为潜在失败信息。
导致以上潜在失败可以是:UE与主基站之间的通信链路出现潜在失败,或者UE与源辅基站之间的通信链路出现潜在失败,或者,UE与目标辅基站之间的通信链路出现潜在失败。以上任意一条通信链路出现潜在失败的原因可以是:该通信链路的信号质量低于预设阈值。可以理解,如果以上一条或多条通信链路信号质量较差,UE可能需要等待信号质量转好,或者需要尝试更多次才能接入到目标辅基站,因此,UE从源辅基站切换到目标辅基站的时间可能会超过预设时长。
UE从源辅基站切换到目标辅基站的时间是否超过预设时长可以由预设的定时器运行时长是否超时来体现。
为了方便理解,下面对本申请涉及的几个定时器进行说明。
定时器T304(以下简称T304):
T304的运行时长指示UE接收辅基站切换命令之后未接入目标辅基站的时长。如果T304的运行时长大于或等于阈值1时,UE确定发生切换失败,即UE确定接入目标辅基站失败;如果T304的运行时长大于或等于阈值2时,UE确定存在发生切换失败的可能性, 触发记录SPCR。这里阈值1大于阈值2。
定时器T310(以下简称T310):
T310的运行时长指示UE检测到与基站(例如,源辅基站或主基站)之间存在物理层问题(physical layer problems)(该问题通常是连续收到的下行失步指示超过一定阈值)的时长。启动T310之后,该T310运行期间,如果无线链路恢复,则该定时器T310停止。如果T310的运行时长大于或等于阈值3,UE确定UE与基站(例如,源辅基站或主基站)之间发生无线链路失败;如果T310的运行时长大于或等于阈值4,UE确定UE与基站(例如,源辅基站或主基站)之间存在发生无线链路失败的可能性,触发记录SPCR。这里阈值3大于阈值4。
定时器T312(以下简称T312):
T312在T310的运行期间启动。T312的运行时长指示UE与基站(例如,源辅基站或主基站)之间恢复同步的时长。如果T312的运行时长大于或等于阈值5,UE确定UE与基站(例如,源辅基站或主基站)之间发生无线链路失败;如果T312的运行时长大于或等于阈值6时,UE确定UE与基站(例如,源辅基站或主基站)之间存在发生无线链路失败的可能性,触发记录SPCR。这里阈值5大于阈值6。
在辅基站切换过程中,主基站、源辅基站和目标辅基站都可能给UE配置记录SPCR的触发条件。例如,主基站和源辅基站均向UE配置了T312的超时门限,如果T312超时,则UE记录SPCR。但是,由于T312的超时门限可以是主基站配置的,也可以是源辅基站配置的,因此,UE不能确定需要将该SPCR发送到主基站还是源辅基站,因此,UE可能会将记录的SPCR发送到错误的基站。
为了解决上述问题,图2示出了本申请提供的方法200,在该方法中,UE记录的SPCR与触发记录该SPCR的节点存在对应关系,从而UE可以将该SPCR发送到正确的节点。
具体地,该方法200包括:
S201,第一节点发送第一信息。相应地,UE接收来自第一节点的第一信息。
第一信息指示记录第一报告的触发条件。示例性地,该第一报告可以为SPCR,或者第一报告的名称也可以为其他名称,本申请对此不作限定。下文以第一报告为SPCR进行说明。
情况1:
该第一节点为UE接入的源主基站(以下称为主基站#1)。第一节点可以直接向UE发送第一信息(记为第一信息#1)。例如,主基站#1可以向UE发送辅基站切换命令,该辅基站切换命令中包括第一信息#1。UE可以根据辅基站切换命令执行辅基站切换流程。
示例性地,主基站#1确定对UE进行RRC重配置,从而向UE发送辅基站切换命令。例如,当源辅基站的负载过大时,主基站#1确定对UE进行RRC重配置。
记录SPCR的触发条件#1可以为UE与主基站#1之间的通信链路出现潜在失败。例如,触发条件#1可以为T312超时或T310超时。应理解,第一信息#1中包括T312的超时门限和/或T310的超时门限。关于T312和T310的相关介绍可以参考上文。
应理解,这里的“源主基站”仅是为了与下文中的“目标主基站”进行区分,并不意味着UE接入的主基站一定会切换,或者,即使UE进行了主基站切换流程,源主基站和目标主基站也可能是同一个基站。
情况2:
该第一节点为目标辅基站。第一节点可以通过UE接入的主基站#1向UE发送第一信息(记为第一信息#2)。例如,目标辅基站向主基站#1发送无线资源控制(radio resource control,RRC)重配置消息,第一信息#2以容器(container)的方式包含于该RRC重配消息中。主基站#1再向UE发送辅基站切换命令,第一信息#2以容器的方式包含于该辅基站切换命令中。
记录SPCR的触发条件#2可以为UE与目标辅基站之间的通信链路出现潜在失败。例如,触发条件#2可以为T304超时。应理解,第一信息#2中包括T304的超时门限。关于T304的相关介绍可以参考上文。
情况3:
该第一节点为UE接入的源辅基站。第一节点可以通过UE接入的主基站#1向UE发送第一信息(记为第一消息#3)。例如,源辅基站向主基站#1发送RRC重配置消息,第一信息#3以容器(container)的方式包含于该RRC重配消息中。主基站#1再向UE发送辅基站切换命令,第一信息#3以容器的方式包含于该辅基站切换命令中。
记录SPCR的触发条件#3可以为UE与源辅基站之间的通信链路出现潜在失败。例如,触发条件#3可以为T312超时或T310超时。应理解,第一信息#3中包括T312的超时门限和/或T310的超时门限。
应理解,触发条件#1中的T312超时门限和触发条件#3中的T312超时门限可以不同,也可以相同。换句话说,主基站#1配置的T312超时门限和源辅基站配置的T312超时门限可以不同,也可以相同。
类似地,触发条件#1中的T310超时门限和触发条件#3中的T310超时门限可以不同,也可以相同。
应理解,上述三种情况可以发生其中的一项或多项。例如,主基站#1向UE发送辅基站切换命令,该辅基站切换命令中包括第一信息#1、第一信息#2和第一信息#3中的一项或多项,从而UE可以获取触发条件#1至触发条件#3中的一项或多项。
可选地,步骤S201是UE在执行辅基站切换之前进行的。UE可以先获取来自第一节点的第一信息,后续主基站#1可以向UE发送辅基站切换命令,UE根据该辅基站切换命令执行辅基站切换流程。
S202,在满足触发条件的情况下,UE记录SPCR,该SPCR与第一节点之间存在对应关系。
该SPCR中包括UE在辅基站切换过程中的信息,示例性地包括以下中的一项或多项:
源辅基站管理的S-PSCell的小区标识(cell ID)、目标辅基站管理的T-PSCell的cell ID、在目标辅基站的随机接入信息、邻区的信道测量量、超时的定时器类型、UE与源辅基站最后一次数据传输到UE与目标辅基站第一次数据传输之间的时间间隔。应理解,该邻区可以为源辅基站管理的S-PSCell的邻区和/或目标辅基站管理的T-PSCell的邻区。
以上这些信息可以是与UE切换到所述目标辅基站过程中存在的潜在失败相关的,也可以称为潜在失败信息。
作为一种方式,SPCR中可以包括第一节点的标识信息。UE将第一节点的标识信息记录在SPCR中。
作为另一种方式,第一节点的标识信息是独立于SPCR的信息。
可选地,UE发送包含第一节点的标识信息与SPCR的一条消息。可选地,第一节点的标识信息与SPCR也可以包含在不同消息中。可以将SPCR作为一个容器(container),SPCR中可以不包括第一节点的标识信息,UE将第一节点的标识信息作为一个独立的信元记录到SPCR之外。应理解,如果将第一节点的标识信息记录到SPCR之外,一方面下文中的至少一个中间节点可以不解析SPCR就获取第一节点的标识信息,从而降低SPCR的发送时延,另一方面也可以避免因基站制式不同而导致下文中的至少一个中间节点无法解析SPCR的情况。
总之,通过上述两种方式,UE不仅仅记录了SPCR,还记录该SPCR对应的第一节点的标识信息,使得SPCR能够关联到第一节点。由于该SPCR是由第一节点发送的触发条件被触发记录的,该SPCR可以包含与第一节点相关的潜在失败信息,因此,第一节点可以被认为是该SPCR对应的目的节点,也就是说,最终该SPCR可以被发送到第一节点,第一节点根据该SPCR进行移动性参数优化,解决潜在失败问题。
该第一节点的标识信息用于表征该SPCR对应的触发条件的来源。该来源可以为上述主基站#1、源辅基站或目标辅基站。
例如,第一节点的标识信息可以为小区全球标识(cell global identity,CGI)或封闭接入组(closed access group,CAG)标识。
SPCR的格式与作为目的节点的第一节点的制式是对应的,从而,目的节点可以解析SPCR。可以理解,如果接收到SPCR的网络节点的制式与该SPCR的格式不对应,则该网络节点不能解析该SPCR。其中,SPCR的格式可以是指承载第一报告的无线资源控制(raido resource control,RRC)层信令的格式,例如,不同格式的RRC层信令中的信元设计可以不同。示例性地,如果第一节点为LTE基站,则该SPCR为LTE格式的;如果第一节点为NR基站,则该SPCR为NR格式的。
S203,UE向第一节点发送SPCR。相应地,第一节点接收来自UE的SPCR。
例如,第一节点为主基站#1,则UE向主基站#1发送SPCR#1。
又例如,第一节点为目标辅基站,则UE向目标辅基站发送SPCR#2。
又例如,第一节点为源辅基站,则UE向源辅基站发送SPCR#3。
后续将对传输SPCR的过程进行详细说明。
S204,第一节点根据SPCR对辅基站切换流程进行优化。
示例性地,SPCR中包括邻区信道测量量,第一节点可以根据该邻区信道测量量选择信道质量较好的小区用于后续其他UE进行辅基站切换。例如,根据SPCR报告,主基站#1确定UE在目标辅基站的接入时间过长,而邻站的信道测量结果又好于目标辅基站的信道测量结果,则针对之后切换辅基站的UE,主基站#1可以将这些UE优先向信道测量结果更好的邻站切换。
又例如,根据SPCR报告,主基站#1或源辅基站确定由于切换时间过晚,导致UE成功接入到目标辅基站之前,UE和源辅基站之间已经出现多次下行失步,则主基站#1或源辅基站可以将其他UE执行辅基站切换的时间提前。
又例如,根据SPCR报告,目标辅基站确定由于切换时间过早导致潜在失败,目标辅基站可以向主基站#1发送指示信息,以将其他UE执行辅基站切换的时间推迟。
根据本申请的方法,UE能够正确及时地将SPCR发送到第一节点,使得该SPCR能有效用于进行移动性参数优化,从而提高SPCR的利用效率,提升移动性优化效果。此外,基于第一节点优化的移动性参数,可以提高后续辅基站切换流程的成功率,保障双连接通信的连续性。
下面对S203中UE向第一节点发送SPCR的方式进行详细说明:
方式1:
UE直接向第一节点发送SPCR。
情况1:
如果满足触发条件#1,UE记录SPCR#1和主基站#1的标识信息(例如,主基站#1管理的PCell的CGI)。
即,SPCR#1与主基站#1对应,SPCR#1最终应发送到主基站#1。
应理解,在情况1中,UE可以将主基站#1的标识信息记录到SPCR#1中,或者作为独立的信息记录到SPCR#1之外,不予限制。
UE根据记录的主基站#1的标识信息向主基站#1发送SPCR#1。
情况2:
如果满足触发条件#2,UE记录SPCR#2和目标辅基站的标识信息(例如,目标辅基站管理的T-PSCell的CGI)。
应理解,在情况2中,UE可以将目标辅基站的标识信息记录到SPCR#2中,或者作为独立的信息记录到SPCR#2之外,不予限制。
UE根据记录的目标辅基站的标识信息向目标辅基站发送SPCR#2。
方式2:
如图3所示,UE通过至少一个中间节点向第一节点发送SPCR。该至少一个中间节点中包括第一中间节点,可选地还包括第二中间节点。
此时,UE还向第一中间节点发送第一节点的标识信息。应理解,如果该至少一个中间节点包括第二中间节点,则UE还向第一中间节点发送第二中间节点的标识信息。
该第一中间节点为UE接入的节点。
在一个实施方式中,UE根据第一中间节点与第一节点的制式,判断第一中间节点是否支持该SPCR对应的RAT。换言之,UE判断第一中间节点是否能够解析SPCR。具体地,如果第一中间节点与第一节点为相同制式的基站,则第一中间节点支持该SPCR对应的RAT,即,第一中间节点能够解析该SPCR。如果第一中间节点与第一节点为不同制式的基站,则第一中间节点不支持该SPCR对应的RAT,即,第一中间节点不能解析该SPCR。
例如,如果第一中间节点与第一节点均为LTE基站,或者均为NR基站,则第一中间节点与第一节点为相同制式的基站;如果其中一个为LTE基站,另一个为NR基站,则第一中间节点与第一节点为不同制式的基站;如果其中一个为NR基站,另一个为未来6G系统中的基站,则第一中间节点与第一节点为不同制式的基站。
如果UE确定第一中间节点能够解析SPCR,则SPCR中包括第一节点的标识信息。即,S204中UE在记录该SPCR时,将第一节点的标识信息也记录到SPCR中;或者,UE也可以将第一节点的标识信息作为独立于SPCR的信息记录。
如果UE确定第一中间节点不能够解析SPCR,则UE可以将第一节点的标识信息作 为独立于SPCR的信息记录,即,将第一节点的标识信息记录到SPCR之外。例如,SPCR作为一个container,且将第一节点的标识信息作为该container之外的信元。进而,UE可以发送包含该container以及第一节点的标识信息的消息给第一中间节点。
该第一中间节点可以为前述主基站#1、目标辅基站或主基站#2(目标主基站的一例)。该主基站#2为UE发生主基站切换后接入的主基站(即,从主基站#1切换到主基站#2)。
下面结合不同的场景对方式2进行描述。
##场景1:NR-DC场景,主基站#1为连接5G核心网的NR基站,源辅基站和目标辅基站为NR基站。
a:第一中间节点为主基站#1。
如果满足触发条件#3,UE以NR格式记录SPCR#3。由于源辅基站与主基站#1制式相同,UE确定主基站#1能够解析该SPCR#3,则在S202中UE可以将源辅基站的标识信息记录到SPCR#3中。当然,UE也可以把源辅基站的标识信息记录在SPCR#3之外。
例如,源辅基站的标识信息可以为源辅基站管理的S-PSCell的CGI。
以SPCR#3中包括源辅基站的标识信息为例,具体的发送过程包括:
步骤1:UE向主基站#1发送SPCR#3。
步骤2:主基站#1根据SPCR#3中包括的源辅基站的标识信息,向源辅基站发送SPCR#3。
具体地,UE和主基站#1可以通过一个消息或多个消息发送SPCR#3,本申请对此不作限定。
b:第一中间节点为主基站#2,且主基站#2为NR基站。
此时,由于主基站#2与第一节点的制式相同,UE确定主基站#2能够解析SPCR,UE可以将第一节点的标识信息记录在SPCR中。当然,UE也可以把第一节点的标识信息记录在SPCR之外。下面以将第一节点的标识信息记录在SPCR中为例进行说明。
示例一:如果满足触发条件#1,UE记录SPCR#1。SPCR#1中可以包括主基站#1的标识信息。
UE向主基站#2发送SPCR#1。进一步地,主基站#2根据SPCR#1中主基站#1的标识信息向主基站#1发送SPCR#1。例如,主基站#2通过Xn接口向主基站#1发送SPCR#1。
示例二:如果满足触发条件#2,UE记录SPCR#2。SPCR#2中可以包括目标辅基站的标识信息。
UE向主基站#2发送SPCR#2。进一步地,主基站#2根据SPCR#2中目标辅基站的标识信息向目标辅基站发送SPCR#2。例如,主基站#2通过Xn接口向目标辅基站发送SPCR#2。
示例三:如果满足触发条件#3,UE记录SPCR#3。SPCR#3中可以包括源辅基站的标识信息。
UE向主基站#2发送SPCR#3。进一步地,主基站#2根据SPCR#3中源辅基站的标识信息向源辅基站发送SPCR#3。例如,主基站#2通过Xn接口向源辅基站发送SPCR#3。
示例四:如果满足触发条件#2,UE记录SPCR#2。SPCR#2中包括目标辅基站的标识信息。
UE通过两个中间节点,分别为主基站#2(第一中间节点)和主基站#1(第二中间节点),向目标辅基站发送SPCR#2。
具体的发送过程包括:
步骤1:UE向主基站#2发送SPCR#2。
作为第一种情况,SPCR#2中可以包括目标辅基站的标识信息、主基站#1的标识信息和指示信息,该指示信息用于指示主基站#1为传输SPCR#2的中间节点,目标辅基站为SPCR#2对应的目的节点。即,可以通过直接(显式)指示的方式通知主基站#2,中间节点和目的节点分别是哪一个节点。
或者,该指示信息用于指示主基站#1为传输SPCR#2的中间节点。此时,可以在UE和主基站#2中提前配置规则,默认目标辅基站为SPCR#2对应的目的节点。
或者,该指示信息用于指示目标辅基站为SPCR#2对应的目的节点。此时,可以在UE和主基站#2中提前配置规则,默认主基站#1为传输SPCR#2的中间节点。
作为第二种情况,UE不向主基站#2发送上述指示信息。在UE和主基站#2中预先配置确定中间节点和目的节点的规则,通过间接(隐式)指示的方式通知主基站#2,中间节点和目的节点分别为哪一个节点。
例如,按目标辅基站的标识信息和主基站#1的标识信息在一组比特中的顺序确定中间节点和目的节点。例如,一组比特中前5个比特用于指示传输SPCR#2的中间节点,后5个比特用于指示SPCR#2对应的目的节点。
又例如,可以预先在UE和主基站#2中配置,SPCR中包括的基站标识为目的节点的标识,SPCR之外的基站标识为中间节点的标识。即,主基站#1的标识信息在SPCR#2之外,目标辅基站的标识信息在SPCR#2之内。
具体地,UE可以通过一个或多个消息向主基站#2发送上述信息,本申请对此不作限定。
步骤2:主基站#2向主基站#1发送SPCR#2。
步骤3:主基站#1根据SPCR#2中目标辅基站的标识信息向目标辅基站发送SPCR#2。例如,主基站#1通过Xn接口向目标辅基站发送SPCR#2。
示例五:由于满足触发条件#3,UE记录SPCR#3。SPCR#3中包括源辅基站的标识信息。
UE通过两个中间节点,分别为主基站#2和主基站#1,向源辅基站发送SPCR#3。
具体的发送过程包括:
步骤1:UE向主基站#2发送SPCR#3和主基站#1的标识信息。SPCR#3中包括源辅基站的标识信息。
与示例四中类似,为了指示主基站#1为发送SPCR#3的中间节点,源辅基站为SPCR#3对应的目的节点,可以有直接指示和间接指示两种方式,在此不再赘述。
步骤2:主基站#2向主基站#1发送SPCR#3。
步骤3:主基站#1根据SPCR#3中源辅基站的标识信息向源辅基站发送SPCR#3。例如,主基站#1通过Xn接口向源辅基站发送SPCR#3。
c:第一中间节点为主基站#2,且主基站#2不为NR基站,例如主基站#2为LTE基站。
此时,由于主基站#2与第一节点的制式不同,UE确定主基站#2不能解析SPCR,UE可以将第一节点的标识信息记录在SPCR之外。
示例一:如果满足触发条件#1,UE记录SPCR#1和主基站#1的标识信息。
UE向主基站#2发送SPCR#1和主基站#1的标识信息。进一步地,主基站#2根据主基站#1的标识信息向主基站#1发送SPCR#1。
UE可以通过一个消息或多个消息向主基站#2发送SPCR#1和主基站#1的标识信息,本申请对此不作限定。
示例二:如果满足触发条件#2,UE记录SPCR#2和目标辅基站的标识信息。
UE向主基站#2发送SPCR#2和目标辅基站的标识信息。进一步地,主基站#2根据目标辅基站的标识信息向目标辅基站发送SPCR#2。
示例三:如果满足触发条件#3,UE记录SPCR#3和源辅基站的标识信息。
UE向主基站#2发送SPCR#3和源辅基站的标识信息。进一步地,主基站#2根据源辅基站的标识信息向源辅基站发送SPCR#3。
示例四:如果满足触发条件#2,UE记录SPCR#2和目标辅基站的标识信息。
UE通过两个中间节点,分别为主基站#2和主基站#1,向目标辅基站发送SPCR#2。
具体的发送过程包括:
步骤1:UE向主基站#2发送SPCR#2、目标辅基站的标识信息和主基站#1的标识信息。该目标辅基站的标识信息可以在SPCR#2之外,也可以在SPCR#2之内。主基站#1的标识信息在SPCR#2之外。
此外,为了指示主基站#1为传输SPCR#2的中间节点,目标辅基站为SPCR#2对应的目的节点,可以采用直接指示或间接指示的方式,具体可以参考上文。
步骤2:主基站#2向主基站#1发送SPCR#2和目标辅基站的标识。
步骤3:主基站#1根据目标辅基站的标识信息向目标辅基站发送SPCR#2。
示例五:由于满足触发条件#3,UE记录SPCR#3和源辅基站的标识信息。
UE通过两个中间节点,分别为主基站#2和主基站#1,向源辅基站发送SPCR#3。
具体的发送过程包括:
步骤1:UE向主基站#2发送SPCR#3、源辅基站的标识信息、主基站#1的标识信息。该源辅基站的标识信息可以在SPCR#3之外,也可以在SPCR#3之内。主基站#1的标识信息在SPCR#3之外。
此外,为了指示主基站#1为传输SPCR#3的中间节点,源辅基站为SPCR#3对应的目的节点,可以采用直接指示或间接指示的方式,具体参考上文。
步骤2:主基站#2向主基站#1发送SPCR#3和源辅基站的标识信息。
步骤3:主基站#1根据源辅基站的标识信息向源辅基站发送SPCR#3。
##场景2:NGEN-DC场景,主基站#1为连接5G核心网的LTE基站,源辅基站和目标辅基站为NR基站。
a:第一中间节点为目标辅基站。
示例一:如果满足触发条件#1,UE以LTE格式记录SPCR#1。由于目标辅基站与主基站#1的制式不同,UE确定目标辅基站不能解析该SPCR#1,则在S202中UE将主基站#1的标识信息作为独立的信息记录。
具体的发送过程包括:
步骤1:UE向目标辅基站发送SPCR#1和主基站#1的标识信息。
步骤2:目标辅基站根据主基站#1的标识信息,向主基站#1发送SPCR#1。例如,目标辅基站通过X2接口或核心网向主基站#1发送SPCR#1。
示例二:如果满足触发条件#3,UE以NR格式记录SPCR#3。由于目标辅基站与源辅基站的制式相同,UE确定目标辅基站能够解析该SPCR#3,则在S202中UE可以将源辅基站的标识信息记录到SPCR#3中。当然,UE也可以将源辅基站的标识信息作为独立的信息记录到SPCR#3之外。
以SPCR#3中包括源辅基站的标识信息为例,具体的发送过程包括:
步骤1:UE向目标辅基站发送SPCR#3。
步骤2:目标辅基站根据SPCR#3中源辅基站的标识信息,向源辅基站发送SPCR#3。例如,目标辅基站通过Xn接口或核心网向源辅基站发送SPCR#3。
b:第一中间节点为主基站#1。
示例一:如果满足触发条件#2,UE以NR格式记录SPCR#2。由于主基站#1与目标辅基站的制式不同,UE确定主基站#1不能解析该SPCR#2,则在S202中UE将目标辅基站的标识信息作为独立的信息记录。
具体的发送过程包括:
步骤1:UE向主基站#1发送SPCR#2和目标辅基站的标识信息。
步骤2:主基站#1根据目标辅基站的标识信息,向目标辅基站发送SPCR#2。例如,主基站#1通过X2接口或核心网向目标辅基站发送SPCR#2。
示例二:如果满足触发条件#3,UE以NR格式记录SPCR#3。由于主基站#1与源辅基站的制式不同,UE确定主基站#1不能解析该SPCR#3,则在S202中UE将源辅基站的标识信息作为独立的信息记录。
具体的发送过程包括:
步骤1:UE向主基站#1发送SPCR#3和源辅基站的标识信息。
步骤2:主基站#1根据源辅基站的标识信息,向源辅基站发送SPCR#3。例如,主基站#1通过X2接口或核心网向源辅基站发送SPCR#3。
c:第一中间节点为主基站#2,且主基站#2为NR基站。
示例一:如果满足触发条件#1,UE以LTE格式记录SPCR#1。由于主基站#2与主基站#1的制式不同,UE确定主基站#2不能解析该SPCR#1,则在S202中UE将主基站#1的标识信息作为独立的信息记录。
具体的发送过程包括:
步骤1:UE向主基站#2发送SPCR#1和主基站#1的标识信息。
步骤2:主基站#2根据主基站#1的标识信息,向主基站#1发送SPCR#1。即,主基站#2不读取SPCR#1的内容,根据SPCR#1之外主基站#1的标识信息向主基站#1发送SPCR#1。例如,主基站#2通过X2接口或核心网向主基站#1发送SPCR#1。
示例二:如果满足触发条件#2,UE以NR格式记录SPCR#2。由于主基站#2与目标辅基站的制式相同,UE确定主基站#2能够解析该SPCR#2,则在S202中UE可以将目标辅基站的标识信息记录到SPCR#2中。当然,UE也可以将目标辅基站的标识信息作为独立的信息记录到SPCR#2之外。
以SPCR#2中包括源辅基站的标识信息为例,具体的发送过程包括:
步骤1:UE向主基站#2发送SPCR#2。
步骤2:主基站#2根据SPCR#2中目标辅基站的标识信息,向目标辅基站发送SPCR#2。例如,主基站#2通过Xn接口或核心网向目标辅基站发送SPCR#2。
示例三:如果满足触发条件#2,UE以NR格式记录SPCR#2。UE通过两个中间节点,分别为主基站#2和主基站#1,向目标辅基站发送SPCR#2。
例如,在主基站#2与目标辅基站之间没有直接的接口的情况下,可以采用这种方式发送。
具体的发送过程包括:
步骤1:UE向主基站#2发送SPCR#2、主基站#1的标识信息、目标辅基站的标识信息。
由于主基站#2与目标辅基站的制式相同,UE确定主基站#2能够解析SPCR#2。
作为一种可能的方式,主基站#1的标识信息、目标辅基站的标识信息可以包含于SPCR#2中。
作为另一种可能的方式,主基站#1的标识信息、目标辅基站的标识信息可以在SPCR#2之外。
此外,为了指示主基站#1为传输SPCR#2的中间节点,目标辅基站为SPCR#2对应的目的节点,可以采用直接指示或间接指示的方式,具体参考上文。
步骤2:主基站#2向主基站#1发送SPCR#2和目标辅基站的标识信息,该目标辅基站的标识信息在SPCR#2之外。
可选地,如果UE以目标辅基站的标识信息包含于SPCR#2的方式向主基站#2发送SPCR#2,由于主基站#1和目标辅基站的制式不同,主基站#2确定主基站#1不能解析SPCR#2,进一步地,在步骤2之前,主基站#2从SPCR#2中获取目标辅基站的标识信息。
步骤3:主基站#1根据目标辅基站的标识信息,向目标辅基站发送SPCR#2。
示例四:如果满足触发条件#3,UE以NR格式记录SPCR#3。由于主基站#2与源辅基站的制式相同,UE确定主基站#2能够解析该SPCR#3,则在S202中UE可以将源辅基站的标识信息记录到SPCR#3中。当然,UE也可以将源辅基站的标识信息作为独立的信息记录到SPCR#3之外。
以SPCR#3中包括源辅基站的标识信息为例,具体的发送过程包括:
步骤1:UE向主基站#2发送SPCR#3。
步骤2:主基站#2根据SPCR#3中源辅基站的标识信息,向源辅基站发送SPCR#3。 例如,主基站#2通过Xn接口或核心网向源辅基站发送SPCR#3。
示例五:如果满足触发条件#3,UE以NR格式记录SPCR#3。UE通过两个中间节点,分别为主基站#2和主基站#1,向源辅基站发送SPCR#3。
例如,在主基站#2和源辅基站之间没有直接接口的情况下,可以采用这种发送方式。
具体的发送过程包括:
步骤1:UE向主基站#2发送SPCR#3、主基站#1的标识信息、源辅基站的标识信息。
由于主基站#2与源辅基站的制式相同,UE确定主基站#2能够解析SPCR#3。
作为一种可能的方式,主基站#1的标识信息、源辅基站的标识信息可以包含于SPCR#3中。
作为另一种可能的方式,主基站#1的标识信息、源辅基站的标识信息可以在SPCR#3之外。
此外,为了指示主基站#1为传输SPCR#3的中间节点,源辅基站为SPCR#3对应的目的节点,可以采用直接指示或间接指示的方式,具体参考上文。
步骤2:主基站#2向主基站#1发送SPCR#3和源辅基站的标识信息。该源辅基站的标识信息在SPCR#3之外。
可选地,如果UE以源辅基站的标识信息包含于SPCR#3的方式向主基站#2发送SPCR#3,由于主基站#1和源辅基站的制式不同,主基站#2确定主基站#1不能解析SPCR#3,进一步地,在步骤2之前,主基站#2从SPCR#3中获取源辅基站的标识信息。
步骤3:主基站#1根据源辅基站的标识信息,向源辅基站发送SPCR#3。
d:第一中间节点为主基站#2,且主基站#2为LTE基站。
示例一:如果满足触发条件#1,UE以LTE格式记录SPCR#1。由于主基站#2与主基站#1的制式相同,UE确定主基站#2能够解析该SPCR#1,则在S202中UE可以将主基站#1的标识信息记录到SPCR#1中。当然,UE也可以将主基站#1的标识信息作为独立的信息记录到SPCR#1之外。
以SPCR#1中包括主基站#1的标识信息为例,具体的发送过程包括:
步骤1:UE向主基站#2发送SPCR#1。
步骤2:主基站#2根据SPCR#1中主基站#1的标识信息,向主基站#1发送SPCR#1。例如,主基站#2通过Xn接口或核心网向主基站#1发送SPCR#1。
示例二:如果满足触发条件#2,UE以NR格式记录SPCR#2。由于主基站#2与目标辅基站的制式不同,UE确定主基站#2不能解析该SPCR#2,则在S202中UE将目标辅基站的标识信息作为独立的信息记录。
具体的发送过程包括:
步骤1:UE向主基站#2发送SPCR#2和目标辅基站的标识信息。
步骤2:主基站#2根据目标辅基站的标识信息,向目标辅基站发送SPCR#2。即,主基站#2不读取SPCR#2中的内容。例如,主基站#2通过X2接口或核心网向目标辅基站发送SPCR#2。
此外,作为另一种方式,UE也可以通过主基站#2和主基站#1向目标辅基站发送 SPCR#2。具体参见上文。
示例三:如果满足触发条件#3,UE以NR格式记录SPCR#3。由于主基站#2与源辅基站的制式不同,UE确定主基站#2不能解析该SPCR#3,则在S202中UE将源辅基站的标识信息作为独立的信息记录。
具体的发送过程包括:
步骤1:UE向主基站#2发送SPCR#3和源辅基站的标识信息。
步骤2:主基站#2根据源辅基站的标识信息,向源辅基站发送SPCR#3。即,主基站#2不读取SPCR#3中的内容。例如,主基站#2通过X2接口或核心网向源辅基站发送SPCR#3。
此外,作为另一种方式,UE也可以通过主基站#2和主基站#1向源辅基站发送SPCR#3。具体参见上文。
##场景3:EN-DC场景,主基站#1为连接4G核心网的LTE基站,源辅基站和目标辅基站为NR基站。
a:第一中间节点为目标辅基站。
示例一:如果满足触发条件#1,UE以LTE格式记录SPCR#1。由于目标辅基站与主基站#1的制式不同,UE确定目标辅基站不能解析该SPCR#1,则在S202中UE将主基站#1的标识信息作为独立的信息记录。
具体的发送过程包括:
步骤1:UE向目标辅基站发送SPCR#1和主基站#1的标识信息。
步骤2:目标辅基站根据主基站#1的标识信息,向主基站#1发送SPCR#1。例如,目标辅基站通过X2接口向主基站#1发送SPCR#1。
示例二:如果满足触发条件#3,UE以NR格式记录SPCR#3。
作为一种方式,由于目标辅基站与源辅基站的制式相同,UE确定目标辅基站能够解析SPCR#3,在S202中UE可以将源辅基站的标识信息记录到SPCR#3中。
UE通过两个中间节点,分别为目标辅基站和主基站#1,向源辅基站发送SPCR#3,具体的发送过程包括:
步骤1:UE向目标辅基站发送SPCR#3、以及主基站#1的标识。
由于目标辅基站能够解析SPCR#3,则SPCR#3中可以包括主基站#1的标识信息,或者,主基站#1的标识信息可以在SPCR#3之外。
此外,为了指示主基站#1为传输SPCR#3的中间节点,源辅基站为SPCR#3对应的目的节点,可以采用直接指示或间接指示的方式,具体参考上文。
步骤2:由于主基站#1与源辅基站的制式不同,目标辅基站确定主基站#1不能解析SPCR#3。
步骤3:目标辅基站从SPCR#3中获取源辅基站的标识信息。
步骤4:目标辅基站向主基站#1发送SPCR#3和源辅基站的标识信息。其中,源辅基站的标识信息是与独立于SPCR#3的信息。
在该步骤中,目标辅基站向主基站#1发送的SPCR#3中可以保留源辅基站的标识信息,或者,目标辅基站可以将SPCR#3中源辅基站的标识信息删除。
步骤5:主基站#1根据源辅基站的标识信息,向源辅基站发送SPCR#3。
作为另一种方式,在S202中UE将源辅基站的标识信息作为独立的信息记录在SPCR#3之外。具体的发送过程包括:
步骤1:UE向目标辅基站发送SPCR#3、主基站#1的标识信息和源辅基站的标识信息。
示例性地,主基站#1的标识信息可以在SPCR#3之外。
此外,为了指示主基站#1为传输SPCR#3的中间节点,源辅基站为SPCR#3对应的目的节点,可以采用直接指示或间接指示的方式,具体参考上文。
步骤2:目标辅基站向主基站#1发送SPCR#3和源辅基站的标识信息。
步骤3:主基站#1根据源辅基站的标识信息,向源辅基站发送SPCR#3。
作为一种可能的情况,如果目标辅基站与源辅基站之间没有直接的接口,则UE可以通过目标辅基站和主基站#1向源辅基站发送SPCR。
b:第一中间节点为主基站#1。
示例一:如果满足触发条件#2,UE以NR格式记录SPCR#2。由于主基站#1与目标辅基站的制式不同,UE确定主基站#1不能解析该SPCR#2,则在S202中UE将目标辅基站的标识信息作为独立的信息记录。
具体的发送过程包括:
步骤1:UE向主基站#1发送SPCR#2和目标辅基站的标识信息。
步骤2:主基站#1根据目标辅基站的标识信息,向目标辅基站发送SPCR#2。例如,主基站#1通过X2接口或核心网向目标辅基站发送SPCR#2。
示例二:如果满足触发条件#3,UE以NR格式记录SPCR#3。由于主基站#1与源辅基站的制式不同,UE确定主基站#1不能解析该SPCR#3,则在S202中UE将源辅基站的标识信息作为独立的信息记录。
具体的发送过程包括:
步骤1:UE向主基站#1发送SPCR#3和源辅基站的标识信息。
步骤2:主基站#1根据源辅基站的标识信息,向源辅基站发送SPCR#3。例如,主基站#1通过X2接口或核心网向源辅基站发送SPCR#3。
c:第一中间节点为主基站#2,且主基站#2为NR基站。
示例一:如果满足触发条件#1,UE以LTE格式记录SPCR#1。由于主基站#2与主基站#1的制式不同,UE确定主基站#2不能解析该SPCR#1,则在S202中UE将主基站#1的标识信息作为独立的信息记录。
具体的发送过程包括:
步骤1:UE向主基站#2发送SPCR#1和主基站#1的标识信息。
步骤2:主基站#2根据主基站#1的标识信息,向主基站#1发送SPCR#1。
示例二:如果满足触发条件#2,UE以NR格式记录SPCR#2。由于主基站#2与目标辅基站的制式相同,UE确定主基站#2能够解析该SPCR#2,在S202中UE可以将目标辅基站的标识信息记录到SPCR#2中。当然,UE也可以将目标辅基站的标识信息记录到SPCR#2之外。
以SPCR#2中包括目标辅基站的标识信息为例,通过两个中间节点发送SPCR的 发送过程包括:
步骤1:UE向主基站#2发送SPCR#2、主基站#1的标识信息。
由于UE确定主基站#2能够解析SPCR#2,因此,主基站#1的标识信息可以在SPCR#2之外,或者,在SPCR#2之内。
此外,为了指示主基站#1为发送SPCR#2的中间节点,目标辅基站为SPCR#2对应的目的节点,可以采用直接指示或间接指示的方式,具体参考上文。
步骤2:由于主基站#1与目标辅基站的制式不同,主基站#2确定主基站#1不能解析SPCR#2。
步骤3:主基站#2从SPCR#2中获取目标辅基站的标识信息。
步骤4:主基站#2向主基站#1发送SPCR#2和目标辅基站的标识信息,目标辅基站的标识信息作为独立于SPCR#2的信息。
在该步骤中,主基站#2向主基站#1发送的SPCR#2中可以保留目标辅基站的标识信息,或者,主基站#2可以将SPCR#2中目标辅基站的标识信息删除。
步骤5:主基站#1根据目标辅基站的标识信息,向目标辅基站发送SPCR#2。
示例三:如果满足触发条件#3,UE以NR格式记录SPCR#3。由于主基站#2与源辅基站的制式相同,UE确定主基站#2能够解析该SPCR#3,在S202中UE可以将源辅基站的标识信息记录到SPCR#3中。当然,UE也可以将源辅基站的标识信息记录到SPCR#3之外。
以SPCR#3中包括源辅基站的标识信息为例,通过两个中间节点发送SPCR的发送过程包括:
步骤1:UE向主基站#2发送SPCR#3、主基站#1的标识信息。
由于UE确定主基站#2能够解析SPCR#3,因此,主基站#1的标识信息可以在SPCR#3之外,或者,在SPCR#3之内。
此外,为了指示主基站#1为发送SPCR#3的中间节点,源辅基站为SPCR#3对应的目的节点,可以采用直接指示或间接指示的方式,具体参考上文。
步骤2:由于主基站#1与源辅基站的制式不同,主基站#2确定主基站#1不能解析SPCR#3。
步骤3:主基站#2从SPCR#3中获取源辅基站的标识信息。
步骤4:主基站#2向主基站#1发送SPCR#3和源辅基站的标识信息,源辅基站的标识信息作为独立于SPCR#2的信息。
在该步骤中,主基站#2向主基站#1发送的SPCR#3中可以保留源辅基站的标识信息,或者,主基站#2可以将SPCR#3中源辅基站的标识信息删除。
步骤5:主基站#1根据源辅基站的标识信息,向源辅基站发送SPCR#3。
d:第一中间节点为主基站#2,且主基站#2为LTE基站。
示例一:如果满足触发条件#1,UE以LTE格式记录SPCR#1。由于主基站#2与主基站#1的制式相同,UE确定主基站#2能够解析该SPCR#1,则在S202中UE可以将主基站#1的标识信息记录到SPCR#1中。当然,UE也可以将主基站#1的标识信息记录到SPCR#1之外。
以SPCR#1中包括主基站#1的标识信息为例,具体的发送过程包括:
步骤1:UE向主基站#2发送SPCR#1。
步骤2:主基站#2根据SPCR#1中主基站#1的标识信息,向主基站#1发送SPCR#1。
示例二:如果满足触发条件#2,UE以NR格式记录SPCR#2。由于主基站#2与目标辅基站的制式不同,UE确定主基站#2不能解析该SPCR#2,在S202中UE将目标辅基站的标识信息作为独立的信息记录。
以通过两个中间节点发送SPCR#2为例,具体的发送过程包括:
步骤1:UE向主基站#2发送SPCR#2、目标辅基站的标识信息、主基站#1的标识信息。目标辅基站的标识信息和主基站#1的标识信息在SPCR#2之外。
此外,为了指示主基站#1为发送SPCR#2的中间节点,目标辅基站为SPCR#2对应的目的节点,可以采用直接指示或间接指示的方式,具体参考上文。
步骤2:主基站#2向主基站#1发送SPCR#2和目标辅基站的标识信息。
步骤3:主基站#1根据目标辅基站的标识信息,向目标辅基站发送SPCR#2。
示例三:如果满足触发条件#3,UE以NR格式记录SPCR#3。由于主基站#2与源辅基站的制式不同,UE确定主基站#2不能解析该SPCR#3,在S202中UE将源辅基站的标识信息作为独立的信息记录。
以通过两个中间节点发送SPCR#3为例,具体的发送过程包括:
步骤1:UE向主基站#2发送SPCR#3、源辅基站的标识信息、主基站#1的标识信息。源辅基站的标识信息、主基站#1的标识信息在SPCR#3之外。
此外,为了指示主基站#1为发送SPCR#3的中间节点,源辅基站为SPCR#3对应的目的节点,可以采用直接指示或间接指示的方式,具体参考上文。
步骤2:主基站#2向主基站#1发送SPCR#3和源辅基站的标识信息。
步骤3:主基站#1根据源辅基站的标识信息,向源辅基站发送SPCR#3。
##场景4:NE-DC场景,主基站#1为连接5G核心网的NR基站,源辅基站和目标辅基站为LTE基站。
a:第一中间节点为目标辅基站。
示例一:如果满足触发条件#1,UE以NR格式记录SPCR#1。由于目标辅基站与主基站#1的制式不同,UE确定目标辅基站不能解析该SPCR#1,则在S202中UE将主基站#1的标识信息作为独立的信息记录。
具体的发送过程可以参考场景3的a中的示例一。
示例二:如果满足触发条件#3,UE以LTE格式记录SPCR#3。
作为一种方式,由于目标辅基站与源辅基站的制式相同,UE确定目标辅基站能够解析SPCR#3,在S202中UE可以将源辅基站的标识信息记录到SPCR#3中。
UE通过两个中间节点,分别为目标辅基站和主基站#1,向源辅基站发送SPCR#3,具体的发送过程可以参考场景3的a中的示例二。
作为另一种方式,在S202中UE将源辅基站的标识信息作为独立的信息记录在SPCR#3之外。具体的发送过程可以参考场景3的a中的示例二。
b:第一中间节点为主基站#1。
示例一:如果满足触发条件#2,UE以LTE格式记录SPCR#2。由于主基站#1与 目标辅基站的制式不同,UE确定主基站#1不能解析该SPCR#2,则在S202中UE将目标辅基站的标识信息作为独立的信息记录。
具体的发送过程可以参考场景3的b中的示例一。
示例二:如果满足触发条件#3,UE以LTE格式记录SPCR#3。由于主基站#1与源辅基站的制式不同,UE确定主基站#1不能解析该SPCR#3,则在S202中UE将源辅基站的标识信息作为独立的信息记录。
具体的发送过程可以参考场景3的b中的示例二。
c:第一中间节点为主基站#2,且主基站#2为NR基站。
示例一:如果满足触发条件#1,UE以NR格式记录SPCR#1。由于主基站#2与主基站#1的制式相同,UE确定主基站#2能够解析该SPCR#1,则在S202中UE可以将主基站#1的标识信息记录到SPCR#1中。当然,UE也可以将主基站#1的标识信息记录到SPCR#1之外。
以SPCR#1中包括主基站#1的标识信息为例,具体的发送过程可以参考场景3的d中的示例一。
示例二:如果满足触发条件#2,UE以LTE格式记录SPCR#2。由于主基站#2与目标辅基站的制式不同,UE确定主基站#2不能解析该SPCR#2,在S202中UE将目标辅基站的标识信息作为独立的信息记录。
以通过两个中间节点发送SPCR#2为例,具体的发送过程可以参考场景3的d中的示例二。
示例三:如果满足触发条件#3,UE以LTE格式记录SPCR#3。由于主基站#2与源辅基站的制式不同,UE确定主基站#2不能解析该SPCR#3,在S202中UE将源辅基站的标识信息作为独立的信息记录。
以通过两个中间节点发送SPCR#3为例,具体的发送过程可以参考场景3的d中的示例三。
d:第一中间节点为主基站#2,且主基站#2为LTE基站。
示例一:如果满足触发条件#1,UE以NR格式记录SPCR#1。由于主基站#2与主基站#1的制式不同,UE确定主基站#2不能解析该SPCR#1,则在S202中UE将主基站#1的标识信息作为独立的信息记录。
具体的发送过程可以参考场景3的c中的示例一。
示例二:如果满足触发条件#2,UE以LTE格式记录SPCR#2。由于主基站#2与目标辅基站的制式相同,UE确定主基站#2能够解析该SPCR#2,在S202中UE可以将目标辅基站的标识信息记录到SPCR#2中。当然,UE也可以将目标辅基站的标识信息记录到SPCR#2之外。
以SPCR#2中包括目标辅基站的标识信息为例,通过两个中间节点发送SPCR的发送过程可以参考场景3的c中的示例二。
示例三:如果满足触发条件#3,UE以LTE格式记录SPCR#3。由于主基站#2与源辅基站的制式相同,UE确定主基站#2能够解析该SPCR#3,在S202中UE可以将源辅基站的标识信息记录到SPCR#3中。当然,UE也可以将源辅基站的标识信息记录到SPCR#3之外。
以SPCR#3中包括源辅基站的标识信息为例,通过两个中间节点发送SPCR的发送过程可以参考场景3的c中的示例三。
根据前述方法,图4为本申请实施例提供的一种通信装置,该通信装置包括收发单元401和处理单元402。
其中,收发单元401可以用于实现相应的信息收发功能。收发单元401还可以称为通信接口或通信单元。处理单元402可以用于进行处理操作。
示例性地,该装置还包括存储单元,该存储单元可以用于存储指令和/或数据,处理单元402可以读取存储单元中的指令和/或数据,以使得装置实现前述各个方法实施例中的装置的动作。
作为第一种实现方式,该装置可以是接入网设备,或者接入网设备的组成部件(如芯片)。
可选地,该接入网设备中的收发单元和处理单元用于实现现上文各个方法实施例中第一节点的相关操作。示例性地,收发单元用于实现S201,处理单元用于实现S204。
可选地,该接入网设备中的收发单元和处理单元用于实现上文各个方法实施例中源主基站(主基站#1)的相关操作。示例性地,收发单元用于向UE发送辅基站切换命令。
可选地,该接入网设备中的收发单元和处理单元用于实现可以用于实现上文各个方法实施例中第一中间节点的相关操作。示例性地,收发单元用于接收来自UE的SPCR。处理单元用于确定第二中间节点是否能够解析SPCR。
作为第二种实现方式,该装置可以是前述实施例中的UE,也可以是UE的组成部件(如芯片)。其中,收发单元和处理单元,可以用于实现上文各个方法实施例中UE的相关操作。示例性地,收发单元用于实现S203,处理单元用于实现S202。
应理解,各单元执行上述相应步骤的具体过程在上述各方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,这里的装置以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置可以具体为上述实施例中的第一网元,可以用于执行上述各方法实施例中与第一网元对应的各个流程和/或步骤,或者,装置可以具体为上述实施例中的网络管理网元,可以用于执行上述各方法实施例中与网络管理网元对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述通信装置具有实现上述方法中的装置所执行的相应步骤的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块;例如收发单元可以由收发机替代(例如,收发单元中的发送单元可以由发送机替代,收发单元中的接收单元可以由接收机替代),其它单元,如处理单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
此外,上述收发单元401还可以是收发电路(例如可以包括接收电路和发送电路),处理单元可以是处理电路。
需要指出的是,图4中的装置可以是前述方法实施例中的装置,也可以是芯片或者芯 片系统,例如:片上系统(system on chip,SoC)。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。在此不做限定。
本申请实施例还提供一种通信设备,如图5所示,包括:处理器501和通信接口502。处理器501用于执行存储器503存储的计算机程序或指令,或读取存储器503存储的数据,以执行上文各方法实施例中的方法。示例性地,处理器501为一个或多个。通信接口502用于信号的接收和/或发送。例如,处理器501用于控制通信接口502进行信号的接收和/或发送。
示例性地,如图5所示,该通信设备还包括存储器503,存储器503用于存储计算机程序或指令和/或数据。该存储器503可以与处理器501集成在一起,或者也可以分离设置。示例性地,存储器503为一个或多个。
示例性地,处理器501、通信接口502以及存储器503通过总线504相互连接;总线504可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。上述总线504可以分为地址总线、数据总线和控制总线等。为便于表示,图5中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
例如,处理器501用于执行存储器503存储的计算机程序或指令。
作为第一种实现方式,该设备可以是接入网设备,或者接入网设备的组成部件(如芯片)。
可选地,该接入网设备中的通信接口和处理器用于实现现上文各个方法实施例中第一节点的相关操作。示例性地,通信接口用于实现S201,处理器用于实现S204。
可选地,该接入网设备中的通信接口和处理器用于实现上文各个方法实施例中源主基站(主基站#1)的相关操作。示例性地,通信接口用于向UE发送辅基站切换命令。
可选地,该接入网设备中的通信接口和处理器用于实现可以用于实现上文各个方法实施例中第一中间节点的相关操作。示例性地,通信接口用于接收来自UE的SPCR。处理器用于确定第二中间节点是否能够解析SPCR。
作为第二种实现方式,该设备可以是前述实施例中的UE,也可以是UE的组成部件(如芯片)。其中,通信接口和处理器,可以用于实现上文各个方法实施例中UE的相关操作。示例性地,通信接口用于实现S203,处理器用于实现S202。
应理解,本申请实施例中提及的处理器(如处理器501)可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
还应理解,本申请实施例中提及的存储器(如存储器503)可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器 (electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请的各个实施例中的内容可以相互参考,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
可以理解的,本申请实施例中,终端和/或接入网设备可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例中,还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。

Claims (22)

  1. 一种通信方法,其特征在于,包括:
    接收来自第一节点的第一信息,所述第一信息指示用于记录第一报告的触发条件,其中,终端接入主基站;
    在所述触发条件满足的情况下,记录所述第一报告,所述第一报告包括所述终端从源辅基站切换到目标辅基站的过程中的信息,所述第一报告与所述第一节点之间存在对应关系;
    向所述第一节点发送所述第一报告。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一报告中包括所述第一节点的标识信息。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    记录所述第一节点的标识信息,所述第一节点的标识信息是独立于所述第一报告的信息。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,向所述第一节点发送所述第一报告,包括:
    直接向所述第一节点发送所述第一报告。
  5. 根据权利要求1-3中任一项所述的方法,其特征在于,
    向所述第一节点发送所述第一报告,包括:
    通过至少一个中间节点向所述第一节点发送所述第一报告;
    所述方法还包括:
    向第一中间节点发送所述第一节点的标识信息,所述第一中间节点为所述至少一个中间节点中所述终端接入的节点。
  6. 根据权利要求5所述的方法,其特征在于,
    所述方法还包括:
    判断所述第一中间节点是否支持所述第一报告对应的无线接入技术RAT;
    所述第一中间节点支持所述第一报告对应的RAT,所述第一报告中包括所述第一节点的标识信息;或者,
    所述第一中间节点不支持所述第一报告对应的RAT,所述第一节点的标识信息是独立于所述第一报告的信息;或者,
    所述第一中间节点支持所述第一报告对应的RAT,所述第一节点的标识信息是独立于所述第一报告的信息。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,
    所述第一节点为所述主基站,所述触发条件为所述终端与所述主基站之间的通信链路出现潜在失败;或者,
    所述第一节点为所述源辅基站,所述触发条件为所述终端与所述源辅基站之间的通信链路出现潜在失败;或者,
    所述第一节点为所述目标辅基站,所述触发条件为所述终端与所述目标辅基站之间的 通信链路出现潜在失败。
  8. 一种通信方法,其特征在于,包括:
    接收来自终端的第一报告,所述第一报告与第一节点对应,所述第一报告包括所述终端从源辅基站切换到目标辅基站的过程中的信息,所述终端接入了源主基站;
    向所述第一节点发送所述第一报告。
  9. 根据权利要求8所述的方法,其特征在于,
    第一中间节点支持所述第一报告对应的无线接入技术RAT,所述第一报告中还包括所述第一节点的标识信息。
  10. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    接收来自所述终端的所述第一节点的标识信息,所述第一节点的标识信息是独立于所述第一报告的信息。
  11. 根据权利要求8-10中任一项所述的方法,其特征在于,向所述第一节点发送所述第一报告,包括:
    直接向所述第一节点发送所述第一报告。
  12. 根据权利要求8-10中任一项所述的方法,其特征在于,
    向所述第一节点发送所述第一报告,包括:
    通过第二中间节点向所述第一节点发送所述第一报告。
  13. 根据权利要求12所述的方法,其特征在于,
    如果所述第一报告中包括所述第一节点的标识信息,通过所述第二中间节点向所述第一节点发送所述第一报告,包括:
    在所述第二中间节点不支持所述第一报告对应的RAT的情况下,从所述第一报告中获取所述第一节点的标识信息;
    向所述第二中间节点发送所述第一报告和所述第一节点的标识信息,所述第一节点的标识信息是独立于所述第一报告的信息。
  14. 根据权利要求8-13中任一项所述的方法,其特征在于,
    第一中间节点为所述源主基站、所述目标辅基站或者目标主基站,所述目标主基站为所述终端从所述源主基站切换后接入的主基站;
    所述第一节点为所述源主基站,所述第一节点的标识为所述源主基站管理的主小区的标识;或者,
    所述第一节点为所述源辅基站,所述第一节点的标识为所述源辅基站管理的主辅小区的标识;或者,
    所述第一节点为所述目标辅基站,所述第一节点的标识为所述目标辅基站管理的主辅小区的标识。
  15. 一种通信方法,其特征在于,包括:
    发送第一信息,所述第一信息指示用于记录第一报告的触发条件,第一节点为终端接入的主基站、源辅基站或目标辅基站;
    接收来自所述终端的所述第一报告,所述第一报告包括所述终端从所述源辅基站切换到所述目标辅基站的过程中的信息,所述第一报告为满足所述触发条件的情况下所述终端发送的;
    根据所述第一报告对辅基站切换流程进行优化。
  16. 根据权利要求15所述的方法,其特征在于,
    所述第一节点为所述主基站,所述触发条件为所述终端与所述主基站之间的通信链路出现潜在失败;或者,
    所述第一节点为所述源辅基站,所述触发条件为所述终端与所述源辅基站之间的通信链路出现潜在失败;或者,
    所述第一节点为所述目标辅基站,所述触发条件为所述终端与所述目标辅基站之间的通信链路出现潜在失败。
  17. 一种通信装置,其特征在于,包括用于执行权利要求1-7中任一项方法的单元;或者,包括用于执行权利要求8-14中任一项方法的单元;或者,包括用于执行权利要求15-16中任一项方法的单元。
  18. 一种通信设备,其特征在于,包括:通信接口和处理器,所述处理器用于执行计算机程序或指令,使得所述通信设备执行如权利要求1-7中任一项所述的方法;或者,使得所述通信设备执行如权利要求8-14中任一项所述的方法;或者,使得所述通信设备执行如权利要求15-16中任一项所述的方法。
  19. 一种计算机可读存储介质,其特征在于,包括计算机程序或指令,当所述计算机程序或所述指令在计算机上运行时,使得所述计算机执行如权利要求1-7中任意一项所述的方法;或者,使得所述计算机执行如权利要求8-14中任意一项所述的方法;或者,使得所述计算机执行如权利要求15-16中任意一项所述的方法。
  20. 一种计算机程序产品,其特征在于,包含指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1-7中任意一项所述的方法;或者,使得所述计算机执行如权利要求8-14中任意一项所述的方法;或者,使得所述计算机执行如权利要求15-16中任意一项所述的方法。
  21. 一种通信系统,其特征在于包括第一中间节点、以及第一节点;
    所述第一中间节点用于执行如权利要求8-14中任意一项所述的方法;
    所述第一节点用于执行如权利要求15-16中任意一项所述的方法。
  22. 根据权利要求21所述的通信系统,还包括终端,所述终端用于执行如权利要求1-7中任意一项所述的方法。
PCT/CN2023/096616 2022-06-01 2023-05-26 通信方法和装置 WO2023231929A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210621195.6 2022-06-01
CN202210621195.6A CN117202230A (zh) 2022-06-01 2022-06-01 通信方法和装置

Publications (1)

Publication Number Publication Date
WO2023231929A1 true WO2023231929A1 (zh) 2023-12-07

Family

ID=89004049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/096616 WO2023231929A1 (zh) 2022-06-01 2023-05-26 通信方法和装置

Country Status (2)

Country Link
CN (1) CN117202230A (zh)
WO (1) WO2023231929A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180220483A1 (en) * 2015-08-11 2018-08-02 Nec Corporation Apparatus and method related to dual connectivity
CN111182600A (zh) * 2014-01-28 2020-05-19 北京三星通信技术研究有限公司 在无线通信系统中支持ue移动的方法及装置
CN111314974A (zh) * 2020-02-11 2020-06-19 展讯通信(上海)有限公司 主辅小区更新的处理方法、装置、基站及存储介质
CN112702768A (zh) * 2019-10-22 2021-04-23 中国移动通信有限公司研究院 双连接切换方法、装置、基站及终端
CN113938962A (zh) * 2020-07-13 2022-01-14 夏普株式会社 切换信息报告方法及用户设备
WO2022051900A1 (zh) * 2020-09-08 2022-03-17 Oppo广东移动通信有限公司 发送成功切换报告的方法、终端设备和网络设备
US20220141748A1 (en) * 2018-02-14 2022-05-05 Lg Electronics Inc. Method and apparatus for performing dc based handover

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111182600A (zh) * 2014-01-28 2020-05-19 北京三星通信技术研究有限公司 在无线通信系统中支持ue移动的方法及装置
US20180220483A1 (en) * 2015-08-11 2018-08-02 Nec Corporation Apparatus and method related to dual connectivity
US20220141748A1 (en) * 2018-02-14 2022-05-05 Lg Electronics Inc. Method and apparatus for performing dc based handover
CN112702768A (zh) * 2019-10-22 2021-04-23 中国移动通信有限公司研究院 双连接切换方法、装置、基站及终端
CN111314974A (zh) * 2020-02-11 2020-06-19 展讯通信(上海)有限公司 主辅小区更新的处理方法、装置、基站及存储介质
CN113938962A (zh) * 2020-07-13 2022-01-14 夏普株式会社 切换信息报告方法及用户设备
WO2022051900A1 (zh) * 2020-09-08 2022-03-17 Oppo广东移动通信有限公司 发送成功切换报告的方法、终端设备和网络设备

Also Published As

Publication number Publication date
CN117202230A (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
WO2021159980A1 (zh) 切换的方法和通信装置
US20210251032A1 (en) Communication method, apparatus, and system
US20220264414A1 (en) Mobility Optimization Method and Related Apparatus
CN113973292B (zh) 一种移动性信息上报的方法和ue
CN114391268A (zh) 分段无线电资源控制消息的通信
WO2021032007A1 (zh) 链路失败报告传输的方法和装置
US20230262567A1 (en) Communication Method and Communication Apparatus
WO2023231929A1 (zh) 通信方法和装置
US10827403B2 (en) Data transmission method, user equipment, base station, and system
US20210160751A1 (en) Cell handover method, network node and terminal device
WO2022236835A1 (zh) 确定终端设备行为的方法及装置、终端设备、网络设备
CN114765791A (zh) 连接失败信息的处理方法、装置和系统
CN109845363B (zh) 一种路径转换方法及相关设备
WO2023011612A1 (zh) 移动性管理的方法及通信装置
WO2023131280A1 (zh) 信息记录方法、通信装置、以及计算机存储介质
WO2024061165A1 (zh) 通信方法及通信装置
WO2024093721A1 (zh) 通信方法、装置及系统
WO2024031491A1 (zh) 随机接入报告方法、装置及存储介质
WO2024093934A1 (zh) 配置方法、装置、相关设备及存储介质
WO2023207229A1 (zh) 一种会话建立方法及装置
WO2024051698A1 (zh) 一种通信方法及装置
WO2023227090A1 (zh) 用于辅小区组的小区更新方法及装置、存储介质
WO2023217078A1 (zh) 通信方法及装置
WO2023011077A1 (zh) 通信方法及装置
WO2023143285A1 (zh) Scg 状态信息处理的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815112

Country of ref document: EP

Kind code of ref document: A1