WO2023231791A1 - 旋磨装置及旋磨设备 - Google Patents

旋磨装置及旋磨设备 Download PDF

Info

Publication number
WO2023231791A1
WO2023231791A1 PCT/CN2023/094969 CN2023094969W WO2023231791A1 WO 2023231791 A1 WO2023231791 A1 WO 2023231791A1 CN 2023094969 W CN2023094969 W CN 2023094969W WO 2023231791 A1 WO2023231791 A1 WO 2023231791A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotational atherectomy
head
rotational
diameter
proximal
Prior art date
Application number
PCT/CN2023/094969
Other languages
English (en)
French (fr)
Inventor
季晓飞
常兆华
岳斌
姚映忠
Original Assignee
上海微创旋律医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微创旋律医疗科技有限公司 filed Critical 上海微创旋律医疗科技有限公司
Publication of WO2023231791A1 publication Critical patent/WO2023231791A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • A61B17/320758Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with a rotating cutting instrument, e.g. motor driven
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • A61B2017/320741Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions for stripping the intima or the internal plaque from a blood vessel, e.g. for endarterectomy

Definitions

  • the present invention relates to the technical field of medical devices, and in particular to a rotational atherectomy device and rotational atherectomy equipment.
  • Atherosclerotic plaques are generally located in the vasculature of coronary arteries or peripheral arteries and may have different characteristics depending on the texture of the plaque. For severe calcified lesions, it is necessary to use an atherosclerosis resection device for pretreatment. The principle is to use a rotational atherectomy device to rotate and grind the vascular lesions at high speed to remove calcified or fibrotic arteriosclerotic plaques and open blood vessels blocked by plaques. An enlarged and smooth vascular lumen is obtained to facilitate subsequent stent implantation.
  • the current rotational atherectomy device mainly includes a flexible drive shaft and a rotational atherectomy head carried by the flexible drive shaft; the drive shaft drives the rotational atherectomy head to rotate at high speed, pushing forward to contact and grind to remove lesions; the diameter of the rotational atherectomy head is not less than that of the drive shaft diameter of.
  • the rotational atherectomy head is mostly set in the middle of the drive shaft, so that the distal end of the rotational atherectomy head is a section of the drive shaft that has no rotational atherectomy function. At this time, the distal drive shaft needs to be screwed into or squeezed through the narrow lesion before it can be used.
  • the rotational atherectomy head in the middle contacts the lesion, not only the rotational atherectomy effect and passability are poor, but also the distal drive shaft may get stuck in the stenotic lesion when screwed or squeezed through the stenotic lesion and blood vessel, causing risks, or even It will dilate blood vessels and cause vascular damage, especially for some stenotic lesions and completely occluded lesions.
  • the rotational burr head in the middle position is less likely to contact the lesions and there is no way to grind the lesions. Not only that, the surface of the rotational grinding head is not completely covered with wear-resistant material, and axial and bidirectional rotational grinding cannot be achieved.
  • the rotational grinding head often cannot reverse rotational grinding and retreat after passing through the lesion under the action of forward pushing force, and the rotational grinding efficiency is low. It is lower, and there is a problem that the rotational atherectomy head is easily stuck in the vascular plaque and cannot be removed.
  • the traditional rotational atherectomy head cannot adjust the rotational atherectomy diameter by itself during the process of opening the lesion. Therefore, multiple rotational atherectomy heads of different sizes are configured during the operation, and the smaller diameter rotational atherectomy head is used for rotational atherectomy first. , and then use a larger-diameter rotational atherectomy head for rotational atherectomy, which requires frequent replacement of rotational atherectomy devices of different sizes, which increases the operation time and the chance of damaging blood vessels.
  • the diameter of the rotational atherectomy head is larger, it is difficult to pass through the stenosis. The blood vessels and catheters reach the position of the diseased blood vessels, which increases the difficulty of the operation.
  • the larger diameter rotational atherectomy head will block the passage of blood in the narrow diseased blood vessels, and will also block the coolant and/or lubrication. Liquid flows distally. It was further discovered that some existing rotational grinding devices are also equipped with multiple rotational grinding heads along the axial direction in the middle position of the drive shaft. From the distal end to the proximal end, the diameter of the rotational grinding head increases.
  • the movement state and the force on blood vessels are uncontrollable, which increases the uncontrollable risk of surgery and reduces the safety of surgery.
  • multiple rotational atherectomy heads increase the overall hardness of the drive shaft and reduce the flexibility of the drive shaft, making it difficult to reach the lesion location through narrow blood vessels and conduits.
  • the object of the present invention is to provide a rotational atherectomy device and rotational atherectomy equipment to solve at least one technical problem existing in the existing rotational atherectomy device.
  • the present invention provides a rotational atherectomy device, which includes a drive shaft and a rotational atherectomy head; the drive shaft has a connecting portion at the distal end, and the connecting portion is connected to the rotational atherectomy head; the rotational atherectomy head
  • Both the grinding head and the drive shaft have a hollow structure that extends axially, and the hollow structure is used for the guide body to pass; wherein the center of mass of the structure formed by connecting the rotational grinding head and the connecting part is consistent with the center of mass of the structure.
  • the central axes of the above hollow structures do not coincide.
  • the diameter of the distal portion of the rotational atherectomy head gradually increases along the axial direction from the distal end to the proximal end, and the outer surface of the distal portion of the rotational atherectomy head is covered with a rotational atherectomy layer.
  • the diameter of the proximal end of the rotational atherectomy head gradually decreases along the axial direction from the distal end to the proximal end, and the outer surface of the proximal end portion of the rotational atherectomy head is covered with a rotational atherectomy layer. , and/or, the outer surface of the intermediate portion formed between the distal portion and the proximal portion of the rotational atherectomy head is covered with a rotational atherectomy layer.
  • the middle portions have equal diameters, or the diameter of the middle portion first gradually increases and then decreases along the axial direction from the distal end to the proximal end.
  • the rotational atherectomy head includes a base, the base is provided with the hollow structure of the rotational atherectomy head, the outer surface of the base is covered with a rotational atherectomy layer, and the rotational atherectomy layer is formed by a rotational atherectomy head.
  • particle composition The rotational grinding particles are made from a combination of one or more rotational grinding materials.
  • the thickness of the rotational polishing layer is 20-120 ⁇ m, such as 20 ⁇ m, 40 ⁇ m, 50 ⁇ m or 100 ⁇ m.
  • the diameter of the rotational atherectomy head gradually decreases along the axial direction toward the distal end, and also gradually decreases along the axial direction toward the proximal end, such as forming a spindle with small ends and a large middle.
  • the rotational atherectomy head has at least one of the following features:
  • the minimum diameter of the distal portion of the atherectomy head is smaller than the minimum diameter of the proximal portion of the atherectomy head
  • the maximum diameter of the distal portion of the atherectomy head is smaller than the maximum diameter of the proximal portion of the atherectomy head
  • the curvature radius of the distal portion of the atherectomy head is greater than or equal to the curvature radius of the proximal portion of the atherectomy head.
  • the rotational atherectomy head has at least one of the following features:
  • the diameter of the distal part of the rotational atherectomy head is 0.13 ⁇ 0.66mm.
  • the minimum diameter of the distal part is 0.13mm, 0.2mm, 0.3mm, and the maximum diameter is 0.66mm;
  • the maximum diameter of the middle part formed between the proximal part and the distal part of the rotational atherectomy head is 0.66-4.0mm, such as the maximum diameter of the middle part is 0.66mm, 1.25mm, 2.0mm or 4.0mm;
  • the diameter of the proximal part of the rotational atherectomy head is 0.5-1.2 mm.
  • the minimum diameter of the proximal part is 0.5 mm, 0.75 mm, or 1.0 mm, and the maximum diameter is 1.2 mm.
  • the rotational atherectomy device further includes a guide body, and the rotational atherectomy head and the drive shaft can rotate and move axially relative to the guide body.
  • the hollow structure of the rotational atherectomy head is composed of a distal hollow structure and a proximal hollow structure that are interconnected, and the cavity diameter of the distal hollow structure is adapted to the diameter of the guide body.
  • the cavity diameter of the proximal hollow structure is larger than the cavity diameter of the distal hollow structure, and the proximal hollow structure is fixedly connected to the connecting part.
  • the entire driving shaft is a hollow tubular structure with equal diameters, and the central axis of the driving shaft coincides with the central axis of the guide body.
  • the driving shaft is a hollow tubular structure with a variable diameter
  • the diameter of the connecting part increases in the axial direction from the proximal end to the distal end
  • the driving shaft also has a proximal connection with the connecting part.
  • the central axis of the equal diameter portion coincides with the central axis of the guide body.
  • the connecting portion is inserted into the proximal hollow structure from a proximal opening of the rotational atherectomy head, and the radial dimension of the proximal opening is less than or equal to the diameter of the proximal end of the connecting portion.
  • the connecting portion is arranged asymmetrically with respect to the central axis of the equal-diameter portion, and/or the diameter of the connecting portion first gradually increases and then gradually decreases along the axial direction from the proximal end to the distal end. .
  • the rotational atherectomy head is a spindle, and the shape of the proximal hollow structure is adapted to the shape of the spindle, and the shape of the connecting portion is adapted to the shape of the proximal hollow structure.
  • the rotational grinding head can be set as a hollow shell inside, which can reduce the quality of the rotational grinding head and reduce the impact of centrifugal force on the motion state of the rotational grinding head.
  • the present invention also provides a rotational atherectomy equipment, which includes a driving device and any one of the rotational atherectomy devices; the driving device is connected to the drive shaft in the rotational atherectomy device to drive the rotational atherectomy device.
  • the rotational atherectomy device rotates.
  • the rotational atherectomy device includes: a drive shaft and a rotational atherectomy head; the drive shaft has a connection portion at the distal end, and the connection portion is connected to the rotational atherectomy head. Connection; both the rotational atherectomy head and the drive shaft have a hollow structure extending axially, and the hollow structure is used for a guide body to pass; wherein the rotational atherectomy head is connected to the connecting portion to form a
  • the center of mass of the structure does not coincide with the central axis of the hollow structure; when configured in this way, the present invention has at least the following advantages:
  • the rotational atherectomy head is arranged at the distal end of the drive shaft, the distal end of the rotational atherectomy device becomes a rotational atherectomy head with a rotational atherectomy function. At this time, there is no need to screw or squeeze the distal end of the drive shaft during the operation. For extremely stenotic lesions, you only need to make the rotational atherectomy head contact the lesion and perform rotational atherectomy. Therefore, the rotational atherectomy effect and passability are good, the surgical risk is reduced, and the success rate of the operation is improved;
  • the rotational atherectomy head can self-adjust the rotational atherectomy diameter during the process of opening the lesion, effectively removing the lesion.
  • the rotational atherectomy head since the static diameter of the rotational atherectomy head can be smaller, the rotational atherectomy head will not easily block blood flow in narrow diseased blood vessels, nor will it block the flow of coolant and/or lubricant to the distal end, further reducing the cost of the operation. risks, increasing surgical safety;
  • the rotational atherectomy head is set at the distal end of the drive shaft, thereby reducing the axial length of the entire drive shaft and reducing the impact of the drive shaft on the distal lesions and the proximal normal during the rotational atherectomy process.
  • the influence of blood vessels is that the eccentric setting of a rotational atherectomy head makes the centrifugal force during the rotational atherectomy process controllable, without affecting the motion state of the rotational atherectomy head and the force on the blood vessels, thereby reducing the risk of complications during the operation. Uncontrollable risks increase surgical safety.
  • the setting of a rotational burr head does not increase the overall hardness of the drive shaft and ensures the flexibility of the drive shaft to improve its ability to pass through blood vessels and conduits.
  • the diameter of the distal portion of the rotational atherectomy head gradually increases from the distal end to the proximal end in the axial direction, and the rotational atherectomy head
  • the outer surface of the distal part is covered with a rotational atherectomy layer to contact and rotate the lesion through the rotational atherectomy layer at the distal end of the rotational atherectomy head, thereby improving the rotational atherectomy efficiency.
  • the diameter of the proximal part of the rotational atherectomy head is along the The axial direction gradually decreases from the distal end to the proximal end, and the outer surface of the proximal part of the rotational grinding head is covered with a rotational grinding layer, so that the rotational grinding head can achieve bidirectional rotation. Then, when the rotational grinding head passes through the stenosis When the lesion becomes stuck, the lesion can still be rotated to achieve retreat. Not only is the rotational atherectomy more efficient, but the surgical risk is lower.
  • Figure 1 is a perspective view of a rotational atherectomy device in an embodiment of the present invention
  • Figure 2 is a cross-sectional view of a rotational atherectomy device in an embodiment of the present invention
  • Figure 3 is an end view of the structure formed by connecting the rotational atherectomy head and the connecting portion in the embodiment of the present invention, with the center of mass deviating from the central axis of the hollow structure;
  • FIG. 4 shows the rotational atherectomy device in the embodiment of the present invention.
  • the rotational atherectomy head first contacts and rotates to open the lesion.
  • Figure 5 is a view of an application scenario in which the rotational atherectomy device in the embodiment of the present invention uses the rotational atherectomy head to pass through the stenotic lesion along the guide body;
  • Figure 6 is a view in which the distal end of the drive shaft in the rotational atherectomy device in the embodiment of the present invention is set as a connecting portion with an increased diameter and is fixedly connected to the hollow rotational atherectomy head;
  • Figure 7 is a graph showing changes in centrifugal force with rotational speed experienced by the rotational atherectomy head in the embodiment of the present invention.
  • FIG. 8 is a graph showing the centrifugal force experienced by the rotational atherectomy head as a function of the rotational atherectomy diameter in the embodiment of the present invention.
  • 10-rotational atherectomy device 11-rotational atherectomy head; 11a-distal part; 11b-proximal part; 11c-middle part; 111-rotational atherectomy layer; 112-base; 113-proximal hollow structure; 114-distal end Hollow structure; 12-driving shaft; 121-connection part; 122-equal diameter part; 13-guide body; 14-center of mass; 31-blood vessel; 32-stenotic lesion; 41-catheter.
  • distal and proximal are used; “distal” is the side away from the operator of the rotational atherectomy device; “proximal” ” is close to the rotational grinding device The operator's side of the equipment; “axial” refers to the direction along the central axis of the rotational atherectomy device or rotational atherectomy device; “circumferential” refers to the direction around the central axis of the rotational atherectomy device or rotational atherectomy device; “"Centralaxis” refers to the length of the rotational atherectomy device or blood vessel.
  • diameter refers to the outer diameter of the structure; the diameter of the rotational grinding head includes the rotational grinding layer.
  • some embodiments of the present invention disclose a rotational atherectomy device and a rotational atherectomy device thereof.
  • the rotational atherectomy device includes a rotational atherectomy device 10 and a driving device (not shown).
  • the driving device It is connected to the proximal end of the drive shaft 12 in the rotational atherectomy device 10 to drive the rotational atherectomy device 10 to rotate.
  • the rotational atherectomy device and its rotational atherectomy device are used for intravascular surgeries, such as removing tissue from body passages, such as using a rotational atherectomy device to remove calcified or fibrotic arteriosclerotic plaques in blood vessels, thereby opening plaque-blocked blood vessels (including coronary blood vessels, peripheral blood vessels or other blood vessels) to obtain a smooth vascular lumen.
  • the rotational atherectomy device 10 includes a rotational atherectomy head 11 and a drive shaft 12; the drive shaft 12 has a connecting portion 121 at the distal end, and the rotational atherectomy head 11 is connected to the connection portion 121; the rotational atherectomy head 11 and the drive shaft 12 are usually manufactured independently and then assembled together.
  • the drive shaft 12 is a whole or one-piece structure; the drive shaft 12 is preferably a flexible drive shaft, which can be constructed from a spiral coil; the drive shaft 12 is composed of a driving device. The drive rotates and drives the rotational grinding head 11 to rotate.
  • the present invention arranges the rotational atherectomy head 11 at the distal end of the drive shaft 12 so that the rotational atherectomy head 11 can first contact the vascular lesion and enter the stenosis.
  • Performing rotational atherectomy overcomes the traditional method of screwing or squeezing the distal end of the drive shaft into the narrow lesion before the mid-position rotational atherectomy head can contact the lesion. Therefore, the present invention can obtain better rotational atherectomy effect and passability. The surgical risk is reduced.
  • only one rotational atherectomy head 11 is provided, which reduces the axial length of the entire drive shaft 12 and reduces the impact of the drive shaft 12 on the distal lesions and proximal normal blood vessels during the rotational atherectomy process, further reducing the surgical risk. reduce.
  • the rotational atherectomy head 11 and the drive shaft 12 are both configured to have a hollow structure that extends axially, allowing the guide 13 to pass through the hollow structures of the rotational atherectomy head 11 and the drive shaft 12 .
  • the guide body 13 is, for example, a guide wire, used to guide the rotational atherectomy device 10 through the diseased blood vessel.
  • the rotational atherectomy The central axis of the hollow structure of the head 11 coincides with the central axis of the hollow structure of the drive shaft 12 .
  • the center of mass 14 of the structure formed by connecting the rotational atherectomy head 11 and the connecting portion 121 does not coincide with the central axis of the hollow structure.
  • the rotational grinding head 11 and the drive shaft 12 are driven to rotate around the central axis of the hollow structure, under the action of centrifugal force, the rotational grinding head 11 will deviate from the central axis of the hollow structure to form a revolution.
  • the rotational grinding head 11 can increase the revolution diameter of the rotational grinding head 11 (that is, the rotational grinding diameter D), thereby achieving a larger rotational grinding diameter D than the diameter of the static rotational grinding head 11 .
  • the rotational atherectomy head 11 can self-adjust the diameter D of the rotational atherectomy in the process of opening the lesion, which can realize the treatment of lesions of different sizes and effectively remove various lesions, thus avoiding the configuration of multiple different lesions.
  • the large and small rotational atherectomy head avoids frequent replacement of equipment, reduces operation time, and reduces surgical risks, and the static diameter of the rotational atherectomy head 11 can be set smaller, making it easier for the rotational atherectomy device 10 to reach through narrow blood vessels and conduits. The location of the diseased blood vessels reduces the difficulty of surgery.
  • the rotational atherectomy head 11 since the static diameter of the rotational atherectomy head 11 is smaller, the rotational atherectomy head 11 will not easily block the blood flow in the narrow and diseased blood vessel, nor will it block the flow of coolant and/or lubricant to the distal end, further reducing the risk of Reduces surgical risks and increases surgical safety.
  • the setting of a rotational burr head 11 will not increase the overall hardness of the drive shaft 12, and can ensure the flexibility of the drive shaft 12. Improves its ability to traverse blood vessels and conduits.
  • static refers to the state of the rotational burr head 11 when it is not rotating.
  • static diameter refers to the diameter of the rotational burr head 11 when it is not rotating; and the rotational burr diameter D refers to the rotational burr head. 11The revolution diameter when rotating.
  • the revolution diameter (i.e., the diameter of rotation) of the rotational grinding head 11 can be adjusted by controlling the rotational speed of the rotational grinding head 11, so that the rotational grinding diameter D of the rotational grinding head 11 can be variable, so that the rotational grinding diameter D can be large or small. It can be small, so that the same rotational grinding head 11 can rotate both small-sized lesions and large-sized lesions.
  • Fc is the centrifugal force
  • m is the mass of the structure formed by the connection between the rotational burr head 11 and the connection part 121
  • ⁇ x is the center of mass 14 of the structure formed by the connection between the rotational burr head 11 and the connection part 121 relative to the central axis of the hollow structure.
  • the offset distance; n is the rotation speed of the rotary grinding head 11.
  • the units of each parameter are not limited here. Those skilled in the art can learn how the centrifugal force is determined and the various factors that affect the centrifugal force based on this formula. Therefore, the size of the centrifugal force F C experienced by the rotational burr head 11 is related to the structural mass m, the offset distance of the structure's center of mass, and the rotational speed of the rotational burr head.
  • the central axis of the hollow structure serves as the axis of rotation
  • the central axis of the diseased blood vessel serves as the axis of revolution.
  • the rotational grinding diameter D increases as the rotational speed n increases.
  • the rotational grinding head 11 During the process of rotational atherectomy for stenotic lesions 32, the rotational atherectomy diameter D will continue to increase, but the centrifugal force Fc will continue to decrease. Until the rotational atherectomy diameter D increases to the maximum value, the centrifugal force Fc will also tend to be 0, so No damage to normal blood vessels, see Figures 7 and 8 for more details.
  • the centrifugal force Fc can be increased by adjusting the rotational speed n, and thereby the rotational grinding diameter D can be increased. for rotational ablation of larger lesions.
  • the centrifugal force Fc experienced by the rotational grinding head 11 also gradually decreases until it approaches 0, and finally the rotational grinding diameter D tends to be stable. Reaching the maximum value, when the centrifugal force Fc tends to 0 or is very small, the rotational atherectomy head 11 will no longer damage normal blood vessels.
  • the centrifugal force is within a predictable and controllable range, so that the motion state of the rotational atherectomy head 11 and the force on the blood vessels are also controllable, ensuring the safety of the operation.
  • the structure of the rotational atherectomy head 11 is set to be asymmetrical with respect to the central axis of the hollow structure, for example, from FIG. 2 From an angle, the structural mass of the upper part of the guide body 13 of the rotary burr head 11 is greater than the structural mass of the lower part of the guide body 13.
  • the entire drive shaft 12 is a hollow tubular structure with equal diameters, so that the central axis of the drive shaft 12 is in line with the guide body.
  • the central axes of the bodies 13 coincide with each other. At this time, only in view of the asymmetry of the structure of the rotational atherectomy head 11 itself, the center of mass 14 is located above the central axis of the hollow structure for the guide body 13 to penetrate.
  • the structure of the rotational atherectomy head 11 is set to be asymmetrical with respect to the central axis of the hollow structure, for example, from the perspective of FIG.
  • the structural quality of the rotary burr 11 at the upper part of the guide body 13 is greater than that at the lower part of the guide body 13 Structural quality
  • the driving shaft 12 is a variable-diameter hollow tubular structure
  • the diameter of the connecting portion 121 increases in the axial direction from the proximal end to the distal end
  • the driving shaft 12 also has a proximal connection with the connecting portion 121
  • the central axis of the driving shaft 12 partially coincides with the central axis of the guide 13, that is, the central axis of the equal diameter portion 122 always coincides with the central axis of the guide 13, and the connecting portion 121
  • the connecting portion 121 Regarding the asymmetric arrangement of the central axis of the hollow structure, in view of the asymmetry of the structure of the rotational atherectomy head 11 itself and the asymmetry of the structure of the connecting part 121 itself, the center of mass of the structure formed after the connection part 121 and the rotational atherectomy head 11 are connected.
  • the connecting portion 121 may be disposed symmetrically with respect to the central axis of the equal-diameter portion 122 , that is, with respect to the central axis of the hollow structure.
  • the diameter of the distal portion 11a of the rotational atherectomy head 11 gradually increases in the axial direction from the distal end to the proximal end, so that the distal portion 11a of the rotational atherectomy head 11 is formed into a smooth cone.
  • the outer surface of the distal portion 11a of the rotational atherectomy head 11 is covered with a rotational atherectomy layer 111 (see Figures 2 and 6).
  • the diameter of the proximal portion 11b of the rotational atherectomy head 11 is axially oriented from the distal end to the The proximal end gradually decreases, so that the proximal portion 11b of the rotational atherectomy head 11 is formed into a smooth tapered surface, which can better penetrate the lesion during withdrawal, and the outer surface of the proximal end portion 11b of the rotational atherectomy head 11 Covered with a rotational abrasion layer 111 (see Figures 2 and 6), the rotational abrasion head 11 can achieve bidirectional rotational abrasion, that is, rotational abrasion when advancing toward the distal end, and rotational abrasion when retreating toward the proximal end, then , even if the rotational atherectomy head 11 gets stuck when passing through the lesion under the action of forward pushing force, the
  • the entire outer surface of the rotational grinding head 11 is covered with a rotational grinding layer 111 .
  • a rotational grinding layer 111 in addition to the outer surfaces of the proximal portion 11b and the distal portion 11a being covered with the rotational atherectomy layer 111, an intermediate portion 11c is formed between the distal portion 11a and the proximal portion 11b of the rotational atherectomy head 11
  • the outer surface is also covered with a rotational grinding layer 111 to further improve the rotational grinding efficiency.
  • the middle part 11c may have equal diameters, so that the middle part 11c forms a cylinder, that is, the middle part is a cylinder and both ends are inclined cones.
  • the diameter of the middle part 11c is consistent with the proximal part 11b and the distal part.
  • the maximum diameter of 11a is equal. Or, so The diameter of the middle part 11c first gradually increases and then gradually decreases along the axial direction from the distal end to the proximal end, so that the middle part 11c has an arc-shaped outer surface.
  • the entire rotational grinding head 11 is similar to a spindle.
  • the most distal diameter of the middle portion 11c is equal to the maximum diameter of the most proximal end of the distal portion 11a, and the most proximal diameter of the middle portion 11c is equal to the maximum diameter of the most distal end of the proximal portion 11b, see Figures 1 to 6.
  • the rotational atherectomy head 11 may include a base 112, the base 112 is provided with the hollow structure of the rotational atherectomy head 11, and the rotational atherectomy layer 111 covers the outside of the base 112.
  • the rotational grinding layer 111 is composed of rotational grinding particles, and the rotational grinding particles are made from a combination of one or more rotational grinding materials.
  • the rotational grinding particles may be partially embedded in the base 112 and fixed.
  • the thickness of the rotational polishing layer 111 can be set to 20-120 ⁇ m, such as 20 ⁇ m, 40 ⁇ m, 50 ⁇ m or 100 ⁇ m.
  • the thickness of the rotational polishing layer 111 can be understood as the height protruding from the surface of the base 112 .
  • the thickness of the rotational abrasion layer 111 should not be too large or too small. If it is too thick, it will increase the static diameter of the rotational abrasion head. If it is too small, it will reduce the rotational abrasion effect of removing lesions.
  • the present invention does not place special requirements on the material of the rotational grinding particles.
  • the rotational grinding particles used can be prepared from one or a combination of several suitable rotational grinding materials.
  • the rotational grinding particles may be prepared from one or more materials selected from diamond, fused quartz, titanium nitride, tungsten carbide, silicon carbide, etc.
  • the present invention also has no special limitation on the material of the substrate 112.
  • the substrate 112 used may be made of one or a combination of several suitable materials, but may be a metallic material or a non-metallic material.
  • the substrate 112 may be made of one or more metal materials such as stainless steel and nickel.
  • the material of the substrate 112 also includes radiopaque materials, such as tungsten, platinum, iridium, and a combination of one or more radiopaque materials.
  • the diameter of the rotational atherectomy head 11 gradually decreases along the axial direction toward the distal end, and also gradually decreases along the axial direction toward the proximal end.
  • the diameter of the rotational atherectomy head 11 gradually decreases toward the distal end along the axial direction, forward rotational atherectomy is facilitated through the distal portion 11a, and the diameter of the distal end portion 11a is smaller relative to the middle portion 11c, which is conducive to rotational atherectomy.
  • the distal portion 11a of the head 11 is the first to contact and rotate the lesion.
  • the minimum diameter of the distal portion 11a of the rotational atherectomy head 11 is smaller than that of the rotational atherectomy head 11
  • the minimum diameter of the proximal portion 11b minimizes the diameter of the distal end of the rotational atherectomy head 11, which is more conducive to the rotational atherectomy head 11 reaching the location of the diseased blood vessel through narrow blood vessels and conduits.
  • the maximum diameter of the distal portion 11a of the rotational burr head 11 is smaller than the maximum diameter of the proximal portion 11b of the rotational burr head 11. This arrangement is conducive to increasing the extension length of the distal portion 11a and also facilitates the rotation of the burr head. 11. Reach the location of diseased blood vessels through narrow blood vessels and catheters.
  • the rotational grinding head 11 is a spindle with small ends and a large middle. The spindle has a smooth outer surface, making the rotational grinding head 11 a spindle shape with a certain curvature at both ends.
  • the diameter of the distal portion 11 a of the rotational atherectomy head 11 is generally set according to the diameter of the guide body 13 .
  • the diameter of the distal portion 11a of the rotational atherectomy head 11 may be 0.13-0.66mm.
  • the minimum diameter of the distal portion 11a is 0.13mm, 0.2mm, or 0.3mm, and the maximum diameter is 0.66mm.
  • the diameter of the proximal portion 11 b of the rotational atherectomy head 11 is generally set according to the diameter of the drive shaft 12 .
  • the diameter of the proximal portion 11b of the rotational atherectomy head 11 is 0.5-1.2mm.
  • the minimum diameter of the proximal portion 11b is 0.5mm, 0.7mm, or 1.0mm, and the maximum diameter is 1.2 mm.
  • the middle part of the rotational atherectomy head 11 The maximum diameter of 11c is set according to the diameter of the guide body 13 and the diameter of the drive shaft 12. In one embodiment, the maximum diameter of the middle portion 11c of the rotational atherectomy head 11 is 0.66-4.0 mm, for example, it can be set to 0.66 mm, 1.25 mm, 2.0 mm or 4.0 mm. It should also be understood that the middle portion 11c of the atherectomy head 11 should not be understood in a narrow sense as an absolute middle position, but should be understood as a portion of any length between the distal portion 11a and the proximal portion 11b.
  • the rotational atherectomy device 10 itself may include a guide body 13 for passing through the hollow structure of the drive shaft 12 and the hollow structure of the rotational atherectomy head 11 , and the guide body 13 Extends from the distal end of the rotational burr 11.
  • the rotational atherectomy head 11 and the drive shaft 12 can rotate and move axially relative to the guide body 13 so that the drive shaft 12 travels and rotates along the guide body 13 .
  • the guide body 13 is used as an external structure in conjunction with the rotational atherectomy device 10 .
  • the drive shaft is usually The connecting portion 121 of 12 is inserted into the hollow structure of the rotational atherectomy head 11 for connection.
  • the hollow structure of the rotational atherectomy head 11 is composed of a distal hollow structure and a proximal hollow structure that are interconnected, and the cavity diameter of the distal hollow structure is adapted to the diameter of the guide body 13 , the cavity diameter of the proximal hollow structure is larger than the cavity diameter of the distal hollow structure, and the proximal hollow structure is fixedly connected to the connecting portion 121 . It can be understood that the distal hollow structure is used to directly pass through the guide body 13 , the proximal hollow structure is used to directly pass through the connecting portion 121 of the drive shaft 12 , and the guide body 13 passes through the drive shaft 12 .
  • Figures 1 and 2 show alternative embodiments of the connection between the drive shaft 12 and the rotational atherectomy head 11.
  • the hollow structure of the rotational atherectomy head 11 is composed of a distal hollow structure 113 and a proximal hollow structure 114 that are interconnected.
  • the distal hollow structure 113 and the proximal hollow structure 114 are both cylindrical cavities with central axes coincident.
  • the cavity diameter of the distal hollow structure 113 is adapted to the diameter of the guide wire.
  • the proximal hollow structure 114 has The bore diameter adapts to the overall diameter of the drive shaft 12 .
  • the driving shaft 12 is a hollow tubular structure with equal diameters
  • the connecting portion 121 of the driving shaft 12 enters the proximal hollow structure 114 and is fixed with the proximal hollow structure 114 , for example, the connecting portion 121 and the proximal hollow structure 114 Crimp secure.
  • the so-called "crimping" means that the diameter of the drive shaft 12 is larger than the cavity diameter of the proximal hollow structure 114, and the connection portion 121 is matched and fixed with the proximal hollow structure 114 through the deformation.
  • the central axis of the distal hollow structure 113 , the central axis of the proximal hollow structure 114 and the central axis of the drive shaft 12 coincide.
  • connection method between the connecting portion 121 and the rotational atherectomy head 11 does not place special requirements on the connection method between the connecting portion 121 and the rotational atherectomy head 11.
  • they can also be fixed by, for example, welding, glue bonding or other mechanical connection methods.
  • the drive shaft 12 may be configured as a variable diameter hollow tubular structure.
  • Figure 6 shows another alternative embodiment of the connection between the drive shaft 12 and the rotational atherectomy head 11.
  • the connecting portion 121 is inserted into the proximal hollow structure 114 from the proximal opening of the rotational atherectomy head 11 , and the radial size of the proximal opening is smaller than or equal to the connecting portion 121 The most proximal diameter, thereby limiting the separation of the rotational grinding head 11 and the drive shaft 12 by the proximal opening, preventing the rotational grinding head 11 and the drive shaft 12 from being separated and falling off during the rotational grinding process.
  • the connecting portion 121 and the proximal hollow structure 114 are still The connection is fixed by welding or glue bonding.
  • the central axis of the distal hollow structure 113 , the central axis of the proximal hollow structure 114 and the central axis of the equal diameter portion 121 of the drive shaft 12 coincide.
  • the shape of the proximal hollow structure 114 is adapted to the shape of the spindle
  • the shape of the connecting portion 121 is adapted to the shape of the proximal hollow structure 114 .
  • the diameter of the connecting portion 121 first gradually increases and then gradually decreases along the axial direction from the proximal end to the distal end.
  • the rotational grinding head 11 can be set as a hollow shell inside, which can reduce the quality of the rotational grinding head 11 and reduce the impact of centrifugal force on the motion state of the rotational grinding head 11 .
  • the distal portion 11a and the proximal portion 11b of the rotational atherectomy head 11 may have different or the same bending radii.
  • the bending radius of the distal end portion 11a of the rotational atherectomy head 11 is greater than or equal to that of the rotational atherectomy head 11.
  • the curvature radius of the proximal portion 11b of the head 11, preferably the curvature radius of the distal portion 11a of the rotational atherectomy head 11, is greater than the curvature radius of the proximal portion 11b of the rotational atherectomy head 11, so that the distal portion 11a is gentler to improve the ability to traverse lesions.
  • FIGS. 1 to 3 illustrate an exemplary embodiment of the rotational atherectomy head 11 .
  • the average thickness of the rotational grinding layer 111 is 50 ⁇ m
  • the rotational grinding particles of the rotational grinding layer 111 are diamond
  • the material of the base 112 is a combination of stainless steel and nickel.
  • the head 11 is in the shape of a spindle with tapered ends, and the rotational atherectomy head 11 has a minimum diameter at its distal portion 11a, which enables better rotational atherectomy and entry into the narrow portion; the distal portion 11a of the rotational atherectomy head 11 is The bending radius is 4.5mm, the bending radius of the proximal portion 11b of the rotational atherectomy head 11 is 3.5mm, the minimum diameter of the distal portion 11a of the rotational atherectomy head 11 is 0.30mm, and the middle part of the rotational atherectomy head 11 The maximum diameter of the portion 11c is 1.25mm, and the minimum diameter of the proximal portion 11b of the rotational atherectomy head 11 is 0.75mm.
  • the rotational grinding head 11 can be further rotated by centrifugal force to increase the rotational grinding diameter, and the single rotational grinding head 11 located at the far end of the drive shaft 12 has no additional Due to the force generated by the rotational grinding head 11, the distance between the center of mass 14 and the central axis of the hollow structure does not change, and the centrifugal force and revolution diameter are stable, making the rotational grinding process controllable.
  • the connecting portion 121 of the drive shaft 12 is connected to the rotational atherectomy head 11 , and the outer surface of the rotational atherectomy head 11 is completely covered with the rotational atherectomy layer 111 .
  • the distal portion 11 a of the rotational atherectomy head 11 has the smallest diameter, and the rotational atherectomy layer 111 of the distal end portion 11 a of the rotational atherectomy head 11 can first contact and rotate to open the stenotic lesion 32 .
  • the blood vessel 31 is elastic, the operator advances the rotational atherectomy device 10 distally, which may cause rotation.
  • the grinding head 11 passes through the stenotic lesion 32 along the guide body 13.
  • the diameter of the stenotic lesion 32 is smaller than the maximum diameter of the rotational grinding head 11, so that the rotational grinding head 11 is stuck by the stenotic lesion 32 and cannot retreat directly.
  • the proximal conical surface and its rotational abrasion layer 111 enable the rotational abrasion head 11 to perform reverse rotational abrasion when withdrawing, thereby rotating abrasion and opening the lesion.
  • FIG. 6 shows another exemplary embodiment of the rotational atherectomy head 11 .
  • the average thickness of the rotational grinding layer 111 is 100 ⁇ m
  • the material of the base 112 is nickel and is configured as a shell structure
  • the rotational grinding particles are diamond
  • the rotational grinding head 11 has two ends. Tapered spindle shape
  • the rotational atherectomy head 11 has the smallest diameter at its distal portion 11a, which can better rotate the atherectomy head and enter the narrow part.
  • the curvature radius of the distal end portion 11a of the rotational atherectomy head 11 is 3mm.
  • the bending radius of the proximal portion 11b of the rotational atherectomy head 11 is 3mm, the minimum diameter of the distal portion 11a of the rotational atherectomy head 11 is 0.20mm, and the maximum diameter of the middle portion 11c of the rotational atherectomy head 11 is 2.0mm.
  • the minimum diameter of the proximal portion 11b of the rotational atherectomy head 11 is 1.0 mm.
  • the rotational atherectomy device 10 can be delivered to a target location in the body through a catheter 41. Further, cooling liquid and/or lubricating liquid (generally saline or other biocompatible liquids) can be delivered to the rotational atherectomy device 10 through the delivery channel in the conduit 41 .
  • cooling liquid and/or lubricating liquid generally saline or other biocompatible liquids
  • the rotational atherectomy device and rotational atherectomy equipment provided by the present invention have at least the following advantages:
  • the distal end of the rotational atherectomy device becomes a rotational atherectomy head with a rotational atherectomy function. At this time, there is no need to screw or squeeze the distal end of the drive shaft during the operation. For extremely stenotic lesions, you only need to make the rotational atherectomy head contact the lesion and perform rotational atherectomy. Therefore, the rotational atherectomy effect and passability are good, the surgical risk is reduced, and the success rate of the operation is improved;
  • the rotational atherectomy head can self-adjust the diameter of the rotational atherectomy head during the process of opening the lesion, effectively removing the disease. lesions, thereby avoiding the configuration of multiple rotational atherectomy heads of different sizes, avoiding frequent replacement of equipment, reducing operation time, and reducing surgical risks.
  • the static diameter of the rotational atherectomy head can be set smaller, making the rotational atherectomy device easier.
  • the rotational atherectomy head can achieve bidirectional rotational atherectomy. Then, when the rotational atherectomy head passes through a narrow lesion and gets stuck, it can still perform rotational atherectomy. The lesions are retracted, which not only makes rotational atherectomy more efficient, but also reduces surgical risks.
  • the rotational grinding head when the center of mass of the structure does not coincide with the central axis of the hollow structure, when the driving rotational grinding head and the drive shaft rotate around the central axis of the hollow structure, the rotational grinding head will deviate under the action of centrifugal force. Its rotation center forms a revolution, and by adjusting the rotational speed of the rotational grinding head, the revolution diameter of the rotational grinding head can be controlled. If the rotational speed increases, the diameter of the rotational grinding head will increase, thus achieving a larger size than the static grinding head. diameter, thereby reducing the static size of the burr head and avoiding the need to replace the burr head, and there is no need to set up multiple burr heads with different static diameters. At this time, the rotational atherectomy diameter that is larger than the size of the static atherectomy head can also allow blood and coolant/lubricant to flow around the atherectomy head, reducing the risk of the atherectomy head blocking the vascular blood flow.

Abstract

本发明涉及一种旋磨设备及旋磨装置;所述旋磨设备包括驱动装置以及旋磨装置;所述驱动装置与旋磨装置中的驱动轴连接,以驱动旋磨装置旋转;所述旋磨装置用于血管内手术,包括驱动轴以及旋磨头;所述驱动轴具有位于远端的连接部,所述连接部与旋磨头连接;所述旋磨头和驱动轴均具有轴向贯通延伸的中空结构;所述中空结构用于供导引体通过;所述旋磨头与连接部相连接所形成的结构的质心与中空结构的中心轴线不重合。本发明能够降低旋磨设备在开通血管内病变时的手术风险,并降低手术难度。

Description

旋磨装置及旋磨设备 技术领域
本发明涉及医疗器械技术领域,特别涉及一种旋磨装置及旋磨设备。
背景技术
动脉粥样硬化斑块一般位于冠状动脉或外周动脉的脉管系统,根据斑块的质地可能有不同的特征。对于严重钙化病变需要使用动脉粥样硬化切除装置进行预处理,其原理是通过旋磨装置在血管病变处高速旋转磨削,祛除钙化或纤维化的动脉硬化斑块,开通斑块堵塞的血管,获得扩大的光滑的血管内腔,方便后续支架的植入。
目前的旋磨装置主要包括柔性驱动轴以及由柔性驱动轴承载的旋磨头;驱动轴带动旋磨头高速旋转,向前推进接触并磨削祛除病变;其中旋磨头的直径不小于驱动轴的直径。旋磨头大多设置在驱动轴的中间位置,使得旋磨头的远端为一段无旋磨作用的驱动轴,此时,需要先将远端的驱动轴拧进或挤过狭窄病变才能够使中间位置的旋磨头接触到病变,不仅旋磨效果和通过性较差,而且远端的驱动轴在拧进或挤过狭窄病变和血管时可能卡在狭窄病变处而造成风险,甚至于还会扩张血管,致血管损伤,尤其对于一些狭窄病变和完全闭塞的病变,中间位置的旋磨头更不容易接触到病变而没有办法对病变进行磨削。不仅如此,旋磨头的表面未完全覆盖耐磨材料,无法实现轴向双向旋磨,导致旋磨头在向前推送力作用下窜过病变后往往无法反向旋磨回撤,旋磨效率较低,而且存在旋磨头容易卡顿在血管斑块内无法移除的问题。
除以上问题外,传统的旋磨头在开通病变过程中无法自行调节旋磨直径,为此,在手术过程中配置多个不同大小的旋磨头,先用直径小的旋磨头进行旋磨,再用直径较大的旋磨头进行旋磨,从而需要频繁更换不同尺寸规格的旋磨装置,增加了手术时间和损伤血管的几率,并且旋磨头的直径较大时,也难以通过狭窄血管和导管到达病变血管位置,增加了手术难度,而且较大直径的旋磨头在狭窄病变血管内会阻挡血液通过,也会阻挡冷却液和/或润滑 液向远端流动。进一步发现,现有一些旋磨装置还在驱动轴的中间位置沿轴向配置有多个旋磨头,从远端至近端,旋磨头的直径增大,虽然避免了频繁更换的次数,但是也增加了整个驱动轴的轴向长度,不仅在旋磨过程中容易影响病变远端和近端的正常血管,而且同样存在近端直径大的旋磨头会阻挡血流以及冷却液和/或润滑液的流动。此外,多个旋磨头若为偏心设置,则不同静态直径的旋磨头由于质心和重量等差异,导致旋磨过程由于角动量的变化而产生不可控的离心力的相互影响,致使旋磨头的运动状态和对血管的作用力存在不可控的情况,加大了手术不可控风险,手术安全性降低。另外,多个旋磨头增加了驱动轴的整体硬度,降低了驱动轴的柔顺性,不容易通过狭窄血管和导管到达病变位置。
发明内容
本发明的目的在于提供一种旋磨装置及旋磨设备,以解决现有旋磨装置所存在的至少一个技术问题。
为实现上述目的,本发明提供了一种旋磨装置,包括驱动轴以及旋磨头;所述驱动轴具有位于远端的连接部,所述连接部与所述旋磨头连接;所述旋磨头和所述驱动轴均具有轴向贯通延伸的中空结构,所述中空结构用于供导引体通过;其中所述旋磨头与所述连接部相连接所形成的结构的质心与所述中空结构的中心轴线不重合。
在一实施方式中,所述旋磨头的远端部分的直径沿轴向自远端向近端逐渐增大,且所述旋磨头的所述远端部分的外表面覆盖有旋磨层。
在一实施方式中,所述旋磨头的近端所述的直径沿轴向自远端向近端逐渐减小,所述旋磨头的所述近端部分的外表面覆盖有旋磨层,和/或,形成在所述旋磨头的远端部分和近端部分之间的中间部分的外表面覆盖有旋磨层。
在一实施方式中,所述中间部分具有相等的直径,或者,所述中间部分的直径沿轴向自远端向近端先逐渐增大后逐渐减小。
在一实施方式中,所述旋磨头包括基底,所述基底设有所述旋磨头的所述中空结构,所述基底的外表面覆盖有旋磨层,所述旋磨层由旋磨颗粒组成, 所述旋磨颗粒由一种或多种旋磨材料组合制成。
在一实施方式中,所述旋磨层的厚度为20~120μm,如20μm、40μm、50μm或100μm。
在一实施方式中,所述旋磨头的直径沿轴向向远端逐渐减小,同时还沿轴向向近端逐渐减小,如形成两端小、中间大的纺锤体,该纺锤体具有光滑的外表面。
在一实施方式中,所述旋磨头具有以下特征中的至少一种:
所述旋磨头的远端部分的最小直径小于所述旋磨头的近端部分的最小直径;
所述旋磨头的远端部分的最大直径小于所述旋磨头的近端部分的最大直径;
所述旋磨头的远端部分的弯曲半径大于或等于所述旋磨头的近端部分的弯曲半径。
在一实施方式中,所述旋磨头至少具有以下特征中的一种:
所述旋磨头的远端部分的直径为0.13~0.66mm,如远端部分的最小直径为0.13mm、0.2mm、0.3mm,最大直径为0.66mm;
形成在所述旋磨头的近端部分和远端部分之间的中间部分的最大直径为0.66~4.0mm,如中间部分的最大直径为0.66mm、1.25mm、2.0mm或4.0mm;
所述旋磨头的近端部分的直径为0.5~1.2mm,如近端部分的最小直径为0.5mm、0.75mm、1.0mm,最大直径为1.2mm。
在一实施方式中,所述旋磨装置还包括所述导引体,所述旋磨头和所述驱动轴能够相对于所述导引体旋转和轴向移动。
在一实施方式中,所述旋磨头的所述中空结构由相互连通的远端中空结构和近端中空结构组成,所述远端中空结构的腔径适配于所述导引体的直径,所述近端中空结构的腔径大于所述远端中空结构的腔径,且所述近端中空结构与所述连接部固定连接。
在一实施方式中,所述驱动轴整体为等径中空管状结构,所述驱动轴的中心轴线与所述导引体的中心轴线重合。
在一实施方式中,所述驱动轴为变径中空管状结构,所述连接部的直径沿轴向自近端向远端增大,所述驱动轴还具有与所述连接部的近端连接的等径部,所述等径部的中心轴线与所述导引体的中心轴线重合。
在一实施方式中,所述连接部从所述旋磨头的近端开口插入所述近端中空结构,所述近端开口的径向尺寸小于或等于所述连接部的最近端的直径。
在一实施方式中,所述连接部关于所述等径部的中心轴线不对称设置,和/或,所述连接部的直径沿轴向自近端向远端先逐渐增大后逐渐减小。
在一实施方式中,所述旋磨头为纺锤体,且所述近端中空结构的形状适配所述纺锤体的形状,且所述连接部的形状适配所述近端中空结构的形状。此时,可将旋磨头设置为内部中空的壳体,可降低旋磨头的质量,以减小离心力对旋磨头运动状态的影响。
为实现上述目的,本发明还提供了一种旋磨设备,其包括驱动装置以及任一所述的旋磨装置;所述驱动装置与所述旋磨装置中的驱动轴连接,以驱动所述旋磨装置旋转。
在本发明提供的旋磨装置及旋磨设备中,所述旋磨装置包括:驱动轴以及旋磨头;所述驱动轴具有位于远端的连接部,所述连接部与所述旋磨头连接;所述旋磨头和所述驱动轴均具有轴向贯通延伸的中空结构,所述中空结构用于供导引体通过;其中所述旋磨头与所述连接部相连接所形成的结构的质心与所述中空结构的中心轴线不重合;如此配置时,使本发明至少具有如下优点:
第一、由于将旋磨头设置在驱动轴的远端,使得旋磨装置的远端成为具有旋磨功能的旋磨头,此时,手术过程中,无需将驱动轴远端拧进或挤过狭窄病变,只需要使旋磨头接触到病变并进行旋磨即可,因此,旋磨效果和通过性好,而且降低了手术风险,也提升了手术成功率;
第二、由于旋磨头与驱动轴远端的连接部连接形成的结构的质心的偏移,使得旋磨过程中旋磨头可以自行调节在开通病变过程中的旋磨直径,有效地祛除病变,从而避免配置多个不同大小的旋磨头,避免了频繁更换设备的情况,减小手术时间,降低手术风险,尤其旋磨头的静态直径(即不转动时的 直径)可以设置得更小,使旋磨装置更容易通过狭窄血管和导管到达病变血管位置,降低手术难度,提升手术治疗方法;
第三、由于旋磨头的静态直径可以更小,因此旋磨头在狭窄病变血管内不容易阻挡血流通过,也不会阻挡冷却液和/或润滑液向远端流动,进一步降低了手术风险,增加了手术安全性;
第四、仅设置一个旋磨头,而且旋磨头设置在驱动轴的远端,从而减小了整个驱动轴的轴向长度,降低了旋磨过程中驱动轴对远端病变和近端正常血管的影响,尤其在于,一个旋磨头的偏心设置,使旋磨过程中的离心力变得可控,不影响旋磨头的运动状态和对血管的作用力,由此减小了手术过程中的不可控风险,增加了手术安全性,与此同时,一个旋磨头的设置不会增加驱动轴的整体硬度,可以确保驱动轴的柔顺性来提升其穿越血管和导管的能力。
除以上效果外,在本发明提供的旋磨装置及旋磨设备中,优选所述旋磨头的远端部分的直径沿轴向自远端向近端逐渐增大,且所述旋磨头的远端部分的外表面覆盖有旋磨层,以通过旋磨头远端处的旋磨层接触并旋磨病变,提高旋磨效率,进一步,所述旋磨头的近端部分的直径沿轴向自远端向近端逐渐减小,且所述旋磨头的近端部分的外表面覆盖有旋磨层,使旋磨头可以实现双向旋磨,那么,当旋磨头穿过狭窄病变发生卡顿时,仍可以旋磨病变实现回撤,不仅旋磨效率更高,而且手术风险更低。
附图说明
本领域的普通技术人员将会理解,提供的附图用于更好地理解本发明,而不对本发明的范围构成任何限定。附图中:
图1是本发明实施例中的旋磨装置的立体视图;
图2是本发明实施例中的旋磨装置的剖视图;
图3是本发明实施例中的旋磨头与连接部连接形成的结构的质心偏离中空结构的中心轴线的端面视图;
图4是本发明实施例中的旋磨装置由旋磨头首先接触并旋磨开通病变的 应用原理图;
图5是本发明实施例中的旋磨装置由旋磨头沿导引体窜过狭窄病变的应用场景视图;
图6是本发明实施例中的旋磨装置中驱动轴的远端设为直径增大的连接部,并与空心旋磨头固定连接的视图;
图7是本发明实施例中的旋磨头所受到的离心力随转速变化的曲线图;
图8是本发明实施例中的旋磨头所受到的离心力随旋磨直径变化的曲线图。
图中:
10-旋磨装置;11-旋磨头;11a-远端部分;11b-近端部分;11c-中间部分;111-旋磨层;112-基底;113-近端中空结构;114-远端中空结构;12-驱动轴;121-连接部;122-等径部;13-导引体;14-质心;31-血管;32-狭窄病变;41-导管。
具体实施方式
为使本发明的目的、优点和特征更加清楚,以下结合附图对本发明作进一步详细说明。需说明的是,附图均采用简化的形式且未按比例绘制,仅用以方便、明晰地辅助说明本发明实施例的目的。
如在本说明书中所使用的,单数形式“一”、“一个”以及“该”包括复数对象,除非内容另外明确指出外。如在本说明书中所使用的,术语“或”通常是以包括“和/或”的含义而进行使用的,除非内容另外明确指出外。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上,“若干”的含义是数量不作限定。另外,在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本发明可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。在以下说明中,为了便于描述,使用了“远端”和“近端”、“轴向”以及“周向”;“远端”是远离旋磨设备的操作者的一侧;“近端”是接近旋磨设 备的操作者的一侧;“轴向”参照的是沿着旋磨设备或旋磨装置的中心轴线方向;“周向”参照的是围绕旋磨设备或旋磨装置的中心轴线方向;“中心轴线”参照的是旋磨装置或血管的长度方向。本文中,“直径”均指的是结构的外径;其中旋磨头的直径包含了旋磨层。
以下结合附图和优选实施例对本发明提出的技术方案作进一步的说明,且在不冲突的情况下,下述的实施方式及实施方式中的特征可以相互补充或相互组合。
如图1至图8所示,本发明一些实施例公开了一种旋磨设备及其旋磨装置,所述旋磨设备包括旋磨装置10和驱动装置(未图示),所述驱动装置与所述旋磨装置10中的驱动轴12的近端连接,以驱动所述旋磨装置10旋转。该旋磨设备及其旋磨装置用于血管内手术,例如从身体通道移除组织,诸如用旋磨装置祛除血管内钙化或纤维化的动脉硬化斑块,从而开通斑块堵塞的血管(包括冠脉血管、外周血管或其他血管),获得光滑的血管内腔。
其中所述旋磨装置10包括旋磨头11和驱动轴12;所述驱动轴12具有位于远端的连接部121,所述旋磨头11与连接部121连接;旋磨头11与驱动轴12通常是独立制造后再装配在一起,所述驱动轴12为整体或一体式构造;所述驱动轴12优选为柔性驱动轴,可由螺旋盘绕线圈构建而成;所述驱动轴12由驱动装置驱动旋转,并带动旋磨头11旋转。
与现有技术中将旋磨头设置在驱动轴的中间位置相比,本发明通过将旋磨头11设置在驱动轴12的远端,使得旋磨头11可率先接触血管病变并进入狭窄部进行旋磨,克服了传统做法中将驱动轴远端拧进或挤过狭窄病变后才可使中间位置旋磨头接触病变的缺陷,因此本发明能够获得更好的旋磨效果和通过性,手术风险降低,同时仅设置一个旋磨头11,减小了整个驱动轴12的轴向长度,降低了旋磨过程中驱动轴12对远端病变和近端正常血管的影响,使手术风险进一步降低。
除以上设置外,所述旋磨头11和所述驱动轴12均设置为具有轴向贯通延伸的中空结构,以供导引体13穿过旋磨头11和所述驱动轴12的中空结构。所述导引体13例如为导丝,用于引导旋磨装置10通过病变血管。所述旋磨 头11的中空结构的中心轴线与驱动轴12的中空结构的中心轴线重合。
此外,所述旋磨头11与连接部121连接所形成的结构的质心14与所述中空结构的中心轴线不重合。此时,在驱动旋磨头11和驱动轴12绕所述中空结构的中心轴线自转动时,在离心力作用下,旋磨头11会偏离中空结构的中心轴线形成公转,在此基础上,通过增加旋磨头11的转速n,可以增大旋磨头11的公转直径(即旋磨直径D),从而实现比静态旋磨头11直径更大的旋磨直径D。如此设置时,使得旋磨过程中,旋磨头11可以自行调节在开通病变过程中的旋磨直径D,可实现对不同大小病变的处理,有效地祛除各种病变,从而避免配置多个不同大小的旋磨头,避免了频繁更换设备的情况,减小手术时间,降低手术风险,并且旋磨头11的静态直径可以设置得更小,使旋磨装置10更容易通过狭窄血管和导管到达病变血管位置,降低手术难度。还应理解,由于旋磨头11的静态直径更小,因此旋磨头11在狭窄病变血管内不容易阻挡血流通过,也不会阻挡冷却液和/或润滑液向远端流动,进一步降低了手术风险,增加了手术安全性。
还需理解的是,由于仅设置一个旋磨头11,而且旋磨头11设置在驱动轴12的远端,减小了驱动轴12的整个轴向长度,降低了旋磨过程中驱动轴12对远端病变和近端正常血管的影响,尤其在于,一个旋磨头11的偏心设置,使旋磨过程中的离心力变得可控,不影响旋磨头的运动状态和对血管的作用力,由此减小了手术过程中的不可控风险,增加了手术安全性,与此同时,一个旋磨头11的设置不会增加驱动轴12的整体硬度,可以确保驱动轴12的柔顺性来提升其穿越血管和导管的能力。在此可以理解的是,静态指的是旋磨头11未旋转时的状态,对应地,静态直径指的是旋磨头11未旋转时的直径;而旋磨直径D指的是旋磨头11进行旋转时的公转直径。
实际使用中,可通过控制旋磨头11的转速来调节旋磨头11的公转直径(即旋磨直径),实现旋磨头11旋磨直径D的可变,使旋磨直径D可大或可小,以使同一个旋磨头11既可旋磨小尺寸的病变,也能旋磨大尺寸的病变。
本实施例中,所述旋磨头11所受到的离心力可通过以下公式而确定:
FC=m△x(πn/30)2
其中:Fc为离心力;m为旋磨头11与连接部121连接所形成的结构的质量;△x为旋磨头11与连接部121连接所形成的结构的质心14相对于中空结构的中心轴线所偏移的距离;n为旋磨头11的转速。此处对各个参数的单位不限定,本领域技术人员可根据该公式获悉离心力的确定方式,以及影响离心力的各个因素。因此,旋磨头11所受到的离心力FC的大小与结构质量m、结构质心的偏移距离以及旋磨头的转速相关。
还应理解,中空结构的中心轴线作为自转轴线,病变血管的中心轴线为公转轴线。还需理解,随着转速n增加,公转轴线与质心14之间的距离会随之变化,因此旋磨直径D随转速n增加而增大,但是在转速n不变的情况下,旋磨头11在旋磨狭窄病变32的过程中,旋磨直径D会不断增大,但是离心力Fc会随之不断减小,直至旋磨直径D增加到最大值后,离心力Fc也会趋为0,因而不会对正常血管造成损伤,更详细地请参阅图7和图8。
如图7所示,随着转速n的增大,旋磨头11所受到的离心力FC也随之增加,因此可通过调整转速n来增大离心力Fc,并由此增大旋磨直径D来旋磨更大尺寸的病变。如图8所示,在相同转速n下,随着旋磨头的旋磨直径D增加,旋磨头11所受到的离心力Fc也逐渐减小直至趋于0,最终旋磨直径D趋于稳定达到最大值,当离心力Fc趋于0时或者很小时,旋磨头11不会再损伤正常血管。故而,在整个旋磨过程中,离心力在可预知的可控范围内,使旋磨头11的运动状态和对血管的作用力也是可控的,确保了手术安全性。
为使质心14偏离中空结构的中心轴线,在一实施方式中,如图1至图3所示,所述旋磨头11的结构设置为关于中空结构的中心轴线不对称,例如从图2的角度看,旋磨头11于导引体13的上部的结构质量大于在导引体13的下部的结构质量,驱动轴12整体为等径中空管状结构,使得驱动轴12的中心轴线与导引体13的中心轴线重合,此时,仅鉴于旋磨头11自身结构的不对称,使质心14即位于供导引体13穿设的中空结构的中心轴线的上侧。
为使质心14偏离中空结构的中心轴线,在另一实施方式中,如图6所示,所述旋磨头11的结构设置为关于中空结构的中心轴线不对称,例如从图6的角度看,旋磨头11于导引体13的上部的结构质量大于在导引体13的下部的 结构质量,且驱动轴12为变径中空管状结构,所述连接部121的直径沿轴向自近端向远端增大,所述驱动轴12还具有与所述连接部121的近端连接的等径部122,此时,驱动轴12的中心轴线与导引体13的中心轴线部分地重合,即等径部122的中心轴线与导引体13的中心轴线始终重合,而连接部121关于中空结构的中心轴线不对称设置,此时鉴于旋磨头11自身结构的不对称以及连接部121自身结构的不对称,从而使连接部121与旋磨头11连接后所形成的结构的质心14即位于供导引体13穿设的中空结构的中心轴线的上侧。然而在本申请的其他实施方式中,所述连接部121可关于等径部122的中心轴线对称设置,也即关于中空结构的中心轴线对称设置。
为了能够更有效地祛除病变,所述旋磨头11的远端部分11a的直径沿轴向自远端向近端逐渐增大,以使旋磨头11的远端部分11a形成为光滑的锥面,能够较好地穿越病变,并且所述旋磨头11的远端部分11a的外表面覆盖有旋磨层111(参见图2和图6)。当旋磨头11的远端部分11a率先接触病变时,即可通过旋磨层111来旋磨病变,祛除病变效率更高。
为了进一步解决现有旋磨头在向前推送力作用下窜过病变后往往无法反向旋磨回撤的问题,所述旋磨头11的近端部分11b的直径沿轴向自远端向近端逐渐减小,以使旋磨头11的近端部分11b形成为光滑的锥面,能够在回撤时较好地穿越病变,并且所述旋磨头11的近端部分11b的外表面覆盖有旋磨层111(参见图2和图6),使得旋磨头11可以实现双向旋磨,即可实现向远端前进时的旋磨,以及向近端回撤时的旋磨,那么,即使旋磨头11在向前推送力作用下穿过病变发生卡顿时,仍可以回撤旋磨病变,不仅旋磨效率高,而且旋磨头11不会卡顿在血管斑块内无法移除,进一步降低手术风险。
优选地,所述旋磨头11的整个外表面覆盖有旋磨层111。本实施例中,除近端部分11b和远端部分11a的外表面覆盖有旋磨层111外,形成在所述旋磨头11的远端部分11a和近端部分11b之间的中间部分11c的外表面也覆盖有旋磨层111,进一步提高旋磨效率。所述中间部分11c可具有相等的直径,使中间部分11c形成圆柱体,即中间为圆柱体,两端为倾斜的椎体,此时,中间部分11c的直径与近端部分11b和远端部分11a的最大直径相等。或者,所 述中间部分11c的直径沿轴向自远端向近端先逐渐增大后逐渐减小,使中间部分11c具有弧形的外表面,此时旋磨头11整体类似为纺锤体,此时,中间部分11c的最远端直径与远端部分11a的最近端的最大直径相等,中间部分11c的最近端直径与近端部分11b的最远端的最大直径相等,可参阅图1至图6。
在一具体实施例中,所述旋磨头11可包括基底112,所述基底112设有所述旋磨头11的所述中空结构,所述旋磨层111覆盖在所述基底112的外表面上。所述旋磨层111由旋磨颗粒组成,所述旋磨颗粒由一种或多种旋磨材料组合制成。所述旋磨颗粒可部分嵌入在基底112中固定。所述旋磨层111的厚度可设置为20~120μm,如20μm、40μm、50μm或100μm。所述旋磨层111的厚度可以理解为凸出基底112表面的高度。所述旋磨层111的厚度不宜过大或过小,过大会增加旋磨头的静态直径,过小则会降低祛除病变的旋磨效果。
本发明对旋磨颗粒的材料不作特殊要求,所使用的旋磨颗粒可以是一种或几种合适的旋磨材料组合制备。如作为示意,所述旋磨颗粒可由金刚石、融凝石英、氮化钛、碳化钨、碳化硅等中的一种或多种材料组合制备。本发明对基底112的材料也没有特殊限制,所使用的基底112可以是一种或几种合适的材料组合制备,但是可以是金属材料或非金属材料。如作为示意,所述基底112可由不锈钢、镍等一种或多种金属材料组合制备。进一步地,所述基底112的材料还包括不透射线材料,如钨、铂、铱等一种或多种不透射线材料的组合。
为了增强旋磨头11穿过狭窄病变的能力,优选所述旋磨头11的直径沿轴向向远端逐渐减小,同时还沿轴向向近端逐渐减小。当所述旋磨头11的直径沿轴向向远端逐渐减小时,便于通过远端部分11a进行正向旋磨,并且远端部分11a相对于中间部分11c的直径更小,有利于旋磨头11的远端部分11a率先接触并旋磨病变。而当所述旋磨头11的直径沿轴向向近端逐渐减小时,可以回撤时通过近端部分11b进行逆向旋磨,并且近端部分11b相对于中间部分11c的直径更小,有利于旋磨头11的近端部分11b率先接触并旋磨病变进行回撤。进一步,所述旋磨头11的远端部分11a的最小直径小于旋磨头11 的近端部分11b的最小直径,使得旋磨头11的最远端直径最小,从而更有利于旋磨头11通过狭窄的血管和导管到达病变血管位置。进一步,所述旋磨头11的远端部分11a的最大直径小于所述旋磨头11的近端部分11b的最大直径,该设置有利于增加远端部分11a的延伸长度,也方便旋磨头11通过狭窄的血管和导管到达病变血管位置。如本实施例中,所述旋磨头11为两端小、中间大的纺锤体,该纺锤体具有光滑的外表面,使旋磨头11成为两端具有一定弧度的纺锤形状。
所述旋磨头11的远端部分11a的直径一般根据导引体13的直径进行设置。在一实施方式中,所述旋磨头11的远端部分11a的直径可为0.13~0.66mm,如设置为,远端部分11a的最小直径为0.13mm、0.2mm、0.3mm,最大直径为0.66mm。
所述旋磨头11的近端部分11b的直径一般根据驱动轴12的直径进行设置。在一实施方式中,所述旋磨头11的近端部分11b的直径为0.5~1.2mm,如设置为,近端部分11b的最小直径为0.5mm、0.7mm、1.0mm,最大直径为1.2mm。
鉴于旋磨头11的内部不仅需要穿过导引体13,还需要连接驱动轴12的连接部121,而导引体13需要穿过驱动轴12,因此,所述旋磨头11的中间部分11c的最大直径根据导引体13的直径和驱动轴12的直径进行设置。在一实施方式中,所述旋磨头11的中间部分11c的最大直径为0.66~4.0mm,如可设置为0.66mm、1.25mm、2.0mm或4.0mm。还需理解,旋磨头11的中间部分11c不应狭义理解为绝对的中间位置,而应该理解为位于远端部分11a和近端部分11b之间任意长度的部分。
作为一优选实施例,所述旋磨装置10自身可包括导引体13,所述导引体13用于穿过驱动轴12的中空结构和旋磨头11的中空结构,且导引体13从旋磨头11的远端伸出。所述旋磨头11和所述驱动轴12能够相对于所述导引体13旋转和轴向移动,使驱动轴12沿导引体13行进和旋转。然而在本申请的其他实施方式中,所述导引体13作为外部结构与旋磨装置10搭配使用。
为了确保驱动轴12的远端与旋磨头11之间的连接强度,通常将驱动轴 12的连接部121插入旋磨头11的中空结构中进行连接。在一实施方式中,所述旋磨头11的所述中空结构由相互连通的远端中空结构和近端中空结构组成,所述远端中空结构的腔径适配于导引体13的直径,所述近端中空结构的腔径大于所述远端中空结构的腔径,且所述近端中空结构与所述连接部121固定连接。可以理解,所述远端中空结构用于直接穿过导引体13,所述近端中空结构用于直接穿过驱动轴12的连接部121,而导引体13穿过驱动轴12。
图1和图2示出了驱动轴12与旋磨头11之间连接方式的可选实施方式。在该示例性实施方式中,所述旋磨头11的中空结构由相互连通的远端中空结构113和近端中空结构114组成。所述远端中空结构113和近端中空结构114均为圆柱形空腔且中心轴线重合,所述远端中空结构113的腔径适配于导丝的直径,所述近端中空结构114的腔径适配驱动轴12的整体直径。该情况下,所述驱动轴12为等径中空管状结构,所述驱动轴12的连接部121进入近端中空结构114并与近端中空结构114固定,例如连接部121与近端中空结构114压接固定。所谓“压接”指的是驱动轴12的直径大于近端中空结构114的腔径,通过连接部121的形变与近端中空结构114进行配合固定。在该实施方式中,所述远端中空结构113的中心轴线、近端中空结构114的中心轴线以及驱动轴12的中心轴线重合。
然而,本发明对连接部121与旋磨头11之间的连接方式不作特殊要求,除了压接连接外,还可通过例如焊接、胶水粘接或其他机械连接方式固定。
在一可替代的方案中,所述驱动轴12可设置为变径中空管状结构。图6示出了驱动轴12与旋磨头11之间连接方式的另一可选实施方式。在该示例性实施方式中,所述连接部121从所述旋磨头11的近端开口插入所述近端中空结构114,所述近端开口的径向尺寸小于或等于所述连接部121的最近端的直径,从而由近端开口限制旋磨头11与驱动轴12分离,避免旋磨过程中旋磨头11与驱动轴12分离脱落,此时,连接部121与近端中空结构114还通过焊接或胶水粘接等方式固定连接。在该实施方式中,远端中空结构113的中心轴线、近端中空结构114的中心轴线以及驱动轴12的等径部121的中心轴线重合。
进一步,当所述旋磨头11为纺锤体时,所述近端中空结构114的形状适配所述纺锤体的形状,且所述连接部121的形状适配所述近端中空结构114的类似纺锤体形状,如所述连接部121的直径沿轴向自近端向远端先逐渐增大后逐渐减小。此时,可将旋磨头11设置为内部中空的壳体,可降低旋磨头11的质量,以减小离心力对旋磨头11运动状态的影响。
所述旋磨头11的远端部分11a和近端部分11b可具有不同或相同的弯曲半径,一般来说,所述旋磨头11的远端部分11a的弯曲半径大于或等于所述旋磨头11的近端部分11b的弯曲半径,优选所述旋磨头11的远端部分11a的弯曲半径大于所述旋磨头11的近端部分11b的弯曲半径,使远端部分11a更为平缓来提升穿越病变的能力。
接下去结合具体实施例对旋磨头11的结构作进一步的说明。
图1至图3示出了旋磨头11的一示范性实施方式。如图1至图3所示,所述旋磨层111的平均厚度为50μm,所述旋磨层111的旋磨颗粒为金刚石,所述基底112材料为不锈钢和镍的组合,所述旋磨头11为两端渐细的纺锤形状,并使旋磨头11在其远端部分11a具有最小直径,能够更好地旋磨并进入狭窄部;所述旋磨头11的远端部分11a的弯曲半径为4.5mm,所述旋磨头11的近端部分11b的弯曲半径为3.5mm,所述旋磨头11的远端部分11a的最小直径为0.30mm,所述旋磨头11的中间部分11c的最大直径为1.25mm,所述旋磨头11的近端部分11b的最小直径为0.75mm。实际使用时,可在旋磨头11第一次通过病变后,进一步通过离心力产生旋磨头11的公转来增大旋磨直径,且位于驱动轴12远端的单个旋磨头11无额外的旋磨头11产生的受力影响,因此,质心14与中空结构的中心轴线之间的距离不发生变化,所受离心力和公转直径稳定,使得旋磨过程也变得可控。
更详细地,如图4所示,在所示的血管31内,所述驱动轴12的连接部121与旋磨头11连接,所述旋磨头11的外表面完全覆盖旋磨层111,所述旋磨头11的远端部分11a具有最小直径,所述旋磨头11的远端部分11a的旋磨层111可首先接触并旋磨开通进入狭窄病变32。如图5所示,较常见的一种情况下,由于血管31具有弹性,操作者向远端推进旋磨装置10,可能导致旋 磨头11沿导引体13穿过狭窄病变32,狭窄病变32的直径小于旋磨头11的最大直径,使旋磨头11被狭窄病变32卡滞无法直接回撤,但是由于旋磨头11的近端锥面及其旋磨层111,使旋磨头11可以回撤时进行逆向旋磨,从而旋磨和开通病变。
图6示出了旋磨头11的另一示范性实施方式。如图6所示,所述旋磨层111的平均厚度为100μm,所述基底112的材料为镍且设置为壳体结构,所述旋磨颗粒为金刚石,所述旋磨头11为两端渐细的纺锤形,所述旋磨头11在其远端部分11a具有最小直径,能够更好地旋磨并进入狭窄部,所述旋磨头11的远端部分11a的弯曲半径为3mm,所述旋磨头11的近端部分11b的弯曲半径为3mm,所述旋磨头11的远端部分11a的最小直径为0.20mm,旋磨头11的中间部分11c的最大直径为2.0mm,所述旋磨头11的近端部分11b的最小直径为1.0mm。该方案的工作原理同样可参考图4和图5,此处不再展开描述。
参考图4和5,所述旋磨装置10可通过导管41输送至体内目标位置。进一步地,通过导管41中的输送通道可向旋磨装置10输送冷却液和/或润滑液(一般为盐水或其他生物相容性液体)。
综上所述,本发明提供的旋磨装置及旋磨设备至少具有如下优点:
1)、通过将旋磨头设置在驱动轴的远端,使得旋磨装置的远端成为具有旋磨功能的旋磨头,此时,手术过程中,无需将驱动轴远端拧进或挤过狭窄病变,只需要使旋磨头接触到病变并进行旋磨即可,因此,旋磨效果和通过性好,而且降低了手术风险,也提升了手术成功率;
2)、通过将旋磨头与驱动轴上连接部所连接形成的结构的质心进行偏移,使得旋磨过程中,旋磨头可以自行调节在开通病变过程中的旋磨直径,有效地祛除病变,从而避免配置多个不同大小的旋磨头,避免了频繁更换设备的情况,减小手术时间,降低手术风险,尤其旋磨头的静态直径可以设置得更小,使旋磨装置更容易通过狭窄血管和导管到达病变血管位置,降低手术难度;由于旋磨头的静态直径可以更小,因此旋磨头在狭窄病变血管内不容易阻挡血流通过,也不会阻挡冷却液和/或润滑液向远端流动,进一步降低了手 术风险,增加了手术安全性;
3)、仅设置一个旋磨头,而且旋磨头设置在驱动轴的远端,从而减小了整个驱动轴的轴向长度,降低了旋磨过程中驱动轴对远端病变和近端正常血管的影响,尤其在于,一个旋磨头的偏心设置,使旋磨过程中的离心力变得可控,不影响旋磨头的运动状态和对血管的作用力,由此减小了手术过程中的不可控风险,增加了手术安全性,与此同时,一个旋磨头的设置不会增加驱动轴的整体硬度,可以确保驱动轴的柔顺性来提升其穿越血管和导管的能力。
除此之外,当所述旋磨头的整个外表面覆盖有旋磨层时,使旋磨头可以实现双向旋磨,那么,当旋磨头穿过狭窄病变发生卡顿时,仍可以旋磨病变实现回撤,不仅旋磨效率更高,而且手术风险更低。
可以理解的是,当结构的质心与所述中空结构的中心轴线不重合时,在驱动旋磨头和驱动轴绕所述中空结构的中心轴线自转时,在离心力作用下,旋磨头会偏离其旋转中心形成公转,并通过调节旋磨头的转速,即可控制旋磨头的公转直径,如转速增加,则旋磨直径增大,从而可实现比静态旋磨头尺寸更大的旋磨直径,由此降低旋磨头的静态尺寸,并避免更换旋磨头的次数,而且也无需设置多个不同静态直径的旋磨头。此时,比静态旋磨头尺寸更大的旋磨直径还能够使血液、冷却液/润滑液在旋磨头周围流动,降低旋磨头封堵血管血流的风险。
还需理解的是,上述公开了实现本发明的优选实施方式,但本发明并不局限于上述实施例所公开的范围,任何在上述实施例提供的结构基础上进行变换的内容,均属于本发明所保护的范围,本领域技术人员可以根据上述实施例的内容举一反三。

Claims (15)

  1. 一种旋磨装置,用于血管内手术,其特征在于,包括驱动轴以及旋磨头;所述驱动轴具有位于远端的连接部,所述连接部与所述旋磨头连接;所述旋磨头和所述驱动轴均具有轴向贯通延伸的中空结构,所述中空结构用于供导引体通过;其中所述旋磨头与所述连接部相连接所形成的结构的质心与所述中空结构的中心轴线不重合。
  2. 根据权利要求1所述的旋磨装置,其特征在于,所述旋磨头的远端部分的直径沿轴向自远端向近端逐渐增大,且所述旋磨头的所述远端部分的外表面覆盖有旋磨层。
  3. 根据权利要求2所述的旋磨装置,其特征在于,所述旋磨头的近端部分的直径沿轴向自远端向近端逐渐减小,所述旋磨头的所述近端部分的外表面覆盖有所述旋磨层,和/或,形成在所述旋磨头的远端部分和近端部分之间的中间部分的外表面覆盖有所述旋磨层。
  4. 根据权利要求3所述的旋磨装置,其特征在于,所述中间部分具有相等的直径,或者,所述中间部分的直径沿轴向自远端向近端先逐渐增大后逐渐减小。
  5. 根据权利要求2-4中任一项所述的旋磨装置,其特征在于,所述旋磨层的厚度为20~120μm。
  6. 根据权利要求1-4中任一项所述的旋磨装置,其特征在于,所述旋磨头的直径沿轴向向远端逐渐减小,同时还沿轴向向近端逐渐减小。
  7. 根据权利要求6所述的旋磨装置,其特征在于,所述旋磨头具有以下特征中的至少一种:
    所述旋磨头的远端部分的最小直径小于所述旋磨头的近端部分的最小直径;
    所述旋磨头的远端部分的最大直径小于所述旋磨头的近端部分的最大直径;
    所述旋磨头的远端部分的弯曲半径大于或等于所述旋磨头的近端部分的 弯曲半径。
  8. 根据权利要求6所述的旋磨装置,其特征在于,所述旋磨头至少具有以下特征中的一种:
    所述旋磨头的远端部分的直径为0.13~0.66mm;
    形成在所述旋磨头的近端部分和远端部分之间的中间部分的最大直径为0.66~4.0mm;
    所述旋磨头的近端部分的直径为0.5~1.2mm。
  9. 根据权利要求1-4中任一项所述的旋磨装置,其特征在于,还包括所述导引体,所述旋磨头和所述驱动轴能够相对于所述导引体旋转和轴向移动。
  10. 根据权利要求1-4中任一项所述的旋磨装置,其特征在于,所述旋磨头的所述中空结构由相互连通的远端中空结构和近端中空结构组成,所述远端中空结构的腔径适配于所述导引体的直径,所述近端中空结构的腔径大于所述远端中空结构的腔径,且所述近端中空结构与所述连接部固定连接。
  11. 根据权利要求10所述的旋磨装置,其特征在于,所述驱动轴整体为等径中空管状结构,所述驱动轴的中心轴线与所述导引体的中心轴线重合。
  12. 根据权利要求10所述的旋磨装置,其特征在于,所述驱动轴为变径中空管状结构,所述连接部的直径沿轴向自近端向远端增大,所述驱动轴还具有与所述连接部的近端连接的等径部,所述等径部的中心轴线与所述导引体的中心轴线重合。
  13. 根据权利要求12所述的旋磨装置,其特征在于,所述连接部从所述旋磨头的近端开口插入所述近端中空结构,所述近端开口的径向尺寸小于或等于所述连接部的最近端的直径。
  14. 根据权利要求13所述的旋磨装置,其特征在于,所述连接部关于所述等径部的中心轴线不对称设置,和/或,所述连接部的直径沿轴向自近端向远端先逐渐增大后逐渐减小。
  15. 一种旋磨设备,其特征在于,包括驱动装置以及如权利要求1-14中任一所述的旋磨装置;所述驱动装置与所述旋磨装置中的驱动轴连接,以驱动所述旋磨装置旋转。
PCT/CN2023/094969 2022-05-31 2023-05-18 旋磨装置及旋磨设备 WO2023231791A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210615844.1 2022-05-31
CN202210615844.1A CN114916997A (zh) 2022-05-31 2022-05-31 旋磨装置及旋磨设备

Publications (1)

Publication Number Publication Date
WO2023231791A1 true WO2023231791A1 (zh) 2023-12-07

Family

ID=82813106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/094969 WO2023231791A1 (zh) 2022-05-31 2023-05-18 旋磨装置及旋磨设备

Country Status (2)

Country Link
CN (1) CN114916997A (zh)
WO (1) WO2023231791A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114916997A (zh) * 2022-05-31 2022-08-19 上海微创旋律医疗科技有限公司 旋磨装置及旋磨设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5314438A (en) * 1992-12-17 1994-05-24 Shturman Cardiology Systems, Inc. Abrasive drive shaft device for rotational atherectomy
US5681336A (en) * 1995-09-07 1997-10-28 Boston Scientific Corporation Therapeutic device for treating vien graft lesions
US6132444A (en) * 1997-08-14 2000-10-17 Shturman Cardiology Systems, Inc. Eccentric drive shaft for atherectomy device and method for manufacture
CN102300510A (zh) * 2009-02-02 2011-12-28 心血管系统股份有限公司 用于具有横向位移的质心的切除术设备的多材料研磨头
US20150245851A1 (en) * 2014-03-01 2015-09-03 Rex Medical, L.P. Atherectomy device
US20160157886A1 (en) * 2014-12-04 2016-06-09 Boston Scientific Scimed, Inc. Rotatable medical device
CN114916997A (zh) * 2022-05-31 2022-08-19 上海微创旋律医疗科技有限公司 旋磨装置及旋磨设备
CN217645302U (zh) * 2022-05-31 2022-10-25 上海微创旋律医疗科技有限公司 旋磨装置及旋磨设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5314438A (en) * 1992-12-17 1994-05-24 Shturman Cardiology Systems, Inc. Abrasive drive shaft device for rotational atherectomy
US5681336A (en) * 1995-09-07 1997-10-28 Boston Scientific Corporation Therapeutic device for treating vien graft lesions
US6132444A (en) * 1997-08-14 2000-10-17 Shturman Cardiology Systems, Inc. Eccentric drive shaft for atherectomy device and method for manufacture
CN102300510A (zh) * 2009-02-02 2011-12-28 心血管系统股份有限公司 用于具有横向位移的质心的切除术设备的多材料研磨头
US20150245851A1 (en) * 2014-03-01 2015-09-03 Rex Medical, L.P. Atherectomy device
US20160157886A1 (en) * 2014-12-04 2016-06-09 Boston Scientific Scimed, Inc. Rotatable medical device
CN114916997A (zh) * 2022-05-31 2022-08-19 上海微创旋律医疗科技有限公司 旋磨装置及旋磨设备
CN217645302U (zh) * 2022-05-31 2022-10-25 上海微创旋律医疗科技有限公司 旋磨装置及旋磨设备

Also Published As

Publication number Publication date
CN114916997A (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
US10888351B2 (en) Eccentric system of abrasive elements with equal mass for rotational atherectomy
AU2009251702B2 (en) Method and apparatus for increasing rotational amplitude of abrasive element on high-speed rotational atherectomy device
US8348965B2 (en) Rotational atherectomy device with counterweighting
CN105455881A (zh) 用于高速旋转式动脉粥样斑块去除术装置的偏心磨削头
US10517631B2 (en) Rotational atherectomy device with a system of eccentric abrading heads
WO2023231791A1 (zh) 旋磨装置及旋磨设备
CN217645302U (zh) 旋磨装置及旋磨设备
CN108882947B (zh) 具有偏心研磨头系统的旋切装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23814976

Country of ref document: EP

Kind code of ref document: A1