WO2023231769A1 - 拼接显示装置及其控制方法、控制装置和存储介质 - Google Patents

拼接显示装置及其控制方法、控制装置和存储介质 Download PDF

Info

Publication number
WO2023231769A1
WO2023231769A1 PCT/CN2023/094512 CN2023094512W WO2023231769A1 WO 2023231769 A1 WO2023231769 A1 WO 2023231769A1 CN 2023094512 W CN2023094512 W CN 2023094512W WO 2023231769 A1 WO2023231769 A1 WO 2023231769A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
heat
grayscale
images
display device
Prior art date
Application number
PCT/CN2023/094512
Other languages
English (en)
French (fr)
Other versions
WO2023231769A9 (zh
Inventor
侯峰
吴艳红
陈冠男
段然
王显
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2023231769A1 publication Critical patent/WO2023231769A1/zh
Publication of WO2023231769A9 publication Critical patent/WO2023231769A9/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0257Reduction of after-image effects
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping

Definitions

  • the present application relates to the field of display technology. Specifically, the present application relates to a splicing display device and its control method, control device and storage medium.
  • LED-backlit LCD Liquid Crystal Display
  • LED-backlit LCD Liquid Crystal Display
  • OLED Organic Light-Emitting Diode, organic light-emitting diode
  • MiniLED known as "sub-millimeter light-emitting diode”
  • MicroLED LED Miniaturization
  • the luminous efficiency of the MiniLED lamp used for screen display is directly affected by the thermal effect of the MiniLED lamp, and the thermal effect of the MiniLED lamp is generated by the current value that drives it to emit light.
  • the driving current value of the MiniLED lamp is positively correlated with the grayscale value displayed. The greater the grayscale value, the greater the driven current value, and the greater the heat generated by the MiniLED lamp. many.
  • the luminous efficiency of MiniLED lights in different areas of the screen is different. For example, in areas with large heat accumulation, the luminous efficiency of MiniLED lights decreases. In areas with low accumulation, the luminous efficiency of MiniLED lights is still high. After the screen is lit for a long time, when the entire screen is switched to the same grayscale display, residual images are prone to appear in areas with large heat accumulation and low MiniLED luminous efficiency. Ultimately, This causes uneven display on the screen when the entire screen is switched to the same grayscale display, reducing the display effect and affecting the user experience.
  • this application proposes a splicing display device and its control method, control device and storage device.
  • the storage medium is used to solve the technical problem in the existing technology that residual images are prone to occur in areas with high heat accumulation and low luminous efficiency of Mini LED, which ultimately leads to uneven display on the screen when the entire screen is switched to the same grayscale display.
  • embodiments of the present application provide a control method for a spliced display device, including:
  • determining the spatial heat impact image of the splicing display device includes:
  • the spatial heat impact image of the spliced display device is determined.
  • the heat diffusion information of the pattern in the first grayscale image is simulated to generate a pattern edge diffusion image, including:
  • the first area outside the edge of the pattern in the first grayscale image is increased by a grayscale value
  • the second area within the edge of the pattern in the first grayscale image is reduced by a grayscale value
  • the grayscale value is increased by a grayscale value.
  • the gray value is equal to the reduced gray value to obtain a pattern edge diffusion image.
  • the splicing display device includes a splicing display panel, and the splicing display panel includes at least two display panels spliced to each other;
  • determine the spatial heat impact image of the splicing display device including:
  • Segment the pattern edge diffusion image that is the same size as the splicing display panel to obtain at least two unit images that are the same size as the display panel;
  • the spatial heat impact image of the spliced display panel is determined.
  • determining the unit space heat impact image of each unit image includes:
  • the first space heat impact image and the plurality of second space heat impact images are added to obtain a unit space heat impact image.
  • the heat impact data of the surrounding unit images on the central unit image is determined to obtain multiple second space heat impact images, including:
  • the surrounding unit image and the central unit image are divided into N equal image blocks vertically and/or N equal image blocks transversely, or the image blocks are divided into N equal image blocks vertically and horizontally together to determine the surrounding units.
  • image For the heat impact data of the central unit image a plurality of second space heat impact images are obtained.
  • the surrounding unit image and the central unit image are longitudinally divided into N equal image blocks and/or transversely divided into N equal image blocks, and the heat of the surrounding unit image to the central unit image is determined.
  • Impact data is used to obtain multiple second space heat impact images, including:
  • the surrounding unit images directly adjacent to the central unit image laterally are the first surrounding unit images.
  • the first surrounding unit images and the central unit image are longitudinally divided into N1 equal image blocks to determine the first surrounding unit image pair.
  • the heat impact data of the central unit image is used to obtain a third heat impact image;
  • the plurality of second space heat impact images include a plurality of third heat impact images;
  • the surrounding unit images directly adjacent to the central unit image in the longitudinal direction are the third surrounding unit images.
  • the third surrounding unit images and the central unit image are respectively transversely divided into N2 equal image blocks to determine the third surrounding unit image pair.
  • the heat impact data of the central unit image is used to obtain a seventh heat impact image; the plurality of second space heat impact images include a plurality of seventh heat impact images.
  • the surrounding unit image and the central unit image are longitudinally divided into N equal image blocks and/or transversely divided into N equal image blocks, and the heat of the surrounding unit image to the central unit image is determined.
  • Impact data is used to obtain multiple second space heat impact images, including:
  • the surrounding unit images that are not directly adjacent to the central unit image are the second surrounding unit images.
  • the second surrounding unit image and the central unit image are longitudinally divided into N1 equal image blocks to determine the second surrounding unit image pair.
  • the longitudinal heat impact data of the central unit image is used to obtain the fourth heat impact image; the second surrounding unit image and the central unit image are transversely divided into N2 equal image blocks to determine the relationship between the second surrounding unit image and the central unit image.
  • the lateral heat impact data is obtained to obtain the fifth heat impact image; the fourth heat impact image and the fifth heat impact image are added and averaged to obtain the sixth heat impact image; multiple second spatial heat impact images include multiple Sixth Heat Effect Image.
  • the spatial heat impact image is accumulated over time to obtain a time heat accumulation image, including:
  • the cumulative heat value of the pixel of the previous n-1 frame image and the spatial heat of the pixel of the current frame affect the image.
  • the instantaneous heat values of the pixels are added together to obtain the heat accumulation value of the pixels of the first n frames of the image as the time heat accumulation image;
  • the cumulative heat value of the pixel of the previous n-1 frame image and the spatial heat of the pixel of the current frame affect the pixel of the image.
  • the instantaneous heat values of the points are subtracted to obtain the heat accumulation value of the pixel points of the first n frames of the image as the time heat accumulation image.
  • building the thermal grayscale lookup table includes:
  • the stable heat value is the heat of the splicing display device when an image with the same grayscale value is continuously displayed in full screen on the splicing display device for a threshold time;
  • the original image includes an RGB image.
  • control device for a spliced display device including:
  • the spatial heat module is used to obtain a first grayscale image, and determine the spatial heat impact image of the splicing display device based on the first grayscale image.
  • the first grayscale image is obtained through grayscale processing based on the original image;
  • the time heat module is used to time-accumulate the space heat impact image to obtain a time-heat accumulation image
  • the second grayscale module is used to map the time heat accumulation image into a second grayscale image
  • the compensation module is used to subtract the second grayscale image from the R channel component in the original image to obtain a compensated image.
  • a splicing display device including:
  • a spliced display panel includes a number of display panels spliced to each other;
  • the processor is electrically connected to the memory and the splicing display panel;
  • the memory stores a computer program, and the computer program is executed by the processor to implement the control method of the splicing display device as in the first aspect.
  • embodiments of the present application provide a computer-readable storage medium.
  • the computer storage medium is used to store computer instructions. When run on a computer, the computer can perform the control of the spliced display device in the first aspect. method.
  • the control method of the splicing display device determines the spatial heat impact image of the splicing display device in the spatial dimension based on the first grayscale image.
  • the first grayscale image is obtained by grayscale processing based on the RGB image.
  • the spatial heat impact image is accumulated over time to obtain a time heat accumulation image, and then the time heat accumulation image is mapped to a second grayscale image, and the second grayscale image is the compensation image, that is, the grayscale that needs to be compensated value; then, subtract the second grayscale image from the R channel component in the RGB image to obtain the compensated image.
  • the heat accumulation image is obtained in the spatial dimension and the time dimension, and the heat accumulation image is mapped into a grayscale image, that is, a compensation image. It is necessary to lower the grayscale value of the image in the area with high luminous efficiency.
  • the R channel component of the image is subtracted from the second grayscale image, thereby making the grayscale value smaller, thereby weakening the afterimage, thereby making the screen display uniform when the entire screen is switched to the same grayscale display, improving the display effect and user experience.
  • the luminous efficiency of Mini LED lamps is affected by temperature. When heat accumulation reaches a certain level, the temperature will increase, causing the luminous efficiency of Mini LED lamps to become lower.
  • the temperature of the area where the pattern is located is low (less heat accumulation).
  • the background area has a high temperature (more heat accumulation), and the luminous efficiency of MiniLED lights becomes lower in places with high temperatures. In places with low temperatures, the luminous efficiency of MiniLED lights is still high.
  • the gray value of the image in the area with high luminous efficiency needs to be lowered.
  • the R channel component of the RGB image can be subtracted from the second gray image, thereby making the gray value smaller. This can reduce the residual image, making the screen display uniform when the entire screen is switched to the same grayscale display, improving the display effect and user experience.
  • Figure 1 is a schematic flowchart of a control method for a splicing display device provided by an embodiment of the present application
  • Figure 2 is a schematic flowchart of determining the spatial heat impact image of the splicing display device in the spatial dimension provided by an embodiment of the present application;
  • Figure 3a is a schematic diagram of the heat diffusion results of a heat source provided by the embodiment of the present application after 10 time units;
  • Figure 3b is a schematic diagram of the heat diffusion results of a heat source provided by the embodiment of the present application after 15 time units;
  • Figure 3c is a schematic diagram of the heat diffusion results of a heat source provided by the embodiment of the present application after 50 time units;
  • Figure 4 is a schematic diagram of simulating the heat diffusion information of a pattern in a first grayscale image and generating a pattern edge diffusion image provided by an embodiment of the present application;
  • Figure 5 is a schematic diagram of a spliced display panel including a pattern edge diffusion image provided by an embodiment of the present application
  • Figure 6 is a schematic diagram of a longitudinal section provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram of another longitudinal section provided by an embodiment of the present application.
  • Figure 8 is a schematic diagram of a transverse segmentation provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of the unit space heat impact image of unit image A5 provided by the embodiment of the present application.
  • Figure 10 is a schematic diagram of a plurality of image blocks divided horizontally and vertically together according to an embodiment of the present application
  • Figure 11 is a schematic flow chart of an A4 stack provided by an embodiment of the present application.
  • Figure 12 is a schematic flowchart of yet another control method for a splicing display device provided by an embodiment of the present application.
  • Figure 13 is a schematic structural diagram of a control device of a splicing display device provided by an embodiment of the present application.
  • Figure 14 is a rendering of a control method for a splicing display device provided by an embodiment of the present application.
  • Figure 15 is an enlarged view of an effect diagram in Figure 14 provided by the embodiment of the present application.
  • the inventor of this application conducted research and found that when solving the problem of uneven display effects of Mini LED spliced display devices, prediction of heat at different locations on the screen is key.
  • the luminous efficiency of MiniLED lights in different areas of the screen is different. Due to the different luminous efficiencies of MiniLED and other lights in different areas, residual images appear on the screen when the full screen is switched to the same grayscale display.
  • the luminous efficiency of the MiniLED in the first area is lower than the luminous efficiency of the MiniLED in the second area. If the screen is switched to the same brightness, residual images will easily appear in the first area.
  • This application provides a splicing display device and its control method, control device and storage medium, aiming to solve the existing Technical issues as above.
  • An embodiment of the present application provides a method for controlling a spliced display device.
  • the spliced display device may include a MiniLED spliced display device.
  • a schematic flowchart of the method is shown in Figure 1. The method includes:
  • S1 Obtain the first grayscale image, and determine the spatial heat impact image of the splicing display device based on the first grayscale image.
  • the first grayscale image is obtained through grayscale processing based on the original image;
  • the second grayscale image is the compensation image.
  • the original image includes an RGB image.
  • the RGB image is a color image
  • the original image is an image input from an external video stream.
  • S1 determines the spatial heat impact image from the spatial dimension, that is, from the heat diffusion information dimension of the first grayscale image in the entire screen of the splicing display device, determines the spatial heat impact image of the splicing display device.
  • S2 determines the time heat accumulation image from the time dimension, that is, the time heat accumulation image is determined from the heat accumulation effect of the spatial heat impact image of different frames on the timeline.
  • the control method of the splicing display device provided by the embodiment of the present application determines the spatial heat impact image of the splicing display device in the spatial dimension based on the first grayscale image.
  • the first grayscale image is obtained by grayscale processing based on the RGB image.
  • the spatial heat impact image is accumulated over time to obtain a time heat accumulation image, and then the time heat accumulation image is mapped to a second grayscale image, and the second grayscale image is the compensation image, that is, the grayscale that needs to be compensated value; then, subtract the second grayscale image from the R channel component in the RGB image to obtain the compensated image.
  • the heat accumulation image is obtained in the spatial dimension and the time dimension, and the heat accumulation image is mapped into a grayscale image, that is, a compensation image. It is necessary to lower the grayscale value of the image in the area with high luminous efficiency.
  • the R channel component of the image is subtracted from the second grayscale image, thereby making the grayscale value smaller, thereby weakening the afterimage, thereby making the screen display uniform when the entire screen is switched to the same grayscale display, improving the display effect and user experience.
  • the luminous efficiency of Mini LED lamps is affected by temperature.
  • the temperature will increase, causing the luminous efficiency of Mini LED lamps to become lower.
  • the temperature of the area where the pattern is located is low (less heat accumulation), the temperature of the background area is high (more heat accumulation), and the MiniLED light shines in the high temperature area.
  • the efficiency becomes lower, and the luminous efficiency of MiniLED lights is still higher in places with low temperature.
  • the gray value of the image in the area with high luminous efficiency needs to be lowered.
  • the R channel component of the RGB image can be subtracted from the second gray image, thereby making the gray value smaller. This can reduce the residual image, allowing the screen to display images when the entire screen is switched to the same grayscale display. Uniform, improve display effect and user experience.
  • the grayscale value of the second grayscale image generally does not exceed 15.
  • the contribution of each frame to heat accumulation is very small, and the grayscale value in the second grayscale image obtained after accumulating tens of thousands of frames does not exceed 15. will be more than 15.
  • the purpose of the embodiment of this application by estimating accumulated heat in space and time is to determine the gray value that needs compensation, and the estimation of heat accumulation is only an intermediate variable.
  • determining the spatial heat impact image of the spliced display device includes:
  • S11 Simulate the heat diffusion information of the pattern in the first grayscale image and generate a pattern edge diffusion image
  • the first grayscale image may include one pattern or multiple patterns, and the heat diffusion information of each pattern may be simulated by constructing a graphic edge diffusion model, and finally a pattern edge diffusion image of the entire screen may be generated.
  • simulating the heat diffusion information of the pattern in the first grayscale image and generating a pattern edge diffusion image includes:
  • the first area outside the edge of the pattern in the first grayscale image is increased by a grayscale value ⁇ G, and the second area within the edge of the pattern in the first grayscale image is reduced by a grayscale value ⁇ G.
  • a grayscale value ⁇ G is equal to a reduced grayscale value ⁇ G, and a pattern edge diffusion image is obtained.
  • step S11 two solutions can be adopted to simulate the heat diffusion information of the pattern in the first grayscale image and generate a pattern edge diffusion image, as follows:
  • the heat diffusion of the splicing display device satisfies the two-dimensional heat diffusion equation.
  • the two-dimensional heat diffusion equation can be written in the following form:
  • u represents the heat value of the heat source
  • v represents the diffusion speed
  • t represents time
  • x represents the heat diffusion distance of the heat source in the longitudinal direction
  • y represents the heat diffusion distance of the heat source in the transverse direction
  • n represents the time unit.
  • Figures 3a to 3c respectively show the heat source in Heat diffusion results after 10, 15 and 50 time units.
  • the heat diffusion process can be represented by the above-mentioned pattern heat diffusion model.
  • the output of the pattern heat diffusion model is the pattern edge diffusion image after simulating heat diffusion.
  • Figures 3a to 3c show the heat diffusion results of the heat source after different times.
  • the higher the pattern the higher the heat.
  • the heat source range is small and the heat is high; when the time is long, the heat source range is large and the heat is low.
  • a pattern edge diffusion image after simulated heat diffusion can be obtained.
  • the obtained pattern edge diffusion image is similar to the image obtained after Gaussian edge blurring.
  • Gaussian blur is used to blur the edges of the first grayscale image.
  • the grayscale value of a certain pixel inside the first grayscale image is increased by ⁇ G, and at the same time, the grayscale value of the pixel at the mirror position is reduced by ⁇ G, and the grayscale value of the pixel point at the mirror position is reduced by ⁇ G, and the grayscale value of the pixel point in the first grayscale image is increased by ⁇ G.
  • the pattern with a clear boundary in the original first grayscale image is changed into a pattern with a blurred boundary, forming a pattern edge diffusion image.
  • the rectangle in Figure 4 represents a pattern, and the color of the three nested rectangles gradually becomes lighter from the inside to the outside, indicating the diffusion of heat.
  • FIG. 4 is only an example, and the first grayscale image may also include multiple patterns.
  • the total amount of heat is certain. If gray value is used to simulate temperature, then the total amount of gray value is certain, and the diffusion process can be simulated as the pixels near the edge of the image are reduced in value and shifted to a symmetrical position. This ensures that the total amount of grayscale values is certain.
  • the splicing display device includes a splicing display panel, and the splicing display panel includes at least two display panels spliced to each other; the splicing display panel may be called a splicing screen, and the display panel may be called a unit screen.
  • determine the spatial heat impact image of the splicing display device including:
  • Segment the pattern edge diffusion image that is the same size as the splicing display panel to obtain at least two unit images that are the same size as the display panel;
  • the spatial heat impact image of the spliced display panel is determined.
  • determining the unit space heat impact image for each unit image includes:
  • the first space heat impact image and the plurality of second space heat impact images are added to obtain a unit space heat impact image.
  • the second space heat effect images may be the same or different.
  • the heat impact data of the surrounding unit images on the central unit image is determined to obtain a plurality of second spatial heat impact images, including:
  • the surrounding unit image and the central unit image are divided into N equal image blocks vertically and/or N equal image blocks transversely, or the image blocks are divided into N equal image blocks vertically and horizontally together to determine the surrounding units.
  • image center The heat impact data of the unit image is used to obtain multiple second spatial heat impact images.
  • the surrounding unit images and the central unit image are longitudinally divided into N equal image blocks and/or transversely divided into N equal image blocks to determine the thermal impact data of the surrounding unit images on the central unit image.
  • obtain multiple second space heat impact images including:
  • the surrounding unit images that are directly adjacent to the central unit image laterally (left and right) are the first surrounding unit images.
  • the first surrounding unit image and the central unit image are longitudinally divided into N1 equal image blocks to determine the first surrounding unit image.
  • the heat impact data of the unit image on the central unit image is used to obtain a third heat impact image;
  • the plurality of second space heat impact images include a plurality of third heat impact images;
  • the surrounding unit images directly adjacent vertically (up and down) to the central unit image are the third surrounding unit images.
  • the third surrounding unit image and the central unit image are respectively transversely divided into N2 equal image blocks to determine the third surrounding unit image.
  • the heat impact data of the unit image on the central unit image is used to obtain a seventh heat impact image; the plurality of second space heat impact images include a plurality of seventh heat impact images.
  • Multiple third heat effect images may be the same or different.
  • Multiple seventh heat effect images may or may not be the same.
  • the surrounding unit images and the central unit image are longitudinally divided into N equal image blocks and/or transversely divided into N equal image blocks to determine the thermal impact data of the surrounding unit images on the central unit image.
  • obtain multiple second space heat impact images including:
  • the surrounding unit images that are not directly adjacent to the central unit image are the second surrounding unit images.
  • the second surrounding unit image and the central unit image are longitudinally divided into N1 equal image blocks to determine the second surrounding unit image pair.
  • the longitudinal heat impact data of the central unit image is used to obtain the fourth heat impact image; the second surrounding unit image and the central unit image are transversely divided into N2 equal image blocks to determine the relationship between the second surrounding unit image and the central unit image.
  • the lateral heat impact data is obtained to obtain the fifth heat impact image; the fourth heat impact image and the fifth heat impact image are added and averaged to obtain the sixth heat impact image; multiple second spatial heat impact images include multiple Sixth Heat Effect Image.
  • N, N1, and N2 are all integers not less than 1.
  • the specific number of equal image blocks to be divided can be determined according to the actual situation, and is not limited in this application.
  • the heat diffusion of the spliced display device can be simulated by constructing a screen characteristic model.
  • the spliced display device may include a 6 ⁇ 6 display module, and the spliced display device may include 288 spliced display panels (unit screens) arranged in an array.
  • the spliced display device may include 288 spliced display panels (unit screens) arranged in an array.
  • each display panel Ai (i ⁇ 1) represents a display panel of the minimum splicing unit.
  • the pattern edge diffusion image is segmented to obtain a unit image of the same size as the display panel Ai; the size of the pattern edge diffusion image is equal to the size of the entire screen of the splicing display device, and the display panel Ai (i ⁇ 1) is the same as the unit image. Images Ai (i ⁇ 1) correspond one to one and are equal in size.
  • the spatial heat impact image corresponding to the entire screen of the spliced display device is determined.
  • the spatial heat impact image of each unit can be spliced to form a spatial heat impact image corresponding to the entire screen.
  • the heat impact data of the surrounding unit images on the central unit image is determined to obtain a plurality of second spatial heat impact images; the surrounding unit images are located around the central unit image. details as follows:
  • the surrounding unit images directly adjacent to the central unit image include A2, A4, A6 and A8.
  • A4 and A6, which are directly adjacent to A5 on the left and right, can be divided into four equal image blocks vertically.
  • the operations and calculations of A4 and A6 are the same.
  • A2 and A8, which are directly adjacent to A5 above and below, can be divided horizontally into 6 equal image blocks respectively.
  • the operations and calculations of A2 and A8 are the same.
  • A4 and A5 are longitudinally divided into four equal image blocks, the heat impact data of A4 on A5 is determined, and a third heat impact image A4 stack is obtained.
  • A44 stack ( ⁇ 1 ⁇ A44+ ⁇ 2 ⁇ A43+ ⁇ 3 ⁇ A42+ ⁇ 4 ⁇ A41) ⁇ edge diffusion coefficient ⁇ ;
  • A43 stack ⁇ 5 ⁇ A44 stack
  • A42 stack ⁇ 6 ⁇ A44 stack
  • A41 stack ⁇ 7 ⁇ A44 stack
  • A44 stack is the heat impact data of A4 on A51
  • A43 stack is the heat impact data of A4 on A52
  • A42 stack is the heat impact data of A4 on A53
  • A41 stack is the heat impact data of A4 on A54.
  • A4 and A5 are divided into four parts vertically.
  • A44 is closest to A51, so A44 has the greatest impact on A51, and its corresponding coefficient ⁇ 1 has the largest value;
  • A41 is the farthest from A51, so A41 has the greatest impact on A51.
  • A51 has the smallest impact, and its corresponding coefficient ⁇ 4 has the smallest value.
  • the values ⁇ 1 to ⁇ 4 are determined by the proportional coefficients between the heat quantities on the heat map.
  • the edge diffusion coefficient ⁇ represents the diffusion characteristics between different unit images. Since there are seams between adjacent display panels (unit screens), the heat diffusion between unit images will be affected by the seams. This can be impact simulation is a diffusion coefficient ⁇ .
  • A52 is further away from A4, so the thermal impact of A4 on A52 is smaller than the thermal impact of A4 on A51, which can be expressed by multiplying A44 by a coefficient ⁇ 5.
  • the average heat value of A52 divided by the average heat value of A51 is the value of ⁇ 5. The same is true for ⁇ 6 and ⁇ 7.
  • the surrounding unit images that are not directly adjacent to the central unit image include A1, A3, A7 and A9.
  • A1 and A5 are segmented twice respectively. First, perform the first segmentation, and longitudinally segment A1 and A5 into 4 equal image blocks to obtain the fourth heat affected image A1_col stack, and then perform the second segmentation. For the second segmentation, A1 and A5 are divided into 6 equal image blocks respectively to obtain the fifth heat-influenced image A1_row stack. The fourth heat-influenced image A1_col stack and the fifth heat-influenced image A1_row stack are added and taken. Averaging, the sixth thermally affected image A1 stack is obtained. In the same way, the operations of A3, A7, A9 and A1 are the same.
  • A14 stack ( ⁇ 1 ⁇ A44+ ⁇ 2 ⁇ A43+ ⁇ 3 ⁇ A42+ ⁇ 4 ⁇ A41) ⁇ edge diffusion coefficient ⁇ ;
  • A13 stack ⁇ 5 ⁇ A44 stack
  • A12 stack ⁇ 6 ⁇ A44 stack
  • A11 stack ⁇ 7 ⁇ A44 stack
  • stack A14 is the heat impact data of A1 on A51
  • stack A13 is the heat impact data of A1 on A52
  • stack A12 is the heat impact data of A1 on A53
  • stack A11 is the heat impact data of A1 on A54.
  • A110 stack ( ⁇ 1 ⁇ A110+ ⁇ 2 ⁇ A19+ ⁇ 3 ⁇ A18+ ⁇ 4 ⁇ A17+ ⁇ 5 ⁇ A16+ ⁇ 6 ⁇ A17) ⁇ edge diffusion coefficient ⁇ ;
  • A19 stack ⁇ 7 ⁇ A110 stack
  • A18 stack ⁇ 8 ⁇ A110 stack
  • A17 stack ⁇ 9 ⁇ A110 stack
  • A16 stack ⁇ 10 ⁇ A110 stack
  • A15 stack ⁇ 11 ⁇ A110 stack
  • A1_row stack (fifth heat affected image) A15 stack to A110 stack for splicing.
  • A110 stack is the heat impact data of A1 on A55
  • A1 stack is the heat impact data of A19 on A56
  • A15 stack is the heat impact data of A1 on A550.
  • A1 stack (sixth heat affected image) (A1_col stack + A1_row stack)/2.
  • A1 is in the upper left corner of A5, so the influence of A1 on A5 is both vertical and horizontal. Therefore, A1 can be divided into two parts to calculate the vertical influence and the horizontal influence respectively. The calculation method and the process of calculating the influence of A4 on A5 are The same, finally the vertical influence and horizontal influence are summed and averaged to get the influence of A1 on A5.
  • the third heat-affected image stacks A4 and A6, the seventh heat-affected image stacks A2 and A8, and the sixth heat-affected images A1, A3, A7, and A9 can be obtained respectively.
  • the plurality of second space heat-affected images include A2 stack, A4 stack, A6 stack, A8 stack, A1 stack, A3 stack, A7 stack, and A9 stack.
  • the thermal influence of the eight surrounding unit images (A2, A4, A6, A8, A1, A3, A7, A9) on the central unit image A5 can be obtained, and then uniformly superimposed together to obtain the surrounding thermal influence of A5 , that is, the heat accumulation around A5 (the heat impact data of the surrounding unit image on the central unit image).
  • A5's own heat accumulation A5 ⁇ A5 weight image (the weight coefficients are all 1).
  • weight coefficients are all 1, and the A5 ⁇ A5 weight image is equivalent to not doing any calculations, because everything is multiplied by 1.
  • the same method is used for all spliced display panels (unit screens) in the spliced display device, and the unit space heat impact image of each unit image can be obtained, that is, the unit space heat impact image of Ai (i ⁇ 1).
  • the spatial heat impact image corresponding to the entire screen of the spliced display device can be obtained by splicing them.
  • the unit image A1 is located in the upper left corner of the entire screen image, first, determine the thermal impact of the surrounding unit images A2, A4, and A5 on A1, and then uniformly superimpose them together to obtain the surrounding thermal impact of A1, that is, A1 Surrounding heat accumulation (heat impact data of surrounding unit images on central unit image).
  • the heat impact data of the unit image A1 on itself is determined to obtain the first spatial heat impact image. details as follows:
  • A1's own heat accumulation A1 ⁇ A1 weight image (the weight coefficients are all 1).
  • unit image A7 is located in the lower left corner of the entire screen image
  • A3 is located in the upper right corner of the entire screen image
  • A9 is located in the lower right corner of the entire screen image
  • the unit image segmentation scheme in the construction of the screen characteristic model, can be divided vertically and horizontally, that is, divided into blocks, and A4 is taken when calculating the influence degree.
  • a small block in A5 calculates its impact on all small blocks in A5, and by analogy calculates the impact of all small blocks in A4 on all small blocks in A5, After superposition, it is the influence of A4 on A5, as shown in Figure 110.
  • the number of divisions of the unit image can be flexibly changed. The greater the number of divisions, the more accurate the calculation results will be, but the amount of calculation will also be greater. In actual use, it can be flexibly configured according to the balance between effect and speed.
  • the surrounding unit image and the central unit image are divided into N equal image blocks longitudinally, or into N equal image blocks transversely, or both longitudinally and transversely together into N equal image blocks.
  • Image blocks including:
  • Splicing 4 equal parts of the heat impact data to obtain the heat impact data of the surrounding unit image A4 on the central unit image A5;
  • the spatial heat impact image is temporally accumulated to obtain a temporal heat accumulation image, including:
  • the first n-1 frames of the image are The heat accumulation value of the pixel of the current frame is added to the instantaneous heat value of the pixel of the pixel of the current frame's spatial heat impact image, and the heat accumulation value of the pixel of the previous n frames of the image is obtained as the time heat accumulation image;
  • the cumulative heat value of the pixel of the previous n-1 frame image and the spatial heat of the pixel of the current frame affect the pixel of the image.
  • the instantaneous heat values of the points are subtracted to obtain the heat accumulation value of the pixel points of the first n frames of the image as the time heat accumulation image.
  • the gray value in the heat/gray lookup table corresponding to this value is the value to be compared.
  • the current accumulated heat value of a certain pixel is 9.
  • the corresponding grayscale value of 8.7 is 235
  • the corresponding grayscale value of 9.2 is 244.
  • the corresponding grayscale value is 248.
  • 248 the grayscale value of the first grayscale image with a heat value of 9 in the current frame
  • 235 the corresponding grayscale value in lookup table 8.7 Gray value G
  • the corresponding grayscale value is 225.
  • 225 the grayscale value of the first grayscale image with a heat value of 9 in the current frame
  • 235 corresponding to lookup table 8.7 Gray value G
  • the grayscale value in the heat/grayscale lookup table corresponding to this value is the value to be compared.
  • the heat value of a pixel in the first grayscale image of the current frame is 8.7
  • the corresponding grayscale value is 248, and 248 is greater than 235 (look up the grayscale value G corresponding to 8.7 in the table), and the heat value increases.
  • the heat value of a pixel in the first grayscale image of the current frame is 8.7
  • the corresponding grayscale value is 220
  • 220 is less than 235 (look up the grayscale value G corresponding to 8.7 in the table), and the heat value is reduced.
  • A_T n_ij A_T n-1_ij + ⁇ I 4_ij ;
  • A_T n_ij A_T n-1_ij - ⁇ I 4_ij ;
  • A_T n_ij represents the heat accumulation value of the pixel point [ij] of the previous n frames (that is, the heat accumulation value accumulates the heat of the previous n frames);
  • A_T n-1_ij represents the heat accumulation value of the pixel point [ij] of the previous n-1 frames (that is, the heat accumulation value accumulates the heat of the previous n-1 frames);
  • ⁇ I 4_ij represents the contribution value of the pixel point [ij] of the current frame to heat (that is, the instantaneous heat value of the pixel point in the current frame);
  • I 2_ij represents the gray value of pixel point [ij] in the first gray image I2 (this gray value is used for comparison with the gray value G in the heat/gray lookup table);
  • represents the weight coefficient of the contribution value (that is, the weight coefficient that represents the heat accumulated by the pixel point [ij] at the position of the i-th row and j-th column of the splicing display device screen);
  • G represents the gray value in the lookup table that is about to be compared with the gray value of the pixel point [ij] in the first gray image I2.
  • building the thermal grayscale lookup table includes:
  • the stable heat value is the heat of the splicing display device when an image with the same grayscale value is continuously displayed in full screen on the splicing display device for a threshold time;
  • the corresponding relationship between at least one gray value within the design heat value range and at least one stable heat value is selected as a heat gray lookup table.
  • the caloric value range is not less than 0 and not greater than 10.7;
  • a test cycle includes;
  • the same image is continuously displayed on the splicing display device, and the grayscale of the image is a grayscale value;
  • the heat of the splicing display device After displaying the same image for a first period of time, the heat of the splicing display device is maintained at a fixed value. The corresponding heat value of the splicing display device when the grayscale of the image is a gray value is tested and obtained.
  • the screen temperature will stabilize to a fixed value and no longer change.
  • This temperature stable value is the amount of heat after stabilization in this grayscale. value.
  • the embodiment of this application proposes a method for estimating the heat of a MiniLED spliced display device based on gray value statistics.
  • the gray value of each pixel in each frame of the image will produce a contribution value to the current temperature of the screen and the heat accumulation.
  • This contribution Value can refer to added or subtracted heat.
  • This contribution value is accumulated in the time dimension to form the final screen heat estimate.
  • the solution of this application is used to estimate the heat of the Mini LED splicing display device without adding any temperature sensing hardware, and the temperature and heat estimation of the Mini LED splicing display device is realized without increasing any cost.
  • a heat accumulation image will be formed through the estimated heat value of the MiniLED splicing display device, and then the area segmentation compensation of the heat accumulation image will be used to finally form a compensation image.
  • an embodiment of the present application provides a control device for a spliced display device, including:
  • the spatial heat module 10 is used to obtain a first grayscale image, and determine the spatial heat impact image of the splicing display device based on the first grayscale image.
  • the first grayscale image is obtained through grayscale processing based on the original image;
  • the time heat module 20 is used to time-accumulate the spatial heat impact image to obtain a time-heat accumulation image
  • the second grayscale module 30 is used to map the temporal heat accumulation image into a second grayscale image
  • the compensation module 40 is used to subtract the second grayscale image from the R channel component in the original image to obtain a compensated image.
  • control device of the splicing display device in this embodiment can execute any of the control methods of the splicing display device provided in the embodiments of this application.
  • the implementation principles are similar and will not be described again here.
  • a splicing display device including:
  • a spliced display panel includes a number of display panels spliced to each other;
  • the processor is electrically connected to the memory and the splicing display panel;
  • the memory stores a computer program, and the computer program is executed by the processor to implement the control method of the splicing display device as provided in any of the above embodiments.
  • embodiments of the present application provide a computer-readable storage medium.
  • the computer storage medium is used to store computer instructions.
  • the computer can execute the splicing display device provided in any of the above embodiments. control method.
  • the control method of the splicing display device determines the spatial heat impact image of the splicing display device in the spatial dimension based on the first grayscale image.
  • the first grayscale image is obtained by grayscale processing based on the RGB image.
  • the spatial heat impact image is accumulated over time to obtain a time heat accumulation image, and then the time heat accumulation image is mapped to a second grayscale image, and the second grayscale image is the compensation image, that is, the grayscale that needs to be compensated value; then, subtract the second grayscale image from the R channel component in the RGB image to obtain the compensated image.
  • the heat accumulation image is obtained in the spatial dimension and the time dimension, and the heat accumulation image is mapped into a grayscale image, that is, a compensation image. It is necessary to lower the grayscale value of the image in the area with high luminous efficiency.
  • the R channel component of the image is subtracted from the second grayscale image, thereby making the grayscale value smaller, thereby weakening the afterimage, thereby making the screen display uniform when the entire screen is switched to the same grayscale display, improving the display effect and user experience.
  • the luminous efficiency of Mini LED lamps is affected by temperature. When heat accumulation reaches a certain level, the temperature will increase, causing the luminous efficiency of Mini LED lamps to become lower.
  • the temperature of the area where the pattern is located is low (less heat accumulation), and the background In areas with high temperatures (high heat accumulation), the luminous efficiency of MiniLED lights becomes lower in places with high temperatures, while in places with low temperatures the luminous efficiency of MiniLED lights is still high.
  • the gray value of the image in the area with high luminous efficiency needs to be lowered.
  • the R channel component of the RGB image can be subtracted from the second gray image, thereby making the gray value smaller. This can reduce the residual image, making the screen display uniform when the entire screen is switched to the same grayscale display, improving the display effect and user experience.
  • steps, measures, and solutions in the various operations, methods, and processes that have been discussed in this application can be alternated, changed, combined, or deleted.
  • steps, measures, and solutions in the various operations, methods, and processes that have been discussed in this application can also be alternated, changed, rearranged, decomposed, combined, or deleted.
  • steps, measures, and solutions in the prior art with various operations, methods, and processes disclosed in this application can also be replaced, changed, rearranged, decomposed, combined, or deleted.
  • first and second are used for descriptive purposes only and shall not be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of this application, unless otherwise stated, “plurality” means two or more.
  • connection should be understood in a broad sense.
  • connection or integral connection; it can be directly connected, or indirectly connected through an intermediary, or it can be internal connection between two components.
  • connection or integral connection; it can be directly connected, or indirectly connected through an intermediary, or it can be internal connection between two components.

Abstract

一种拼接显示装置及其控制方法、控制装置和存储介质。拼接显示装置的控制方法包括获取第一灰度图像,基于第一灰度图像,确定拼接显示装置的空间热量影响图像,第一灰度图像是基于原始图像经过灰度化处理得到的;对空间热量影响图像进行时间累积,得到时间热量累积图像;将时间热量累积图像映射为第二灰度图像;将原始图像中的R通道分量减去第二灰度图像,得到经过补偿后的图像,从而能够减弱残影,使得整个屏幕切换到同一灰度显示时屏幕显示画面均匀,提升显示效果和用户体验。

Description

拼接显示装置及其控制方法、控制装置和存储介质
相关申请的交叉引用
本公开以申请号为:202210615809.X,申请日为:2022年05月31日,发明名称为:拼接显示装置及其控制方法、控制装置和存储介质的申请文件作为优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本申请涉及显示技术领域,具体而言,本申请涉及一种拼接显示装置及其控制方法、控制装置和存储介质。
背景技术
目前拼接显示装置得到广泛的应用,例如LED背光的LCD(Liquid Crystal Display,液晶显示器)在市场上仍然占据主导位置,作为被动式发光的显示器件,其光源利用效率及主观画质很难提升。为了在电视、手机、穿戴等电子设备上获得更好的显示效果,新型显示技术OLED(Organic Light-Emitting Diode,有机发光二极管)、MiniLED(被称为“亚毫米发光二极管”)以及MicroLED(LED微缩化)技术应运而生。LED是指发光二极管,MiniLED比普通的LED尺寸更小,显示效果更细腻。MiniLED相比OLED省电、显示寿命延长、成本低、显示效果相近。
但是在拼接显示装置显示过程中,例如,用于屏显的MiniLED灯发光效率直接受MiniLED灯热效应的影响,而MiniLED灯热效应由驱动其发光的电流值大小所产生。在MiniLED拼接显示装置显示过程中,MiniLED灯驱动电流值的大小与其显示的灰度值的大小呈正相关,灰度值越大,所驱动的电流值越大,该MiniLED灯所产生的热量也越多。
在屏幕的不同区域显示不同的灰度时,由于屏幕不同区域的热量累计不同,因此屏幕不同区域的MiniLED灯发光效率不同,例如,在热量累积多的区域,MiniLED灯的发光效率降低,在热量累积少的区域,MiniLED灯的发光效率仍然较高,在屏幕长时间点亮后,将整个屏幕切换到同一灰度显示时,在热量累积多、MiniLED发光效率低的区域容易出现残影,最终导致整个屏幕切换到同一灰度显示时屏幕出现显示画面不均匀的现象,降低显示效果,影响用户体验。
发明内容
本申请针对现有方式的缺点,提出一种拼接显示装置及其控制方法、控制装置和存 储介质,用以解决现有技术存在的在热量累积多、MiniLED发光效率低的区域容易出现残影,最终导致整个屏幕切换到同一灰度显示时屏幕出现显示画面不均匀的现象的技术问题。
第一个方面,本申请实施例提供了一种拼接显示装置的控制方法,包括:
获取第一灰度图像,基于第一灰度图像,确定拼接显示装置的空间热量影响图像,第一灰度图像是基于原始图像经过灰度化处理得到的;
对空间热量影响图像进行时间累积,得到时间热量累积图像;
将时间热量累积图像映射为第二灰度图像;
将原始图像中的R通道分量减去第二灰度图像,得到经过补偿后的图像。
在一个可能的实现方式中,基于第一灰度图像,确定拼接显示装置的空间热量影响图像,包括:
模拟第一灰度图像中的图案的热量扩散信息,生成图案边缘扩散图像;
基于图案边缘扩散图像,确定拼接显示装置的空间热量影响图像。
在一个可能的实现方式中,模拟第一灰度图像中的图案的热量扩散信息,生成图案边缘扩散图像,包括:
将第一灰度图像中的图案的边缘之外的第一区域增加一灰度值,将第一灰度图像中的图案的边缘之内的第二区域减少一灰度值,增加的一灰度值与减少的一灰度值相等,得到图案边缘扩散图像。
在一个可能的实现方式中,拼接显示装置包括拼接显示面板,拼接显示面板包括至少两个相互拼接的显示面板;
以及,基于图案边缘扩散图像,确定拼接显示装置的空间热量影响图像,包括:
对与拼接显示面板大小相同的图案边缘扩散图像进行切分处理,得到至少两个与显示面板大小相同的单元图像;
确定每个单元图像的单元空间热量影响图像;
基于每个单元空间热量影响图像,确定拼接显示面板的空间热量影响图像。
在一个可能的实现方式中,确定每个单元图像的单元空间热量影响图像,包括:
确定中心单元图像对自身的热量影响数据,得到第一空间热量影响图像;
确定周围单元图像对中心单元图像的热量影响数据,得到多个第二空间热量影响图像;周围单元图像位于中心单元图像的周边;
将第一空间热量影响图像和多个第二空间热量影响图像相加,得到单元空间热量影响图像。
在一个可能的实现方式中,确定周围单元图像对中心单元图像的热量影响数据,得到多个第二空间热量影响图像,包括:
将周围单元图像与中心单元图像,进行纵向切分成N等份的图像块和/或横向切分成N等份的图像块、或纵向与横向一起共切分成N等份的图像块,确定周围单元图像 对中心单元图像的热量影响数据,得到多个第二空间热量影响图像。
在一个可能的实现方式中,将周围单元图像与中心单元图像,进行纵向切分成N等份的图像块和/或横向切分成N等份的图像块,确定周围单元图像对中心单元图像的热量影响数据,得到多个第二空间热量影响图像,包括:
与中心单元图像横向直接相邻的周围单元图像为第一周围单元图像,将第一周围单元图像与中心单元图像,分别进行纵向切分为N1等份的图像块,确定第一周围单元图像对中心单元图像的热量影响数据,得到第三热量影响图像;多个第二空间热量影响图像包括多个第三热量影响图像;
与中心单元图像纵向直接相邻的周围单元图像为第三周围单元图像,将第三周围单元图像与中心单元图像,分别进行横向切分为N2等份的图像块,确定第三周围单元图像对中心单元图像的热量影响数据,得到第七热量影响图像;多个第二空间热量影响图像包括多个第七热量影响图像。
在一个可能的实现方式中,将周围单元图像与中心单元图像,进行纵向切分成N等份的图像块和/或横向切分成N等份的图像块,确定周围单元图像对中心单元图像的热量影响数据,得到多个的第二空间热量影响图像,包括:
与中心单元图像非直接相邻的周围单元图像为第二周围单元图像,将第二周围单元图像与中心单元图像,分别进行纵向切分为N1等份的图像块,确定第二周围单元图像对中心单元图像的纵向热量影响数据,得到第四热量影响图像;将第二周围单元图像与中心单元图像,分别进行横向切分为N2等份的图像块,确定第二周围单元图像对中心单元图像的横向热量影响数据,得到第五热量影响图像;将第四热量影响图像和第五热量影响图像相加并取平均数,得到第六热量影响图像;多个第二空间热量影响图像包括多个第六热量影响图像。
在一个可能的实现方式中,对空间热量影响图像进行时间累积,得到时间热量累积图像,包括:
构建热量灰度查找表;
当第一灰度图像的像素点的灰度值大于或等于查找表中的灰度值时,将前n-1帧图像的像素点的热量累积值与当前帧的像素点的空间热量影响图像的像素点的瞬时热量值相加,得到前n帧图像的像素点的热量累积值作为时间热量累积图像;
当第一灰度图像的像素点的灰度值小于查找表中的灰度值时,将前n-1帧图像的像素点的热量累积值与当前帧的像素点的空间热量影响图像的像素点的瞬时热量值相减,得到前n帧图像的像素点的热量累积值作为时间热量累积图像。
在一个可能的实现方式中,构建热量灰度查找表包括:
确定多个灰度值与多个稳定的热量值之间对应关系,稳定的热量值为在拼接显示装置上全屏持续显示同一灰度值的图像达到阈值时间时拼接显示装置的热量;
选取设计热量值范围内的至少一个灰度值与至少一个稳定的热量值之间对应关系, 作为热量灰度查找表。
在一个可能的实现方式中,原始图像包括RGB图像。
第二个方面,本申请实施例提供了一种拼接显示装置的控制装置,包括:
空间热量模块,用于获取第一灰度图像,基于第一灰度图像,确定拼接显示装置的空间热量影响图像,第一灰度图像是基于原始图像经过灰度化处理得到的;
时间热量模块,用于对空间热量影响图像进行时间累积,得到时间热量累积图像;
第二灰度模块,用于将时间热量累积图像映射为第二灰度图像;
补偿模块,用于将原始图像中的R通道分量减去第二灰度图像,得到经过补偿后的图像。
第三个方面,本申请实施例提供了一种拼接显示装置,包括:
拼接显示面板,拼接显示面板包括若干互相拼接的显示面板;
存储器;
处理器,与存储器和拼接显示面板均电连接;
存储器存储有计算机程序,计算机程序由处理器执行以实现如第一个方面的拼接显示装置的控制方法。
第四个方面,本申请实施例提供了一种计算机可读存储介质,计算机存储介质用于存储计算机指令,当其在计算机上运行时,使得计算机可以执行上述第一个方面拼接显示装置的控制方法。
本申请实施例提供的技术方案带来的有益技术效果包括:
本申请实施例提供的拼接显示装置的控制方法,通过在空间维度,基于第一灰度图像,确定拼接显示装置的空间热量影响图像,第一灰度图像是基于RGB图像经过灰度化处理得到的,在时间维度,对空间热量影响图像进行时间累积,得到时间热量累积图像,然后将时间热量累积图像映射为第二灰度图像,第二灰度图像为补偿图像,即需要补偿的灰度值;然后,将RGB图像中的R通道分量减去第二灰度图像,即可得到经过补偿后的图像。
由于屏幕在热量累积多的区域,发光单元的发光效率降低,在热量累积少的区域发光单元的发光效率仍然较高,在热量累积多发光单元的发光效率低的区域容易出现残影,因此本申请实施例通过在空间维度和时间维度得到热量累积图像,并将该热量累积图像映射为灰度图像,即补偿图像,需要将发光效率高的区域的图像灰度值调低一点,通过将RGB图像的R通道分量减去第二灰度图像,从而将灰度值变得更小一点,从而减弱残影,从而使得整个屏幕切换到同一灰度显示时屏幕显示画面均匀,提升显示效果和用户体验。
而且,根据背景描述中可知,MiniLED灯的发光效率受温度的影响,热量累积达到一定的程度,温度会升高,导致MiniLED灯发光效率变低。在MiniLED屏幕长时间点亮某个图案(图案是非白色,背景是全白)之后,图案所在区域温度低(热量累积少), 背景区域温度高(热量累积多),温度高的地方MiniLED灯发光效率变低,温度低的地方MiniLED灯发光效率仍然较高。为了使得画面显示更均一,需要将发光效率高的区域的图像灰度值调低一点,可以将RGB图像的R通道分量减去第二灰度图像,从而将灰度值变得更小一点,从而能够减弱残影,从而使得整个屏幕切换到同一灰度显示时屏幕显示画面均匀,提升显示效果和用户体验。
本申请附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本申请实施例提供的一种拼接显示装置的控制方法的流程示意图;
图2为本申请实施例提供的一种在空间维度,确定拼接显示装置的空间热量影响图像的流程示意图;
图3a为本申请实施例提供的一种热源在经过10时间单位以后的热量扩散结果示意图;
图3b为本申请实施例提供的一种热源在经过15时间单位以后的热量扩散结果示意图;
图3c为本申请实施例提供的一种热源在经过50时间单位以后的热量扩散结果示意图;
图4为本申请实施例提供的一种模拟第一灰度图像中的图案的热量扩散信息,生成图案边缘扩散图像的示意图;
图5为本申请实施例提供的一种图案边缘扩散图像包括的拼接显示面板的示意图;
图6为本申请实施例提供的一种纵向切分的示意图;
图7为本申请实施例提供的另一种纵向切分的示意图;
图8为本申请实施例提供的一种横向切分的示意图;
图9为本申请实施例提供的单元图像A5的单元空间热量影响图像的示意图;
图10为本申请实施例提供的一种横向与纵向一起切分成多个图像块的示意图;
图11为本申请实施例提供的一种A4叠的流程示意图;
图12为本申请实施例提供的又一种拼接显示装置的控制方法的流程示意图;
图13为本申请实施例提供的拼接显示装置的控制装置的结构示意图;
图14为本申请实施例提供的一种拼接显示装置的控制方法的效果图;
图15为本申请实施例提供的图14中一个效果图的放大图。
具体实施方式
下面详细描述本申请,本申请的实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的部件或具有相同或类似功能的部件。此外,如果已知技术的详细描述对于示出的本申请的特征是不必要的,则将其省略。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能解释为对本申请的限制。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本申请所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样被特定定义,否则不会用理想化或过于正式的含义来解释。
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本申请的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。应该理解,当我们称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的全部或任一单元和全部组合。
本申请的发明人进行研究发现,在解决MiniLED拼接显示装置显示效果不均一的问题时,对于屏幕不同位置的热量的预测是关键。
由于屏幕不同区域的热量累积不同,进而使得屏幕不同区域的MiniLED灯发光效率不同。由于在不同区域MiniLED等灯的发光效率不同,导致全屏切换到同一灰度显示时屏幕出现残影。
例如,屏幕点亮一段时间后,第一区域的热量累积较多,导致第一区域的MiniLED的发光效率降低30%,第二区域的热量累积较少,导致第二区域的MiniLED发光效率降低10%,第一区域MiniLED的发光效率比第二区域MiniLED的发光效率低,如果屏幕切换到同一亮度的时候,在第一区域容易出现残影。
在热量累积多、MiniLED发光效率低的区域容易出现残影,最终导致整个屏幕切换到同一灰度显示时屏幕出现显示画面不均匀的现象,降低显示效果,影响用户体验。
本申请提供的一种拼接显示装置及其控制方法、控制装置和存储介质,旨在解决现有 技术的如上技术问题。
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。
本申请实施例提供了一种拼接显示装置的控制方法,拼接显示装置可以包括MiniLED拼接显示装置,该方法的流程示意图如图1所示,该方法包括:
S1:获取第一灰度图像,基于第一灰度图像,确定拼接显示装置的空间热量影响图像,第一灰度图像是基于原始图像经过灰度化处理得到的;
S2:对空间热量影响图像进行时间累积,得到时间热量累积图像;
S3:将时间热量累积图像映射为第二灰度图像;
S4:将原始图像中的R通道分量减去第二灰度图像,得到经过补偿后的图像。
第二灰度图像为补偿图像。
可选地,原始图像包括RGB图像。RGB图像为彩色图像,原始图像为外部视频流输入的图像。
S1是从空间维度确定空间热量影响图像的,即从第一灰度图像在拼接显示装置的整个屏幕的热量扩散信息维度,确定拼接显示装置的空间热量影响图像。
S2是从时间维度确定时间热量影响图像的,即从不同帧的空间热量影响图像在时间线上的热量累积效应,确定的时间热量累积图像。本申请实施例提供的拼接显示装置的控制方法,通过在空间维度,基于第一灰度图像,确定拼接显示装置的空间热量影响图像,第一灰度图像是基于RGB图像经过灰度化处理得到的,在时间维度,对空间热量影响图像进行时间累积,得到时间热量累积图像,然后将时间热量累积图像映射为第二灰度图像,第二灰度图像为补偿图像,即需要补偿的灰度值;然后,将RGB图像中的R通道分量减去第二灰度图像,即可得到经过补偿后的图像。
由于屏幕在热量累积多的区域,发光单元的发光效率降低,在热量累积少的区域发光单元的发光效率仍然较高,在热量累积多发光单元的发光效率低的区域容易出现残影,因此本申请实施例通过在空间维度和时间维度得到热量累积图像,并将该热量累积图像映射为灰度图像,即补偿图像,需要将发光效率高的区域的图像灰度值调低一点,通过将RGB图像的R通道分量减去第二灰度图像,从而将灰度值变得更小一点,从而减弱残影,从而使得整个屏幕切换到同一灰度显示时屏幕显示画面均匀,提升显示效果和用户体验。
而且,根据背景描述中可知,MiniLED灯的发光效率受温度的影响,热量累积达到一定的程度,温度会升高,导致MiniLED灯发光效率变低。在MiniLED屏幕长时间点亮某个图案(图案是非白色,背景是全白)之后,图案所在区域温度低(热量累积少),背景区域温度高(热量累积多),温度高的地方MiniLED灯发光效率变低,温度低的地方MiniLED灯发光效率仍然较高。为了使得画面显示更均一,需要将发光效率高的区域的图像灰度值调低一点,可以将RGB图像的R通道分量减去第二灰度图像,从而将灰度值变得更小一点,从而能够减弱残影,从而使得整个屏幕切换到同一灰度显示时屏幕显示画面 均匀,提升显示效果和用户体验。
可选地,第二灰度图像的灰度值一般不超过15,实际上每一帧对于热量累积的贡献非常小,累积几万帧以后得到的第二灰度图像中的灰度值也不会超过15。
本申请实施例通过在空间和时间估计累积的热量的目的是为了确定需要补偿的灰度值,热量累积的估计只是一个中间变量。
在一些实施例中,如图2所示,在空间维度,基于第一灰度图像,确定拼接显示装置的空间热量影响图像,包括:
S11:模拟第一灰度图像中的图案的热量扩散信息,生成图案边缘扩散图像;
S12:基于图案边缘扩散图像,确定拼接显示装置的空间热量影响图像。
可选地,第一灰度图像中可以包括一个图案或多个图案,可以通过构建图形边缘扩散模型,模拟每个图案的热量扩散信息,最终生成整个屏幕的图案边缘扩散图像。
在一些实施例中,如图4所示,模拟第一灰度图像中的图案的热量扩散信息,生成图案边缘扩散图像,包括:
将第一灰度图像中的图案的边缘之外的第一区域增加一灰度值ΔG,将第一灰度图像中的图案的边缘之内的第二区域减少一灰度值ΔG,增加的一灰度值ΔG与减少的一灰度值ΔG相等,得到图案边缘扩散图像。
针对步骤S11,具体可以采用两种方案,模拟第一灰度图像中的图案的热量扩散信息,生成图案边缘扩散图像,如下:
1、采用二维扩散方程的方式
拼接显示装置热量扩散满足二维热量扩散方程,二维热量扩散方程可以写成如下的形式:
对时间项采用前向差分,对空间项采用中心差分,可以得到方程的离散形式如下:
上述公式中,u表示热源的热量值,v表示扩散速度,t表示时间,x表示热源在纵向的热量扩散距离,y表示热源在横向的热量扩散距离,n表示时间单位。
对以上扩散过程进行建模,构建图案热量扩散模型(即二维热量扩散模型),并使用程序模拟可以得到可视化结果如图3a~图3c所示,图3a~图3c中分别展示了热源在经过10、15和50时间单位以后的热量扩散结果。
需要说明的是,图案在拼接显示装置的屏幕上长时间点亮,图案所在区域的热量会扩散,热量扩散过程可以采用上述的图案热量扩散模型表示。将第一灰度图像输入至图案热 量扩散模型,图案热量扩散模型输出是经过模拟热量扩散后的图案边缘扩散图像。
图3a~图3c中表示热源经过不同时间以后的热量扩散结果,图案越高的地方表示热量越高。时间较短的时候,热源范围小,热量高;时间较长的时候,热源范围大,热量低。将第一灰度图像输入到图案热量扩散模型,可以得到经过模拟热量扩散后的图案边缘扩散图像,得到的图案边缘扩散图像类似于经过高斯边缘模糊以后所得到的图。
2、采用高斯模糊的方式
在实际应用过程中,考虑到二维热量扩散方程计算量大,不能达到实时的因素,为了达到实时的因数,采用高斯模糊的方式对第一灰度图像进行边缘模糊,具体操作如下:
在一定范围内,以第一灰度图像边缘为界限,将第一灰度图像内部某像素点的灰度值增加ΔG,同时与之镜像位置的像素点的灰度值减少ΔG,离第一灰度图像边缘越近的像素点灰度值增加/减少的值越多,如图4所示。将原来第一灰度图像中边界清晰的图案变成了边界模糊的图案,形成了图案边缘扩散图像。图4中矩形表示一个图案,嵌套的三个矩形颜色由内到外逐渐变浅,表示热量的扩散。图4仅作为示例,第一灰度图像中还可以包括多个图案。
可以理解,热量总量是一定的,如果用灰度值模拟温度,那么就是灰度值总量一定,而扩散过程可以模拟为图像边缘附近的像素减少值移位到与之对称的位置,以此来保证灰度值总量是一定的。
在一些实施例中,拼接显示装置包括拼接显示面板,拼接显示面板包括至少两个相互拼接的显示面板;拼接显示面板可称为拼接屏,显示面板可称为单元屏。
以及,基于图案边缘扩散图像,确定拼接显示装置的空间热量影响图像,包括:
对与拼接显示面板大小相同的图案边缘扩散图像进行切分处理,得到至少两个与显示面板同样大小的单元图像;
确定每个单元图像的单元空间热量影响图像;
基于每个单元空间热量影响图像,确定拼接显示面板的空间热量影响图像。
在一些实施例中,确定每个单元图像的单元空间热量影响图像,包括:
确定中心单元图像对自身的热量影响数据,得到第一空间热量影响图像;
确定周围单元图像对中心单元图像的热量影响数据,得到多个第二空间热量影响图像;周围单元图像位于中心单元图像的周边;
将第一空间热量影响图像和多个第二空间热量影响图像相加,得到单元空间热量影响图像。
第二空间热量影响图像可能相同,也可能不同。
在一些实施例中,确定周围单元图像对中心单元图像的热量影响数据,得到多个第二空间热量影响图像,包括:
将周围单元图像与中心单元图像,进行纵向切分成N等份的图像块和/或横向切分成N等份的图像块、或纵向与横向一起共切分成N等份的图像块,确定周围单元图像对中心 单元图像的热量影响数据,得到多个第二空间热量影响图像。
在一些实施例中,将周围单元图像与中心单元图像,进行纵向切分成N等份的图像块和/或横向切分成N等份的图像块,确定周围单元图像对中心单元图像的热量影响数据,得到多个第二空间热量影响图像,包括:
与中心单元图像横向(左右)直接相邻的周围单元图像为第一周围单元图像,将第一周围单元图像与中心单元图像,分别进行纵向切分为N1等份的图像块,确定第一周围单元图像对中心单元图像的热量影响数据,得到第三热量影响图像;多个第二空间热量影响图像包括多个第三热量影响图像;
与中心单元图像纵向(上下)直接相邻的周围单元图像为第三周围单元图像,将第三周围单元图像与中心单元图像,分别进行横向切分为N2等份的图像块,确定第三周围单元图像对中心单元图像的热量影响数据,得到第七热量影响图像;多个第二空间热量影响图像包括多个第七热量影响图像。
多个第三热量影响图像可能相同,也可能不同。
多个第七热量影响图像可能相同,也可能不同。
在一些实施例中,将周围单元图像与中心单元图像,进行纵向切分成N等份的图像块和/或横向切分成N等份的图像块,确定周围单元图像对中心单元图像的热量影响数据,得到多个的第二空间热量影响图像,包括:
与中心单元图像非直接相邻的周围单元图像为第二周围单元图像,将第二周围单元图像与中心单元图像,分别进行纵向切分为N1等份的图像块,确定第二周围单元图像对中心单元图像的纵向热量影响数据,得到第四热量影响图像;将第二周围单元图像与中心单元图像,分别进行横向切分为N2等份的图像块,确定第二周围单元图像对中心单元图像的横向热量影响数据,得到第五热量影响图像;将第四热量影响图像和第五热量影响图像相加并取平均数,得到第六热量影响图像;多个第二空间热量影响图像包括多个第六热量影响图像。
本申请中N、N1、N2均为不小于1的整数,具体切分多少等份的图像块,可以根据实际情况而定,本申请不做限定。
具体的,可以通过构建屏幕特性模型,对拼接显示装置的热量扩散进行模拟。
如图5所示,拼接显示装置可以包括6×6的显示模组,拼接显示装置可以包括阵列排布的288块拼接的显示面板(单元屏)。在显示面板内部以及显示面板之间的热量扩散特性存在较大的差异,因此在进行热量特性建模时必须考虑显示面板之间的拼缝,才能更准确的进行残影补偿建模。
考虑到热量扩散范围有限,在本申请所设计的屏幕特性建模过程中,仅考虑3×3范围的显示面板所构建的区域面积大小。
如图5所示,对于拼接显示装置的整个屏幕中某个3×3范围大小的区域,其中每一块显示面板Ai(i≥1)都表示一块最小拼接单元的显示面板。
对于如图6所示的3×3范围大小的9块显示面板,按照从上到下,从左到右的顺序分别编号为A1到A9。对于拼接显示装置的整块大屏中的任意一块显示面板A5,可以仅考虑周围的8块显示面板对显示面板A5的热量影响。
具体的,对图案边缘扩散图像进行切分处理,得到与显示面板Ai同样大小的单元图像;图案边缘扩散图像的大小与拼接显示装置整个屏幕的大小相等,显示面板Ai(i≥1)与单元图像Ai(i≥1)一一对应,且大小相等。
然后,确定每个单元图像的单元空间热量影响图像;
然后,基于每个单元空间热量影响图像,确定拼接显示装置的整个屏幕对应的空间热量影响图像。例如,可以将每个单元空间热量影响图像拼接形成整个屏幕对应的空间热量影响图像。
首先,确定周围单元图像对所述中心单元图像的热量影响数据,得到多个第二空间热量影响图像;所述周围单元图像位于所述中心单元图像的周边。具体如下:
1、针对与中心单元图像直接相邻的周围单元图像,如图5和图6所示,中心单元图像A5,与A5直接相邻的周围单元图像包括A2、A4、A6和A8。与A5左右直接相邻的A4和A6可以分别进行纵向切分成4等份的图像块,A4和A6的操作和计算相同。与A5上下直接相邻的A2和A8可以分别进行横向切分成6等份的图像块,A2和A8的操作和计算相同。
例如,将A4与A5分别进行纵向切分为4等份的图像块,确定A4对A5的热量影响数据,得到第三热量影响图像A4叠。
计算A4对A5的热量影响数据,即计算A4所产生的热量对A5的影响,表现为A5热量累积值的变化。
A44叠=(α1×A44+α2×A43+α3×A42+α4×A41)×边缘扩散系数β;
A43叠=α5×A44叠;
A42叠=α6×A44叠;
A41叠=α7×A44叠;
A4叠(第三热量影响图像)=A44叠到A41叠进行拼接。
上述表达式中,A44叠为A4对A51的热量影响数据,A43叠为A4对A52的热量影响数据,A42叠为A4对A53的热量影响数据,A41叠为A4对A54的热量影响数据。
如图6所示,将A4和A5分别纵向切分为4份,A44离A51最近,所以A44对A51的影响最大,其对应的系数α1的值也最大;A41离A51最远,所以A41对A51的影响最小,其对应的系数α4的值也最小。在实践过程中,α1到α4的值通过热量图上热量之间的比例系数进行确定。
边缘扩散系数β表示的是不同单元图像之间的扩散特性,由于相邻的显示面板(单元屏)之间有拼缝,所以单元图像之间的热量扩散会受到拼缝的影响,可以将这种影响模拟 为一个扩散系数β。
A52离A4更远一点,因此A4对A52的热量影响比A4对A51的热量影响更小,可以用A44叠乘以一个系数α5来表示。在实践过程中,只点亮A4,A52的热量均值除以A51的热量均值即是α5的值,α6和α7同理。
2、针对与中心单元图像非直接相邻的周围单元图像,如图5、图7和图8所示,中心单元图像A5,与A5非直接相邻的周围单元图像包括A1、A3、A7和A9。例如,将A1与A5分别二次切分,首先进行第一次切分,将A1与A5分别进行纵向切分为4等份的图像块,得到第四热量影响图像A1_col叠,然后进行第二次切分,将A1与A5分别进行横向切分为6等份的图像块,得到第五热量影响图像A1_row叠,将第四热量影响图像A1_col叠和第五热量影响图像A1_row叠相加并取平均数,得到第六热量影响图像A1叠。同理,A3、A7、A9与A1的操作相同。
计算A1对A5的热量影响数据,即计算A1所产生的热量对A5的影响,表现为A5热量累积值的变化。
(1)第一次切分(纵向切分),如图7所示。
A14叠=(α1×A44+α2×A43+α3×A42+α4×A41)×边缘扩散系数β;
A13叠=α5×A44叠;
A12叠=α6×A44叠;
A11叠=α7×A44叠;
A1_col叠(第四热量影响图像)=A11叠到A14叠进行拼接。
上述表达式中,A14叠为A1对A51的热量影响数据,A13叠为A1对A52的热量影响数据,A12叠为A1对A53的热量影响数据,A11叠为A1对A54的热量影响数据。
(2)第二次切分(横向切分),如图8所示。(A2和A8与该横向切分的计算方法相同,A2和A8与该横向切分的计算方法未示出)。
A110叠=(α1×A110+α2×A19+α3×A18+α4×A17+α5×A16+α6×A17)×边缘扩散系数β;
A19叠=α7×A110叠;
A18叠=α8×A110叠;
A17叠=α9×A110叠;
A16叠=α10×A110叠;
A15叠=α11×A110叠;
A1_row叠(第五热量影响图像)=A15叠到A110叠进行拼接。
上述表达式中,A110叠为A1对A55的热量影响数据,A1叠为A19对A56的热量影响数据,……,A15叠为A1对A550的热量影响数据。
(3)A1叠(第六热量影响图像)=(A1_col叠+A1_row叠)/2。
A1处于A5的左上角,所以A1对A5的影响有纵向的也有横向的,所以可以将A1进行两次切分,分别计算纵向的影响和横向的影响,计算方式和计算A4对A5的影响过程相同,最后将纵向影响和横向影响求和取平均即可得到A1对A5的影响。
按照上述方法,可分别得到第三热量影响图像A4叠和A6叠,第七热量影响图像A2叠和A8叠,以及第六热量影响图像A1叠、A3叠、A7叠、A9叠。多个第二空间热量影响图像包括A2叠、A4叠、A6叠、A8叠、A1叠、A3叠、A7叠、A9叠。
通过上述计算过程,可得到周围8个周围单元图像(A2、A4、A6、A8、A1、A3、A7、A9)对中心单元图像A5的热量影响,再统一叠加到一起得到A5的周围热量影响,即A5周围热量累积(周围单元图像对中心单元图像的热量影响数据)。
A5周围热量累积(多个的第二空间热量影响图像相加)=A2叠+A4叠+A6叠+A8叠+A1叠+A3叠+A7叠+A9叠。
其次,确定中心单元图像对自身的热量影响数据,得到第一空间热量影响图像。具体如下:
A5自身热量累积(第一空间热量影响图像)=A5×A5权重图像(权重系数均为1)。
权重系数均为1,A5×A5权重图像等价于没有做任何的计算,因为全部乘以1。
最后,如图10所示,A5自身热量累积与A5周围热量累积相加得到A5的单元空间热量影响图像。即A5的单元空间热量影响图像=A5自身热量累积+A5周围热量累积。
接着,将拼接显示装置中的所有拼接的显示面板(单元屏)都采用同样的方法,可以得到每个单元图像的单元空间热量影响图像,即Ai(i≥1)的单元空间热量影响图像。
基于得到的Ai(i≥1)的单元空间热量影响图像,将其进行拼接即可得到拼接显示装置的整个屏幕对应的空间热量影响图像。
需要说明的是,若单元图像A1位于整个屏幕图像的左上角,首先,确定周围的周围单元图像A2、A4、A5对A1的热量影响,再统一叠加到一起得到A1的周围热量影响,即A1周围热量累积(周围单元图像对中心单元图像的热量影响数据)。
A1周围热量累积(多个的第二空间热量影响图像相加)=A2叠+A4叠+A5叠(计算方法同上)。
其次,确定单元图像A1对自身的热量影响数据,得到第一空间热量影响图像。具体如下:
A1自身热量累积(第一空间热量影响图像)=A1×A1权重图像(权重系数均为1)。
最后,A1的单元空间热量影响图像=A1自身热量累积+A1周围热量累积。
同理,若单元图像A7位于整个屏幕图像的左下角、A3位于整个屏幕图像的右上角、A9位于整个屏幕图像的右下角时,计算方法同上。
在另一些实施例中,如图10所示,在屏幕特性模型构建中,单元图像的切分方案可以采用纵向和横向共同切分,即分块切分,在进行影响度计算的时候取A4中的一个小块计算其对A5中所有小块的影响,并以此类推计算A4中所有小块对A5中所有小块的影响, 经过叠加以后即是A4对A5的影响,如图110所示。
单元图像的切分数量可灵活多变,切分的数量越多,计算结果越精确,但是计算量也越大。在实际使用过程中,可以根据效果与速度的均衡灵活配置。
在一些实施例中,将周围单元图像与中心单元图像,分别进行纵向切分成N等份的图像块、或横向切分成N等份的图像块、或纵向与横向一起共切分成N等份的图像块,包括:
将周围单元图像与周围单元图像的均值图像相加,得到第一图像;
将第一图像与周围单元图像的权重图像相乘,得到第二图像;
将第二图像进行纵向切分成N等份的图像块、或横向切分成N等份的图像块、或纵向与横向一起共切分成N等份的图像块;
以及,确定周围单元图像对中心单元图像的热量影响数据,得到多个第二空间热量影响图像,包括:
将周围图像单元的N等份的图像块相加,得到一个等份的图像块;
将一个等份的图像做镜像翻转,得到另一个等份的图像块;
将另一个等份的图像块乘以不同的系数,得到周围图像单元的N等份的图像块分别对与N等份的图像块对应的中心单元图像的N等份的图像块的热量影响数据;
将N等份的热量影响数据拼接得到周围单元图像对中心单元图像的热量影响数据;
基于周围单元图像对中心单元图像的热量影响数据,得到第二空间热量影响图像。
示例性地,如图11所示。
将周围单元图像A4与周围单元图像A4的均值图像(A4_mean)相加,得到第一图像;
将第一图像与周围单元图像A4的权重图像(A4_weight)相乘,得到第二图像;
将第二图像进行纵向切分成4等份的图像块;
将周围图像单元A4的4等份的图像块相加,得到一个等份的图像块;
将一个等份的图像做镜像翻转,得到另一个等份的图像块;
将另一个等份的图像块乘以不同的系数,得到周围图像单元的4等份的图像块分别对与4等份的图像块对应的中心单元图像的4等份的图像块的热量影响数据;(如上述计算公式示例);
将4等份的热量影响数据拼接得到周围单元图像A4对中心单元图像A5的热量影响数据;
基于周围单元图像A4对中心单元图像A5的热量影响数据,得到第二空间热量影响图像。
在一些实施例中,对空间热量影响图像进行时间累积,得到时间热量累积图像,包括:
构建热量灰度查找表;
当第一灰度图像的像素点的灰度值大于或等于查找表中的灰度值时,将前n-1帧图像 的像素点的热量累积值与当前帧的像素点的空间热量影响图像的像素点的瞬时热量值相加,得到前n帧图像的像素点的热量累积值作为时间热量累积图像;
当第一灰度图像的像素点的灰度值小于查找表中的灰度值时,将前n-1帧图像的像素点的热量累积值与当前帧的像素点的空间热量影响图像的像素点的瞬时热量值相减,得到前n帧图像的像素点的热量累积值作为时间热量累积图像。
具体的,选取第一灰度图像中某一像素点的位置;
根据该像素点当前已累积的热量值,若该像素点当前已累积的热量值在热量/灰度查找表中找不到,则在热量/灰度查找表第一列中从上到下找到最后一个小于该热量值的值,该值对应的热量/灰度查找表中的灰度值就是待比较的值。
例如,某一像素点当前已累积的热量值为9,热量/灰度查找表中,8.7对应的灰度值为235,9.2对应的灰度值为244。
若当前帧第一灰度图像中像素点的热量值为9对应的灰度值是248,248(当前帧热量值9第一灰度图像中的灰度值)大于235(查找表8.7对应的灰度值G),热量增加。
若当前帧第一灰度图像中像素点的热量值为9对应的灰度值是225,225(当前帧热量值9第一灰度图像中的灰度值)小于235(查找表8.7对应的灰度值G),热量减少。
若该像素点当前已累积的热量值在热量/灰度查找表中可以找到,则该值对应的热量/灰度查找表中的灰度值就是待比较的值。
例如,若当前帧第一灰度图像中像素点的热量值为8.7对应的灰度值是248,248大于235(查找表8.7对应的灰度值G),热量增加。
例如,若当前帧第一灰度图像中像素点的热量值为8.7对应的灰度值是220,220小于235(查找表8.7对应的灰度值G),热量减少。
具体的,如图12所示的整个控制方法的流程图。
假设整块屏幕开机之前的热量累计为0,构建初始热量矩阵A_T0,全部赋值为0(热量矩阵大小与拼接显示装置的整个屏幕大小一致);
然后,构建热量灰度查找表;
当I2_ij≥G时,A_Tn_ij=A_Tn-1_ij+αI4_ij
当I2_ij<G时,A_Tn_ij=A_Tn-1_ij-αI4_ij
A_Tn_ij表示前n帧的像素点[ij]的热量累积值(即该热量累积值积累了前面n帧的热量);
A_Tn-1_ij表示前n-1帧的像素点[ij]的热量累积值(即该热量累积值积累了前面n-1帧的热量);
αI4_ij表示当前帧的像素点[ij]对热量的贡献值(即该像素点在当前帧的瞬时热量值);
I2_ij表示第一灰度图像I2中像素点[ij]的灰度值(该灰度值用于跟热量/灰度查找表中的灰度值G进行比较);
α表示贡献值的权重系数(即表示像素点[ij]在拼接显示装置屏幕第i行第j列的位置所积累的热量的权重系数);
G表示查找表中即将与第一灰度图像I2中像素点[ij]的灰度值进行比较的灰度值。
在一些实施例中,构建热量灰度查找表包括:
确定多个灰度值与多个稳定的热量值之间对应关系,稳定的热量值为在拼接显示装置上全屏持续显示同一灰度值的图像达到阈值时间时拼接显示装置的热量;
选取设计热量值范围内的至少一个灰度值与至少一个稳定的热量值之间对应关系,作为热量灰度查找表。
具体的,周期性地测试0~255所有灰阶,并得到图像的灰度为一个灰度值时对应的拼接显示装置的热量值;
挑选出热量值范围内的热量值分别对应的灰度值,构建热量灰度查找表;热量值范围为不小于0、且不大于10.7;
其中,一个测试周期包括;
在拼接显示装置上持续显示同一幅图像,该图像的灰度为一个灰度值;
在显示同一幅图像持续第一时长后,拼接显示装置的热量保持在一个固定值,测试并得到图像的灰度为一个灰度值时对应的拼接显示装置的热量值。
具体的,可以选取某一灰度长时间点亮屏幕,测试屏幕稳定的热量值。
在实际测试过程中,同一幅图像在MiniLED拼接显示装置的屏幕上显示时间达到40分钟以上之后,屏幕温度会稳定到一个固定值不再变化,此温度稳定值即该灰度下稳定以后的热量值。
通过多次尝试并测量,找出从0到10.7的热量值分别对应的灰度值,构建出热量/灰度查找表。
表一:热量灰度查找表
本申请实施例提出了一种基于灰度值统计的方法估计MiniLED拼接显示装置热量的方法,将每帧图像每个像素点的灰度值对屏幕当前温度热量累积会产生一个贡献值,该贡献值可以指增加或减少的热量。此贡献值在时间维度进行累计,就可以形成最终的屏幕热量估计值。利用本申请的方案进行MiniLED拼接显示装置的热量估计,无需添加任何温感硬件,在不增加任何成本的条件下实现了MiniLED拼接显示装置温度热量估计。通过估计的MiniLED拼接显示装置的热量估计值会形成一幅热量累积图像,然后采用对热量累积图像进行区域切分补偿,最终会形成补偿图像。
采用本申请实施例提供的拼接显示装置的控制方法的效果图如图14和图15所示。
基于同一发明构思,如图13所示,本申请实施例提供了一种拼接显示装置的控制装置,包括:
空间热量模块10,用于获取第一灰度图像,基于第一灰度图像,确定拼接显示装置的空间热量影响图像,第一灰度图像是基于原始图像经过灰度化处理得到的;
时间热量模块20,用于对空间热量影响图像进行时间累积,得到时间热量累积图像;
第二灰度模块30,用于将时间热量累积图像映射为第二灰度图像;
补偿模块40,用于将原始图像中的R通道分量减去第二灰度图像,得到经过补偿后的图像。
本实施例的拼接显示装置的控制装置可执行本申请实施例提供的任一种拼接显示装置的控制方法,其实现原理相类似,此处不再赘述。
基于同一发明构思,本申请实施例提供了一种拼接显示装置,包括:
拼接显示面板;拼接显示面板包括若干互相拼接的显示面板;
存储器;
处理器,与存储器和拼接显示面板均电连接;
存储器存储有计算机程序,计算机程序由处理器执行以实现如上述任一实施例提供的拼接显示装置的控制方法。
基于同一发明构思,本申请实施例提供了一种计算机可读存储介质,计算机存储介质用于存储计算机指令,当其在计算机上运行时,使得计算机可以执行上述任一实施例提供的拼接显示装置的控制方法。
应用本申请实施例,至少能够实现如下有益效果:
本申请实施例提供的拼接显示装置的控制方法,通过在空间维度,基于第一灰度图像,确定拼接显示装置的空间热量影响图像,第一灰度图像是基于RGB图像经过灰度化处理得到的,在时间维度,对空间热量影响图像进行时间累积,得到时间热量累积图像,然后将时间热量累积图像映射为第二灰度图像,第二灰度图像为补偿图像,即需要补偿的灰度值;然后,将RGB图像中的R通道分量减去第二灰度图像,即可得到经过补偿后的图像。
由于屏幕在热量累积多的区域,发光单元的发光效率降低,在热量累积少的区域发光单元的发光效率仍然较高,在热量累积多发光单元的发光效率低的区域容易出现残影,因此本申请实施例通过在空间维度和时间维度得到热量累积图像,并将该热量累积图像映射为灰度图像,即补偿图像,需要将发光效率高的区域的图像灰度值调低一点,通过将RGB图像的R通道分量减去第二灰度图像,从而将灰度值变得更小一点,从而减弱残影,从而使得整个屏幕切换到同一灰度显示时屏幕显示画面均匀,提升显示效果和用户体验。
而且,根据背景描述中可知,MiniLED灯的发光效率受温度的影响,热量累积达到一定的程度,温度会升高,导致MiniLED灯发光效率变低。在MiniLED屏幕长时间点亮某个图案(图案是非白色,背景是全白)之后,图案所在区域温度低(热量累积少),背景 区域温度高(热量累积多),温度高的地方MiniLED灯发光效率变低,温度低的地方MiniLED灯发光效率仍然较高。为了使得画面显示更均一,需要将发光效率高的区域的图像灰度值调低一点,可以将RGB图像的R通道分量减去第二灰度图像,从而将灰度值变得更小一点,从而能够减弱残影,从而使得整个屏幕切换到同一灰度显示时屏幕显示画面均匀,提升显示效果和用户体验。
本技术领域技术人员可以理解,本申请中已经讨论过的各种操作、方法、流程中的步骤、措施、方案可以被交替、更改、组合或删除。进一步地,具有本申请中已经讨论过的各种操作、方法、流程中的其他步骤、措施、方案也可以被交替、更改、重排、分解、组合或删除。进一步地,现有技术中的具有与本申请中公开的各种操作、方法、流程中的步骤、措施、方案也可以被交替、更改、重排、分解、组合或删除。
在本申请的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
应该理解的是,虽然附图的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,附图的流程图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
以上所述仅是本申请的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (14)

  1. 一种拼接显示装置的控制方法,其特征在于,包括:
    获取第一灰度图像,基于所述第一灰度图像,确定所述拼接显示装置的空间热量影响图像,所述第一灰度图像是原始图像经过灰度化处理得到的;
    对所述空间热量影响图像进行时间累积,得到时间热量累积图像;
    将所述时间热量累积图像映射为第二灰度图像;
    将所述原始图像中的R通道分量减去所述第二灰度图像,得到经过补偿后的图像。
  2. 根据权利要求1所述的拼接显示装置的控制方法,其特征在于,所述基于所述第一灰度图像,确定所述拼接显示装置的空间热量影响图像,包括:
    模拟所述第一灰度图像中的图案的热量扩散信息,生成图案边缘扩散图像;
    基于所述图案边缘扩散图像,确定所述拼接显示装置的空间热量影响图像。
  3. 根据权利要求2所述的拼接显示装置的控制方法,其特征在于,所述模拟所述第一灰度图像中的图案的热量扩散信息,生成图案边缘扩散图像,包括:
    将所述第一灰度图像中的图案的边w缘之外的第一区域增加一灰度值,将所述第一灰度图像中的图案的边缘之内的第二区域减少一灰度值,增加的一灰度值与减少的一灰度值相等,得到图案边缘扩散图像。
  4. 根据权利要求2所述的拼接显示装置的控制方法,其特征在于,所述拼接显示装置包括拼接显示面板,所述拼接显示面板包括至少两个相互拼接的显示面板;
    以及,所述基于所述图案边缘扩散图像,确定所述拼接显示装置的空间热量影响图像,包括:
    对与所述拼接显示面板大小相同的所述图案边缘扩散图像进行切分处理,得到至少两个与所述显示面板大小相同的单元图像;
    确定每个单元图像的单元空间热量影响图像;
    基于每个单元空间热量影响图像,确定所述拼接显示面板的空间热量影响图像。
  5. 根据权利要求4所述的拼接显示装置的控制方法,其特征在于,所述确定每个单元图像的单元空间热量影响图像,包括:
    确定中心单元图像对自身的热量影响数据,得到第一空间热量影响图像;
    确定周围单元图像对所述中心单元图像的热量影响数据,得到多个第二空间热量影响图像;所述周围单元图像位于所述中心单元图像的周边;
    将所述第一空间热量影响图像和多个所述第二空间热量影响图像相加,得到所述单元空间热量影响图像。
  6. 根据权利要求5所述的拼接显示装置的控制方法,其特征在于,所述确定周围单元图像对所述中心单元图像的热量影响数据,得到多个第二空间热量影响图像,包括:
    将所述周围单元图像与所述中心单元图像,进行纵向切分成N等份的图像块和/或 横向切分成N等份的图像块、或纵向与横向一起共切分成N等份的图像块,确定周围单元图像对所述中心单元图像的热量影响数据,得到多个第二空间热量影响图像。
  7. 根据权利要求6所述的拼接显示装置的控制方法,其特征在于,所述将所述周围单元图像与所述中心单元图像,进行纵向切分成N等份的图像块和/或横向切分成N等份的图像块,确定周围单元图像对所述中心单元图像的热量影响数据,得到多个第二空间热量影响图像,包括:
    与所述中心单元图像横向直接相邻的周围单元图像为第一周围单元图像,将所述第一周围单元图像与所述中心单元图像,分别进行纵向切分为N1等份的图像块,确定所述第一周围单元图像对所述中心单元图像的热量影响数据,得到第三热量影响图像;所述多个第二空间热量影响图像包括多个所述第三热量影响图像;
    与所述中心单元图像纵向直接相邻的周围单元图像为第三周围单元图像,将所述第三周围单元图像与所述中心单元图像,分别进行横向切分为N2等份的图像块,确定所述第三周围单元图像对所述中心单元图像的热量影响数据,得到第七热量影响图像;所述多个第二空间热量影响图像包括多个所述第七热量影响图像。
  8. 根据权利要求6所述的拼接显示装置的控制方法,其特征在于,所述将所述周围单元图像与所述中心单元图像,进行纵向切分成N等份的图像块和/或横向切分成N等份的图像块,确定周围单元图像对所述中心单元图像的热量影响数据,得到多个的第二空间热量影响图像,包括:
    与所述中心单元图像非直接相邻的周围单元图像为第二周围单元图像,将所述第二周围单元图像与所述中心单元图像,分别进行纵向切分为N1等份的图像块,确定所述第二周围单元图像对所述中心单元图像的纵向热量影响数据,得到第四热量影响图像;将所述第二周围单元图像与所述中心单元图像,分别进行横向切分为N2等份的图像块,确定所述第二周围单元图像对所述中心单元图像的横向热量影响数据,得到第五热量影响图像;将所述第四热量影响图像和所述第五热量影响图像相加并取平均数,得到第六热量影响图像;所述多个第二空间热量影响图像包括多个所述第六热量影响图像。
  9. 根据权利要求1所述的拼接显示装置的控制方法,其特征在于,所述对所述空间热量影响图像进行时间累积,得到时间热量累积图像,包括:
    构建热量灰度查找表;
    当所述第一灰度图像的像素点的灰度值大于或等于所述查找表中的灰度值时,将前n-1帧图像的像素点的热量累积值与当前帧的像素点的空间热量影响图像的像素点的瞬时热量值相加,得到前n帧图像的像素点的热量累积值作为所述时间热量累积图像;
    当所述第一灰度图像的像素点的灰度值小于所述查找表中的灰度值时,将前n-1帧图像的像素点的热量累积值与当前帧的像素点的空间热量影响图像的像素点的瞬时热量值相减,得到前n帧图像的像素点的热量累积值作为所述时间热量累积图像。
  10. 根据权利要求9所述的拼接显示装置的控制方法,其特征在于,所述构建热量 灰度查找表包括:
    确定多个灰度值与多个稳定的热量值之间对应关系,所述稳定的热量值为在所述拼接显示装置上全屏持续显示同一灰度值的图像达到阈值时间时所述拼接显示装置的热量;
    选取设计热量值范围内的至少一个灰度值与至少一个稳定的热量值之间对应关系,作为热量灰度查找表。
  11. 根据权利要求1所述的拼接显示装置的控制方法,其特征在于,
    所述原始图像包括RGB图像。
  12. 一种拼接显示装置的控制装置,其特征在于,包括:
    空间热量模块,用于获取第一灰度图像,基于第一灰度图像,确定所述拼接显示装置的空间热量影响图像,所述第一灰度图像是基于原始图像经过灰度化处理得到的;
    时间热量模块,用于对所述空间热量影响图像进行时间累积,得到时间热量累积图像;
    第二灰度模块,用于将所述时间热量累积图像映射为第二灰度图像;
    补偿模块,用于将所述原始图像中的R通道分量减去所述第二灰度图像,得到经过补偿后的图像。
  13. 一种拼接显示装置,其特征在于,包括:
    拼接显示面板,所述拼接显示面板包括至少两个互相拼接的显示面板;
    存储器;
    处理器,与所述存储器和所述拼接显示面板均电连接;
    所述存储器存储有计算机程序,所述计算机程序由所述处理器执行以实现如权利要求1-11中任一所述的拼接显示装置的控制方法。
  14. 一种计算机可读存储介质,其特征在于,所述计算机存储介质用于存储计算机指令,当其在计算机上运行时,使得计算机可以执行上述权利要求1-11中任一所述的一种拼接显示装置的控制方法。
PCT/CN2023/094512 2022-05-31 2023-05-16 拼接显示装置及其控制方法、控制装置和存储介质 WO2023231769A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210615809.X 2022-05-31
CN202210615809.XA CN115019721A (zh) 2022-05-31 2022-05-31 拼接显示装置及其控制方法、控制装置和存储介质

Publications (2)

Publication Number Publication Date
WO2023231769A1 true WO2023231769A1 (zh) 2023-12-07
WO2023231769A9 WO2023231769A9 (zh) 2024-05-10

Family

ID=83070318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/094512 WO2023231769A1 (zh) 2022-05-31 2023-05-16 拼接显示装置及其控制方法、控制装置和存储介质

Country Status (2)

Country Link
CN (1) CN115019721A (zh)
WO (1) WO2023231769A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115019721A (zh) * 2022-05-31 2022-09-06 京东方科技集团股份有限公司 拼接显示装置及其控制方法、控制装置和存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104580828A (zh) * 2013-10-10 2015-04-29 三星电子株式会社 显示设备及其方法
CN109814827A (zh) * 2019-01-28 2019-05-28 Oppo广东移动通信有限公司 设备的显示控制方法、装置、电子设备及存储介质
CN110415646A (zh) * 2018-04-27 2019-11-05 三星显示有限公司 劣化补偿器,具有该劣化补偿器的显示装置,以及用于补偿显示装置图像数据的方法
CN112863439A (zh) * 2021-01-21 2021-05-28 京东方科技集团股份有限公司 一种改善oled残像的方法、装置、显示装置及介质
CN114120887A (zh) * 2020-08-31 2022-03-01 西安诺瓦星云科技股份有限公司 显示屏效果调节方法、装置及系统、计算机可读存储介质
CN114203086A (zh) * 2021-12-01 2022-03-18 西安诺瓦星云科技股份有限公司 热力补偿校正的方法、装置及设备
CN115019721A (zh) * 2022-05-31 2022-09-06 京东方科技集团股份有限公司 拼接显示装置及其控制方法、控制装置和存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104580828A (zh) * 2013-10-10 2015-04-29 三星电子株式会社 显示设备及其方法
CN110415646A (zh) * 2018-04-27 2019-11-05 三星显示有限公司 劣化补偿器,具有该劣化补偿器的显示装置,以及用于补偿显示装置图像数据的方法
CN109814827A (zh) * 2019-01-28 2019-05-28 Oppo广东移动通信有限公司 设备的显示控制方法、装置、电子设备及存储介质
CN114120887A (zh) * 2020-08-31 2022-03-01 西安诺瓦星云科技股份有限公司 显示屏效果调节方法、装置及系统、计算机可读存储介质
CN112863439A (zh) * 2021-01-21 2021-05-28 京东方科技集团股份有限公司 一种改善oled残像的方法、装置、显示装置及介质
CN114203086A (zh) * 2021-12-01 2022-03-18 西安诺瓦星云科技股份有限公司 热力补偿校正的方法、装置及设备
CN115019721A (zh) * 2022-05-31 2022-09-06 京东方科技集团股份有限公司 拼接显示装置及其控制方法、控制装置和存储介质

Also Published As

Publication number Publication date
WO2023231769A9 (zh) 2024-05-10
CN115019721A (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
WO2021043143A1 (zh) 一种显示屏老化补偿方法、电路系统、电子设备
JP5430068B2 (ja) 表示装置
JP6309777B2 (ja) 表示装置、表示パネルドライバ、及び、表示パネルの駆動方法
WO2019127718A1 (zh) 一种图像显示方法及装置
CN112927658B (zh) 一种显示面板的驱动方法、驱动装置及显示装置
TW201403566A (zh) 被動式顯示面板的驅動方法與顯示裝置
WO2023231769A1 (zh) 拼接显示装置及其控制方法、控制装置和存储介质
WO2020259160A1 (zh) 用于控制显示设备的显示的方法及其装置以及显示装置
US9779514B2 (en) Display device, display panel driver and driving method of display panel
US8614662B2 (en) Display control apparatus and method, and program
JP6727047B2 (ja) 表示装置
KR101367137B1 (ko) 4색 표시 장치의 영상 신호 변환 장치 및 방법
WO2023039945A1 (zh) 显示装置及其驱动方法
WO2024001502A1 (zh) 屏幕显示方法、屏幕显示装置、电子设备、程序及介质
TWI437536B (zh) 場發射顯示器及場發射顯示器產生輸出影像之方法
US11605332B1 (en) Moving picture response time (MPRT) techniques for liquid crystal displays (LCDs)
JP6174032B2 (ja) 画像表示装置、画像表示装置の制御方法、制御プログラムおよび記録媒体
JP5903283B2 (ja) 画像処理装置、画像表示システム、および画像表示方法
JP7313287B2 (ja) デュアル表示パネルに画像を表示するための方法及びその装置
JP2014102282A (ja) 表示装置
TWI433123B (zh) 影像顯示裝置、其驅動系統與方法
TWI446331B (zh) 可減少液晶面板殘影的插黑控制器及其方法
TW202147292A (zh) Oled顯示面板之畫素補償方法及利用其之資訊處理裝置
KR20170015678A (ko) 영상 처리 방법, 영상 처리 방법을 수행하는 영상 처리 장치, 및 영상 처리 장치를 포함하는 표시 장치
KR102640015B1 (ko) 표시 장치 및 그 구동 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23814954

Country of ref document: EP

Kind code of ref document: A1