WO2023231158A1 - 一种手持微流控芯片核酸检测装置及其使用方法 - Google Patents

一种手持微流控芯片核酸检测装置及其使用方法 Download PDF

Info

Publication number
WO2023231158A1
WO2023231158A1 PCT/CN2022/106129 CN2022106129W WO2023231158A1 WO 2023231158 A1 WO2023231158 A1 WO 2023231158A1 CN 2022106129 W CN2022106129 W CN 2022106129W WO 2023231158 A1 WO2023231158 A1 WO 2023231158A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
tube
nucleic acid
detection device
handheld
Prior art date
Application number
PCT/CN2022/106129
Other languages
English (en)
French (fr)
Inventor
蒋析文
刘林波
舒海涛
黎俊杰
Original Assignee
广州达安基因股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210604648.4A external-priority patent/CN117181321A/zh
Priority claimed from CN202221327489.XU external-priority patent/CN217646431U/zh
Application filed by 广州达安基因股份有限公司 filed Critical 广州达安基因股份有限公司
Priority to US18/061,481 priority Critical patent/US20230383222A1/en
Publication of WO2023231158A1 publication Critical patent/WO2023231158A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/24Apparatus for enzymology or microbiology tube or bottle type
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids

Definitions

  • the present application relates to the technical field of microfluidic chips, and more specifically, to a handheld microfluidic chip nucleic acid detection device and its use method.
  • Microfluidic chip also known as Lab on a Chip, refers to a biological or chemical laboratory built on a chip of several square centimeters. It integrates basic operating units such as reaction, separation, culture, sorting, and detection involved in the fields of biology and chemistry onto a very small chip. It forms a network of microchannels and uses controllable fluid throughout the entire system to achieve Various functions in a routine biology or chemistry laboratory. Since microfluidic chip technology has the characteristics of small injection volume, high integration, easy automatic control and high-throughput analysis, biochemical reaction operations on microfluidic chips are more convenient and faster than conventional analytical sample preprocessing. ,low cost.
  • Microfluidic technology can centralize complex operational steps such as reagent reaction, separation, and detection on a single chip, which will not only significantly shorten sample processing time, significantly reduce reagent and instrument costs, and significantly improve detection resolution and sensitivity. It will greatly reduce the size of the detection device, make portable and on-site detection possible, and realize the automation and portability of nucleic acid detection.
  • nucleic acid detection process usually includes steps such as pathogen sampling, sample nucleic acid extraction, PCR amplification, post-signal analysis and result analysis.
  • Traditional nucleic acid testing needs to be completed in a professional zoning PCR laboratory. The laboratory needs to be equipped with expensive equipment and instruments, such as PCR machines, and a series of operations are cumbersome and complex, requiring professionals to complete the test.
  • the purpose of the present invention is to provide a handheld microfluidic chip nucleic acid detection device and a method of use thereof, so as to solve the technical problems that the existing nucleic acid detection process is cumbersome, the operation is complex, and professionals are required to complete the detection.
  • a handheld microfluidic chip nucleic acid detection device including:
  • a chip connector the chip connector is provided with a puncture tube for puncturing the sample collection tube;
  • a detection chip is connected to the chip connector.
  • the detection chip is provided with several chambers and several flow channels, and the flow channels are connected with the puncture tube and the chamber.
  • the sample collection tube includes a tube body, a collection liquid tube and a tube cover.
  • the collection liquid tube is provided in the tube body.
  • the tube cover is rotatably installed on the tube body. The tube cover is used for Cap the collection liquid tube.
  • the handheld microfluidic chip nucleic acid detection device also includes a collection tube sealing film and a collection tube bottom sealing film.
  • the collection tube sealing film and the collection tube bottom sealing film are respectively located in the tube cover and at the bottom of the collection liquid tube.
  • the collection tube sealing film and the collection tube bottom sealing film are respectively used to seal the mouth and bottom of the collection liquid tube.
  • the detection chip includes a first chip and a second chip, the first chip is connected to the second chip, and the chamber is provided in the first chip.
  • the sample collection tube also includes a gas buffer tube, and the gas buffer tube is provided in the tube body;
  • the flow channel includes a sampling channel, a fluid outlet channel, a first connecting channel and a second connecting channel.
  • the sampling channel is connected to the puncture tube, and the fluid outlet channel is connected to the gas buffer tube.
  • the first connecting channel is used to connect the sampling channel and the chamber, and the first connecting channel is used to connect the fluid outlet channel and the chamber.
  • the chamber is connected to the channel in series or in parallel; fixed biochemical reaction reagents are pre-installed in the chamber, and the reagents are in the form of powder, liquid, freeze-dried spheres or solid particles;
  • the collection liquid tube, puncture tube and sampling channel are arranged in the vertical direction, and the reagent in the collection liquid tube flows into the reaction and detection chamber through the puncture tube and the sampling channel on the detection chip under the action of gravity;
  • the width of the flow channel is greater than 0 and less than or equal to 10 mm, and the depth of the chip micro-channel is greater than 0 and less than or equal to 10 mm.
  • the detection chip further includes a double-sided adhesive film, and the first chip and the second chip are connected through the double-sided adhesive film;
  • the first chip and the second chip are connected by laser welding, ultrasonic welding, thermocompression bonding, plasma bonding, or solvent bonding.
  • the handheld microfluidic chip nucleic acid detection device further includes a sealing silicone gasket, the sealing silicone gasket is provided between the sample collection tube and the chip connector, the sealing silicone gasket is provided with a first Through hole and second through hole, the first through hole cooperates with the puncture tube, the chip connector is provided with an air outlet connected with the fluid outlet channel, the second through hole is connected with the outlet Air port matching.
  • the gas outlet is provided with a hydrophobic breathable film, and the hydrophobic breathable film seals one end of the gas buffer tube toward the chip connector;
  • the thickness of the hydrophobic breathable film is greater than 0 and less than or equal to 1 mm.
  • a sealing ring is provided between the chip connector and the detection chip.
  • the material of the hydrophobic breathable membrane is polytetrafluoroethylene, silicone rubber or polyethylene;
  • the sealing silicone gasket and sealing ring are made of chloroprene rubber, natural rubber, EPDM rubber or acrylic rubber.
  • a buckle structure is provided on the outside of the chip connector and the inside of the sample collection tube.
  • one end of the chip connector facing the detection chip is provided with an installation slot for installing the detection chip, and one end of the detection chip facing the chip connector is provided with a first card slot and a second card slot,
  • One end of the chip connector facing the detection chip is provided with a first clamping block that matches the first slot and a second clamping block that matches the second slot, and the sealing ring is provided with the In the first slot and fitting with the first clamping block, the second clamping block is provided with a ventilation hole, and both ends of the ventilation hole are respectively connected with the fluid outlet channel and the air outlet.
  • embodiments of the present invention also provide a method of using a handheld microfluidic chip nucleic acid detection device, which adopts the following technical solution:
  • a method of using a handheld microfluidic chip nucleic acid detection device including the following steps:
  • reaction solution in the sample collection tube flows into the chamber through the flow channel on the detection chip under the action of gravity, and the reaction solution reacts with the pre-installed reagents in the chamber for nucleic acid reaction;
  • the embodiments of the present invention mainly have the following beneficial effects:
  • a handheld microfluidic chip nucleic acid detection device that concentrates reaction reagents and all reaction processes on one chip. It does not require the use of external instruments to inject liquids, transfer liquids, etc., and does not require professional experimental sites and special conditions to perform nucleic acid detection. , specifically, add the sampling solution containing the nucleic acid to be tested into the sample collection tube, add the test cotton swab tip into the collection liquid tube, align the sample collection tube with the chip connector and insert it downwards. Under the action of the puncture tube, the sample collection tube The reaction solution flows into the chamber for reaction and detection through the flow channel under the action of gravity, and reacts with the pre-installed reagents in the chamber for nucleic acid reaction.
  • the chip is then inserted into the matching instrument to realize the nucleic acid detection process; the invention greatly simplifies The operating steps of nucleic acid detection are simplified, and there are not many requirements for operators and sites. Operators can start operating without professional training. It has the characteristics of simple operation, high detection efficiency, and high sensitivity.
  • the handheld microfluidic chip nucleic acid detection device can be used in It is widely used in community hospitals, home self-examination, public places, etc. to realize real-time screening and testing during epidemic prevention and control, as well as self-evaluation of personal health status.
  • Figure 1 is a schematic diagram of the overall structure of a handheld microfluidic chip nucleic acid detection device in an embodiment of the present invention
  • Figure 2 is an exploded view of the handheld microfluidic chip nucleic acid detection device in an embodiment of the present invention
  • Figure 3 is a schematic diagram of the internal structure of a handheld microfluidic chip nucleic acid detection device in an embodiment of the present invention
  • Figure 4 is a schematic structural diagram of a sample collection tube in an embodiment of the present invention.
  • Figure 5 is a schematic structural diagram of a detection chip in an embodiment of the present invention.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the invention.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • a handheld microfluidic chip nucleic acid detection device includes a sample collection tube 1, a chip connector 2 and a detection chip 3; the chip connector 2 is provided with a device for collecting the sample
  • the puncture tube 21 is used to puncture the tube 1;
  • the detection chip 3 is connected to the chip connector 2, and the detection chip 3 is provided with a number of chambers 33 and a number of flow channels 34, and the flow channels 34 are connected to the puncture tube. 21 communicates with the chamber 33.
  • the handheld microfluidic chip nucleic acid detection device concentrates the reaction reagents and all reaction processes on one chip, without the need for external instruments to inject liquids, transfer liquids, etc., and does not require professional experimental sites and special conditions. Nucleic acid detection can be carried out. Specifically, the sampling solution containing the nucleic acid to be tested is added to the sample collection tube 1, the test cotton swab head is added to the collection liquid tube 12, and the sample collection tube 1 is aligned with the chip connector 2 and inserted downward.
  • the reaction solution in the sample collection tube 1 flows into the chamber 33 for reaction and detection through the flow channel 34 under the action of gravity, and reacts with the pre-installed reagents in the chamber 33 for nucleic acid reaction, and then the chip is Insert it into the matching instrument to realize the process of nucleic acid detection; the invention greatly simplifies the operating steps of nucleic acid detection and does not place great requirements on operators and sites. Operators can get started without professional training and have the advantages of simple operation and detection.
  • the handheld microfluidic chip nucleic acid detection device can be widely used in community hospitals, home self-examination, public places, etc., to achieve real-time screening and detection during epidemic prevention and control, as well as self-testing of personal health conditions.
  • the sample collection tube 1 includes a tube body 11, a collection liquid tube 12, a tube cover 13 and a gas buffer tube 14.
  • the collection liquid tube 12 is located in the tube body 11, so The tube cover 13 is rotatably installed on the tube body 11.
  • the tube cover 13 is used to cover the collection liquid tube 12.
  • the gas buffer tube 14 is provided in the tube body 11;
  • the collection liquid tube 12 contains lysis solution.
  • a sampling solution containing the nucleic acid to be tested can be added to the collection liquid tube 12.
  • the tube cover 13 is opened, and the test cotton swab head is immersed in the sampling solution and rotated to mix. After a few seconds, break it in the collection liquid tube 12, and then cover the collection tube cap 13 to achieve sample lysis.
  • the collection liquid tube 12 and the gas buffer tube 14 are arranged side by side in the tube body 11 .
  • the handheld microfluidic chip nucleic acid detection device also includes a collection tube sealing film 4 and a collection tube bottom sealing film 5.
  • the collection tube sealing film 4 and the collection tube bottom sealing film 5 are respectively used to detect The mouth and bottom of the collection liquid tube 12 are sealed.
  • the collection tube sealing film 4 is pre-installed in the tube cover 13, and a seal is formed by the collection tube sealing film 4 to prevent contact with outside air and liquid leakage.
  • the collection tube bottom sealing film 5 is pre-installed at the bottom of the sample collection tube 1 , and the collection tube bottom sealing film 5 prevents the collection liquid from leaking from the collection liquid tube 12 .
  • a sealing ring 8 is provided between the chip connector 2 and the detection chip 3 . Under the action of the sealing ring 8, the inner lower surface of the chip connector 2 and the detection chip 3 are completely sealed.
  • the sealing ring 8 is an O-shaped sealing ring 8
  • the sealing ring 8 is made of chloroprene rubber, natural rubber, EPDM rubber or acrylic rubber.
  • the detection chip 3 includes a first chip 31 and a second chip 32.
  • the first chip 31 is connected to the second chip 32, and the chamber 33 is located in the third chip. 31 in one chip.
  • the material of the first chip 31 is glass, silicon wafer, high molecular polymer, metal or metal oxide.
  • the material of the second chip 32 is glass, silicon wafer, high molecular polymer, metal or metal oxide.
  • the flow channel 34 includes a sampling channel 341, a fluid outlet channel 342, a first connecting channel 343 and a second connecting channel 344.
  • the sampling channel 341 is connected to the puncture tube 21, so
  • the fluid outlet channel 342 is connected to the gas buffer tube 14, the first connection channel 343 is used to connect the sampling channel 341 and the chamber 33, and the first connection channel 343 is used to connect the fluid outlet channel 342 and chamber 33.
  • the chamber 33 is connected to the channel in series or in parallel; the chamber 33 is pre-loaded with fixed biochemical reaction reagents.
  • the flow channel 34 can be processed by machine tool processing, laser ablation, 3D printing, injection molding or chemical etching.
  • the flow channel 34 is a micro-channel, the width of the flow channel 34 is greater than 0 and less than or equal to 10 mm, and the depth of the chip micro-channel 34 is greater than 0 and less than or equal to 10 mm.
  • the collection liquid tube 12, puncture tube 21 and sampling channel 341 are arranged in a vertical direction, and the reagent in the collection liquid tube 12 passes through the puncture tube 21 and passes through the sampling channel on the detection chip 3 under the action of gravity. 341 flows into the reaction and detection chamber 33.
  • the handheld microfluidic chip nucleic acid detection device also includes a sealing silicone gasket 6.
  • the sealing silicone gasket 6 is provided between the sample collection tube 1 and the chip connector 2.
  • the sealing silicone gasket 6 is provided with The first through hole 61 and the second through hole 62, the first through hole 61 cooperates with the puncture tube 21, the chip connector 2 is provided with an air outlet 22 connected with the fluid outlet channel 342, so The second through hole 62 cooperates with the air outlet 22 .
  • the first through hole 61 and the second through hole 62 may be round holes or square holes. Specifically, they may be configured in a shape that matches the puncture tube 21 and the air outlet 22 .
  • the sealing silicone gasket 6 is made of chloroprene rubber, natural rubber, EPDM rubber or acrylic rubber.
  • the outlet of the fluid outlet channel 342 corresponds to the through hole at the lower end of the gas buffer tube 14 through the chip connector 2, forming a gas circulation area.
  • the air outlet 22 of the chip connector 2 is provided with a hydrophobic breathable film 7.
  • the hydrophobic breathable film 7 seals one end of the gas buffer tube 14 toward the chip connector 2 to prevent the passage of liquid.
  • One open end of the flow channel 34 is a sampling port, and the other open end extends outside the detection chip 3 and is connected to the hydrophobic breathable membrane 7 . That is, one open end is provided in the sampling channel 341 , and the other open end is provided in the sampling channel 341 .
  • the hydrophobic breathable membrane 7 is made of polytetrafluoroethylene, silicone rubber or polyethylene.
  • the thickness of the hydrophobic breathable membrane 7 is greater than 0 and less than or equal to 1 mm.
  • the hydrophobic breathable membrane 7 allows air to pass through, but blocks liquid from passing through.
  • the chamber 33 is pre-loaded with biochemical reaction reagents.
  • the reagents can be in various states such as powder, liquid, lyophilized spheres, solid particles, etc., and the liquid in the collection liquid tube 12 flows in with it. biological response.
  • the detection chip 3 further includes a double-sided adhesive film 35, and the first chip 31 and the second chip 32 are connected through the double-sided adhesive film 35.
  • the first chip 31 and the second chip 32 are connected through laser welding, ultrasonic welding, thermocompression bonding, plasma bonding, solvent bonding, etc.
  • the outside of the chip connector 2 and the inside of the sample collection tube 1 are provided with a buckle structure.
  • the sample collection tube 1 is inserted downward into the chip connector 2, the two are locked through the buckle structure.
  • One end of the chip connector 2 facing the detection chip 3 is provided with a mounting slot 23 for the detection chip 3 to be installed.
  • One end of the detection chip 3 facing the chip connector 2 is provided with a first card slot 36 and a third card slot 36 .
  • One end of the chip connector 2 facing the detection chip 3 is provided with a first card block 24 mated with the first card slot 36 and a second card mated with the second card slot 37.
  • Block 25 the sealing ring 8 is disposed in the first clamping groove 36 and fits with the first clamping block 24.
  • the second clamping block 25 is provided with a ventilation hole, and both ends of the ventilation hole are respectively connected with the first clamping block 24.
  • the fluid outlet channel 342 is connected with the air outlet 22 .
  • the handheld microfluidic chip nucleic acid detection device can adopt the shape of a rectangular parallelepiped cartridge, but without departing from the creative essence of the present invention, the handheld microfluidic chip nucleic acid detection device can also be adjusted for specific applications.
  • the following adjustments can be made: the shape of the handheld microfluidic chip nucleic acid detection device can be adjusted according to the processing method and functional requirements. Specifically, it can be a combination of shapes such as rectangular parallelepiped and cylinder; the shape of the flow channel 34 on the detection chip 3 can be adjusted according to functional requirements. Make corresponding adjustments; the number of chambers 33 on the detection chip 3 can be adjusted accordingly according to actual needs.
  • the handheld microfluidic chip nucleic acid detection device realizes precise control of the sample addition and detection process, is simple to operate, has high sensitivity, can be operated without professional training, has high detection efficiency, low sample consumption, and can be quickly Carry out nucleic acid self-test, which has a wide range of applications.
  • the handheld microfluidic chip nucleic acid detection device can be used in various hospitals, import and export customs, and disease control centers. It can also be used in various on-site testing scenarios such as home self-examination, community testing, and outdoor monitoring.
  • embodiments of the present invention also provide a method of using a handheld microfluidic chip nucleic acid detection device, which adopts the following technical solution:
  • a method of using a handheld microfluidic chip nucleic acid detection device including the following steps:
  • reaction solution in the sample collection tube flows into the chamber through the flow channel on the detection chip under the action of gravity, and the reaction solution reacts with the pre-installed reagents in the chamber for nucleic acid reaction;
  • the step of adding the sampling solution containing the nucleic acid to be tested into the sample collection tube includes: adding the sampling solution containing the nucleic acid to be tested into the sample collection tube, opening the tube cover, immersing the test cotton swab head into the sampling solution, rotating and mixing for a few seconds. Then break it into the collection liquid tube and cover it with the tube cap.
  • the chip connector In the steps of installing the chip connector and the detection chip, aligning the sample collection tube with the chip connector, and causing the puncture tube to puncture the sample collection tube, the chip connector is inserted into the detection chip to realize the connection between the chip connector and the detection chip. Fixed and clamped, the chip connector and the detection chip are sealed by a sealing ring; align the sample collection tube with the chip connector and insert it downwards. The sample collection tube and chip connector are sealed by a sealing silicone gasket. When the puncture tube acts, Next, the bottom sealing membrane of the collection tube was punctured.
  • the steps of inserting the detection chip into its supporting instrument and obtaining nucleic acid detection results include:
  • the optical detection module on the instrument detects the change in absorbance of the reaction solution and causes a color reaction, and obtains the detection result based on the color.
  • the use method of the handheld microfluidic chip nucleic acid detection device concentrates the reaction reagents and all reaction processes on one chip, without the need for external instruments to inject liquids, transfer liquids, etc., and does not require professional experimental sites and Nucleic acid detection can be carried out under special conditions. Specifically, add the sampling solution containing the nucleic acid to be tested into the sample collection tube, add the test cotton swab tip into the collection liquid tube, align the sample collection tube with the chip connector, insert it downward, and insert it into the puncture tube.
  • the reaction solution in the sample collection tube flows into the chamber for reaction and detection through the flow channel under the action of gravity, and reacts with the pre-installed reagents in the chamber for nucleic acid reaction.
  • the chip is then inserted into the matching instrument to realize nucleic acid detection.
  • the process; the present invention greatly simplifies the operating steps of nucleic acid detection and does not place great requirements on operators and sites. Operators can operate without professional training. It has the characteristics of simple operation, high detection efficiency, and high sensitivity.
  • the handheld microfluidic The chip-controlled nucleic acid detection device can be widely used in community hospitals, home self-examination, public places, etc., to achieve real-time screening and detection during epidemic prevention and control, as well as self-testing of personal health conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Development (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

一种手持微流控芯片核酸检测装置及其使用方法,属于微流控芯片技术领域。手持微流控芯片核酸检测装置包括:样本采集管(1);芯片连接器(2),芯片连接器(2)上设有用于对样本采集管(1)进行穿刺的穿刺管(21);检测芯片(3),检测芯片(3)与芯片连接器(2)连接,检测芯片(3)设有若干腔室(33)和若干流道(34),流道(34)与穿刺管(21)和腔室(33)连通。将反应试剂及所有反应过程集中在一块芯片上完成,无需借助外部仪器注液、转移液体等操作,无需专业的实验场所和特殊条件就可进行核酸检测,手持微流控芯片核酸检测装置可用在社区医院、家庭自检、公共场所等进行普及应用,实现疫情防控期间的实时筛查和检测,以及个人健康状况自测。

Description

一种手持微流控芯片核酸检测装置及其使用方法
本申请要求申请日为2022年05月30日、申请号为202210604648.4、申请名称为“一种手持微流控芯片核酸检测装置及其使用方法”的中国专利申请的优先权,以及申请日为2022年05月30日、申请号为202221327489.X、申请名称为“一种手持微流控芯片核酸检测装置”的中国专利申请的优先权,上述中国专利申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及微流控芯片技术领域,更具体的说,特别涉及一种手持微流控芯片核酸检测装置及其使用方法。
背景技术
微流控芯片又称芯片实验室(Lab on a Chip),指的是一种在一块几平方厘米的芯片上构建的生物或化学实验室。它把生物和化学领域中所涉及的反应、分离、培养、分选、检测等基本操作单元集成到一块很小的芯片上,由微通道形成网络,以可控流体贯穿整个系统,用以实现常规生物或化学实验室的各种功能。由于微流控芯片技术具有进样量小、集成度高、易实现自动化控制和高通量分析等特点,使得在微流控芯片上进行生化反应操作较常规的分析样品前处理更方便、快速、成本低廉。微流控技术能将试剂反应、分离、检测等复杂的操作步骤集中在一块芯片上实现,不仅将使样品处理时间大幅缩短、试剂和仪器成本大幅降低、检测分辨率和灵敏度显著提高。将大大缩小检测装置的体积,使便携和现场检测成为可能,可实现核酸检测的自动化和便携化。
现阶段以核酸检测层面的分子诊断技术已广泛应用于生活中,包括临床检测分析、食品安全、环境检测、药物筛选等诸多领域。核酸检测流程 通常包括病原体采样、样本核酸提取、PCR扩增、后期信号分析与结果分析等步骤。传统核酸检测需要在设有专业的分区PCR实验室来完成,实验室需要配置昂贵的设备仪器,如PCR仪等,而且一系列操作过程繁琐,操作复杂,需要专业人员来完成检测。上述苛刻的检测条件导致目前只有部分三甲医院才有资质和能力去开展核酸检测,而且检测一次非常繁琐且需要专人来检测,面对严峻的新冠疫情,亟需一款方便用户操作的核酸自测检测装置。
发明内容
本发明的目的在于提供一种手持微流控芯片核酸检测装置及其使用方法,解决现有核酸检测过程繁琐,操作复杂,需要专业人员来完成检测的技术问题。
为了解决以上提出的问题,本发明实施例提供了如下所述的技术方案:
一种手持微流控芯片核酸检测装置,包括:
样本采集管;
芯片连接器,所述芯片连接器上设有用于对所述样本采集管进行穿刺的穿刺管;
检测芯片,所述检测芯片与所述芯片连接器连接,所述检测芯片设有若干腔室和若干流道,所述流道与所述穿刺管和所述腔室连通。
进一步地,所述样本采集管包括管体、采集液管和管盖,所述采集液管设于所述管体内,所述管盖转动设置于所述管体上,所述管盖用于盖合所述采集液管。
进一步地,所述手持微流控芯片核酸检测装置还包括采集管封口膜和采集管封底膜,所述采集管封口膜和采集管封底膜分别设于所述管盖内和采集液管底部,所述采集管封口膜和采集管封底膜分别用于对所述采集液管的口部和底部进行密封。
进一步地,所述检测芯片包括第一芯片和第二芯片,所述第一芯片与所述第二芯片连接,所述腔室设于所述第一芯片内。
进一步地,所述样本采集管还包括气体缓冲管,所述气体缓冲管设于所述管体内;
所述流道包括进样通道、流体出口通道、第一连接通道和第二连接通道,所述进样通道与所述穿刺管连通,所述流体出口通道与所述气体缓冲管连通,所述第一连接通道用于连接所述进样通道和腔室,所述第一连接通道用于连接所述流体出口通道和腔室。
进一步地,所述腔室与所述通道串行或并行连接;所述腔室内预装有固定的生化反应试剂,所述试剂为粉状、液体、冻干球或固态颗粒状态;
所述采集液管、穿刺管和进样通道沿竖直方向设置,采集液管中试剂通过穿刺管在重力作用下通过检测芯片上的进样通道流入反应与检测腔室中;
所述流道的宽度大于0且小于或等于10mm,所述芯片微流道的深度大于0且小于或等于10mm。
进一步地,所述检测芯片还包括双面胶膜,所述第一芯片和第二芯片通过所述双面胶膜连接;
或者,所述第一芯片和第二芯片通过激光焊接、超声焊接、热压键合、等离子体键合、溶剂键合的方式连接。
进一步地,所述手持微流控芯片核酸检测装置还包括密封硅胶垫片,所述密封硅胶垫片设于所述样本采集管和芯片连接器之间,所述密封硅胶垫片设有第一通孔和第二通孔,所述第一通孔与所述穿刺管配合,所述芯片连接器上设有与所述流体出口通道连通的出气口,所述第二通孔与所述出气口配合。
进一步地,所述出气口设有疏水透气膜,所述疏水透气膜对所述气体缓冲管朝向所述芯片连接器一端密封;
所述疏水透气膜的厚度大于0且小于或等于1mm。
进一步地,所述芯片连接器和检测芯片之间设有密封圈。
进一步地,所述疏水透气膜的材质为聚四氟乙烯、硅橡胶或聚乙烯;
所述密封硅胶垫片和密封圈的材质为氯丁橡胶、天然橡胶、EPDM橡胶或丙烯酸酯橡胶。
进一步地,所述芯片连接器的外侧和样本采集管的内侧设有卡扣结构。
进一步地,所述芯片连接器朝向所述检测芯片的一端设有供所述检测芯片安装的安装槽,所述检测芯片朝向所述芯片连接器一端设有第一卡槽和第二卡槽,所述芯片连接器朝向所述检测芯片的一端设有与所述第一卡槽配合的第一卡块和与所述第二卡槽配合的第二卡块,所述密封圈设有所述第一卡槽内且与所述第一卡块贴合,所述第二卡块设有通气孔,所述通气孔两端分别与所述流体出口通道和出气口连通。
为了解决以上提出的技术问题,本发明实施例还提供了一种手持微流控芯片核酸检测装置的使用方法,采用了如下所述的技术方案:
一种手持微流控芯片核酸检测装置的使用方法,基于如上所述的手持微流控芯片核酸检测装置,包括以下步骤:
在样本采集管内加入含待测核酸的采样溶液,进行样本的采样;
将芯片连接器与检测芯片安装,将样本采集管对准芯片连接器,使穿刺管对样本采集管进行穿刺;
样本采集管内的反应液在重力作用下通过检测芯片上的流道流入腔室,反应液与腔室内的预装试剂发生核酸反应;
将检测芯片插入与其配套的仪器内,获取检测结果。
与现有技术相比,本发明实施例主要有以下有益效果:
一种手持微流控芯片核酸检测装置,将反应试剂及所有反应过程集中在一块芯片上完成,无需借助外部仪器注液、转移液体等操作,无需专业的实验场所和特殊条件就可进行核酸检测,具体的,在样本采集管内加入 含待测核酸的采样溶液,将试子棉签头加入采集液管内,将样本采集管对准芯片连接器向下插入,在穿刺管作用下,样本采集管内的反应液在重力作用下通过流道流入用于反应和检测的腔室,与腔室内的预装试剂发生核酸反应,然后将芯片插入与其配套的仪器内,实现核酸检测的过程;本发明大大简化了核酸检测的操作步骤,对操作人员和场地没有太大的要求,操作人员无需专业培训即可上手操作,具有操作简单、检测效率高、灵敏度高等特点,手持微流控芯片核酸检测装置可用在社区医院、家庭自检、公共场所等进行普及应用,实现疫情防控期间的实时筛查和检测,以及个人健康状况自测。
附图说明
为了更清楚地说明本发明的方案,下面将对实施例描述中所需要使用的附图作一个简单介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例中手持微流控芯片核酸检测装置的整体结构示意图;
图2为本发明实施例中手持微流控芯片核酸检测装置的爆炸图;
图3为本发明实施例中手持微流控芯片核酸检测装置的内部结构示意图;
图4为本发明实施例中样本采集管的结构示意图;
图5为本发明实施例中检测芯片的结构示意图。
附图标记说明:
1、样本采集管;11、管体;12、采集液管;13、管盖;14、气体缓冲管;2、芯片连接器;21、穿刺管;22、出气口;23、安装槽;24、第一卡块;25、第二卡块;3、检测芯片;31、第一芯片;32、第二芯片;33、腔 室;34、流道;341、进样通道;342、流体出口通道;343、第一连接通道;344、第二连接通道;35、双面胶膜;36、第一卡槽;37、第二卡槽;4、采集管封口膜;5、采集管封底膜;6、密封硅胶垫片;61、第一通孔;62、第二通孔;7、疏水透气膜;8、密封圈。
具体实施方式
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本发明的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排它的包含。本发明的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本发明的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
为了使本领域技术人员更好地理解本发明方案,下面将参照相关附图,对本发明实施例中的技术方案进行清楚、完整地描述。
实施例
如图1至图3所示,一种手持微流控芯片核酸检测装置,包括样本采集管1、芯片连接器2和检测芯片3;所述芯片连接器2上设有用于对所述样本采集管1进行穿刺的穿刺管21;所述检测芯片3与所述芯片连接器2连接,所述检测芯片3设有若干腔室33和若干流道34,所述流道34与所述穿刺管21和所述腔室33连通。
本发明实施例提供的手持微流控芯片核酸检测装置,将反应试剂及所有反应过程集中在一块芯片上完成,无需借助外部仪器注液、转移液体等操作,无需专业的实验场所和特殊条件就可进行核酸检测,具体的,在样本采集管1内加入含待测核酸的采样溶液,将试子棉签头加入采集液管12内,将样本采集管1对准芯片连接器2向下插入,在穿刺管21作用下,样本采集管1内的反应液在重力作用下通过流道34流入用于反应和检测的腔室33,与腔室33内的预装试剂发生核酸反应,然后将芯片插入与其配套的仪器内,实现核酸检测的过程;本发明大大简化了核酸检测的操作步骤,对操作人员和场地没有太大的要求,操作人员无需专业培训即可上手操作,具有操作简单、检测效率高、灵敏度高等特点,手持微流控芯片核酸检测装置可用在社区医院、家庭自检、公共场所等进行普及应用,实现疫情防控期间的实时筛查和检测,以及个人健康状况自测。
如图1和图4所示,所述样本采集管1包括管体11、采集液管12、管盖13和气体缓冲管14,所述采集液管12设于所述管体11内,所述管盖13转动设置于所述管体11上,所述管盖13用于盖合所述采集液管12,所述气体缓冲管14设于所述管体11内;
在一个实施例中,所述采集液管12内含有裂解液,在采集液管12内可加入含待测核酸的采样溶液,打开管盖13,将试子棉签头浸入采样溶液中转动混匀几秒钟之后折断在采集液管12内,然后盖上采集管盖13,实现样本裂解。
在一个实施例中,采集液管12和气体缓冲管14并列设置于所述管体11内。
如图2和图3所示,所述手持微流控芯片核酸检测装置还包括采集管封口膜4和采集管封底膜5,所述采集管封口膜4和采集管封底膜5分别用于对所述采集液管12的口部和底部进行密封。
在一个实施例中,在管盖13内预装采集管封口膜4,通过采集管封口 膜4形成密封,防止与外界空气接触和漏液。
在一个实施例中,在样本采集管1底部预装采集管封底膜5,采集管封底膜5防止采集液从采集液管12中漏出。
所述芯片连接器2和检测芯片3之间设有密封圈8。在密封圈8的作用下,芯片连接器2内侧下表面与检测芯片3之间完全密封。
在一个实施例中,所述密封圈8为O型密封圈8,所述密封圈8的材质为氯丁橡胶、天然橡胶、EPDM橡胶或丙烯酸酯橡胶。
如图1和图2所述,所述检测芯片3包括第一芯片31和第二芯片32,所述第一芯片31与所述第二芯片32连接,所述腔室33设于所述第一芯片31内。
在一个实施例中,所述第一芯片31的材料为玻璃、硅片、高分子聚合物、金属或金属氧化物。
在一个实施例中,所述第二芯片32的材料为玻璃、硅片、高分子聚合物、金属或金属氧化物。
结合图3和图5,所述流道34包括进样通道341、流体出口通道342、第一连接通道343和第二连接通道344,所述进样通道341与所述穿刺管21连通,所述流体出口通道342与所述气体缓冲管14连通,所述第一连接通道343用于连接所述进样通道341和腔室33,所述第一连接通道343用于连接所述流体出口通道342和腔室33。
在一个实施例中,所述腔室33与所述通道串行或并行连接;所述腔室33内预装有固定的生化反应试剂。
在一个实施例中,所述流道34的加工可通过机床加工、激光烧蚀、3D打印、注塑成型或化学刻蚀加工而成。
在一个实施例中,所述流道34为微流道,所述流道34的宽度大于0且小于或等于10mm,所述芯片微流道34的深度大于0且小于或等于10mm。
在一个实施例中,所述采集液管12、穿刺管21和进样通道341沿竖直 方向设置,采集液管12中试剂通过穿刺管21在重力作用下通过检测芯片3上的进样通道341流入反应与检测腔室33中。
所述手持微流控芯片核酸检测装置还包括密封硅胶垫片6,所述密封硅胶垫片6设于所述样本采集管1和芯片连接器2之间,所述密封硅胶垫片6设有第一通孔61和第二通孔62,所述第一通孔61与所述穿刺管21配合,所述芯片连接器2上设有与所述流体出口通道342连通的出气口22,所述第二通孔62与所述出气口22配合。
在一个实施例中,第一通孔61和第二通孔62可为圆孔或方孔,具体的,可设置成与穿刺管21和出气口22适配的形状。
在一个实施例中,所述密封硅胶垫片6的材质为氯丁橡胶、天然橡胶、EPDM橡胶或丙烯酸酯橡胶。
在一个实施例中,所述流体出口通道342出口通过芯片连接器2与气体缓冲管14下端的通孔相对应,形成气体流通区域。
所述芯片连接器2的出气口22设有疏水透气膜7,所述疏水透气膜7对所述气体缓冲管14朝向所述芯片连接器2一端密封,阻挡液体通过。
所述流道34的一开口端为进样口,另一开口端延伸至检测芯片3之外且与疏水透气膜7连接,即一开口端设置于进样通道341,另一开口端设置于流体出口通道342。
在一个实施例中,所述疏水透气膜7的材质为聚四氟乙烯、硅橡胶或聚乙烯。
优选地,所述疏水透气膜7的厚度大于0且小于或等于1mm,疏水透气膜7可供空气通过,但阻挡液体通过。
在一个实施例中,所述腔室33中预装有生化反应试剂,试剂可以为粉状、液体、冻干球、固态颗粒等多种状态,采集液管12中的液体流入后与之发生生物反应。
在一个实施例中,所述检测芯片3还包括双面胶膜35,所述第一芯片 31和第二芯片32通过所述双面胶膜35连接。
在一个实施例中,所述第一芯片31和第二芯片32通过激光焊接、超声焊接、热压键合、等离子体键合、溶剂键合等方式连接。
所述芯片连接器2的外侧和样本采集管1的内侧设有卡扣结构,当样本采集管1往下插入芯片连接器2时,两者通过卡扣结构锁紧。
所述芯片连接器2朝向所述检测芯片3的一端设有供所述检测芯片3安装的安装槽23,所述检测芯片3朝向所述芯片连接器2一端设有第一卡槽36和第二卡槽37,所述芯片连接器2朝向所述检测芯片3的一端设有与所述第一卡槽36配合的第一卡块24和与所述第二卡槽37配合的第二卡块25,所述密封圈8设有所述第一卡槽36内且与所述第一卡块24贴合,所述第二卡块25设有通气孔,所述通气孔两端分别与所述流体出口通道342和出气口22连通。
需要说明的是,在手持微流控芯片核酸检测装置可采用长方体卡盒形状,但在不脱离本发明创造本质的情况下,手持微流控芯片核酸检测装置也可以针对特定应用场合进行调整,例如可有以下调整:手持微流控芯片核酸检测装置的形状可因加工方式、功能需求进行调整,具体可为长方体、圆柱体等形状组合;检测芯片3上的流道34形状可因功能需求进行相应的调整;检测芯片3上腔室33的数量可根据实际需要进行相应的调整。
本发明实施例提供的手持微流控芯片核酸检测装置,实现了加样和检测过程的精确控制,操作简单,灵敏度高,无需专业培训即可上手操作,检测效率高,样品消耗少,可快速进行核酸自检,适用范围广。手持微流控芯片核酸检测装置可应用于各种医院、进出口海关、疾控中心,也可以用于家庭自检、社区检测、户外监测等各种现场检测场景。
为了解决以上提出的技术问题,本发明实施例还提供了一种手持微流控芯片核酸检测装置的使用方法,采用了如下所述的技术方案:
一种手持微流控芯片核酸检测装置的使用方法,基于如上所述的手持 微流控芯片核酸检测装置,包括以下步骤:
在样本采集管内加入含待测核酸的采样溶液,进行样本的采样;
将芯片连接器与检测芯片安装,将样本采集管对准芯片连接器,使穿刺管对样本采集管进行穿刺;
样本采集管内的反应液在重力作用下通过检测芯片上的流道流入腔室,反应液与腔室内的预装试剂发生核酸反应;
将检测芯片插入与其配套的仪器内,获取检测结果。
所述在样本采集管内加入含待测核酸的采样溶液的步骤包括:在样本采集管内加入含待测核酸的采样溶液,打开管盖,将试子棉签头浸入采样溶液中转动混匀几秒钟之后折断在采集液管内,盖上管盖。
所述将芯片连接器与检测芯片安装,将样本采集管对准芯片连接器,使穿刺管对样本采集管进行穿刺的步骤中,将芯片连接器插入检测芯片,实现芯片连接器与检测芯片的固定卡紧,芯片连接器与检测芯片之间通过密封圈密封;将样本采集管对准芯片连接器向下插入,样本采集管与芯片连接器之间通过密封硅胶垫片密封,在穿刺管作用下,采集管封底膜被刺破。
所述将检测芯片插入与其配套的仪器内,获取核酸检测结果的步骤包括:
将检测芯片插入与其配套的仪器内,仪器对腔室加热至设定温度进行核酸扩增反应;
仪器上的光学检测模块检测到反应液吸光度变化发生显色反应,根据颜色获取检测结果。
本发明实施例提供的手持微流控芯片核酸检测装置的使用方法,将反应试剂及所有反应过程集中在一块芯片上完成,无需借助外部仪器注液、转移液体等操作,无需专业的实验场所和特殊条件就可进行核酸检测,具体的,在样本采集管内加入含待测核酸的采样溶液,将试子棉签头加入采 集液管内,将样本采集管对准芯片连接器向下插入,在穿刺管作用下,样本采集管内的反应液在重力作用下通过流道流入用于反应和检测的腔室,与腔室内的预装试剂发生核酸反应,然后将芯片插入与其配套的仪器内,实现核酸检测的过程;本发明大大简化了核酸检测的操作步骤,对操作人员和场地没有太大的要求,操作人员无需专业培训即可上手操作,具有操作简单、检测效率高、灵敏度高等特点,手持微流控芯片核酸检测装置可用在社区医院、家庭自检、公共场所等进行普及应用,实现疫情防控期间的实时筛查和检测,以及个人健康状况自测。
显然,以上所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例,附图中给了本发明的较佳实施例,但并不限制本发明的专利范围。本发明可以以许多不同的形式来实现,相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员而言,其依然可以对前述各具体实施方式所记载的技术方案进行修改,或者对其中部分技术特征进行等效替换。凡是利用本发明说明书及附图内容所做的等效结构,直接或间接运用在其他相关的技术领域,均同理在本发明专利保护范围之内。

Claims (20)

  1. 一种手持微流控芯片核酸检测装置,包括:
    样本采集管;
    芯片连接器,所述芯片连接器上设有用于对所述样本采集管进行穿刺的穿刺管;
    检测芯片,所述检测芯片与所述芯片连接器连接,所述检测芯片设有若干腔室和若干流道,所述流道与所述穿刺管和所述腔室连通。
  2. 根据权利要求1所述的手持微流控芯片核酸检测装置,其中,
    所述样本采集管包括管体、采集液管和管盖,所述采集液管设于所述管体内,所述管盖转动设置于所述管体上,所述管盖用于盖合所述采集液管。
  3. 根据权利要求2所述的手持微流控芯片核酸检测装置,其中,
    所述手持微流控芯片核酸检测装置还包括采集管封口膜和采集管封底膜,所述采集管封口膜和采集管封底膜分别设于所述管盖内和采集液管底部,所述采集管封口膜和采集管封底膜分别用于对所述采集液管的口部和底部进行密封。
  4. 根据权利要求1所述的手持微流控芯片核酸检测装置,其中,
    所述检测芯片包括第一芯片和第二芯片,所述第一芯片与所述第二芯片连接,所述腔室设于所述第一芯片内。
  5. 根据权利要求2所述的手持微流控芯片核酸检测装置,其中,
    所述样本采集管还包括气体缓冲管,所述气体缓冲管设于所述管体内;
    所述流道包括进样通道、流体出口通道、第一连接通道和第二连接通道,所述进样通道与所述穿刺管连通,所述流体出口通道与所述气体缓冲管连通,所述第一连接通道用于连接所述进样通道和腔室,所述第一连接通道用于连接所述流体出口通道和腔室。
  6. 根据权利要求5所述的手持微流控芯片核酸检测装置,其中,
    所述腔室与所述通道串行或并行连接;所述腔室内预装有固定的生化反应试剂,所述试剂为粉状、液体、冻干球或固态颗粒状态;
    所述采集液管、穿刺管和进样通道沿竖直方向设置,采集液管中试剂通过穿刺管在重力作用下通过检测芯片上的进样通道流入反应与检测腔室中;
    所述流道的宽度大于0且小于或等于10mm,所述芯片微流道的深度大于0且小于或等于10mm。
  7. 根据权利要求4所述的手持微流控芯片核酸检测装置,其中,
    所述检测芯片还包括双面胶膜,所述第一芯片和第二芯片通过所述双面胶膜连接;
    或者,所述第一芯片和第二芯片通过激光焊接、超声焊接、热压键合、等离子体键合、溶剂键合的方式连接。
  8. 根据权利要求5所述的手持微流控芯片核酸检测装置,其中,
    所述手持微流控芯片核酸检测装置还包括密封硅胶垫片,所述密封硅胶垫片设于所述样本采集管和芯片连接器之间,所述密封硅胶垫片设有第一通孔和第二通孔,所述第一通孔与所述穿刺管配合,所述芯片连接器上设有与所述流体出口通道连通的出气口,所述第二通孔与所述出气口配合。
  9. 根据权利要求8所述的手持微流控芯片核酸检测装置,其中,
    所述出气口设有疏水透气膜,所述疏水透气膜对所述气体缓冲管朝向所述芯片连接器一端密封;
    所述疏水透气膜的厚度大于0且小于或等于1mm。
  10. 根据权利要求9所述的手持微流控芯片核酸检测装置,其中,
    所述芯片连接器和检测芯片之间设有密封圈。
  11. 根据权利要求10所述的手持微流控芯片核酸检测装置,其中,
    所述疏水透气膜的材质为聚四氟乙烯、硅橡胶或聚乙烯;
    所述密封硅胶垫片和密封圈的材质为氯丁橡胶、天然橡胶、EPDM橡胶或丙烯酸酯橡胶。
  12. 根据权利要求1所述的手持微流控芯片核酸检测装置,其中,
    所述芯片连接器的外侧和样本采集管的内侧设有卡扣结构。
  13. 根据权利要求10所述的手持微流控芯片核酸检测装置,其中,
    所述芯片连接器朝向所述检测芯片的一端设有供所述检测芯片安装的安装槽,所述检测芯片朝向所述芯片连接器一端设有第一卡槽和第二卡槽,所述芯片连接器朝向所述检测芯片的一端设有与所述第一卡槽配合的第一卡块和与所述第二卡槽配合的第二卡块,所述密封圈设有所述第一卡槽内且与所述第一卡块贴合,所述第二卡块设有通气孔,所述通气孔两端分别与所述流体出口通道和出气口连通。
  14. 根据权利要求4所述的手持微流控芯片核酸检测装置,其中,
    所述第一芯片的材料为玻璃、硅片、高分子聚合物、金属或金属氧化物;
    所述第二芯片的材料为玻璃、硅片、高分子聚合物、金属或金属氧化物。
  15. 根据权利要求1所述的手持微流控芯片核酸检测装置,其中,
    所述流道的加工可通过机床加工、激光烧蚀、3D打印、注塑成型或化学刻蚀加工而成。
  16. 根据权利要求10所述的手持微流控芯片核酸检测装置,其中,
    所述密封圈为O型密封圈,所述密封圈的材质为氯丁橡胶、天然橡胶、EPDM橡胶或丙烯酸酯橡胶。
  17. 一种手持微流控芯片核酸检测装置的使用方法,基于权利要求1-16任意一项所述的手持微流控芯片核酸检测装置,包括以下步骤:
    在样本采集管内加入含待测核酸的采样溶液,进行样本的采样;
    将芯片连接器与检测芯片安装,将样本采集管对准芯片连接器,使穿刺管对样本采集管进行穿刺;
    样本采集管内的反应液在重力作用下通过检测芯片上的流道流入腔室,反应液与腔室内的预装试剂发生核酸反应;
    将检测芯片插入与其配套的仪器内,获取检测结果。
  18. 根据权利要求17所述的手持微流控芯片核酸检测装置的使用方法,其中,
    所述在样本采集管内加入含待测核酸的采样溶液的步骤包括:
    在样本采集管内加入含待测核酸的采样溶液,打开管盖,将试子棉签头浸入采样溶液中转动混匀几秒钟之后折断在采集液管内,盖上管盖。
  19. 根据权利要求17所述的手持微流控芯片核酸检测装置的使用方法,其中,
    所述将芯片连接器与检测芯片安装,将样本采集管对准芯片连接器,使穿刺管对样本采集管进行穿刺的步骤包括:
    将芯片连接器插入检测芯片,实现芯片连接器与检测芯片的固定卡紧,芯片连接器与检测芯片之间通过密封圈密封;
    将样本采集管对准芯片连接器向下插入,样本采集管与芯片连接器之间通过密封硅胶垫片密封,在穿刺管作用下,采集管封底膜被刺破。
  20. 根据权利要求17所述的手持微流控芯片核酸检测装置的使用方法,其中,
    所述将检测芯片插入与其配套的仪器内,获取核酸检测结果的步骤包括:
    将检测芯片插入与其配套的仪器内,仪器对腔室加热至设定温度进行核酸扩增反应;
    仪器上的光学检测模块检测到反应液吸光度变化发生显色反应,根据颜色获取检测结果。
PCT/CN2022/106129 2022-05-30 2022-07-15 一种手持微流控芯片核酸检测装置及其使用方法 WO2023231158A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/061,481 US20230383222A1 (en) 2022-05-30 2022-12-05 Hand-held nucleic acid detection apparatus equipped with microfluidic chip, and use method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210604648.4 2022-05-30
CN202210604648.4A CN117181321A (zh) 2022-05-30 2022-05-30 一种手持微流控芯片核酸检测装置及其使用方法
CN202221327489.X 2022-05-30
CN202221327489.XU CN217646431U (zh) 2022-05-30 2022-05-30 一种手持微流控芯片核酸检测装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/061,481 Continuation US20230383222A1 (en) 2022-05-30 2022-12-05 Hand-held nucleic acid detection apparatus equipped with microfluidic chip, and use method thereof

Publications (1)

Publication Number Publication Date
WO2023231158A1 true WO2023231158A1 (zh) 2023-12-07

Family

ID=89026773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106129 WO2023231158A1 (zh) 2022-05-30 2022-07-15 一种手持微流控芯片核酸检测装置及其使用方法

Country Status (1)

Country Link
WO (1) WO2023231158A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100003683A1 (en) * 2006-07-14 2010-01-07 Roche Molecular Systems, Inc Disposable Device for Analyzing a Liquid Sample Containing a Nucleic Acid With a Nucleic Acid Amplification Apparatus
CN108117983A (zh) * 2016-11-30 2018-06-05 希森美康株式会社 受试体处理装置、受试体处理方法及受试体处理芯片
CN111647498A (zh) * 2020-05-25 2020-09-11 清华大学 一种一体化自助式核酸检测装置及其使用方法
CN112940922A (zh) * 2021-02-19 2021-06-11 清华大学 一种全集成病原体核酸检测微流控芯片
CN113832022A (zh) * 2021-09-23 2021-12-24 吉特吉生物技术(苏州)有限公司 一种一体式核酸扩增检测设备
CN113846002A (zh) * 2021-10-15 2021-12-28 西安交通大学 一种全封闭无污染的数字化核酸检测芯片及检测方法
CN114164088A (zh) * 2021-12-10 2022-03-11 西安交通大学 一种居家核酸检测的芯片结构、卡盒及方法
CN114317221A (zh) * 2020-09-30 2022-04-12 富佳生技股份有限公司 核酸检测主机及核酸检测设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100003683A1 (en) * 2006-07-14 2010-01-07 Roche Molecular Systems, Inc Disposable Device for Analyzing a Liquid Sample Containing a Nucleic Acid With a Nucleic Acid Amplification Apparatus
CN108117983A (zh) * 2016-11-30 2018-06-05 希森美康株式会社 受试体处理装置、受试体处理方法及受试体处理芯片
CN111647498A (zh) * 2020-05-25 2020-09-11 清华大学 一种一体化自助式核酸检测装置及其使用方法
CN114317221A (zh) * 2020-09-30 2022-04-12 富佳生技股份有限公司 核酸检测主机及核酸检测设备
CN112940922A (zh) * 2021-02-19 2021-06-11 清华大学 一种全集成病原体核酸检测微流控芯片
CN113832022A (zh) * 2021-09-23 2021-12-24 吉特吉生物技术(苏州)有限公司 一种一体式核酸扩增检测设备
CN113846002A (zh) * 2021-10-15 2021-12-28 西安交通大学 一种全封闭无污染的数字化核酸检测芯片及检测方法
CN114164088A (zh) * 2021-12-10 2022-03-11 西安交通大学 一种居家核酸检测的芯片结构、卡盒及方法

Similar Documents

Publication Publication Date Title
CN111644213B (zh) 一种流体操控装置及流体控制方法
CN109603936B (zh) 一种用于结核检测的弹性微流控芯片
WO2021237396A1 (zh) 一种一体化自助式核酸检测装置及其使用方法
CN217646431U (zh) 一种手持微流控芯片核酸检测装置
US20110048952A1 (en) Microfluidic interface
WO2021237397A1 (zh) 一种流体操控装置及流体控制方法
KR20140095342A (ko) 핵산 분석용 미세 유체 시스템
CN101435807B (zh) 一种用于重金属离子现场检测的无动力微流控芯片及其制作和使用方法
CN207933420U (zh) 一种基因检测用的微流控芯片
US20200408752A1 (en) Fluidic system for performing assays
WO2022174471A1 (zh) 一种全集成病原体核酸检测微流控芯片
US20210123903A1 (en) Micro-fluidic Chip and Analytical Instrument Provided with the Micro-fluidic Chip
WO2019086019A1 (zh) 微液滴检测装置
WO2023138148A1 (zh) 一种应用于快速检测的密封装置及其使用方法、应用
CN113444624A (zh) 一种依靠拉伸力驱动的核酸检测芯片及核酸检测设备
WO2023231158A1 (zh) 一种手持微流控芯片核酸检测装置及其使用方法
CN116445269B (zh) 基于旋扭隔离阀的核酸检测卡及检测方法
CN109752353B (zh) 微液滴检测装置
CN113174323A (zh) 一种微流控pcr芯片及pcr检测方法
CN107694651A (zh) 可逆微流控芯片夹具
KR102363347B1 (ko) 모듈형 미세 유체 장치 및 이를 이용한 유체 분석 방법
US11740256B2 (en) System, device and methods of sample processing using semiconductor detection chips
CN113717827B (zh) 一种全集成核酸检测微流控芯片及使用方法
US20230383222A1 (en) Hand-held nucleic acid detection apparatus equipped with microfluidic chip, and use method thereof
CN217781144U (zh) 一种微流控芯片检测卡盒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22793377

Country of ref document: EP

Kind code of ref document: A1