WO2023230986A1 - 离心管、单管离心装置、单管离心反应方法及连续样本单管离心系统 - Google Patents

离心管、单管离心装置、单管离心反应方法及连续样本单管离心系统 Download PDF

Info

Publication number
WO2023230986A1
WO2023230986A1 PCT/CN2022/096844 CN2022096844W WO2023230986A1 WO 2023230986 A1 WO2023230986 A1 WO 2023230986A1 CN 2022096844 W CN2022096844 W CN 2022096844W WO 2023230986 A1 WO2023230986 A1 WO 2023230986A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
centrifuge
reaction
tank
centrifuge tube
Prior art date
Application number
PCT/CN2022/096844
Other languages
English (en)
French (fr)
Inventor
王锦弘
Original Assignee
王锦弘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王锦弘 filed Critical 王锦弘
Priority to PCT/CN2022/096844 priority Critical patent/WO2023230986A1/zh
Publication of WO2023230986A1 publication Critical patent/WO2023230986A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/12Apparatus for enzymology or microbiology with sterilisation, filtration or dialysis means

Definitions

  • the invention relates to a centrifuge tube, a single-tube centrifugal device and a single-tube centrifugal reaction method. Specifically, it relates to a centrifuge tube that can perform vertical centrifugation, a centrifuge device that can perform single-tube centrifugation, and a single-tube centrifugation reaction method completed by the centrifuge tube and the centrifuge device.
  • the number of samples taken and the delivery time may also be different.
  • Traditional analysis methods usually require a larger amount at one time to be more economical. Therefore, there is also a need for a method that can flexibly correspond to the number of samples and delivery time. time-based system.
  • the present invention provides a centrifuge tube, including: an outer tube including a first accommodation space; a cover set on the outer tube to seal the outer tube; and an inner tube located in the first accommodation space. in an accommodation space, and includes: an opening for adding a reactant mixture into the inner tube; a joint through which the inner tube is sleeved in the outer tube and allows the centrifuge tube to
  • the inner tube and the outer tube are coaxial, wherein the nozzle of the outer tube is toward the bottom direction toward the Z axis, and the axis is perpendicular to the Z axis when the inner tube and the outer tube are A line connecting the central position on the plane; a reaction tank, connected with the opening, for accommodating the reaction mixture added from the opening for reaction, and a first narrow space is included between the reaction tank and the opening. and a first liquid outlet, which connects the reaction tank to the first accommodation space and is symmetrically arranged in a direction perpendicular to the Z-axis.
  • the centrifuge tube further includes a first one-way valve disposed at the first liquid discharge port.
  • the opening and closing of the first one-way valve is controlled by the first centrifugal force.
  • the waste liquid in the reaction tank is discharged.
  • the liquid is discharged from the reaction tank to the first accommodation space through the first drain port.
  • the reaction tank includes a first reaction space and a second reaction space, the first reaction space is connected to the opening, and the first reaction space and the opening include the first narrow space.
  • a second narrow opening is included between the first reaction space and the second reaction space, wherein the first liquid outlet is located in the first reaction space, and the second reaction space includes a second row liquid port.
  • the second liquid discharge port Preferably, it also includes a first one-way valve disposed at the second liquid discharge port.
  • the opening and closing of the first one-way valve is controlled by the first centrifugal force.
  • the waste liquid in the reaction tank is discharged from the reaction tank.
  • the tank is discharged to the first accommodation space through the second drain port.
  • the centrifuge tube further includes a replenishing medicament tank, which includes a medicament tank, a retention tank and a second one-way valve, wherein the retention tank is connected to the reaction tank.
  • a replenishing medicament tank which includes a medicament tank, a retention tank and a second one-way valve, wherein the retention tank is connected to the reaction tank.
  • the second one-way valve is a mechanical valve, an electronically controlled valve or a magnetically controlled valve.
  • the centrifuge tube further includes a combination of a plurality of one-way valves and drain ports arranged symmetrically based on the axis.
  • the narrow opening forms an included angle of 30-60 degrees with the Z-axis.
  • the narrow opening forms an angle of 30-45 degrees with the Z-axis.
  • a single-tube centrifuge device including a centrifuge and a fixing member, the fixing member fixes the centrifuge tube, wherein the centrifuge is coaxial with the centrifuge tube.
  • a single-tube centrifugal reaction method which includes: adding the reaction mixture to the above-mentioned centrifuge tube for reaction; placing the centrifuge tube in the above-mentioned single-tube centrifuge device, and passing the fixing member Fix the centrifuge tube; and remove waste liquid by centrifuging the centrifuge tube.
  • the present invention at least has the following advantages:
  • centrifuge tube Through the centrifuge tube according to the embodiment of the present invention, it can be operated as a single tube and can be analyzed without preparing multiple samples.
  • waste liquid can be removed simply through single-tube centrifugation after the reaction, and consumables can be reduced.
  • Figure 1 is an exploded schematic diagram of a centrifuge tube according to an embodiment of the present invention.
  • Figure 2 is a schematic side view of a centrifuge tube according to an embodiment of the present invention.
  • Figure 3 is a schematic three-dimensional view of a centrifuge tube according to an embodiment of the present invention.
  • Figure 4 is a schematic diagram of a liquid discharge port of a centrifuge tube according to an embodiment of the present invention.
  • Fig. 5 is a partially enlarged schematic view of the joint between the joint member of the centrifuge tube and the cover body according to the embodiment of the present invention.
  • Figure 6 is a schematic diagram of the narrow opening of the inner tube according to an embodiment of the present invention.
  • Figure 7 is a schematic three-dimensional view of the inner tube 103a according to another embodiment of the present invention.
  • Figure 8 is a schematic three-dimensional view of the inner tube 103a according to yet another embodiment of the present invention.
  • Figure 9 is a schematic diagram of the closed and opened states of the replenishing medicine tank according to an embodiment of the present invention.
  • Figure 10 is a schematic diagram of a replenishing medicine tank according to another embodiment of the present invention.
  • Figure 11 is a schematic three-dimensional view of a single-tube centrifuge according to another embodiment of the present invention.
  • Figure 12 is a cross-sectional view of a single-tube centrifuge according to another embodiment of the present invention.
  • Figure 13 is a schematic diagram of the bottom shape of a centrifuge tube according to another embodiment of the present invention.
  • Figure 14 is a flow chart of a single-tube centrifugation reaction method according to an embodiment of the present invention.
  • centrifuge tube, single-tube centrifugal device and single-tube centrifugal reaction method of the present invention will be described below through specific examples.
  • FIG. 1 is an exploded schematic diagram of a centrifuge tube 1 according to an embodiment of the present invention.
  • Figure 2 is a schematic side view of a centrifuge tube 1 according to an embodiment of the present invention.
  • Figure 3 is a perspective view of a centrifuge tube 1 according to an embodiment of the present invention.
  • Figure 4 is a schematic diagram of the liquid discharge port 1034 of the centrifuge tube 1 according to an embodiment of the present invention.
  • FIG. 5 is a partially enlarged schematic view of the joint between the joint 1031 of the centrifuge tube 1 and the cover 102 according to the embodiment of the present invention.
  • Figure 6 is a schematic diagram of the first narrow opening 1035 of the inner tube 103 of the centrifuge tube 1 according to an embodiment of the present invention.
  • the centrifuge tube 1 may include an outer tube 101, a cover 102 and an inner tube 103.
  • the cover 102 can be sleeved (for example, sleeved with a thread) on the outside of the opening of the outer tube 101 to close the outer tube 101 .
  • the inner tube 103 is disposed in the accommodation space formed by the outer tube 101 .
  • the inner tube 103 may include a joint 1031, a reaction tank 1032, a first one-way valve 1033, and a drain port 1034.
  • the joint 1031 may be sleeved inside the opening of the outer tube 101.
  • the first one-way valve 1033 may include, for example, a steel ball 1033a and a spring 1033b.
  • the cover 102 may include a protrusion 1021 at a position corresponding to the joint 1031 , which may be further used when the cover 102 is sleeved (for example, fixedly sleeved with threads) on the outer tube 101 . Press the joint 1031 tightly to make the position of the inner tube 103 more stable.
  • the direction of the nozzle of the centrifuge tube 1, the outer tube 101 or the inner tube 103 toward the bottom is the Z-axis
  • the line connecting the center positions of the inner tube and the outer tube on a plane perpendicular to the Z-axis is its axis.
  • ZZ' connection When the inner tube 103 is sleeved inside the opening of the outer tube 101 through the joint 1031, the inner tube 103 will be fixed in the accommodation space in the outer tube 101 in a coaxial manner with the outer tube 102, so it can be placed in the centrifuge tube 1 Remain stable during spin centrifugation.
  • the joint 1031 of the inner tube 103 can be sleeved on the outside of the outer tube 101.
  • the present invention is not limited thereto, and the inner tube 103 can be fixed in the outer tube 101 in any suitable manner.
  • the centrifuge tube 1 includes a pair of liquid discharge ports 1034 arranged symmetrically with respect to the axis, in which a first one-way valve 1033 is provided.
  • the first one-way valve 1033 includes steel balls 1033a and springs 1033b.
  • a pair of drain ports 1034 arranged symmetrically with respect to the axis can balance the centrifuge tube 1 and prevent it from shaking.
  • the steel ball 1033a in the first one-way valve 1033 in the liquid discharge port 1034 will be pushed by the spring 1033b to resist the opening connected to the reaction tank 1032 and close it.
  • the centrifugal force experienced by the steel ball 1033a will be greater than the pushing force of the spring 1033b and compress the spring 1033b, thereby connecting the reaction tank 1032 with the drain port 1034, so that the waste liquid in the reaction tank 1032 can be discharged through the drain port 1034.
  • the steel ball 1033a will rebound due to the pushing force of the spring 1033b, thereby closing the connection between the reaction tank 1032 and the drain port 1034.
  • the steel balls 1033a and the springs 1033b can be configured in different ways, for example, the steel balls have different weights, the springs have different elastic forces, etc., to suit different needs.
  • the connection between the reaction tank 1032 and the drain port 1034 may include a filter screen, filter paper or a semipermeable membrane.
  • the centrifuge tube 1 is used with magnetic beads.
  • the centrifuge tube 1 can be blocked by the above-mentioned filter screen, filter paper, etc.
  • the top view shape of the reaction tank 1032 may be a circle or a polygon.
  • the drain port 1034 may be disposed at a symmetrical vertex of the polygon to improve the drain effect during centrifugation.
  • a magnetic force generating device can be used to generate magnetic force at the axis or circumference of the centrifuge tube 1, so that the magnetic beads are retained in the center of the centrifuge tube 1 and will not be discharged during centrifugation.
  • the drain port 1034 may have different arrangements, for example, it may be 4 or 6 drain ports arranged symmetrically with respect to the axis.
  • the first one-way valve 1033 in the liquid discharge port 1034 is not limited to a combination of steel balls and springs. It can be controlled to open and close by electronic control or magnetic control, and waste liquid can also be eliminated by centrifugal force.
  • the first one-way valve 1033 may be disposed in the liquid discharge port 1034 at a position close to the axis of the inner tube 103, but the present invention is not limited thereto.
  • the first one-way valve 1033 can be disposed at a position where the liquid discharge port 1034 is away from the axis of the inner tube 103, or at any position where the one-way valve can be opened by centrifugation, electronic control or magnetic control, and then the waste liquid can be discharged.
  • a first narrow opening 1035 may be provided between the reaction tank 1032 and the tube opening in the inner tube 103 .
  • the first narrow opening 1035 is formed by inclining the inner wall of the reaction tank 1032 toward the axis.
  • a first narrow opening 1035 can be provided between the reaction tank 1032 and the tube opening in the inner tube 103 .
  • the first narrow opening 1035 forms an included angle of 30 to 60 degrees with the axis, preferably an included angle of 45 degrees.
  • the first narrow opening 1035 with a predetermined angle to the axis can maintain the reaction mixture in the reaction tank 1032 to prevent it from overflowing.
  • FIG. 7 is a schematic three-dimensional view of the inner tube 103a according to another embodiment of the present invention.
  • the centrifuge tube 1 of the present invention includes an inner tube 103a. Except for the configuration of the inner tube 103a, the centrifuge tube 1 in this embodiment is the same as the above embodiment and will not be described again.
  • the reaction tank 1032 of the inner tube 103a includes a first reaction space 1032a and a second reaction space 1032b, where the inner diameter of the second reaction space 1032b is larger than the first reaction space 1032a.
  • a second narrow opening 1035a is included between the first reaction space 1032a and the second reaction space 1032b.
  • the angle between the second narrow opening 1035a and the Z-axis may be 30 to 60 degrees, preferably 30 to 45 degrees, and more preferably 45 degrees.
  • the waste liquid will move toward the side wall of the second reaction space 1032b due to centrifugal force. As the centrifugation speed increases, the waste liquid will appear in a donut shape at the side wall of the second reaction space 1032b. At the same time, the waste liquid will also be affected by the centrifugal force and move upward to the side wall of the first reaction space 1032a, and be discharged from the first liquid outlet 1034a of the first reaction space 1032a to the first outlet between the outer tube 101 and the inner tube 103a. In the accommodation space, a predetermined volume of the reaction mixture can be retained in the second reaction space 1032b. By preserving a portion of the liquid, aspiration can be facilitated when the reaction mixture includes magnetic beads, etc.
  • the liquid discharge port 1034a since the liquid discharge port 1034a is not provided with a valve, the waste liquid will be directly discharged into the first accommodation space.
  • the liquid discharge port 1034a may also be provided with a one-way valve as described above to control waste liquid discharge, and the present invention is not limited thereto.
  • FIG. 8 is a schematic three-dimensional view of the inner tube 103a according to another embodiment of the present invention.
  • the configuration of the inner tube 103a in the centrifuge tube 1 of this embodiment is basically the same as that of the above-mentioned embodiment, and only the differences will be described here.
  • the side wall of the second reaction space 1032b further includes a second liquid discharge port 1034b, and a one-way valve (not shown) is provided at the second liquid discharge port 1034b. After the reaction mixture completes the reaction in the second reaction space 1032b, part of the waste liquid can be discharged from the first liquid outlet 1034a to the first accommodation space through centrifugation as described in the above embodiment.
  • the one-way valve provided at the second liquid discharge port 1034b can be opened by controlling the centrifugal force, so that the waste liquid can be discharged from the second liquid discharge port 1034b to the first accommodation space.
  • the above embodiments are only examples, and the present invention is not limited thereto. Multiple drain ports may be provided, or valves of different types may be provided, or a filter screen, filter paper, or semipermeable membrane may be provided at the drain port.
  • the remaining amount of liquid in the second reaction space 1032b can also be controlled by controlling the height of the second liquid discharge port 1034b in the second reaction space 1032b.
  • FIG. 9 is a schematic diagram of the closed (a) and open (b) states of the replenishing medicine tank 110 according to an embodiment of the present invention.
  • FIG. 9 only one side is shown as a schematic diagram, but the present invention is not limited thereto.
  • the centrifuge tube 1 of the present invention may further include a replenishing agent tank 110, and the number of the replenishing agent tanks 110 may be determined according to the amount of replenishing agent used.
  • the inner tube 103 can be provided with a single replenishing medicine tank 110, and the replenishing medicine tank 110 can include a medicine tank 111, a retention tank 112, and a second one-way valve 113, wherein the second one-way valve 113 controls the medicine tank. 111 and the temporary retention tank 112, and the temporary tank 112 is connected with the inner tube 103.
  • the opening threshold of the second one-way valve 113 may be different from that of the first one-way valve 1033 .
  • the centrifugal force threshold for opening of the second one-way valve 113 may be greater than that of the first one-way valve 1033 .
  • the initial state of the replenishing medicine tank 110 is shown in part (a) of FIG. 9 .
  • the second one-way valve 113 resists the opening, so that the replenishing medicine is stored in the medicine tank 111 .
  • the reaction mixture passes through the inner tube 103 and is mixed in the reaction tank 1032, it can be centrifuged at a first rotation speed.
  • the first one-way valve 1033 is opened to discharge the waste liquid of the reaction mixture from the drain port 1034. Then, the rotation speed can be accelerated to a second rotation speed greater than the first rotation speed for centrifugation.
  • the second one-way valve 113 After reaching the centrifugal force threshold of the second one-way valve 113, the second one-way valve 113 is opened, and the supplementary medicine placed in the medicine tank 111 falls into the temporary storage. In groove 112, as shown in part (b) of Figure 9 . After centrifugation is stopped, the replenishing agent falls into the inner tube 103 by gravity and reaches the reaction tank 1032, where it performs the next reaction with the reaction mixture remaining in the reaction tank 1032.
  • the second one-way valve can also be electronically controlled or magnetically controlled.
  • a counterweight may be provided on the centrifuge tube 1 at a symmetrical position relative to the axis in a plane perpendicular to the Z-axis to achieve balance during centrifugation.
  • the refilling tank 110 is disposed between the first narrow opening 1035 and the tube opening.
  • the replenishing agent tank 110 may be disposed between the first narrow opening 1035 and the reaction tank 1032 .
  • a plurality of replenishing agent slots can be arranged symmetrically with respect to the axis in a plane perpendicular to the Z-axis on the centrifuge tube 1 .
  • a first replenishing medicine tank and a second replenishing medicine tank may be provided.
  • the structures of the first replenishing medicine tank and the second replenishing medicine tank are similar to the structures of the above-mentioned replenishing medicine tank, and respectively include a first, a second replenishing medicine tank,
  • the first and second retention tanks respectively include a third one-way valve and a fourth one-way valve.
  • the centrifugal force thresholds for opening the third one-way valve and the fourth one-way valve of the first replenishing medicine tank and the second replenishing medicine tank are different.
  • the reaction mixture after the reaction mixture is mixed in the reaction tank, it can be centrifuged at the first rotation speed.
  • the first one-way valve 1033 is opened to discharge the waste liquid of the reaction mixture from the drain port 1034.
  • the rotation speed can be adjusted to Accelerate to a third rotation speed greater than the first rotation speed and perform centrifugation.
  • the third one-way valve opens, and the first replenishing medicament placed in the first medicament tank falls into the first retention tank. .
  • the first replenishing agent falls into the inner tube 103 by gravity and then reaches the reaction tank 1032, where it performs the next reaction with the reaction mixture remaining in the reaction tank 1032.
  • centrifugation is performed at the first rotation speed.
  • the first one-way valve 1033 is opened, and the waste liquid of the reaction mixture is discharged from the drain port 1034.
  • the rotation speed can be accelerated to a fourth rotation speed greater than the third rotation speed for centrifugation.
  • the fourth one-way valve is opened, and the second replenishing medicament placed in the second medicament tank falls into the third medicament tank. The second is temporarily left in the tank.
  • the second replenishing agent falls into the inner tube 103 by gravity and enters the reaction tank 1032, where it performs the next reaction with the reaction mixture remaining in the reaction tank 1032.
  • the third and fourth one-way valves in the first and second replenishing medicament tanks may have the same or different opening centrifugal force thresholds.
  • the replenishing medicament tanks can be combined in the centrifuge tube 1 in a layered manner.
  • the replenishing agent tank can be arranged in the centrifuge tube 1 in a nested manner.
  • the replenishing medicine tank of this embodiment may have the same or similar diameter as the inner tube 103 of the centrifuge tube 1 , and is provided with the above-mentioned structure of the medicine tank, one-way valve, and retention tank in the replenishing medicine tank 110 , where required medicaments can be added, and has a nestable chimera (not shown).
  • the threshold value of the one-way valve in the replenishing medicine tank is different from the threshold value of the first one-way valve 1033 in the centrifuge tube 1 . Therefore, the required medicaments can be combined into the centrifuge tube 1 in a nested manner to achieve the effect of adding medicaments. Furthermore, when a plurality of refill tanks are stacked, the threshold values of the one-way valves in the middle are different from each other.
  • the replenishing medicine tank is arranged symmetrically with respect to the axis of the centrifuge tube 1 and provides different replenishing medicines in an upward stacking manner to avoid insufficient space on the same plane and making it difficult to install multiple replenishing medicines. Furthermore, for a single replenishing agent, a specific proportion of concentrate and diluent of equal quality can be set in a symmetrical replenishing agent tank, so that when the one-way valve is opened and the replenishing agent flows into the holding tank, the concentration can still be maintained. Equilibrate centrifuge tube 1.
  • Figure 11 is a three-dimensional schematic view of a single-tube centrifuge 2 according to another embodiment of the present invention.
  • Figure 12 is a cross-sectional view of a single-tube centrifuge 2 according to another embodiment of the present invention.
  • Figure 13 is a schematic diagram of the bottom shape of the centrifuge tube 1 according to another embodiment of the present invention.
  • a single-tube centrifuge device 2 includes a centrifuge 201 and a fixing member 202 for fixing the centrifuge tube 1 .
  • Centrifuge 201 may include a motor 203 for providing centrifugal force.
  • the centrifuge tube 1 is fixed on the centrifuge 201 through the fixing member 202, and different rotational speeds are provided to provide different centrifugal forces.
  • the fixing part 202 may be provided only at the bottom of the outer tube 101 of the centrifuge tube 1 , or the fixing part 202 may also be provided on the cover 102 of the centrifuge tube 1 and the cover 201 a of the centrifuge 201 .
  • the fixing member 202 can fix the centrifuge tube 1 in any way, such as clamping from the outside of the centrifuge tube 1 , or as shown in FIG. 13 , a groove is provided at the bottom of the centrifuge tube 1 to assist in fixing the centrifuge tube 1 to the fixing member 202 .
  • the groove provided at the bottom of the centrifuge tube 1 can be in a straight shape, a cross shape, a quadrangular shape, a polygonal shape, or any suitable shape that can be stably fixed to the centrifuge 201 .
  • the fixing member 202 connected to the bottom of the centrifuge tube 1 will firmly fix it to the centrifuge 201.
  • the fixing member 202 on the cover 201a of the centrifuge 201 can have a corresponding fixing structure on the cover 102 of the centrifuge tube 1, and can stabilize it in the single-tube centrifuge without affecting the centrifugation of the centrifuge tube 1. within device 2.
  • the centrifuge can accommodate multiple (ie more than one) centrifuge tubes 1 at the same time, and each centrifuge tube 1 can be independently fixed on the centrifuge and centrifuged independently without the need for a counterweight.
  • a continuous sample single-tube centrifugation system which includes a carrier; a single-tube centrifuge disposed on the carrier; a track for carrying the movement of the carrier; and a centrifuge disposed on the track. an identification unit; and a control module that controls the movement of the stage and controls the centrifugation of the single-tube centrifuge.
  • the single-tube centrifuge is the single-tube centrifuge described in the above embodiment, and it is suitable for the centrifuge tube described in the above embodiment.
  • the sample and reagents are injected into the centrifuge tube, and an identification mark is given for identification by the identification unit.
  • the user places the centrifuge tube on the single-tube centrifuge on the stage on the track, and moves the stage through the control module to perform centrifugation, adding reagents and other steps at different positions, and the recognition unit identifies the centrifuge tube. Identify flags to confirm analysis progress.
  • the identification mark can be a barcode, QR code or any identifiable mark.
  • required replenishment reagent tanks can be stacked, thereby eliminating the need for additional equipment for adding reagents.
  • the system may also include heating, cooling, shaking and other equipment to meet different experimental needs. Therefore, through multiple stages on the track and a single-tube centrifuge on it, the sample can be controlled to move on the track and perform different reaction steps at different locations without waiting for the sample to reach a certain number before starting analysis.
  • steps such as reagent addition are also realized by replenishing the reagent tank. Different reagents can be added only by controlling different rotation speeds, saving a lot of manpower and material resources.
  • a single-tube centrifugal reaction method is provided, as shown in Figure 14, including: step S1, adding the reaction mixture into the centrifuge tube for reaction. After the reaction mixture is added to the inner tube 103, it will pass through the first narrow opening 1035 and fall into the reaction tank 1032 for reaction; step S2, place the centrifuge tube 1 in the single-tube centrifuge device 2, and fix the centrifuge tube 1 through the fixing member 202 ; and step S3, centrifuge through centrifuge 201 to react or remove waste liquid.
  • the step of releasing the medicine in the replenishing medicine tank 110 may also be included, and the purpose of releasing the medicine may be achieved by changing the rotation speed of the centrifuge 201 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Clinical Laboratory Science (AREA)
  • Centrifugal Separators (AREA)

Abstract

一种离心管(1)包括外管(101)、套设在外管(101)外以封闭外管(101)的盖体(102)以及设置在外管(101)内的内管(103)。内管(103)包括用于添加反应混合物的开口、将内管固定在外管内的接合件(1031)、用于进行反应的反应槽(1032)、以及与反应槽(1032)连通的排液口(1034)。

Description

离心管、单管离心装置、单管离心反应方法及连续样本单管离心系统 技术领域
本发明涉及一种离心管、单管离心装置以及单管离心反应方法。具体而言,涉及一种可以进行垂直离心的离心管,可以进行单管离心的离心装置,以及通过该离心管及该离心装置完成的单管离心反应方法。
背景技术
在生物技术快速发展的现在,各种自动化分析方法以及大量样本的分析系统不断推出。这些技术的发展让系统性的样本分析变得更加便利迅捷。然而,针对部分特殊需求的生化分析,其所需的原料或耗材可能价格高昂,亦或是样本的取得困难,无法套用于大量样本的分析系统。
另外,适用于大量样本的自动分析系统需要配合足够的空间及环境,通常设置在研究中心或医学中心,而位于偏乡或非城市的医院或研究单位不一定具有足够空间设置,如果需要及时的分析结果的话,就需要较不占空间的分析方法及系统。
另一方面,基于分析对象的不同,采样的样本数量及送达时间也可能不同,传统的分析方式通常需要一次进行较大量以较符合经济效益,因此也需要一种可以灵活对应样本数量及送达时间的系统。
因此,适用于小样本或连续样本的分析方式以及其所需要的机器以及耗材也有市场上的需求。
发明内容
为了实现上述目的,本发明提供一种离心管,包括:外管,包括第一容置空间;盖体,套设在所述外管以密闭所述外管;以及内 管,位于所述第一容置空间中,且包括:开口,用于添加反应物混合物到所述内管中;接合件,所述内管通过所述接合件套设在所述外管内,并使所述离心管的所述内管与所述外管同轴心,其中所述外管的管口朝底部方向为Z轴,所述轴心为所述内管与所述外管在与所述Z轴垂直的平面上的中心位置的连线;反应槽,与所述开口相连通,供容纳从所述开口加入的所述反应混合物进行反应,且所述反应槽与所述开口之间包括第一窄口;以及第一排液口,使所述反应槽与所述第一容置空间连通,且在与所述Z轴垂直的方向上对称设置。
优选地,所述离心管还包括设置在所述第一排液口的第一单向阀,通过第一离心力控制所述第一单向阀开闭,在开启时使反应槽内的废液从所述反应槽经由所述第一排液口排出到所述第一容置空间。
优选地,所述反应槽包括第一反应空间和第二反应空间,所述第一反应空间与所述开口相连通,且所述第一反应空间与所述开口之间包括所述第一窄口,所述第一反应空间与所述第二反应空间之间包括第二窄口,其中所述第一排液口位于所述第一反应空间,且所述第二反应空间包括第二排液口。
优选地,还包括设置在所述第二排液口的第一单向阀,通过第一离心力控制所述第一单向阀开闭,在开启时使反应槽内的废液从所述反应槽经由所述第二排液口排出到所述第一容置空间。
优选地,所述离心管还包括补充药剂槽,所述补充药剂槽包括药剂槽、暂留槽及第二单向阀,其中所述暂留槽与所述反应槽连通。
优选地,所述第二单向阀为机械阀、电控阀或磁控阀。
优选地,所述离心管还包括基于所述轴心呈对称设置多个单向阀与排液口的组合。
优选地,所述窄口与所述Z轴呈30-60度夹角。
优选地,所述窄口与所述Z轴呈30-45度夹角。
根据本发明的另一目的,提供一种单管离心装置,包括离心机 以及固定件,所述固定件固定上述离心管,其中所述离心机与所述离心管同轴心。
根据本发明的又另一目的,再提供一种单管离心反应方法,包括:将反应混合物加入上述离心管进行反应;将所述离心管设置在上述单管离心装置,并通过所述固定件固定所述离心管;以及通过离心所述离心管以排除废液。
通过上述技术特征,本发明至少具备以下优点:
(1)通过本发明实施例的离心管,其可以单管操作,不需要准备多个样本即可进行分析。
(2)通过本发明实施例的离心管以及单管离心装置,可以简单地通过单管离心在进行反应后排除废液,并减少耗材。
(3)通过结合本发明实施例的离心管、单管离心装置以及单管离心反应方法,可以迅速便捷的完成小样本的生化分析。
附图说明
图1是根据本发明实施例的离心管的爆炸示意图。
图2是根据本发明实施例的离心管的侧视示意图。
图3是根据本发明实施例的离心管的立体示意图。
图4是根据本发明实施例的离心管的排液口的示意图。
图5是根据本发明实施例的离心管的接合件与盖体接合处的局部放大示意图。
图6是根据本发明实施例的内管的窄口的示意图。
图7为根据本发明另一实施例的内管103a的立体示意图。
图8为根据本发明又另一实施例的内管103a的立体示意图。
图9是根据本发明实施例的补充药剂槽的关闭与开启状态的示意图。
图10是根据本发明另一实施例的补充药剂槽的示意图。
图11是根据本发明另一实施例的单管离心机的立体示意图。
图12是根据本发明另一实施例的单管离心机的剖面图。
图13是根据本发明另一实施例的离心管底部型态的示意图。
图14是根据本发明实施例的单管离心反应方法的流程图。
具体实施方式
以下是参照相关附图以详细描述实施例。然而,这些实施例可用不同型态来实现,但这并非实施或运用本发明的具体实施例的唯一形式,因此不应理解成对上述实施例的限制。实施方式中涵盖了多个具体实施例的特征以及用以建构与操作这些具体实施例的方法步骤与其顺序。然而,也可利用其他具体实施例来实现相同或均等的功能与步骤顺序。相反的,提供这些实施例是让本说明书可彻底且完整披露,以充分地向本发明所属技术领域的普通技术人员完全表达本发明的精神。附图中相似的元件附图标号是指相似的元件。在以下的叙述中,将不会详细描述已知的功能或结构,以不赘述实施例中不必要的细节。
除非另有定义,本文所用的所有技术用词与术语均与本发明所属技术领域的普通技术人员所通常理解的意义相同。在发生冲突的情况下,以包括定义在内的本说明书为准。
在不和上下文冲突的情形下,本说明书所用的单数名词涵盖该名词的复数型;而所用的复数名词时也涵盖该名词的单数型。此外,在本说明书与权利要求书中,“至少一”与“一或更多”等表述方式的意义相同,两者都代表包括了一、二、三或更多。
连接词“主要由……组成”(consisting essentially of)是用于界定组成物、方法或装置,其包括明文所述者以外的物料、步骤、特征、组分或组件,其限制条件是这些额外的物料、步骤、特征、组分或组件不会显著影响所主张发明的基本与新颖特征。用语“主要由……组成”(consisting essentially of)位于“包括”(comprising)与“由……组成”(consisting of)之间的中间地带。
虽然用以界定本发明较广范围的数值范围与参数均是大概的数值,此处已尽可能精确地呈现具体实施例中的相关数值。然而,任 何数值本质上不可避免地含有因个别测试方法所致的标准偏差。在此处,“约”通常是指实际数值在特定数值或范围的正负10%、5%、1%或0.5%之内。或者是,“约”一词代表实际数值落在平均值的可接受标准误差之内,视本发明所属技术领域的普通技术人员的考虑而定。除了实施例之外,或除非另有明确的说明,应当理解本文中所用的所有范围、数量、数值与百分比(例如用以描述材料用量、时间长短、温度、操作条件、数量比例及其他相似者)均经过“约”的修饰。因此,除非另有相反的说明,本说明书与权利要求书所揭示的数值参数均为大概的数值,且可视需求而变动。至少应将这些数值参数理解为所指出的有效位数与套用一般进位法所得到的数值。在此处,将数值范围表示成由一端点至另一段点或介于二端点中间;除非另有说明,此处所述的数值范围均包括端点。
以下通过具体实施例来说明本发明的离心管、单管离心装置以及单管离心反应方法。
首先参考图1至图6,图1是根据本发明实施例的离心管1的爆炸示意图。图2是根据本发明实施例的离心管1的侧视示意图。图3是根据本发明实施例的离心管1的立体示意图。图4是根据本发明实施例的离心管1的排液口1034的示意图。图5是根据本发明实施例的离心管1的接合件1031与盖体102接合处的局部放大示意图。图6是根据本发明实施例的离心管1的内管103的第一窄口1035的示意图。
本发明实施例的离心管1可包括外管101、盖体102以及内管103。盖体102可套设(例如,以螺纹固定套设)在外管101的开口外侧处,以封闭外管101。内管103则设置在外管101所形成的容置空间中。内管103可包括接合件1031、反应槽1032、第一单向阀1033以及排液口1034,接合件1031可套设在外管101的开口内侧。其中第一单向阀1033可示例性的包括钢珠1033a及弹簧1033b。在一实施例中,如图5所示,盖体102在与接合件1031对应的位置处可以包括突起1021,可以在盖体102套设(例如,以螺纹固定套设)在 外管101时进一步紧压接合件1031,使内管103的位置更稳固。
下面实施例中,离心管1、外管101或内管103的管口朝底部的方向为Z轴,内管与外管在与Z轴垂直的平面上的中心位置的连线为其轴心(例如,ZZ’连线)。当内管103通过接合件1031套设在外管101的开口内侧时,内管103将会以与外管102同轴心的方式固定在外管101内的容置空间中,因此可以在离心管1旋转离心时保持稳定。根据本发明的另一实施例,内管103的接合件1031可以套设在外管101的外侧,本发明不限于此,可以以任意合适的方式将内管103固定在外管101中。
如图4所示,根据本发明实施例的离心管1包括相对于轴心对称设置的一对排液口1034,其中设有第一单向阀1033。第一单向阀1033包括钢珠1033a及弹簧1033b,当离心管1旋转离心时,相对于轴心对称设置的一对排液口1034可以使离心管1平衡不致晃动。在停止时,排液口1034中的第一单向阀1033中的钢珠1033a会受到弹簧1033b的推抵力而抵住与反应槽1032连通的开口并将其封闭,当旋转速度提升且离心力达到阈值时,钢珠1033a所受到的离心力将大于弹簧1033b的推抵力而压缩弹簧1033b,继而使反应槽1032与排液口1034连通,使反应槽1032中的废液可以透过排液口1034排出。当离心力小于阈值时,则钢珠1033a会受弹簧1033b的推抵力弹回,继而关闭反应槽1032与排液口1034的连通。钢珠1033a与弹簧1033b可以具有不同的配置方式,例如钢珠具有不同重量、弹簧具有不同弹力等,以适用于不同需求。在另一实施例中,反应槽1032与排液口1034的连通处可包括滤网、滤纸或半透膜。
根据本发明的一实施例,离心管1配合磁珠使用,为避免磁珠在离心时从排液口1034流失,可透过上述滤网、滤纸等方式进行阻绝。反应槽1032的俯视形状可为圆形或多边形,当反应槽的俯视形状为多边形时,排液口1034可设置在多边形对称的顶点处,以在离心时可以提升排液效果。根据本发明的另一实施例,可透过磁力产生装置在离心管1的轴心处或圆周处产生磁力,使磁珠留置在离心 管1中央,而不会在离心时被排出。
根据本发明的另一实施例,排液口1034可以具有不同的设置方式,例如可为4个或6个相对于轴心对称设置的排液口。此外,排液口1034中的第一单向阀1033也不限于钢珠与弹簧的组合形式,可以通过电控或磁控的方式控制开闭,并同样通过离心力排除废液。根据本发明的实施例,第一单向阀1033可设置在排液口1034中靠近内管103轴心的位置,但本发明不限于此。第一单向阀1033可以设置在排液口1034远离内管103轴心的位置,或是任何可以通过离心、电控或磁控使单向阀打开,继而排出废液的位置。
根据本发明的一实施例,在内管103中的反应槽1032与管口之间可设置第一窄口1035。第一窄口1035由自反应槽1032的内壁向轴心倾斜形成。当离心管1以轴心为中心离心时,反应槽1032中的反应混合物会因为离心力而向远离轴心方向的反应槽1032的内壁移动,随着旋转速度上升,离心力变大,会使反应混合物沿着反应槽1032的内壁向管口移动。为了避免反应混合物在离心过程中自管口溢出,可以通过在内管103中的反应槽1032与管口之间设置第一窄口1035达成。其中第一窄口1035与轴心成30至60度夹角,优选地为45度夹角。当在进行离心,反应混合物沿着反应槽1032的内壁向管口移动时,与轴心呈预定角度的第一窄口1035可以将反应混合物维持在反应槽1032内,使其不致溢出。
接着请参考图7,图7是根据本发明另一实施例的内管103a的立体示意图。
根据本发明的一实施例,本发明的离心管1包括内管103a。本实施例中的离心管1除了内管103a的配置之外,其余与上述实施例相同,在此不再赘述。
内管103a的反应槽1032包括第一反应空间1032a及第二反应空间1032b,其中第二反应空间1032b的内径大于第一反应空间1032a。第一反应空间1032a与第二反应空间1032b之间包括第二窄口1035a。第二窄口1035a与Z轴的夹角可为30至60度,优选地为30 至45度,更优选地为45度。当反应混合物加入到反应槽1032后,会落入第二反应空间1032b中进行反应(反应混合物较多时也可能填满到第一反应空间1032a),待反应完成后可以对离心管1进行离心以排除废液。在离心时废液会因离心力而向第二反应空间1032b的侧壁处移动,随着离心速度加快,废液会在第二反应空间1032b的侧壁处呈现甜甜圈状。同时,废液也会受离心力影响而向上移动到第一反应空间1032a的侧壁,并从第一反应空间1032a的第一排液口1034a排出到外管101与内管103a之间的第一容置空间中,而第二反应空间1032b中可以保留预定体积的反应混合物。通过保存部分液体,当反应混合物中包括磁珠等时可以便于抽吸。在本实施例中,由于排液口1034a并未设置阀,因此废液会直接排到第一容置空间中。而在另一实施例中,排液口1034a也可设置如上述的单向阀控制废液排出,本发明不限于此。
另外请参考图8,图8为依据本发明又一实施例的内管103a的立体示意图。
本实施例的离心管1中的内管103a的配置与上述实施例基本上相同,在此仅叙述相异之处。在本实施例中,在第二反应空间1032b的侧壁还包括第二排液口1034b,且第二排液口1034b处设置单向阀(未图示)。当反应混合物在第二反应空间1032b反应完毕后,可如同上述实施例所述,通过离心而将部分废液从第一排液口1034a排出到第一容置空间。优选地,当需要将所有液体都排出时,则可通过控制离心力来打开设置在第二排液口1034b的单向阀,使废液可以从第二排液口1034b排出到第一容置空间。上述实施例仅为示例,本发明不限于此,可以设置多个排液口,或者可设置不同型态的阀,也可在排液口设置滤网、滤纸或半透膜。根据本发明又另一实施例,可以通过控制第二排液口1034b在第二反应空间1032b的高度,也可以控制第二反应空间1032b中液体的剩余量。
接着请参考图9,图9是根据本发明实施例的补充药剂槽110的关闭(a)与开启(b)状态的示意图。在图9中仅绘示单侧作为示 意图,但本发明不限于此。
根据本发明的一实施例,本发明的离心管1可以还包括补充药剂槽110,且补充药剂槽110的数量可依所使用的补充药剂数量而定。在一实施例中,内管103可设置单个补充药剂槽110,且补充药剂槽110可以包括药剂槽111、暂留槽112以及第二单向阀113,其中第二单向阀113控制药剂槽111与暂留槽112之间的开闭,且暂留槽112与内管103连通。第二单向阀113的开启阈值可以与第一单向阀1033不同。举例而言,第二单向阀113开启的离心力阈值可以大于第一单向阀1033。补充药剂槽110的初始状态如图9的(a)部分所示,该状态下第二单向阀113抵住开口,使补充药剂储存在药剂槽111。当反应混合物在经过内管103而在反应槽1032混合后,可以第一转速进行离心,此时第一单向阀1033打开,将反应混合物的废液从排液口1034排出。接着,可以将转速加速为大于第一转速的第二转速进行离心,达到第二单向阀113的离心力阈值后第二单向阀113打开,置于药剂槽111中的补充药剂落入暂留槽112中,如图9的(b)部分所示。在停止离心后,补充药剂随重力落入内管103并抵达反应槽1032,与留存在反应槽1032中的反应混合物进行下一个反应。另一方面,第二单向阀也可以为电控或磁控。此外,当补充药剂槽110为单个时,在离心管1上垂直于Z轴的平面中相对于轴心的对称位置处可设置配重块以使离心时能平衡。优选地,补充药剂槽110设置在第一窄口1035与管口之间。根据本发明另一实施例,补充药剂槽110可设置在第一窄口1035与反应槽1032之间。
根据本发明的另一实施例,可以在离心管1上垂直于Z轴的平面中相对于轴心对称设置多个补充药剂槽。举例而言,可以设置第一补充药剂槽及第二补充药剂槽,第一补充药剂槽与第二补充药剂槽的结构与上述补充药剂槽的结构相似,分别包括第一、第二药剂槽、第一、第二暂留槽以及分别包括第三单向阀与第四单向阀。第一补充药剂槽与第二补充药剂槽的第三单向阀与第四单向阀开启的 离心力阈值不同。在实际操作时,当反应混合物在反应槽混合后,可以第一转速进行离心,此时第一单向阀1033打开,将反应混合物的废液从排液口1034排出,此时,可以将转速加速为大于第一转速的第三转速进行离心,达到第三单向阀的离心力阈值后第三单向阀打开,置于第一药剂槽中的第一补充药剂落入第一暂留槽中。在停止离心后,第一补充药剂随重力落入内管103后抵达反应槽1032,与留存在反应槽1032中的反应混合物进行下一个反应。接着,当反应混合物与第一补充药剂混合反应结束后,再以第一转速进行离心,此时第一单向阀1033打开,将反应混合物的废液从排液口1034排出。接着,可以将转速加速为大于第三转速的第四转速进行离心,达到第四单向阀的离心力阈值后第四单向阀打开,置于第二药剂槽中的第二补充药剂落入第二暂留槽中。在停止离心后,第二补充药剂随重力落入内管103并进入反应槽1032,与留存在反应槽1032中的反应混合物进行下一个反应。上述实施例仅为示例,本发明不限于此。视需要,第一、第二补充药剂槽中的第三、第四单向阀可以具有相同或不同的开启的离心力阈值。
根据本发明的另一实施例,补充药剂槽可以层状套迭的方式组合在离心管1中。举例而言,如图10所示,补充药剂槽可以套迭的方式设置在离心管1中。具体而言,该实施例的补充药剂槽可以具有与离心管1的内管103相同或相似的管径,其中设置有如上述的补充药剂槽110中药剂槽、单向阀、暂留槽的结构,其中可以添加所需的药剂,并且具有可套迭的嵌合部(未示出)。同时,补充药剂槽中的单向阀的阈值与离心管1中的第一单向阀1033的阈值不同。因此,可以套迭的方式组合所需的药剂至离心管1,以达到添加药剂的效果。此外,当层迭多个补充药剂槽时,其中间的单向阀的阈值彼此不同。
在本实施例中,补充药剂槽相对于离心管1的轴心对称设置,并以向上堆栈的方式提供不同的补充药剂,避免同一平面上的空间不足而难以设置多种补充药剂。进一步的,针对单一的补充药剂, 可以在对称的补充药剂槽中分别设置特定比例且质量相等的浓缩液与稀释液,以在单向阀打开、补充药剂流入至暂留槽时,仍能够保持离心管1的平衡。
请参考图11-图13,图11是根据本发明另一实施例的单管离心机2的立体示意图。图12是根据本发明另一实施例的单管离心机2的剖面图。图13是根据本发明另一实施例的离心管1底部型态的示意图。
根据本发明的另一目的,提供了一种单管离心装置2,单管离心装置2包括离心机201以及用于固定离心管1的固定件202。离心机201可包括用于提供离心力的电机203。在使用时,会将离心管1通过固定件202固定在离心机201上,并通过提供不同的转速以提供不同的离心力。
在一实施例中,固定件202可仅设置在离心管1的外管101的底部处,或者可在离心管1的盖体102以及离心机201的盖体201a上也设置固定件202。固定件202可以任意方式固定离心管1,例如从离心管1外侧夹住,或是如图13所示,在离心管1的底部设置有凹槽协助离心管1固定至固定件202。离心管1底部设置的凹槽可为一字形、十字形、四角形、多边形或任意可以稳定固定在离心机201的合适形状。在此实施例中,由于离心管1的旋转由电机203提供动力,因此与离心管1底部连接的固定件202会将其稳固的固定在离心机201上。相对的,离心机201的盖体201a上的固定件202可与离心管1的盖体102上具有对应的固定结构,并且在不影响离心管1的离心的情况下将其稳固在单管离心装置2内。在另一实施例中,离心机可同时容纳多管(即超过一管)的离心管1,且各离心管1可分别独立固定在离心机及独立进行离心,而无须配重。
根据本发明的一实施例,可以提供一种连续样本单管离心系统,其包括载台;设置在载台上的单管离心机;用于承载该载台移动的轨道;设置在轨道上的识别单元;以及控制载台移动并控制该单管离心机离心的控制模块。其中,该单管离心机是如上述实施例所述 的单管离心机,其是适用于上述实施例所述的离心管。
根据本发明一实施例,在用户接收样本,使用连续样本单管离心系统时,将样本及试剂注入离心管,并给与识别标志以供识别单元识别。使用者将离心管放置在轨道上的载台上的单管离心机,并通过控制模块将载台移动,以在不同位置进行离心、加试剂等步骤,并且通过识别单元识别该离心管上的识别标志,以确认分析进度。识别标志可为条形码、二维码或任意可识别的标志。根据本发明的另一实施例,可以层迭所需要的补充试剂槽,从而免去额外添加试剂的设备。优选地,该系统可还包括加热、降温、震荡等设备,以配合不同实验需求。因此,通过轨道上的多个载台及其上的单管离心机,可以控制样本在轨道上移动,并且在不同位置进行不同反应步骤,无需等待样本达到一定数量才开始分析。通过自动化的控制系统控制,试剂添加等步骤也通过补充试剂槽实现仅需要控制不同转速即可添加不同试剂,省去大量人力物力。
根据本发明的另一个目的,提供了一种单管离心反应方法,如图14所示,包括:步骤S1,将反应混合物加入离心管中进行反应。将反应混合物加入内管103后,会经过第一窄口1035,落入反应槽1032中以进行反应;步骤S2,将离心管1放置在单管离心装置2,通过固定件202固定离心管1;以及步骤S3,通过离心机201离心以进行反应或排除废液。根据实验方式的不同,还可以还包括释放补充药剂槽110中药剂的步骤,并通过改变离心机201的转速来达到释放药剂的目的。
以上所述仅为示例性,而非为限制性。任何未脱离本发明的精神与范畴,而对其进行的等效修改或变更,均应包括在权利要求书所界定的范围中。
附图标记说明
1:离心管
101:外管
102:盖体
1021:突起
103、103a:内管
1031:接合件
1032:反应槽
1032a:第一反应空间
1032b:第二反应空间
1033:第一单向阀
1033a:钢珠
1033b:弹簧
1034:排液口
1034a:第一排液口
1034b:第二排液口
1035:第一窄口
1035a:第二窄口
110:补充药剂槽
111:药剂槽
112:暂留槽
113:第二单向阀
2:单管离心机
201:离心机
201a:盖体
202:固定件
203:电机
S1-S3:步骤

Claims (13)

  1. 一种离心管,其特征在于,包括:
    外管,包括第一容置空间;
    盖体,套设在所述外管外以密闭所述外管;以及
    内管,位于所述第一容置空间中,且包括:
    开口,用于添加反应物到所述内管中;
    接合件,所述内管通过所述接合件套设在所述外管内,并使所述离心管的所述内管与所述外管同轴心,其中所述外管的管口朝底部方向为Z轴,所述轴心为所述内管与所述外管在与所述Z轴垂直的平面上的中心位置的连线;
    反应槽,与所述开口相连通,供容纳从所述开口加入的所述反应混合物进行反应,并且所述反应槽与所述开口之间包括第一窄口;以及
    第一排液口,使所述反应槽与所述第一容置空间连通,且与所述Z轴垂直的方向上对称设置。
  2. 如权利要求1所述的离心管,其特征在于,还包括设置在所述第一排液口的第一单向阀,通过第一离心力控制所述第一单向阀开闭,在开启时使所述反应槽内的废液从所述反应槽经由所述第一排液口排出到所述第一容置空间。
  3. 如权利要求1所述的离心管,其特征在于,所述反应槽包括第一反应空间和第二反应空间,所述第一反应空间与所述开口相连通,并且所述第一反应空间与所述开口之间包括所述第一窄口,所述第一反应空间与所述第二反应空间之间包括第二窄口,其中所述第一排液口位于所述第一反应空间,且所述第二反应空间包括第二排液口。
  4. 如权利要求3所述的离心管,其特征在于,还包括设置在所述第二排液口的第一单向阀,通过第一离心力控制所述第一单向阀开闭,在开启时使反应槽内的废液从所述反应槽经由所述第二排液 口排出到所述第一容置空间。
  5. 如权利要求1至4中任一项所述的离心管,其特征在于,还包括补充药剂槽,所述补充药剂槽包括药剂槽、暂留槽及第二单向阀,其中所述暂留槽与所述反应槽连通。
  6. 如权利要求5所述的离心管,其特征在于,所述第二单向阀为机械阀、电控阀或磁控阀。
  7. 如权利要求6所述的离心管,其特征在于,还包括基于所述轴心呈对称设置的多个单向阀和排液口的组合。
  8. 如权利要求1所述的离心管,其特征在于,所述第一窄口与所述Z轴呈30至60度夹角。
  9. 如权利要求3或4所述的离心管,其特征在于,所述第二窄口与所述Z轴呈30至45度夹角。
  10. 一种单管离心装置,其特征在于,包括离心机以及固定件,所述固定件固定如权利要求1至9中任一项所述的离心管,其中所述离心机与所述离心管同轴心。
  11. 一种单管离心反应方法,其特征在于,包括:
    将反应混合物加入如权利要求1至9项中任一项所述的离心管进行反应;
    将所述离心管设置在如权利要求10所述的单管离心装置,并通过所述固定件固定所述离心管;以及
    通过离心所述离心管以进行反应或排除废液。
  12. 一种连续样本单管离心系统,其特征在于,包括:
    载台;
    如权利要求10所述的单管离心装置,设置在所述载台上;
    轨道,用于承载所述载台移动;
    识别单元,设置在所述轨道上;以及
    控制模块,控制所述载台移动并控制所述单管离心装置离心。
  13. 如权利要求12所述的连续样本单管离心系统,其特征在于,所述单管离心装置包括识别标志,所述识别单元识别所述识别标志。
PCT/CN2022/096844 2022-06-02 2022-06-02 离心管、单管离心装置、单管离心反应方法及连续样本单管离心系统 WO2023230986A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/096844 WO2023230986A1 (zh) 2022-06-02 2022-06-02 离心管、单管离心装置、单管离心反应方法及连续样本单管离心系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/096844 WO2023230986A1 (zh) 2022-06-02 2022-06-02 离心管、单管离心装置、单管离心反应方法及连续样本单管离心系统

Publications (1)

Publication Number Publication Date
WO2023230986A1 true WO2023230986A1 (zh) 2023-12-07

Family

ID=89026779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096844 WO2023230986A1 (zh) 2022-06-02 2022-06-02 离心管、单管离心装置、单管离心反应方法及连续样本单管离心系统

Country Status (1)

Country Link
WO (1) WO2023230986A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206359452U (zh) * 2016-10-20 2017-07-28 北京蛋白质组研究中心 内源转录因子富集柱
CN110079520A (zh) * 2019-04-19 2019-08-02 山东森芃生物科技有限公司 利用选择性过滤柱对生物样本中rna进行纯化的方法
WO2020248203A1 (zh) * 2019-06-13 2020-12-17 王锦弘 离心式反应微管、离心式反应装置及其离心式检验方法
US20210113760A1 (en) * 2018-11-30 2021-04-22 Hans-Werner Heinrich Biological material collection and separation system
CN215277405U (zh) * 2021-06-11 2021-12-24 湖南兀邦生物科技有限公司 一种微量血液快速采集及血浆分离装置
CN215353526U (zh) * 2021-04-27 2021-12-31 常州国药医学检验实验室有限公司 一种去除Taq酶抑制剂的离心管
CN114561283A (zh) * 2022-03-23 2022-05-31 苏州卫生职业技术学院 全自动核酸提取、恒温扩增检测一体机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206359452U (zh) * 2016-10-20 2017-07-28 北京蛋白质组研究中心 内源转录因子富集柱
US20210113760A1 (en) * 2018-11-30 2021-04-22 Hans-Werner Heinrich Biological material collection and separation system
CN110079520A (zh) * 2019-04-19 2019-08-02 山东森芃生物科技有限公司 利用选择性过滤柱对生物样本中rna进行纯化的方法
WO2020248203A1 (zh) * 2019-06-13 2020-12-17 王锦弘 离心式反应微管、离心式反应装置及其离心式检验方法
CN215353526U (zh) * 2021-04-27 2021-12-31 常州国药医学检验实验室有限公司 一种去除Taq酶抑制剂的离心管
CN215277405U (zh) * 2021-06-11 2021-12-24 湖南兀邦生物科技有限公司 一种微量血液快速采集及血浆分离装置
CN114561283A (zh) * 2022-03-23 2022-05-31 苏州卫生职业技术学院 全自动核酸提取、恒温扩增检测一体机

Similar Documents

Publication Publication Date Title
US9457359B2 (en) Device for insertion into a rotor of a centrifuge, centrifuge and method for the fluidic coupling of cavities
US10227562B2 (en) Process for sorting motile particles from lesser-motile particles and apparatus suitable therefor
EP2165764B1 (en) Microfluidic device
CN108025904A (zh) 用于多分析物分析的流体单元和流体卡式盒
US7437914B2 (en) Microfluidic test systems with gas bubble reduction
US20080135462A1 (en) Apparatus and method for separating components
CA2706402C (en) Liquid-feeding chip and analysis method
EP1204479A4 (en) PROCESSOR OF MULTIPLE SAMPLES AND SYSTEM
WO2018014513A1 (zh) 微流控试剂卡及其检测方法和应用
US20230241614A1 (en) Droplet microfluidic chip and method for producing microdroplets
CN107247154B (zh) 交叉配血和ABO及RhD血型及不规则抗体筛查加样器
US20060263265A1 (en) Blood micro-separator
CN103175782A (zh) 分析用仪器和使用该分析用仪器的分析方法
WO2023230986A1 (zh) 离心管、单管离心装置、单管离心反应方法及连续样本单管离心系统
US20220241786A1 (en) Centrifugal Microfluidic Chip, Kit and System for On-Chip Gas Supply
CN106423315A (zh) 一种基于微流控芯片的多物质梯度混合液滴形成装置
TWI832271B (zh) 離心管、單管離心裝置、單管離心反應方法及連續樣本單管離心系統
CN113600250B (zh) 一种微通道辅助高通量试剂定量分配及分析的芯片
US10166541B2 (en) Centrifugal microfluidic platform for automated media exchange
US20140296050A1 (en) Centrifugal rotor
US11623217B2 (en) Liquid handling device and liquid handling method
CN212560181U (zh) 一种微液滴的传送装置
US20230090579A1 (en) Fluid control device using centrifugal force
US11701659B2 (en) Microfluidic chip and droplet separation method
US20220105516A1 (en) A microfluidic device and a method for provision of double emulsion droplets

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944315

Country of ref document: EP

Kind code of ref document: A1