WO2023229417A1 - Molecular diagnostic method using retroreflection as signaling principle - Google Patents

Molecular diagnostic method using retroreflection as signaling principle Download PDF

Info

Publication number
WO2023229417A1
WO2023229417A1 PCT/KR2023/007247 KR2023007247W WO2023229417A1 WO 2023229417 A1 WO2023229417 A1 WO 2023229417A1 KR 2023007247 W KR2023007247 W KR 2023007247W WO 2023229417 A1 WO2023229417 A1 WO 2023229417A1
Authority
WO
WIPO (PCT)
Prior art keywords
small molecule
molecule compound
light
modified
optical probe
Prior art date
Application number
PCT/KR2023/007247
Other languages
French (fr)
Korean (ko)
Inventor
윤현철
이단비
윤현진
김가람
이경원
오유정
진양원
Original Assignee
아주대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아주대학교산학협력단 filed Critical 아주대학교산학협력단
Publication of WO2023229417A1 publication Critical patent/WO2023229417A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6818Hybridisation assays characterised by the detection means involving interaction of two or more labels, e.g. resonant energy transfer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2545/00Reactions characterised by their quantitative nature
    • C12Q2545/10Reactions characterised by their quantitative nature the purpose being quantitative analysis
    • C12Q2545/114Reactions characterised by their quantitative nature the purpose being quantitative analysis involving a quantitation step
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2563/00Nucleic acid detection characterized by the use of physical, structural and functional properties

Definitions

  • the present invention relates to a molecular diagnosis method using retroreflection phenomenon as a signal principle.
  • Molecular diagnostics is a field of diagnostic testing that analyzes and detects DNA or RNA. It is excellent in terms of sensitivity and accuracy, and the field of diagnosing infections such as viruses and bacteria accounts for more than half of the entire molecular diagnostics market.
  • the standard method for such molecular diagnosis is polymerase chain reaction (PCR), a technology that replicates and amplifies the desired DNA portion.
  • PCR repeatedly proceeds through a cycle consisting of a denaturation step to separate double-stranded DNA into single-stranded DNA, annealing of primers, and elongation of DNA.
  • the denaturation step includes: The primer annealing step and the DNA elongation step are performed at temperature conditions of 92-95°C, 50-65°C, and 70-74°C, respectively.
  • agarose gel electrophoresis or a fluorescent probe is generally used.
  • electrophoresis a DNA ladder, which serves as an analysis standard, is loaded together, and the approximate size of the PCR product is confirmed by comparing the band positions of the ladder and the PCR amplification product to determine whether the target gene has been amplified. do.
  • fluorescent probes there are fluorescent dyes that insert unspecifically into the double helix of DNA, sequence-specific DNA probes, etc.
  • the product amplified for the target DNA molecule can be detected in real time and its amount analyzed. there is.
  • the purpose of the present invention is to provide a molecular diagnostic method using the retroreflection phenomenon as a signal principle, which can significantly simplify the analysis procedure and improve analysis accuracy.
  • the molecular diagnostic method amplifies a target nucleic acid sequence to produce a double-stranded amplicon consisting of a first strand modified at the end with a first small molecule compound and a second strand modified at the end with a second small molecule compound.
  • the first step of forming A second step of reacting the double-stranded amplicon with a first reactant fixed to the substrate of the sensing chip and selectively reacting with the first small molecule compound; a third step of reacting an optical probe whose surface is modified with a second reactant that selectively reacts with the second small molecule compound of the amplicon reacted with the first reactant; a fourth step of irradiating light to the optical probe; and a fifth step of calculating quantitative information of the target nucleic acid sequence by analyzing the light retroreflected from the optical probe.
  • the optical probe includes transparent core particles; A total reflection induction layer covering a portion of the surface of the core particle and formed of a material having a lower refractive index than the core particle in the visible light wavelength range of 360 nm to 820 nm; A modifier layer formed on the total reflection inducing layer; And it may include the second reactant that is bound to the modifier layer and selectively reacts with the second small molecule compound.
  • the double-stranded amplicon is a target through a LAMP (Loop-mediated isothermal amplification) method using four core primers and two loop primers whose ends are modified with the first and second small molecule compounds, respectively. It can be formed by amplifying nucleic acid molecules.
  • LAMP Loop-mediated isothermal amplification
  • the four core primers are synthesized by selecting and combining six regions (F1, F2, F3, B1, B2, B3) from the target nucleic acid molecule, and are forward inner primers.
  • FIP forward outer primer
  • BIP backward inner primer
  • B3 backward outer primer
  • the loop primer is modified with a first small molecule compound at its 5' end. It may include a forward loop primer and a backward loop primer whose 5' end is modified with a second small molecule compound.
  • the first small molecule compound and the second small molecule compound are different compounds, each of which includes fluorescein isothiocyanate (FITC), digoxigenin (DIG), dinitrophenyl (DNP), acrylamide, and Alexa Fluor.
  • FITC fluorescein isothiocyanate
  • DIG digoxigenin
  • DNP dinitrophenyl
  • Alexa Fluor Alexa Fluor
  • the first small molecule compound may include one selected from the group consisting of FITC, DIG, and DNP, and the first reactant may include an antibody against the first small molecule compound.
  • the fourth step light generated from a light source that generates light mixed with light of wavelengths belonging to infrared light, visible light, or ultraviolet light or a light source that generates monochromatic light of a specific wavelength is irradiated to the optical probe. You can.
  • quantitative information of the target nucleic acid sequence can be calculated by generating an image of the light retroreflected from the optical probe and then counting the number of optical probes therefrom.
  • the molecular diagnosis method amplifies two or more different target nucleic acid molecule sequences to produce a second small molecule compound identical to the first strand with one of the two or more different first small molecule compounds modified at the end.
  • the sensing chip includes two or more spatially spaced sensing regions, and the different first reactants may be modified in each of the sensing regions.
  • the sensing areas may be formed inside a single fluid channel.
  • the densities of the first reactants modified in each of the sensing regions may be the same.
  • each of the different first small molecule compounds and the second small molecule compound is fluorescein isothiocyanate (FITC), digoxigenin (DIG), dinitrophenyl (DNP), acrylamide, and Alexa Fluor.
  • FITC fluorescein isothiocyanate
  • DIG digoxigenin
  • DNP dinitrophenyl
  • Alexa Fluor Alexa Fluor.
  • the molecular diagnosis method of the present invention retroreflected light is applied as a signal principle, making it possible to detect and quantitatively analyze target nucleic acids with high sensitivity using extremely simplified optical signal analysis equipment.
  • the LAMP method which uses core primers and loop primers together, amplifies the target nucleic acid molecule to generate a uniform amplicon and performs analysis on it, which not only greatly simplifies the analysis procedure but also enables the analysis. Accuracy can be improved.
  • FIG. 1 is a flowchart for explaining a molecular diagnosis method according to an embodiment of the present invention.
  • Figure 2 is a schematic diagram to explain the system for the molecular diagnosis method.
  • Figure 3 is a diagram for comparing amplification products by the conventional LAMP method and the LAMP method of the present invention.
  • FIG. 4 is a cross-sectional view illustrating an optical probe applied to the molecular diagnosis system shown in FIG. 2.
  • FIG. 5 is a diagram illustrating a method of modifying the substrate of a sensing chip in the molecular diagnostic system shown in FIG. 2 with a first reactant.
  • Figure 6 is a flowchart for explaining a molecular diagnosis method according to another embodiment of the present invention.
  • Figure 7 is a schematic diagram for explaining a molecular diagnosis method according to another embodiment of the present invention.
  • Figure 8 is an image showing the gel electrophoresis results for the LAMP amplification product according to the example.
  • Figure 9a is an image obtained after reacting Salmonella samples of various concentrations to a sensing substrate
  • Figure 9b is a graph showing the concentration of Salmonella analyzed from the image of Figure 9a.
  • Figure 10a is a graph showing the concentration of Salmonella calculated according to Example 2-1
  • Figure 10b is a graph showing the concentration of Salmonella calculated according to Example 2-2.
  • first, second, etc. may be used to describe various components, but the components should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another.
  • a first component may be named a second component, and similarly, the second component may also be named a first component without departing from the scope of the present invention.
  • Figure 1 is a flowchart for explaining a molecular diagnosis method according to an embodiment of the present invention
  • Figure 2 is a schematic diagram for explaining a system for the molecular diagnosis method
  • Figure 3 is a conventional LAMP method and the LAMP method of the present invention. It is a diagram for comparing amplification products by
  • FIG. 4 is a cross-sectional view for explaining an optical probe applied to the molecular diagnostic system shown in FIG. 2
  • FIG. 5 is a substrate of a sensing chip in the molecular diagnostic system shown in FIG. 2. This is a diagram to explain a method of modifying the first reactant.
  • the molecular diagnosis method amplifies a target nucleic acid molecule to form a first strand whose ends are modified with a first small molecule compound and a strand whose ends are modified with a second small molecule compound.
  • An optical probe (120) whose surface is modified with a second reactant (125) that selectively reacts with the second small molecule compound of the double-stranded amplicon (10) reacted with the first reactant (112).
  • a third step (S130) of reacting A fourth step (S140) of radiating light to the optical probe 120; and a fifth step (S150) of detecting and analyzing the light retroreflected from the optical probe 120.
  • the double-stranded amplicon is LAMP (Loop-mediated isothermal amplification) using four core primers and two loop primers each modified with the first and second small molecule compounds. It can be formed by amplifying the target nucleic acid molecule through a method.
  • the target nucleic acid molecule may include DNA or RNA of viruses, bacteria, etc.
  • the four core primers are synthesized by selecting and combining six regions (F1, F2, F3, B1, B2, B3) from the target nucleic acid molecule, and are forward inner primers. FIP), forward outer primer (F3), backward inner primer (BIP), and backward outer primer (B3).
  • the loop primer is a forward loop primer whose first small molecule compound is modified at one end, for example, the 5' end, and a second small molecule compound is modified at one end, for example, the 5' end. It may include a backward loop primer.
  • the first small molecule compound and the second small molecule compound are different compounds, each of which contains FITC (fluorescein isothiocyanate), DIG (Digoxigenin), DNP (Dinitrophenyl), acrylamide, Alexa Fluor, and biotin.
  • Biotin Biotin
  • Biotin-TEG Cholesterol
  • Cyanine Desthiobiotin-TEG
  • DNP-TEG DNP-TEG
  • GalNac N-Acetylgalactosamine
  • Inosine Inosine
  • PEG-2000 Puromycin, Rhodamine-6G, Texas red (C31H29N2O6S2Cl), Thymidine Glycol, FAM (Fluorescein amidite), Hex (Hexachlorofluorescein), It may include one selected from the group consisting of ROX (Carboxy-X-Rhodamine), TAMRA (Tetramethylrhodamine-5-maleimide), etc.
  • ROX Carboxy-X-Rhodamine
  • TAMRA Tetramethylrhodamine-5-maleimide
  • a target nucleic acid molecule when amplified through the LAMP method using four core primers and two loop primers, a first strand at one end of which the first small molecule is modified and the end A uniform double-stranded amplicon 10 may be formed consisting of a second strand modified with the second small molecule at the end opposite to the amplicon.
  • the F2 of the FIP (forward internal primer) and the F2c of the target gene bind complementary, and the DNA chain is extended by DNA polymerase and dNTP to form double-stranded DNA.
  • Double-stranded DNA After is formed, F3 (forward external primer) can bind complementary to the F3c part of the gene.
  • the DNA chain formed by FIP can be separated during the amplification process when F3 (forward external primer) binds to form a single strand.
  • F3 forward external primer
  • the back loop primer containing a small molecule compound binds to the single-stranded DNA chain extended by FIP, thereby extending the DNA chain to form double-stranded DNA.
  • the B2 part of BIP (backward internal primer) and the double-stranded DNA are combined.
  • the B2c portion can bind complementary.
  • the DNA chain extended by the backward loop primer can be separated during the amplification process when the BIP (backward internal primer) binds to the DNA and forms a single strand.
  • a forward loop primer to which a small molecule compound is bound can bind to a single-stranded DNA chain formed by a backward loop primer, thereby extending the DNA chain, and then FIP can bind complementary to the formed double-stranded DNA strand.
  • the sensing chip 110 may be provided with a sensing area, and at one end of the target amplicon 10 is placed on the surface of the substrate 111 corresponding to the sensing area.
  • a first reactant 112 that selectively reacts with the modified first small molecule compound is combined.
  • the first reactant 112 may be an antibody.
  • the first reactant 112 may include an anti-FITC antibody, and the first small molecule compound includes DIG.
  • the first reactant 112 may include an anti-DIG antibody, and if the first small molecule compound includes DNP, the first reactant 112 may include an anti-DIG antibody.
  • - May include DNP antibody (anti-DNP antibody).
  • the sensing area of the sensing chip 110 may be provided in the form of a fluid channel that can accommodate the fluid containing the target amplicon 10, and the first reactant 112 is inside the fluid channel. It can be fixed to the surface of the substrate 111. In order to react the first small molecule compound of the target amplicon 10 with the first reactant 112 fixed to the substrate 111, a fluid containing the target amplicon 10 is applied to the sensing chip 110. ) can be maintained for a certain period of time after injection into the rapeseed channel.
  • the material or shape of the substrate 111 of the sensing chip 110 is not particularly limited as long as it can bind to and fix the first reactant 112.
  • the substrate 111 may be formed of glass, silicon, polymer, etc., and the surface area of the substrate 111 constituting the bottom surface of the fluid channel is bonded to the first reactant 112. It can be flat so that it can be.
  • the polymer may include polystyrene (PS), polymethyl methacrylate (PMMA), olefin copolymer (COC), polydimethylsiloxane (PDMS), etc.
  • the surface of the sensing substrate is activated through plasma treatment or ultraviolet irradiation, as shown in FIG. 5.
  • APTES 3-aminopropyltriethoxysilane
  • an amine-reactive crosslinking agent such as BS3 (bis(sulfosuccinimidyl)suberate) or glutaraldehyde
  • the first reaction is performed.
  • the first reactant 112 can be fixed to the surface of the substrate 111 through a covalent bond such as an imine bond.
  • the first reactant 112 After binding the first reactant 112 to the substrate 111, it is attached to the surface of the substrate 111 using a molecule containing an amine group such as ethanolamine and bovine serum albumin (BSA). Remaining reactive residues, such as aldehyde, succinimide group, etc., can be blocked.
  • a molecule containing an amine group such as ethanolamine and bovine serum albumin (BSA).
  • BSA bovine serum albumin
  • the optical probe 120 reacts with a second reactant 125 that selectively reacts with the second small molecule compound of the amplicon 10 that reacted with the first reactant 112. It may include, and the light irradiated from the light source 130 may be retroreflected in the direction of the light source 130.
  • the optical probe 120 includes transparent core particles 121; A total reflection induction layer 122 that covers a portion of the surface of the core particle 121 and is formed of a material with a lower refractive index than the core particle 121 in the visible light wavelength range of at least 360 nm to 820 nm; a modification layer 123 formed on the total reflection inducing layer 122; And it may include the second reactant 125 that is bound to the modifier layer 123 and selectively reacts with the second small molecule compound.
  • the core particle 121 may have a spherical shape.
  • ‘spherical’ is defined to include not only a perfect sphere where the radii from the center to all points on the surface are the same, but also a substantially spherical body in which the difference between the maximum and minimum radii is less than about 10%.
  • the core particles 121 may have an average diameter of about 600 nm or more and 2 ⁇ m or less, considering the relationship with the wavelength of light irradiated from the light source 130 and the operability of biosensing.
  • the core particles 121 may be formed of a transparent material capable of transmitting incident light.
  • the core particles 121 may be formed of transparent oxide or transparent polymer material.
  • the transparent oxide may include, for example, silica, glass, etc.
  • the transparent polymer material may include, for example, polystyrene, poly(methyl methacrylate), etc. )), etc.
  • the total reflection induction layer 122 is formed to cover a portion of the surface of the core particle 121, and totally reflects at least a portion of the light traveling inside the core particle 121 to be retroreflected in the direction of the light source 130. The amount of light can be increased.
  • the total reflection induction layer 122 may be formed on the surface of the core particle 121 to cover an area of about 30% to 70% of the surface of the core particle 121. If the total reflection inducing layer 122 covers less than 30% of the surface of the core particle 121, a problem may occur in which the amount of light incident on the inside of the core particle 121 that is not retroreflected and leaks increases. In the case where the total reflection inducing layer 122 covers the surface of the core particle 121 by more than 70%, a problem may occur in which the amount of light incident on the inside of the core particle 121 is reduced. In one embodiment, the total reflection inducing layer 122 may be formed on the surface of the core particle 121 to cover about 40% to 60% of the surface of the core particle 121.
  • the total reflection inducing layer 122 is provided with the core particle ( 121) and can be formed of a material with a smaller refractive index.
  • the core particles 121 may be formed of a material having a refractive index of about 1.4 or more in the visible light wavelength range of at least 360 nm to 820 nm, and the total reflection inducing layer 122 may have a refractive index greater than that of the core particles 121. It can be formed of a material with a small refractive index.
  • the total reflection inducing layer 122 may be formed of a metal material having a refractive index less than that.
  • the total reflection induction layer 122 is made of gold (Au) with a refractive index of about 0.22, silver (Ag) with a refractive index of about 0.15, and aluminum (Al) with a refractive index of about 1.0 for light with a wavelength of 532 nm.
  • gold (Au) with a refractive index of about 0.22 silver (Ag) with a refractive index of about 0.15
  • aluminum (Al) with a refractive index of about 1.0 for light with a wavelength of 532 nm.
  • zinc (Zn) with a refractive index of about 1.2, and the like.
  • the total reflection induction layer 122 in order to improve the adhesion between the total reflection induction layer 122 and the core particles 121, chromium (Cr) is applied to the surface of the core particles 121 and then the total reflection induction layer ( 122) can be formed.
  • the chrome in order to prevent retroreflection from being reduced, the chrome is preferably applied to a thickness of about 2 nm to 5 nm or less.
  • the total reflection inducing layer 122 itself may be formed of a material that has strong adhesion to the core particles 121.
  • the total reflection inducing layer 122 may be formed of aluminum (Al) or copper (Cu).
  • the total reflection induction layer 122 may have a thickness of about 10 to 100 nm. If the thickness of the total reflection induction layer 122 is less than 10 nm, a problem may occur in which some of the light incident on the inside of the core particle 121 leaks through the total reflection induction layer 122, and the total reflection induction layer 122 may leak. When the thickness of 122 exceeds 100 nm, the weight of the optical probe 120 increases, which may cause a problem in which the dispersibility of the optical probe 120 in the liquid is reduced.
  • the modifier layer 123 may be formed on the surface of the total reflection inducing layer 122.
  • the modification layer 123 may be formed of a metal material that is easy to combine with the second reactant.
  • the modification layer 123 may be formed of a noble metal such as platinum (Pt), gold (Au), silver (Ag), etc., which is easy to modify with biological materials and has excellent oxidation stability.
  • the modifier layer 123 may be formed as a separate layer independent of the total reflection induction layer 122.
  • the modifier layer 123 may be a noble metal material layer covering the total reflection inducing layer 122.
  • the modifier layer 123 and the total reflection induction layer 122 may be formed integrally.
  • the total reflection inducing layer 122 is formed of a noble metal with a lower refractive index than the core particles, such as gold (Au), silver (Ag), etc.
  • the total reflection inducing layer 122 is formed by the modifier layer 123. can also function.
  • the modifier layer 123 may have a thickness of about 100 nm or less to prevent dispersion and aggregation within the liquid of the optical probe 120.
  • the second reactant 135 is directly or indirectly bound to the modification layer 123 and can selectively bind to the second small molecule compound of the amplicon 10.
  • the second reactant 135 may vary depending on the second small molecule compound and may include one or more selected from proteins, nucleic acids, ligands, etc.
  • the second reactant 135 is avidin or streptavidin that can selectively bind to biotin.
  • NeutrAvidin, etc. may include one or more protein compounds selected from the group.
  • the second reactant 135 may be formed to bind only to the surface of the modifier layer 123 and not to the exposed surface of the core particle 121. In this way, when the second reactant 135 is site-selectively formed with respect to the core particle 121 covered by the total reflection inducing layer 122 and the modifier layer 123, the amplicon bound to the amplicon In this state, the exposed portion of the core particle 121 faces the light source unit 140, so a stronger retroreflection signal can be induced.
  • the optical probe 120 is disposed between the total reflection induction layer 122 and the modifier layer 123, and the magnetic layer 124 formed of a magnetic material. ) may further be included.
  • the magnetic layer 124 may be formed of a magnetic material such as iron (Fe), nickel (Ni), manganese (Mn), or a sintered body or oxide thereof.
  • a stronger retroreflection signal can be induced by adjusting the orientation of the optical probe 120 by applying a magnetic field from the outside.
  • the optical probe 120 can be easily separated using an external magnetic field.
  • the optical probe 120 is illuminated through the light source 130 disposed on the upper part of the sensing chip 110.
  • the light source 130 a light source that generates light mixed with light of various wavelengths belonging to infrared light, visible light, and ultraviolet light may be used, or a light source that generates monochromatic light of a specific wavelength may be used without limitation.
  • the light source 130 in order to eliminate the influence of light mirror-reflected from the sensing chip 110, the light source 130 emits light in a direction inclined at about 5 to 60° with respect to the normal line of the surface of the substrate 111. can be investigated.
  • the light retroreflected by the optical probe 120 may be detected and analyzed by the light receiving device 140.
  • the light receiving device 140 is disposed on the sensing chip 110 adjacent to the light source 130, and receives light retroreflected by the optical probe 110 to detect the presence or absence of the target amplicon 10. , concentration, etc. can be analyzed, and quantitative information about the target nucleic acid molecule can be generated based on this information.
  • the configuration of the light receiving device 140 is not particularly limited as long as it can receive the retroreflected light and analyze information about the target amplicon 10.
  • the light receiving device 140 may include an image generator that images the retroreflected optical signal and an image analysis unit that analyzes image information generated by the image generator.
  • the light receiving device 140 includes a light splitting unit that splits the incident light incident on the optical probe 120 from the light source 130 and the light retroreflected from the optical probe 120, and the light splitting unit It may include a lens capable of focusing and enlarging the divided optical signal, an image generator that receives the magnified optical signal and turns it into an image, and an image analysis unit that analyzes the image information generated by the image generator.
  • the light source 130 is inclined in a direction inclined by about 5 to 60° with respect to the normal line of the surface of the substrate 111.
  • the light splitter can also be arranged to be inclined at a certain angle with respect to the normal line of the surface of the substrate 111 to minimize the effect of mirror reflection of light generated from the light splitter.
  • the light receiving device 140 may generate quantitative information of the target amplicon by counting the number of retroreflective particles identified by light retroreflected from the image generated by the image generator. .
  • the light receiving device 140 may include a microscope that can directly check the retroreflected light.
  • Figure 6 is a flow chart for explaining a molecular diagnosis method according to another embodiment of the present invention
  • Figure 7 is a schematic diagram for explaining a molecular diagnosis method according to another embodiment of the present invention.
  • the molecular diagnosis method according to this embodiment can simultaneously analyze quantitative information on a plurality of different target nucleic acid molecule sequences, and the steps of analyzing quantitative information on each of a plurality of target nucleic acid molecule sequences are described in FIGS. 1 to 5. Since it is the same or similar to the molecular diagnosis method described above, the following description will focus on the differences between the two methods, and redundant detailed description will be omitted.
  • the molecular diagnostic method amplifies two or more different target nucleic acid molecule sequences to produce two or more different first small molecule compounds.
  • the two or more double-stranded amplicons are fixed to the substrate 211 of the sensing chip 210 and each react selectively with the different first small molecule compounds.
  • the two or more different target nucleic acid molecule sequences may be different nucleic acid sequences of the same virus or bacteria, or may be nucleic acid sequences of different viruses or bacteria.
  • the two or more different target nucleic acid molecule sequences include a first nucleic acid molecule sequence, a second nucleic acid molecule sequence, and a third nucleic acid molecule sequence will be described as an example. do.
  • Each of the first to third nucleic acid molecule sequences is amplified through the LAMP (Loop-mediated isothermal amplification) method using the four core primers described above and two loop primers modified with the first and second small molecule compounds, respectively.
  • First to third double-stranded amplicons (10a, 10b, 10c) can be generated.
  • the first nucleic acid molecule sequence is a LAMP method using four core primers having corresponding base sequences and two loop primers each having a 1-1 small molecule compound and a second small molecule compound modified at the ends.
  • the first double-stranded amplicon (10a) is composed of a first strand whose ends are modified with the 1-1 small molecule compound and a second strand whose ends are modified with the second small molecule compound. can be created.
  • the second nucleic acid molecule sequence can be amplified through the LAMP method using four core primers with corresponding base sequences and two loop primers each having the first and second small molecule compounds and the second small molecule compound modified at the ends.
  • the second double-stranded amplicon (10b) consisting of a first strand whose ends are modified with the 1-2 small molecule compound and a second strand whose ends are modified with the second small molecule compound can be generated. .
  • the third nucleic acid molecule sequence can be amplified through the LAMP method using four core primers with corresponding base sequences and two loop primers each of which has a 1-3 small molecule compound and a 2nd small molecule compound modified at the ends.
  • This can produce the third double-stranded amplicon (10c), which consists of a first strand whose ends are modified with the 1-3 small molecule compound and a second strand whose ends are modified with the second small molecule compound.
  • the 1-1 to 1-3 small molecule compounds may be different compounds.
  • the 1-1 to 1-3 small molecule compounds and the second small molecule compounds are different compounds, and each of them is FITC (fluorescein isothiocyanate), DIG (Digoxigenin), DNP (Dinitrophenyl), acrylamide, and Alexa Fluor.
  • the sensing chip 210 may be provided with two or more sensing regions respectively corresponding to the two or more different target nucleic acid molecule sequences, and the substrate corresponding to the sensing regions ( On the surfaces of 211), two or more different first reactants each capable of selectively reacting with different first small molecule compounds modified at one end of the plurality of target amplicons 10a, 10b, and 10c, respectively.
  • the elements 212a, 212b, and 212c may each be combined.
  • the sensing regions may be formed to be spatially spaced from each other, and the densities of the first reactants 212a, 212b, and 212c modified in each sensing region may be the same.
  • the sensing areas may be formed to be spaced apart from each other within a single fluid channel as shown in FIG. 5 .
  • each of the sensing areas may be formed in different oil channels.
  • first to third amplicons 10a, 10b, and 10c are each modified with the 1-1 to 1-3 small molecule compounds at one end and the second small molecule compound at the other end.
  • the first sensing region of the sensing chip 210 selectively reacts with the 1-1 small molecule compound.
  • a 1-1 reactant (212a) capable of reacting selectively with the 1-2 small molecule compound may be bound to the second sensing region of the sensing chip 210.
  • a material 212b may be bound, and a 1-3 reactant 212c capable of selectively reacting with the 1-3 small molecule compound may be bound to the third sensing region of the sensing chip 210.
  • a sample containing the first to third double-stranded amplicons 10a, 10b, and 10c is injected into the first to third sensing regions to react, the 1-1 small molecule compound and the first -1
  • the first amplicon (10a) can be fixed to the first sensing region by a selective reaction between the reactant (212a), and the 1-2 small molecule compound and the 1-2 reactant (212b)
  • the second amplicon (10b) can be fixed to the second sensing region by a selective reaction between the 1-3 small molecule compound and the 1-3 reactant (212c).
  • the third amplicon 10c can be fixed to the third sensing region.
  • the optical probe 120 includes transparent core particles 121, a total reflection induction layer 122 covering a portion of the core particles 121, and It may include a modifier layer 123 formed on the total reflection inducing layer 122 and a second reactant 125 directly or indirectly bonded to the modifier layer 123.
  • the optical probe 120 can bind to the first to third amplicons 10a, 10b, and 10c bound to the sensing regions.
  • the first to third amplicons (10a, 10b, 10c) are formed in the first to third sensing regions by reaction and selective reaction between the first to third small molecule compounds and the first to third reactants (121c). ) are each fixed, when the optical probe 120 is inserted into the first to third sensing regions, the optical probe 120 is between the second small molecule compound and the second reactant 125. It can be bound to the first to third amplicons 10a, 10b, and 10c through a selective reaction.
  • the light source 130 disposed on the upper part of the sensing chip 210 is used.
  • Light can be irradiated to the optical probe 120 through.
  • the light source 130 a light source that generates light mixed with light of various wavelengths belonging to infrared light, visible light, and ultraviolet light may be used, or a light source that generates monochromatic light of a specific wavelength may be used without limitation.
  • the fifth step 250 light retroreflected from the optical probe 120 coupled to the plurality of sensing regions is detected, and a plurality of amplicons respectively fixed to the plurality of sensing regions ( 10a, 10b, 10c) Quantitative information about the presence or absence, concentration, etc. of each can be analyzed simultaneously, and based on this information, quantitative information about two or more different target nucleic acid molecule sequences can be analyzed simultaneously.
  • the molecular diagnosis method of the present invention retroreflected light is applied as a signal principle, making it possible to detect and quantitatively analyze target nucleic acids with high sensitivity using extremely simplified optical signal analysis equipment.
  • the LAMP method which uses core primers and loop primers together, amplifies the target nucleic acid molecule to generate a uniform amplicon and performs analysis on it, which not only greatly simplifies the analysis procedure but also enables the analysis. Accuracy can be improved.
  • the target amplicon which is a product produced by the improved LAMP method
  • a glass-based sensing substrate on which a specific antibody for the target amplicon was immobilized and a retroreflective particle modified with streptavidin were used.
  • the target amplicon which is a LAMP amplification product
  • the corresponding sensing substrates were analyzed and image information was obtained using a digital camera connected to an objective lens with an aperture of 0.065 and a white LED light source.
  • Salmonella was obtained from the milk by centrifugation. Next, NaOH was added and heat was applied to lyse the cells, and the lysed sample was used as a template to perform an improved LAMP method at various concentrations. A sample was produced.
  • the sample was reacted on a glass-based sensing substrate on which a specific antibody for the target amplicon was immobilized and washed, and then retroreflective particles modified with streptavidin were reacted and washed.
  • the sensing substrates were analyzed using a digital camera connected to an objective lens with an aperture of 0.065 and a white LED light source, image information was obtained, and the concentration of Salmonella bacteria was calculated.
  • Salmonella was obtained from chicken by homogenizing and centrifuging using a stomacher. Next, NaOH was added and heat was applied to lyse the cells, and the lysed sample was used as a template to perform an improved LAMP method. Proceeding, samples of various concentrations were produced.
  • the sample was reacted on a glass-based sensing substrate on which a specific antibody for the target amplicon was immobilized and washed, and then retroreflective particles modified with streptavidin were reacted and washed.
  • the sensing substrates were analyzed using a digital camera connected to an objective lens with an aperture of 0.065 and a white LED light source, image information was obtained, and the concentration of Salmonella bacteria was calculated.
  • Figure 8 is an image showing the gel electrophoresis results for the LAMP amplification product according to the example.
  • the amplification reaction occurs only in samples containing the gDNA of the target pathogen, so that when using the LAMP system including an improved loop primer, the gDNA of the target pathogen can be successfully amplified.
  • Figure 9a is an image obtained after reacting Salmonella samples of various concentrations to a sensing substrate
  • Figure 9b is a graph showing the concentration of Salmonella analyzed from the image of Figure 9a.
  • Figure 10a is a graph showing the concentration of Salmonella calculated according to Example 2-1
  • Figure 10b is a graph showing the concentration of Salmonella calculated according to Example 2-2.
  • the concentration of Salmonella calculated according to Examples 2-1 and 2-2 similar to the concentration of Salmonella in the actual sample, was shown in the form of a linear graph, and the detection sensitivity (limit of detection) ) was also confirmed to be 10 CFU. Therefore, it can be seen that the molecular diagnostic method of the present invention can also be used to detect and analyze microorganisms present in actual contaminated food.
  • Double-stranded amplicon 110 Sensing chip

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A molecular diagnostic method is disclosed. The molecular diagnostic method comprises: a first step of amplifying a target nucleic acid sequence so as to form a double-stranded amplicon composed of a first strand having a first small molecule compound modified at an end thereof and a second strand having a second small molecule compound modified at an end thereof; a second step of reacting the double-stranded amplicon with a first reactant that is fixed onto a substrate of a sensing chip and selectively reacts with the first small molecule compound; a third step of reacting, with the second small molecule compound of the amplicon having reacted with the first reactant, an optical probe having a surface on which a second reactant selectively reacting with the second small molecule compound is modified; a fourth step of emitting light at the optical probe; and a fifth step of analyzing retroreflected light from the optic probe so as to calculate quantitative information about the target nucleic acid sequence.

Description

재귀반사 현상을 신호 원리로 이용한 분자 진단 방법Molecular diagnosis method using retroreflection phenomenon as a signal principle
본 발명은 재귀반사 현상을 신호 원리로 이용한 분자 진단 방법에 관한 것이다. The present invention relates to a molecular diagnosis method using retroreflection phenomenon as a signal principle.
분자진단은 DNA 혹은 RNA를 분석 및 검출하는 진단검사 분야로서, 민감도 및 정확도 측면에서 뛰어나 바이러스, 박테리아 등의 감염진단 분야가 전체 분자진단 시장의 절반 이상을 차지하고 있다. 이러한 분자진단의 기준이 되는 표준 방법은 중합효소 연쇄 반응(Polymerase Chain Reaction, PCR)으로서, 원하는 DNA 부분을 복제해 증폭시키는 기술이다. PCR은 이중가닥 DNA를 단일가닥 DNA로 분리시키기 위한 변성(denaturation) 단계, 프라이머의 결합(annealing) 단계, DNA의 신장(elongation) 단계로 이루어진 사이클이 반복적으로 진행되며, 상기 변성(denaturation) 단계, 프라이머의 결합(annealing) 단계, DNA의 신장(elongation) 단계는 92~95℃, 50~65℃, 70~74℃의 온도 조건에서 각각 수행된다. Molecular diagnostics is a field of diagnostic testing that analyzes and detects DNA or RNA. It is excellent in terms of sensitivity and accuracy, and the field of diagnosing infections such as viruses and bacteria accounts for more than half of the entire molecular diagnostics market. The standard method for such molecular diagnosis is polymerase chain reaction (PCR), a technology that replicates and amplifies the desired DNA portion. PCR repeatedly proceeds through a cycle consisting of a denaturation step to separate double-stranded DNA into single-stranded DNA, annealing of primers, and elongation of DNA. The denaturation step includes: The primer annealing step and the DNA elongation step are performed at temperature conditions of 92-95°C, 50-65°C, and 70-74°C, respectively.
증폭이 끝난 유전자 증폭 산물을 확인하기 위해서는 일반적으로 아가로스 겔 전기영동(agarose gel electrophoresis) 혹은 형광 프로브를 이용한다. 전기영동은 진행 시 분석 기준이 되는 DNA 사다리(ladder)를 함께 로딩하며, 이 사다리(ladder)와 PCR 증폭 산물의 밴드 위치 비교를 통해 대략적인 PCR 산물의 크기를 확인함으로써 표적 유전자의 증폭 여부를 판단한다. 형광 프로브의 경우 DNA의 이중 나선에 불특정하게 끼어 들어가는 형광 다이, 서열 특이적인 DNA 프로브 등이 있으며 real-time 장비를 이용할 경우 표적 DNA 분자에 대해 증폭되는 산물을 실시간으로 검출하고 그 양을 분석할 수 있다. To confirm the amplified gene amplification product, agarose gel electrophoresis or a fluorescent probe is generally used. When performing electrophoresis, a DNA ladder, which serves as an analysis standard, is loaded together, and the approximate size of the PCR product is confirmed by comparing the band positions of the ladder and the PCR amplification product to determine whether the target gene has been amplified. do. In the case of fluorescent probes, there are fluorescent dyes that insert unspecifically into the double helix of DNA, sequence-specific DNA probes, etc. When using real-time equipment, the product amplified for the target DNA molecule can be detected in real time and its amount analyzed. there is.
상기한 바와 같이 통상의 분자진단은 PCR을 기준으로 하여 온도 조절이 가능한 thermal cycler를 포함한 기기를 반드시 요구하게 된다. 이외에도 표준 분석법인 전기영동법은 복잡한 절차로 수행되어 숙달된 전문가를 요구하며, 형광 프로브를 이용할 경우 형광 신호를 검출하기 위해 여기광, 필터, 광증배관 등의 광학 부품들이 포함된 고가의 장비를 필요로 한다. 따라서 소형화 및 현장진단 목적으로의 구현이 어려워 검사 전문 수탁기관에서만 이루어진다는 문제점이 있다.As mentioned above, conventional molecular diagnosis necessarily requires equipment including a thermal cycler capable of controlling temperature based on PCR. In addition, electrophoresis, the standard analysis method, is performed with a complex procedure and requires skilled experts, and when using a fluorescent probe, expensive equipment containing optical components such as excitation light, filters, and light multipliers is required to detect the fluorescent signal. do. Therefore, it is difficult to miniaturize and implement for on-site diagnosis purposes, so there is a problem that it is only performed by specialized inspection agencies.
본 발명의 목적은 분석 절차를 상당히 단순화할 수 있을 뿐만 아니라 분석 정확도를 향상시킬 수 있는 재귀반사 현상을 신호원리로 이용한 분자 진단 방법을 제공하는 것이다. The purpose of the present invention is to provide a molecular diagnostic method using the retroreflection phenomenon as a signal principle, which can significantly simplify the analysis procedure and improve analysis accuracy.
본 발명의 실시예에 따른 분자 진단 방법은, 타겟 핵산 시퀀스를 증폭하여 제1 소분자 화합물이 말단에 수식된 제1 가닥과 제2 소분자 화합물이 말단에 수식된 제2 가닥으로 이루어진 이중가닥 앰플리콘을 형성하는 제1 단계; 센싱칩의 기판에 고정되어 있고 상기 제1 소분자 화합물과 선택적으로 반응하는 제1 반응물질에 상기 이중가닥 앰플리콘을 반응시키는 제2 단계; 상기 제1 반응물질과 반응한 상기 앰플리콘의 제2 소분자 화합물에 이와 선택적으로 반응하는 제2 반응물질이 표면에 수식된 광학 프로브를 반응시키는 제3 단계; 상기 광학 프로브에 광을 조사하는 제4 단계; 및 상기 광학 프로브로부터 재귀반사된 광을 분석하여 상기 타겟 핵산 시퀀스의 정량 정보를 산출하는 제5 단계;를 포함할 수 있다. The molecular diagnostic method according to an embodiment of the present invention amplifies a target nucleic acid sequence to produce a double-stranded amplicon consisting of a first strand modified at the end with a first small molecule compound and a second strand modified at the end with a second small molecule compound. The first step of forming; A second step of reacting the double-stranded amplicon with a first reactant fixed to the substrate of the sensing chip and selectively reacting with the first small molecule compound; a third step of reacting an optical probe whose surface is modified with a second reactant that selectively reacts with the second small molecule compound of the amplicon reacted with the first reactant; a fourth step of irradiating light to the optical probe; and a fifth step of calculating quantitative information of the target nucleic acid sequence by analyzing the light retroreflected from the optical probe.
일 실시예에 있어서, 상기 광학 프로브는 투명한 코어 입자; 상기 코어 입자 표면 중 일부를 피복하고, 360nm 내지 820nm의 가시광선 파장 영역에서 상기 코어 입자보다 굴절률이 작은 물질로 형성된 전반사 유도층; 상기 전반사 유도층 상에 형성된 수식층; 및 상기 수식층에 결합되고, 상기 제2 소분자 화합물과 선택적으로 반응하는 상기 제2 반응물질을 포함할 수 있다. In one embodiment, the optical probe includes transparent core particles; A total reflection induction layer covering a portion of the surface of the core particle and formed of a material having a lower refractive index than the core particle in the visible light wavelength range of 360 nm to 820 nm; A modifier layer formed on the total reflection inducing layer; And it may include the second reactant that is bound to the modifier layer and selectively reacts with the second small molecule compound.
일 실시예에 있어서, 상기 이중가닥 앰플리콘은 4개의 코어 프라이머 그리고 상기 제1 및 제2 소분자 화합물이 각각 말단에 수식된 2개의 루프 프라이머를 이용한 LAMP(Loop-mediated isothermal amplification) 방법을 통해 상기 타겟 핵산 분자를 증폭함으로써 형성될 수 있다. In one embodiment, the double-stranded amplicon is a target through a LAMP (Loop-mediated isothermal amplification) method using four core primers and two loop primers whose ends are modified with the first and second small molecule compounds, respectively. It can be formed by amplifying nucleic acid molecules.
일 실시예에 있어서, 상기 4개의 코어 프라이머는 상기 타겟 핵산 분자에서 6개의 구역(F1, F2, F3, B1, B2, B3)을 선택하여 조합한 합성한 것으로서, 전방 내부 프라이머(forward inner primer, FIP), 전방 외부 프라이머(forward outer primer, F3), 후방 내부 프라이머(backward inner primer, BIP) 및 후방 외부 프라이머(B3)를 포함하고, 상기 루프 프라이머는 5’말단에 제1 소분자 화합물이 수식된 전방 루프 프라이머(forward loop primer) 및 5’말단에 제2 소분자 화합물이 수식된 후방 루프 프라이머(backward loop primer)를 포함할 수 있다. In one embodiment, the four core primers are synthesized by selecting and combining six regions (F1, F2, F3, B1, B2, B3) from the target nucleic acid molecule, and are forward inner primers. FIP), forward outer primer (F3), backward inner primer (BIP), and backward outer primer (B3), wherein the loop primer is modified with a first small molecule compound at its 5' end. It may include a forward loop primer and a backward loop primer whose 5' end is modified with a second small molecule compound.
일 실시예에 있어서, 상기 제1 소분자 화합물과 상기 제2 소분자 화합물은 서로 다른 화합물로서, 이들 각각은 FITC(fluorescein isothiocyanate), DIG(Digoxigenin), DNP(Dinitrophenyl), 아크릴아마이드(Acrylamide), 알렉사플루오르(Alexa Fluor), 비오틴(Biotin), 비오틴-TEG(Biotin-TEG), 콜레스테롤(Cholesterol), 시아나이드(Cyanine), 데스티오비오틴-TEG(Desthiobiotin-TEG), DNP-TEG, GalNac(N-Acetylgalactosamine), 이온신(Inosine), PEG-2000, 퓨로마이신(Puromycine), 로다민-6G(Rhodamine-6G), 텍사스레드(Texas red, C31H29N2O6S2Cl), 티미딘글리콜(Thymidine Glycol), FAM(Fluorescein amidite), Hex(Hexachlorofluorescein), ROX(Carboxy-X-Rhodamine), TAMRA(Tetramethylrhodamine-5-maleimide)으로 이루어진 그룹으로부터 선택된 하나를 포함할 수 있다. 예를 들면, 상기 제1 소분자 화합물은 FITC, DIG 및 DNP로 이루어진 그룹에서 선택된 하나를 포함하고, 상기 제1 반응물질은 상기 제1 소분자 화합물에 대한 항체를 포함할 수 있다. In one embodiment, the first small molecule compound and the second small molecule compound are different compounds, each of which includes fluorescein isothiocyanate (FITC), digoxigenin (DIG), dinitrophenyl (DNP), acrylamide, and Alexa Fluor. (Alexa Fluor), Biotin, Biotin-TEG, Cholesterol, Cyanine, Desthiobiotin-TEG, DNP-TEG, GalNac (N-Acetylgalactosamine ), Inosine, PEG-2000, Puromycin, Rhodamine-6G, Texas red (C31H29N2O6S2Cl), Thymidine Glycol, FAM (Fluorescein amidite) , Hex (Hexachlorofluorescein), ROX (Carboxy-X-Rhodamine), and TAMRA (Tetramethylrhodamine-5-maleimide). For example, the first small molecule compound may include one selected from the group consisting of FITC, DIG, and DNP, and the first reactant may include an antibody against the first small molecule compound.
일 실시예에 있어서, 상기 제4 단계에서 적외선, 가시광선 또는 자외선에 속하는 파장의 광이 혼합된 광을 생성하는 광원 또는 특정 파장의 단색광을 생성하는 광원에서 생성된 광이 상기 광학 프로브에 조사될 수 있다. In one embodiment, in the fourth step, light generated from a light source that generates light mixed with light of wavelengths belonging to infrared light, visible light, or ultraviolet light or a light source that generates monochromatic light of a specific wavelength is irradiated to the optical probe. You can.
일 실시예에 있어서, 상기 제5 단계에서 상기 광학 프로부터 재귀반사된 광에 대한 이미지를 생성한 후 이로부터 상기 광학 프로브의 수를 계수함으로써 상기 타겟 핵산 시퀀스의 정량 정보를 산출할 수 있다. In one embodiment, in the fifth step, quantitative information of the target nucleic acid sequence can be calculated by generating an image of the light retroreflected from the optical probe and then counting the number of optical probes therefrom.
본 발명의 실시예에 따른 분자 진단 방법은, 둘 이상의 서로 다른 타겟 핵산 분자 시퀀스들를 증폭하여 둘 이상의 서로 다른 제1 소분자 화합물들 중 하나가 말단에 수식된 제1 가닥과 서로 동일한 제2 소분자 화합물이 말단에 수식된 제2 가닥으로 각각 이루어진 둘 이상의 서로 다른 이중가닥 앰플리콘을 형성하는 제1 단계; 센싱칩의 기판에 고정되어 있고, 상기 제1 소분자 화합물들과 각각 선택적으로 반응하는 서로 다른 제1 반응물질들에 상기 앰플리콘들을 각각 반응시키는 제2 단계; 상기 제2 소분자 화합물과 선택적으로 반응하는 제2 반응물질이 표면에 수식된 광학 프로브를 상기 센싱칩에 고정된 앰플리콘들에 반응시키는 제3 단계; 상기 광학 프로브에 광을 조사하는 제4 단계; 및 상기 광학 프로브로부터 재귀반사된 광을 분석하여 타겟 핵산 분자 시퀀스들의 정량정보를 산출하는 제5 단계;를 포함할 수 있다. The molecular diagnosis method according to an embodiment of the present invention amplifies two or more different target nucleic acid molecule sequences to produce a second small molecule compound identical to the first strand with one of the two or more different first small molecule compounds modified at the end. A first step of forming two or more different double-stranded amplicons, each consisting of a second strand modified at the end; A second step of reacting each of the amplicons with different first reactants that are fixed to the substrate of the sensing chip and each selectively reacts with the first small molecule compounds; A third step of reacting an optical probe whose surface is modified with a second reactant that selectively reacts with the second small molecule compound to the amplicons fixed to the sensing chip; a fourth step of irradiating light to the optical probe; and a fifth step of calculating quantitative information of target nucleic acid molecule sequences by analyzing the light retroreflected from the optical probe.
일 실시예에 있어서, 상기 센싱칩은 공간적으로 이격된 둘 이상의 센싱 영역들을 포함하고, 상기 서로 다른 제1 반응물질들은 상기 센싱 영역들에 각각 수식될 수 있다. In one embodiment, the sensing chip includes two or more spatially spaced sensing regions, and the different first reactants may be modified in each of the sensing regions.
일 실시예에 있어서, 상기 센싱 영역들은 단일 유체 채널 내부에 형성될 수 있다. In one embodiment, the sensing areas may be formed inside a single fluid channel.
일 실시예에 있어서, 상기 센싱 영역들 각각에 수식된 상기 제1 반응물질들의 밀도는 서로 동일할 수 있다. In one embodiment, the densities of the first reactants modified in each of the sensing regions may be the same.
일 실시예에 있어서, 상기 서로 다른 제1 소분자 화합물들 및 상기 제2 소분자 화합물 각각은 FITC(fluorescein isothiocyanate), DIG(Digoxigenin), DNP(Dinitrophenyl), 아크릴아마이드(Acrylamide), 알렉사플루오르(Alexa Fluor), 비오틴(Biotin), 비오틴-TEG(Biotin-TEG), 콜레스테롤(Cholesterol), 시아나이드(Cyanine), 데스티오비오틴-TEG(Desthiobiotin-TEG), DNP-TEG, GalNac(N-Acetylgalactosamine), 이온신(Inosine), PEG-2000, 퓨로마이신(Puromycine), 로다민-6G(Rhodamine-6G), 텍사스레드(Texas red, C31H29N2O6S2Cl), 티미딘글리콜(Thymidine Glycol), FAM(Fluorescein amidite), Hex(Hexachlorofluorescein), ROX(Carboxy-X-Rhodamine), TAMRA(Tetramethylrhodamine-5-maleimide)으로 이루어진 그룹으로부터 선택된 하나를 포함할 수 있다.In one embodiment, each of the different first small molecule compounds and the second small molecule compound is fluorescein isothiocyanate (FITC), digoxigenin (DIG), dinitrophenyl (DNP), acrylamide, and Alexa Fluor. , Biotin, Biotin-TEG, Cholesterol, Cyanine, Desthiobiotin-TEG, DNP-TEG, GalNac (N-Acetylgalactosamine), Ionsin (Inosine), PEG-2000, Puromycin (Puromycin), Rhodamine-6G, Texas red (C31H29N2O6S2Cl), Thymidine Glycol, FAM (Fluorescein amidite), Hex (Hexachlorofluorescein) ), ROX (Carboxy-X-Rhodamine), and TAMRA (Tetramethylrhodamine-5-maleimide).
본 발명의 분자 진단 방법에 따르면, 재귀반사 광을 신호 원리로 적용하므로, 극히 단순화된 광학 신호분석 장비를 이용하여 고감도의 타겟 핵산 검출 및 정량 분석이 가능하다. 또한, 코어 프라이머들 및 루프 프라이머들을 함께 이용하는 LAMP 방법을 통해 타겟 핵산 분자를 증폭하여 획일화된 형태의 앰플리콘을 생성하고, 이에 대한 분석을 수행하므로, 분석 절차를 상당히 단순화할 수 있을 뿐만 아니라 분석 정확도를 향상시킬 수 있다. According to the molecular diagnosis method of the present invention, retroreflected light is applied as a signal principle, making it possible to detect and quantitatively analyze target nucleic acids with high sensitivity using extremely simplified optical signal analysis equipment. In addition, the LAMP method, which uses core primers and loop primers together, amplifies the target nucleic acid molecule to generate a uniform amplicon and performs analysis on it, which not only greatly simplifies the analysis procedure but also enables the analysis. Accuracy can be improved.
도 1은 본 발명의 일 실시예에 따른 분자 진단 방법을 설명하기 위한 순서도이다. 1 is a flowchart for explaining a molecular diagnosis method according to an embodiment of the present invention.
도 2는 상기 분자 진단 방법을 위한 시스템을 설명하기 위한 모식도이다. Figure 2 is a schematic diagram to explain the system for the molecular diagnosis method.
도 3은 종래 LAMP 방법 및 본 발명의 LAMP 방법에 의한 증폭 생성물을 비교하기 위한 도면이다. Figure 3 is a diagram for comparing amplification products by the conventional LAMP method and the LAMP method of the present invention.
도 4는 도 2에 도시된 분자 진단 시스템에 적용되는 광학 프로브를 설명하기 위한 단면도이다. FIG. 4 is a cross-sectional view illustrating an optical probe applied to the molecular diagnosis system shown in FIG. 2.
도 5는 도 2에 도시된 분자 진단 시스템 중 센싱칩의 기판에 제1 반응물질을 수식하는 방법을 설명하기 위한 도면이다.FIG. 5 is a diagram illustrating a method of modifying the substrate of a sensing chip in the molecular diagnostic system shown in FIG. 2 with a first reactant.
도 6은 본 발명의 다른 실시예에 따른 분자 진단 방법을 설명하기 위한 순서도이다. Figure 6 is a flowchart for explaining a molecular diagnosis method according to another embodiment of the present invention.
도 7은 본 발명의 다른 실시예에 따른 분자 진단 방법을 설명하기 위한 모식도이다.Figure 7 is a schematic diagram for explaining a molecular diagnosis method according to another embodiment of the present invention.
도 8은 실시예에 따른 LAMP 증폭 산물에 대한 겔 전기영동 결과를 나타내는 이미지이다. Figure 8 is an image showing the gel electrophoresis results for the LAMP amplification product according to the example.
도 9a는 다양한 농도의 Salmonella sample을 센싱 기판에 반응시킨 후 수득한 이미지이고, 도 9b는 도 9a의 이미지로부터 분석된 Salmonella의 농도를 표시하는 그래프이다.Figure 9a is an image obtained after reacting Salmonella samples of various concentrations to a sensing substrate, and Figure 9b is a graph showing the concentration of Salmonella analyzed from the image of Figure 9a.
도 10a는 실시예 2-1에 따라 산출된 Salmonella의 농도를 나타내는 그래프이고, 도 10b는 실시예 2-2에 따라 산출된 Salmonella의 농도를 나타내는 그래프이다. Figure 10a is a graph showing the concentration of Salmonella calculated according to Example 2-1, and Figure 10b is a graph showing the concentration of Salmonella calculated according to Example 2-2.
이하, 본 발명의 실시예에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하여 도시한 것이다. Hereinafter, embodiments of the present invention will be described in detail. Since the present invention can be subject to various changes and can have various forms, specific embodiments will be illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to a specific disclosed form, and should be understood to include all changes, equivalents, and substitutes included in the spirit and technical scope of the present invention. While describing each drawing, similar reference numerals are used for similar components. In the attached drawings, the dimensions of the structures are enlarged from the actual size for clarity of the present invention.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. Terms such as first, second, etc. may be used to describe various components, but the components should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, a first component may be named a second component, and similarly, the second component may also be named a first component without departing from the scope of the present invention.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로서 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in this application are only used to describe specific embodiments and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this application, terms such as “comprise” or “have” are intended to designate the presence of features, steps, operations, components, parts, or combinations thereof described in the specification, but are not intended to indicate the presence of one or more other features or steps. , it should be understood that it does not exclude in advance the possibility of the existence or addition of operations, components, parts, or combinations thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by a person of ordinary skill in the technical field to which the present invention pertains. Terms defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related technology, and unless explicitly defined in the present application, should not be interpreted in an ideal or excessively formal sense. No.
도 1은 본 발명의 일 실시예에 따른 분자 진단 방법을 설명하기 위한 순서도이고, 도 2는 상기 분자 진단 방법을 위한 시스템을 설명하기 위한 모식도이고, 도 3은 종래 LAMP 방법 및 본 발명의 LAMP 방법에 의한 증폭 생성물을 비교하기 위한 도면이고, 도 4는 도 2에 도시된 분자 진단 시스템에 적용되는 광학 프로브를 설명하기 위한 단면도이며, 도 5는 도 2에 도시된 분자 진단 시스템 중 센싱칩의 기판에 제1 반응물질을 수식하는 방법을 설명하기 위한 도면이다.Figure 1 is a flowchart for explaining a molecular diagnosis method according to an embodiment of the present invention, Figure 2 is a schematic diagram for explaining a system for the molecular diagnosis method, and Figure 3 is a conventional LAMP method and the LAMP method of the present invention. It is a diagram for comparing amplification products by , FIG. 4 is a cross-sectional view for explaining an optical probe applied to the molecular diagnostic system shown in FIG. 2, and FIG. 5 is a substrate of a sensing chip in the molecular diagnostic system shown in FIG. 2. This is a diagram to explain a method of modifying the first reactant.
도 1 내지 도 5를 참조하면, 본 발명의 실시예에 따른 분자 진단 방법은, 타겟 핵산 분자를 증폭하여 제1 소분자 화합물이 말단에 수식된 제1 가닥과 제2 소분자 화합물이 말단에 수식된 제2 가닥으로 이루어진 이중가닥 앰플리콘(amplicon)(10)을 형성하는 제1 단계(S110); 상기 이중가닥 앰플리콘(10)을 센싱칩(110)의 기판(111)에 고정되어 있고, 상기 제1 소분자 화합물과 선택적으로 반응하는 제1 반응물질(112)와 반응시키는 제2 단계(S120); 상기 제1 반응물질(112)과 반응한 이중가닥 앰플리콘(10)의 제2 소분자 화합물에 상기 제2 소분자 화합물과 선택적으로 반응하는 제2 반응물질(125)이 표면에 수식된 광학 프로브(120)를 반응시키는 제3 단계(S130); 상기 광학 프로브(120)에 광을 조사하는 제4 단계(S140); 및 상기 광학 프로브(120)로부터 재귀반사된 광을 감지하여 분석하는 제5 단계(S150);를 포함할 수 있다. 1 to 5, the molecular diagnosis method according to an embodiment of the present invention amplifies a target nucleic acid molecule to form a first strand whose ends are modified with a first small molecule compound and a strand whose ends are modified with a second small molecule compound. The first step (S110) of forming a double-stranded amplicon (10) consisting of two strands; A second step (S120) of reacting the double-stranded amplicon 10 with a first reactant 112 that is fixed to the substrate 111 of the sensing chip 110 and selectively reacts with the first small molecule compound. ; An optical probe (120) whose surface is modified with a second reactant (125) that selectively reacts with the second small molecule compound of the double-stranded amplicon (10) reacted with the first reactant (112). ) a third step (S130) of reacting; A fourth step (S140) of radiating light to the optical probe 120; and a fifth step (S150) of detecting and analyzing the light retroreflected from the optical probe 120.
상기 제1 단계(S110)에 있어서, 상기 이중가닥 앰플리콘(amplicon)은 4개의 코어 프라이머 그리고 상기 제1 및 제2 소분자 화합물이 각각 수식된 2개의 루프 프라이머를 이용한 LAMP(Loop-mediated isothermal amplification) 방법을 통해 상기 타겟 핵산 분자를 증폭함으로써 형성될 수 있다. 상기 타겟 핵산 분자는 바이러스, 박테리아 등의 DNA 또는 RNA를 포함할 수 있다. In the first step (S110), the double-stranded amplicon is LAMP (Loop-mediated isothermal amplification) using four core primers and two loop primers each modified with the first and second small molecule compounds. It can be formed by amplifying the target nucleic acid molecule through a method. The target nucleic acid molecule may include DNA or RNA of viruses, bacteria, etc.
일 실시예에 있어서, 상기 4개의 코어 프라이머는 상기 타겟 핵산 분자에서 6개의 구역(F1, F2, F3, B1, B2, B3)을 선택하여 조합한 합성한 것으로서, 전방 내부 프라이머(forward inner primer, FIP), 전방 외부 프라이머(forward outer primer, F3), 후방 내부 프라이머(backward inner primer, BIP) 및 후방 외부 프라이머(B3)를 포함할 수 있다. 그리고, 상기 루프 프라이머는 일 말단, 예를 들면, 5’말단에 제1 소분자 화합물이 수식된 전방 루프 프라이머(forward loop primer) 및 일 말단, 예를 들면, 5’말단에 제2 소분자 화합물이 수식된 후방 루프 프라이머(backward loop primer)를 포함할 수 있다.In one embodiment, the four core primers are synthesized by selecting and combining six regions (F1, F2, F3, B1, B2, B3) from the target nucleic acid molecule, and are forward inner primers. FIP), forward outer primer (F3), backward inner primer (BIP), and backward outer primer (B3). In addition, the loop primer is a forward loop primer whose first small molecule compound is modified at one end, for example, the 5' end, and a second small molecule compound is modified at one end, for example, the 5' end. It may include a backward loop primer.
상기 제1 소분자 화합물과 상기 제2 소분자 화합물은 서로 다른 화합물로서, 이들 각각은 FITC(fluorescein isothiocyanate), DIG(Digoxigenin), DNP(Dinitrophenyl), 아크릴아마이드(Acrylamide), 알렉사플루오르(Alexa Fluor), 비오틴(Biotin), 비오틴-TEG(Biotin-TEG), 콜레스테롤(Cholesterol), 시아나이드(Cyanine), 데스티오비오틴-TEG(Desthiobiotin-TEG), DNP-TEG, GalNac(N-Acetylgalactosamine), 이온신(Inosine), PEG-2000, 퓨로마이신(Puromycine), 로다민-6G(Rhodamine-6G), 텍사스레드(Texas red, C31H29N2O6S2Cl), 티미딘글리콜(Thymidine Glycol), FAM(Fluorescein amidite), Hex(Hexachlorofluorescein), ROX(Carboxy-X-Rhodamine), TAMRA(Tetramethylrhodamine-5-maleimide) 등으로 이루어진 그룹으로부터 선택된 하나를 포함할 수 있다. The first small molecule compound and the second small molecule compound are different compounds, each of which contains FITC (fluorescein isothiocyanate), DIG (Digoxigenin), DNP (Dinitrophenyl), acrylamide, Alexa Fluor, and biotin. (Biotin), Biotin-TEG, Cholesterol, Cyanine, Desthiobiotin-TEG, DNP-TEG, GalNac (N-Acetylgalactosamine), Inosine ), PEG-2000, Puromycin, Rhodamine-6G, Texas red (C31H29N2O6S2Cl), Thymidine Glycol, FAM (Fluorescein amidite), Hex (Hexachlorofluorescein), It may include one selected from the group consisting of ROX (Carboxy-X-Rhodamine), TAMRA (Tetramethylrhodamine-5-maleimide), etc.
도 3에 도시된 바와 같이, 4개의 코어 프라이머만을 이용한 종래의 LAMP 방법을 통해 타겟 핵산 분자를 증폭하는 경우, 다양한 형태의 콘카타머들(concatemers)이 형성된다. 다양한 콘카타머들을 모두 표적화해서 검출 및 분석을 진행할 경우 정확한 정량 분석에 어려움이 있으며, 검출을 위해 DNA-DNA 혼성화 등과 같은 DNA 기반의 분석법을 수행해야 하므로 절차가 복잡해지는 문제점이 있다. As shown in Figure 3, when a target nucleic acid molecule is amplified through the conventional LAMP method using only four core primers, various types of concatemers are formed. When detection and analysis is performed by targeting all of the various concatamers, it is difficult to perform accurate quantitative analysis, and the procedure becomes complicated because DNA-based analysis methods such as DNA-DNA hybridization must be performed for detection.
이에 반해, 본 발명에서와 같이, 4개의 코어 프라이머들과 함께 2개의 루프 프라이머들을 이용한 LAMP 방법을 통해 타겟 핵산 분자를 증폭하는 경우, 일 말단에 상기 제1 소분자가 수식된 제1 가닥과 상기 말단과 대향하는 말단에 상기 제2 소분자가 수식된 제2 가닥으로 이루어진 획일적인 형태의 이중 가닥 앰플리콘(10)이 형성될 수 있다. 일 실시예로, FIP(전방 내부 프라이머)의 F2와 타겟 유전자의 F2c가 상보적으로 결합을 하고, DNA 중합효소 및 dNTP에 의해 DNA 사슬이 연장되어 이중가닥 DNA를 형성할 수 있으며, 이중가닥 DNA가 형성된 이후 F3(전방 외부 프라이머)가 유전자의 F3c 부분과 상보적으로 결합할 수 있다. FIP에 의해 형성된 DNA 사슬은 F3(전방 외부 프라이머)가 결합하여 증폭되는 과정에서 떼어져 나가 단일가닥을 형성할 수 있다. 그리고, FIP에 의해 연장된 DNA 단일가닥 사슬에 소분자 화합물이 결합된 후방 루프 프라이머가 결합하여 DNA 사슬이 연장됨으로써 이중가닥 DNA를 형성하며, 이후 BIP(후방 내부 프라이머)의 B2 부분과 이중가닥 DNA의 B2c 부분이 상보적으로 결합할 수 있다. 후방 루프 프라이머에 의해 연장된 DNA 사슬은 BIP(후방 내부 프라이머)가 DNA에 결합하여 증폭되는 과정에서 떼어져 나가 단일가닥을 형성할 수 있다. 후방 루프 프라이머에 의해 형성된 단일가닥 DNA 사슬에 소분자 화합물이 결합된 전방 루프 프라이머가 결합하여 DNA 사슬이 연장될 수 있고, 이후 형성된 이중나선 DNA 가닥에 FIP가 상보적으로 결합할 수 있다. On the other hand, as in the present invention, when a target nucleic acid molecule is amplified through the LAMP method using four core primers and two loop primers, a first strand at one end of which the first small molecule is modified and the end A uniform double-stranded amplicon 10 may be formed consisting of a second strand modified with the second small molecule at the end opposite to the amplicon. In one embodiment, the F2 of the FIP (forward internal primer) and the F2c of the target gene bind complementary, and the DNA chain is extended by DNA polymerase and dNTP to form double-stranded DNA. Double-stranded DNA After is formed, F3 (forward external primer) can bind complementary to the F3c part of the gene. The DNA chain formed by FIP can be separated during the amplification process when F3 (forward external primer) binds to form a single strand. In addition, the back loop primer containing a small molecule compound binds to the single-stranded DNA chain extended by FIP, thereby extending the DNA chain to form double-stranded DNA. Afterwards, the B2 part of BIP (backward internal primer) and the double-stranded DNA are combined. The B2c portion can bind complementary. The DNA chain extended by the backward loop primer can be separated during the amplification process when the BIP (backward internal primer) binds to the DNA and forms a single strand. A forward loop primer to which a small molecule compound is bound can bind to a single-stranded DNA chain formed by a backward loop primer, thereby extending the DNA chain, and then FIP can bind complementary to the formed double-stranded DNA strand.
상기 제2 단계(S120)에 있어서, 상기 센싱칩(110)은 센싱 영역을 구비할 수 있고, 상기 센싱 영역에 대응되는 상기 기판(111)의 표면에는 상기 타겟 앰플리콘(10)의 일 말단에 수식된 제1 소분자 화합물과 선택적으로 반응하는 제1 반응물질(112)이 결합되어 있다. 일 실시예로, 상기 제1 반응물질(112)은 항체일 수 있다. 예를 들면, 상기 제1 소분자 화합물이 FITC를 포함하는 경우, 상기 제1 반응물질(112)은 항-FITC 항체(anti-FITC antibody)를 포함할 수 있고, 상기 제1 소분자 화합물이 DIG를 포함하는 경우, 상기 제1 반응물질(112)은 항-DIG 항체(anti-DIG antibody)를 포함할 수 있으며, 상기 제1 소분자 화합물이 DNP를 포함하는 경우, 상기 제1 반응물질(112)은 항-DNP 항체(anti-DNP antibody)를 포함할 수 있다. In the second step (S120), the sensing chip 110 may be provided with a sensing area, and at one end of the target amplicon 10 is placed on the surface of the substrate 111 corresponding to the sensing area. A first reactant 112 that selectively reacts with the modified first small molecule compound is combined. In one embodiment, the first reactant 112 may be an antibody. For example, when the first small molecule compound includes FITC, the first reactant 112 may include an anti-FITC antibody, and the first small molecule compound includes DIG. In this case, the first reactant 112 may include an anti-DIG antibody, and if the first small molecule compound includes DNP, the first reactant 112 may include an anti-DIG antibody. -May include DNP antibody (anti-DNP antibody).
한편, 상기 센싱칩(110)의 센싱 영역은 상기 타겟 앰플리콘(10)을 포함하는 유체를 수용할 수 있는 유체 채널 형태로 제공될 수 있고, 상기 제1 반응물질(112)은 상기 유체 채널 내부의 기판(111) 표면에 고정될 수 있다. 상기 타겟 앰플리콘(10)의 제1 소분자 화합물과 상기 기판(111)에 고정된 제1 반응물질(112)을 반응시키기 위해, 상기 타겟 앰플리콘(10)을 포함하는 유체를 상기 센싱칩(110)의 유채채널에 주입한 후 일정시간 유지할 수 있다. Meanwhile, the sensing area of the sensing chip 110 may be provided in the form of a fluid channel that can accommodate the fluid containing the target amplicon 10, and the first reactant 112 is inside the fluid channel. It can be fixed to the surface of the substrate 111. In order to react the first small molecule compound of the target amplicon 10 with the first reactant 112 fixed to the substrate 111, a fluid containing the target amplicon 10 is applied to the sensing chip 110. ) can be maintained for a certain period of time after injection into the rapeseed channel.
일 실시예에 있어서, 상기 센싱칩(110)의 기판(111)은 상기 제1 반응물질(112)과 결합하여 이를 고정시킬 수 있다면, 그 재료나 형상 등이 특별히 제한되지 않는다. 예를 들면, 상기 기판(111)은 유리, 실리콘, 폴리머 등으로 형성될 수 있고, 상기 유체채널의 바닥면을 구성하는 상기 기판(111)의 표면 영역은 상기 제1 반응물질(112)이 결합될 수 있도록 편평할 수 있다. 상기 폴리머는 폴리스티렌(PS), 폴리메틸메타크릴레이트(PMMA), 올레핀공중합체(COC), 폴리디메틸실록산(PDMS) 등을 포함할 수 있다. In one embodiment, the material or shape of the substrate 111 of the sensing chip 110 is not particularly limited as long as it can bind to and fix the first reactant 112. For example, the substrate 111 may be formed of glass, silicon, polymer, etc., and the surface area of the substrate 111 constituting the bottom surface of the fluid channel is bonded to the first reactant 112. It can be flat so that it can be. The polymer may include polystyrene (PS), polymethyl methacrylate (PMMA), olefin copolymer (COC), polydimethylsiloxane (PDMS), etc.
일 실시예로, 상기 센싱칩(110)의 기판(111)이 유리, 실리콘, 폴리머 중에 하나로 형성된 경우, 도 5에 도시된 바와 같이, 플라즈마 처리 또는 자외선 조사 등을 통해 상기 센싱 기판의 표면을 활성화시킨 후 아민기가 노출되도록 3-아미노프로필트리에톡시실란(APTES)을 처리하고, 이어서 BS3(bis(sulfosuccinimidyl)suberate) 또는 글루타르알데히드(glutaraldehyde) 등의 아민 반응성 가교제를 처리한 후 상기 제1 반응물질(112)을 처리함으로써, 상기 제1 반응물질(112)을 이민 결합 등의 공유결합을 통해 상기 기판(111)의 표면에 고정시킬 수 있다. 한편, 상기 제1 반응물질(112)을 상기 기판(111)에 결합시킨 후, 에탄올아민(ethanolamine) 등과 같은 아민기를 포함하는 분자 및 BSA(bovine serum albumin)를 이용하여 상기 기판(111) 표면에 잔류하는 잔여 반응 잔기, 예를 들면, 알데하이드, 숙신이미드기 등을 블록할 수 있다. In one embodiment, when the substrate 111 of the sensing chip 110 is formed of one of glass, silicon, and polymer, the surface of the sensing substrate is activated through plasma treatment or ultraviolet irradiation, as shown in FIG. 5. After treatment with 3-aminopropyltriethoxysilane (APTES) to expose the amine group, and then with an amine-reactive crosslinking agent such as BS3 (bis(sulfosuccinimidyl)suberate) or glutaraldehyde, the first reaction is performed. By treating the material 112, the first reactant 112 can be fixed to the surface of the substrate 111 through a covalent bond such as an imine bond. Meanwhile, after binding the first reactant 112 to the substrate 111, it is attached to the surface of the substrate 111 using a molecule containing an amine group such as ethanolamine and bovine serum albumin (BSA). Remaining reactive residues, such as aldehyde, succinimide group, etc., can be blocked.
상기 제3 단계(S130)에 있어서, 상기 광학 프로브(120)는 상기 제1 반응물질(112)과 반응한 앰플리콘(10)의 제2 소분자 화합물과 선택적으로 반응하는 제2 반응물질(125)을 포함할 수 있고, 광원(130)으로부터 조사된 광을 상기 광원(130) 방향으로 재귀반사시킬 수 있다. In the third step (S130), the optical probe 120 reacts with a second reactant 125 that selectively reacts with the second small molecule compound of the amplicon 10 that reacted with the first reactant 112. It may include, and the light irradiated from the light source 130 may be retroreflected in the direction of the light source 130.
일 실시예에 있어서, 상기 광학 프로브(120)는 투명한 코어 입자(121); 상기 코어 입자(121) 표면 중 일부를 피복하고, 적어도 360nm 내지 820nm의 가시광선 파장 영역에서 상기 코어 입자(121)보다 굴절률이 작은 물질로 형성된 전반사 유도층(122); 상기 전반사 유도층(122) 상에 형성된 수식층(123); 및 상기 수식층(123)에 결합되고, 상기 제2 소분자 화합물과 선택적으로 반응하는 상기 제2 반응물질(125)을 포함할 수 있다.In one embodiment, the optical probe 120 includes transparent core particles 121; A total reflection induction layer 122 that covers a portion of the surface of the core particle 121 and is formed of a material with a lower refractive index than the core particle 121 in the visible light wavelength range of at least 360 nm to 820 nm; a modification layer 123 formed on the total reflection inducing layer 122; And it may include the second reactant 125 that is bound to the modifier layer 123 and selectively reacts with the second small molecule compound.
상기 코어 입자(121)는 구형의 형상을 가질 수 있다. 본 발명에 있어서 ‘구형’이라 함은 중심으로부터 표면의 모든 지점까지의 반지름들이 동일한 완벽한 구형뿐만 아니라 최대 반지름과 최소 반지름의 차이가 약 10% 미만인 실질적인 구형체도 포함하는 것으로 정의된다. The core particle 121 may have a spherical shape. In the present invention, ‘spherical’ is defined to include not only a perfect sphere where the radii from the center to all points on the surface are the same, but also a substantially spherical body in which the difference between the maximum and minimum radii is less than about 10%.
일 실시예에 있어서, 상기 코어 입자(121)는 상기 광원(130)으로부터 조사되는 광의 파장과의 관계, 바이오 센싱의 운용성 등을 고려하여, 약 600nm 이상 2㎛ 이하의 평균 직경을 가질 수 있다. In one embodiment, the core particles 121 may have an average diameter of about 600 nm or more and 2 μm or less, considering the relationship with the wavelength of light irradiated from the light source 130 and the operability of biosensing.
일 실시예에 있어서, 상기 코어 입자(121)는 입사광을 투과시킬 수 있는 투명 물질로 형성될 수 있다. 예를 들면, 상기 코어 입자(121)는 투명 산화물이나 투명 고분자 물질 등으로 형성될 수 있다. 상기 투명 산화물은, 예를 들면, 실리카(silica), 글라스(glass) 등을 포함할 수 있고, 상기 투명 고분자 물질은, 예를 들면, 폴리스티렌(polystyrene), 폴리메틸메타크릴레이트(poly(methyl methacrylate)) 등을 포함할 수 있다. In one embodiment, the core particles 121 may be formed of a transparent material capable of transmitting incident light. For example, the core particles 121 may be formed of transparent oxide or transparent polymer material. The transparent oxide may include, for example, silica, glass, etc., and the transparent polymer material may include, for example, polystyrene, poly(methyl methacrylate), etc. )), etc.
상기 전반사 유도층(122)은 상기 코어 입자(121)의 표면 중 일부를 피복하도록 형성되고, 상기 코어 입자(121) 내부를 진행하는 광의 적어도 일부를 전반사시켜 상기 광원(130) 방향으로 재귀반사되는 광량을 증가시킬 수 있다. The total reflection induction layer 122 is formed to cover a portion of the surface of the core particle 121, and totally reflects at least a portion of the light traveling inside the core particle 121 to be retroreflected in the direction of the light source 130. The amount of light can be increased.
일 실시예에 있어서, 상기 전반사 유도층(122)은 상기 코어 입자(121)의 표면 중 약 30% 이상 70% 이하의 면적을 피복하도록 상기 코어 입자(121)의 표면 상에 형성될 수 있다. 상기 전반사 유도층(122)이 상기 코어 입자(121) 표면의 30% 미만을 피복하는 경우, 상기 코어 입자(121) 내부에 입사된 광 중 재귀반사되지 않고 누설되는 광량이 많아지는 문제점이 발생할 수 있고, 상기 전반사 유도층(122)이 상기 코어 입자(121) 표면을 70% 초과하여 피복하는 경우, 상기 코어 입자(121) 내부로 입사되는 광량이 감소되는 문제점이 발생할 수 있다. 일 실시예로, 상기 전반사 유도층(122)은 상기 코어 입자(121) 표면의 약 40% 이상 60% 이하를 피복하도록 상기 코어 입자(121)의 표면 상에 형성될 수 있다.In one embodiment, the total reflection induction layer 122 may be formed on the surface of the core particle 121 to cover an area of about 30% to 70% of the surface of the core particle 121. If the total reflection inducing layer 122 covers less than 30% of the surface of the core particle 121, a problem may occur in which the amount of light incident on the inside of the core particle 121 that is not retroreflected and leaks increases. In the case where the total reflection inducing layer 122 covers the surface of the core particle 121 by more than 70%, a problem may occur in which the amount of light incident on the inside of the core particle 121 is reduced. In one embodiment, the total reflection inducing layer 122 may be formed on the surface of the core particle 121 to cover about 40% to 60% of the surface of the core particle 121.
일 실시예에 있어서, 상기 코어 입자(121) 내부를 진행하는 광의 적어도 일부를 전반사시켜 상기 광원(130) 방향으로 재귀반사되는 광량을 증가시키기 위해, 상기 전반사 유도층(122)은 상기 코어 입자(121)보다 굴절률이 작은 물질로 형성될 수 있다. 일 실시예로, 상기 코어 입자(121)는 적어도 360nm 내지 820 nm의 가시광선 파장 영역에서 약 1.4 이상의 굴절률을 갖는 물질로 형성될 수 있고, 상기 전반사 유도층(122)은 코어 입자 (121)보다 작은 굴절률을 갖는 물질로 형성될 수 있다. 구체적으로, 상기 코어 입자(121)가 가시광선 영역에서 약 1.4 이상의 굴절률을 갖는 투명 산화물 또는 투명 고분자 물질로 형성된 경우, 상기 전반사 유도층(122)은 그보다 작은 굴절률을 갖는 금속 물질로 형성될 수 있다. 예를 들면, 상기 전반사 유도층(122)은 532nm 파장의 광에 대해 약 0.22의 굴절률을 갖는 금(Au), 약 0.15의 굴절률을 갖는 은(Ag), 약 1.0의 굴절률을 갖는 알루미늄(Al), 약 0.4의 굴절률을 갖는 구리(Cu), 약 1.2의 굴절률을 갖는 아연(Zn) 등으로부터 선택된 하나 이상의 금속으로 형성될 수 있다. In one embodiment, in order to increase the amount of light retroreflected in the direction of the light source 130 by total reflection of at least a portion of the light traveling inside the core particle 121, the total reflection inducing layer 122 is provided with the core particle ( 121) and can be formed of a material with a smaller refractive index. In one embodiment, the core particles 121 may be formed of a material having a refractive index of about 1.4 or more in the visible light wavelength range of at least 360 nm to 820 nm, and the total reflection inducing layer 122 may have a refractive index greater than that of the core particles 121. It can be formed of a material with a small refractive index. Specifically, when the core particles 121 are formed of a transparent oxide or transparent polymer material having a refractive index of about 1.4 or more in the visible light region, the total reflection inducing layer 122 may be formed of a metal material having a refractive index less than that. . For example, the total reflection induction layer 122 is made of gold (Au) with a refractive index of about 0.22, silver (Ag) with a refractive index of about 0.15, and aluminum (Al) with a refractive index of about 1.0 for light with a wavelength of 532 nm. , copper (Cu) with a refractive index of about 0.4, zinc (Zn) with a refractive index of about 1.2, and the like.
한편, 일 실시예로, 상기 전반사 유도층(122)과 상기 코어 입자(121)의 접착력을 향상시키기 위해, 상기 코어 입자(121)의 표면에 크롬(Cr)을 도포한 후 상기 전반사 유도층(122)을 형성할 수 있다. 이 경우, 재귀반사능이 저하되는 것을 방지하기 위해, 상기 크롬은 약 2 nm 내지는 5 nm 이하의 두께로 도포되는 것이 바람직하다. 이와 달리, 다른 실시예로, 상기 전반사 유도층(122) 자체를 상기 코어 입자(121)와 접착력이 강한 물질로 형성할 수 있다. 예를 들면, 상기 코어 입자(121)가 투명 산화물로 형성된 경우, 상기 전반사 유도층(122)은 알루미늄(Al) 또는 구리(Cu)로 형성될 수 있다. Meanwhile, in one embodiment, in order to improve the adhesion between the total reflection induction layer 122 and the core particles 121, chromium (Cr) is applied to the surface of the core particles 121 and then the total reflection induction layer ( 122) can be formed. In this case, in order to prevent retroreflection from being reduced, the chrome is preferably applied to a thickness of about 2 nm to 5 nm or less. In contrast, in another embodiment, the total reflection inducing layer 122 itself may be formed of a material that has strong adhesion to the core particles 121. For example, when the core particles 121 are formed of transparent oxide, the total reflection inducing layer 122 may be formed of aluminum (Al) or copper (Cu).
일 실시예에 있어서, 광 투과에 의한 광 누설을 방지하고 상기 광학 프로브(120)의 분산성을 향상시키기 위하여, 상기 전반사 유도층(122)은 약 10 내지 100nm의 두께를 가질 수 있다. 상기 전반사 유도층(122)의 두께가 10nm 미만인 경우, 상기 코어 입자(121) 내부에 입사된 광 중 일부가 상기 전반사 유도층(122)을 투과하여 누설되는 문제점이 발생할 수 있고, 상기 전반사 유도층(122)의 두께가 100nm를 초과하는 경우, 상기 광학 프로브(120)의 중량이 커져 액체 내에서의 상기 광학 프로브(120)의 분산성이 저하되는 문제점이 발생할 수 있다. In one embodiment, in order to prevent light leakage due to light transmission and improve dispersibility of the optical probe 120, the total reflection induction layer 122 may have a thickness of about 10 to 100 nm. If the thickness of the total reflection induction layer 122 is less than 10 nm, a problem may occur in which some of the light incident on the inside of the core particle 121 leaks through the total reflection induction layer 122, and the total reflection induction layer 122 may leak. When the thickness of 122 exceeds 100 nm, the weight of the optical probe 120 increases, which may cause a problem in which the dispersibility of the optical probe 120 in the liquid is reduced.
상기 수식층(123)은 상기 전반사 유도층(122) 표면 상에 형성될 수 있다. 상기 수식층(123)은 제2 반응물질과의 결합이 용이한 금속 물질로 형성될 수 있다. 예를 들면, 상기 수식층(123)은 생체물질에 의한 수식이 용이하고 산화 안정성이 우수한 백금(Pt), 금(Au), 은(Ag) 등과 같은 귀금속으로 형성될 수 있다. The modifier layer 123 may be formed on the surface of the total reflection inducing layer 122. The modification layer 123 may be formed of a metal material that is easy to combine with the second reactant. For example, the modification layer 123 may be formed of a noble metal such as platinum (Pt), gold (Au), silver (Ag), etc., which is easy to modify with biological materials and has excellent oxidation stability.
일 실시예에 있어서, 상기 수식층(123)은 상기 전반사 유도층(122)과 독립된 별개의 층으로 형성될 수 있다. 예를 들면, 상기 전반사 유도층(122)이 귀금속이 아닌 금속 물질로 형성된 경우, 상기 수식층(123)은 상기 전반사 유도층(122)을 피복하는 귀금속 물질층일 수 있다. In one embodiment, the modifier layer 123 may be formed as a separate layer independent of the total reflection induction layer 122. For example, when the total reflection inducing layer 122 is formed of a metal material other than a noble metal, the modifier layer 123 may be a noble metal material layer covering the total reflection inducing layer 122.
이와 달리, 다른 실시예에 있어서, 상기 수식층(123)과 상기 전반사 유도층(122)은 일체로 형성될 수 있다. 예를 들면, 상기 전반사 유도층(122)이 금(Au), 은(Ag) 등과 같이 상기 코어 입자보다 굴절률이 작은 귀금속으로 형성된 경우, 상기 전반사 유도층(122)은 상기 수식층(123)으로도 기능할 수 있다.In contrast, in another embodiment, the modifier layer 123 and the total reflection induction layer 122 may be formed integrally. For example, when the total reflection inducing layer 122 is formed of a noble metal with a lower refractive index than the core particles, such as gold (Au), silver (Ag), etc., the total reflection inducing layer 122 is formed by the modifier layer 123. can also function.
일 실시예에 있어서, 상기 수식층(123)은 상기 광학 프로브(120)의 액체 내부에서의 분산성 및 응집 방지를 위해 약 100 nm 이하의 두께를 가질 수 있다.In one embodiment, the modifier layer 123 may have a thickness of about 100 nm or less to prevent dispersion and aggregation within the liquid of the optical probe 120.
상기 제2 반응물질(135)은 상기 수식층(123)에 직접 또는 간접적으로 결합되고, 상기 앰플리콘(10)의 제2 소분자 화합물과 선택적으로 결합할 수 있다. 상기 제2 반응물질(135)은 상기 제2 소분자 화합물에 따라 변경될 수 있고, 단백질, 핵산, 리간드 등으로부터 선택된 하나 이상을 포함할 수 있다. 일 예로, 상기 제2 소분자 화합물이 비오틴(biotin)을 포함하는 경우, 상기 제2 반응물질(135)은 상기 비오틴(biotin)과 선택적으로 결합할 수 있는 아비딘(avidin), 스트렙트아비딘(streptavidin), 뉴트라아비딘(NeutrAvidin) 등으로부터 선택된 하나 이상의 단백질 화합물을 포함할 수 있다. The second reactant 135 is directly or indirectly bound to the modification layer 123 and can selectively bind to the second small molecule compound of the amplicon 10. The second reactant 135 may vary depending on the second small molecule compound and may include one or more selected from proteins, nucleic acids, ligands, etc. For example, when the second small molecule compound contains biotin, the second reactant 135 is avidin or streptavidin that can selectively bind to biotin. , NeutrAvidin, etc. may include one or more protein compounds selected from the group.
한편, 상기 제2 반응물질(135)은 상기 수식층(123) 표면에만 결합되고, 상기 코어 입자(121)의 노출 표면에는 결합되지 않도록 형성될 수 있다. 이와 같이, 상기 전반사 유도층(122) 및 상기 수식층(123)에 의해 피복된 코어 입자(121)에 대해 상기 제2 반응물질(135)을 위치 선택적으로 형성하는 경우, 상기 앰플리콘에 결합된 상태에서 상기 노출된 코어 입자(121) 부분이 상기 광원부(140)를 향하므로, 보다 강력한 재귀반사 신호를 유도할 수 있다. Meanwhile, the second reactant 135 may be formed to bind only to the surface of the modifier layer 123 and not to the exposed surface of the core particle 121. In this way, when the second reactant 135 is site-selectively formed with respect to the core particle 121 covered by the total reflection inducing layer 122 and the modifier layer 123, the amplicon bound to the amplicon In this state, the exposed portion of the core particle 121 faces the light source unit 140, so a stronger retroreflection signal can be induced.
본 발명의 일 실시예에 있어서, 도 4에 도시된 바와 같이, 상기 광학 프로브(120)는 상기 전반사 유도층(122)과 상기 수식층(123) 사이에 배치되고, 자성물질로 형성된 자성층(124)을 더 포함할 수 있다. 상기 자성층(124)은, 예를 들면, 철 (Fe), 니켈 (Ni), 망간 (Mn), 이들의 소성체 또는 산화물 등과 같은 자성물질로 형성될 수 있다. 상기 광학 프로브(120)가 상기 자성층(124)을 더 포함하는 경우, 외부에서 자기장을 인가함으로써 상기 광학 프로브(120)의 배향 방향을 조절하여 보다 강력한 재귀반사 신호를 유도할 수 있을 뿐만 아니라 광학 프로브(120)들 중 상기 앰플리콘과 결합하지 않은 광학 프로브(120)를 외부 자기장을 이용하여 용이하게 분리할 수 있다.In one embodiment of the present invention, as shown in FIG. 4, the optical probe 120 is disposed between the total reflection induction layer 122 and the modifier layer 123, and the magnetic layer 124 formed of a magnetic material. ) may further be included. The magnetic layer 124 may be formed of a magnetic material such as iron (Fe), nickel (Ni), manganese (Mn), or a sintered body or oxide thereof. When the optical probe 120 further includes the magnetic layer 124, a stronger retroreflection signal can be induced by adjusting the orientation of the optical probe 120 by applying a magnetic field from the outside. Among the optical probes 120 that are not bound to the amplicon, the optical probe 120 can be easily separated using an external magnetic field.
상기 제4 단계(S140)에 있어서, 상기 광학 프로브(120)를 상기 앰플리콘(10)에 결합시킨 이후, 상기 센싱칩(110)의 상부에 배치된 광원(130)을 통해 상기 광학 프로브(120)에 광을 조사할 수 있다. 상기 광원(130)으로는 적외선, 가시광선, 자외선에 속하는 다양한 파장의 광이 혼합된 광을 생성하는 광원이 사용되거나 특정 파장의 단색광을 생성하는 광원이 제한 없이 사용될 수 있다.In the fourth step (S140), after the optical probe 120 is coupled to the amplicon 10, the optical probe 120 is illuminated through the light source 130 disposed on the upper part of the sensing chip 110. ) can be irradiated with light. As the light source 130, a light source that generates light mixed with light of various wavelengths belonging to infrared light, visible light, and ultraviolet light may be used, or a light source that generates monochromatic light of a specific wavelength may be used without limitation.
일 실시예에 있어서, 상기 센싱칩(110)으로부터 거울 반사된 광의 영향을 제거하기 위하여, 상기 광원(130)은 상기 기판(111) 표면의 법선에 대해 약 5 내지 60°경사진 방향으로 광을 조사할 수 있다. In one embodiment, in order to eliminate the influence of light mirror-reflected from the sensing chip 110, the light source 130 emits light in a direction inclined at about 5 to 60° with respect to the normal line of the surface of the substrate 111. can be investigated.
상기 제5 단계(S150)에 있어서, 상기 광학 프로브(120)에 의해 재귀반사된 광은 수광장치(140)에 의해 감지되어 분석될 수 있다. 상기 수광장치(140)는 상기 광원(130)와 인접하도록 상기 센싱칩(110) 상부에 배치되고, 상기 광학 프로브(110)에 의해 재귀반사된 광을 수용하여 상기 타겟 앰플리콘(10)의 유무, 농도 등에 대한 정보를 분석할 수 있고, 이러한 정보를 기초로 타겟 핵산 분자에 대한 정량 정보를 생성할 수 있다. In the fifth step (S150), the light retroreflected by the optical probe 120 may be detected and analyzed by the light receiving device 140. The light receiving device 140 is disposed on the sensing chip 110 adjacent to the light source 130, and receives light retroreflected by the optical probe 110 to detect the presence or absence of the target amplicon 10. , concentration, etc. can be analyzed, and quantitative information about the target nucleic acid molecule can be generated based on this information.
상기 재귀반사된 광을 수용하여 상기 타겟 앰플리콘(10)에 대한 정보를 분석할 수 있다면, 상기 수광장치(140)의 구성은 특별히 제한되지 않는다. 일 실시예로, 상기 수광장치(140)는 상기 재귀반사된 광 신호를 이미지화하는 화상 생성부 및 상기 화상 생성부에 의해 생성된 화상 정보를 분석하는 화상 분석부를 포함할 수 있다. 다른 실시예로, 상기 수광장치(140)는 상기 광원(130)으로부터 상기 광학 프로브(120)에 입사하는 입사광과 상기 광학 프로브(120)로부터 재귀반사된 광을 분할하는 광분할부, 상기 광분할부에 의해 분할된 광 신호를 집중하고 확대 할 수 있는 렌즈, 확대된 광신호를 수신하여 이미지화하는 화상 생성부 및 상기 화상 생성부에 의해 생성된 화상 정보를 분석하는 화상 분석부를 포함할 수 있다.The configuration of the light receiving device 140 is not particularly limited as long as it can receive the retroreflected light and analyze information about the target amplicon 10. In one embodiment, the light receiving device 140 may include an image generator that images the retroreflected optical signal and an image analysis unit that analyzes image information generated by the image generator. In another embodiment, the light receiving device 140 includes a light splitting unit that splits the incident light incident on the optical probe 120 from the light source 130 and the light retroreflected from the optical probe 120, and the light splitting unit It may include a lens capable of focusing and enlarging the divided optical signal, an image generator that receives the magnified optical signal and turns it into an image, and an image analysis unit that analyzes the image information generated by the image generator.
한편, 상기 수광장치(140)가 상기 광분할부, 상기 화상 생성부 및 상기 화상 분석부를 포함하는 경우, 상기 광원(130)은 상기 기판(111) 표면의 법선에 대해 약 5 내지 60°경사진 방향으로 광을 조사하도록 배치될 수 있고, 상기 광 분할부 역시 상기 기판(111) 표면의 법선에 대해 일정한 각도만큼 경사지게 배치되어 상기 광분할부에서 발생하는 광의 거울 반사 영향을 최소화할 수 있다. Meanwhile, when the light receiving device 140 includes the light splitting unit, the image generating unit, and the image analyzing unit, the light source 130 is inclined in a direction inclined by about 5 to 60° with respect to the normal line of the surface of the substrate 111. The light splitter can also be arranged to be inclined at a certain angle with respect to the normal line of the surface of the substrate 111 to minimize the effect of mirror reflection of light generated from the light splitter.
일 실시예로, 상기 수광 장치(140)는 상기 화상 생성부에 의해 생성된 이미지로부터 재귀반사된 광의 의해 식별되는 재귀반사 입자의 수를 계수함으로써, 상기 타겟 앰플리콘의 정량 정보를 생성할 수 있다. In one embodiment, the light receiving device 140 may generate quantitative information of the target amplicon by counting the number of retroreflective particles identified by light retroreflected from the image generated by the image generator. .
또 다른 실시예로, 상기 수광장치(140)는 상기 재귀반사된 광을 직접 확인할 수 있는 현미경을 포함할 수 있다. In another embodiment, the light receiving device 140 may include a microscope that can directly check the retroreflected light.
도 6은 본 발명의 다른 실시예에 따른 분자 진단 방법을 설명하기 위한 순서도이고, 도 7은 본 발명의 다른 실시예에 따른 분자 진단 방법을 설명하기 위한 모식도이다. 본 실시예에 따른 분자 진단 방법은 서로 다른 복수의 타겟 핵산 분자 시퀀스에 대한 정량 정보를 동시에 분석할 수 있고, 복수의 타겟 핵산 분자 시퀀스 각각의 정량 정보를 분석하는 단계는 도 1 내지 도 5를 참조하여 설명한 분자 진단 방법과 동일 또는 유사하므로, 이하에서는 양 방법의 차이점을 중심으로 설명하고, 중복된 상세한 설명은 생략한다.Figure 6 is a flow chart for explaining a molecular diagnosis method according to another embodiment of the present invention, and Figure 7 is a schematic diagram for explaining a molecular diagnosis method according to another embodiment of the present invention. The molecular diagnosis method according to this embodiment can simultaneously analyze quantitative information on a plurality of different target nucleic acid molecule sequences, and the steps of analyzing quantitative information on each of a plurality of target nucleic acid molecule sequences are described in FIGS. 1 to 5. Since it is the same or similar to the molecular diagnosis method described above, the following description will focus on the differences between the two methods, and redundant detailed description will be omitted.
도 2 내지 도 5와 함께, 도 6 및 도 7을 참조하면, 본 발명의 다른 실시예에 따른 분자 진단 방법은, 둘 이상의 서로 다른 타겟 핵산 분자 시퀀스를 증폭하여 둘 이상의 서로 다른 제1 소분자 화합물들 중 하나가 말단에 수식된 제1 가닥과 서로 동일한 제2 소분자 화합물이 말단에 수식된 제2 가닥으로 각각 이루어진 둘 이상의 서로 다른 이중가닥 앰플리콘(amplicon)(10a, 10b, 10c)을 형성하는 제1 단계(S210); 센싱칩(210)의 기판(211)에 고정되어 있고, 상기 서로 다른 제1 소분자 화합물과 각각 선택적으로 반응하는 서로 다른 제1 반응물질들(212a, 212b, 212c)에 상기 둘 이상의 이중가닥 앰플리콘들(10a, 10b, 10c)을 각각 반응시키는 제2 단계(S220); 상기 제1 반응물질들(212a, 212b, 212c)과 각각 반응한 상기 둘 이상의 앰플리콘(10a, 10b, 10c)의 제2 소분자 화합물에 이와 선택적으로 반응하는 제2 반응물질(125)이 표면에 수식된 광학 프로브(120)를 반응시키는 제3 단계(S230); 상기 광학 프로브(120)에 광을 조사하는 제4 단계(S240); 및 상기 광학 프로브(120)로부터 재귀반사된 광을 감지하여 분석하는 제5 단계(S250);를 포함할 수 있다. Referring to FIGS. 2 to 5 and to FIGS. 6 and 7, the molecular diagnostic method according to another embodiment of the present invention amplifies two or more different target nucleic acid molecule sequences to produce two or more different first small molecule compounds. A second small molecule compound that forms two or more different double-stranded amplicons (10a, 10b, 10c), each consisting of a first strand modified at the end and a second strand modified at the end, one of which is identical to the first strand modified at the end. Step 1 (S210); The two or more double-stranded amplicons are fixed to the substrate 211 of the sensing chip 210 and each react selectively with the different first small molecule compounds. A second step (S220) of reacting the elements 10a, 10b, and 10c, respectively; A second reactant 125 that selectively reacts with the second small molecule compound of the two or more amplicons 10a, 10b, and 10c that reacted with the first reactants 212a, 212b, and 212c, respectively, is placed on the surface. A third step (S230) of reacting the modified optical probe 120; A fourth step (S240) of radiating light to the optical probe 120; and a fifth step (S250) of detecting and analyzing the light retroreflected from the optical probe 120.
상기 제1 단계(S210)에 있어서, 상기 둘 이상의 서로 다른 타겟 핵산 분자 시퀀스는 동일한 바이러스 또는 박테리아의 서로 다른 핵산 시퀀스일 수도 있고, 서로 다른 바이러스 또는 박테리아의 핵산 시퀀스일 수도 있다. 이하 설명의 편의를 위해, 도 5에 도시된 바와 같이, 상기 둘 이상의 서로 다른 타겟 핵산 분자 시퀀스가 제1 핵산 분자 시퀀스, 제2 핵산 분자 시퀀스 및 제3 핵산 분자 시퀀스를 포함하는 경우를 예로 들어 설명한다. In the first step (S210), the two or more different target nucleic acid molecule sequences may be different nucleic acid sequences of the same virus or bacteria, or may be nucleic acid sequences of different viruses or bacteria. For convenience of explanation below, as shown in FIG. 5, the case where the two or more different target nucleic acid molecule sequences include a first nucleic acid molecule sequence, a second nucleic acid molecule sequence, and a third nucleic acid molecule sequence will be described as an example. do.
상기 제1 내지 제3 핵산 분자 시퀀스 각각을 앞에서 설명한 4개의 코어 프라이머 그리고 상기 제1 및 제2 소분자 화합물이 각각 수식된 2개의 루프 프라이머를 이용한 LAMP(Loop-mediated isothermal amplification) 방법을 통해 증폭함으로써 제1 내지 제3 이중가닥 앰플리콘(10a, 10b, 10c)을 생성할 수 있다. 일 실시예로, 상기 제1 핵산 분자 시퀀스는 이에 대응되는 염기서열을 갖는 4개의 코어 프라이머 그리고 제1-1 소분자 화합물 및 제2 소분자 화합물이 각각 말단에 수식된 2개의 루프 프라이머를 이용한 LAMP 방법을 통해 증폭될 수 있고, 이에 의해 상기 제1-1 소분자 화합물이 말단에 수식된 제1 가닥 및 상기 제2 소분자 화합물이 말단에 수식된 제2 가닥으로 이루어진 상기 제1 이중가닥 앰플리콘(10a)이 생성될 수 있다. 그리고 상기 제2 핵산 분자 시퀀스는 이에 대응되는 염기서열을 갖는 4개의 코어 프라이머 그리고 제1-2 소분자 화합물 및 제2 소분자 화합물이 각각 말단에 수식된 2개의 루프 프라이머를 이용한 LAMP 방법을 통해 증폭될 수 있고, 이에 의해 상기 제1-2 소분자 화합물이 말단에 수식된 제1 가닥 및 상기 제2 소분자 화합물이 말단에 수식된 제2 가닥으로 이루어진 상기 제2 이중가닥 앰플리콘(10b)이 생성될 수 있다. 또한, 상기 제3 핵산 분자 시퀀스는 이에 대응되는 염기서열을 갖는 4개의 코어 프라이머 그리고 제1-3 소분자 화합물 및 제2 소분자 화합물이 각각 말단에 수식된 2개의 루프 프라이머를 이용한 LAMP 방법을 통해 증폭될 수 있고, 이에 의해 상기 제1-3 소분자 화합물이 말단에 수식된 제1 가닥 및 상기 제2 소분자 화합물이 말단에 수식된 제2 가닥으로 이루어진 상기 제3 이중가닥 앰플리콘(10c)이 생성될 수 있다. 이 때, 상기 제1-1 내지 1-3 소분자 화합물들은 서로 다를 화합물일 수 있다. Each of the first to third nucleic acid molecule sequences is amplified through the LAMP (Loop-mediated isothermal amplification) method using the four core primers described above and two loop primers modified with the first and second small molecule compounds, respectively. First to third double-stranded amplicons (10a, 10b, 10c) can be generated. In one embodiment, the first nucleic acid molecule sequence is a LAMP method using four core primers having corresponding base sequences and two loop primers each having a 1-1 small molecule compound and a second small molecule compound modified at the ends. The first double-stranded amplicon (10a) is composed of a first strand whose ends are modified with the 1-1 small molecule compound and a second strand whose ends are modified with the second small molecule compound. can be created. And the second nucleic acid molecule sequence can be amplified through the LAMP method using four core primers with corresponding base sequences and two loop primers each having the first and second small molecule compounds and the second small molecule compound modified at the ends. Thereby, the second double-stranded amplicon (10b) consisting of a first strand whose ends are modified with the 1-2 small molecule compound and a second strand whose ends are modified with the second small molecule compound can be generated. . In addition, the third nucleic acid molecule sequence can be amplified through the LAMP method using four core primers with corresponding base sequences and two loop primers each of which has a 1-3 small molecule compound and a 2nd small molecule compound modified at the ends. This can produce the third double-stranded amplicon (10c), which consists of a first strand whose ends are modified with the 1-3 small molecule compound and a second strand whose ends are modified with the second small molecule compound. there is. At this time, the 1-1 to 1-3 small molecule compounds may be different compounds.
상기 제1-1 내지 1-3 소분자 화합물과 상기 제2 소분자 화합물은 서로 다른 화합물로서, 이들 각각은 FITC(fluorescein isothiocyanate), DIG(Digoxigenin), DNP(Dinitrophenyl), 아크릴아마이드(Acrylamide), 알렉사플루오르(Alexa Fluor), 비오틴(Biotin), 비오틴-TEG(Biotin-TEG), 콜레스테롤(Cholesterol), 시아나이드(Cyanine), 데스티오비오틴-TEG(Desthiobiotin-TEG), DNP-TEG, GalNac(N-Acetylgalactosamine), 이온신(Inosine), PEG-2000, 퓨로마이신(Puromycine), 로다민-6G(Rhodamine-6G), 텍사스레드(Texas red, C31H29N2O6S2Cl), 티미딘글리콜(Thymidine Glycol), FAM(Fluorescein amidite), Hex(Hexachlorofluorescein), ROX(Carboxy-X-Rhodamine), TAMRA(Tetramethylrhodamine-5-maleimide) 등으로 이루어진 그룹으로부터 선택된 하나를 포함할 수 있다. The 1-1 to 1-3 small molecule compounds and the second small molecule compounds are different compounds, and each of them is FITC (fluorescein isothiocyanate), DIG (Digoxigenin), DNP (Dinitrophenyl), acrylamide, and Alexa Fluor. (Alexa Fluor), Biotin, Biotin-TEG, Cholesterol, Cyanine, Desthiobiotin-TEG, DNP-TEG, GalNac (N-Acetylgalactosamine ), Inosine, PEG-2000, Puromycin, Rhodamine-6G, Texas red (C31H29N2O6S2Cl), Thymidine Glycol, FAM (Fluorescein amidite) , Hex (Hexachlorofluorescein), ROX (Carboxy-X-Rhodamine), TAMRA (Tetramethylrhodamine-5-maleimide), etc.
상기 제2 단계(S220)에 있어서, 상기 센싱칩(210)은 상기 둘 이상의 서로 다른 타겟 핵산 분자 시퀀스에 각각 대응되는 둘 이상의 센싱 영역들을 구비할 수 있고, 상기 센싱 영역들에 대응되는 상기 기판(211)의 표면들에는 상기 복수의 타겟 앰플리콘들(10a, 10b, 10c)의 일 말단에 각각 수식된 서로 다른 제1 소분자 화합물들에 각각 선택적으로 반응할 수 있는 둘 이상의 서로 다른 제1 반응물질들(212a, 212b, 212c)이 각각 결합되어 있을 수 있다. 상기 센싱 영역들은 서로 공간적으로 이격되게 형성될 수 있고, 각각의 센싱 영역에 각각 수식된 상기 제1 반응물질들(212a, 212b, 212c)의 밀도는 서로 동일할 수 있다. 일 실시예에 있어서, 상기 센싱 영역들은 도 5에 도시된 바와 같이 단일 유체 채널 내에서 서로 이격되게 형성될 수 있다. 이와 다른 실시예에 있어서, 상기 센싱 영역들 각각은 서로 다른 유채 채널들 내에 각각 형성될 수 있다. In the second step (S220), the sensing chip 210 may be provided with two or more sensing regions respectively corresponding to the two or more different target nucleic acid molecule sequences, and the substrate corresponding to the sensing regions ( On the surfaces of 211), two or more different first reactants each capable of selectively reacting with different first small molecule compounds modified at one end of the plurality of target amplicons 10a, 10b, and 10c, respectively. The elements 212a, 212b, and 212c may each be combined. The sensing regions may be formed to be spatially spaced from each other, and the densities of the first reactants 212a, 212b, and 212c modified in each sensing region may be the same. In one embodiment, the sensing areas may be formed to be spaced apart from each other within a single fluid channel as shown in FIG. 5 . In another embodiment, each of the sensing areas may be formed in different oil channels.
일 실시예에 있어서, 일 말단에 상기 제1-1 내지 1-3 소분자 화합물들이 각각 수식되고 다른 말단에 상기 제2 소분자 화합물이 수식된 제1 내지 제3 앰플리콘(10a, 10b, 10c)을 포함하는 시료로부터 상기 제1 내지 제3 앰플리콘(10a, 10b, 10c)을 동시에 정량분석하고자 하는 경우, 상기 센싱칩(210)의 제1 센싱 영역에는 상기 제1-1 소분자 화합물과 선택적으로 반응할 수 있는 제1-1 반응물질(212a)이 결합되어 있을 수 있고, 상기 센싱칩(210)의 제2 센싱 영역에는 상기 제1-2 소분자 화합물과 선택적으로 반응할 수 있는 제1-2 반응물질(212b)이 결합되어 있을 수 있으며, 상기 센싱칩(210)의 제3 센싱 영역에는 상기 제1-3 소분자 화합물과 선택적으로 반응할 수 있는 제1-3 반응물질(212c)이 결합되어 있을 수 있다. 그리고 상기 제1 내지 제3 센싱 영역에 상기 제1 내지 제3 이중가닥 앰플리콘(10a, 10b, 10c)을 함유하는 시료를 주입하여 이들을 반응시키는 경우, 상기 제1-1 소분자 화합물과 상기 제1-1 반응물질(212a) 사이의 선택적 반응에 의해 상기 제1 앰플리콘(10a)은 상기 제1 센싱 영역에 고정될 수 있고, 상기 제1-2 소분자 화합물과 상기 제1-2 반응물질(212b) 사이의 선택적 반응에 의해 상기 제2 앰플리콘(10b)은 상기 제2 센싱 영역에 고정될 수 있으며, 상기 제1-3 소분자 화합물과 상기 제1-3 반응물질(212c) 사이의 선택적 반응에 의해 상기 제3 앰플리콘(10c)은 상기 제3 센싱 영역에 고정될 수 있다. In one embodiment, first to third amplicons 10a, 10b, and 10c are each modified with the 1-1 to 1-3 small molecule compounds at one end and the second small molecule compound at the other end. When attempting to simultaneously quantitatively analyze the first to third amplicons 10a, 10b, and 10c from a sample containing the first to third amplicons 10a, 10b, and 10c, the first sensing region of the sensing chip 210 selectively reacts with the 1-1 small molecule compound. A 1-1 reactant (212a) capable of reacting selectively with the 1-2 small molecule compound may be bound to the second sensing region of the sensing chip 210. A material 212b may be bound, and a 1-3 reactant 212c capable of selectively reacting with the 1-3 small molecule compound may be bound to the third sensing region of the sensing chip 210. You can. And when a sample containing the first to third double-stranded amplicons 10a, 10b, and 10c is injected into the first to third sensing regions to react, the 1-1 small molecule compound and the first -1 The first amplicon (10a) can be fixed to the first sensing region by a selective reaction between the reactant (212a), and the 1-2 small molecule compound and the 1-2 reactant (212b) ) The second amplicon (10b) can be fixed to the second sensing region by a selective reaction between the 1-3 small molecule compound and the 1-3 reactant (212c). The third amplicon 10c can be fixed to the third sensing region.
상기 제3 단계(S230)에 있어서, 상기 광학 프로브(120)는 도 4에 도시된 바와 같이, 투명한 코어 입자(121), 상기 코어 입자(121)의 일부를 피복하는 전반사 유도층(122), 상기 전반사 유도층(122) 상에 형성된 수식층(123) 및 상기 수식층(123)에 직접 또는 간접적으로 결합된 제2 반응물질(125)을 포함할 수 있다. 상기 광학 프로브(120)를 상기 센싱칩(110)의 센싱영역들에 제공하는 경우, 상기 제1 내지 제3 앰플리콘들(10a, 10b, 10c)의 상기 제2 소분자 화합물과 상기 제2 반응물질(125) 사이의 선택적인 반응에 의해 상기 광학 프로브(120)는 상기 센싱영역들에 결합된 상기 제1 내지 제3 앰플리콘들(10a, 10b, 10c)과 결합할 수 있다. In the third step (S230), as shown in FIG. 4, the optical probe 120 includes transparent core particles 121, a total reflection induction layer 122 covering a portion of the core particles 121, and It may include a modifier layer 123 formed on the total reflection inducing layer 122 and a second reactant 125 directly or indirectly bonded to the modifier layer 123. When providing the optical probe 120 to the sensing areas of the sensing chip 110, the second small molecule compound and the second reactant of the first to third amplicons 10a, 10b, and 10c Through a selective reaction between (125), the optical probe 120 can bind to the first to third amplicons 10a, 10b, and 10c bound to the sensing regions.
일 실시예에 있어서, 상기 제1-1 소분자 화합물과 상기 제1-1 반응물질(212a) 사이의 선택적 반응, 상기 제1-2 소분자 화합물과 상기 제1-2 반응물질(121b) 사이의 선택적 반응 및 상기 제1-3 소분자 화합물과 상기 제1-3 반응물질(121c) 사이의 선택적 반응에 의해 상기 제1 내지 제3 센싱 영역에 상기 제1 내지 제3 앰플리콘들(10a, 10b, 10c)이 각각 고정된 상태에서, 상기 제1 내지 제3 센싱 영역에 상기 광학 프로브(120)를 투입하는 경우, 상기 광학 프로브(120)는 상기 제2 소분자 화합물과 상기 제2 반응물질(125) 사이의 선택적인 반응에 의해 상기 제1 내지 제3 앰플리콘들(10a, 10b, 10c)에 결합될 수 있다. In one embodiment, a selective reaction between the 1-1 small molecule compound and the 1-1 reactant (212a), a selective reaction between the 1-2 small molecule compound and the 1-2 reactant (121b) The first to third amplicons (10a, 10b, 10c) are formed in the first to third sensing regions by reaction and selective reaction between the first to third small molecule compounds and the first to third reactants (121c). ) are each fixed, when the optical probe 120 is inserted into the first to third sensing regions, the optical probe 120 is between the second small molecule compound and the second reactant 125. It can be bound to the first to third amplicons 10a, 10b, and 10c through a selective reaction.
상기 제4 단계(S240)에 있어서, 상기 광학 프로브(120)를 상기 복수의 앰플리콘(10a, 10b, 10c)에 결합시킨 이후, 상기 센싱칩(210)의 상부에 배치된 광원(130)을 통해 상기 광학 프로브(120)에 광을 조사할 수 있다. 상기 광원(130)으로는 적외선, 가시광선, 자외선에 속하는 다양한 파장의 광이 혼합된 광을 생성하는 광원이 사용되거나 특정 파장의 단색광을 생성하는 광원이 제한 없이 사용될 수 있다.In the fourth step (S240), after the optical probe 120 is coupled to the plurality of amplicons 10a, 10b, and 10c, the light source 130 disposed on the upper part of the sensing chip 210 is used. Light can be irradiated to the optical probe 120 through. As the light source 130, a light source that generates light mixed with light of various wavelengths belonging to infrared light, visible light, and ultraviolet light may be used, or a light source that generates monochromatic light of a specific wavelength may be used without limitation.
상기 제5 단계(250)에 있어서, 상기 복수의 센싱 영영들에 결합된 상기 광학 프로브(120)로부터 재귀반사된 광을 감지하여, 상기 복수의 센싱 영역들에 각각 고정된 복수의 앰플리콘들(10a, 10b, 10c) 각각의 유무, 농도 등에 대한 정량 정보를 동시에 분석할 수 있고, 이러한 정보를 기초로 둘 이상의 서로 다른 타겟 핵산 분자 시퀀스에 대한 정량 정보를 동시에 분석할 수 있다. In the fifth step 250, light retroreflected from the optical probe 120 coupled to the plurality of sensing regions is detected, and a plurality of amplicons respectively fixed to the plurality of sensing regions ( 10a, 10b, 10c) Quantitative information about the presence or absence, concentration, etc. of each can be analyzed simultaneously, and based on this information, quantitative information about two or more different target nucleic acid molecule sequences can be analyzed simultaneously.
본 발명의 분자 진단 방법에 따르면, 재귀반사 광을 신호 원리로 적용하므로, 극히 단순화된 광학 신호분석 장비를 이용하여 고감도의 타겟 핵산 검출 및 정량 분석이 가능하다. 또한, 코어 프라이머들 및 루프 프라이머들을 함께 이용하는 LAMP 방법을 통해 타겟 핵산 분자를 증폭하여 획일화된 형태의 앰플리콘을 생성하고, 이에 대한 분석을 수행하므로, 분석 절차를 상당히 단순화할 수 있을 뿐만 아니라 분석 정확도를 향상시킬 수 있다. According to the molecular diagnosis method of the present invention, retroreflected light is applied as a signal principle, making it possible to detect and quantitatively analyze target nucleic acids with high sensitivity using extremely simplified optical signal analysis equipment. In addition, the LAMP method, which uses core primers and loop primers together, amplifies the target nucleic acid molecule to generate a uniform amplicon and performs analysis on it, which not only greatly simplifies the analysis procedure but also enables the analysis. Accuracy can be improved.
이하에서는 본 발명의 실시예에 대해 상술한다. 다만, 하기의 실시예는 본 발명의 몇 가지 실시 형태에 대한 것으로서, 본 발명이 하기의 실시예에 한정되는 것으로 해석되어서는 아니된다. Hereinafter, embodiments of the present invention will be described in detail. However, the following examples are for several embodiments of the present invention, and the present invention should not be construed as being limited to the following examples.
[실시예 1] [Example 1]
개량 루프 프라이머가 도입된 LAMP 시스템을 이용한 표적 유전자 증폭Target gene amplification using the LAMP system incorporating improved loop primers
감염성 미생물인 Salmonella Typhimurium의 invA 유전자를 표적으로 하는 하기 표 1에 기재된 염기 서열의 코어 프라이머 및 루프 프라이머를 설계하였다. Core primers and loop primers with the base sequences listed in Table 1 below targeting the invA gene of Salmonella Typhimurium, an infectious microorganism, were designed.
프라이머primer 염기서열base sequence
FIP 코어프라이머FIP core primer 5’CCGGCCTTCAAATCGGCATCAAGCCCGATTTTCTCTGGATGG 3’5’CCGGCCTTCAAATCGGCATCAAGCCCGATTTTCTCTGGATGG 3’
BIP 코어프라이머BIP Core Primer 5’GAACGGCGAAGCGTACTGGACATCGCACCGTCAAAGGAA 3’5’GAACGGCGAAGCGTACTGGACATCGCACCGTCAAAGGAA 3’
F3 코어프라이머F3 Core Primer 5’GAACGTGTCGCGGAAGTC 3’5’GAACGTGTCGCGGAAGTC 3’
B3 코어프라이머B3 Core Primer 5’CGGCAATAGCGTCACCTT 3’5’CGGCAATAGCGTCACCTT 3’
LF_FITC 루프프라이머LF_FITC Loop Primer 5’FITC-TATGCCCGGTAAACAGATGAGTA 3’5’FITC-TATGCCCGGTAAACAGATGAGTA 3’
LB_biotin 루프 프라이머LB_biotin loop primer 5’biotin-CCGTAAAGCTGGCTTTCCCTT 3’5’biotin-CCGTAAAGCTGGCTTTCCCTT 3’
개량된 루프 프라이머를 포함한 6개의 프라이머(FIP, BIP, F3, B3, LF_FITC, LB_biotin)와 표적 병원균인 Salmonella로부터 용리한 genomic DNA (gDNA), dNTP 및 magnesium sulfate가 포함된 reaction buffer, Bst DNA polymerase를 혼합해 반응 용액을 형성한 후, 60℃에서 65℃ 사이의 온도 조건에서 일정 시간 동안 유지해루프 매개 등온 증폭 반응이 유도하여, 상기 Salmonella로부터 용리한 genomic DNA (gDNA)에 대한 증폭 반응을 수행하였다. 구체적으로, Salmonella가 없는 non-template sample (NTC, 0 CFU)를 포함해서 10 CFU, 102 CFU, 103 CFU, 104 CFU, 105 CFU 및 106 CFU의 다양한 농도의 Salmonella sample을 이용해서 개량 LAMP법을 수행하였다. Six primers (FIP, BIP, F3, B3, LF_FITC, LB_biotin) including an improved loop primer, genomic DNA (gDNA) eluted from the target pathogen Salmonella, a reaction buffer containing dNTP and magnesium sulfate, and Bst DNA polymerase. After mixing to form a reaction solution, it was maintained for a certain period of time at a temperature between 60°C and 65°C to induce a loop-mediated isothermal amplification reaction, thereby performing an amplification reaction on the genomic DNA (gDNA) eluted from Salmonella. Specifically, using Salmonella samples with various concentrations of 10 CFU, 10 2 CFU, 10 3 CFU, 10 4 CFU, 10 5 CFU and 10 6 CFU, including non-template sample without Salmonella (NTC, 0 CFU). The modified LAMP method was performed.
재귀반사를 채용한 친화력 기반 광학 분자진단 시스템을 이용한 감염미생물 유전자의 정량 분석 Quantitative analysis of infectious microbial genes using an affinity-based optical molecular diagnostic system employing retroreflection
개량 LAMP법에 의해 생성된 산물인 타겟 앰플리콘을 검출하기 위해, 타겟 앰플리콘에 대한 특이적 항체가 고정된 유리 기반의 센싱 기판과 streptavidin이 수식된 재귀반사 입자를 이용하였다. 이때, 타겟 앰플리콘을 검출하기 위해, 센싱 기판에 LAMP 증폭 산물인 타겟 앰플리콘을 반응시킨 후 세척하여 미반응물을 제거하였고, streptavidin이 수식된 재귀반사 입자와 반응시킨 후 세척하여 미반응물을 제거하였다. To detect the target amplicon, which is a product produced by the improved LAMP method, a glass-based sensing substrate on which a specific antibody for the target amplicon was immobilized and a retroreflective particle modified with streptavidin were used. At this time, in order to detect the target amplicon, the target amplicon, which is a LAMP amplification product, was reacted with the sensing substrate and then washed to remove unreacted substances. After reacting with retroreflective particles modified with streptavidin, unreacted substances were removed by washing. .
이어서, 해당 센싱 기판들을 0.065의 개구를 갖는 대물렌즈가 연결된 디지털 카메라와 백색 LED광원을 사용하여 분석, 화상 정보를 수득 하였다. Subsequently, the corresponding sensing substrates were analyzed and image information was obtained using a digital camera connected to an objective lens with an aperture of 0.065 and a white LED light source.
[실시예 2-1] [Example 2-1]
우유에 Salmonella를 접종 및 배양한 후 원심분리하여 우유로부터 Salmonella를 수득하였고, 이어서, NaOH를 넣고 열을 가해 세포 용균 처리한 후 용균 처리된 샘플을 템플릿으로 이용하여 개량 LAMP 법을 진행하여, 다양한 농도의 샘플을 제작하였다. After inoculating and culturing Salmonella in milk, Salmonella was obtained from the milk by centrifugation. Next, NaOH was added and heat was applied to lyse the cells, and the lysed sample was used as a template to perform an improved LAMP method at various concentrations. A sample was produced.
이어서, 타겟 앰플리콘에 대한 특이적 항체가 고정된 유리 기반의 센싱 기판에 상기 샘플을 반응시킨 후 세척하고, 이어서 streptavidin이 수식된 재귀반사 입자를 반응시킨 후 세척하였다. Next, the sample was reacted on a glass-based sensing substrate on which a specific antibody for the target amplicon was immobilized and washed, and then retroreflective particles modified with streptavidin were reacted and washed.
이어서, 상기 센싱 기판들을 0.065의 개구를 갖는 대물렌즈가 연결된 디지털 카메라와 백색 LED광원을 사용하여 분석, 화상 정보를 수득하여, Salmonella 균의 농도를 산출하였다. Next, the sensing substrates were analyzed using a digital camera connected to an objective lens with an aperture of 0.065 and a white LED light source, image information was obtained, and the concentration of Salmonella bacteria was calculated.
[실시예 2-2] [Example 2-2]
닭고기에 Salmonella를 접종 및 배양한 후 stomacher를 이용해 균질화하고 원심분리하여 닭고기로부터 Salmonella를 수득하였고, 이어서, NaOH를 넣고 열을 가해 세포 용균 처리한 후 용균 처리된 샘플을 템플릿으로 이용하여 개량 LAMP 법을 진행하여, 다양한 농도의 샘플을 제작하였다. After inoculating and culturing Salmonella in chicken, Salmonella was obtained from chicken by homogenizing and centrifuging using a stomacher. Next, NaOH was added and heat was applied to lyse the cells, and the lysed sample was used as a template to perform an improved LAMP method. Proceeding, samples of various concentrations were produced.
이어서, 타겟 앰플리콘에 대한 특이적 항체가 고정된 유리 기반의 센싱 기판에 상기 샘플을 반응시킨 후 세척하고, 이어서 streptavidin이 수식된 재귀반사 입자를 반응시킨 후 세척하였다. Next, the sample was reacted on a glass-based sensing substrate on which a specific antibody for the target amplicon was immobilized and washed, and then retroreflective particles modified with streptavidin were reacted and washed.
이어서, 상기 센싱 기판들을 0.065의 개구를 갖는 대물렌즈가 연결된 디지털 카메라와 백색 LED광원을 사용하여 분석, 화상 정보를 수득하여, Salmonella 균의 농도를 산출하였다. Next, the sensing substrates were analyzed using a digital camera connected to an objective lens with an aperture of 0.065 and a white LED light source, image information was obtained, and the concentration of Salmonella bacteria was calculated.
[실험예 1] [Experimental Example 1]
도 8은 실시예에 따른 LAMP 증폭 산물에 대한 겔 전기영동 결과를 나타내는 이미지이다. Figure 8 is an image showing the gel electrophoresis results for the LAMP amplification product according to the example.
도 8을 참조하면, 표적 병원균의 gDNA가 있는 sample에서만 증폭 반응이 일어나 개량된 루프 프라이머를 포함한 LAMP 시스템을 이용하는 경우, 성공적으로 표적 병원균의 gDNA를 증폭할 수 있음을 확인할 수 있다. Referring to Figure 8, it can be seen that the amplification reaction occurs only in samples containing the gDNA of the target pathogen, so that when using the LAMP system including an improved loop primer, the gDNA of the target pathogen can be successfully amplified.
도 9a는 다양한 농도의 Salmonella sample을 센싱 기판에 반응시킨 후 수득한 이미지이고, 도 9b는 도 9a의 이미지로부터 분석된 Salmonella의 농도를 표시하는 그래프이다.Figure 9a is an image obtained after reacting Salmonella samples of various concentrations to a sensing substrate, and Figure 9b is a graph showing the concentration of Salmonella analyzed from the image of Figure 9a.
도 9a 및 도 9b를 참조하면, Salmonella의 농도가 증가할수록 센싱 기판에서 관찰되는 재귀반사 입자의 수가 점진적으로 증가하는 것으로 나타났고, Image J 분석 프로그램을 이용해 도 8a의 이미지로부터 재귀반사 입사를 계수하여 이의 농도를 산출한 결과, Salmonella sample의 농도와 극히 유사한 농도 값이 산출되었다. Referring to Figures 9a and 9b, as the concentration of Salmonella increases, the number of retroreflective particles observed on the sensing substrate appears to gradually increase, and retroreflective incidence is counted from the image in Figure 8a using the Image J analysis program. As a result of calculating this concentration, a concentration value extremely similar to that of the Salmonella sample was calculated.
[실험예 2] [Experimental Example 2]
도 10a는 실시예 2-1에 따라 산출된 Salmonella의 농도를 나타내는 그래프이고, 도 10b는 실시예 2-2에 따라 산출된 Salmonella의 농도를 나타내는 그래프이다. Figure 10a is a graph showing the concentration of Salmonella calculated according to Example 2-1, and Figure 10b is a graph showing the concentration of Salmonella calculated according to Example 2-2.
도 10a 및 도 10b를 참조하면, 실제 샘플에서의 Salmonella의 농도와 유하하게 실시예 2-1, 2-2에 따라 산출된 Salmonella의 농도는 선형 그래프의 형태로 나타났고, 검출 민감도 (limit of detection) 역시 10 CFU인 것으로 확인되었다. 따라서, 본 발명의 분자 진단 방법은 실제 오염 식품에 존재하는 미생물을 검출하고 분석하는 데에도 활용할 수 있음을 알 수 있다. Referring to FIGS. 10A and 10B, the concentration of Salmonella calculated according to Examples 2-1 and 2-2, similar to the concentration of Salmonella in the actual sample, was shown in the form of a linear graph, and the detection sensitivity (limit of detection) ) was also confirmed to be 10 CFU. Therefore, it can be seen that the molecular diagnostic method of the present invention can also be used to detect and analyze microorganisms present in actual contaminated food.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the present invention has been described above with reference to preferred embodiments, those skilled in the art can make various modifications and changes to the present invention without departing from the spirit and scope of the present invention as set forth in the following patent claims. You will understand that it is possible.
[부호의 설명][Explanation of symbols]
10: 이중가닥 앰플리콘 110: 센싱칩10: Double-stranded amplicon 110: Sensing chip
120: 광학 프로브 130: 광원120: optical probe 130: light source

Claims (13)

  1. 타겟 핵산 시퀀스를 증폭하여 제1 소분자 화합물이 말단에 수식된 제1 가닥과 제2 소분자 화합물이 말단에 수식된 제2 가닥으로 이루어진 이중가닥 앰플리콘을 형성하는 제1 단계; A first step of amplifying the target nucleic acid sequence to form a double-stranded amplicon consisting of a first strand modified at the end with a first small molecule compound and a second strand modified at the end with a second small molecule compound;
    센싱칩의 기판에 고정되어 있고 상기 제1 소분자 화합물과 선택적으로 반응하는 제1 반응물질에 상기 이중가닥 앰플리콘을 반응시키는 제2 단계; A second step of reacting the double-stranded amplicon with a first reactant fixed to the substrate of the sensing chip and selectively reacting with the first small molecule compound;
    상기 제1 반응물질과 반응한 상기 앰플리콘의 제2 소분자 화합물에 이와 선택적으로 반응하는 제2 반응물질이 표면에 수식된 광학 프로브를 반응시키는 제3 단계; a third step of reacting an optical probe whose surface is modified with a second reactant that selectively reacts with the second small molecule compound of the amplicon reacted with the first reactant;
    상기 광학 프로브에 광을 조사하는 제4 단계; 및 a fourth step of irradiating light to the optical probe; and
    상기 광학 프로브로부터 재귀반사된 광을 분석하여 상기 타겟 핵산 시퀀스의 정량 정보를 산출하는 제5 단계;를 포함하는, 분자 진단 방법.A fifth step of calculating quantitative information of the target nucleic acid sequence by analyzing the light retroreflected from the optical probe.
  2. 제1항에 있어서, According to paragraph 1,
    상기 광학 프로브는 투명한 코어 입자; 상기 코어 입자 표면 중 일부를 피복하고, 360nm 내지 820nm의 가시광선 파장 영역에서 상기 코어 입자보다 굴절률이 작은 물질로 형성된 전반사 유도층; 상기 전반사 유도층 상에 형성된 수식층; 및 상기 수식층에 결합되고, 상기 제2 소분자 화합물과 선택적으로 반응하는 상기 제2 반응물질을 포함하는 것을 특징으로 하는, 분자 진단 방법.The optical probe includes transparent core particles; A total reflection induction layer covering a portion of the surface of the core particle and formed of a material having a lower refractive index than the core particle in the visible light wavelength range of 360 nm to 820 nm; A modifier layer formed on the total reflection inducing layer; and a second reactant that is bound to the modifier layer and selectively reacts with the second small molecule compound.
  3. 제1항에 있어서, According to paragraph 1,
    상기 이중가닥 앰플리콘은 4개의 코어 프라이머 그리고 상기 제1 및 제2 소분자 화합물이 각각 말단에 수식된 2개의 루프 프라이머를 이용한 LAMP(Loop-mediated isothermal amplification) 방법을 통해 상기 타겟 핵산 분자를 증폭함으로써 형성되는 것을 특징으로 하는, 분자 진단 방법.The double-stranded amplicon is formed by amplifying the target nucleic acid molecule through the LAMP (Loop-mediated isothermal amplification) method using four core primers and two loop primers modified at the ends with the first and second small molecule compounds, respectively. A molecular diagnostic method, characterized in that
  4. 제3항에 있어서, According to paragraph 3,
    상기 4개의 코어 프라이머는 상기 타겟 핵산 분자에서 6개의 구역(F1, F2, F3, B1, B2, B3)을 선택하여 조합한 합성한 것으로서, 전방 내부 프라이머(forward inner primer, FIP), 전방 외부 프라이머(forward outer primer, F3), 후방 내부 프라이머(backward inner primer, BIP) 및 후방 외부 프라이머(B3)를 포함하고, The four core primers are synthesized by selecting and combining six regions (F1, F2, F3, B1, B2, B3) from the target nucleic acid molecule, including a forward inner primer (FIP) and a forward outer primer. (forward outer primer, F3), backward inner primer (BIP), and backward outer primer (B3),
    상기 루프 프라이머는 5’말단에 제1 소분자 화합물이 수식된 전방 루프 프라이머(forward loop primer) 및 5’말단에 제2 소분자 화합물이 수식된 후방 루프 프라이머(backward loop primer)를 포함하는 것을 특징으로 하는, 분자 진단 방법.The loop primer is characterized in that it includes a forward loop primer whose 5' end is modified with a first small molecule compound and a backward loop primer whose 5' end is modified with a second small molecule compound. , molecular diagnostic methods.
  5. 제3항에 있어서, According to paragraph 3,
    상기 제1 소분자 화합물과 상기 제2 소분자 화합물은 서로 다른 화합물로서, 이들 각각은 FITC(fluorescein isothiocyanate), DIG(Digoxigenin), DNP(Dinitrophenyl), 아크릴아마이드(Acrylamide), 알렉사플루오르(Alexa Fluor), 비오틴(Biotin), 비오틴-TEG(Biotin-TEG), 콜레스테롤(Cholesterol), 시아나이드(Cyanine), 데스티오비오틴-TEG(Desthiobiotin-TEG), DNP-TEG, GalNac(N-Acetylgalactosamine), 이온신(Inosine), PEG-2000, 퓨로마이신(Puromycine), 로다민-6G(Rhodamine-6G), 텍사스레드(Texas red, C31H29N2O6S2Cl), 티미딘글리콜(Thymidine Glycol), FAM(Fluorescein amidite), Hex(Hexachlorofluorescein), ROX(Carboxy-X-Rhodamine), TAMRA(Tetramethylrhodamine-5-maleimide)으로 이루어진 그룹으로부터 선택된 하나를 포함하는 것을 특징으로 하는, 분자 진단 방법.The first small molecule compound and the second small molecule compound are different compounds, each of which contains FITC (fluorescein isothiocyanate), DIG (Digoxigenin), DNP (Dinitrophenyl), acrylamide, Alexa Fluor, and biotin. (Biotin), Biotin-TEG, Cholesterol, Cyanine, Desthiobiotin-TEG, DNP-TEG, GalNac (N-Acetylgalactosamine), Inosine ), PEG-2000, Puromycin, Rhodamine-6G, Texas red (C31H29N2O6S2Cl), Thymidine Glycol, FAM (Fluorescein amidite), Hex (Hexachlorofluorescein), A molecular diagnostic method comprising one selected from the group consisting of ROX (Carboxy-X-Rhodamine) and TAMRA (Tetramethylrhodamine-5-maleimide).
  6. 제5항에 있어서, According to clause 5,
    상기 제1 소분자 화합물은 FITC, DIG 및 DNP로 이루어진 그룹에서 선택된 하나를 포함하고, The first small molecule compound includes one selected from the group consisting of FITC, DIG, and DNP,
    상기 제1 반응물질은 상기 제1 소분자 화합물에 대한 항체를 포함하는 것을 특징으로 하는, 분자 진단 방법.A molecular diagnostic method, wherein the first reactant includes an antibody against the first small molecule compound.
  7. 제1항에 있어서, According to paragraph 1,
    상기 제4 단계에서 적외선, 가시광선 또는 자외선에 속하는 파장의 광이 혼합된 광을 생성하는 광원 또는 특정 파장의 단색광을 생성하는 광원에서 생성된 광이 상기 광학 프로브에 조사되는 것을 특징으로 하는, 분자 진단 방법.In the fourth step, light generated from a light source that generates light mixed with light of wavelengths belonging to infrared, visible, or ultraviolet rays or a light source that generates monochromatic light of a specific wavelength is irradiated to the optical probe. Molecules, Diagnosis method.
  8. 제7항에 있어서, In clause 7,
    상기 제5 단계에서 상기 광학 프로부터 재귀반사된 광에 대한 이미지를 생성한 후 이로부터 상기 광학 프로브의 수를 계수함으로써 상기 타겟 핵산 시퀀스의 정량 정보를 산출하는 것을 특징으로 하는, 분자 진단 방법.A molecular diagnostic method, characterized in that, in the fifth step, quantitative information of the target nucleic acid sequence is calculated by generating an image of the light retroreflected from the optical probe and then counting the number of the optical probe therefrom.
  9. 둘 이상의 서로 다른 타겟 핵산 분자 시퀀스들를 증폭하여 둘 이상의 서로 다른 제1 소분자 화합물들 중 하나가 말단에 수식된 제1 가닥과 서로 동일한 제2 소분자 화합물이 말단에 수식된 제2 가닥으로 각각 이루어진 둘 이상의 서로 다른 이중가닥 앰플리콘을 형성하는 제1 단계; Two or more different target nucleic acid molecule sequences are amplified to produce at least two different first small molecule compounds each consisting of a first strand modified at the end with one of two or more different first small molecule compounds and a second strand modified at the end with the same second small molecule compound. A first step of forming different double-stranded amplicons;
    센싱칩의 기판에 고정되어 있고, 상기 제1 소분자 화합물들과 각각 선택적으로 반응하는 서로 다른 제1 반응물질들에 상기 앰플리콘들을 각각 반응시키는 제2 단계; A second step of reacting each of the amplicons with different first reactants that are fixed to the substrate of the sensing chip and each selectively reacts with the first small molecule compounds;
    상기 제2 소분자 화합물과 선택적으로 반응하는 제2 반응물질이 표면에 수식된 광학 프로브를 상기 센싱칩에 고정된 앰플리콘들에 반응시키는 제3 단계; A third step of reacting an optical probe whose surface is modified with a second reactant that selectively reacts with the second small molecule compound to the amplicons fixed to the sensing chip;
    상기 광학 프로브에 광을 조사하는 제4 단계; 및 a fourth step of irradiating light to the optical probe; and
    상기 광학 프로브로부터 재귀반사된 광을 분석하여 타겟 핵산 분자 시퀀스들의 정량정보를 산출하는 제5 단계;를 포함하는, 분자 진단 방법.A fifth step of calculating quantitative information of target nucleic acid molecule sequences by analyzing the light retroreflected from the optical probe.
  10. 제8항에 있어서, According to clause 8,
    상기 센싱칩은 공간적으로 이격된 둘 이상의 센싱 영역들을 포함하고,The sensing chip includes two or more spatially spaced sensing areas,
    상기 서로 다른 제1 반응물질들은 상기 센싱 영역들에 각각 수식된 것을 특징으로 하는, 분자 진단 방법.A molecular diagnostic method, characterized in that the different first reactants are each modified in the sensing regions.
  11. 제10항에 있어서, According to clause 10,
    상기 센싱 영역들은 단일 유체 채널 내부에 형성된 것을 특징으로 하는, 분자 진단 방법.A molecular diagnostic method, characterized in that the sensing areas are formed inside a single fluid channel.
  12. 제10항에 있어서, According to clause 10,
    상기 센싱 영역들 각각에 수식된 상기 제1 반응물질들의 밀도는 서로 동일한 것을 특징으로 하는, 분자 진단 방법.A molecular diagnosis method, characterized in that the densities of the first reactants modified in each of the sensing regions are the same.
  13. 제10항에 있어서, According to clause 10,
    상기 서로 다른 제1 소분자 화합물들 및 상기 제2 소분자 화합물 각각은 FITC(fluorescein isothiocyanate), DIG(Digoxigenin), DNP(Dinitrophenyl), 아크릴아마이드(Acrylamide), 알렉사플루오르(Alexa Fluor), 비오틴(Biotin), 비오틴-TEG(Biotin-TEG), 콜레스테롤(Cholesterol), 시아나이드(Cyanine), 데스티오비오틴-TEG(Desthiobiotin-TEG), DNP-TEG, GalNac(N-Acetylgalactosamine), 이온신(Inosine), PEG-2000, 퓨로마이신(Puromycine), 로다민-6G(Rhodamine-6G), 텍사스레드(Texas red, C31H29N2O6S2Cl), 티미딘글리콜(Thymidine Glycol), FAM(Fluorescein amidite), Hex(Hexachlorofluorescein), ROX(Carboxy-X-Rhodamine), TAMRA(Tetramethylrhodamine-5-maleimide)으로 이루어진 그룹으로부터 선택된 하나를 포함하는 것을 특징으로 하는, 분자 진단 방법.Each of the different first small molecule compounds and the second small molecule compound includes fluorescein isothiocyanate (FITC), digoxigenin (DIG), dinitrophenyl (DNP), acrylamide, Alexa Fluor, biotin, Biotin-TEG, Cholesterol, Cyanine, Desthiobiotin-TEG, DNP-TEG, GalNac (N-Acetylgalactosamine), Inosine, PEG- 2000, Puromycin, Rhodamine-6G, Texas red, C31H29N2O6S2Cl, Thymidine Glycol, FAM (Fluorescein amidite), Hex (Hexachlorofluorescein), ROX (Carboxy- A molecular diagnostic method comprising one selected from the group consisting of X-Rhodamine) and TAMRA (Tetramethylrhodamine-5-maleimide).
PCT/KR2023/007247 2022-05-26 2023-05-26 Molecular diagnostic method using retroreflection as signaling principle WO2023229417A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220064602A KR20230164891A (en) 2022-05-26 2022-05-26 Method of molecular diagnosis method using retro-reflection phenomenon as signalling principle
KR10-2022-0064602 2022-05-26

Publications (1)

Publication Number Publication Date
WO2023229417A1 true WO2023229417A1 (en) 2023-11-30

Family

ID=88919759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/007247 WO2023229417A1 (en) 2022-05-26 2023-05-26 Molecular diagnostic method using retroreflection as signaling principle

Country Status (2)

Country Link
KR (1) KR20230164891A (en)
WO (1) WO2023229417A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040019276A (en) * 2001-01-27 2004-03-05 일렉트론 바이오 (주) nucleic hybridization assay method and device using a cleavage technique responsive to the complementary double strand or the single strand of nucleic acids or oligonucleotides
KR20170075221A (en) * 2015-12-23 2017-07-03 아주대학교산학협력단 Optical probe for the biosensor, optical biosensor having the optical probe, and method of manufacturing optical marker for the biosensor
KR20180119795A (en) * 2017-04-26 2018-11-05 아주대학교산학협력단 Molecular beacon-based optical gene biosensor employing retroreflection phenomenon and quantitative analysis method for nucleic acid molecules

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040019276A (en) * 2001-01-27 2004-03-05 일렉트론 바이오 (주) nucleic hybridization assay method and device using a cleavage technique responsive to the complementary double strand or the single strand of nucleic acids or oligonucleotides
KR20170075221A (en) * 2015-12-23 2017-07-03 아주대학교산학협력단 Optical probe for the biosensor, optical biosensor having the optical probe, and method of manufacturing optical marker for the biosensor
KR20180119795A (en) * 2017-04-26 2018-11-05 아주대학교산학협력단 Molecular beacon-based optical gene biosensor employing retroreflection phenomenon and quantitative analysis method for nucleic acid molecules

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BECHERER LISA, BORST NADINE, BAKHEIT MOHAMMED, FRISCHMANN SIEGHARD, ZENGERLE ROLAND, VON STETTEN FELIX: "Loop-mediated isothermal amplification (LAMP) – review and classification of methods for sequence-specific detection", ANALYTICAL METHODS, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 12, no. 6, 13 February 2020 (2020-02-13), GB , pages 717 - 746, XP055772674, ISSN: 1759-9660, DOI: 10.1039/C9AY02246E *
LEE DANBI, KIM EUNSUK, LEE KYUNG WON, KIM KA RAM, CHUN HYEONG JIN, YOON HYUNJIN, YOON HYUN C.: "Retroreflection-based sandwich type affinity sensing of isothermal gene amplification products for foodborne pathogen detection", ANALYST, ROYAL SOCIETY OF CHEMISTRY, UK, vol. 147, no. 3, 31 January 2022 (2022-01-31), UK , pages 450 - 460, XP093111767, ISSN: 0003-2654, DOI: 10.1039/D1AN01543E *

Also Published As

Publication number Publication date
KR20230164891A (en) 2023-12-05

Similar Documents

Publication Publication Date Title
CA2460212C (en) Rapid and sensitive detection of cells and viruses
Wang et al. Detection of nucleic acids and elimination of carryover contamination by using loop-mediated isothermal amplification and antarctic thermal sensitive uracil-DNA-glycosylase in a lateral flow biosensor: application to the detection of Streptococcus pneumoniae
Lim Detection of microorganisms and toxins with evanescent wave fiber-optic biosensors
JPH09329549A (en) Method and apparatus for detection and discrimination of a plurality of objects to be analyzed using fluorescence technique
Cirino et al. Multiplex diagnostic platforms for detection of biothreat agents
WO2023003137A1 (en) Composition for cell lysis to be applied to structure including lab-on-paper chip
JPH10508741A (en) Amplification method for increasing sensitivity of nucleic acid-probe target hybrid detection
WO2012047015A2 (en) Multiplex microfluidic device for selecting nucleic acid aptamers, and high throughput selection method for nucleic acid aptamers using same
JP2006501817A (en) New high-density array and sample analysis method
WO2017111194A1 (en) Optical probe for bio-sensor, optical bio-sensor including same, and method for manufacturing optical probe for bio-sensor
CN110218818B (en) Dengue virus gene fragment SERS detection kit and preparation method thereof
Lin et al. An antibiotic concentration gradient microfluidic device integrating surface-enhanced Raman spectroscopy for multiplex antimicrobial susceptibility testing
US20220205992A1 (en) Materials and kits relating to association of reporter species and targeting entities with beads
WO2020256378A1 (en) Nucleic acid detection method
WO2016190585A1 (en) Method and kit for detecting target nucleic acid
US8206946B2 (en) Fluorescent virus probes for identification of bacteria
WO2023229417A1 (en) Molecular diagnostic method using retroreflection as signaling principle
WO2017010854A1 (en) Nucleic acid detection kit and nucleic acid detection method using nanoparticles
KR102551477B1 (en) Kit for detecting target materials and method for detecting target materials using the same
WO2021154042A2 (en) Primer set, for high-sensitivity multi-isothermal amplification reaction, capable of simultaneously screening and detecting mycobacterium tuberculosis and nontuberculous mycobacteria
WO2012070809A2 (en) Apparatus, system and method for detecting target nucleic acids
CN114231401A (en) Nucleic acid detection kit and detection method
EP0677589B1 (en) Method, test element and test kit for semi-quantitative detection of target nucleic acid
KR102063864B1 (en) Method for detecting a diagnostic marker for infectious disease based on surface-enhanced Raman scattering
WO2018199465A1 (en) Molecular beacon-based optical genetic biosensor using retro-reflection phenomenon and quantitative analysis method of nucleic acid molecule using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23812191

Country of ref document: EP

Kind code of ref document: A1