WO2023229277A1 - Composite ventilation device capable of clean air supply, automatic cleaning, automatic drying, and negative pressure - Google Patents

Composite ventilation device capable of clean air supply, automatic cleaning, automatic drying, and negative pressure Download PDF

Info

Publication number
WO2023229277A1
WO2023229277A1 PCT/KR2023/006586 KR2023006586W WO2023229277A1 WO 2023229277 A1 WO2023229277 A1 WO 2023229277A1 KR 2023006586 W KR2023006586 W KR 2023006586W WO 2023229277 A1 WO2023229277 A1 WO 2023229277A1
Authority
WO
WIPO (PCT)
Prior art keywords
ventilation
air supply
air
heat exchange
area
Prior art date
Application number
PCT/KR2023/006586
Other languages
French (fr)
Korean (ko)
Inventor
이영국
Original Assignee
에어솔 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에어솔 주식회사 filed Critical 에어솔 주식회사
Publication of WO2023229277A1 publication Critical patent/WO2023229277A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/006Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an air-to-air heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/20Casings or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F2012/007Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using a by-pass for bypassing the heat-exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/20Casings or covers
    • F24F2013/205Mounting a ventilator fan therein
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • F24F2130/10Weather information or forecasts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • F24F2130/20Sunlight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • F24F2130/30Artificial light

Definitions

  • the embodiment relates to a ventilation device.
  • Ventilators are installed in buildings to ventilate indoor and outdoor air.
  • Ventilation devices provide ventilation by forcibly sucking in and discharging indoor and outdoor air using a blower.
  • a blower forcibly sucking in and discharging indoor and outdoor air using a blower.
  • cooling and heating efficiency decreases due to the temperature difference between indoor and outdoor air.
  • a heat exchanger for energy exchange is disposed to improve cooling and heating efficiency, and the heat exchanger is installed in an area where the supply air passage, which serves as a passage for outdoor air to be supplied indoors, and the exhaust passage, which serves as a passage for indoor air to be discharged to the outside, intersect, It includes a heat exchange element that allows outdoor air and indoor air to exchange heat.
  • this heat exchange unit or heat exchanger is equipped with a heat exchange element that exchanges heat between the inside and outside air, so that the inside and outside air exchange heat with each other so that the inside and outside air have similar temperatures, thereby preventing a decrease in cooling and heating efficiency.
  • the embodiment provides a ventilation device that reduces maintenance costs and suppresses the circulation of indoor pollution.
  • it provides a cleaning ventilation device that discharges polluted indoor air to the outside, supplies outside air to the inside, and is easy to clean.
  • all polluted air such as fine dust, ultrafine dust, polluted organic compounds, various odors, and carbon dioxide is discharged 100% to the outside through ventilation, and heat is exchanged to ensure that the air is always clean using the indoor temperature and clean internal air.
  • the present invention provides a ventilation device that maintains clean indoor air by preventing differential pressure in the filter caused by clogging with substances such as dust, re-infection by mold, bacteria, and filter contamination, and providing a clean air condition. .
  • embodiments may provide a ventilation device that performs air purification to maintain high quality indoor air.
  • a ventilation device having a semi-permanent heat exchange element that can be easily cleaned even during installation and use is provided.
  • the problem to be solved in the embodiment is not limited to this, and also includes purposes and effects that can be understood from the means of solving the problem or the embodiment described below.
  • a ventilation device includes a case including a ventilation port and a supply port disposed on one side, and an exterior vent and an exhaust port disposed on the other side; a heat exchange element that performs heat exchange between internal air introduced from the ventilation hole and external air introduced from the external device within the case; and a second bypass portion disposed between the exhaust port and the heat exchange element, wherein the second bypass portion is disposed between the external air supply portion of the heat exchange element and the exhaust port.
  • the heat exchange element includes an outdoor air supply unit, an external air discharge unit, an internal air supply unit, and an internal exhaust unit, and the case includes an external air area, an air supply area, a ventilation area, and an exhaust area, and the external air area includes the external air supply unit and the external air area.
  • the air supply area may be in communication with the external air discharge unit and the air supply port
  • the ventilation area may be in communication with the internal air supply unit and the ventilation opening
  • the exhaust area may be in communication with the internal air discharge unit and the exhaust opening.
  • the second bypass part overlaps the external air supply part of the heat exchange element in a first direction, and the first direction may be a direction from the other side of the case to one side of the case.
  • a first fan disposed in the exhaust area; It may include a second fan disposed in the air supply area.
  • the second bypass unit may be disposed between the first fan and the external air supply unit of the heat exchange element.
  • the second bypass unit When the second fan operates in a direction opposite to the inflow of outside air into the room, the second bypass unit may be opened.
  • the fluid sequentially moves through the vent, the internal supply part of the heat exchange element, the internal discharge part and the exhaust port of the heat exchange element, and the air supply opening, the external air discharge part of the heat exchange element, and the external air supply part of the heat exchange element.
  • the second bypass unit and the exhaust port may be moved sequentially.
  • a separation member disposed between the external appliance and the ventilation opening may be included, and the separation member may include a first bypass unit connecting the external appliance to the ventilation opening.
  • the fluid may further sequentially move through the ventilation port, the first bypass portion, the second bypass portion, and the exhaust port.
  • the separation member may be disposed between the outdoor air area and the ventilation area to partition the outdoor air area and the ventilation area.
  • Embodiments may implement a ventilation device that reduces maintenance costs and suppresses the circulation of indoor pollution. Accordingly, it is possible to implement a ventilation device that discharges polluted indoor air to the outside and supplies outside air to the room while being easy to clean.
  • all polluted air such as ultra-fine dust, ultra-fine dust, polluted organic compounds, various odors, and carbon dioxide
  • all polluted air is 100% discharged to the outside through ventilation, and heat is exchanged to ensure that it is always clean using the indoor temperature and clean internal air.
  • the condition can be maintained continuously.
  • the present invention provides ventilation and air purification that maintains clean indoor air by preventing differential pressure in the filter caused by clogging by substances such as dust, re-infection by mold, bacteria, and filter contamination. The state can be implemented.
  • the embodiment may implement a ventilation device that performs air purification to maintain high quality indoor air.
  • a ventilation device with improved thermal efficiency can be implemented by being connected to cooling and heating.
  • FIG. 1 is a perspective view of a ventilation device according to an embodiment
  • Figure 2 is a diagram showing the internal structure of a ventilation device according to an embodiment
  • Figure 3 is a perspective view of a heat exchange element in a ventilation device according to an embodiment
  • FIG. 4 is a top view of an internal structure illustrating the flow of external air in a ventilation device according to an embodiment
  • Figure 5 is a side view of the internal structure illustrating the flow of external air in the ventilation device according to the embodiment
  • Figure 6 is a top view of the internal structure illustrating the flow of air in the ventilation device according to the embodiment
  • Figure 7 is a side view of the internal structure illustrating the flow of air in the ventilation device according to the embodiment
  • Figure 8 is a top view of the internal structure explaining the flow of fluid according to the operation of the first bypass part in the ventilation device according to the embodiment;
  • Figure 9 is a side view of the internal structure explaining the flow of fluid according to the operation of the first bypass part in the ventilation device according to the embodiment.
  • Figure 10 is a side view showing the internal structure of a ventilation device according to an embodiment
  • Figure 11 is a perspective view showing the internal structure of a ventilation device according to an embodiment
  • Figure 12 is a diagram of the internal structure explaining the flow of fluid during one operation mode in the ventilation device according to the embodiment.
  • Figure 13 is a side view of the internal structure illustrating the flow of fluid during one operation mode in the ventilation device according to the embodiment
  • Figure 14 is a diagram of the internal structure explaining the flow of fluid during different operation modes in the ventilation device according to the embodiment.
  • FIG. 15 is a side view of the internal structure illustrating the flow of fluid during different operation modes in the ventilation device according to the embodiment
  • Figure 16 is a modified example of Figure 14,
  • FIG. 17 is a diagram of an internal structure explaining the flow of fluid during another operation mode in a ventilation device according to an embodiment
  • Figure 18 is a side view of the internal structure illustrating the flow of fluid during another operation mode in the ventilation device according to the embodiment.
  • FIG. 1 is a perspective view of a ventilation device according to an embodiment
  • FIG. 2 is a diagram showing the internal structure of a ventilation device according to an embodiment
  • FIG. 3 is a perspective view of a heat exchange element in a ventilation device according to an embodiment.
  • the ventilation device 100 may include a case 110, a heat exchange element 120, a separation member 130, and a second bypass unit 151. Furthermore, the ventilation device 100 may include a fluid receiving portion 140.
  • the case 110 may have various shapes. And the case 110 may include an internal accommodation space. Various components described later (heat exchange element, first and second filters, first and second fans, separation members, fluid receiving units, etc.) may be located in the receiving space. Furthermore, case 110 may include a cover (CV). Accordingly, cleaning of the components inside the case 110 can be easily performed by removing the cover CV, etc.
  • CV cover
  • Case 110 may include a plurality of openings through which fluid (eg, air) is introduced or discharged.
  • the case 110 may include an external port 111, an exhaust port 112, a ventilation port 113, and a supply port 114.
  • Outdoor fluid that is, clean air (Outdoor Air, OA)
  • Exhaust air (EA) a contaminated fluid
  • the ventilation hole 113 allows indoor fluid, that is, return air, which is a contaminated fluid, to flow in.
  • the supply air (SA), which is a clean fluid, can be discharged indoors through the supply opening 114.
  • the external opening 111 and the exhaust opening 112 may be placed on the other side (one side), and the ventilation opening 113 and the air supply opening 114 may be placed on one side (the other side).
  • the other side may be outdoors and one side may be indoors.
  • the first direction may correspond to a direction from the external opening 111 toward the ventilation opening 113 or a direction from the exhaust opening 112 towards the air supply opening 114.
  • the first direction may be a direction from the other side to one side.
  • the external outlet 111 may overlap at least partially with the ventilation opening 113 in the first direction, and the exhaust opening 112 may overlap at least partially with the air supply opening 114 in the first direction.
  • first direction may correspond to the 'X-axis direction' as shown.
  • second direction (Y-axis direction) may correspond to a direction perpendicular to the first direction from the supply opening 114 to the ventilation opening 113 or from the exhaust opening 112 towards the external opening 111.
  • third direction (Z-axis direction) may be perpendicular to the first and second directions.
  • Case 110 may be divided into respective areas to prevent fluids (internal or external air) flowing in from the external device 111, the exhaust port 112, the ventilation port 113, and the supply port 114 from mixing with each other.
  • space may be separated through various members.
  • the outside air may pass through the outside air supply part 121 and the outside air discharge part 122 of the heat exchange element 120 along the outside mechanism 111, and finally be introduced into the room through the air supply opening 114.
  • the indoor air may pass through the ventilation opening 113, sequentially through the air supply unit 123 and the internal air discharge unit 124 of the heat exchange element 120, and finally be discharged through the exhaust port 112.
  • the first fan 141 is driven to exhaust indoor air, that is, air, to the outside.
  • the second fan 142 is driven to allow outdoor air, that is, outside air, to flow into the room.
  • the second fan 142 is driven, and indoor air is discharged through the ventilation port 113, the ventilation area (R3), the outside air area (R1), the outside air supply unit 121 of the heat exchange element 120, and the outside air exhaust. It passes through the unit 122 and can finally be re-introduced into the room through the air supply opening 114. Due to this purification, moisture or water droplets generated in the heat exchange element 120 due to the inflow of outdoor air with high humidity can be removed by circulation of clean indoor air.
  • moisture and moisture present in the outdoor air supply unit 121 of the heat exchange element 120 are removed by low-temperature or low-humidity indoor air introduced through the ventilation opening 113, and the indoor air flows through the supply opening 114. It may enter the room.
  • the case 110 may include an outdoor air area (R1), an air supply area (R2), a ventilation area (R3), and an exhaust area (R4).
  • R1 outdoor air area
  • R2 air supply area
  • R3 ventilation area
  • R4 exhaust area
  • the outdoor air area R1 may be in communication with the external device 111 . Additionally, the air supply area R2 may be in communication with the air supply opening 114. Additionally, the ventilation area R3 may be in communication with the ventilation opening 113. And the exhaust area R4 may be in communication with the exhaust port 112.
  • an opening and closing part is added to facilitate replacement, repair, or cleaning of the heat exchange element described later in areas other than the exterior device 111, the exhaust port 112, the ventilation port 113, and the supply port 114 in the case 110. It can be implemented as .
  • the heat exchange element 120 may perform heat exchange while internal and external air crosses each other.
  • the heat exchange element 120 may be a thermal heat exchanger.
  • contaminants such as bacteria, toxic substances, etc. other than heat exchange between exhaust and supply air may not mix with each other.
  • the outer layer of the heat exchange element 120 may be surrounded by a film for protection from bacteria, etc.
  • the film may have sterilizing power to remove bacteria, etc.
  • the film may contain a metal or metal alloy.
  • the heat exchange element 120 may include a metal or resin material and, for example, may have a structure coated by adding or coating a metal (gallium) and an ion (e.g., copper ion).
  • the heat exchange element 120 may perform heat exchange between the internal air flowing in from the ventilation opening 113 and the external air flowing in from the external air opening 111.
  • This heat exchange element 120 may be made of metal or resin. Accordingly, the heat exchange element 120 may be highly durable due to moisture, etc. Furthermore, the heat exchange element 120 can be easily cleaned against moisture, etc. Accordingly, problems with ventilation devices due to moisture can be suppressed. Furthermore, durability or reliability of the ventilation device 100 due to moisture, etc. may be improved.
  • the heat exchange element 120 is disposed within the case 110 and communicates with each of the external air outlet 111, the exhaust port 112, the ventilation port 113, and the air supply port 114. ), it may include an internal air discharge unit 124, an internal air supply unit 123, and an external air discharge unit 122. That is, the heat exchange element 120 may include an external air supply unit 121, an internal air discharge unit 124, an internal air supply unit 123, and an external air discharge unit 122.
  • the heat exchange element 120 includes an external air supply unit 121 (or external air discharge unit) that supplies outdoor air (A) into the room, and an internal air supply unit (or internal air discharge unit) that discharges indoor air (B) outdoors or to the outside. ) can be stacked alternately. At this time, heat exchange may occur through the heat exchange element 120 while outdoor air is supplied indoors and indoor air is discharged outdoors. Accordingly, the ventilation device 100 can provide improved energy efficiency. However, as outdoor air moves along 'A' and indoor air moves outdoors along 'B', there is no movement of moisture, bacteria, etc. between outdoor air and indoor air. That is, the heat exchange element 120 is made of resin rather than non-woven fabric or paper, so that only heat exchange can occur between the supply air and exhaust air.
  • the indoor air when indoor air is polluted by patients, infected people, etc., the indoor air may be discharged outdoors. Accordingly, indoor pollution can be easily prevented. Furthermore, since there is only heat exchange between the supply air and exhaust air (no movement of moisture, bacteria, etc.), re-contamination of polluted indoor air is prevented in advance.
  • the external air supply unit (or external air discharge unit) and the internal air supply unit (or internal air discharge unit) may have separate structures. Furthermore, the external air supply unit (or external air discharge unit) and the internal air supply unit (or internal air discharge unit) form different layers and may have repeatedly formed valleys. Accordingly, heat exchange can be achieved between the outside air through the outside air supply unit (or outside air discharge unit) and the inside air through the inside air supply unit (or inside air discharge unit). Furthermore, in order to supply outdoor air (A) indoors, the outdoor air supply unit 121 may communicate with the outdoor air area (R1). In addition, the outdoor air supply unit 121 also communicates with the outdoor air discharge unit 122, so that the outdoor air (A) can sequentially move to the outdoor air supply unit, the outdoor air exhaust unit, the air supply area R2, and the air supply opening 114.
  • the indoor air supply unit 123 may communicate with the ventilation area R# and the ventilation port 113 in order to discharge the indoor air B to the outdoors. And the bet supply unit 123 also communicates with the bet discharge unit 124, so that the indoor air (B) can sequentially move to the bet supply unit, the bet discharge unit, the exhaust area (R4), and the exhaust port 112.
  • the outdoor air area R1 may communicate with the outdoor air supply unit 121 and the external device 111 between the external air supply units 121 and the external device 111.
  • the air supply area R2 may communicate with the outdoor air outlet 122 and the air supply port 114 between the outdoor air outlet 122 and the air supply port 114.
  • the ventilation area (R3) may communicate with the internal air supply unit 123 and the ventilation hole 113 between the internal air supply unit 123 and the ventilation hole 113.
  • the exhaust area (R4) may communicate with the internal air discharge unit 124 and the exhaust port 112 between the internal air discharge unit 124 and the exhaust port 112.
  • the heat exchange element 120 blocks the inflow or exchange of fluid due to supply and exhaust. That is, except for energy exchange, fluid (moisture) in the air may not move inside the heat exchange element 120. In other words, all contaminated indoor air can be discharged through the exhaust port. In other words, when exhausting contaminated air, some of the air may not flow out into the air supply path of the heat exchange element 120. Likewise, all fresh air from outside can be brought in through the supply vent. In other words, when clean air is supplied, some of the air may not leak out to the exhaust path of the heat exchange element 120. Accordingly, the health and welfare of people indoors can be improved.
  • the separation member 130 may be disposed between the external device 111 and the ventilation hole 113.
  • the separation member 130 may be disposed between the outdoor air area (R1) and the ventilation area (R3). Accordingly, the separation member 130 may partition the outdoor air area (R1) and the ventilation area (R3).
  • the separation member 130 may include a first bypass portion 131 connecting the ventilation hole 113 and the external device 111.
  • the first bypass unit 131 may be driven by a short-wave valve.
  • the first bypass unit 131 can open or close a hole communicating with the ventilation port 113 and the external device 111 by manipulation. Accordingly, when the first bypass unit 131 is opened, the ventilation area R3 and the outdoor air area R1 may be connected to each other.
  • the external mechanism 111 When the first bypass unit 131 is open, the external mechanism 111 may be in a closed state.
  • the second bypass unit 151 may be driven by a short-wave valve.
  • the second bypass unit 151 can open or close the hole by manipulation. Accordingly, when the second bypass unit 151 is opened, the exhaust area R4 and the outside air area R1 may be connected to each other.
  • the second bypass unit 151 may be disposed between the exhaust port 112 and the heat exchange element 120. Furthermore, the second bypass unit 151 may overlap the external air supply unit of the heat exchange element 120 in the first direction. This will be explained later.
  • the second bypass unit 151 may be disposed between the first fan 141 and the external air supply unit 121 of the heat exchange element 120. Accordingly, the exhaust area R4 and the outside air area R1 are connected to each other by the second bypass unit 151, so that clean and negative pressure, which will be described later, can be performed.
  • a damper may be installed in at least one of the ventilation opening 113, the exhaust opening 112, the external opening 111, and the air supply opening 114.
  • a ventilation damper (not shown) may be installed in the ventilation opening 113.
  • An exhaust damper may be installed in the exhaust port 112.
  • An external air damper may be installed in the external mechanism 111.
  • An air supply damper (not shown) may be installed in the air supply opening 114.
  • a short-wave valve 111a may be installed in the external device 111. Accordingly, in this specification, when the ventilation device is operated in 'clean' mode, the external device 111 may be closed.
  • the indoor air flowing into the ventilation opening 113 is not discharged to the external appliance 111 through the first bypass unit 131, and is not discharged to the external air supply unit 121 and the external air discharge unit 122 of the heat exchange element 120. You can move sequentially.
  • the damper installed in the external device 111 and the ventilation hole 113 through which air is sucked may be an electric damper (actuator damper).
  • the electric damper may include a vane that adjusts the opening degree of a flow path through which air flows depending on the rotation angle, and a damper actuator that operates the vane.
  • the ventilation device 100 may include a control unit (CB). Additionally, the control unit (CB) can control the opening degree of each damper by operating the damper actuator. An increase in the damper opening may mean that the damper is open. A decrease in the damper opening may mean that the damper is closed.
  • CB control unit
  • the rotation angle of the vane can be controlled.
  • intake of air through the external device 111 or the ventilation hole 113 can be controlled.
  • the damper installed at the exhaust port 112 and the supply port 114 through which air is discharged may be a back draft damper (BDD). Therefore, it is possible to prevent air from being sucked through the exhaust port 112 and the supply port 114.
  • BDD back draft damper
  • control unit (CB) may be installed in the case 110.
  • the control unit (CB) may be installed on the side.
  • An opening for installing the control unit may be formed on the side of the case 110, and the control unit CB may be installed in the opening for installing the control unit.
  • the control unit CB may be installed to protrude toward the inside or outside of the case 110.
  • control unit (CB) may be installed on a side of the side where the ventilation opening 113, the exhaust opening 112, the external opening 111, and the air supply opening 114 are not formed.
  • the control unit ( CB) may be placed on a side other than one side/other side of the case 110.
  • the control unit may include a communication unit, an interface unit, an inverter unit, etc., and may control the overall operation of the outdoor air treatment ventilation device 100.
  • cooling and heating equipment, etc. may be connected or placed in the air supply area R2. That is, air (AC) for cooling, heating, or cooling/heating equipment to be connected or disposed may exist in the air supply area (R2). With this configuration, cooled and heated air can be introduced into the room.
  • the ventilation device 100 may include a first fan 141 and a second fan 142.
  • the first fan 141 may be disposed in the exhaust area R4 to exhaust internal air to the outside.
  • the first fan 141 may be located adjacent to the exhaust port 112.
  • the first fan 141 can easily exhaust air, and the second fan 142 can supply air.
  • the first fan 141 and the second fan 142 can be operated manually/automatically by user operation or by the system.
  • the first fan 141 and the second fan 142 can form or accelerate the flow of fluid through a motor and rotation of wings by the motor.
  • the first fan 141 operates for exhaust in ventilation mode, and the second fan 142 may operate at all times.
  • the second fan 142 may be disposed in the air supply area (R2).
  • the second fan 142 may introduce outside air into the room.
  • the second fan 142 may be located adjacent to the air supply opening 114.
  • FIG. 4 is a top view of an internal structure explaining the flow of outside air in a ventilation device according to an embodiment
  • FIG. 5 is a side view of an internal structure explaining the flow of outside air in a ventilation device according to an embodiment.
  • the ventilation device 100 may further include a first filter (F1) and a second filter (F2).
  • the first and second filters may include filters with various functions.
  • the first filter F1 may be attached to the heat exchange element 120.
  • the first filter F1 may be a pre filter.
  • the first filter (F1) may be disposed in at least one of the external air supply unit 121 and the internal air supply unit 123.
  • the second filter (F2) may be, for example, a HEPA filter.
  • the second filter F2 may be disposed between the air supply opening 114 and the heat exchange element 120.
  • the outside air is supplied to the outside device 111, the outside air area (R1), the outside air supply part 121 of the heat exchange element 120, the outside air discharge part 122, and the supply air. It can be provided indoors through the area (R2) and the air supply opening (114) sequentially (PAT1).
  • Figure 6 is a top view of the internal structure explaining the flow of air in the ventilation device according to the embodiment
  • Figure 7 is a side view of the internal structure explaining the flow of air in the ventilation device according to the embodiment.
  • the indoor air (indoor air) vent 113, the ventilation area (R3), and the indoor air supply unit 123 of the heat exchange element 120 it can be provided to the outdoors by sequentially passing through the internal combustion engine discharge unit 124, the exhaust area (R4), and the exhaust port 112 (PAT2).
  • Figures 4 and 5 described above represent air supply through which outdoor air flows into the room.
  • Figures 6 and 7 refer to the exhaust where polluted indoor air is discharged.
  • FIG. 8 is a top view of an internal structure illustrating the flow of fluid according to the operation of the first bypass unit in the ventilation device according to the embodiment
  • FIG. 9 is a top view of the internal structure according to the operation of the first bypass unit in the ventilation device according to the embodiment. This is a side view of the internal structure explaining the flow of fluid.
  • a separation member 130 may be disposed between the external device 111 and the ventilation hole 113.
  • the first bypass unit 131 may operate as a damper.
  • the first bypass unit 131 is opened (or opened) so that indoor air flows into the ventilation port 113, the ventilation area (R3), the first bypass unit 131, the outside air area (R1), and the heat exchange element 120. ) of the outdoor air supply unit 121, the outdoor air discharge unit 122, the air supply area (R2), and the air supply port 114 can be moved sequentially (PAT3).
  • indoor air can be circulated from the ventilation opening 113 to the air supply opening 114.
  • the indoor air may pass through the first filter (F1) and the second filter (F2) according to the sequential movement described above. Accordingly, indoor air can be purified.
  • the first bypass unit 131 can be opened for a predetermined period of time. That is, the first bypass unit 131 may be open under certain conditions or for a certain time when the external device 111 is closed.
  • the control unit can perform ventilation and cleaning according to the level of pollution. For example, if the degree of contamination is greater than the first greatest threshold, exhaust/supply air may be performed. That is, indoor air may be discharged from the ventilation port 113 to the exhaust port 112. However, if the contamination level is less than the first threshold, the control unit may close the external device 111 and open the first bypass unit 131. Accordingly, indoor air may be introduced into the room through the ventilation opening 113, the heat exchange element 120, and the air supply opening 114. That is, indoor air can be purified by the first and second filters. Furthermore, when the degree of contamination is less than the first threshold, the operating speed of the second fan 142 may be adjusted depending on the degree of contamination.
  • the operating speed of the second fan 142 may be greater than when the degree of contamination is much smaller than the first threshold. In this way, the operating speed of the second fan 142 can be controlled in proportion to the degree of contamination.
  • the ventilation area R3 and the outside air area R1 may be communicated with each other by the first bypass part 131 of the separation member 130. Accordingly, indoor air flowing into the ventilation opening 113 may be provided to the outdoor air area R1. That is, when the first bypass unit 131 is opened, indoor air or fluid can pass through the vent 113, the ventilation area (R3), and the outside air area (R1).
  • air may flow into the outside air supply unit 121 of the heat exchange element 120. Accordingly, moisture generated in the outdoor air supply unit 121 adjacent to the outdoors, where temperature and humidity are higher than indoors, can be removed. That is, moisture generated in an area adjacent to the outdoors of the heat exchange element 120 can be easily removed by indoor air passing through the first bypass unit 131.
  • some air may be discharged from the outdoor air region R1 through the outdoor air supply unit 121 and the outdoor air discharge unit 122 of the heat exchange element to the air supply opening 114.
  • the pollution level of the air can be further reduced because it passes through the first filter and the second filter.
  • FIG. 10 is a side view showing the internal structure of a ventilation device according to an embodiment
  • FIG. 11 is a perspective view showing the internal structure of a ventilation device according to an embodiment.
  • the outdoor air supply unit 121 and the outdoor air exhaust unit 122 of the heat exchange element 120 may be arranged to face each other. For example, they may communicate with each other and be located oppositely based on the center of the heat exchange element.
  • the internal air supply unit 123 and the internal air discharge unit 124 of the heat exchange element 120 may also be arranged to face each other.
  • the ventilation device 100 or case 110 may further include a fluid receiving portion 140 disposed adjacent to the external air supply portion 121 or the internal air discharge portion 124.
  • the fluid receiving portion 140 may be arranged to overlap an area of the heat exchange element 120 adjacent to the outdoor area.
  • the fluid receiving unit 140 may be arranged to overlap the external air supply unit 121 or the internal air discharge unit 124. That is, the fluid receiving unit 140 may overlap the external air supply unit 121 or the internal air discharge unit 124 in the third direction (Z-axis direction).
  • the third direction may be perpendicular to the first and second directions.
  • the internal air discharge unit 124 may be disposed below the external air supply unit 121.
  • the internal air discharge unit 124 may overlap with the external air supply unit 121.
  • the fluid receiving portion 140 may be disposed below the inner discharge portion 124. Accordingly, the fluid receiving portion 140 may overlap with the internal fluid discharge portion 124.
  • the internal air discharge unit 124 may be disposed between the external air supply unit 121 and the fluid receiving unit 140.
  • the fluid receiving part 140 can accommodate moisture (W) or fluid generated from the outdoor air supply part or the internal air discharge part on the outdoor side where the humidity or temperature is higher than that of the heat exchange element 120.
  • moisture generated in the external air supply part 121 of the heat exchange element 120 may move to the lower fluid receiving part 140 along the side of the heat exchange element 120.
  • moisture in the heat exchange element 120 can be easily removed, and moisture in the ventilation device can also be easily cleaned.
  • the moisture problem within the ventilation device can be easily solved by cleaning the fluid receiving portion 140. Accordingly, the durability of the ventilation device can be greatly increased.
  • FIG. 12 is a diagram of an internal structure illustrating the flow of fluid during one operation mode in the ventilation device according to the embodiment
  • FIG. 13 is a diagram illustrating the internal structure of the fluid flow during one operation mode of the ventilation device according to the embodiment. This is a side view of the structure.
  • Figures 12 and 13 show a case where the ventilation device operates in 'clean' mode.
  • the names of these operation modes e.g., clean, clean, etc.
  • FIGS. 12 and 13 the names of these operation modes (e.g., clean, clean, etc.) may be referred to by different terms or words, but will be described below based on the names described in the specification.
  • the second fan 142 When the ventilation device operates in 'clean' mode, the second fan 142 is stopped and the upper part of the first fan 141 is opened to remove the contaminants of the filter due to the supply air by opening and closing the upper part of the first fan 141. can be discharged. Accordingly, when the second fan 142 introduces outside air into the room, the dust from the filter in the direction of travel is opened in the second bypass unit 151, so the air flows in the opposite direction and the dust from the filter is discharged.
  • the second bypass unit 151 may operate as a damper as described above. In particular, the second bypass unit 151 may be open. And the first bypass unit 131 may operate as a damper. For example, the first bypass unit 131 may be driven open (or open) or closed (or closed).
  • This operation is performed when the ventilation device operates in 'clean' mode at each user's input or preset condition/time, and the control unit operates the first bypass unit 131, the second bypass unit 151, and the first fan 141. ), the control signal can be transmitted to the second fan 142, etc.
  • the fluid flows through the supply port 114, the air supply region (R2), the outside air discharge section 122 of the heat exchange element 120, the outside air supply section 121 of the heat exchange element 120, the second bypass section 151, You can move to the exhaust area (R4). Furthermore, as a result of the first fan 141, the fluid flows into the outside air discharge part 122 of the heat exchange element 120, the outside air supply part 121 of the heat exchange element 120, the second bypass part 151, and the exhaust area. You can move to (R4) (PAT4).
  • the second bypass unit 151 may overlap the external air supply unit 121 of the heat exchange element 120 in the first direction (X-axis direction). Accordingly, the above-described foreign matter removal can be effectively performed.
  • FIG. 14 is a diagram of an internal structure illustrating the flow of fluid during different operation modes in the ventilation device according to the embodiment
  • FIG. 15 is a diagram illustrating the internal structure of the fluid flow during different operation modes in the ventilation device according to the embodiment. This is a side view of the structure
  • Figure 16 is a modified example of Figure 14.
  • ventilation may be implemented by driving the first fan 141 in 'negative pressure' mode. That is, in the ventilation device 100, the internal air (indoor air) ventilation port 113, the ventilation area (R3), the internal air supply unit 123 of the heat exchange element 120, the internal air discharge unit 124, the exhaust area (R4), and the exhaust port. It can be provided outdoors after sequentially passing through (112) (PAT5a). PAT5a can correspond to the above-described PAT2.
  • the negative pressure may be realized only by driving the first fan 141.
  • the ventilation opening 113 and the air supply opening 114 may each have different or the same amount of fluid movement. Thereby, the above-mentioned sound pressure can be maintained.
  • the second fan 142 may be driven differently from the drive during air supply. For example, the second fan 142 may be rotated in a different direction than when air is supplied. That is, the second fan may be driven in a direction opposite to the rotation direction when external air is introduced into the room, and the second bypass unit may be open.
  • the fluid flows through the supply port 114, the air supply region R2, the outside air discharge section 122 of the heat exchange element 120, the outside air supply section 121 of the heat exchange element 120, and the second bypass. It can move to section 151, exhaust area (R4), and exhaust port 112 (PAT5b).
  • the control unit uses data received from a ventilation device or a negative pressure sensor (pressure sensor, etc.) connected to the ventilation device to implement the user's desired or preset negative pressure state by using the first and second fans, the first and second fans described above.
  • the operation of the bypass unit can be controlled.
  • the ventilation device by using one ventilation device of the present invention in one room (hospital room), the amount of exhaust air required for negative pressure and the amount of air supply required for ventilation are adjusted to achieve purification, ventilation, and negative pressure without an additional positive pressure device. can be performed.
  • the ventilation device alone can perform cleaning, ventilation, and negative pressure without a separate positive pressure device in the front room.
  • one of the air supply units can be connected to the hospital room, and the other one (the second sub air supply unit) can be connected to the anteroom.
  • the ventilation device can adjust the air supply amount of the second sub air supply unit to be greater than the air supply amount of the first sub air supply unit.
  • the amount of air supply may be adjusted by the difference in size between the first sub air supply unit and the second sub air supply unit.
  • the hospital room may be in a negative pressure state.
  • the ventilation device can simultaneously perform ventilation. In other words, the ventilation device supply and exhaust can be performed simultaneously.
  • the first bypass unit 131 of the ventilation device may be driven open (or open) or closed (or closed). 14 and 15, the first bypass unit 131 may be closed. However, in FIG. 16, the first bypass unit 131 may be open.
  • fluid can further move through the ventilation port 113, the first bypass unit 131, the second bypass unit 151, and the exhaust port 112 in that order.
  • the control unit when the ventilation device operates in 'negative pressure' mode at each user's input or preset condition/time, the control unit operates the first bypass unit 131, the second bypass unit 151, and the second bypass unit 131.
  • the control signal can be transmitted to the first fan 141, the second fan 142, etc.
  • FIG. 17 is a diagram of an internal structure explaining the flow of fluid during another operation mode in the ventilation device according to the embodiment
  • FIG. 18 illustrates the flow of fluid during another operation mode in the ventilation device according to the embodiment. This is a side view of the internal structure.
  • the ventilation device may apply a 'negative pressure' mode (combined with exhaust) at the same time as ventilation/supply.
  • the outside air is supplied to the outside device 111, the outside air area (R1), the outside air supply part 121 of the heat exchange element 120, the outside air discharge part 122, the air supply area (R2), and the air supply area (R2). It may be provided indoors through the apparatus 114 sequentially (PAT6b). And at the same time, in the ventilation device 100, there is an internal air (indoor air) vent 113, a ventilation area (R3), an internal air supply part 123, an internal air discharge part 124, an exhaust area (R4) and an exhaust port of the heat exchange element 120. It can be provided outdoors through (112) sequentially (PAT6b). At this time, the first bypass unit 131 may be in a closed state.
  • the amount of indoor air moving outdoors may be less than the amount of outdoor air moving indoors (PAT6b).
  • the amount of ventilation may be greater than the amount of air supply. Accordingly, the fluid in the room is reduced so that negative pressure in the room can be implemented or maintained. In other words, as the inflow and outflow of indoor and outdoor air occurs (implementation of air purification or ventilation), the negative pressure relative to the indoor negative pressure can be implemented or maintained.
  • the height of the recess can be reduced.
  • the thickness of the ventilation device 100 by reducing the thickness of the ventilation device 100 according to the embodiment, the height or thickness of the concrete layer or recess can be reduced. Accordingly, the ceiling height between the ceiling and the floor can be increased. Furthermore, the height of the band height may be reduced.
  • the semi-height may be the space or area between the ceiling and the upper floor or the floor of the upper floor. In other words, the ceiling height of the building can be increased or the ceiling height can be reduced by the ventilation device according to the embodiment.
  • the height of the semi-arch is lowered due to the reduction in the height or thickness of the ventilation device, and the floor height of the building (the total height of the roof layer of the building from the first floor of the building) is lowered.
  • height reduction may be more effective for high-rise buildings.
  • the load on the building decreases due to the reduction in half height and story height, and the rebar, wood materials, labor costs, process period, and amount of concrete used in the building can be reduced. In other words, the effect of reducing construction costs can be improved.
  • issues such as height restrictions can be easily overcome, and the amount of waste during demolition can also be effectively reduced.
  • ' ⁇ unit' used in this embodiment refers to software or hardware components such as FPGA (field-programmable gate array) or ASIC, and the ' ⁇ unit' performs certain roles.
  • ' ⁇ part' is not limited to software or hardware.
  • the ' ⁇ part' may be configured to reside in an addressable storage medium and may be configured to reproduce on one or more processors. Therefore, as an example, ' ⁇ part' refers to components such as software components, object-oriented software components, class components, and task components, processes, functions, properties, and procedures. , subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables.
  • components and 'parts' may be combined into a smaller number of components and 'parts' or may be further separated into additional components and 'parts'. Additionally, components and 'parts' may be implemented to regenerate one or more CPUs within a device or a secure multimedia card.

Abstract

An embodiment provides a ventilation device comprising: a case which includes a return air port and a supply air port disposed at one side thereof and an outdoor air port and an exhaust air port disposed at the other side thereof; a heat exchange element which performs heat exchange between indoor air introduced from the return air port and outdoor air introduced from the outdoor air port in the case; and a second bypass part which is disposed between the exhaust air port and the heat exchange element, wherein the second bypass part is disposed between an outdoor air supply portion of the heat exchange element and the exhaust air port.

Description

청정 급기, 자동 청소, 자동 건조, 음압이 가능한 복합형 환기장치Complex ventilation device capable of clean air supply, automatic cleaning, automatic drying, and negative pressure
실시예는 환기 장치에 관한 것이다.The embodiment relates to a ventilation device.
일반적으로 건축물 등에는 내기와 외기를 환기시키기 위한 환기 장치가 설치된다.Generally, ventilation devices are installed in buildings to ventilate indoor and outdoor air.
환기 장치는 내기와 외기를 송풍기에 의해 강제적으로 흡입 및 토출하는 형태로 환기를 하는데, 실내와 실외의 온도차이가 크게 발생할 경우에는 내기와 외기의 온도차이로 인한 냉난방효율이 하락되는 문제점이 있다.Ventilation devices provide ventilation by forcibly sucking in and discharging indoor and outdoor air using a blower. However, when there is a large temperature difference between indoor and outdoor air, there is a problem in that cooling and heating efficiency decreases due to the temperature difference between indoor and outdoor air.
이러한 냉난방효율을 개선하기 위한 에너지 교환용 열교환부가 배치되고, 열교환부는 실외공기가 실내로 공급되는 통로가 되는 급기 유로와 실내공기가 외부로 토출되는 통로가 되는 배기 유로가 교차하는 영역에 설치되어, 실외공기와 실내 공기가 열교환 하도록 하는 열교환 소자를 포함한다. A heat exchanger for energy exchange is disposed to improve cooling and heating efficiency, and the heat exchanger is installed in an area where the supply air passage, which serves as a passage for outdoor air to be supplied indoors, and the exhaust passage, which serves as a passage for indoor air to be discharged to the outside, intersect, It includes a heat exchange element that allows outdoor air and indoor air to exchange heat.
그리고 이러한 열교환부 또는 열교환기는 내기와 외기를 열교환하는 열교환 소자가 설치되어 내기와 외기가 서로 유사한 온도를 가지도록 상호 열교환함으로써, 냉난방효율이 하락되는 것을 방지할 수 있었다.In addition, this heat exchange unit or heat exchanger is equipped with a heat exchange element that exchanges heat between the inside and outside air, so that the inside and outside air exchange heat with each other so that the inside and outside air have similar temperatures, thereby preventing a decrease in cooling and heating efficiency.
다만, 열교환기는 열교환 소자가 습기뿐만 아니라, 열을 함께 교환하는 경우에 외기에 수분을 많이 함유하고 있거나, 내기와 외기의 온도차이가 크게 발생하는 경우, 함유한 수분 또는 온도 차에 따른 결로가 발생하여 습기에 위약한 전열교환 소자가 쉽게 손상되는 문제점이 있었다. 또한, 열교환 소자 하나로 향상된 열교환효율을 제공하기 어려운 문제가 존재한다.However, in a heat exchanger, when the heat exchange element exchanges not only moisture but also heat, if the outside air contains a lot of moisture, or if the temperature difference between the inside and outside air is large, condensation may occur due to the moisture contained or the temperature difference. Therefore, there was a problem that the heat exchange element, which was vulnerable to moisture, was easily damaged. Additionally, there is a problem in that it is difficult to provide improved heat exchange efficiency with a single heat exchange element.
나아가, 열교환기의 습기에 의한 열화 또는 오염으로 인한 교환 시 추가 비용 발생이 크게 발생하고, 세균등의 번식으로 인한 위생문제와 교체 시 산업폐기물이 발생하는 문제가 존재한다. 나아가, 환기 이외에 다양한 기능에 대한 요구도 존재한다.Furthermore, there are significant additional costs incurred when replacing the heat exchanger due to deterioration or contamination due to moisture, hygiene problems due to the proliferation of bacteria, and industrial waste generated during replacement. Furthermore, there are demands for various functions other than ventilation.
실시예는 유지비용 절감 및 실내 오염의 순환을 억제하는 환기 장치를 제공한다. 즉, 오염된 실내 공기를 외부로 배출하고, 외부의 공기를 실내로 공급하면서 청소가 용이한 세척용 환기 장치를 제공한다.The embodiment provides a ventilation device that reduces maintenance costs and suppresses the circulation of indoor pollution. In other words, it provides a cleaning ventilation device that discharges polluted indoor air to the outside, supplies outside air to the inside, and is easy to clean.
또한, 본 발명은 미세먼지, 초미세먼지, 오염된 유기화합물, 각종냄새, 이산화탄소 등 오염공기 전체가 환기를 통해 외부로 100% 배출되고 열교환 되어 실내 온도와 청정한 내부의 공기를 이용 항상 청정 상태가 지속적으로 유지되는 환기 장치를 제공한다. 또한, 본 발명은 먼지 등의 물질에 의한 막힘으로 발생하는 필터의 차압, 곰팡이, 세균에 의한 재감염과 필터 오염을 방지하여 청정한 실내 공기를 유지하는 환기.공기청정 상태를 제공하는 환기 장치를 제공한다.In addition, in the present invention, all polluted air such as fine dust, ultrafine dust, polluted organic compounds, various odors, and carbon dioxide is discharged 100% to the outside through ventilation, and heat is exchanged to ensure that the air is always clean using the indoor temperature and clean internal air. Provide continuously maintained ventilation. In addition, the present invention provides a ventilation device that maintains clean indoor air by preventing differential pressure in the filter caused by clogging with substances such as dust, re-infection by mold, bacteria, and filter contamination, and providing a clean air condition. .
또한, 실시예는 공기정화를 수행하여 질 높은 실내 공기를 유지하는 환기 장치를 제공할 수 있다.Additionally, embodiments may provide a ventilation device that performs air purification to maintain high quality indoor air.
또한, 신뢰성이 개선된 청정한 환기내부를 구성하여 세균번식을 방지하는 환기 장치를 제공한다.In addition, it provides a ventilation device that prevents bacterial growth by constructing a clean ventilation interior with improved reliability.
또한, 설치 사용 중에도 용이한 세척으로 사용 가능한 반영구적 열교환 소자를 갖는 환기 장치를 제공한다.In addition, a ventilation device having a semi-permanent heat exchange element that can be easily cleaned even during installation and use is provided.
또한, 냉난방과 연결되어 열 효율이 개선된 환기 장치를 제공한다.In addition, it provides a ventilation device with improved thermal efficiency that is connected to cooling and heating.
실시예에서 해결하고자 하는 과제는 이에 한정되는 것은 아니며, 아래에서 설명하는 과제의 해결수단이나 실시 형태로부터 파악될 수 있는 목적이나 효과도 포함된다고 할 것이다.The problem to be solved in the embodiment is not limited to this, and also includes purposes and effects that can be understood from the means of solving the problem or the embodiment described below.
실시예에 따른 환기 장치는 일측에 배치되는 환기구와 급기구, 및 타측에 배치되는 외기구와 배기구를 포함하는 케이스; 상기 케이스 내에서 상기 환기구로부터 유입된 내기와 상기 외기구로부터 유입된 외기에 대해 열교환을 수행하는 열교환 소자; 및 상기 배기구와 상기 열교환 소자 사이에 배치되는 제2 바이패스부;를 포함하고, 상기 제2 바이패스부는 상기 열교환 소자의 외기공급부와 상기 배기구 사이에 배치된다.A ventilation device according to an embodiment includes a case including a ventilation port and a supply port disposed on one side, and an exterior vent and an exhaust port disposed on the other side; a heat exchange element that performs heat exchange between internal air introduced from the ventilation hole and external air introduced from the external device within the case; and a second bypass portion disposed between the exhaust port and the heat exchange element, wherein the second bypass portion is disposed between the external air supply portion of the heat exchange element and the exhaust port.
상기 열교환 소자는, 외기공급부, 외기배출부, 내기공급부 및 내기배출부를 포함하고, 상기 케이스는, 외기 영역, 급기 영역, 환기 영역 및 배기 영역을 포함하고, 상기 외기 영역은 상기 외기공급부 및 상기 외기구와 연통되고, 상기 급기 영역은 상기 외기배출부 및 상기 급기구와 연통되고, 상기 환기 영역은 상기 내기공급부 및 상기 환기구와 연통되고, 상기 배기 영역은 상기 내기배출부 및 상기 배기구와 연통될 수 있다.The heat exchange element includes an outdoor air supply unit, an external air discharge unit, an internal air supply unit, and an internal exhaust unit, and the case includes an external air area, an air supply area, a ventilation area, and an exhaust area, and the external air area includes the external air supply unit and the external air area. The air supply area may be in communication with the external air discharge unit and the air supply port, the ventilation area may be in communication with the internal air supply unit and the ventilation opening, and the exhaust area may be in communication with the internal air discharge unit and the exhaust opening. there is.
상기 제2 바이패스부는 상기 열교환 소자의 외기공급부와 제1 방향으로 중첩되고, 상기 제1 방향은 케이스의 타측에서 케이스의 일측을 향한 방향일 수 있다.The second bypass part overlaps the external air supply part of the heat exchange element in a first direction, and the first direction may be a direction from the other side of the case to one side of the case.
상기 배기 영역에 배치되는 제1 팬; 상기 급기 영역에 배치되는 제2 팬;을 포함할 수 있다.a first fan disposed in the exhaust area; It may include a second fan disposed in the air supply area.
상기 제2 바이패스부는 상기 제1 팬과 상기 열교환 소자의 외기공급부 사이에 배치될 수 있다.The second bypass unit may be disposed between the first fan and the external air supply unit of the heat exchange element.
상기 제2 팬이 외부 공기의 실내 유입의 반대 방향으로 구동하면, 상기 제2 바이패스부는 오픈될 수 있다.When the second fan operates in a direction opposite to the inflow of outside air into the room, the second bypass unit may be opened.
음압 모드 시, 유체가 상기 환기구, 상기 열교환 소자의 내기공급부, 상기 열교환 소자의 내기배출부 및 배기구를 순차로 이동하고, 그리고 상기 급기구, 상기 열교환 소자의 외기배출부, 상기 열교환 소자의 외기공급부, 상기 제2 바이패스부 및 상기 배기구를 순차로 이동할 수 있다.In the negative pressure mode, the fluid sequentially moves through the vent, the internal supply part of the heat exchange element, the internal discharge part and the exhaust port of the heat exchange element, and the air supply opening, the external air discharge part of the heat exchange element, and the external air supply part of the heat exchange element. , the second bypass unit and the exhaust port may be moved sequentially.
상기 외기구와 상기 환기구 사이에 배치되는 분리부재;를 포함하고, 상기 분리부재는 상기 환기구에서 상기 외기구를 연결하는 제1 바이패스부;를 포함할 수 있다.A separation member disposed between the external appliance and the ventilation opening may be included, and the separation member may include a first bypass unit connecting the external appliance to the ventilation opening.
상기 음압 모드 시, 상기 유체가 상기 환기구, 상기 제1 바이패스부, 상기 제2 바이패스부 및 상기 배기구를 순차로 추가 이동할 수 있다.In the negative pressure mode, the fluid may further sequentially move through the ventilation port, the first bypass portion, the second bypass portion, and the exhaust port.
상기 분리부재는 상기 외기 영역과 상기 환기 영역 사이에 배치되어, 상기 외기 영역과 상기 환기 영역을 구획할 수 있다.The separation member may be disposed between the outdoor air area and the ventilation area to partition the outdoor air area and the ventilation area.
실시예는 유지비용 절감 및 실내 오염의 순환을 억제하는 환기 장치를 구현할 수 있다. 이에, 오염된 실내 공기를 외부로 배출하고, 외부의 공기를 실내로 공급하면서 청소가 용이한 환기 장치를 구현할 수 있다.Embodiments may implement a ventilation device that reduces maintenance costs and suppresses the circulation of indoor pollution. Accordingly, it is possible to implement a ventilation device that discharges polluted indoor air to the outside and supplies outside air to the room while being easy to clean.
또한, 본 발명은 극초세먼지, 초미세먼지등, 오염된 유기화합물, 각종냄새, 이산화탄소 등 오염공기 전체가 환기를 통해 외부로 100% 배출되고 열교환 되어 실내 온도와 청정한 내부의 공기를 이용 항상 청정 상태가 지속적으로 유지될 수 있다, 또한, 본 발명은 먼지 등의 물질에 의한 막힘으로 발생하는 필터의 차압, 곰팡이, 세균에 의한 재감염과 필터 오염을 방지하여 청정한 실내 공기를 유지하는 환기.공기청정 상태를 구현할 수 있다.In addition, in the present invention, all polluted air, such as ultra-fine dust, ultra-fine dust, polluted organic compounds, various odors, and carbon dioxide, is 100% discharged to the outside through ventilation, and heat is exchanged to ensure that it is always clean using the indoor temperature and clean internal air. The condition can be maintained continuously. In addition, the present invention provides ventilation and air purification that maintains clean indoor air by preventing differential pressure in the filter caused by clogging by substances such as dust, re-infection by mold, bacteria, and filter contamination. The state can be implemented.
또한, 실시예는 공기정화를 수행하여 질높은 실내 공기를 유지하는 환기 장치를 구현할 수 있다.Additionally, the embodiment may implement a ventilation device that performs air purification to maintain high quality indoor air.
또한, 신뢰성이 개선된 환기 장치를 구현할 수 있다.Additionally, a ventilation device with improved reliability can be implemented.
또한, 용이한 세척으로 사용가능한 반영구적 열교환 소자를 갖는 환기 장치를 구현할 수 있다.Additionally, it is possible to implement a ventilation device having a semi-permanent heat exchange element that can be easily cleaned and used.
또한, 냉난방과 연결되어 열 효율이 개선된 환기 장치를 구현할 수 있다.In addition, a ventilation device with improved thermal efficiency can be implemented by being connected to cooling and heating.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.The various and beneficial advantages and effects of the present invention are not limited to the above-described content, and may be more easily understood through description of specific embodiments of the present invention.
도 1은 실시예에 따른 환기 장치의 사시도이고,1 is a perspective view of a ventilation device according to an embodiment,
도 2는 실시예에 따른 환기 장치의 내부 구조를 도시한 도면이고,Figure 2 is a diagram showing the internal structure of a ventilation device according to an embodiment,
도 3은 실시예에 따른 환기 장치에서 열교환 소자의 사시도이고,Figure 3 is a perspective view of a heat exchange element in a ventilation device according to an embodiment;
도 4는 실시예에 따른 환기 장치에서 외기의 흐름을 설명하는 내부 구조에 대한 상면도이고,4 is a top view of an internal structure illustrating the flow of external air in a ventilation device according to an embodiment;
도 5는 실시예에 따른 환기 장치에서 외기의 흐름을 설명하는 내부 구조에 대한 측면도이고,Figure 5 is a side view of the internal structure illustrating the flow of external air in the ventilation device according to the embodiment;
도 6은 실시예에 따른 환기 장치에서 내기의 흐름을 설명하는 내부 구조에 대한 상면도이고,Figure 6 is a top view of the internal structure illustrating the flow of air in the ventilation device according to the embodiment,
도 7은 실시예에 따른 환기 장치에서 내기의 흐름을 설명하는 내부 구조에 대한 측면도이고,Figure 7 is a side view of the internal structure illustrating the flow of air in the ventilation device according to the embodiment,
도 8은 실시예에 따른 환기 장치에서 제1 바이패스부의 동작에 따른 유체의 흐름을 설명하는 내부 구조에 대한 상면도이고,Figure 8 is a top view of the internal structure explaining the flow of fluid according to the operation of the first bypass part in the ventilation device according to the embodiment;
도 9는 실시예에 따른 환기 장치에서 제1 바이패스부의 동작에 따른 유체의 흐름을 설명하는 내부 구조에 대한 측면도이고,Figure 9 is a side view of the internal structure explaining the flow of fluid according to the operation of the first bypass part in the ventilation device according to the embodiment;
도 10은 실시예에 따른 환기 장치의 내부 구조를 도시한 측면도이고,Figure 10 is a side view showing the internal structure of a ventilation device according to an embodiment;
도 11은 실시예에 따른 환기 장치의 내부 구조를 도시한 사시도이고,Figure 11 is a perspective view showing the internal structure of a ventilation device according to an embodiment;
도 12는 실시예에 따른 환기 장치에서 일 동작 모드 시 따른 유체의 흐름을 설명하는 내부 구조에 대한 도면이고,Figure 12 is a diagram of the internal structure explaining the flow of fluid during one operation mode in the ventilation device according to the embodiment;
도 13은 실시예에 따른 환기 장치에서 일 동작 모드 시 따른 유체의 흐름을 설명하는 내부 구조에 대한 측면도이고,Figure 13 is a side view of the internal structure illustrating the flow of fluid during one operation mode in the ventilation device according to the embodiment;
도 14는 실시예에 따른 환기 장치에서 다른 동작 모드 시 따른 유체의 흐름을 설명하는 내부 구조에 대한 도면이고,Figure 14 is a diagram of the internal structure explaining the flow of fluid during different operation modes in the ventilation device according to the embodiment;
도 15는 실시예에 따른 환기 장치에서 다른 동작 모드 시 따른 유체의 흐름을 설명하는 내부 구조에 대한 측면도이고,15 is a side view of the internal structure illustrating the flow of fluid during different operation modes in the ventilation device according to the embodiment;
도 16은 도 14의 변형예이고, Figure 16 is a modified example of Figure 14,
도 17은 실시예에 따른 환기 장치에서 또 다른 동작 모드 시 따른 유체의 흐름을 설명하는 내부 구조에 대한 도면이고,17 is a diagram of an internal structure explaining the flow of fluid during another operation mode in a ventilation device according to an embodiment;
도 18은 실시예에 따른 환기 장치에서 또 다른 동작 모드 시 따른 유체의 흐름을 설명하는 내부 구조에 대한 측면도이다.Figure 18 is a side view of the internal structure illustrating the flow of fluid during another operation mode in the ventilation device according to the embodiment.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. Since the present invention can be subject to various changes and can have various embodiments, specific embodiments will be illustrated and described in the drawings. However, this is not intended to limit the present invention to specific embodiments, and should be understood to include all changes, equivalents, and substitutes included in the spirit and technical scope of the present invention.
제2, 제1 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제2 구성요소는 제1 구성요소로 명명될 수 있고, 유사하게 제1 구성요소도 제2 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다. Terms containing ordinal numbers, such as second, first, etc., may be used to describe various components, but the components are not limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, the second component may be referred to as the first component without departing from the scope of the present invention, and similarly, the first component may also be referred to as the second component. The term and/or includes any of a plurality of related stated items or a combination of a plurality of related stated items.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. When a component is said to be "connected" or "connected" to another component, it is understood that it may be directly connected to or connected to the other component, but that other components may exist in between. It should be. On the other hand, when it is mentioned that a component is “directly connected” or “directly connected” to another component, it should be understood that there are no other components in between.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in this application are only used to describe specific embodiments and are not intended to limit the invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this application, terms such as “comprise” or “have” are intended to designate the presence of features, numbers, steps, operations, components, parts, or combinations thereof described in the specification, but are not intended to indicate the presence of one or more other features. It should be understood that this does not exclude in advance the possibility of the existence or addition of elements, numbers, steps, operations, components, parts, or combinations thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by a person of ordinary skill in the technical field to which the present invention pertains. Terms defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related technology, and unless explicitly defined in the present application, should not be interpreted in an ideal or excessively formal sense. No.
이하, 첨부된 도면을 참조하여 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, embodiments will be described in detail with reference to the attached drawings, but identical or corresponding components will be assigned the same reference numbers regardless of reference numerals, and duplicate descriptions thereof will be omitted.
도 1은 실시예에 따른 환기 장치의 사시도이고, 도 2는 실시예에 따른 환기 장치의 내부 구조를 도시한 도면이고, 도 3은 실시예에 따른 환기 장치에서 열교환 소자의 사시도이다.FIG. 1 is a perspective view of a ventilation device according to an embodiment, FIG. 2 is a diagram showing the internal structure of a ventilation device according to an embodiment, and FIG. 3 is a perspective view of a heat exchange element in a ventilation device according to an embodiment.
도 1 및 도 2를 참조하면, 실시예에 따른 환기 장치(100)는 케이스(110), 열교환 소자(120), 분리부재(130) 및 제2 바이패스부(151)를 포함할 수 있다. 나아가, 환기 장치(100)는 유체수용부(140)를 포함할 수 있다. Referring to FIGS. 1 and 2 , the ventilation device 100 according to the embodiment may include a case 110, a heat exchange element 120, a separation member 130, and a second bypass unit 151. Furthermore, the ventilation device 100 may include a fluid receiving portion 140.
먼저, 케이스(110)는 다양한 형상으로 이루어질 수 있다. 그리고 케이스(110)는 내부의 수용공간을 포함할 수 있다. 수용공간에는 후술하는 다양한 구성요소(열교환 소자, 제1,2 필터, 제1,2 팬, 분리부재, 유체수용부 등)가 위치할 수 있다. 나아가, 케이스(110)는 커버(CV)를 포함할 수 있다. 이에, 케이스(110) 내부의 구성요소에 대한 청소 등이 커버(CV) 등의 분리로 용이하게 수행될 수 있다.First, the case 110 may have various shapes. And the case 110 may include an internal accommodation space. Various components described later (heat exchange element, first and second filters, first and second fans, separation members, fluid receiving units, etc.) may be located in the receiving space. Furthermore, case 110 may include a cover (CV). Accordingly, cleaning of the components inside the case 110 can be easily performed by removing the cover CV, etc.
실시예에 따른 케이스(110)는 유체(예, 공기)가 인입 또는 배출되는 복수 개의 개구부를 포함할 수 있다. 예컨대, 케이스(110)는 외기구(111), 배기구(112), 환기구(113) 및 급기구(114)를 포함할 수 있다. Case 110 according to an embodiment may include a plurality of openings through which fluid (eg, air) is introduced or discharged. For example, the case 110 may include an external port 111, an exhaust port 112, a ventilation port 113, and a supply port 114.
외기구(111)에서는 실외측 유체 즉, 깨끗한 공기인 외기(Outdoor Air, OA)가 인입될 수 있다. 배기구(112)에서는 실외측으로 오염된 유체인 배기(Exhaust Air, EA)가 배출될 수 있다. 환기구(113)는 실내측 유체 즉 오염된 유체인 환기(Return Air)가 유입될 수 있다. 급기구(114)는 실내측으로 깨끗한 유체인 급기(Supply Air, SA)가 배출될 수 있다. Outdoor fluid, that is, clean air (Outdoor Air, OA), may be introduced into the outdoor device 111. Exhaust air (EA), a contaminated fluid, may be discharged to the outdoor side through the exhaust port 112. The ventilation hole 113 allows indoor fluid, that is, return air, which is a contaminated fluid, to flow in. The supply air (SA), which is a clean fluid, can be discharged indoors through the supply opening 114.
케이스(110)에서 외기구(111), 배기구(112)는 타측(일측)에 배치되고, 환기구(113) 및 급기구(114)는 일측(타측)에 배치될 수 있다. 이하에서, 타측은 실외이고, 일측은 실내일 수 있다. 그리고 본 명세서에서, 제1 방향은 외기구(111)에서 환기구(113)를 향한 방향 또는 배기구(112)에서 급기구(114)를 향한 방향에 대응할 수 있다. 또는 제1 방향은 타측에서 일측을 향한 방향일 수 있다.In the case 110, the external opening 111 and the exhaust opening 112 may be placed on the other side (one side), and the ventilation opening 113 and the air supply opening 114 may be placed on one side (the other side). Hereinafter, the other side may be outdoors and one side may be indoors. And in this specification, the first direction may correspond to a direction from the external opening 111 toward the ventilation opening 113 or a direction from the exhaust opening 112 towards the air supply opening 114. Alternatively, the first direction may be a direction from the other side to one side.
외기구(111)는 환기구(113)와 제1 방향으로 적어도 일부 중첩되고, 배기구(112)는 급기구(114)와 제1 방향으로 적어도 일부 중첩될 수 있다.The external outlet 111 may overlap at least partially with the ventilation opening 113 in the first direction, and the exhaust opening 112 may overlap at least partially with the air supply opening 114 in the first direction.
그리고 제1 방향은 도시된 바와 같이 'X축 방향'에 대응할 수 있다. 그리고 제2 방향(Y축 방향)은 제1 방향에 수직한 방향으로 급기구(114)에서 환기구(113)를 향한 방향 또는 배기구(112)에서 외기구(111)를 향한 방향에 대응할 수 있다. 제3 방향(Z축 방향)은 제1 방향 및 제2 방향에 수직한 방향일 수 있다.And the first direction may correspond to the 'X-axis direction' as shown. And the second direction (Y-axis direction) may correspond to a direction perpendicular to the first direction from the supply opening 114 to the ventilation opening 113 or from the exhaust opening 112 towards the external opening 111. The third direction (Z-axis direction) may be perpendicular to the first and second directions.
실시예에 따른 케이스(110)는 외기구(111), 배기구(112), 환기구(113) 및 급기구(114)로부터 유입된 유체(내기 또는 외기)가 서로 혼입되지 않도록 각 영역으로 구획될 수 있다. 예컨대, 다양한 부재를 통한 공간이 분리될 수 있다. 이에, 외기는 외기구(111)를 따라, 열교환 소자(120)의 외기공급부(121) 및 외기배출부(122)를 통과하고, 최종적으로 급기구(114)를 통해 실내로 유입될 수 있다. 또한, 실내의 내기는 환기구(113)를 지나 열교환 소자(120)의 내기공급부(123) 및 내기배출부(124)를 순차로 지나 최종적으로 배기구(112)로 배출될 수 있다. 실내 공기 즉, 내기가 외부로 배출되기 위해서는 제1 팬(141)이 구동한다. 그리고 실외 공기 즉 외기가 실내로 유입되기 위해서는 제2 팬(142)이 구동한다. 나아가, 청정을 위한 경우 제2 팬(142)이 구동하여, 실내 공기가 환기구(113), 환기 영역(R3), 외기 영역(R1), 열교환 소자(120)의 외기공급부(121) 및 외기배출부(122)를 통과하고, 최종적으로 급기구(114)를 통해 실내로 재유입될 수 있다. 이러한 청정에 의해 실외의 습기가 높은 외기의 유입에 따라 열교환 소자(120)에서 발생한 습기 또는 물방울이 청정의 실내 공기의 순환에 의해 제거될 수 있다. 다시 말해, 열교환 소자(120)의 외기공급부(121) 등에 존재하는 습기, 수분이 환기구(113)를 통해 유입된 저온 또는 저습의 실내공기에 의해 제거되고, 실내공기가 급기구(114)를 통해 실내로 유입될 수 있다. Case 110 according to the embodiment may be divided into respective areas to prevent fluids (internal or external air) flowing in from the external device 111, the exhaust port 112, the ventilation port 113, and the supply port 114 from mixing with each other. there is. For example, space may be separated through various members. Accordingly, the outside air may pass through the outside air supply part 121 and the outside air discharge part 122 of the heat exchange element 120 along the outside mechanism 111, and finally be introduced into the room through the air supply opening 114. In addition, the indoor air may pass through the ventilation opening 113, sequentially through the air supply unit 123 and the internal air discharge unit 124 of the heat exchange element 120, and finally be discharged through the exhaust port 112. The first fan 141 is driven to exhaust indoor air, that is, air, to the outside. In addition, the second fan 142 is driven to allow outdoor air, that is, outside air, to flow into the room. Furthermore, in the case of cleaning, the second fan 142 is driven, and indoor air is discharged through the ventilation port 113, the ventilation area (R3), the outside air area (R1), the outside air supply unit 121 of the heat exchange element 120, and the outside air exhaust. It passes through the unit 122 and can finally be re-introduced into the room through the air supply opening 114. Due to this purification, moisture or water droplets generated in the heat exchange element 120 due to the inflow of outdoor air with high humidity can be removed by circulation of clean indoor air. In other words, moisture and moisture present in the outdoor air supply unit 121 of the heat exchange element 120 are removed by low-temperature or low-humidity indoor air introduced through the ventilation opening 113, and the indoor air flows through the supply opening 114. It may enter the room.
실시예로, 케이스(110)는 외기 영역(R1), 급기 영역(R2), 환기 영역(R3) 및 배기 영역(R4)을 포함할 수 있다.In an embodiment, the case 110 may include an outdoor air area (R1), an air supply area (R2), a ventilation area (R3), and an exhaust area (R4).
외기 영역(R1)은 외기구(111)와 연통될 수 있다. 또한, 급기 영역(R2)은 급기구(114)와 연통될 수 있다. 또한, 환기 영역(R3)은 환기구(113)와 연통될 수 있다. 그리고 배기 영역(R4)은 배기구(112)와 연통될 수 있다.The outdoor air area R1 may be in communication with the external device 111 . Additionally, the air supply area R2 may be in communication with the air supply opening 114. Additionally, the ventilation area R3 may be in communication with the ventilation opening 113. And the exhaust area R4 may be in communication with the exhaust port 112.
또한, 케이스(110)에서 외기구(111), 배기구(112), 환기구(113) 및 급기구(114) 이외의 영역에서 후술하는 열교환 소자의 교체, 수리 또는 청소가 용이하게 이루어지도록 개폐부가 추가로 실장될 수 있다.In addition, an opening and closing part is added to facilitate replacement, repair, or cleaning of the heat exchange element described later in areas other than the exterior device 111, the exhaust port 112, the ventilation port 113, and the supply port 114 in the case 110. It can be implemented as .
실시예에 따른 열교환 소자(120)는 내기와 외기가 교차되어 통과하면서 열교환을 수행할 수 있다. 예컨대, 열교환 소자(120)는 헌열교환기일 수 있다. 나아가, 배기와 급기 간의 열교환 이외의 세균, 유독 물질, 등의 오염물질이 서로 섞이지 않을 수 있다. 나아가, 열교환 소자(120)는 외층이 세균 등으로부터 보호를 위한 피막으로 둘러싸일 수 있다. 예컨대, 피막이 세균 등을 제거하는 살균력을 가질 수도 있다. 예컨대, 피막이 금속이나 금속 합금을 포함할 수도 있다. 또한, 열교환 소자(120)는 금속 또는 수지 재질을 포함할 수 있고, 예를 들어, 금속(갈륨)과 이온(예, 구리이온)을 추가 또는 입혀 코팅된 구조일 수 있다. 열교환 소자(120)는 환기구(113)으로부터 유입된 내기와 외기구(111)로부터 유입된 외기에 대해 열교환을 수행할 수 있다. 이러한 열교환 소자(120)는 금속 또는 수지 등으로 이루어질 수 있다. 이에, 열교환 소자(120)는 습기 등에 의해 내구성이 강할 수 있다. 나아가, 습기 등에 대해 열교환 소자(120)를 용이하게 세척할 수 있다. 이에, 습기로 인한 환기 장치의 문제가 억제될 수 있다. 나아가, 습기 등에 의한 환기 장치(100)의 내구성 또는 신뢰성이 향상될 수 있다.The heat exchange element 120 according to the embodiment may perform heat exchange while internal and external air crosses each other. For example, the heat exchange element 120 may be a thermal heat exchanger. Furthermore, contaminants such as bacteria, toxic substances, etc. other than heat exchange between exhaust and supply air may not mix with each other. Furthermore, the outer layer of the heat exchange element 120 may be surrounded by a film for protection from bacteria, etc. For example, the film may have sterilizing power to remove bacteria, etc. For example, the film may contain a metal or metal alloy. Additionally, the heat exchange element 120 may include a metal or resin material and, for example, may have a structure coated by adding or coating a metal (gallium) and an ion (e.g., copper ion). The heat exchange element 120 may perform heat exchange between the internal air flowing in from the ventilation opening 113 and the external air flowing in from the external air opening 111. This heat exchange element 120 may be made of metal or resin. Accordingly, the heat exchange element 120 may be highly durable due to moisture, etc. Furthermore, the heat exchange element 120 can be easily cleaned against moisture, etc. Accordingly, problems with ventilation devices due to moisture can be suppressed. Furthermore, durability or reliability of the ventilation device 100 due to moisture, etc. may be improved.
도 3을 추가로 참조하면, 열교환 소자(120)는 케이스(110) 내에 배치되어 외기구(111), 배기구(112), 환기구(113) 및 급기구(114) 각각과 연통되는 외기공급부(121), 내기배출부(124), 내기공급부(123) 및 외기배출부(122)를 포함할 수 있다. 즉, 열교환 소자(120)는 외기공급부(121), 내기배출부(124), 내기공급부(123) 및 외기배출부(122)를 포함할 수 있다.Referring further to FIG. 3, the heat exchange element 120 is disposed within the case 110 and communicates with each of the external air outlet 111, the exhaust port 112, the ventilation port 113, and the air supply port 114. ), it may include an internal air discharge unit 124, an internal air supply unit 123, and an external air discharge unit 122. That is, the heat exchange element 120 may include an external air supply unit 121, an internal air discharge unit 124, an internal air supply unit 123, and an external air discharge unit 122.
이 때, 열교환 소자(120)는 실외 공기(A)를 실내로 공급하는 외기공급부(121)(또는 외기배출부)와 실내 공기(B)를 실외 또는 외부로 배출하는 내기공급부(또는 내기배출부)가 교대로 적층될 수 있다. 이 때, 실외 공기가 실내로 공급되고, 실내 공기가 실외로 배출되는 과정에서 열교환 소자(120)를 통해 열교환이 발생할 수 있다. 이에, 환기 장치(100)는 개선된 에너지 효율을 제공할 수 있다. 다만, 실외 공기가 'A'를 따라 이동하고, 실내 공기가 'B'를 따라 실외로 이동함에 있어서, 실외 공기와 실내 공기 간의 수분, 세균 등의 이동이 존재하지 않는다. 즉, 열교환 소자(120)는 부직포나, 종이가 아닌 수지로 이루어져 급기와 배기 사이에 열교환만 발생할 수 있다. 이에, 실내 공기가 환자, 감염자 등에 의해 오염되는 경우, 실내 공기가 오롯이 실외로 배출될 수 있다. 이에, 실내 오염을 용이하게 방지할 수 있다. 나아가, 급기와 배기 간의 열교환만이 존재하여(수분, 세균 등의 이동 없음), 오염된 실내 공기가 재오염되는 현상이 미연에 방지된다.At this time, the heat exchange element 120 includes an external air supply unit 121 (or external air discharge unit) that supplies outdoor air (A) into the room, and an internal air supply unit (or internal air discharge unit) that discharges indoor air (B) outdoors or to the outside. ) can be stacked alternately. At this time, heat exchange may occur through the heat exchange element 120 while outdoor air is supplied indoors and indoor air is discharged outdoors. Accordingly, the ventilation device 100 can provide improved energy efficiency. However, as outdoor air moves along 'A' and indoor air moves outdoors along 'B', there is no movement of moisture, bacteria, etc. between outdoor air and indoor air. That is, the heat exchange element 120 is made of resin rather than non-woven fabric or paper, so that only heat exchange can occur between the supply air and exhaust air. Accordingly, when indoor air is polluted by patients, infected people, etc., the indoor air may be discharged outdoors. Accordingly, indoor pollution can be easily prevented. Furthermore, since there is only heat exchange between the supply air and exhaust air (no movement of moisture, bacteria, etc.), re-contamination of polluted indoor air is prevented in advance.
이처럼, 외기공급부(또는 외기배출부)와 내기공급부(또는 내기배출부)는 서로 분리된 구조일 수 있다. 나아가, 외기공급부(또는 외기배출부)와 내기공급부(또는 내기배출부)는 서로 다른 층을 형성하며 반복 형성된 골을 가질 수 있다. 이에, 외기공급부(또는 외기배출부)를 통한 외기와 내기공급부(또는 내기배출부)를 통한 내기 간의 열교환이 이루어질 수 있다. 나아가, 실외 공기(A)를 실내로 공급하기 위해 외기공급부(121)는 외기 영역(R1)과 연통할 수 있다. 그리고 외기공급부(121)는 외기배출부(122)와도 연통하여 실외 공기(A)가 외기공급부, 외기배출부, 급기 영역(R2) 및 급기구(114)로 순차 이동할 수 있다.In this way, the external air supply unit (or external air discharge unit) and the internal air supply unit (or internal air discharge unit) may have separate structures. Furthermore, the external air supply unit (or external air discharge unit) and the internal air supply unit (or internal air discharge unit) form different layers and may have repeatedly formed valleys. Accordingly, heat exchange can be achieved between the outside air through the outside air supply unit (or outside air discharge unit) and the inside air through the inside air supply unit (or inside air discharge unit). Furthermore, in order to supply outdoor air (A) indoors, the outdoor air supply unit 121 may communicate with the outdoor air area (R1). In addition, the outdoor air supply unit 121 also communicates with the outdoor air discharge unit 122, so that the outdoor air (A) can sequentially move to the outdoor air supply unit, the outdoor air exhaust unit, the air supply area R2, and the air supply opening 114.
또한, 실내 공기(B)를 실외로 배출하기 위해 내기공급부(123)는 환기 영역(R#) 및 환기구(113)와 연통할 수 있다. 그리고 내기공급부(123)는 내기배출부(124)와도 연통하여, 실내 공기(B)가 내기공급부, 내기배출부, 배기 영역(R4) 및 배기구(112)로 순차 이동할 수 있다.Additionally, the indoor air supply unit 123 may communicate with the ventilation area R# and the ventilation port 113 in order to discharge the indoor air B to the outdoors. And the bet supply unit 123 also communicates with the bet discharge unit 124, so that the indoor air (B) can sequentially move to the bet supply unit, the bet discharge unit, the exhaust area (R4), and the exhaust port 112.
나아가, 실시예로, 외기 영역(R1)은 외기공급부(121) 및 외기구(111) 사이에서 외기공급부(121) 및 외기구(111)와 연통할 수 있다. 급기 영역(R2)은 외기배출부(122) 및 급기구(114) 사이에서 외기배출부(122) 및 급기구(114)와 연통할 수 있다.Furthermore, in an embodiment, the outdoor air area R1 may communicate with the outdoor air supply unit 121 and the external device 111 between the external air supply units 121 and the external device 111. The air supply area R2 may communicate with the outdoor air outlet 122 and the air supply port 114 between the outdoor air outlet 122 and the air supply port 114.
또한, 환기 영역(R3)은 내기공급부(123) 및 환기구(113) 사이에서 내기공급부(123) 및 환기구(113)와 연통할 수 있다. 배기 영역(R4)은 내기배출부(124) 및 배기구(112) 사이에서 내기배출부(124) 및 배기구(112)와 연통할 수 있다.In addition, the ventilation area (R3) may communicate with the internal air supply unit 123 and the ventilation hole 113 between the internal air supply unit 123 and the ventilation hole 113. The exhaust area (R4) may communicate with the internal air discharge unit 124 and the exhaust port 112 between the internal air discharge unit 124 and the exhaust port 112.
또한, 열교환 소자(120)에서 급기와 배기에 따른 유체의 유입 또는 교환 차단된다. 즉, 에너지 교환을 제외하고, 공기 내의 유체(수분) 등이 열교환 소자(120) 내부에서 이동하지 않을 수 있다. 즉, 오염된 실내 공기는 배기구를 통해 모두 배출될 수 있다. 다시 말해, 오염된 공기의 배기 시, 일부 공기가 열교환 소자(120)의 급기 경로로 유출되지 않을 수 있다. 마찬가지로, 외부의 신선한 공기는 급기구를 통해 모두 유입될 수 있다. 다시 말해, 깨끗한 공기의 급기 시, 일부 공기가 열교환 소자(120)의 배기 경로로 유출되지 않을 수 있다. 이에, 실내의 사람들에 대한 건강 복지가 증진될 수 있다.In addition, the heat exchange element 120 blocks the inflow or exchange of fluid due to supply and exhaust. That is, except for energy exchange, fluid (moisture) in the air may not move inside the heat exchange element 120. In other words, all contaminated indoor air can be discharged through the exhaust port. In other words, when exhausting contaminated air, some of the air may not flow out into the air supply path of the heat exchange element 120. Likewise, all fresh air from outside can be brought in through the supply vent. In other words, when clean air is supplied, some of the air may not leak out to the exhaust path of the heat exchange element 120. Accordingly, the health and welfare of people indoors can be improved.
또한, 실시예에 따른 환기 장치(100)에서 분리부재(130)는 외기구(111)와 환기구(113) 사이에 배치될 수 있다. 분리부재(130)는 외기 영역(R1)과 환기 영역(R3) 사이에 배치될 수 있다. 이에, 분리부재(130)는 외기 영역(R1)과 환기 영역(R3)을 구획할 수 있다.Additionally, in the ventilation device 100 according to the embodiment, the separation member 130 may be disposed between the external device 111 and the ventilation hole 113. The separation member 130 may be disposed between the outdoor air area (R1) and the ventilation area (R3). Accordingly, the separation member 130 may partition the outdoor air area (R1) and the ventilation area (R3).
그리고 분리부재(130)는 환기구(113)와 외기구(111)를 연결하는 제1 바이패스부(131)를 포함할 수 있다. 제1 바이패스부(131)는 단파 밸브에 의해 구동할 수 있다. 예컨대, 제1 바이패스부(131)는 조작에 의해 환기구(113)와 외기구(111)를 연통하는 홀을 열거나(open)나 닫을 수 있다(closed). 이에, 제1 바이패스부(131)가 열리면 환기 영역(R3)과 외기 영역(R1)이 서로 연결될 수 있다. 제1 바이패스부(131)가 열린 경우 외기구(111)는 닫힌 상태일 수 있다.And the separation member 130 may include a first bypass portion 131 connecting the ventilation hole 113 and the external device 111. The first bypass unit 131 may be driven by a short-wave valve. For example, the first bypass unit 131 can open or close a hole communicating with the ventilation port 113 and the external device 111 by manipulation. Accordingly, when the first bypass unit 131 is opened, the ventilation area R3 and the outdoor air area R1 may be connected to each other. When the first bypass unit 131 is open, the external mechanism 111 may be in a closed state.
제2 바이패스부(151)는 단파 밸브에 의해 구동할 수 있다. 예컨대, 제2 바이패스부(151)는 조작에 의해 홀을 열거나(open)나 닫을 수 있다(closed). 이에, 제2 바이패스부(151)가 열리면 배기 영역(R4)과 외기 영역(R1)이 서로 연결될 수 있다. The second bypass unit 151 may be driven by a short-wave valve. For example, the second bypass unit 151 can open or close the hole by manipulation. Accordingly, when the second bypass unit 151 is opened, the exhaust area R4 and the outside air area R1 may be connected to each other.
제2 바이패스부(151)는 배기구(112)와 열교환 소자(120) 사이에 배치될 수 있다. 나아가, 제2 바이패스부(151)는 열교환 소자(120)의 외기공급부와 제1 방향으로 중첩될 수 있다. 이에 대한 설명은 후술한다.The second bypass unit 151 may be disposed between the exhaust port 112 and the heat exchange element 120. Furthermore, the second bypass unit 151 may overlap the external air supply unit of the heat exchange element 120 in the first direction. This will be explained later.
나아가, 제2 바이패스부(151)는 제1 팬(141)과 열교환 소자(120)의 외기공급부(121) 사이에 배치될 수 있다. 이에, 제2 바이패스부(151)에 의해 배기 영역(R4)과 외기 영역(R1)이 서로 연결되어, 후술하는 클린, 음압이 수행될 수 있다. Furthermore, the second bypass unit 151 may be disposed between the first fan 141 and the external air supply unit 121 of the heat exchange element 120. Accordingly, the exhaust area R4 and the outside air area R1 are connected to each other by the second bypass unit 151, so that clean and negative pressure, which will be described later, can be performed.
나아가, 환기구(113), 배기구(112), 외기구(111), 급기구(114) 중 적어도 하나에는 댐퍼(Damper)가 설치될 수 있다. 예를 들어, 환기구(113)에는 환기 댐퍼(미도시)가 설치될 수 있다. 배기구(112)에는 배기 댐퍼가 설치될 수 있다. 외기구(111)에는 외기 댐퍼가 설치될 수 있다. 급기구(114)에는 급기 댐퍼(미도시)가 설치될 수 있다. 예컨대, 외기구(111)에는 단파 밸브(111a)가 설치될 수 있다. 이에, 본 명세서에서 환기 장치가 '청정'으로 구동 시, 외기구(111)는 닫힐 수 있다. 이에, 환기구(113)로 유입된 실내 공기가 제1 바이패스부(131)를 지나 외기구(111)로 배출되지 않고, 열교환 소자(120)의 외기공급부(121) 및 외기배출부(122)로 순차 이동할 수 있다.Furthermore, a damper may be installed in at least one of the ventilation opening 113, the exhaust opening 112, the external opening 111, and the air supply opening 114. For example, a ventilation damper (not shown) may be installed in the ventilation opening 113. An exhaust damper may be installed in the exhaust port 112. An external air damper may be installed in the external mechanism 111. An air supply damper (not shown) may be installed in the air supply opening 114. For example, a short-wave valve 111a may be installed in the external device 111. Accordingly, in this specification, when the ventilation device is operated in 'clean' mode, the external device 111 may be closed. Accordingly, the indoor air flowing into the ventilation opening 113 is not discharged to the external appliance 111 through the first bypass unit 131, and is not discharged to the external air supply unit 121 and the external air discharge unit 122 of the heat exchange element 120. You can move sequentially.
이 때, 공기가 흡입되는 외기구(111) 및 환기구(113)에 설치되는 댐퍼는 전동 댐퍼(Actuator Damper)일 수 있다. 전동 댐퍼는 회전 각도에 따라 공기가 유동되는 유로의 개도를 조절하는 베인(vane)과, 베인을 동작시키는 댐퍼 엑추에이터(actuator)를 포함할 수 있다. At this time, the damper installed in the external device 111 and the ventilation hole 113 through which air is sucked may be an electric damper (actuator damper). The electric damper may include a vane that adjusts the opening degree of a flow path through which air flows depending on the rotation angle, and a damper actuator that operates the vane.
예컨대, 환기 장치(100)는 제어부(CB)를 포함할 수 있다. 또한, 제어부(CB)는 댐퍼 엑추에이터를 작동하여 각 댐퍼의 개도를 제어할 수 있다. 댐퍼 개도의 증가는 댐퍼가 오픈(open)되는 것을 의미할 수 있다. 댐퍼 개도의 감소는 댐 퍼가 클로즈(close)되는 것을 의미할 수 있다.For example, the ventilation device 100 may include a control unit (CB). Additionally, the control unit (CB) can control the opening degree of each damper by operating the damper actuator. An increase in the damper opening may mean that the damper is open. A decrease in the damper opening may mean that the damper is closed.
제어부(CB)의 제어 하에 댐퍼 엑추에이터가 동작됨으로써, 베인의 회전 각도가 제어될 수 있다. 이로써, 외기구(111)나 환기구(113)를 통한 공기의 흡입이 제어될 수 있다.By operating the damper actuator under the control of the control unit CB, the rotation angle of the vane can be controlled. As a result, intake of air through the external device 111 or the ventilation hole 113 can be controlled.
또한, 공기가 토출되는 배기구(112) 및 급기구(114)에 설치되는 댐퍼는 역류방지 댐퍼(BDD: Back Draft Damper)일 수 있다. 따라서, 배기구(112) 및 급기구(114)를 통해 공기가 흡입되는 것을 방지할 수 있다.Additionally, the damper installed at the exhaust port 112 and the supply port 114 through which air is discharged may be a back draft damper (BDD). Therefore, it is possible to prevent air from being sucked through the exhaust port 112 and the supply port 114.
한편, 제어부(CB)는 케이스(110)에 설치될 수 있다. 좀 더 상세히, 제어부(CB)는 측부에 설치될 수 있다. 케이스(110)의 측부에는 제어부 설치용 개구부가 형성될 수 있고, 제어부(CB)는 상기 제어부 설치용 개구부에 설치될 수 있다. 제어부(CB)는 케이스(110)의 내부 방향 또는 외부 방향으로 돌출되도록 설치될 수 있다.Meanwhile, the control unit (CB) may be installed in the case 110. In more detail, the control unit (CB) may be installed on the side. An opening for installing the control unit may be formed on the side of the case 110, and the control unit CB may be installed in the opening for installing the control unit. The control unit CB may be installed to protrude toward the inside or outside of the case 110.
또한, 제어부(CB)는 측부 중 환기구(113), 배기구(112), 외기구(111) 및 급기구(114)가 형성되지 않은 면에 설치될 수 있다. 예를 들어, 환기구(113) 및 급기구(114)가 케이스(110)의 일측면에 형성되고, 외기구(111) 및 배기구(112)가 케이스(110)의 타측면에 형성되면, 제어부(CB)는 케이스(110)의 일측면/타측면 이외의 측면에 배치될 수 있다.Additionally, the control unit (CB) may be installed on a side of the side where the ventilation opening 113, the exhaust opening 112, the external opening 111, and the air supply opening 114 are not formed. For example, if the ventilation opening 113 and the air supply opening 114 are formed on one side of the case 110, and the external opening 111 and the exhaust opening 112 are formed on the other side of the case 110, the control unit ( CB) may be placed on a side other than one side/other side of the case 110.
제어부(CB)는 통신부, 인터페이스부, 인버터부 등을 포함할 수 있고, 외기 처리 환기 장치(100)의 운전 전반을 제어할 수 있다.The control unit (CB) may include a communication unit, an interface unit, an inverter unit, etc., and may control the overall operation of the outdoor air treatment ventilation device 100.
나아가, 급기 영역(R2)에는 냉난방 기기 등이 연결 또는 배치될 수 있다. 즉, 냉방, 난방 또는 냉/난방 기기가 연결 또는 배치되기 위한 공긴(AC)이 급기 영역(R2) 내에 존재할 수 있다. 이러한 구성에 의하여, 실내로 냉난방된 공기가 유입될 수 있다.Furthermore, cooling and heating equipment, etc. may be connected or placed in the air supply area R2. That is, air (AC) for cooling, heating, or cooling/heating equipment to be connected or disposed may exist in the air supply area (R2). With this configuration, cooled and heated air can be introduced into the room.
또한, 환기 장치(100)는 제1 팬(141) 및 제2 팬(142)을 포함할 수 있다. 제1 팬(141)은 배기 영역(R4)에 배치되어 내부 공기를 외부로 배출할 수 있다. 제1 팬(141)은 배기구(112)에 인접하게 위치할 수 있다.Additionally, the ventilation device 100 may include a first fan 141 and a second fan 142. The first fan 141 may be disposed in the exhaust area R4 to exhaust internal air to the outside. The first fan 141 may be located adjacent to the exhaust port 112.
즉, 제1 팬(141)은 배기를 용이하게 수행하고, 제2 팬(142)은 급기를 수행할 수 있다. 제1 팬(141)과 제2 팬(142)은 사용자의 조작 또는 시스템에 의해 수동/자동으로 동작할 수 있다. 제1 팬(141) 및 제2 팬(142)은 모터 및 모터에 의한 날개회전으로 유체의 흐름을 형성하거나 가속화할 수 있다. 제1 팬(141)은 환기 모드에서 배기를 위해 동작하고, 제2 팬(142)은 상시 동작할 수 있다.That is, the first fan 141 can easily exhaust air, and the second fan 142 can supply air. The first fan 141 and the second fan 142 can be operated manually/automatically by user operation or by the system. The first fan 141 and the second fan 142 can form or accelerate the flow of fluid through a motor and rotation of wings by the motor. The first fan 141 operates for exhaust in ventilation mode, and the second fan 142 may operate at all times.
그리고 제2 팬(142)은 급기 영역(R2)에 배치될 수 있다. 제2 팬(142)은 외부 공기를 실내로 유입할 수 있다. 제2 팬(142)은 급기구(114)에 인접하게 위치할 수 있다. And the second fan 142 may be disposed in the air supply area (R2). The second fan 142 may introduce outside air into the room. The second fan 142 may be located adjacent to the air supply opening 114.
도 4는 실시예에 따른 환기 장치에서 외기의 흐름을 설명하는 내부 구조에 대한 상면도이고, 도 5는 실시예에 따른 환기 장치에서 외기의 흐름을 설명하는 내부 구조에 대한 측면도이다.FIG. 4 is a top view of an internal structure explaining the flow of outside air in a ventilation device according to an embodiment, and FIG. 5 is a side view of an internal structure explaining the flow of outside air in a ventilation device according to an embodiment.
도 4 및 도 5를 참조하면, 실시예에 따른 환기 장치(100)는 제1 필터(F1) 및 제2 필터(F2)를 더 포함할 수 있다. 제1,2 필터는 다양한 기능의 필터를 포함할 수 있다.Referring to FIGS. 4 and 5 , the ventilation device 100 according to the embodiment may further include a first filter (F1) and a second filter (F2). The first and second filters may include filters with various functions.
제1 필터(F1)는 열교환 소자(120)에 부착될 수 있다. 제1 필터(F1)는 프리 필터(pre filter)일 수 있다. 제1 필터(F1)는 외기공급부(121) 및 내기공급부(123) 중 적어도 하나에 배치될 수 있다.The first filter F1 may be attached to the heat exchange element 120. The first filter F1 may be a pre filter. The first filter (F1) may be disposed in at least one of the external air supply unit 121 and the internal air supply unit 123.
제2 필터(F2)는 예컨대 헤파 필터일 수 있다. 제2 필터(F2)는 급기구(114)와 열교환 소자(120) 사이에 배치될 수 있다.The second filter (F2) may be, for example, a HEPA filter. The second filter F2 may be disposed between the air supply opening 114 and the heat exchange element 120.
나아가, 도시된 바와 같이 실시예에 따른 환기 장치(100)에서 외기는 외기구(111), 외기 영역(R1), 열교환 소자(120)의 외기공급부(121), 외기배출부(122), 급기 영역(R2) 및 급기구(114)를 순차로 지나 실내로 제공될 수 있다(PAT1).Furthermore, as shown, in the ventilation device 100 according to the embodiment, the outside air is supplied to the outside device 111, the outside air area (R1), the outside air supply part 121 of the heat exchange element 120, the outside air discharge part 122, and the supply air. It can be provided indoors through the area (R2) and the air supply opening (114) sequentially (PAT1).
도 6은 실시예에 따른 환기 장치에서 내기의 흐름을 설명하는 내부 구조에 대한 상면도이고, 도 7은 실시예에 따른 환기 장치에서 내기의 흐름을 설명하는 내부 구조에 대한 측면도이다.Figure 6 is a top view of the internal structure explaining the flow of air in the ventilation device according to the embodiment, and Figure 7 is a side view of the internal structure explaining the flow of air in the ventilation device according to the embodiment.
도 6 및 도 7을 참조하면, 도시된 바와 같이 실시예에 따른 환기 장치(100)에서 내기(실내 공기) 환기구(113), 환기 영역(R3), 열교환 소자(120)의 내기공급부(123), 내기배출부(124), 배기 영역(R4) 및 배기구(112)를 순차로 지나 실외로 제공될 수 있다(PAT2). 상술한 도 4 및 도 5는 실외 공기가 실내로 유입되는 급기를 의미한다. 그리고 도 6 및 도 7은 오염된 실내 공기가 배출되는 배기를 의미한다.Referring to Figures 6 and 7, as shown, in the ventilation device 100 according to the embodiment, the indoor air (indoor air) vent 113, the ventilation area (R3), and the indoor air supply unit 123 of the heat exchange element 120 , it can be provided to the outdoors by sequentially passing through the internal combustion engine discharge unit 124, the exhaust area (R4), and the exhaust port 112 (PAT2). Figures 4 and 5 described above represent air supply through which outdoor air flows into the room. And Figures 6 and 7 refer to the exhaust where polluted indoor air is discharged.
도 8은 실시예에 따른 환기 장치에서 제1 바이패스부의 동작에 따른 유체의 흐름을 설명하는 내부 구조에 대한 상면도이고, 도 9는 실시예에 따른 환기 장치에서 제1 바이패스부의 동작에 따른 유체의 흐름을 설명하는 내부 구조에 대한 측면도이다.FIG. 8 is a top view of an internal structure illustrating the flow of fluid according to the operation of the first bypass unit in the ventilation device according to the embodiment, and FIG. 9 is a top view of the internal structure according to the operation of the first bypass unit in the ventilation device according to the embodiment. This is a side view of the internal structure explaining the flow of fluid.
도 8 및 도 9를 참조하면, 환기 장치가 '청정'으로 동작하는 경우를 나타낸다. 상술한 바와 같이 외기구(111)와 환기구(113) 사이에 분리부재(130)가 배치될 수 있다. 그리고 제1 바이패스부(131)는 댐퍼로 동작할 수 있다. 예컨대, 제1 바이패스부(131)가 오픈(또는 열림)되어 실내 공기가 환기구(113), 환기 영역(R3), 제1 바이패스부(131), 외기 영역(R1), 열교환 소자(120)의 외기공급부(121), 외기배출부(122), 급기 영역(R2) 및 급기구(114)를 순차로 이동할 수 있다(PAT3).Referring to Figures 8 and 9, a case where the ventilation device operates in 'clean' mode is shown. As described above, a separation member 130 may be disposed between the external device 111 and the ventilation hole 113. And the first bypass unit 131 may operate as a damper. For example, the first bypass unit 131 is opened (or opened) so that indoor air flows into the ventilation port 113, the ventilation area (R3), the first bypass unit 131, the outside air area (R1), and the heat exchange element 120. ) of the outdoor air supply unit 121, the outdoor air discharge unit 122, the air supply area (R2), and the air supply port 114 can be moved sequentially (PAT3).
이에, 환기구(113)에서 급기구(114)로 실내 공기가 순환될 수 있다. 이 때, 실내 공기는 상술한 순차 이동에 따라 제1 필터(F1)와 제2 필터(F2)를 통과할 수 있다. 이에, 실내 공기의 청정이 이루어질 수 있다.나아가, 외기구(111)가 닫힌 상태 즉, 환기 시 소정의 시간동안 제1 바이패스부(131)가 열릴 수 있다. 즉, 제1 바이패스부(131)가 외기구(111)가 닫힌 경우 일정 조건 또는 소정의 시간 동안 오픈될 수 있다. Accordingly, indoor air can be circulated from the ventilation opening 113 to the air supply opening 114. At this time, the indoor air may pass through the first filter (F1) and the second filter (F2) according to the sequential movement described above. Accordingly, indoor air can be purified. Furthermore, when the external device 111 is closed, that is, when ventilation is performed, the first bypass unit 131 can be opened for a predetermined period of time. That is, the first bypass unit 131 may be open under certain conditions or for a certain time when the external device 111 is closed.
예컨대, 실내 공기의 오염도가 측정되면, 제어부는 오염도의 정도에 따라 환기, 청정을 수행할 수 있다. 예컨대, 오염도가 가장 큰 제1 임계값보다 큰 경우, 배기/급기를 수행할 수 있다. 즉, 환기구(113)에서 배기구(112)로 실내 공기가 배출될 수 있다. 다만, 오염도가 제1 임계값보다 작은 경우, 제어부는 외기구(111)를 닫고, 제1 바이패스부(131)를 열 수 있다. 이에, 실내 공기가 환기구(113), 열교환 소자(120), 급기구(114)를 거쳐 실내로 유입될 수 있다. 즉, 제1,2 필터에 의한 실내 공기의 청정이 이루어질 수 있다. 나아가, 오염도가 제1 임계값보다 작은 경우, 오염도의 정도에 따라 제2 팬(142)의 동작 속도가 조절될 수 있다. 예컨대, 오염도가 제1 임계값보다 작더라도, 오염도의 정도가 제1 임계값과 유사한 경우 제2 팬(142)의 동작 속도는 오염도의 정도가 제1 임계값보다 매우 작은 경우 대비 클 수 있다. 이처럼, 오염도에 비례하여 제2 팬(142)의 동작 속도가 제어될 수 있다.For example, when the pollution level of indoor air is measured, the control unit can perform ventilation and cleaning according to the level of pollution. For example, if the degree of contamination is greater than the first greatest threshold, exhaust/supply air may be performed. That is, indoor air may be discharged from the ventilation port 113 to the exhaust port 112. However, if the contamination level is less than the first threshold, the control unit may close the external device 111 and open the first bypass unit 131. Accordingly, indoor air may be introduced into the room through the ventilation opening 113, the heat exchange element 120, and the air supply opening 114. That is, indoor air can be purified by the first and second filters. Furthermore, when the degree of contamination is less than the first threshold, the operating speed of the second fan 142 may be adjusted depending on the degree of contamination. For example, even if the degree of contamination is less than the first threshold, when the degree of contamination is similar to the first threshold, the operating speed of the second fan 142 may be greater than when the degree of contamination is much smaller than the first threshold. In this way, the operating speed of the second fan 142 can be controlled in proportion to the degree of contamination.
나아가, 제1 팬(141)의 동작만이 존재하는 경우, 환기 장치에 의해 실내와 실외 간의 압력 조절이 이루어질 수 있다. 즉, 실내의 양음압이 조절될 수 있다. 이 때, 실내 공기가 환기구(113), 열교환 소자(120) 및 배기구(112)를 통해 배출될 수 있다.Furthermore, when only the operation of the first fan 141 exists, pressure control between indoors and outdoors can be achieved by a ventilation device. In other words, the positive and negative pressure in the room can be adjusted. At this time, indoor air may be discharged through the ventilation port 113, the heat exchange element 120, and the exhaust port 112.
이에, 분리부재(130)의 제1 바이패스부(131)에 의해 환기 영역(R3)과 외기 영역(R1)이 서로 연통될 수 있다. 따라서, 환기구(113)로 유입된 실내 공기가 외기 영역(R1)에 제공될 수 있다. 즉, 제1 바이패스부(131)가 오픈되면, 실내 공기 또는 유체가 환기구(113), 환기 영역(R3), 외기 영역(R1)을 경유할 수 있다.Accordingly, the ventilation area R3 and the outside air area R1 may be communicated with each other by the first bypass part 131 of the separation member 130. Accordingly, indoor air flowing into the ventilation opening 113 may be provided to the outdoor air area R1. That is, when the first bypass unit 131 is opened, indoor air or fluid can pass through the vent 113, the ventilation area (R3), and the outside air area (R1).
그리고 공기는 열교환 소자(120)의 외기공급부(121)로 유입될 수 있다. 이에, 실내 대비 온도 및 습도가 높은 실외에 인접한 외기공급부(121)에서 발생하는 습기가 제거될 수 있다. 즉, 제1 바이패스부(131)를 통과한 실내 공기에 의해 열교환 소자(120) 중 실외에 인접한 영역에서 발생한 습기가 용이하게 제거될 수 있다.And air may flow into the outside air supply unit 121 of the heat exchange element 120. Accordingly, moisture generated in the outdoor air supply unit 121 adjacent to the outdoors, where temperature and humidity are higher than indoors, can be removed. That is, moisture generated in an area adjacent to the outdoors of the heat exchange element 120 can be easily removed by indoor air passing through the first bypass unit 131.
예컨대, 일부 공기는 외기 영역(R1)에서 열교환 소자의 외기공급부(121) 및 외기배출부(122)를 지나 급기구(114)로 배출될 수 있다. 이 때, 상술한 바와 같이 제1 필터와 제2 필터를 경유하므로 공기의 오염도가 더욱 낮아질 수 있다.For example, some air may be discharged from the outdoor air region R1 through the outdoor air supply unit 121 and the outdoor air discharge unit 122 of the heat exchange element to the air supply opening 114. At this time, as described above, the pollution level of the air can be further reduced because it passes through the first filter and the second filter.
도 10은 실시예에 따른 환기 장치의 내부 구조를 도시한 측면도이고, 도 11은 실시예에 따른 환기 장치의 내부 구조를 도시한 사시도이다.FIG. 10 is a side view showing the internal structure of a ventilation device according to an embodiment, and FIG. 11 is a perspective view showing the internal structure of a ventilation device according to an embodiment.
도 10 및 도 11을 참조하면, 실시예에 따른 환기 장치에서 열교환 소자(120)의 외기공급부(121)와 외기배출부(122)는 서로 마주보게 배치될 수 있다. 예컨대, 서로 연통되고, 열교환 소자의 중심을 기준으로 대향하게 위치할 수 있다.Referring to FIGS. 10 and 11 , in the ventilation device according to the embodiment, the outdoor air supply unit 121 and the outdoor air exhaust unit 122 of the heat exchange element 120 may be arranged to face each other. For example, they may communicate with each other and be located oppositely based on the center of the heat exchange element.
또한, 열교환 소자(120)의 내기공급부(123)와 내기배출부(124)도 동일하게 서로 마주보게 배치될 수 있다.In addition, the internal air supply unit 123 and the internal air discharge unit 124 of the heat exchange element 120 may also be arranged to face each other.
그리고, 실시예로 환기 장치(100) 또는 케이스(110)는 외기공급부(121) 또는 내기배출부(124)에 인접하게 배치된 유체수용부(140)를 더 포함할 수 있다. And, in an embodiment, the ventilation device 100 or case 110 may further include a fluid receiving portion 140 disposed adjacent to the external air supply portion 121 or the internal air discharge portion 124.
유체수용부(140)는 열교환 소자(120) 중 실외에 인접한 영역과 중첩되도록 배치될 수 있다. 예컨대, 유체수용부(140)는 외기공급부(121) 또는 내기배출부(124)와 중첩되도록 배치될 수 있다. 즉, 유체수용부(140)는 외기공급부(121) 또는 내기배출부(124)와 제3 방향(Z축 방향)으로 중첩될 수 있다. 제3 방향은 제1 방향 및 제2 방향에 수직한 방향일 수 있다. The fluid receiving portion 140 may be arranged to overlap an area of the heat exchange element 120 adjacent to the outdoor area. For example, the fluid receiving unit 140 may be arranged to overlap the external air supply unit 121 or the internal air discharge unit 124. That is, the fluid receiving unit 140 may overlap the external air supply unit 121 or the internal air discharge unit 124 in the third direction (Z-axis direction). The third direction may be perpendicular to the first and second directions.
나아가, 내기배출부(124)는 외기공급부(121) 하부에 배치될 수 있다. 예컨대, 내기배출부(124)는 외기공급부(121)와 중첩될 수 있다.Furthermore, the internal air discharge unit 124 may be disposed below the external air supply unit 121. For example, the internal air discharge unit 124 may overlap with the external air supply unit 121.
유체수용부(140)는 내기배출부(124) 하부에 배치될 수 있다. 이에, 유체수용부(140)는 내기배출부(124)와 중첩될 수 있다.The fluid receiving portion 140 may be disposed below the inner discharge portion 124. Accordingly, the fluid receiving portion 140 may overlap with the internal fluid discharge portion 124.
또한, 내기배출부(124)는 외기공급부(121)와 유체수용부(140) 사이에 배치될 수 있다. 이에, 유체수용부(140)는 열교환 소자(120)에서 보다 습도 또는 온도가 높은 실외측의 외기공급부나 내기배출부에서 발생한 습기(W) 또는 유체가 수용될 수 있다. 예컨대, 열교환 소자(120)의 외기공급부(121)에서 발생한 습기가 열교환 소자(120)의 측면을 따라 하부의 유체수용부(140)로 이동할 수 있다. 이에 따라, 열교환 소자(120)의 습기가 용이하게 제거되며, 환기 장치 내의 습기도 용이하게 청소될 수 있다. 예컨대, 유체수용부(140)의 세척으로 환기 장치 내의 습기 문제가 용이하게 해결될 수 있다. 이에 따라, 환기 장치의 내구성이 크게 증가할 수 있다. 나아가, 상술한 바와 같이 '청정' 구동에 의해, 열교환 소자(120)에서 외기와 인접한 외기공급부(121)에서 주로 발생하는 습기가 실내 공기의 흐름(환기구->급기구)으로 대부분 제거될 수 있다. 이에, 유체수용부(140)의 사용(예, 세척)도 매우 줄어들 수 있다. 이로써, 습기로부터 프리한 내구성 개선된 환기 장치를 제공할 수 있다.Additionally, the internal air discharge unit 124 may be disposed between the external air supply unit 121 and the fluid receiving unit 140. Accordingly, the fluid receiving part 140 can accommodate moisture (W) or fluid generated from the outdoor air supply part or the internal air discharge part on the outdoor side where the humidity or temperature is higher than that of the heat exchange element 120. For example, moisture generated in the external air supply part 121 of the heat exchange element 120 may move to the lower fluid receiving part 140 along the side of the heat exchange element 120. Accordingly, moisture in the heat exchange element 120 can be easily removed, and moisture in the ventilation device can also be easily cleaned. For example, the moisture problem within the ventilation device can be easily solved by cleaning the fluid receiving portion 140. Accordingly, the durability of the ventilation device can be greatly increased. Furthermore, as described above, by 'clean' operation, most of the moisture generated in the outdoor air supply unit 121 adjacent to the outdoor air in the heat exchange element 120 can be removed through the flow of indoor air (ventilation port -> supply port). . Accordingly, the use (eg, cleaning) of the fluid receiving part 140 can be greatly reduced. As a result, it is possible to provide a ventilation device with improved durability and free from moisture.
도 12는 실시예에 따른 환기 장치에서 일 동작 모드 시 따른 유체의 흐름을 설명하는 내부 구조에 대한 도면이고, 도 13은 실시예에 따른 환기 장치에서 일 동작 모드 시 따른 유체의 흐름을 설명하는 내부 구조에 대한 측면도이다.FIG. 12 is a diagram of an internal structure illustrating the flow of fluid during one operation mode in the ventilation device according to the embodiment, and FIG. 13 is a diagram illustrating the internal structure of the fluid flow during one operation mode of the ventilation device according to the embodiment. This is a side view of the structure.
실시예에 따르면 도 12 및 도 13은 환기 장치가 '클린'으로 동작하는 경우를 나타낸다. 이하 도 12 및 도 13을 참조하면, 이러한 동작 모드의 명칭(예, 청정, 클린 등)은 다른 용어, 단어로 불릴 수 있으나, 명세서에 기재된 명칭을 기준으로 이하 설명한다.According to the embodiment, Figures 12 and 13 show a case where the ventilation device operates in 'clean' mode. Referring to FIGS. 12 and 13 below, the names of these operation modes (e.g., clean, clean, etc.) may be referred to by different terms or words, but will be described below based on the names described in the specification.
환기 장치가 '클린' 모드로 동작하는 경우, 제2 팬(142)이 정지되고 제1 팬(141)의 상부가 오픈되어 급기로 인한 필터의 오염원을 제1 팬(141)의 상부를 개패 함으로서 배출할 수 있다. 이로써, 제2 팬(142)이 외부 공기의 실내 유입 시 진행 방향의 필터의 먼지는 제2 바이패스부(151)의 오픈되므로 반대 방향으로 공기 흐름이 진행되고 필터의 먼지는 배출된다. 그리고 제2 바이패스부(151)는 상술한 바와 같이 댐퍼로 동작할 수 있다. 특히, 제2 바이패스부(151)는 오픈될 수 있다. 그리고 제1 바이패스부(131)는 댐퍼로 동작할 수 있다. 예컨대, 제1 바이패스부(131)가 오픈(또는 열림)이거나 클로우즈(또는 닫힘)으로 구동될 수 있다. 이러한 구동은 사용자의 입력 또는 기설정된 조건/시간 마다 환기 장치가 '클린' 모드로 동작하는 경우, 제어부가 제1 바이패스부(131), 제2 바이패스부(151), 제1 팬(141),제2 팬(142) 등에 상기 제어 신호를 송신할 수 있다.When the ventilation device operates in 'clean' mode, the second fan 142 is stopped and the upper part of the first fan 141 is opened to remove the contaminants of the filter due to the supply air by opening and closing the upper part of the first fan 141. can be discharged. Accordingly, when the second fan 142 introduces outside air into the room, the dust from the filter in the direction of travel is opened in the second bypass unit 151, so the air flows in the opposite direction and the dust from the filter is discharged. And the second bypass unit 151 may operate as a damper as described above. In particular, the second bypass unit 151 may be open. And the first bypass unit 131 may operate as a damper. For example, the first bypass unit 131 may be driven open (or open) or closed (or closed). This operation is performed when the ventilation device operates in 'clean' mode at each user's input or preset condition/time, and the control unit operates the first bypass unit 131, the second bypass unit 151, and the first fan 141. ), the control signal can be transmitted to the second fan 142, etc.
이에, 유체가 급기구(114), 급기 영역(R2), 열교환 소자(120)의 외기배출부(122), 열교환 소자(120)의 외기공급부(121), 제2 바이패스부(151), 배기 영역(R4)로 이동할 수 있다. 나아가, 제1 팬(141)에 의한 바, 유체가 열교환 소자(120)의 외기배출부(122), 열교환 소자(120)의 외기공급부(121), 제2 바이패스부(151), 배기 영역(R4)로 이동할 수 있다(PAT4). Accordingly, the fluid flows through the supply port 114, the air supply region (R2), the outside air discharge section 122 of the heat exchange element 120, the outside air supply section 121 of the heat exchange element 120, the second bypass section 151, You can move to the exhaust area (R4). Furthermore, as a result of the first fan 141, the fluid flows into the outside air discharge part 122 of the heat exchange element 120, the outside air supply part 121 of the heat exchange element 120, the second bypass part 151, and the exhaust area. You can move to (R4) (PAT4).
이에, 열교환 소자(120)의 외기공급부(121) 상의 제1 필터(F1) 상에 배치되는 먼지, 사체 등의 이물질이 배기구(112)나 배기 영역(R4)로 이동할 수 있다. 이로써, 외기구(111)를 통해 유입된 유체가 열교환 소자(120)의 외기공급부(121)로 효율적으로 유입될 수 있다. 다시 말해, 상기 이물질에 의해 열교환 소자(120)의 외기공급부(121) 또는 제1 필터(F1)를 통과하는 유체의 양이 감소하는 현상이 억제될 수 있다. 또는 급기(유체의 실내 유입)로 인해 이물질이 열교환 소자(120)의 외기공급부(121) 또는 외기공급부(121) 상의 제1 필터(F1)에 쌓이거나 축적되는 문제가 해소될 수 있다.Accordingly, foreign substances such as dust and dead bodies placed on the first filter (F1) on the outside air supply unit (121) of the heat exchange element (120) may move to the exhaust port (112) or exhaust area (R4). Accordingly, the fluid introduced through the external device 111 can be efficiently introduced into the external air supply unit 121 of the heat exchange element 120. In other words, a phenomenon in which the amount of fluid passing through the external air supply unit 121 or the first filter F1 of the heat exchange element 120 is reduced due to the foreign matter can be suppressed. Alternatively, the problem of foreign substances accumulating or accumulating in the outside air supply unit 121 of the heat exchange element 120 or the first filter F1 on the outside air supply unit 121 due to air supply (inflow of fluid into the room) can be solved.
상술한 바와 같이 제2 바이패스부(151)가 열교환 소자(120)의 외기공급부(121)와 제1 방향(X축 방향)으로 중첩될 수 있다. 이에, 상술한 이물질 제거가 효과적으로 수행될 수 있다. As described above, the second bypass unit 151 may overlap the external air supply unit 121 of the heat exchange element 120 in the first direction (X-axis direction). Accordingly, the above-described foreign matter removal can be effectively performed.
도 14는 실시예에 따른 환기 장치에서 다른 동작 모드 시 따른 유체의 흐름을 설명하는 내부 구조에 대한 도면이고, 도 15는 실시예에 따른 환기 장치에서 다른 동작 모드 시 따른 유체의 흐름을 설명하는 내부 구조에 대한 측면도이고, 도 16은 도 14의 변형예이다.FIG. 14 is a diagram of an internal structure illustrating the flow of fluid during different operation modes in the ventilation device according to the embodiment, and FIG. 15 is a diagram illustrating the internal structure of the fluid flow during different operation modes in the ventilation device according to the embodiment. This is a side view of the structure, and Figure 16 is a modified example of Figure 14.
도 14 및 도 15를 참조하면, 환기 장치가 '음압' 모드로 동작하는 경우, 유체가 환기구(113), 열교환 소자의 내기공급부(123), 열교환 소자의 내기배출부(124) 및 배기구(112)를 순차로 이동하고, 그리고 급기구(114), 열교환 소자의 외기배출부(122), 열교환 소자의 외기공급부(121), 제2 바이패스부(151) 및 배기구(112)를 순차로 이동할 수 있다.Referring to Figures 14 and 15, when the ventilation device operates in the 'negative pressure' mode, fluid flows through the ventilation port 113, the internal air supply part 123 of the heat exchange element, the internal air discharge part 124 and the exhaust port 112 of the heat exchange element. ) is sequentially moved, and the supply port 114, the outside air discharge part 122 of the heat exchange element, the outside air supply part 121 of the heat exchange element, the second bypass part 151, and the exhaust port 112 are sequentially moved. You can.
구체적으로, '음압' 모드에서 제1 팬(141)이 구동하여 환기가 구현될 수 있다. 즉, 환기 장치(100)에서 내기(실내 공기) 환기구(113), 환기 영역(R3), 열교환 소자(120)의 내기공급부(123), 내기배출부(124), 배기 영역(R4) 및 배기구(112)를 순차로 지나 실외로 제공될 수 있다(PAT5a). PAT5a는 상술한 PAT2에 대응할 수 있다.Specifically, ventilation may be implemented by driving the first fan 141 in 'negative pressure' mode. That is, in the ventilation device 100, the internal air (indoor air) ventilation port 113, the ventilation area (R3), the internal air supply unit 123 of the heat exchange element 120, the internal air discharge unit 124, the exhaust area (R4), and the exhaust port. It can be provided outdoors after sequentially passing through (112) (PAT5a). PAT5a can correspond to the above-described PAT2.
이에, 외기가 실내로 유입되는 급기 없이 환기만이 수행될 수 있다. 이에, 실내의 유체가 감소하여 실내에 대한 음압이 구현되거나 유지될 수 있다. Accordingly, only ventilation can be performed without supply air flowing into the room. Accordingly, the fluid in the room is reduced so that negative pressure in the room can be implemented or maintained.
나아가, 음압 시, 제1 팬(141)의 구동만으로 음압이 구현될 수도 있다. 이는 이하 다른 음압모드에도 동일하게 적용될 수 있다. 환기구(113)와 급기구(114) 각각은 유체의 이동량이 서로 상이하거나 동일할 수 있다. 이로써, 상술한 음압이 유지할 수 있다. 또한, 다른 예로서, 제2 팬(142)이 급기 시 구동과 상이한 구동이 이루어질 수 있다. 예컨대, 제2 팬(142)이 급기 시 구동과 상이한 방향으로 회전 구동할 수 있다. 즉, 제2 팬이 외부 공기의 실내 유입 시 회전 방향과 반대 방향으로 구동하고, 제2 바이패스부가 오픈될 수 있다.Furthermore, during negative pressure, the negative pressure may be realized only by driving the first fan 141. This can be equally applied to other sound pressure modes below. The ventilation opening 113 and the air supply opening 114 may each have different or the same amount of fluid movement. Thereby, the above-mentioned sound pressure can be maintained. Additionally, as another example, the second fan 142 may be driven differently from the drive during air supply. For example, the second fan 142 may be rotated in a different direction than when air is supplied. That is, the second fan may be driven in a direction opposite to the rotation direction when external air is introduced into the room, and the second bypass unit may be open.
이러한 실시예 모두에 대하여, 유체가 급기구(114), 급기 영역(R2), 열교환 소자(120)의 외기배출부(122), 열교환 소자(120)의 외기공급부(121), 제2 바이패스부(151), 배기 영역(R4) 및 배기구(112)로 이동할 수 있다(PAT5b). For all of these embodiments, the fluid flows through the supply port 114, the air supply region R2, the outside air discharge section 122 of the heat exchange element 120, the outside air supply section 121 of the heat exchange element 120, and the second bypass. It can move to section 151, exhaust area (R4), and exhaust port 112 (PAT5b).
이로써, 실내 유체(공기)가 환기구(113)와 급기구(114)를 통해 모두 실외 또는 배기구(112)로 이동 또는 배출될 수 있다. 이에 따라, 실내의 유체가 감소하여 실내에 대한 음압이 구현되거나 유지될 수 있다. 이 경우, 실내 유체가 환기구(113)와 급기구(114) 모두를 통해 실외로 이동함으로써, 보다 효율적이고 신속하게 실내를 설정된 음압 상태로 만들거나 유지할 수 있다. 예컨대, 제어부는 환기 장치나 환기 장치 외에 연결된 음압 센서(압력 감지 센서 등)로부터 수신한 데이터를 이용하여 사용자가 원하는 또는 기설정된 음압 상태를 구현하기 위해 상술한 제1,2 팬, 제1,2 바이패스부의 구동을 제어할 수 있다.As a result, indoor fluid (air) can be moved or discharged to the outdoors or to the exhaust port 112 through the ventilation port 113 and the supply port 114. Accordingly, the fluid in the room is reduced so that negative pressure in the room can be implemented or maintained. In this case, the indoor fluid moves outdoors through both the ventilation opening 113 and the air supply opening 114, making it possible to more efficiently and quickly create or maintain the room in a set negative pressure state. For example, the control unit uses data received from a ventilation device or a negative pressure sensor (pressure sensor, etc.) connected to the ventilation device to implement the user's desired or preset negative pressure state by using the first and second fans, the first and second fans described above. The operation of the bypass unit can be controlled.
나아가, 실시예에 따른 환기 장치를 통해, 하나의 실내(병실)에서 하나의 본 발명의 환기 장치를 이용하여 음압에 필요한 배기량과 환기에 필요한 급기량을 조절하여 추가적인 양압기 없이도 청정, 환기 및 음압을 수행할 수 있다. 즉, 별도의 전실의 양압 장치 없이 환기 장치 단독으로 청정, 환기, 음압를 수행할 수 있다. Furthermore, through the ventilation device according to the embodiment, by using one ventilation device of the present invention in one room (hospital room), the amount of exhaust air required for negative pressure and the amount of air supply required for ventilation are adjusted to achieve purification, ventilation, and negative pressure without an additional positive pressure device. can be performed. In other words, the ventilation device alone can perform cleaning, ventilation, and negative pressure without a separate positive pressure device in the front room.
예컨대, 하나의 급기부 중 하나(제1 서브 급기부)를 병실과 연결하고, 다른 하나(제2 서브 급기부)를 전실과 연결할 수 있다. 나아가, 환기 장치는 제1 서브 급기부의 급기량보다 제2 서브 급기부의 급기량을 크게 조절할 수 있다. 또한, 예를 들어, 제1 서브 급기부와 제2 서브 급기부의 크기 차이에 의해 급기량이 조절될 수 있다. 이에, 병실은 음압 상태가 될 수 있다. 다시 말해, 병실의 문을 여는 경우, 병실과 연결된 전실로부터 공기가 유입될 수 있다. 나아가, 환기 장치는 환기를 동시에 수행할 수 있다. 다시 말해, 환기 장치 급기와 배기를 동시에 수행할 수 있다. 이로써, 청정의 공기가 실내(전실) 및 병실로 유입될 수 있다. 그리고 환기 장치 제1 서브 급기부의 급기량과 제2 서브 급기부의 급기량의 합을 배기부의 배기량과 동일하게 설정하여, 병실 내의 음압상태를 유지할 수 있다.For example, one of the air supply units (the first sub air supply unit) can be connected to the hospital room, and the other one (the second sub air supply unit) can be connected to the anteroom. Furthermore, the ventilation device can adjust the air supply amount of the second sub air supply unit to be greater than the air supply amount of the first sub air supply unit. Additionally, for example, the amount of air supply may be adjusted by the difference in size between the first sub air supply unit and the second sub air supply unit. Accordingly, the hospital room may be in a negative pressure state. In other words, when the door to a hospital room is opened, air may flow in from the front room connected to the hospital room. Furthermore, the ventilation device can simultaneously perform ventilation. In other words, the ventilation device supply and exhaust can be performed simultaneously. As a result, clean air can be introduced into the room (anteroom) and hospital room. Also, by setting the sum of the air supply amount of the first sub-air supply part and the air supply amount of the second sub-air supply part of the ventilation device to be equal to the exhaust amount of the exhaust part, it is possible to maintain a negative pressure state in the hospital room.
도 16을 더 살펴보면, '음압' 모드에서, 환기 장치의 제1 바이패스부(131)가 오픈(또는 열림)이거나 클로우즈(또는 닫힘)으로 구동될 수 있다. 도 14, 도 15에서 제1 바이패스부(131)는 닫힐 수 있다. 다만, 도 16에서 제1 바이패스부(131)는 열릴 수 있다. Looking further at Figure 16, in the 'negative pressure' mode, the first bypass unit 131 of the ventilation device may be driven open (or open) or closed (or closed). 14 and 15, the first bypass unit 131 may be closed. However, in FIG. 16, the first bypass unit 131 may be open.
즉, 환기 장치가 음압 모드인 경우, 유체가 환기구(113), 제1 바이패스부(131), 제2 바이패스부(151) 및 배기구(112)를 순차로 추가 이동할 수 있다.That is, when the ventilation device is in the negative pressure mode, fluid can further move through the ventilation port 113, the first bypass unit 131, the second bypass unit 151, and the exhaust port 112 in that order.
이러한 구동은 상술한 바와 같이 사용자의 입력 또는 기설정된 조건/시간 마다 환기 장치가 '음압' 모드로 동작하는 경우, 제어부가 제1 바이패스부(131), 제2 바이패스부(151), 제1 팬(141), 제2 팬(142) 등에 상기 제어 신호를 송신할 수 있다.As described above, when the ventilation device operates in 'negative pressure' mode at each user's input or preset condition/time, the control unit operates the first bypass unit 131, the second bypass unit 151, and the second bypass unit 131. The control signal can be transmitted to the first fan 141, the second fan 142, etc.
구체적으로, 제1 바이패스부(131)가 열리면, 실내 공기가 환기구(113), 환기 영역(R3), 제1 바이패스부(131), 외기 영역(R1), 제2 바이패스부(151), 배기 영역(R4) 및 배기구(112)로 이동할 수 있다(PAT5c).Specifically, when the first bypass unit 131 is opened, indoor air flows into the ventilation port 113, the ventilation area (R3), the first bypass unit 131, the outside air area (R1), and the second bypass unit 151. ), can move to the exhaust area (R4) and exhaust port 112 (PAT5c).
도 17은 실시예에 따른 환기 장치에서 또 다른 동작 모드 시 따른 유체의 흐름을 설명하는 내부 구조에 대한 도면이고, 도 18은 실시예에 따른 환기 장치에서 또 다른 동작 모드 시 따른 유체의 흐름을 설명하는 내부 구조에 대한 측면도이다.FIG. 17 is a diagram of an internal structure explaining the flow of fluid during another operation mode in the ventilation device according to the embodiment, and FIG. 18 illustrates the flow of fluid during another operation mode in the ventilation device according to the embodiment. This is a side view of the internal structure.
도 17 및 도 18을 참조하면, 실시예에 따른 환기 장치는 환기/급기와 동시에 '음압' 모드(배기겸용)가 적용될 수 있다. Referring to FIGS. 17 and 18 , the ventilation device according to the embodiment may apply a 'negative pressure' mode (combined with exhaust) at the same time as ventilation/supply.
예를 들어, 환기 장치(100)에서 외기는 외기구(111), 외기 영역(R1), 열교환 소자(120)의 외기공급부(121), 외기배출부(122), 급기 영역(R2) 및 급기구(114)를 순차로 지나 실내로 제공될 수 있다(PAT6b). 그리고 동시에 환기 장치(100)에서 내기(실내 공기) 환기구(113), 환기 영역(R3), 열교환 소자(120)의 내기공급부(123), 내기배출부(124), 배기 영역(R4) 및 배기구(112)를 순차로 지나 실외로 제공될 수 있다(PAT6b). 이 때, 제1 바이패스부(131)는 닫힌 상태일 수 있다.For example, in the ventilation device 100, the outside air is supplied to the outside device 111, the outside air area (R1), the outside air supply part 121 of the heat exchange element 120, the outside air discharge part 122, the air supply area (R2), and the air supply area (R2). It may be provided indoors through the apparatus 114 sequentially (PAT6b). And at the same time, in the ventilation device 100, there is an internal air (indoor air) vent 113, a ventilation area (R3), an internal air supply part 123, an internal air discharge part 124, an exhaust area (R4) and an exhaust port of the heat exchange element 120. It can be provided outdoors through (112) sequentially (PAT6b). At this time, the first bypass unit 131 may be in a closed state.
나아가, 실내 공기가 실외로 이동(PAT6a)하는 양이 실외 공기가 실내로 이동(PAT6b)하는 양보다 적을 수 있다. 즉, 급기량보다 환기량이 더 클 수 있다. 이에 따라, 실내의 유체가 감소하여 실내에 대한 음압이 구현되거나 유지될 수 있다. 즉, 실내외 공기의 유출입이 이루어지면서(공기 정화 또는 환기 구현) 실내의 음압에 대한 음압이 구현되거나 유지될 수 있다.Furthermore, the amount of indoor air moving outdoors (PAT6a) may be less than the amount of outdoor air moving indoors (PAT6b). In other words, the amount of ventilation may be greater than the amount of air supply. Accordingly, the fluid in the room is reduced so that negative pressure in the room can be implemented or maintained. In other words, as the inflow and outflow of indoor and outdoor air occurs (implementation of air purification or ventilation), the negative pressure relative to the indoor negative pressure can be implemented or maintained.
나아가, 아파트 등의 건물에서 각 층의 경계면에 위치한 콘크리트층에 리세스 내부에 환기 장치가 배치되는 경우, 리세스의 높이를 줄일 수 있다. 다시 말해, 실시예에 따른 환기 장치(100)의 두께 감소로, 콘크리츠층 또는 리세스의 높이 또는 두께를 줄일 수 있다. 이에, 천정과 바닥 사이의 천고를 높일 수 있다. 나아가, 반고의 높이가 감소할 수 있다. 여기서, 반고는 천정과 상부 바닥 또는 상부 층의 바닥 사이의 공간 또는 영역일 수 있다. 다시 말해, 실시예에 따른 환기 장치에 의해, 건물의 천고가 높아질 수 있고 또는 반고가 감소할 수 있다. 이로써, 오폐수배관, 천정형 냉난방기, 환기 장치 등이 반고에 설치므로, 환기 장치의 높이 또는 두께 감소로 반고의 높이가 낮아져, 건축물의 층고(건물의 1층에서 건물의 지붕층의 전체 높이)가 낮아질 수 있다. 특히, 고층의 건축물에 대해서 높이 감소가 더욱 효과적일 수 있다. 나아가, 반고와 층고의 감소로 인해 건축물의 하중이 감소하며, 건축물에 사용되는 철근, 목자재, 인건비, 공정기간, 콘크리트량이 감소할 수 있다. 즉, 건축비의 절감 효과가 향상될 수 있다. 나아가, 층고의 감소로 고도 제한 등의 이슈를 용이하게 벗어날 수도 있고, 철거시 폐기물 양 또한 효과적으로 감소할 수 있다.Furthermore, when a ventilation device is placed inside a recess in a concrete layer located at the boundary between each floor in a building such as an apartment, the height of the recess can be reduced. In other words, by reducing the thickness of the ventilation device 100 according to the embodiment, the height or thickness of the concrete layer or recess can be reduced. Accordingly, the ceiling height between the ceiling and the floor can be increased. Furthermore, the height of the band height may be reduced. Here, the semi-height may be the space or area between the ceiling and the upper floor or the floor of the upper floor. In other words, the ceiling height of the building can be increased or the ceiling height can be reduced by the ventilation device according to the embodiment. As a result, wastewater pipes, ceiling-type air conditioners, ventilation devices, etc. are installed in the semi-arch, so the height of the semi-arch is lowered due to the reduction in the height or thickness of the ventilation device, and the floor height of the building (the total height of the roof layer of the building from the first floor of the building) is lowered. You can. In particular, height reduction may be more effective for high-rise buildings. Furthermore, the load on the building decreases due to the reduction in half height and story height, and the rebar, wood materials, labor costs, process period, and amount of concrete used in the building can be reduced. In other words, the effect of reducing construction costs can be improved. Furthermore, by reducing the floor height, issues such as height restrictions can be easily overcome, and the amount of waste during demolition can also be effectively reduced.
본 실시예에서 사용되는 '~부'라는 용어는 소프트웨어 또는 FPGA(field-programmable gate array) 또는 ASIC과 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행한다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함한다. 구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로 더 분리될 수 있다. 뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU들을 재생시키도록 구현될 수도 있다.The term '~unit' used in this embodiment refers to software or hardware components such as FPGA (field-programmable gate array) or ASIC, and the '~unit' performs certain roles. However, '~part' is not limited to software or hardware. The '~ part' may be configured to reside in an addressable storage medium and may be configured to reproduce on one or more processors. Therefore, as an example, '~ part' refers to components such as software components, object-oriented software components, class components, and task components, processes, functions, properties, and procedures. , subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables. The functions provided within the components and 'parts' may be combined into a smaller number of components and 'parts' or may be further separated into additional components and 'parts'. Additionally, components and 'parts' may be implemented to regenerate one or more CPUs within a device or a secure multimedia card.
이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.Although the above description focuses on the examples, this is only an example and does not limit the present invention, and those skilled in the art will be able to You will see that various variations and applications are possible. For example, each component specifically shown in the examples can be modified and implemented. And these variations and differences in application should be construed as being included in the scope of the present invention as defined in the appended claims.

Claims (9)

  1. 일측에 배치되는 환기구와 급기구, 및 타측에 배치되는 외기구와 배기구를 포함하는 케이스; A case including a ventilation port and a supply port disposed on one side, and an exterior vent and an exhaust port disposed on the other side;
    상기 케이스 내에서 상기 환기구로부터 유입된 내기와 상기 외기구로부터 유입된 외기에 대해 열교환을 수행하는 열교환 소자; 및a heat exchange element that performs heat exchange between internal air introduced from the ventilation hole and external air introduced from the external device within the case; and
    상기 배기구와 상기 열교환 소자 사이에 배치되는 제2 바이패스부;를 포함하고,It includes; a second bypass part disposed between the exhaust port and the heat exchange element,
    상기 제2 바이패스부는 상기 열교환 소자의 외기공급부와 상기 배기구 사이에 배치되고,The second bypass part is disposed between the external air supply part of the heat exchange element and the exhaust port,
    상기 열교환 소자는, 외기공급부, 외기배출부, 내기공급부 및 내기배출부를 포함하고,The heat exchange element includes an external air supply unit, an external air discharge unit, an internal air supply unit, and an internal air exhaust unit,
    상기 제2 바이패스부는 상기 열교환 소자의 외기공급부와 제1 방향으로 중첩되고,The second bypass part overlaps the external air supply part of the heat exchange element in a first direction,
    상기 제1 방향은 케이스의 타측에서 케이스의 일측을 향한 방향인 환기 장치.The first direction is a direction from the other side of the case to one side of the case.
  2. 제1항에 있어서,According to paragraph 1,
    상기 케이스는, 외기 영역, 급기 영역, 환기 영역 및 배기 영역을 포함하고,The case includes an outdoor air area, an air supply area, a ventilation area, and an exhaust area,
    상기 외기 영역은 상기 외기공급부 및 상기 외기구와 연통되고,The outside air area is in communication with the outside air supply unit and the outside device,
    상기 급기 영역은 상기 외기배출부 및 상기 급기구와 연통되고,The air supply area is in communication with the outdoor air discharge unit and the air supply opening,
    상기 환기 영역은 상기 내기공급부 및 상기 환기구와 연통되고,The ventilation area is in communication with the internal air supply unit and the ventilation hole,
    상기 배기 영역은 상기 내기배출부 및 상기 배기구와 연통되는 환기 장치.A ventilation device wherein the exhaust area communicates with the internal air discharge unit and the exhaust port.
  3. 제2항에 있어서,According to paragraph 2,
    상기 배기 영역에 배치되는 제1 팬;a first fan disposed in the exhaust area;
    상기 급기 영역에 배치되는 제2 팬;을 포함하는 환기 장치.A ventilation device comprising a second fan disposed in the air supply area.
  4. 제3항에 있어서,According to paragraph 3,
    상기 제2 바이패스부는 상기 제1 팬과 상기 열교환 소자의 외기공급부 사이에 배치되고,The second bypass unit is disposed between the first fan and the external air supply unit of the heat exchange element,
    상기 제2 바이패스부는 기설정된 시간에 오픈되어, 유체가 상기 열교환 소자의 외기공급부 상의 제1 필터에서 상기 배기구로 이동하는 환기 장치.The second bypass unit is opened at a preset time, so that fluid moves from the first filter on the outside air supply unit of the heat exchange element to the exhaust port.
  5. 제4항에 있어서,According to clause 4,
    상기 제2 팬이 외부 공기의 실내 유입의 반대 방향으로 구동하면, 상기 제2 바이패스부는 오픈되는 환기 장치.When the second fan is driven in a direction opposite to the inflow of outside air into the room, the second bypass unit is opened.
  6. 제2항에 있어서,According to paragraph 2,
    음압 모드 시, 유체가 상기 환기구, 상기 열교환 소자의 내기공급부, 상기 열교환 소자의 내기배출부 및 배기구를 순차로 이동하고, 그리고In the negative pressure mode, the fluid sequentially moves through the ventilation port, the internal air supply part of the heat exchange element, the internal air discharge part and the exhaust port of the heat exchange element, and
    상기 급기구, 상기 열교환 소자의 외기배출부, 상기 열교환 소자의 외기공급부, 상기 제2 바이패스부 및 상기 배기구를 순차로 이동하는 환기 장치.A ventilation device that sequentially moves the air supply port, the outdoor air discharge portion of the heat exchange element, the outdoor air supply portion of the heat exchange element, the second bypass portion, and the exhaust port.
  7. 제2항에 있어서,According to paragraph 2,
    상기 외기구와 상기 환기구 사이에 배치되는 분리부재;를 포함하고,It includes a separation member disposed between the external device and the ventilation hole,
    상기 분리부재는 상기 환기구에서 상기 외기구를 연결하는 제1 바이패스부;를 포함하는 환기 장치.The separation member includes a first bypass portion connecting the ventilation opening to the external device.
  8. 제7항에 있어서,In clause 7,
    음압 모드 시, 유체가 상기 환기구, 상기 제1 바이패스부, 상기 제2 바이패스부 및 상기 배기구를 순차로 추가 이동하는 환기 장치.A ventilation device in which, in negative pressure mode, fluid further moves sequentially through the ventilation port, the first bypass portion, the second bypass portion, and the exhaust port.
  9. 제8항에 있어서,According to clause 8,
    상기 분리부재는 상기 외기 영역과 상기 환기 영역 사이에 배치되어, 상기 외기 영역과 상기 환기 영역을 구획하는 환기 장치.The separation member is disposed between the outdoor air area and the ventilation area to partition the outdoor air area and the ventilation area.
PCT/KR2023/006586 2022-05-24 2023-05-16 Composite ventilation device capable of clean air supply, automatic cleaning, automatic drying, and negative pressure WO2023229277A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220063325A KR102532434B1 (en) 2022-05-24 2022-05-24 Ventilator
KR10-2022-0063325 2022-05-24

Publications (1)

Publication Number Publication Date
WO2023229277A1 true WO2023229277A1 (en) 2023-11-30

Family

ID=86545769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/006586 WO2023229277A1 (en) 2022-05-24 2023-05-16 Composite ventilation device capable of clean air supply, automatic cleaning, automatic drying, and negative pressure

Country Status (2)

Country Link
KR (2) KR102532434B1 (en)
WO (1) WO2023229277A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579672A (en) * 1991-09-20 1993-03-30 Mitsubishi Electric Corp Ventilating device
KR101703672B1 (en) * 2015-08-11 2017-02-08 박정호 BY-PASS Device for total heat exchanger
KR20170095519A (en) * 2016-02-15 2017-08-23 주식회사 경동나비엔 Ventilator
KR20180135636A (en) * 2017-06-13 2018-12-21 주식회사 경동나비엔 Ventilator
KR102060633B1 (en) * 2019-07-24 2019-12-30 서진공조(주) Air circulation system with air cleaning technology

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004191033A (en) * 2002-12-10 2004-07-08 Lg Electronics Inc Air conditioner
KR100628058B1 (en) * 2005-05-31 2006-09-27 엘지전자 주식회사 Total heat exchanger and ventilation system using the same
KR100675771B1 (en) * 2006-04-28 2007-01-30 이영준 Ventilation unit with bypass mean and air cleaning mean
KR102357605B1 (en) * 2020-10-29 2022-02-08 이영국 Ventilator
KR101904041B1 (en) * 2018-03-12 2018-10-08 현대건설주식회사 Heat Exchange Air Circulation Apparatus with Air Supply and Cleaning of Kitchen
KR102081719B1 (en) * 2018-08-08 2020-02-26 허영호 Multi-function heat exchanger
KR102397274B1 (en) * 2021-12-21 2022-05-12 민영배 Energy saving apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579672A (en) * 1991-09-20 1993-03-30 Mitsubishi Electric Corp Ventilating device
KR101703672B1 (en) * 2015-08-11 2017-02-08 박정호 BY-PASS Device for total heat exchanger
KR20170095519A (en) * 2016-02-15 2017-08-23 주식회사 경동나비엔 Ventilator
KR20180135636A (en) * 2017-06-13 2018-12-21 주식회사 경동나비엔 Ventilator
KR102060633B1 (en) * 2019-07-24 2019-12-30 서진공조(주) Air circulation system with air cleaning technology

Also Published As

Publication number Publication date
KR102532434B1 (en) 2023-05-16
KR20230163931A (en) 2023-12-01

Similar Documents

Publication Publication Date Title
WO2021201382A1 (en) Negative pressure air conditioning system for blocking infectious disease
WO2014182079A1 (en) Integrated basement ventilation apparatus
WO2020222354A1 (en) Temperature control device and ventilation system provided with same
WO2016163673A1 (en) Air purifier
WO2018236122A1 (en) Air purifier including bidirectional fans having different discharge directions
KR101149815B1 (en) Ventilating unit having total heat exchanger
WO2023153732A1 (en) Heat-recovery ventilation apparatus for solving condensation damage
WO2020111845A1 (en) Assembly type ventilation device for windows and doors
WO2021015368A1 (en) Air purifier combined with ventilator attachable to and detachable from window
WO2016186273A1 (en) Window-type air ventilating and cleaning apparatus
WO2015102247A1 (en) Server room cooling device, filter module for introducing outer air, and data center air-conditioning system comprising same
WO2020189838A1 (en) Temperature control device for ventilation apparatus
WO2022080589A1 (en) Field-type modular negative pressure isolation ward system, and construction method of field-type modular negative pressure isolation ward system
WO2017078418A1 (en) Batch-type painting system using heat storing combustion method
WO2021256805A1 (en) Door-type heat recovery air purifying ventilation device
WO2022216033A1 (en) Ventilation system and method for controlling same
WO2020111681A1 (en) Indoor-air purifying system using air purifier for ventilation and autonomously moving air purifier
WO2017043806A1 (en) Evaporative cooler and operating method for evaporative cooler
WO2021040262A1 (en) Improved air purification and ventilation system using plate-type total heat exchanger, and operating method therefor
WO2023229277A1 (en) Composite ventilation device capable of clean air supply, automatic cleaning, automatic drying, and negative pressure
WO2021256645A1 (en) Air circulator having function to remove harmful substances such as fine dust
WO2013042805A1 (en) Ventilating apparatus for windows and doors
WO2021071276A1 (en) Air conditioner and ventilation apparatus for the same
KR101042999B1 (en) Floor-type ventilation unit
WO2017022989A1 (en) Slim-type air processing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23812051

Country of ref document: EP

Kind code of ref document: A1