WO2023228775A1 - Reflecting mirror member, photoelectric sensor, and optical ranging device - Google Patents

Reflecting mirror member, photoelectric sensor, and optical ranging device Download PDF

Info

Publication number
WO2023228775A1
WO2023228775A1 PCT/JP2023/017865 JP2023017865W WO2023228775A1 WO 2023228775 A1 WO2023228775 A1 WO 2023228775A1 JP 2023017865 W JP2023017865 W JP 2023017865W WO 2023228775 A1 WO2023228775 A1 WO 2023228775A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
light
reflective
section
mirror member
Prior art date
Application number
PCT/JP2023/017865
Other languages
French (fr)
Japanese (ja)
Inventor
典明 石原
Original Assignee
北陽電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北陽電機株式会社 filed Critical 北陽電機株式会社
Publication of WO2023228775A1 publication Critical patent/WO2023228775A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors

Definitions

  • the present invention relates to a reflective mirror member, a photoelectric sensor, and an optical distance measuring device equipped with the same.
  • the optical distance measuring device disclosed in Patent Document 1 includes a photoelectric sensor and an optical scanning section.
  • the optical scanning unit includes a deflection mirror that deflects measurement light output from the photoelectric sensor toward a monitoring area and guides reflected light from an object to the photoelectric sensor, and a motor that rotationally drives the deflection mirror.
  • the propagation time of light between the photoelectric sensor and the object is calculated from the output timing of the measurement light and the detection timing of the reflected light. Furthermore, the distance from the photoelectric sensor to the object is calculated based on the propagation time and the speed of light.
  • a reflective surface that reflects light was generally formed by forming a thin metal film on the surface of a base material by vapor deposition.
  • the surface precision of the reflective surface can be increased.
  • one example of the object of the present invention is to provide a reflective mirror member that can be manufactured efficiently and can appropriately reflect light, and a photoelectric sensor and an optical distance measuring device equipped with the same.
  • a reflective mirror member includes a first resin layer portion, a reflective surface formed by a plating film on one side of the first resin layer portion, and a first resin layer portion.
  • a second resin layer section provided on the other side of the resin layer section, the first resin layer section and the second resin layer section are made of mutually different materials and are integrally molded by two-color molding.
  • An anchor portion is formed at the bonding interface between the first resin layer portion and the second resin layer portion, and the anchor portion is a recess formed in one of the first resin layer portion and the second resin layer portion.
  • the bonding interface includes a first bonding region that does not include the anchor portion, and a convex portion that is formed on the other of the first resin layer portion and the second resin layer portion and is fitted into the recessed portion
  • the reflective surface has a first reflective area formed to overlap with the first bonding area and a second bonding area formed to overlap with the second bonding area. and a second reflective area formed therein.
  • the reflective surface is formed of a plating film.
  • the reflective mirror member can be manufactured more efficiently than when the reflective surface is formed by vapor deposition.
  • a first reflective area is provided so as to overlap the first bonding area that does not include the anchor part, and a second reflective area is provided so as to overlap the second bonding area that includes the anchor part.
  • the surface accuracy of the first reflective area can be made higher than the surface accuracy of the second reflective area. Therefore, for example, in a photoelectric sensor, measurement light is reflected by a first reflection area with high surface accuracy, and reflected light is reflected by a second reflection area whose surface accuracy is lower than that of the first reflection area. Detection accuracy can be improved. In this way, light can be reflected appropriately depending on the purpose.
  • the second reflective area may be arranged to surround the first reflective area when viewed from the thickness direction of the plating film. In this case, it is easy to increase the area of the second reflective region. Therefore, for example, when using a reflective mirror member in a photoelectric sensor, the amount of light condensed by the condenser lens can be improved.
  • the reflective mirror member of (1) or (2) above is used in a photoelectric sensor that emits measurement light and receives reflected light from an object, and the measurement light is first reflected onto the second resin layer.
  • a support portion may be formed to support a guide member leading to the region.
  • the support portion includes a through hole, and the through hole and the corresponding weld line may not be formed in the first resin layer portion.
  • a weld line is not formed in the first resin layer portion when forming the through hole serving as the support portion.
  • the connecting portion is integrally formed in the second resin layer portion and is connected to the drive unit that swings or rotates the reflective mirror member. You may also have more. In this case, the reflecting mirror member can be swung or rotated by the driving section via the connecting section.
  • the photoelectric sensor includes a light projecting section that emits measurement light, a light receiving section that receives reflected light arriving from the measurement target space, and a light deflection section that deflects the measurement light in a predetermined direction. and/or a light scanning section that scans the measurement light in a predetermined direction, and the light deflection section or the light scanning section includes the reflective mirror member according to any one of (1) to (5) above. It is characterized by
  • detection accuracy is improved by reflecting measurement light by a first reflection area with high surface accuracy and reflecting the reflected light by a second reflection area having lower surface accuracy than the first reflection area. I can do it.
  • the measurement light is reflected by the first reflection region of the reflective surface of the reflective mirror member and is emitted into the measurement target space, and the reflected light from the measurement target space is reflected from the measurement target space.
  • the light may be configured to be reflected by a surface and received by the light receiving section. In this case, objects within the measurement target space can be detected with high accuracy.
  • the reflective surface of the reflective mirror member is formed so that the reflected light from the measurement target space reflected by the second reflective area is mainly received by the light receiving part. You can leave it there. In this case, objects within the measurement target space can be detected with high accuracy.
  • An optical distance measuring device includes the photoelectric sensor according to any one of (6) to (8) above, and a control unit that controls a light emitter and a light receiver, and the control unit , the distance to the object in the measurement target space is calculated based on the measurement light and the reflected light.
  • the measurement light is reflected by a first reflection area with high surface accuracy, and the reflected light is reflected by a second reflection area whose surface accuracy is lower than that of the first reflection area. objects can be detected with high accuracy.
  • a reflective mirror member can be manufactured efficiently, and light can be appropriately reflected using the reflective mirror member.
  • FIG. 1 is a schematic diagram showing the configuration of an optical distance measuring device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the schematic structure of the reflective mirror member and the guide member.
  • FIG. 3 is a schematic perspective view of the reflective mirror member (a view of the reflective mirror member of FIG. 1 placed upside down and viewed diagonally from above).
  • FIG. 4 is a view of the reflective mirror member placed upside down and viewed from the direction indicated by arrow A in FIG. 2.
  • FIG. 5 is a schematic cross-sectional view showing a section BB in FIG. 4.
  • FIG. 6 is a schematic diagram showing the second resin layer section and the connection section.
  • FIG. 7 is a diagram showing another example of the anchor part.
  • FIG. 1 is a schematic diagram showing the configuration of an optical distance measuring device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the schematic structure of the reflective mirror member and the guide member.
  • FIG. 3 is a schematic perspective view of the
  • FIG. 8 is a diagram showing another example of the anchor part.
  • FIG. 9 is a diagram showing another example of the anchor part.
  • FIG. 10 is a diagram showing another example of the anchor part.
  • FIG. 11 is a diagram showing another example of the reflective mirror member.
  • FIG. 12 is a diagram showing another example of the reflective mirror member.
  • FIG. 1 is a schematic diagram showing the configuration of an optical ranging device 100 according to an embodiment of the present invention. As shown in FIG. 1, in this embodiment, the optical distance measuring device 100 is housed in a casing 102.
  • the optical distance measuring device 100 includes a photoelectric sensor 10 and a control section 12.
  • the optical distance measuring device 100 is a device that detects an object within a predetermined monitoring area (measurement target space) and measures the distance to the object.
  • the photoelectric sensor 10 includes a light projecting section 14, a light projecting lens 16, a light scanning section 18, a condensing lens 20, and a light receiving section 22.
  • the light projecting section 14, the light projecting lens 16, the condensing lens 20, and the light receiving section 22 can be configured in various known optical distance measuring devices, and therefore will be briefly described below.
  • the light projector 14 includes a light emitting element such as a laser diode, and emits measurement light (laser light).
  • the light projection lens 16 shapes the measurement light emitted from the light projection section 14 into parallel light.
  • the light scanning section 18 deflects the measurement light that has been shaped into parallel light by the light projecting lens 16 toward the monitoring area.
  • the optical scanning unit 18 deflects measurement light (reflected light) reflected by an object in the monitoring area toward the condenser lens 20 .
  • the condenser lens 20 condenses the reflected light deflected by the optical scanning section 18 .
  • the light receiving unit 22 includes a light receiving element such as an avalanche photodiode, receives reflected light collected by the condenser lens 20, and converts the light intensity of the received reflected light into an electrical signal.
  • the control unit 12 controls the light projecting unit 14 and the light receiving unit 22.
  • the control unit 12 pulse-drives the light emitting element of the light projecting unit 14 and controls the driving voltage of the light receiving element of the light receiving unit 22, for example.
  • the control unit 12 calculates the distance between the optical distance measuring device 100 and the object within the monitoring area based on the time difference between the time when the measurement light is projected by the light projector 14 and the time when the reflected light is received by the light receiver 22. It has a distance measuring section that calculates the distance.
  • the distance measuring section of the control section 12 includes, for example, a TDC (time to digital converter) circuit, detects the flight time of light (the above-mentioned time difference), and detects the flight time of light and the speed of light based on the detected flight time of light and the speed of light. Then, the distance between the optical distance measuring device 100 and the object is calculated.
  • a TDC time to digital converter
  • the optical scanning section 18 includes a reflective mirror member 30, a guide member 32, and a driving section 34.
  • FIG. 2 is a cross-sectional view showing a schematic structure of the reflecting mirror member 30 and the guide member 32
  • FIG. 3 is a schematic perspective view showing the reflecting mirror member 30 (the reflecting mirror member 30 of FIG. (viewed diagonally from above).
  • 4 is a view of the reflective mirror member 30 placed upside down and viewed from the direction indicated by arrow A in FIG. 2
  • FIG. 5 is a schematic cross-sectional view taken along the line BB in FIG. be.
  • the reflective mirror member 30 includes a first resin layer section 40, a second resin layer section 42, and a connecting section 44.
  • the connecting portion 44 is integrally molded with the second resin layer portion 42 .
  • a plating film 46 is formed on one side of the first resin layer portion 40 in the thickness direction.
  • the second resin layer section 42 is provided on the other surface side of the first resin layer section 40 in the thickness direction.
  • the thickness of the plating film 46 is increased in order to make it easier to understand that the plating film 46 is formed.
  • the plating film 46 is formed only on one side of the first resin layer section 40, but the plating film 46 may also be formed on the side surface of the first resin layer section 40.
  • the thickness of the plating film 46 is, for example, 20 to 30 ⁇ m.
  • the surface 60 of the plating film 46 functions as a reflective surface that reflects the measurement light emitted from the light projector 14 and its reflected light.
  • the surface 60 of the plating film 46 will be referred to as a reflective surface 60.
  • the material of the plating film 46 for example, copper, gold, nickel, or chromium is used. From the viewpoint of suppressing the manufacturing cost of the reflective mirror member 30, the plating film 46 is formed using copper, for example.
  • the first resin layer section 40 and the second resin layer section 42 are made of different materials. Further, the first resin layer section 40 and the second resin layer section 42 are integrally molded by two-color molding. In this embodiment, the first resin layer section 40 is made of a material that has high affinity with the material of the plating film 46. Furthermore, the second resin layer section 42 is made of a material that has a lower affinity with the material of the plating film 46 than the first resin layer section 40 . This can prevent a plating film from being formed on the surface of the second resin layer 42 when the first resin layer 40 and the second resin layer 42 are immersed in the plating solution. In this case, since masking can be omitted or simplified, the manufacturing efficiency of the reflective mirror member 30 is improved. In this embodiment, for example, the first resin layer section 40 is formed using ABS (acrylonitrile butadiene styrene) resin, and the second resin layer section 42 is formed using PC (polycarbonate) resin.
  • ABS acrylonitrile butadiene styrene
  • FIG. 6 is a schematic diagram showing the second resin layer section 42 and the connecting section 44.
  • the second resin layer portion 42 is formed with a plurality of recesses 42a and a plurality of support portions 42b.
  • each of the recess 42a and the support 42b is a through hole.
  • the first resin layer section 40 is formed on the second resin layer section 42 so that the plurality of support sections 42b formed on the second resin layer section 42 are exposed. ing.
  • the first resin layer portion 40 is formed with a plurality of protrusions 40a that fit into the plurality of recesses 42a.
  • an anchor portion 50 is formed at the bonding interface 41 of the first resin layer portion 40 and the second resin layer portion 42 by the convex portion 40a and the concave portion 42a. More specifically, a pair of anchor parts 50 are formed by a pair of protrusions 40a and a pair of recesses 42a.
  • a predetermined region of the bonding interface 41 that does not include the anchor portion 50 is defined as a first bonding region, and a predetermined region that includes the anchor portion 50 is defined as a second bonding region.
  • a predetermined area at the center of the bonding interface 41 is set as the first bonding area 41a, and an area of the bonding interface 41 excluding the first bonding area 41a is set as the second bonding area 41a. It is set in the bonding region 41b.
  • the area of the reflective surface 60 that covers the first bonding area 41a is the first reflective area 60a
  • the area that covers the second bonding area 41b is the second reflective area. It is assumed to be a region 60b.
  • the second reflective area 60b is arranged to surround the first reflective area 60a.
  • the guide member 32 is formed into a cylindrical shape so that the measurement light can pass through the inside.
  • the guide member 32 has a cylindrical portion 32 a bent at a substantially right angle and a plurality of hook portions 32 b for attaching the cylindrical portion 32 a to the reflective mirror member 30 .
  • the guide member 32 is provided with a plurality of hook parts 32b so as to correspond to the plurality of support parts 42b (see FIG. 3) of the second resin layer part 42.
  • the guide member 32 is supported by the second resin layer portion 42 of the reflective mirror member 30 by hooking the plurality of hook portions 32b onto the plurality of support portions 42b.
  • a weld line 42c may be formed near the support portion 42b, which is a through hole, due to the flow of resin.
  • the first resin layer section 40 does not have a through hole formed therein as a support section. Therefore, the weld line formed when forming the support portion 42b (through hole) is not formed in the first resin layer portion 40 either.
  • the first resin layer section 40 is formed to cover at least a portion of the weld line 42c.
  • an opening 32c is formed in a portion of the guide member 32 (cylindrical portion 32a) that is bent at a substantially right angle.
  • the guide member 32 is supported by the second resin layer portion 42 such that the first reflective region 60a is exposed within the guide member 32 at the opening 32c.
  • the drive section 34 is attached to the connection section 44 of the reflective mirror member 30, and rotates the connection section 44 around the rotation axis X.
  • the reflective mirror member 30 rotates around the rotation axis X.
  • the first reflection region 60a (see FIG. 2) is positioned on the rotation axis of the reflection mirror member 30 (on the extension of the rotation axis X).
  • the reflective surface 60 of the reflective mirror member 30 is provided so as to be inclined at 45 degrees with respect to the rotation axis X.
  • an electromagnetic motor is used as the drive section 34, and a connecting section 44 is fixed to the rotor of the electromagnetic motor.
  • a predetermined monitoring area around the optical ranging device 100 is set by emitting measurement light from the light projecting section 14 while rotating the reflecting mirror member 30 by the driving section 34.
  • the measurement light can be scanned.
  • the reflective surface 60 is formed of the plating film 46.
  • the reflective mirror member 30 can be manufactured more efficiently than when the reflective surface is formed by vapor deposition.
  • the first reflective region 60a is provided so as to overlap the first bonding region 41a that does not include the anchor portion 50 when viewed from the thickness direction of the plating film 46, and the first reflective region 60a is provided so as to overlap the first bonding region 41a that does not include the anchor portion 50.
  • a second reflective region 60b is provided so as to overlap with the second bonding region 41b.
  • the surface precision of the first reflective region 60a can be made higher than the surface precision of the second reflective region 60b.
  • the measurement light is deflected by the first reflection region 60a, which has a high surface precision
  • the reflected light is deflected by the second reflection region 60b, which has a lower surface precision than the first reflection region 60a.
  • the surface precision of the reflective surface 60 affects the parallelism of the light reflected by the reflective surface 60.
  • the distance between the first reflective region 60a and the object to be detected is long, for example, several meters to several tens of meters. Therefore, when the parallelism of the measurement light deflected by the first reflection region 60a is low, the density of the measurement light irradiated onto the object to be detected becomes low. This reduces measurement accuracy.
  • the reflected light reflected by the object to be detected is diffused light, its light density is low to begin with. Therefore, even if the surface precision of the second reflective region 60b is relatively low, the amount of light condensed by the condenser lens 20 is not greatly affected. In other words, even if the surface accuracy of the second reflective region 60b is relatively low, a decrease in measurement accuracy is suppressed.
  • the measurement light is deflected by the first reflection region 60a, which has a high surface precision
  • the reflected light is deflected by the second reflection region 60b, which has a lower surface precision than the first reflection region 60a.
  • the measurement light and the reflected light can be appropriately reflected on the reflective mirror member 30.
  • the reflected light may be deflected to the condenser lens 20 by the first reflection region 60a having high surface precision.
  • the reflected light may be mainly deflected by the second reflection region 60b and then received by the light receiving section 22.
  • the reflective mirror is configured so that the light receiving unit 22 receives more reflected light from the measurement target space reflected by the second reflective area 60b than reflected light from the measurement target space reflected by the first reflective area 60a. It is sufficient that the reflective surface 60 of the member 30 is formed. Note that in this embodiment, the reflective surface 60 is formed so that the measurement light emitted from the light projecting section 14 is not reflected on the second reflective area 60b but is reflected only on the first reflective area 60a.
  • the shorter the wavelength of the measurement light the greater the influence of the surface accuracy of the reflective surface 60 on the measurement accuracy.
  • the surface precision (PV: Peak to Valley) of the first reflective region 60a is, for example, ⁇ /4 to ⁇ /2
  • the surface precision (PV: Peak to Valley) of the second reflective region 60b is, for example, 2 ⁇ to 4 ⁇ (where ⁇ indicates the wavelength of the measurement light).
  • the surface accuracy can be measured using a three-dimensional optical profiler system (NewView 6300) manufactured by Zygo that uses scanning white light interferometry and the attached analysis software (MetroPro). The measurement conditions are: LED wavelength: 380 to 780 ⁇ m (white), measurement area: 30 mm x 30 mm.
  • a second reflective area 60b is provided to surround the first reflective area 60a. In this case, since it is easy to increase the area of the second reflective region 60b, the amount of light condensed by the condenser lens 20 can be improved.
  • a support portion 42b for supporting the guide member 32 is formed in the second resin layer portion 42.
  • a support part (through hole) in the first resin layer part 40 for supporting the guide member 32 there is no need to form a support part (through hole) in the first resin layer part 40 for supporting the guide member 32.
  • a weld line from being formed in the first resin layer section 40 when the first resin layer section 40 is molded.
  • the first resin layer section 40 is formed to cover a part of the weld line 42c formed on the second resin layer section 42, and the reflective surface 60 (plated) is formed on the first resin layer section 40.
  • a coating 46) is formed.
  • the first resin layer section 40 provided between the weld line 42c and the reflective surface 60 (plated coating 46) can prevent the surface precision of the reflective surface 60 from decreasing due to the weld line 42c.
  • the anchor portion 50 is configured by the recess 42a formed in the second resin layer 42 and the protrusion 40a formed in the first resin layer 40 so as to fit into the recess 42a.
  • the configuration of the anchor portion 50 is not limited to the above example. Specifically, as shown in FIG. 8, the anchor is formed by a recess 40c formed in the first resin layer 40 and a projection 42d formed in the second resin layer 42 so as to fit into the recess 40c. 50 may be configured. Although not shown, the recess 40c does not need to penetrate the first resin layer 40.
  • the anchor portion 50 can prevent the first resin layer portion 40 and the second resin layer portion 42 from shifting from each other in a direction perpendicular to the thickness direction of the first resin layer portion 40 (second resin layer portion 42). It is sufficient if it is configured as follows. Therefore, the shape and formation position of the anchor portion 50 can be changed as appropriate. For example, as shown in FIG. 9, the anchor portion 50 may have a circular shape when viewed from the thickness direction of the plating film 46.
  • the entire circumference of the convex portion is covered with the concave portion, but as in the anchor portion 50 shown in FIG. It doesn't have to be. In other words, a portion of the outer periphery of the convex portion may be exposed from the concave portion.
  • the shape of the reflective mirror member to which the present invention is applied is not limited to the above-mentioned example, and the present invention can also be applied to polygonal reflective mirror members as shown in FIGS. 11 and 12, for example.
  • the polygon-type reflective mirror member will be briefly explained below.
  • the reflective mirror member 70 shown in FIG. 11 includes a first resin layer section 72 and a second resin layer section 74. Further, a plurality of anchor portions 76 are formed at the bonding interface between the first resin layer portion 72 and the second resin layer portion 74.
  • the reflective mirror member 70 has a substantially triangular prism shape, and a pair of plating coatings 78a and 78b forming reflective surfaces are formed on three side surfaces constituting the outer peripheral surface, respectively.
  • the plating films 78a and 78b are formed so as to be spaced apart from each other and to have a rectangular shape.
  • a part of the surface of the plating film 78a (the area surrounded by the dashed line) is set as a first reflection region that deflects the measurement light, and the entire surface of the plating film 78b deflects the reflected light. It is set in the second reflection area.
  • the bonding interface between the first resin layer section 72 and the second resin layer section 74 has a first bonding area that does not include the anchor section 76 and a bonding interface between the first resin layer section 72 and the second resin layer section 74.
  • the first reflective area is formed to cover the first bonding area
  • the second reflective area is formed to cover the second bonding area.
  • a reflective mirror member 80 shown in FIG. 12 includes a first resin layer section 82 and a second resin layer section 84. Further, a plurality of anchor portions 86 are formed at the bonding interface between the first resin layer portion 82 and the second resin layer portion 84.
  • the reflective mirror member 80 has a substantially quadrangular prism shape, and a plating film 88 forming a reflective surface is formed on each of four side surfaces constituting the outer peripheral surface.
  • the surface of the plating film 88 includes a first reflection area 88a that deflects the measurement light, a second reflection area 88b that deflects the reflected light, and a part of the measurement light and the reflected light.
  • the bonding interface between the first resin layer section 82 and the second resin layer section 84 has a first bonding area that does not include the anchor section 86 and a bonding interface between the first resin layer section 82 and the second resin layer section 84 . and a second bonding region.
  • the first reflective area 88a and the third reflective area 88c are formed to overlap the first bonding area when viewed from the thickness direction of the plating film 88, and the second reflective area 88b is formed to overlap the second bonding area.
  • the present invention may be applied to various other mirror members such as a right-angle prism mirror.
  • the driving section 34 rotationally drives the reflecting mirror member 30, but the present invention is applied to a photoelectric sensor (optical distance measuring device) in which the reflecting mirror member is oscillatedly driven by the driving section.
  • the reflective mirror member includes a first resin layer, a reflective surface formed by a plating film, and a second resin layer, as in the above-described embodiment.
  • the drive section is connected to a connection section integrally formed in the second resin layer section.
  • the photoelectric sensor 10 optical distance measuring device 100 including the optical scanning unit 18 that deflects and scans the measurement light in a predetermined direction has been described.
  • the present invention may be applied to a photoelectric sensor (optical distance measuring device) provided with a deflection section.
  • the reflective mirror member 30 may be fixed to the casing 102 without providing the drive unit 34 in the photoelectric sensor 10 described above, and the reflective mirror member 30 may be used as a light deflection unit.
  • the present invention may be applied to a photoelectric sensor (optical distance measuring device) that includes both an optical scanning section and an optical deflection section.
  • the photoelectric sensor may be configured such that an optical deflection section deflects the measurement light emitted from the light projection section 14, and an optical scanning section scans the monitoring area with the deflected measurement light.
  • the optical scanning section can be configured in the same manner as the optical scanning section 18 described above, for example.
  • a reflective mirror member 30 different from the reflective mirror member 30 of the optical scanning section can be fixed to the casing 102, and the fixed reflective mirror member 30 can be used as the optical deflection section.
  • the reflective mirror member can be manufactured efficiently, the manufacturing cost of the photoelectric sensor and the optical distance measuring device can be reduced.
  • Photoelectric sensor 12 Control section 14 Light projecting section 16 Light projecting lens 18 Light scanning section 20 Condensing lens 22 Light receiving section 30, 70, 80 Reflection mirror member 32 Guide member 34 Drive section 40 First resin layer section 41 Bonding interface 41a No. 1 bonding area 41b second bonding area 42 second resin layer portion 42b support portion 44 connection portion 46 plating film 50 anchor portion 60 reflective surface 60a first reflective area 60b second reflective area

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

This reflecting mirror member comprises: a first resin layer part; a reflecting surface formed from a plating film on one surface side of the first resin layer part; and a second resin layer part disposed on the other surface side of the first resin layer part. The first resin layer part and the second resin layer part are formed from different materials and integrally formed by means of two-color molding. An anchor part is formed on a joint interface between the first resin layer part and the second resin layer part. The joint interface has a first joint region not containing the anchor part and a second joint region containing anchor part. When viewed from a thickness direction of the plating film, the reflecting surface has a first reflecting region formed to overlap with the first joint region and a second reflecting region formed to overlap with the second joint region.

Description

反射ミラー部材、光電センサ、および光測距装置Reflective mirror members, photoelectric sensors, and optical distance measuring devices
 本発明は、反射ミラー部材ならびにこれを備える光電センサおよび光測距装置に関する。 The present invention relates to a reflective mirror member, a photoelectric sensor, and an optical distance measuring device equipped with the same.
 近年、種々の分野において、レーザー光を用いて物体を検出する装置が利用されている。例えば、特許文献1に開示された光測距装置は、光電センサと光走査部とを備えている。光走査部は、光電センサから出力された測定光を監視領域に向けて偏向するとともに、物体からの反射光を光電センサに導く偏向ミラーと、偏向ミラーを回転駆動するモータとを備えている。 In recent years, devices that use laser light to detect objects have been used in various fields. For example, the optical distance measuring device disclosed in Patent Document 1 includes a photoelectric sensor and an optical scanning section. The optical scanning unit includes a deflection mirror that deflects measurement light output from the photoelectric sensor toward a monitoring area and guides reflected light from an object to the photoelectric sensor, and a motor that rotationally drives the deflection mirror.
 上記の光測距装置では、測定光の出力時期および反射光の検出時期から、光電センサと物体間の光の伝播時間が算出される。また、当該伝播時間と光の速度とに基づいて、光電センサから物体までの距離が算出される。 In the optical distance measuring device described above, the propagation time of light between the photoelectric sensor and the object is calculated from the output timing of the measurement light and the detection timing of the reflected light. Furthermore, the distance from the photoelectric sensor to the object is calculated based on the propagation time and the speed of light.
特開2022-34136号公報JP2022-34136A
 従来、上記のような偏向ミラーを製造する際には、一般に、蒸着によって基材の表面に金属薄膜を成膜することによって、光を反射する反射面を形成していた。蒸着によって反射面を形成することによって、反射面の面精度を高くすることができる。一方で、蒸着によって反射面を形成する場合には、製造効率を向上させることが難しいという問題がある。 Conventionally, when manufacturing a deflection mirror as described above, a reflective surface that reflects light was generally formed by forming a thin metal film on the surface of a base material by vapor deposition. By forming the reflective surface by vapor deposition, the surface precision of the reflective surface can be increased. On the other hand, when forming a reflective surface by vapor deposition, there is a problem in that it is difficult to improve manufacturing efficiency.
 そこで、本発明の目的の一例は、効率よく製造することができかつ適切に光を反射することができる反射ミラー部材、ならびにそれを備えた光電センサおよび光測距装置を提供することにある。 Therefore, one example of the object of the present invention is to provide a reflective mirror member that can be manufactured efficiently and can appropriately reflect light, and a photoelectric sensor and an optical distance measuring device equipped with the same.
(1)上記目的を達成するため、本発明の一側面における反射ミラー部材は、第1樹脂層部と、第1樹脂層部の一方面側にメッキ被膜によって形成された反射面と、第1樹脂層部の他方面側に設けられた第2樹脂層部と、を備え、第1樹脂層部と第2樹脂層部とは、互いに異なる材料からなり、かつ二色成形によって一体成形されており、第1樹脂層部と第2樹脂層部との接合界面にアンカー部が形成されており、アンカー部は、第1樹脂層部および第2樹脂層部のうちの一方に形成された凹部と、第1樹脂層部および第2樹脂層部のうちの他方に形成されかつ凹部に嵌合された凸部とを有し、接合界面は、アンカー部を含まない第1接合領域と、アンカー部を含む第2接合領域とを有し、メッキ被膜の厚み方向から見て、反射面は、第1接合領域に重なるように形成された第1反射領域と、第2接合領域に重なるように形成された第2反射領域とを有する、ことを特徴とする。 (1) In order to achieve the above object, a reflective mirror member according to one aspect of the present invention includes a first resin layer portion, a reflective surface formed by a plating film on one side of the first resin layer portion, and a first resin layer portion. a second resin layer section provided on the other side of the resin layer section, the first resin layer section and the second resin layer section are made of mutually different materials and are integrally molded by two-color molding. An anchor portion is formed at the bonding interface between the first resin layer portion and the second resin layer portion, and the anchor portion is a recess formed in one of the first resin layer portion and the second resin layer portion. and a convex portion formed on the other of the first resin layer portion and the second resin layer portion and fitted into the recess, and the bonding interface includes a first bonding region that does not include the anchor portion, and a convex portion that is formed on the other of the first resin layer portion and the second resin layer portion and is fitted into the recessed portion When viewed from the thickness direction of the plating film, the reflective surface has a first reflective area formed to overlap with the first bonding area and a second bonding area formed to overlap with the second bonding area. and a second reflective area formed therein.
 この反射ミラー部材では、反射面がメッキ被膜によって形成されている。この場合、蒸着によって反射面を形成する場合に比べて、効率よく反射ミラー部材を製造することができる。また、アンカー部を含まない第1接合領域に重なるように第1反射領域が設けられ、アンカー部を含む第2接合領域に重なるように第2反射領域が設けられている。この場合、第1反射領域の面精度を、第2反射領域の面精度よりも高くすることができる。したがって、例えば、光電センサにおいて、面精度が高い第1反射領域によって測定光を反射し、第1反射領域に比べて面精度が低い第2反射領域によって反射光を反射することによって、光電センサの検出精度を向上させることができる。このように、用途に応じて光を適切に反射することができる。 In this reflective mirror member, the reflective surface is formed of a plating film. In this case, the reflective mirror member can be manufactured more efficiently than when the reflective surface is formed by vapor deposition. Further, a first reflective area is provided so as to overlap the first bonding area that does not include the anchor part, and a second reflective area is provided so as to overlap the second bonding area that includes the anchor part. In this case, the surface accuracy of the first reflective area can be made higher than the surface accuracy of the second reflective area. Therefore, for example, in a photoelectric sensor, measurement light is reflected by a first reflection area with high surface accuracy, and reflected light is reflected by a second reflection area whose surface accuracy is lower than that of the first reflection area. Detection accuracy can be improved. In this way, light can be reflected appropriately depending on the purpose.
(2)上記(1)の反射ミラー部材において、メッキ被膜の厚み方向から見て、第2反射領域は、第1反射領域を囲むように配置されていてもよい。この場合、第2反射領域の面積を大きくしやすい。したがって、例えば、光電センサにおいて反射ミラー部材を用いる場合には、集光レンズの集光量を向上させることができる。 (2) In the reflective mirror member of (1) above, the second reflective area may be arranged to surround the first reflective area when viewed from the thickness direction of the plating film. In this case, it is easy to increase the area of the second reflective region. Therefore, for example, when using a reflective mirror member in a photoelectric sensor, the amount of light condensed by the condenser lens can be improved.
(3)上記(1)または(2)の反射ミラー部材は、測定光を射出するとともに物体からの反射光を受光する光電センサにおいて用いられ、第2樹脂層部に、測定光を第1反射領域に導くガイド部材を支持する支持部が形成されていてもよい。 (3) The reflective mirror member of (1) or (2) above is used in a photoelectric sensor that emits measurement light and receives reflected light from an object, and the measurement light is first reflected onto the second resin layer. A support portion may be formed to support a guide member leading to the region.
 この場合、ガイド部材を支持するための支持部(貫通孔等)を第1樹脂層部に形成する必要がない。これにより、第1樹脂層部の成形時に、第1樹脂層部にウェルドラインが形成されることを防止することができる。その結果、第1樹脂層部上に形成された反射面の面精度がウェルドラインによって低下することを防止することができる。 In this case, there is no need to form a support part (through hole, etc.) for supporting the guide member in the first resin layer part. Thereby, it is possible to prevent a weld line from being formed in the first resin layer portion during molding of the first resin layer portion. As a result, it is possible to prevent the surface precision of the reflective surface formed on the first resin layer portion from deteriorating due to the weld line.
(4)上記(3)の反射ミラー部材において、支持部は、貫通孔を含み、第1樹脂層部には、上記貫通孔およびそれに対応するウェルドラインが形成されていなくてもよい。この場合、支持部となる貫通孔を形成する際に第1樹脂層部にウェルドラインが形成されない。これにより、第1樹脂層部に反射面(メッキ被膜)を形成する際に、ウェルドラインによる反射面の面精度の低下を防止することができる。 (4) In the reflective mirror member of (3) above, the support portion includes a through hole, and the through hole and the corresponding weld line may not be formed in the first resin layer portion. In this case, a weld line is not formed in the first resin layer portion when forming the through hole serving as the support portion. Thereby, when forming the reflective surface (plated film) on the first resin layer portion, it is possible to prevent the surface precision of the reflective surface from decreasing due to the weld line.
(5)上記(1)から(4)のいずれかの反射ミラー部材において、第2樹脂層部に一体的に形成され、反射ミラー部材を揺動または回転させる駆動部に接続される接続部をさらに備えていてもよい。この場合、接続部を介して、駆動部によって反射ミラー部材を揺動または回転させることができる。 (5) In the reflective mirror member according to any one of (1) to (4) above, the connecting portion is integrally formed in the second resin layer portion and is connected to the drive unit that swings or rotates the reflective mirror member. You may also have more. In this case, the reflecting mirror member can be swung or rotated by the driving section via the connecting section.
(6)本発明の一側面における光電センサは、測定光を射出する投光部と、測定対象空間から到達する反射光を受光する受光部と、測定光を所定の方向に偏向させる光偏向部、および/または、測定光を所定の方向に走査させる光走査部と、を備え、光偏向部または光走査部が、上記(1)から(5)のいずれかの反射ミラー部材を含む、ことを特徴とする。 (6) The photoelectric sensor according to one aspect of the present invention includes a light projecting section that emits measurement light, a light receiving section that receives reflected light arriving from the measurement target space, and a light deflection section that deflects the measurement light in a predetermined direction. and/or a light scanning section that scans the measurement light in a predetermined direction, and the light deflection section or the light scanning section includes the reflective mirror member according to any one of (1) to (5) above. It is characterized by
 この光電センサでは、面精度が高い第1反射領域によって測定光を反射し、第1反射領域に比べて面精度が低い第2反射領域によって反射光を反射することによって、検出精度を向上させることができる。 In this photoelectric sensor, detection accuracy is improved by reflecting measurement light by a first reflection area with high surface accuracy and reflecting the reflected light by a second reflection area having lower surface accuracy than the first reflection area. I can do it.
(7)上記(6)の光電センサにおいて、測定光が、反射ミラー部材の反射面の第1反射領域で反射して測定対象空間に射出され、かつ、測定対象空間からの反射光が、反射面で反射して受光部に受光されるように構成されていてもよい。この場合、測定対象空間内の物体を精度良く検出することができる。 (7) In the photoelectric sensor of (6) above, the measurement light is reflected by the first reflection region of the reflective surface of the reflective mirror member and is emitted into the measurement target space, and the reflected light from the measurement target space is reflected from the measurement target space. The light may be configured to be reflected by a surface and received by the light receiving section. In this case, objects within the measurement target space can be detected with high accuracy.
(8)上記(6)または(7)の光電センサにおいて、第2反射領域で反射した測定対象空間からの反射光が主に受光部に受光されるように反射ミラー部材の反射面が形成されていてもよい。この場合、測定対象空間内の物体を精度良く検出することができる。 (8) In the photoelectric sensor of (6) or (7) above, the reflective surface of the reflective mirror member is formed so that the reflected light from the measurement target space reflected by the second reflective area is mainly received by the light receiving part. You can leave it there. In this case, objects within the measurement target space can be detected with high accuracy.
(9)本発明の一側面の光測距装置は、上記(6)から(8)のいずれかの光電センサと、投光部および受光部を制御する制御部と、を備え、制御部が、測定光および反射光に基づいて測定対象空間における物体との距離を算出する、ことを特徴とする。 (9) An optical distance measuring device according to one aspect of the present invention includes the photoelectric sensor according to any one of (6) to (8) above, and a control unit that controls a light emitter and a light receiver, and the control unit , the distance to the object in the measurement target space is calculated based on the measurement light and the reflected light.
 この光測距装置では、面精度が高い第1反射領域によって測定光を反射し、第1反射領域に比べて面精度が低い第2反射領域によって反射光を反射することによって、測定対象空間内の物体を精度良く検出することができる。 In this optical distance measuring device, the measurement light is reflected by a first reflection area with high surface accuracy, and the reflected light is reflected by a second reflection area whose surface accuracy is lower than that of the first reflection area. objects can be detected with high accuracy.
 本発明によれば、反射ミラー部材を効率よく製造することができ、かつ当該反射ミラー部材を用いて適切に光を反射することができる。 According to the present invention, a reflective mirror member can be manufactured efficiently, and light can be appropriately reflected using the reflective mirror member.
図1は、本発明の一実施形態に係る光測距装置の構成を示す概略図である。FIG. 1 is a schematic diagram showing the configuration of an optical distance measuring device according to an embodiment of the present invention. 図2は、反射ミラー部材およびガイド部材の概略構造を示す断面図である。FIG. 2 is a cross-sectional view showing the schematic structure of the reflective mirror member and the guide member. 図3は、反射ミラー部材を示す概略斜視図(上下を反転させて置いた図1の反射ミラー部材を斜め上方から見た図)である。FIG. 3 is a schematic perspective view of the reflective mirror member (a view of the reflective mirror member of FIG. 1 placed upside down and viewed diagonally from above). 図4は、上下を反転させて置いた反射ミラー部材を図2に矢印Aで示す方向から見た図である。FIG. 4 is a view of the reflective mirror member placed upside down and viewed from the direction indicated by arrow A in FIG. 2. As shown in FIG. 図5は、図4のB-B部分を示す概略断面図である。FIG. 5 is a schematic cross-sectional view showing a section BB in FIG. 4. 図6は、第2樹脂層部および接続部を示す概略図である。FIG. 6 is a schematic diagram showing the second resin layer section and the connection section. 図7は、アンカー部の他の例を示す図である。FIG. 7 is a diagram showing another example of the anchor part. 図8は、アンカー部の他の例を示す図である。FIG. 8 is a diagram showing another example of the anchor part. 図9は、アンカー部の他の例を示す図である。FIG. 9 is a diagram showing another example of the anchor part. 図10は、アンカー部の他の例を示す図である。FIG. 10 is a diagram showing another example of the anchor part. 図11は、反射ミラー部材の他の例を示す図である。FIG. 11 is a diagram showing another example of the reflective mirror member. 図12は、反射ミラー部材の他の例を示す図である。FIG. 12 is a diagram showing another example of the reflective mirror member.
 以下、本発明の実施形態に係るミラー部材ならびにそれを備えた光電センサおよび光測距装置について、図面を用いて説明する。 Hereinafter, a mirror member according to an embodiment of the present invention, a photoelectric sensor, and an optical distance measuring device including the same will be described using the drawings.
(光測距装置の構成)
 図1は、本発明の一実施形態に係る光測距装置100の構成を示す概略図である。図1に示すように、本実施形態では、光測距装置100は、ケーシング102に収容されている。光測距装置100は、光電センサ10と、制御部12とを備えている。光測距装置100は、所定の監視領域(測定対象空間)内の物体を検出し、物体までの距離を測定する装置である。
(Configuration of optical distance measuring device)
FIG. 1 is a schematic diagram showing the configuration of an optical ranging device 100 according to an embodiment of the present invention. As shown in FIG. 1, in this embodiment, the optical distance measuring device 100 is housed in a casing 102. The optical distance measuring device 100 includes a photoelectric sensor 10 and a control section 12. The optical distance measuring device 100 is a device that detects an object within a predetermined monitoring area (measurement target space) and measures the distance to the object.
 光電センサ10は、投光部14、投光レンズ16、光走査部18、集光レンズ20、および受光部22を備えている。なお、投光部14、投光レンズ16、集光レンズ20および受光部22については、公知の種々の光測距装置の構成を利用できるので、以下においては簡単に説明する。 The photoelectric sensor 10 includes a light projecting section 14, a light projecting lens 16, a light scanning section 18, a condensing lens 20, and a light receiving section 22. Note that the light projecting section 14, the light projecting lens 16, the condensing lens 20, and the light receiving section 22 can be configured in various known optical distance measuring devices, and therefore will be briefly described below.
 投光部14は、レーザーダイオード等の発光素子を含み、測定光(レーザー光)を射出する。投光レンズ16は、投光部14から射出された測定光を平行光に整形する。詳細は後述するが、光走査部18は、投光レンズ16によって平行光に整形された測定光を、監視領域に向けて偏向する。また、光走査部18は、監視領域の物体で反射した測定光(反射光)を集光レンズ20に向けて偏向する。集光レンズ20は、光走査部18によって偏向された反射光を集光する。受光部22は、アバランシェフォトダイオード等の受光素子を含み、集光レンズ20によって集光された反射光を受光し、受光した反射光の光強度を電気信号に変換する。 The light projector 14 includes a light emitting element such as a laser diode, and emits measurement light (laser light). The light projection lens 16 shapes the measurement light emitted from the light projection section 14 into parallel light. Although details will be described later, the light scanning section 18 deflects the measurement light that has been shaped into parallel light by the light projecting lens 16 toward the monitoring area. Further, the optical scanning unit 18 deflects measurement light (reflected light) reflected by an object in the monitoring area toward the condenser lens 20 . The condenser lens 20 condenses the reflected light deflected by the optical scanning section 18 . The light receiving unit 22 includes a light receiving element such as an avalanche photodiode, receives reflected light collected by the condenser lens 20, and converts the light intensity of the received reflected light into an electrical signal.
 制御部12は、投光部14および受光部22を制御する。本実施形態では、制御部12は、例えば、投光部14の発光素子をパルス駆動するとともに、受光部22の受光素子の駆動電圧を制御する。また、制御部12は、投光部14における測定光の投光時刻と受光部22における反射光の受光時刻との時間差に基づいて、光測距装置100と監視領域内の物体との距離を算出する測距部を有している。本実施形態では、制御部12の測距部は、例えば、TDC(time to digital converter)回路を含み、光の飛行時間(上記時間差)を検出し、検出した光の飛行時間と光速とに基づいて、光測距装置100と物体との距離を算出する。なお、制御部12としては、TOF(Time of Flight)方式を用いた公知の光測距装置の構成を利用できるので、詳細な説明は省略する。 The control unit 12 controls the light projecting unit 14 and the light receiving unit 22. In this embodiment, the control unit 12 pulse-drives the light emitting element of the light projecting unit 14 and controls the driving voltage of the light receiving element of the light receiving unit 22, for example. Furthermore, the control unit 12 calculates the distance between the optical distance measuring device 100 and the object within the monitoring area based on the time difference between the time when the measurement light is projected by the light projector 14 and the time when the reflected light is received by the light receiver 22. It has a distance measuring section that calculates the distance. In the present embodiment, the distance measuring section of the control section 12 includes, for example, a TDC (time to digital converter) circuit, detects the flight time of light (the above-mentioned time difference), and detects the flight time of light and the speed of light based on the detected flight time of light and the speed of light. Then, the distance between the optical distance measuring device 100 and the object is calculated. Note that as the control unit 12, the configuration of a known optical distance measuring device using the TOF (Time of Flight) method can be used, so a detailed explanation will be omitted.
 光走査部18は、反射ミラー部材30、ガイド部材32、および駆動部34を備えている。図2は、反射ミラー部材30およびガイド部材32の概略構造を示す断面図であり、図3は、反射ミラー部材30を示す概略斜視図(上下を反転させて置いた図1の反射ミラー部材30を斜め上方から見た図)である。また、図4は、上下を反転させて置いた反射ミラー部材30を図2に矢印Aで示す方向から見た図であり、図5は、図4のB-B部分を示す概略断面図である。 The optical scanning section 18 includes a reflective mirror member 30, a guide member 32, and a driving section 34. FIG. 2 is a cross-sectional view showing a schematic structure of the reflecting mirror member 30 and the guide member 32, and FIG. 3 is a schematic perspective view showing the reflecting mirror member 30 (the reflecting mirror member 30 of FIG. (viewed diagonally from above). 4 is a view of the reflective mirror member 30 placed upside down and viewed from the direction indicated by arrow A in FIG. 2, and FIG. 5 is a schematic cross-sectional view taken along the line BB in FIG. be.
 図1~図4に示すように、反射ミラー部材30は、第1樹脂層部40と、第2樹脂層部42と、接続部44とを備えている。本実施形態では、接続部44は、第2樹脂層部42と一体成形されている。 As shown in FIGS. 1 to 4, the reflective mirror member 30 includes a first resin layer section 40, a second resin layer section 42, and a connecting section 44. In this embodiment, the connecting portion 44 is integrally molded with the second resin layer portion 42 .
 図5に示すように、第1樹脂層部40の厚み方向における一方面側には、メッキ被膜46が形成されている。第2樹脂層部42は、第1樹脂層部40の厚み方向における他方面側に設けられている。なお、図5においては、メッキ被膜46が形成されていることを理解しやすくするために、メッキ被膜46の厚みを大きくしている。また、図5においては、第1樹脂層部40の一方面側のみにメッキ被膜46が形成されているが、第1樹脂層部40の側面にもメッキ被膜46が形成されていてもよい。メッキ被膜46の厚みは、例えば、20~30μmである。 As shown in FIG. 5, a plating film 46 is formed on one side of the first resin layer portion 40 in the thickness direction. The second resin layer section 42 is provided on the other surface side of the first resin layer section 40 in the thickness direction. In addition, in FIG. 5, the thickness of the plating film 46 is increased in order to make it easier to understand that the plating film 46 is formed. Further, in FIG. 5, the plating film 46 is formed only on one side of the first resin layer section 40, but the plating film 46 may also be formed on the side surface of the first resin layer section 40. The thickness of the plating film 46 is, for example, 20 to 30 μm.
 図1および図2に示すように、本実施形態では、メッキ被膜46の表面60が、投光部14から射出された測定光およびその反射光を反射させる反射面として機能する。以下、メッキ被膜46の表面60を、反射面60と記載する。メッキ被膜46の材料としては、例えば、銅、金、ニッケル、またはクロムが用いられる。反射ミラー部材30の製造コストを抑制する観点からは、メッキ被膜46は、例えば、銅を用いて形成される。 As shown in FIGS. 1 and 2, in this embodiment, the surface 60 of the plating film 46 functions as a reflective surface that reflects the measurement light emitted from the light projector 14 and its reflected light. Hereinafter, the surface 60 of the plating film 46 will be referred to as a reflective surface 60. As the material of the plating film 46, for example, copper, gold, nickel, or chromium is used. From the viewpoint of suppressing the manufacturing cost of the reflective mirror member 30, the plating film 46 is formed using copper, for example.
 第1樹脂層部40と第2樹脂層部42とは、互いに異なる材料からなる。また、第1樹脂層部40および第2樹脂層部42は、二色成形によって一体成形されている。本実施形態では、第1樹脂層部40は、メッキ被膜46の材料と親和性の高い材料からなる。また、第2樹脂層部42は、第1樹脂層部40に比べて、メッキ被膜46の材料と親和性の低い材料からなる。これにより、第1樹脂層部40および第2樹脂層部42をメッキ液に浸漬した際に、第2樹脂層部42の表面にメッキ被膜が形成されることを防止することができる。この場合、マスキングを省略または簡略化できるので、反射ミラー部材30の製造効率が向上する。本実施形態では、例えば、第1樹脂層部40は、ABS(アクリロニトリルブタジエンスチレン)樹脂を用いて形成され、第2樹脂層部42は、PC(ポリカーボネート)樹脂を用いて形成される。 The first resin layer section 40 and the second resin layer section 42 are made of different materials. Further, the first resin layer section 40 and the second resin layer section 42 are integrally molded by two-color molding. In this embodiment, the first resin layer section 40 is made of a material that has high affinity with the material of the plating film 46. Furthermore, the second resin layer section 42 is made of a material that has a lower affinity with the material of the plating film 46 than the first resin layer section 40 . This can prevent a plating film from being formed on the surface of the second resin layer 42 when the first resin layer 40 and the second resin layer 42 are immersed in the plating solution. In this case, since masking can be omitted or simplified, the manufacturing efficiency of the reflective mirror member 30 is improved. In this embodiment, for example, the first resin layer section 40 is formed using ABS (acrylonitrile butadiene styrene) resin, and the second resin layer section 42 is formed using PC (polycarbonate) resin.
 図6は、第2樹脂層部42および接続部44を示す概略図である。図6に示すように、第2樹脂層部42には、複数の凹部42aおよび複数の支持部42bが形成されている。本実施形態では、凹部42aおよび支持部42bはそれぞれ、貫通孔である。図4に示すように、本実施形態では、第2樹脂層部42に形成された複数の支持部42bが露出するように、第2樹脂層部42上に第1樹脂層部40が形成されている。 FIG. 6 is a schematic diagram showing the second resin layer section 42 and the connecting section 44. As shown in FIG. 6, the second resin layer portion 42 is formed with a plurality of recesses 42a and a plurality of support portions 42b. In this embodiment, each of the recess 42a and the support 42b is a through hole. As shown in FIG. 4, in this embodiment, the first resin layer section 40 is formed on the second resin layer section 42 so that the plurality of support sections 42b formed on the second resin layer section 42 are exposed. ing.
 図5に示すように、第1樹脂層部40には、複数の凹部42aに嵌合する複数の凸部40aが形成されている。本実施形態では、凸部40aおよび凹部42aによって、第1樹脂層部40および第2樹脂層部42の接合界面41に、アンカー部50が形成されている。より具体的には、一対の凸部40aおよび一対の凹部42aによって、一対のアンカー部50が形成されている。 As shown in FIG. 5, the first resin layer portion 40 is formed with a plurality of protrusions 40a that fit into the plurality of recesses 42a. In this embodiment, an anchor portion 50 is formed at the bonding interface 41 of the first resin layer portion 40 and the second resin layer portion 42 by the convex portion 40a and the concave portion 42a. More specifically, a pair of anchor parts 50 are formed by a pair of protrusions 40a and a pair of recesses 42a.
 本実施形態では、接合界面41のうち、アンカー部50を含まない所定の領域を第1接合領域とし、アンカー部50を含む所定の領域を第2接合領域とする。図4に示すように、本実施形態では、例えば、接合界面41の中心部の所定の領域が第1接合領域41aに設定され、接合界面41のうち第1接合領域41aを除く領域が第2接合領域41bに設定される。 In this embodiment, a predetermined region of the bonding interface 41 that does not include the anchor portion 50 is defined as a first bonding region, and a predetermined region that includes the anchor portion 50 is defined as a second bonding region. As shown in FIG. 4, in this embodiment, for example, a predetermined area at the center of the bonding interface 41 is set as the first bonding area 41a, and an area of the bonding interface 41 excluding the first bonding area 41a is set as the second bonding area 41a. It is set in the bonding region 41b.
 また、本実施形態では、メッキ被膜46の厚み方向から見て、反射面60のうち第1接合領域41aを覆う領域を第1反射領域60aとし、第2接合領域41bを覆う領域を第2反射領域60bとする。本実施形態では、第2反射領域60bは、第1反射領域60aを囲むように配置されている。 Furthermore, in this embodiment, when viewed from the thickness direction of the plating film 46, the area of the reflective surface 60 that covers the first bonding area 41a is the first reflective area 60a, and the area that covers the second bonding area 41b is the second reflective area. It is assumed to be a region 60b. In this embodiment, the second reflective area 60b is arranged to surround the first reflective area 60a.
 図1および図2に示すように、ガイド部材32は、内部を測定光が通ることができるように筒状に形成されている。本実施形態では、ガイド部材32は、略直角に屈曲した筒状部32aと、筒状部32aを反射ミラー部材30に取り付けるための複数のフック部32bとを有している。本実施形態では、第2樹脂層部42の複数の支持部42b(図3参照)に対応するように、ガイド部材32に複数のフック部32bが設けられている。本実施形態では、複数のフック部32bを複数の支持部42bに引っかけることによって、ガイド部材32が反射ミラー部材30の第2樹脂層部42に支持される。 As shown in FIGS. 1 and 2, the guide member 32 is formed into a cylindrical shape so that the measurement light can pass through the inside. In this embodiment, the guide member 32 has a cylindrical portion 32 a bent at a substantially right angle and a plurality of hook portions 32 b for attaching the cylindrical portion 32 a to the reflective mirror member 30 . In this embodiment, the guide member 32 is provided with a plurality of hook parts 32b so as to correspond to the plurality of support parts 42b (see FIG. 3) of the second resin layer part 42. In this embodiment, the guide member 32 is supported by the second resin layer portion 42 of the reflective mirror member 30 by hooking the plurality of hook portions 32b onto the plurality of support portions 42b.
 なお、図6に示すように、第2樹脂層部42を成形する際に、樹脂の流れによって、貫通孔である支持部42bの近傍にウェルドライン42cが形成される場合がある。一方で、第1樹脂層部40には、支持部としての貫通孔は形成されていない。このため、支持部42b(貫通孔)を形成する際に形成されるウェルドラインも第1樹脂層部40には形成されていない。本実施形態では、ウェルドライン42cの少なくとも一部を覆うように第1樹脂層部40が形成される。 Note that, as shown in FIG. 6, when molding the second resin layer portion 42, a weld line 42c may be formed near the support portion 42b, which is a through hole, due to the flow of resin. On the other hand, the first resin layer section 40 does not have a through hole formed therein as a support section. Therefore, the weld line formed when forming the support portion 42b (through hole) is not formed in the first resin layer portion 40 either. In this embodiment, the first resin layer section 40 is formed to cover at least a portion of the weld line 42c.
 図2に示すように、ガイド部材32(筒状部32a)のうち、略直角に屈曲した部分に開口部32cが形成されている。本実施形態では、開口部32cにおいて第1反射領域60aがガイド部材32内に露出するように、ガイド部材32が第2樹脂層部42に支持される。このような構成により、投光レンズ16(図1参照)を通過してガイド部材32(筒状部32a)の一端部からガイド部材32に進入した測定光は、ガイド部材32(筒状部32a)によって第1反射領域60aに導かれる。第1反射領域60aに導かれた測定光は、第1反射領域60aにおいて偏向された後、ガイド部材32(筒状部32a)の他端部から出射される。 As shown in FIG. 2, an opening 32c is formed in a portion of the guide member 32 (cylindrical portion 32a) that is bent at a substantially right angle. In this embodiment, the guide member 32 is supported by the second resin layer portion 42 such that the first reflective region 60a is exposed within the guide member 32 at the opening 32c. With such a configuration, the measurement light that has passed through the projection lens 16 (see FIG. 1) and entered the guide member 32 from one end of the guide member 32 (cylindrical portion 32a) is transmitted to the guide member 32 (cylindrical portion 32a). ) is guided to the first reflection region 60a. The measurement light guided to the first reflection area 60a is deflected in the first reflection area 60a and then emitted from the other end of the guide member 32 (cylindrical part 32a).
 図1に示すように、駆動部34は、反射ミラー部材30の接続部44に取り付けられ、回転軸X周りに接続部44を回転させる。これにより、反射ミラー部材30が回転軸X周りに回転する。本実施形態では、反射ミラー部材30の回転軸心上(回転軸Xの延長線上)に第1反射領域60a(図2参照)が位置付けられる。なお、反射ミラー部材30の反射面60は、回転軸Xに対して45°傾斜するように設けられている。本実施形態では、駆動部34として電磁モータが用いられ、電磁モータのローターに接続部44が固定されている。 As shown in FIG. 1, the drive section 34 is attached to the connection section 44 of the reflective mirror member 30, and rotates the connection section 44 around the rotation axis X. As a result, the reflective mirror member 30 rotates around the rotation axis X. In this embodiment, the first reflection region 60a (see FIG. 2) is positioned on the rotation axis of the reflection mirror member 30 (on the extension of the rotation axis X). Note that the reflective surface 60 of the reflective mirror member 30 is provided so as to be inclined at 45 degrees with respect to the rotation axis X. In this embodiment, an electromagnetic motor is used as the drive section 34, and a connecting section 44 is fixed to the rotor of the electromagnetic motor.
 本実施形態に係る光測距装置100では、駆動部34によって反射ミラー部材30を回転させつつ、投光部14から測定光を射出することによって、光測距装置100の周囲の所定の監視領域に測定光を走査することができる。 In the optical ranging device 100 according to the present embodiment, a predetermined monitoring area around the optical ranging device 100 is set by emitting measurement light from the light projecting section 14 while rotating the reflecting mirror member 30 by the driving section 34. The measurement light can be scanned.
(作用効果)
 本実施形態に係る反射ミラー部材30では、反射面60を、メッキ被膜46によって形成している。この場合、蒸着によって反射面を形成する場合に比べて、効率よく反射ミラー部材30を製造することができる。
(effect)
In the reflective mirror member 30 according to this embodiment, the reflective surface 60 is formed of the plating film 46. In this case, the reflective mirror member 30 can be manufactured more efficiently than when the reflective surface is formed by vapor deposition.
 また、本実施形態に係る光電センサ10では、メッキ被膜46の厚み方向から見て、アンカー部50を含まない第1接合領域41aに重なるように第1反射領域60aが設けられ、アンカー部50を含む第2接合領域41bに重なるように第2反射領域60bが設けられている。この場合、第1反射領域60aの面精度を、第2反射領域60bの面精度よりも高くすることができる。本実施形態では、面精度が高い第1反射領域60aによって測定光を偏向し、第1反射領域60aに比べて面精度が低い第2反射領域60bによって反射光を偏向している。 Further, in the photoelectric sensor 10 according to the present embodiment, the first reflective region 60a is provided so as to overlap the first bonding region 41a that does not include the anchor portion 50 when viewed from the thickness direction of the plating film 46, and the first reflective region 60a is provided so as to overlap the first bonding region 41a that does not include the anchor portion 50. A second reflective region 60b is provided so as to overlap with the second bonding region 41b. In this case, the surface precision of the first reflective region 60a can be made higher than the surface precision of the second reflective region 60b. In this embodiment, the measurement light is deflected by the first reflection region 60a, which has a high surface precision, and the reflected light is deflected by the second reflection region 60b, which has a lower surface precision than the first reflection region 60a.
 ここで、反射面60の面精度は、反射面60によって反射された光の平行度に影響する。この点に関して、第1反射領域60aと検出対象となる物体との距離は、例えば、数m~数十mと長い。このため、第1反射領域60aで偏向された測定光の平行度が低い場合には、検出対象となる物体に照射される測定光の密度が低くなる。これにより、測定精度が低下する。 Here, the surface precision of the reflective surface 60 affects the parallelism of the light reflected by the reflective surface 60. In this regard, the distance between the first reflective region 60a and the object to be detected is long, for example, several meters to several tens of meters. Therefore, when the parallelism of the measurement light deflected by the first reflection region 60a is low, the density of the measurement light irradiated onto the object to be detected becomes low. This reduces measurement accuracy.
 一方、検出対象となる物体によって反射した反射光は拡散光のため、そもそも光密度が低い。このため、第2反射領域60bの面精度が比較的低い場合でも、集光レンズ20の集光量には大きく影響しない。言い換えると、第2反射領域60bの面精度が比較的低い場合でも、測定精度の低下は抑制される。 On the other hand, since the reflected light reflected by the object to be detected is diffused light, its light density is low to begin with. Therefore, even if the surface precision of the second reflective region 60b is relatively low, the amount of light condensed by the condenser lens 20 is not greatly affected. In other words, even if the surface accuracy of the second reflective region 60b is relatively low, a decrease in measurement accuracy is suppressed.
 そこで、本実施形態では、面精度が高い第1反射領域60aによって測定光を偏向し、第1反射領域60aに比べて面精度が低い第2反射領域60bによって反射光を偏向している。このようにして、測定光および反射光を反射ミラー部材30において適切に反射することができる。もちろん、面精度が高い第1反射領域60aによって反射光を集光レンズ20に偏向してもよい。主に第2反射領域60bによって反射光を偏向し、受光部22に受光されるようにすればよい。言い換えると、第2反射領域60bで反射した測定対象空間からの反射光が、第1反射領域60aで反射した測定対象空間からの反射光よりも多く受光部22に受光されるように、反射ミラー部材30の反射面60が形成されていればよい。なお、本実施形態では、投光部14から射出された測定光が、第2反射領域60bでは反射せず、第1反射領域60aでのみ反射するように、反射面60が形成されている。 Therefore, in this embodiment, the measurement light is deflected by the first reflection region 60a, which has a high surface precision, and the reflected light is deflected by the second reflection region 60b, which has a lower surface precision than the first reflection region 60a. In this way, the measurement light and the reflected light can be appropriately reflected on the reflective mirror member 30. Of course, the reflected light may be deflected to the condenser lens 20 by the first reflection region 60a having high surface precision. The reflected light may be mainly deflected by the second reflection region 60b and then received by the light receiving section 22. In other words, the reflective mirror is configured so that the light receiving unit 22 receives more reflected light from the measurement target space reflected by the second reflective area 60b than reflected light from the measurement target space reflected by the first reflective area 60a. It is sufficient that the reflective surface 60 of the member 30 is formed. Note that in this embodiment, the reflective surface 60 is formed so that the measurement light emitted from the light projecting section 14 is not reflected on the second reflective area 60b but is reflected only on the first reflective area 60a.
 なお、測定光の波長が短いほど、反射面60の面精度が測定精度に与える影響が大きくなる。言い換えると、測定光の波長(λ=600~1550nm。例えば、本実施形態の場合は905nm。)が短いほど、本発明による上記の効果が顕著に表れる。 Note that the shorter the wavelength of the measurement light, the greater the influence of the surface accuracy of the reflective surface 60 on the measurement accuracy. In other words, the shorter the wavelength of the measurement light (λ=600 to 1550 nm; for example, 905 nm in this embodiment), the more remarkable the above effects of the present invention become.
 第1反射領域60aの面精度(PV:Peak to Valley)は、例えば、λ/4~λ/2であることが好ましく、第2反射領域60bの面精度(PV:Peak to Valley)は、例えば、2λ~4λであることが好ましい(ただし、λは測定光の波長を示す)。なお、面精度は、走査型白色干渉法を利用したZygo社製の三次元光学プロファイラーシステム(NewView6300)および付属の解析ソフト(MetroPro)を用いて測定することができる。測定条件は、LED波長:380~780μm(白色)、測定エリア:30mm×30mmとする。 It is preferable that the surface precision (PV: Peak to Valley) of the first reflective region 60a is, for example, λ/4 to λ/2, and the surface precision (PV: Peak to Valley) of the second reflective region 60b is, for example, , 2λ to 4λ (where λ indicates the wavelength of the measurement light). Note that the surface accuracy can be measured using a three-dimensional optical profiler system (NewView 6300) manufactured by Zygo that uses scanning white light interferometry and the attached analysis software (MetroPro). The measurement conditions are: LED wavelength: 380 to 780 μm (white), measurement area: 30 mm x 30 mm.
 本実施形態では、第1反射領域60aを囲むように、第2反射領域60bが設けられている。この場合、第2反射領域60bの面積を大きくしやすいので、集光レンズ20の集光量を向上させることができる。 In this embodiment, a second reflective area 60b is provided to surround the first reflective area 60a. In this case, since it is easy to increase the area of the second reflective region 60b, the amount of light condensed by the condenser lens 20 can be improved.
 本実施形態では、ガイド部材32を支持するための支持部42bが、第2樹脂層部42に形成されている。この場合、ガイド部材32を支持するための支持部(貫通孔)を第1樹脂層部40に形成する必要がない。これにより、第1樹脂層部40の成形時に、第1樹脂層部40にウェルドラインが形成されることを防止することができる。その結果、第1樹脂層部40上に形成された反射面60の面精度がウェルドラインによって低下することを防止することができる。 In this embodiment, a support portion 42b for supporting the guide member 32 is formed in the second resin layer portion 42. In this case, there is no need to form a support part (through hole) in the first resin layer part 40 for supporting the guide member 32. Thereby, it is possible to prevent a weld line from being formed in the first resin layer section 40 when the first resin layer section 40 is molded. As a result, it is possible to prevent the surface precision of the reflective surface 60 formed on the first resin layer section 40 from deteriorating due to the weld line.
 なお、本実施形態では、第2樹脂層部42に形成されたウェルドライン42cの一部を覆うように第1樹脂層部40が形成され、第1樹脂層部40上に反射面60(メッキ被膜46)が形成されている。この場合、ウェルドライン42cと反射面60(メッキ被膜46)との間に設けられた第1樹脂層部40によって、ウェルドライン42cによる反射面60の面精度の低下を防止することができる。 In this embodiment, the first resin layer section 40 is formed to cover a part of the weld line 42c formed on the second resin layer section 42, and the reflective surface 60 (plated) is formed on the first resin layer section 40. A coating 46) is formed. In this case, the first resin layer section 40 provided between the weld line 42c and the reflective surface 60 (plated coating 46) can prevent the surface precision of the reflective surface 60 from decreasing due to the weld line 42c.
(変形例)
 上述の実施形態では、アンカー部50を構成する凹部42aが貫通孔である場合について説明したが、図7に示すように、凹部42aが第2樹脂層部42を貫通していなくてもよい。
(Modified example)
In the above-described embodiment, a case has been described in which the recess 42a constituting the anchor portion 50 is a through hole, but as shown in FIG. 7, the recess 42a does not need to penetrate the second resin layer 42.
 上述の実施形態では、第2樹脂層部42に形成された凹部42aと、凹部42aに嵌合するように第1樹脂層部40に形成された凸部40aとによってアンカー部50が構成される場合について説明したが、アンカー部50の構成は上述の例に限定されない。具体的には、図8に示すように、第1樹脂層部40に形成された凹部40cと、凹部40cに嵌合するように第2樹脂層部42に形成された凸部42dとによってアンカー部50が構成されてもよい。なお、図示は省略するが、凹部40cが第1樹脂層部40を貫通していなくてもよい。 In the embodiment described above, the anchor portion 50 is configured by the recess 42a formed in the second resin layer 42 and the protrusion 40a formed in the first resin layer 40 so as to fit into the recess 42a. Although the case has been described, the configuration of the anchor portion 50 is not limited to the above example. Specifically, as shown in FIG. 8, the anchor is formed by a recess 40c formed in the first resin layer 40 and a projection 42d formed in the second resin layer 42 so as to fit into the recess 40c. 50 may be configured. Although not shown, the recess 40c does not need to penetrate the first resin layer 40.
 また、上述の実施形態では、一対のアンカー部50が設けられる場合について説明したが、アンカー部50の数は、1つであってもよく、3つ以上であってもよい。なお、アンカー部50は、第1樹脂層部40および第2樹脂層部42が、第1樹脂層部40(第2樹脂層部42)の厚み方向に直交する方向に互いにずれることを防止できるように構成されていればよい。したがって、アンカー部50の形状および形成位置は、適宜変更することができる。例えば、図9に示すように、メッキ被膜46の厚み方向から見て、アンカー部50が円形状を有していてもよい。また、上述の実施形態では、アンカー部50において、凸部の全周が凹部に覆われているが、図10に示すアンカー部50のように、凸部の外周の一部が、凹部によって覆われていなくてもよい。言い換えると、凸部の外周の一部が、凹部から露出していてもよい。 Furthermore, in the above-described embodiment, the case where a pair of anchor parts 50 are provided has been described, but the number of anchor parts 50 may be one, or three or more. Note that the anchor portion 50 can prevent the first resin layer portion 40 and the second resin layer portion 42 from shifting from each other in a direction perpendicular to the thickness direction of the first resin layer portion 40 (second resin layer portion 42). It is sufficient if it is configured as follows. Therefore, the shape and formation position of the anchor portion 50 can be changed as appropriate. For example, as shown in FIG. 9, the anchor portion 50 may have a circular shape when viewed from the thickness direction of the plating film 46. Furthermore, in the above-described embodiment, in the anchor portion 50, the entire circumference of the convex portion is covered with the concave portion, but as in the anchor portion 50 shown in FIG. It doesn't have to be. In other words, a portion of the outer periphery of the convex portion may be exposed from the concave portion.
 本発明が適用される反射ミラー部材の形状は上述の例に限定されず、例えば、図11および図12に示すようなポリゴン型の反射ミラー部材にも本発明を適用できる。以下、ポリゴン型の反射ミラー部材について簡単に説明する。 The shape of the reflective mirror member to which the present invention is applied is not limited to the above-mentioned example, and the present invention can also be applied to polygonal reflective mirror members as shown in FIGS. 11 and 12, for example. The polygon-type reflective mirror member will be briefly explained below.
 図11に示す反射ミラー部材70は、第1樹脂層部72と第2樹脂層部74とを備えている。また、第1樹脂層部72と第2樹脂層部74との接合界面には、複数のアンカー部76が形成されている。反射ミラー部材70は、略三角柱形状を有し、外周面を構成する3つの側面にそれぞれ、反射面を形成する一対のメッキ被膜78a,78bが形成されている。メッキ被膜78a,78bは、互いに離隔するように、かつ長方形状を有するように形成されている。本実施形態では、メッキ被膜78aの表面のうちの一部(一点鎖線で囲まれた領域)が、測定光を偏向する第1反射領域に設定され、メッキ被膜78bの全面が反射光を偏向する第2反射領域に設定される。なお、詳細な説明は省略するが、本実施形態においても、第1樹脂層部72と第2樹脂層部74との接合界面は、アンカー部76を含まない第1接合領域と、アンカー部76を含む第2接合領域とを有し、第1反射領域は、第1接合領域を覆うように形成され、第2反射領域は、第2接合領域を覆うように形成されている。 The reflective mirror member 70 shown in FIG. 11 includes a first resin layer section 72 and a second resin layer section 74. Further, a plurality of anchor portions 76 are formed at the bonding interface between the first resin layer portion 72 and the second resin layer portion 74. The reflective mirror member 70 has a substantially triangular prism shape, and a pair of plating coatings 78a and 78b forming reflective surfaces are formed on three side surfaces constituting the outer peripheral surface, respectively. The plating films 78a and 78b are formed so as to be spaced apart from each other and to have a rectangular shape. In this embodiment, a part of the surface of the plating film 78a (the area surrounded by the dashed line) is set as a first reflection region that deflects the measurement light, and the entire surface of the plating film 78b deflects the reflected light. It is set in the second reflection area. Although a detailed explanation will be omitted, in this embodiment as well, the bonding interface between the first resin layer section 72 and the second resin layer section 74 has a first bonding area that does not include the anchor section 76 and a bonding interface between the first resin layer section 72 and the second resin layer section 74. The first reflective area is formed to cover the first bonding area, and the second reflective area is formed to cover the second bonding area.
 図12に示す反射ミラー部材80は、第1樹脂層部82と第2樹脂層部84とを備えている。また、第1樹脂層部82と第2樹脂層部84との接合界面には、複数のアンカー部86が形成されている。反射ミラー部材80は、略四角柱形状を有し、外周面を構成する4つの側面にそれぞれ、反射面を形成するメッキ被膜88が形成されている。本実施形態では、一点鎖線で示すように、メッキ被膜88の表面は、測定光を偏向する第1反射領域88a、反射光を偏向する第2反射領域88b、ならびに測定光の一部および反射光の一部を偏向する第3反射領域88cを含む。なお、詳細な説明は省略するが、本実施形態においても、第1樹脂層部82と第2樹脂層部84との接合界面は、アンカー部86を含まない第1接合領域と、アンカー部86を含む第2接合領域とを有している。第1反射領域88aおよび第3反射領域88cは、メッキ被膜88の厚み方向から見て、第1接合領域に重なるように形成され、第2反射領域88bは、第2接合領域に重なるように設けられている。 A reflective mirror member 80 shown in FIG. 12 includes a first resin layer section 82 and a second resin layer section 84. Further, a plurality of anchor portions 86 are formed at the bonding interface between the first resin layer portion 82 and the second resin layer portion 84. The reflective mirror member 80 has a substantially quadrangular prism shape, and a plating film 88 forming a reflective surface is formed on each of four side surfaces constituting the outer peripheral surface. In this embodiment, as shown by the dashed line, the surface of the plating film 88 includes a first reflection area 88a that deflects the measurement light, a second reflection area 88b that deflects the reflected light, and a part of the measurement light and the reflected light. includes a third reflective region 88c that deflects a portion of the mirror. Although a detailed explanation will be omitted, in this embodiment as well, the bonding interface between the first resin layer section 82 and the second resin layer section 84 has a first bonding area that does not include the anchor section 86 and a bonding interface between the first resin layer section 82 and the second resin layer section 84 . and a second bonding region. The first reflective area 88a and the third reflective area 88c are formed to overlap the first bonding area when viewed from the thickness direction of the plating film 88, and the second reflective area 88b is formed to overlap the second bonding area. It is being
 なお、詳細な説明は省略するが、直角プリズムミラー等の他の種々のミラー部材に本発明を適用してもよい。 Note that although a detailed description will be omitted, the present invention may be applied to various other mirror members such as a right-angle prism mirror.
 上述の実施形態では、駆動部34が反射ミラー部材30を回転駆動する場合について説明したが、駆動部によって反射ミラー部材が揺動駆動される光電センサ(光測距装置)において本発明を適用してもよい。この場合も、反射ミラー部材は、上述の実施形態と同様に、第1樹脂層部と、メッキ被膜によって形成された反射面と、第2樹脂層部とを備える。また、駆動部は、第2樹脂層部に一体的に形成された接続部に接続される。また、上述の実施形態では、測定光を所定方向に偏向走査する光走査部18を備えた光電センサ10(光測距装置100)について説明したが、測定光を所定の一方向に偏向する光偏向部を備えた光電センサ(光測距装置)に本発明を適用してもよい。例えば、上述の光電センサ10において駆動部34を設けずに反射ミラー部材30をケーシング102に固定して、反射ミラー部材30を光偏向部として用いてもよい。また、光走査部と光偏向部の両方を備えた光電センサ(光測距装置)に本発明を適用してもよい。例えば、投光部14から射出された測定光を光偏向部が偏向し、偏向された測定光を光走査部が監視領域に走査するように、光電センサを構成してもよい。この場合、光走査部は、例えば、上述の光走査部18と同様に構成することができる。また、例えば、光走査部の反射ミラー部材30とは別の反射ミラー部材30をケーシング102に固定して、固定した反射ミラー部材30を光偏向部として用いることができる。 In the above-described embodiment, a case has been described in which the driving section 34 rotationally drives the reflecting mirror member 30, but the present invention is applied to a photoelectric sensor (optical distance measuring device) in which the reflecting mirror member is oscillatedly driven by the driving section. You can. Also in this case, the reflective mirror member includes a first resin layer, a reflective surface formed by a plating film, and a second resin layer, as in the above-described embodiment. Further, the drive section is connected to a connection section integrally formed in the second resin layer section. Furthermore, in the above-described embodiment, the photoelectric sensor 10 (optical distance measuring device 100) including the optical scanning unit 18 that deflects and scans the measurement light in a predetermined direction has been described. The present invention may be applied to a photoelectric sensor (optical distance measuring device) provided with a deflection section. For example, the reflective mirror member 30 may be fixed to the casing 102 without providing the drive unit 34 in the photoelectric sensor 10 described above, and the reflective mirror member 30 may be used as a light deflection unit. Furthermore, the present invention may be applied to a photoelectric sensor (optical distance measuring device) that includes both an optical scanning section and an optical deflection section. For example, the photoelectric sensor may be configured such that an optical deflection section deflects the measurement light emitted from the light projection section 14, and an optical scanning section scans the monitoring area with the deflected measurement light. In this case, the optical scanning section can be configured in the same manner as the optical scanning section 18 described above, for example. Further, for example, a reflective mirror member 30 different from the reflective mirror member 30 of the optical scanning section can be fixed to the casing 102, and the fixed reflective mirror member 30 can be used as the optical deflection section.
 本発明によれば、反射ミラー部材を効率よく製造することができるので、光電センサおよび光測距装置の製造コストを低減することができる。 According to the present invention, since the reflective mirror member can be manufactured efficiently, the manufacturing cost of the photoelectric sensor and the optical distance measuring device can be reduced.
 10 光電センサ
 12 制御部
 14 投光部
 16 投光レンズ
 18 光走査部
 20 集光レンズ
 22 受光部
 30,70,80 反射ミラー部材
 32 ガイド部材
 34 駆動部
 40 第1樹脂層部
 41 接合界面
 41a 第1接合領域
 41b 第2接合領域
 42 第2樹脂層部
 42b 支持部
 44 接続部
 46 メッキ被膜
 50 アンカー部
 60 反射面
 60a 第1反射領域
 60b 第2反射領域
10 Photoelectric sensor 12 Control section 14 Light projecting section 16 Light projecting lens 18 Light scanning section 20 Condensing lens 22 Light receiving section 30, 70, 80 Reflection mirror member 32 Guide member 34 Drive section 40 First resin layer section 41 Bonding interface 41a No. 1 bonding area 41b second bonding area 42 second resin layer portion 42b support portion 44 connection portion 46 plating film 50 anchor portion 60 reflective surface 60a first reflective area 60b second reflective area

Claims (9)

  1.  第1樹脂層部と、
     前記第1樹脂層部の一方面側にメッキ被膜によって形成された反射面と、
     前記第1樹脂層部の他方面側に設けられた第2樹脂層部と、を備え、
     前記第1樹脂層部と前記第2樹脂層部とは、互いに異なる材料からなり、かつ二色成形によって一体成形されており、
     前記第1樹脂層部と前記第2樹脂層部との接合界面にアンカー部が形成されており、
     前記アンカー部は、前記第1樹脂層部および前記第2樹脂層部のうちの一方に形成された凹部と、前記第1樹脂層部および前記第2樹脂層部のうちの他方に形成されかつ前記凹部に嵌合された凸部とを有し、
     前記接合界面は、前記アンカー部を含まない第1接合領域と、前記アンカー部を含む第2接合領域とを有し、
     前記メッキ被膜の厚み方向から見て、前記反射面は、前記第1接合領域に重なるように形成された第1反射領域と、前記第2接合領域に重なるように形成された第2反射領域とを有する、
     反射ミラー部材。
    a first resin layer portion;
    a reflective surface formed by a plating film on one side of the first resin layer;
    a second resin layer section provided on the other side of the first resin layer section,
    The first resin layer portion and the second resin layer portion are made of different materials and are integrally molded by two-color molding,
    An anchor portion is formed at a bonding interface between the first resin layer portion and the second resin layer portion,
    The anchor portion is formed in a recess formed in one of the first resin layer portion and the second resin layer portion, and in the other of the first resin layer portion and the second resin layer portion, and a convex portion fitted into the concave portion;
    The bonding interface has a first bonding area that does not include the anchor part and a second bonding area that includes the anchor part,
    When viewed from the thickness direction of the plating film, the reflective surface includes a first reflective area formed to overlap with the first bonding area, and a second reflective area formed to overlap with the second bonding area. has,
    Reflective mirror component.
  2.  前記厚み方向から見て、前記第2反射領域は、前記第1反射領域を囲むように配置されている、
     請求項1に記載の反射ミラー部材。
    When viewed from the thickness direction, the second reflective area is arranged to surround the first reflective area,
    The reflective mirror member according to claim 1.
  3.  測定光を射出するとともに物体からの反射光を受光する光電センサにおいて用いられ、
     前記第2樹脂層部に、測定光を前記第1反射領域に導くガイド部材を支持する支持部が形成されている、
     請求項1に記載の反射ミラー部材。
    Used in photoelectric sensors that emit measurement light and receive reflected light from objects.
    A support portion that supports a guide member that guides the measurement light to the first reflection region is formed in the second resin layer portion;
    The reflective mirror member according to claim 1.
  4.  前記支持部は、貫通孔を含み、
     前記第1樹脂層部には、前記貫通孔およびそれに対応するウェルドラインが形成されていない、
     請求項3に記載の反射ミラー部材。
    The support part includes a through hole,
    The first resin layer portion does not have the through hole and the corresponding weld line formed therein.
    The reflective mirror member according to claim 3.
  5.  前記第2樹脂層部に一体的に形成され、前記反射ミラー部材を揺動または回転させる駆動部に接続される接続部をさらに備える、
     請求項3に記載の反射ミラー部材。
    further comprising a connection part that is integrally formed with the second resin layer part and connected to a drive part that swings or rotates the reflective mirror member;
    The reflective mirror member according to claim 3.
  6.  測定光を射出する投光部と、
     測定対象空間から到達する反射光を受光する受光部と、
     前記測定光を所定の方向に偏向させる光偏向部、および/または、前記測定光を所定の方向に走査させる光走査部と、を備え、
     前記光偏向部または前記光走査部が、請求項1に記載の反射ミラー部材を含む、光電センサ。
    a light projection unit that emits measurement light;
    a light receiving unit that receives reflected light arriving from the measurement target space;
    comprising a light deflection section that deflects the measurement light in a predetermined direction, and/or a light scanning section that scans the measurement light in a predetermined direction,
    A photoelectric sensor, wherein the optical deflection section or the optical scanning section includes the reflective mirror member according to claim 1.
  7.  前記測定光が、前記反射ミラー部材の前記反射面の前記第1反射領域で反射して前記測定対象空間に射出され、かつ、前記測定対象空間からの前記反射光が、前記反射面で反射して前記受光部に受光されるように構成された、
     請求項6に記載の光電センサ。
    The measurement light is reflected by the first reflection area of the reflection surface of the reflection mirror member and emitted into the measurement object space, and the reflected light from the measurement object space is reflected by the reflection surface. configured so that the light is received by the light receiving section,
    The photoelectric sensor according to claim 6.
  8.  前記第2反射領域で反射した前記測定対象空間からの前記反射光が、前記受光部に受光されるように前記反射ミラー部材の前記反射面が形成されている、
     請求項7に記載の光電センサ。
    The reflective surface of the reflective mirror member is formed such that the reflected light from the measurement target space reflected by the second reflective area is received by the light receiving section.
    The photoelectric sensor according to claim 7.
  9.  請求項6に記載の光電センサと、
     前記投光部および前記受光部を制御する制御部と、を備え、
     前記制御部が、前記測定光および前記反射光に基づいて前記測定対象空間における物体との距離を算出する、
     光測距装置。
    The photoelectric sensor according to claim 6;
    A control unit that controls the light projecting unit and the light receiving unit,
    The control unit calculates a distance to an object in the measurement target space based on the measurement light and the reflected light.
    Optical ranging device.
PCT/JP2023/017865 2022-05-25 2023-05-12 Reflecting mirror member, photoelectric sensor, and optical ranging device WO2023228775A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022085369A JP2023173245A (en) 2022-05-25 2022-05-25 Reflection mirror member, photoelectric sensor, and optical range finder
JP2022-085369 2022-05-25

Publications (1)

Publication Number Publication Date
WO2023228775A1 true WO2023228775A1 (en) 2023-11-30

Family

ID=88919113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017865 WO2023228775A1 (en) 2022-05-25 2023-05-12 Reflecting mirror member, photoelectric sensor, and optical ranging device

Country Status (2)

Country Link
JP (1) JP2023173245A (en)
WO (1) WO2023228775A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006212780A (en) * 2005-02-01 2006-08-17 Alps Electric Co Ltd Uneven shape forming apparatus
JP2009073994A (en) * 2007-09-21 2009-04-09 Hitachi Maxell Ltd Inorganic material extracting method in inorganic material dispersed polymer, manufacturing method of composite, molded body of polymer and reflector plate
JP2011221518A (en) * 2010-03-23 2011-11-04 Asahi Rubber Inc Reflective material
WO2013035839A1 (en) * 2011-09-08 2013-03-14 三菱レイヨン株式会社 Transparent film having micro-convexoconcave structure on surface thereof, method for producing same, and substrate film used in production of transparent film
WO2014065136A1 (en) * 2012-10-22 2014-05-01 三菱レイヨン株式会社 Layered structure and method for manufacturing same, and article
JP2014199319A (en) * 2013-03-29 2014-10-23 富士フイルム株式会社 Method for manufacturing film mirror for collecting sunlight, and film mirror for collecting sunlight

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006212780A (en) * 2005-02-01 2006-08-17 Alps Electric Co Ltd Uneven shape forming apparatus
JP2009073994A (en) * 2007-09-21 2009-04-09 Hitachi Maxell Ltd Inorganic material extracting method in inorganic material dispersed polymer, manufacturing method of composite, molded body of polymer and reflector plate
JP2011221518A (en) * 2010-03-23 2011-11-04 Asahi Rubber Inc Reflective material
WO2013035839A1 (en) * 2011-09-08 2013-03-14 三菱レイヨン株式会社 Transparent film having micro-convexoconcave structure on surface thereof, method for producing same, and substrate film used in production of transparent film
WO2014065136A1 (en) * 2012-10-22 2014-05-01 三菱レイヨン株式会社 Layered structure and method for manufacturing same, and article
JP2014199319A (en) * 2013-03-29 2014-10-23 富士フイルム株式会社 Method for manufacturing film mirror for collecting sunlight, and film mirror for collecting sunlight

Also Published As

Publication number Publication date
JP2023173245A (en) 2023-12-07

Similar Documents

Publication Publication Date Title
US6975408B2 (en) Reflection scale and displacement measurement apparatus using the same
US7336368B2 (en) Optical detecting module and optical detector thereof
JP5064049B2 (en) Reflective encoder with reduced background noise
JPH05203465A (en) Rotary encoder
KR100274131B1 (en) Displacement information detection device
TWI664398B (en) Optical rotary encoder
JP5832562B2 (en) Reflective optical encoder with resin code plate
EP0964226A1 (en) Reader device for high resolution optical encoder
US20080170284A1 (en) Light Beam Scanner
WO2023228775A1 (en) Reflecting mirror member, photoelectric sensor, and optical ranging device
JPH04208810A (en) Apparatus for outputting displacement signal
JP4063947B2 (en) Fiber orientation meter
US10648839B2 (en) Photoelectric encoder
TW202413988A (en) Reflector components, photoelectric sensors, and optical distance measuring devices
KR100255645B1 (en) Encoder integrated motor
JP2629242B2 (en) Reflective optical sensor
JPH11133216A (en) Reflection type prism and reflection type prism forming die
JP2002228491A (en) Emission light source device for optical encoder
JP2018197743A (en) Photoelectric encoder
JP2020034663A (en) Polygon mirror
US20230305643A1 (en) Joystick module
JPH0850036A (en) Potentiometer
JP3955400B2 (en) Dimensional measuring device
JPH1123321A (en) Optical scale and displacement-information measuring apparatus unit the same
JPH04238223A (en) Position detecting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811649

Country of ref document: EP

Kind code of ref document: A1