WO2023228740A1 - Vehicle control method, server, vehicle travel system, and vehicle - Google Patents

Vehicle control method, server, vehicle travel system, and vehicle Download PDF

Info

Publication number
WO2023228740A1
WO2023228740A1 PCT/JP2023/017552 JP2023017552W WO2023228740A1 WO 2023228740 A1 WO2023228740 A1 WO 2023228740A1 JP 2023017552 W JP2023017552 W JP 2023017552W WO 2023228740 A1 WO2023228740 A1 WO 2023228740A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
information
route
information indicating
server device
Prior art date
Application number
PCT/JP2023/017552
Other languages
French (fr)
Japanese (ja)
Inventor
亮 小山
文宏 松▲崎▼
千里 加瀬林
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2023228740A1 publication Critical patent/WO2023228740A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/165Automatically following the path of a preceding lead vehicle, e.g. "electronic tow-bar"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y10/00Economic sectors
    • G16Y10/40Transportation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y40/00IoT characterised by the purpose of the information processing
    • G16Y40/30Control

Definitions

  • the present disclosure relates to a vehicle control method, a server, a vehicle running system, and a vehicle.
  • Autonomous driving technologies such as autonomous robots and automobiles have conventionally existed.
  • Autonomous driving is defined as a system in which a vehicle and/or a moving body is operated autonomously by a machine without human intervention.
  • Autonomous driving technology makes it possible to not only smooth traffic flow, but also automatically provide a variety of services, such as security services using security robots and delivery services using delivery robots.
  • follow-up driving means, for example, that a following vehicle follows a preceding vehicle while maintaining a distance between the vehicles. Due to following driving, for example, the following vehicle does not perform the image recognition processing performed by the preceding vehicle, so that processing can be reduced compared to the preceding vehicle. Therefore, it is also possible to reduce the processing of the entire vehicle traveling system including the preceding vehicle and the following vehicle.
  • the vehicle control method includes the step of acquiring first position information indicating the first position of the first vehicle and second position information indicating the second position of the second vehicle.
  • the vehicle control method also includes the step of creating a first route from the second position to the first position based on the first position information and the second position information.
  • the server device is a server device that communicates with the first vehicle and the second vehicle.
  • the server device includes a communication unit that receives first position information indicating a first position of a first vehicle and second position information indicating a second position of a second vehicle.
  • the server device also includes a route creation unit that creates information indicating a first route from the second location to the first location based on the first location information and the second location information.
  • the communication unit transmits information indicating the first route to the second vehicle.
  • the vehicle running system is a vehicle running system that includes a first vehicle, a second vehicle, and a server device.
  • the vehicle traveling system includes a communication unit that acquires first position information indicating a first position of the first vehicle and second position information indicating a second position of the second vehicle.
  • the vehicle travel system also includes a route creation unit that creates information indicating a first route from the second position to the first position based on the first position information and the second position information.
  • a vehicle includes a communication unit that acquires first position information indicating a first position of another vehicle and second position information indicating a second position of the vehicle.
  • the vehicle also includes a route creation unit that creates information indicating a first route from the second location to the first location based on the first location information and the second location information.
  • FIG. 1 is a diagram illustrating a configuration example of a vehicle traveling system according to a first embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of a vehicle according to the first embodiment.
  • FIG. 3 is a diagram illustrating a configuration example of the server device according to the first embodiment.
  • FIG. 4 is a diagram illustrating an operation example according to the first embodiment.
  • FIG. 5 is a diagram illustrating an operation example according to the second embodiment.
  • FIG. 6 is a diagram illustrating an operation example of inter-vehicle distance control processing according to the second embodiment.
  • FIG. 7 is a diagram illustrating an operation example of inter-vehicle distance control processing according to the first modification of the second embodiment.
  • FIG. 1 is a diagram illustrating a configuration example of a vehicle traveling system according to a first embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of a vehicle according to the first embodiment.
  • FIG. 3 is a diagram illustrating a configuration example of the server device according to
  • FIG. 8 is a diagram illustrating a configuration example of a vehicle traveling system according to the third embodiment.
  • FIG. 9 is a diagram illustrating a configuration example of a following vehicle according to the third embodiment.
  • FIG. 10 is a diagram illustrating an operation example according to the third embodiment.
  • FIG. 11 is a diagram illustrating an operation example of inter-vehicle distance control processing according to the third embodiment.
  • one aspect of the present disclosure aims to enable a following vehicle to appropriately follow the preceding vehicle.
  • FIG. 1 is a diagram illustrating a configuration example of a vehicle traveling system 10 according to the first embodiment.
  • the vehicle travel system 10 includes vehicles 100-1 and 100-2 and a server device 200.
  • vehicles 100-1 and 100-2 are running following the preceding vehicle 100-1, with vehicle 100-1 being the leading vehicle and vehicle 100-2 being the following vehicle. This shows an example of doing this.
  • the preceding vehicle 100-1 transmits position information (first position information) indicating the position (first position) of the preceding vehicle 100-1 to the server device 200. Further, the following vehicle 100-2 (second vehicle) also transmits position information (second position information) indicating the position (second position) of the following vehicle 100-2 to the server device 200.
  • the server device 200 creates a route (first route) from the position of the following vehicle 100-2 to the position of the preceding vehicle 100-1 based on the position information of the preceding vehicle 100-1 and the position information of the following vehicle 100-2. ).
  • Server device 200 transmits information indicating the route to following vehicle 100-2.
  • the following vehicle 100-2 follows the preceding vehicle 100-1 based on the information indicating the route.
  • both the preceding vehicle 100-1 and the following vehicle 100-2 transmit position information to the server device 200, and the following vehicle 100-2 receives the position information from the server device 200. It acquires information about the route and performs follow-up driving. Therefore, even if the following vehicle 100-2 cannot detect the preceding vehicle 100-1 by a sensor mounted on the following vehicle 100-2, the following vehicle 100-2 can determine the route to the preceding vehicle 100-1 from the server device 200. Since the information can be received, follow-up driving can be performed appropriately. For example, even if there is a curve and/or an obstacle between the following vehicle 100-2 and the preceding vehicle 100-1, the following vehicle 100-2 receives information indicating the route from the server device 200. can be received.
  • the following vehicle 100-2 since the following vehicle 100-2 does not perform processing such as route search when performing follow-up, processing is reduced compared to the case where route search is performed, and there is no delay in follow-up due to processing delays. It is also possible to suppress it. Also from this point of view, the following vehicle 100-2 can appropriately follow the vehicle.
  • vehicle 100 the preceding vehicle 100-1 and the following vehicle 100-2 may be referred to as vehicle 100 unless they are particularly distinguished.
  • the vehicle 100 may be an autonomous robot.
  • the autonomous robot may be a transportation robot that transports parts, products, etc. within a factory or warehouse. Further, the autonomous robot may be a delivery robot that delivers packages to a user's home, or delivers food or the like to a restaurant or the like. Furthermore, the autonomous robot may be a security robot that performs security within a building. Further, the vehicle 100 may be a car such as a regular car or a light car, or a motorcycle (motorcycle). Furthermore, vehicle 100 may be an autonomous vehicle. Furthermore, vehicle 100 may be a flying object such as a drone.
  • the vehicle 100 communicates with the server device 200.
  • Vehicle 100 may perform wireless communication directly with server device 200.
  • Vehicle 100 may communicate with server device 200 via a base station (or roadside device).
  • base station or roadside device
  • wireless communication occurs between the vehicle 100 and the base station (or roadside device)
  • wired communication occurs between the base station (or roadside device) and the server device 200. Note that the following description will be made assuming that vehicle 100 and server device 200 directly communicate wirelessly.
  • the server device 200 creates a route (first route) for the following vehicle 100-2 to the preceding vehicle 100-1 by communicating with the vehicle 100 and performing route search. Furthermore, the server device 200 creates a route (second route) to the target position of the preceding vehicle 100-1 by communicating with the vehicle 100 and performing route search.
  • Server device 200 may be a route creation device. The server device 200 transmits the route (first route) from the position of the following vehicle 100-2 to the position of the preceding vehicle 100-1 to the following vehicle 100-2, and transmits the route (first route) from the position of the preceding vehicle 100-1 to the target position of the preceding vehicle 100-1. 2nd route) to the preceding vehicle 100-1.
  • FIG. 2 is a diagram showing a configuration example of the vehicle 100 according to the first embodiment.
  • the vehicle 100 includes a position information acquisition section 110, a control section 120, a communication section 130, an antenna 140, a travel control section 150, a travel drive section 160, a steering section 170, and a brake. 180.
  • the location information acquisition unit 110 acquires location information indicating the local location of the vehicle 100.
  • the location information acquisition unit 110 may be a GNSS (Global Navigation Satellite System) receiving unit.
  • the GNSS reception unit acquires the position of vehicle 100 based on the GNSS reception signal received from the satellite.
  • the location information acquisition unit 110 may include at least one camera and a first location information processing unit. At least one camera images the surroundings of the vehicle 100 and outputs a video signal of the imaged image to the first position information processing section.
  • the first position information processing section acquires position information indicating the position of the vehicle 100 from an image captured by at least one camera based on the video signal.
  • the first location information processing section stores training data regarding surrounding images in a memory in the location information processing section in advance, and compares the video captured by at least one camera with the training data to determine the location. Information may also be obtained.
  • the position information acquisition unit 110 outputs the acquired position information to the control unit 120.
  • the position information acquisition unit 110 may include at least one ranging device and a second position information processing unit.
  • At least one ranging device is configured to sense the surroundings of vehicle 100.
  • the at least one ranging device includes, for example, a LiDAR (Laser Imaging Detection and Ranging), a ToF (Time of Flight) sensor, a sonic sensor, a millimeter wave radar, or a sensing device that combines at least two of these.
  • At least one distance measuring device outputs the detection value of the sensing device to the second position information processing section.
  • the second position information processing section acquires position information indicating the position of vehicle 100 based on the detection value of the sensing device.
  • the second location information processing section stores three-dimensional map data in advance in a memory within the second location information processing section, and calculates the topography around the vehicle 100 estimated from the detection value of the sensing device and the three-dimensional map. Location information may be obtained by comparing the data.
  • the second location information processing section may use a sensing device to create three-dimensional map data to be stored in a memory using a SLAM (Simultaneous Localization and Mapping) method.
  • SLAM Simultaneous Localization and Mapping
  • the control unit 120 controls each part of the vehicle 100.
  • the control unit 120 outputs the position information received from the position information acquisition unit 110 to the communication unit 130.
  • control unit 120 in the preceding vehicle 100-1 creates an autonomous driving start request, a route information request, etc., and outputs the autonomous driving start request, the route information request, etc. to the communication unit 130.
  • Control unit 120 in preceding vehicle 100-1 receives information indicating the route to the target position from server device 200 via communication unit 130 or the like.
  • the control unit 120 in the preceding vehicle 100-1 outputs information indicating the route to the target position to the traveling control unit 150, and also outputs information to the traveling control unit 150 to cause the preceding vehicle 100-1 to travel along the route to the target position. Instruct.
  • control unit 120 in the following vehicle 100-2 creates a request to start following driving and a request for route information to the preceding vehicle 100-1, and outputs the request to start following driving and the request for route information, etc. to the communication unit 130. do.
  • the control unit 120 in the following vehicle 100-2 receives information indicating the route to the position of the preceding vehicle 100-1 from the server device 200 via the communication unit 130 or the like.
  • the control unit 120 in the following vehicle 100-2 outputs the information to the travel control unit 150 and instructs the travel control unit 150 to make the following vehicle 100-2 travel along the route to the position of the preceding vehicle 100-1. .
  • the communication unit 130 communicates with the server device 200.
  • the communication unit 130 may perform wireless communication with the server device 200.
  • the communication unit 130 may perform wireless communication using a communication method compliant with ARIB (Association of Radio Industries and Businesses) STD-T109.
  • the communication unit 130 may perform wireless communication using a 3GPP (registered trademark) communication method (eg, V2X, etc.).
  • the communication unit 130 converts the position information, autonomous driving start request, follow-up driving start request, route information, etc. output from the control unit 120 into a wireless signal, and outputs the wireless signal to the antenna 140. Further, the communication unit 130 receives a radio signal from the antenna 140, converts the radio signal into a baseband signal, and extracts various information from the baseband signal. For example, the communication unit 130 of the preceding vehicle 100-1 extracts information indicating the route to the target position from the baseband signal, and outputs the information to the control unit 120. Further, for example, the communication unit 130 of the following vehicle 100-2 extracts information indicating the route to the preceding vehicle 100-1 from the baseband signal, and outputs the information to the control unit 120.
  • the antenna 140 transmits the wireless signal output from the communication unit 130. Furthermore, the antenna 140 receives a wireless signal transmitted from the server device 200.
  • the travel control unit 150 controls the travel portion of the vehicle 100 according to instructions from the control unit 120. That is, travel control section 150 of preceding vehicle 100-1 appropriately controls travel drive section 160, steering section 170, and brake section 180 according to information indicating the route to the target position. This allows the preceding vehicle 100-1 to move along the route to the target position in accordance with the information. Further, the running control unit 150 of the following vehicle 100-2 appropriately controls the running drive unit 160, the steering unit 170, and the brake unit 180 according to information indicating the route to the position of the preceding vehicle 100-1. This allows the following vehicle 100-2 to move along the route to the position of the preceding vehicle 100-1 in accordance with the information.
  • the travel drive unit 160 is a block that drives the vehicle 100 to travel, such as an engine and wheels.
  • the travel drive unit 160 can accelerate or decelerate the vehicle 100 to a predetermined speed by controlling the engine, wheels, etc. according to instructions from the travel control unit 150.
  • the steering section 170 is, for example, a steering section that maintains or changes the direction of the vehicle 100.
  • the steering unit 170 controls the rotation of the steering portion to a predetermined angle in accordance with instructions from the travel control unit 150, thereby making it possible for the vehicle 100 to go straight, turn right, or turn left.
  • the brake unit 180 is, for example, a block that suppresses rotation of the wheels.
  • the brake unit 180 can decelerate the vehicle 100 to a predetermined speed or stop the vehicle 100 by suppressing the rotation of the wheels according to instructions from the travel control unit 150.
  • FIG. 3 is a diagram showing a configuration example of the server device 200 according to the first embodiment.
  • the server device 200 includes an antenna 210, a communication section 220, and a route creation section 230.
  • the antenna 210 receives a wireless signal transmitted from the vehicle 100 and outputs the received wireless signal to the communication unit 220. Further, the antenna 210 transmits a wireless signal output from the communication unit 220.
  • the communication unit 220 transmits position information (first position information) indicating the position (first position) of the preceding vehicle 100-1 and position information (second position information) indicating the position (second position) of the following vehicle 100-2. ) and get.
  • “obtaining” includes “receiving”. That is, the communication unit 220 receives position information indicating the position of the preceding vehicle 100-1 and position information indicating the position of the following vehicle 100-2.
  • Communication unit 220 receives position information indicating the position of preceding vehicle 100-1 from preceding vehicle 100-1, and receives position information indicating the position of following vehicle 100-2 from following vehicle 100-2.
  • the communication unit 220 transmits information indicating a route (first route) from the position of the following vehicle 100-2 to the position of the preceding vehicle 100-1 to the following vehicle 100-2. Further, the communication unit 220 transmits information indicating a route (second route) from the position of the preceding vehicle 100-1 to the target position to the preceding vehicle 100-1.
  • the communication unit 220 may perform the following processing. That is, the communication unit 220 converts the wireless signal received from the antenna 210 into a baseband signal, and extracts position information, an autonomous driving start request, a following driving start request, route information, etc. from the baseband signal. The communication unit 220 outputs the extracted position information, autonomous driving start request, follow-up driving start request, route information, etc. to the route creation unit 230. Further, the communication unit 220 converts the information indicating the route to the target position and the information indicating the route to the preceding vehicle 100-1 received from the route creation unit 230 into a wireless signal, and transmits the wireless signal to the antenna 210. Output to.
  • the route creation unit 230 searches for a route based on the position information of the preceding vehicle 100-1 and the position information of the following vehicle 100-2, and searches the route from the position of the following vehicle 100-2 (second position) to the preceding vehicle 100-1. A route (first route) to the position (first position) is created.
  • the route creation unit 230 outputs information indicating the route to the communication unit 220. Note that the information indicating the route may be expressed in latitude and longitude. Further, the information indicating the route may include the steering angle and/or the vehicle speed.
  • the route creation unit 230 also performs route search based on the position information and target position of the preceding vehicle 100-1, and searches for a route (second route) from the position of the preceding vehicle 100-1 (first position) to the target position. ).
  • the route creation unit 230 outputs information indicating the route to the communication unit 220. Note that the information indicating the route may also be expressed in latitude and longitude. Alternatively, the information may include steering angle and/or vehicle speed.
  • FIG. 4 is a diagram illustrating an operation example according to the first embodiment. Operations in the server device 200 are mainly performed by the route creation section 230.
  • the preceding vehicle 100-1 transmits a request to start autonomous driving to the target position.
  • the autonomous driving start request includes, for example, the target position and the identification information of the preceding vehicle 100-1.
  • Server device 200 may store the target position of preceding vehicle 100-1 in a memory within server device 200.
  • server device 200 in response to receiving the request, server device 200 may transmit a response indicating that the request has been received to preceding vehicle 100-1.
  • step S12 the following vehicle 100-2 transmits a request to start following the preceding vehicle 100-1.
  • the following drive start request includes, for example, identification information of the preceding vehicle 100-1 to be followed, and identification information of the following vehicle 100-2.
  • step S13 in response to receiving the request, the server device 200 may transmit a response indicating that the request has been received to the following vehicle 100-2.
  • the server device 200 obtains the identification information of the preceding vehicle 100-1 and the identification information of the following vehicle 100-2 based on the autonomous driving start request received in step S10 and the following driving start request received in step S12. You can also pair. Thereby, the server device 200 may recognize that the vehicles are following each other, with the vehicle 100-1 being the leading vehicle and the vehicle 100-2 being the following vehicle.
  • step S14 the preceding vehicle 100-1 transmits position information indicating the position of its own vehicle.
  • Server device 200 receives the location information.
  • step S15 in response to receiving the position information, the server device 200 may transmit a response indicating that the position information has been received to the preceding vehicle 100-1.
  • step S16 the following vehicle 100-2 transmits position information indicating the position of its own vehicle.
  • Server device 200 receives the location information.
  • step S17 in response to receiving the position information, the server device 200 may transmit a response indicating that the position information has been received to the following vehicle 100-2.
  • the server device 200 After receiving the autonomous driving start request and the following driving start request (step S10 and step S12), the server device 200 receives the position information of the preceding vehicle 100-1 and the position information of the following vehicle 100-2. (Step S14 and Step S16).
  • step S18 the server device 200 performs a route search.
  • route searching the server device 200 searches for a route to the target position for the preceding vehicle 100-1, and searches for a route to the position of the preceding vehicle 100-1 for the following vehicle 100-2. do.
  • step S19 the preceding vehicle 100-1 transmits a route information request.
  • step S20 the server device 200 transmits information indicating the route to the target position in response to receiving the route information request.
  • the preceding vehicle 100-1 receives the information and automatically travels along the route to the target position based on the information.
  • step S21 the following vehicle 100-2 transmits a route information request.
  • step S22 the server device 200 transmits information indicating the route to the position of the preceding vehicle 100-1 in response to receiving the route information request.
  • the following vehicle 100-2 receives the information and automatically travels along the route to the position of the preceding vehicle 100-1 based on the information.
  • step S23 at least one of a first condition that the preceding vehicle 100-1 reaches the target position and a second condition that the position of the preceding vehicle 100-1 and the position of the following vehicle 100-2 match within a predetermined range. Steps S14 to S22 are repeated until the following conditions are met.
  • the preceding vehicle 100-1 periodically transmits the position information (step S14), and the following vehicle 100-2 also periodically transmits the position information. (step S16), and the server device 200 periodically acquires (or receives) two pieces of position information. Further, until at least one of the first condition and the second condition is satisfied, the server device 200 indicates the route to the target position in response to the route information request (step S19) from the preceding vehicle 100-1. Information is periodically transmitted (step S20), and in response to a route information request from the following vehicle 100-2 (step S21), information indicating the route to the position of the preceding vehicle 100-1 is periodically transmitted ( Step S22).
  • the server device 200 may determine whether at least one of the first condition and the second condition is satisfied. Specifically, the route creation unit 230 of the server device 200 may make the determination. The server device 200 may determine the condition based on the position information from the preceding vehicle 100-1 (step S14) and the position information from the following vehicle 100-2 (step S16).
  • the fact that the position of the preceding vehicle 100-1 and the position of the following vehicle 100-2 match within a predetermined range includes that the following vehicle 100-2 catches up with the preceding vehicle 100-1.
  • the server device 200 determines that the second condition is satisfied if the positions of the preceding vehicle 100-1 and the following vehicle 100-2 are within a predetermined range, and the respective positions are within the predetermined range. If it is not within the range, it may be determined that the second condition is not satisfied.
  • a first following vehicle 100-2 following the leading vehicle 100-1 when following driving is performed by a leading vehicle 100-1 at the head, a first following vehicle 100-2 following the leading vehicle 100-1, and a second following vehicle 100 following the first following vehicle 100-2. is as follows. That is, the first following vehicle 100-2 only needs to follow the preceding vehicle 100-1 as described in the first embodiment, and the second following vehicle 100 may follow the first following vehicle 100-2. As the preceding vehicle in the second following vehicle 100, the following vehicle may perform the following driving described in the first embodiment.
  • the second embodiment is an embodiment in which the inter-vehicle distance between the preceding vehicle 100-1 and the following vehicle 100-2 is controlled.
  • Server device 200 transmits information for controlling the inter-vehicle distance to following vehicle 100-2 (second vehicle) to at least one of preceding vehicle 100-1 and following vehicle 100-2.
  • the transmission is performed in the server device 200 in the second embodiment.
  • the inter-vehicle distance is adjusted to an appropriate distance. Therefore, it is possible to suppress situations such as server device 200 losing sight of one of the two vehicles 100-1 and 100-2 or collision between the two vehicles 100-1 and 100-2. Therefore, it becomes possible to perform follow-up travel appropriately.
  • FIG. 5 is a diagram illustrating an operation example according to the second embodiment.
  • the same processes as in the first embodiment are indicated by the same reference numerals.
  • step S30 the server device 200 performs a process of recording the movement trajectory of the preceding vehicle 100-1 based on the position information received from the preceding vehicle 100-1 (step S14).
  • the route creation unit 230 records the movement trajectory of the preceding vehicle 100-1 in a memory or the like based on the periodically received position information (step S14).
  • step S31 the server device 200 calculates the moving speed of each vehicle 100-1 and 100-2 to travel on the route after the route search (step S18).
  • the route creation unit 230 calculates the travel speed for traveling the route to the target position based on the travel trajectory of the preceding vehicle 100-1 (step S30), taking into consideration the time that has passed so far. You can. Further, for example, the route creation unit 230 determines the position of the preceding vehicle 100-1 based on the moving speed of the preceding vehicle 100-1 so that the following vehicle 100-2 can follow the preceding vehicle 100-1. The moving speed of the following vehicle 100-2 up to the point may be calculated.
  • step S32 the server device 200 performs inter-vehicle distance control processing.
  • FIG. 6 is a diagram illustrating an operation example of inter-vehicle distance control processing according to the second embodiment.
  • the inter-vehicle distance control process is performed, for example, in the route creation unit 230.
  • step S320 the server device 200 starts the inter-vehicle distance control process, and in step S321, the position information of the preceding vehicle 100-1 (step S14) and the position information of the following vehicle 100-2 ( From step S16), the inter-vehicle distance between the preceding vehicle 100-1 and the following vehicle 100-2 is calculated.
  • step S322 the server device 200 determines whether the inter-vehicle distance is greater than or equal to a specified value. When the inter-vehicle distance is equal to or greater than the specified value (Yes in step S322), the process moves to step S323. When the inter-vehicle distance is not equal to or greater than the specified value (No in step S322), the process moves to step S324.
  • step S323 the server device 200 decides to send a stop request to the preceding vehicle 100-1.
  • the server device 200 may decide to transmit a deceleration request requesting that the moving speed of the preceding vehicle 100-1 calculated in step S21 be reduced to a speed lower than the moving speed. . That is, since the inter-vehicle distance between the preceding vehicle 100-1 and the following vehicle 100-2 is greater than the specified value, the server device 200 stops or decelerates the preceding vehicle 100-1 to bring the inter-vehicle distance within the specified value. control so that The information for controlling the inter-vehicle distance in this case may be a request to decelerate or stop the preceding vehicle 100-1.
  • step S331 the server device 200 ends the inter-vehicle distance control process.
  • step S324 the server device 200 determines whether the inter-vehicle distance is less than a specified value. When the inter-vehicle distance is less than the specified value (Yes in step S324), the process moves to step S325. When the inter-vehicle distance is not less than the specified value (No in step S324), the process moves to step S326.
  • step S325 the server device 200 decides to send a stop request to the following vehicle 100-2. That is, when the following vehicle 100-2 approaches the preceding vehicle 100-1 so that the inter-vehicle distance becomes less than a specified value, the server device 200 controls the following vehicle 100-2 to stop.
  • the information for controlling the inter-vehicle distance in this case may be a stop request to the following vehicle 100-2.
  • step S331 the server device 200 ends the inter-vehicle distance control process.
  • step S326 the server device 200 determines whether the following vehicle 100-2 is turning.
  • the process moves to step S327.
  • the process moves to step S328.
  • the server device 200 may determine whether the following vehicle 100-2 is turning based on the traveling information of the following vehicle 100-2.
  • the traveling information includes information indicating whether the following vehicle 100-2 is turning.
  • the driving information may be received from the following vehicle 100-2.
  • the server device 200 may acquire travel information based on the position information received from the following vehicle 100-2 (step S16).
  • the server device 200 determines that it is turning when the direction of movement changes by more than a predetermined angle based on the plurality of position information, and determines that it is not turning when the direction of movement does not change by more than a predetermined angle. You can.
  • step S327 the server device 200 determines to limit the maximum speed of the preceding vehicle 100-1. That is, since the following vehicle 100-2 is turning, the server device 200 limits the maximum speed of the preceding vehicle 100-1 so that the preceding vehicle 100-1 does not move more than a predetermined distance from the following vehicle 100-2. to control.
  • the information for controlling the inter-vehicle distance in this case may be a maximum speed limit request for the preceding vehicle 100-1.
  • the request includes a maximum speed limit.
  • step S331 the server device 200 ends the inter-vehicle distance control process.
  • step S328 the server device 200 determines whether the following vehicle is stopped.
  • the process moves to step S329.
  • the process moves to step S330.
  • the server device 200 may determine whether the following vehicle 100-2 is stopped based on the traveling information of the following vehicle 100-2.
  • the traveling information includes information indicating whether the following vehicle 100-2 is stopped.
  • the driving information may be received from the following vehicle 100-2.
  • the server device 200 may acquire travel information based on the position information received from the following vehicle 100-2 (step S16).
  • the server device 200 determines that the following vehicle 100-2 is stopped when the position information does not change continuously, and determines that the following vehicle 100-2 is stopped when the position information changes continuously. It may be determined that it is not stopped.
  • step S329 the server device 200 determines to limit the maximum speed of the preceding vehicle 100-1. That is, since the following vehicle 100-2 is stopped, the server device 200 limits the maximum speed of the preceding vehicle 100-1 so that the preceding vehicle 100-1 does not move more than a predetermined distance from the following vehicle 100-2. to control.
  • the information for controlling the inter-vehicle distance in this case may be a maximum speed limit request for the preceding vehicle 100-1.
  • the request includes a maximum speed limit.
  • step S331 the server device 200 ends the inter-vehicle distance control process.
  • step S330 the server device 200 determines to limit the maximum speed of the preceding vehicle 100-1 according to the inter-vehicle distance.
  • the server device 200 may hold the limit values of the inter-vehicle distance and the maximum speed in a memory within the server device 200 (or a table stored in the memory).
  • the server device 200 determines that the distance between the preceding vehicle 100-1 and the following vehicle 100-2 is an appropriate distance (No in both steps S322 and S324), and that the following vehicle 100-2 is neither turning nor stopping. If not (No in both steps S326 and S328), the maximum speed of the preceding vehicle 100-1 is limited to a speed corresponding to the inter-vehicle distance.
  • step S331 the server device 200 ends the inter-vehicle distance control process.
  • step S24 the server device 200 transmits a moving speed instruction to the preceding vehicle 100-1.
  • the moving speed instruction may include a stop request (or deceleration request) (step S323) for the preceding vehicle 100-1 determined in the inter-vehicle distance control process (step S22). Further, the moving speed instruction may include a maximum speed limit request for the preceding vehicle 100-1 (steps S327, S329, and S330) determined in the inter-vehicle distance control process.
  • step S24 server device 200 transmits information for controlling the inter-vehicle distance (for example, a maximum speed limit request) to preceding vehicle 100-1 according to the traveling information of following vehicle 100-2.
  • the preceding vehicle 100-1 receives the moving speed instruction, it stops, decelerates, or travels at the moving speed with the maximum speed limited, in accordance with the instruction.
  • step S25 the server device 200 transmits a moving speed instruction to the following vehicle 100-2.
  • the moving speed instruction may include a request for the following vehicle 100-2 to stop (step S325) determined by the inter-vehicle distance control process.
  • the following vehicle 100-2 receives the movement speed instruction, it will stop or move at the movement speed in accordance with the instruction.
  • the first condition is that the preceding vehicle 100-1 reaches the target position, and the position of the preceding vehicle 100-1 and the following vehicle 100-2 are
  • the processes from step S14 to step S25 may be repeated until at least one of the second conditions that the position matches within a predetermined range is satisfied.
  • inter-vehicle distance control process in the second embodiment, an example has been described in which the inter-vehicle distance is maintained mainly by limiting the speed relative to the preceding vehicle 100-1 (steps S327 and S329).
  • the inter-vehicle distance control process is not limited to this.
  • the inter-vehicle distance control process may be performed in consideration of the speeds of both the preceding vehicle 100-1 and the following vehicle 100-2.
  • FIG. 7 is a diagram illustrating an operation example of inter-vehicle distance control processing according to an example of the second embodiment.
  • the same processes as those in FIG. 6 are given the same reference numerals.
  • step S322 the server device 200 performs step S340 when the inter-vehicle distance is not equal to or greater than the specified value (No in step S322).
  • step S340 the server device 200 determines whether the inter-vehicle distance between the preceding vehicle 100-1 and the following vehicle 100-2 is greater than or equal to a reference threshold value.
  • the process moves to step S341, and when the inter-vehicle distance is not greater than or equal to the reference threshold (No in step S340), the process proceeds to step S342. .
  • step S341 the server device 200 corrects the moving speed of the preceding vehicle 100-1 to a value smaller than the moving speed of the following vehicle 200-2.
  • the relationship between the specified value (step S322) and the reference threshold value (step S340) is specified value>reference threshold value.
  • the specified value may represent a limit value
  • the reference threshold value may represent an adjustment value. That is, the server device 200 determines that although the inter-vehicle distance between the preceding vehicle 100-1 and the following vehicle 100-2 is not as far as the limit value (specified value) (No in step S322), the reference threshold value (or adjustment value) ) (Yes in step S340), the moving speed of the preceding vehicle 100-1 is corrected to a value smaller than the moving speed of the following vehicle 100-2.
  • the moving speed of the preceding vehicle 100-1 becomes smaller than the moving speed of the following vehicle 100-2, so that the inter-vehicle distance becomes within the reference threshold, and the inter-vehicle distance with the following vehicle 100-2 remains constant. It is possible to keep it at a distance.
  • step S344 the server device 200 ends the inter-vehicle distance control process.
  • step S342 the server device 200 determines whether the inter-vehicle distance between the preceding vehicle 100-1 and the following vehicle 100-2 is smaller than a reference threshold value.
  • the process moves to step S343.
  • the server device 200 ends the inter-vehicle distance control process.
  • step S343 the server device 200 corrects the moving speed of the following vehicle 100-2 to a value smaller than the moving speed of the preceding vehicle 100-1. That is, when the preceding vehicle 100-1 and the following vehicle 100-2 are approaching each other until the inter-vehicle distance becomes less than the reference threshold value (or adjustment value), the server device 200 determines the moving speed of the following vehicle 100-2. is corrected to a value smaller than the moving speed of the preceding vehicle 100-1. As a result, for example, the moving speed of the following vehicle 100-2 becomes slower than that of the preceding vehicle 100-1, so the inter-vehicle distance becomes within the reference threshold, and the distance between the preceding vehicle 100-1 and the following vehicle 100-2 becomes constant. It is possible to maintain distance.
  • the server device 200 corrects the moving speed (step S341) to a value smaller than the moving speed of the following vehicle 100-2 (step S21). may be instructed.
  • the server device 200 corrects the moving speed (step S343) to a value smaller than the moving speed of the preceding vehicle 100-1 (step S21). may be instructed.
  • the present invention is not limited thereto.
  • three or more vehicles may follow the vehicle.
  • the second following vehicle 100 may execute the inter-vehicle distance control process (FIGS. 6 and 7) using the first following vehicle 100-2 as the preceding vehicle.
  • the third embodiment will also be described mainly focusing on the differences from the first embodiment.
  • route creation is performed by the server device 200
  • route creation may be performed by the following vehicle 100-2.
  • FIG. 8 is a diagram illustrating a configuration example of the vehicle traveling system 10 according to the third embodiment. As shown in FIG. 8, vehicle travel system 10 includes a preceding vehicle 100-1 and a following vehicle 100-2.
  • FIG. 9 is a diagram illustrating a configuration example of a following vehicle 100-2 according to the third embodiment.
  • An example of the configuration of the preceding vehicle 100-1 may be the same configuration as the first embodiment, as shown in FIG.
  • the following vehicle 100-2 further includes a route creation section 190.
  • the following vehicle 100-2 performs a route search similarly to the server device 200 of the first embodiment.
  • first position information (first position information) indicating the position (first position) of the preceding vehicle 100-1 (first vehicle), and the position of the following vehicle 100-2 (second vehicle). (second position).
  • second position Second, a route (first route) from the position of the following vehicle 100-2 to the position of the preceding vehicle 100-1 is created based on the position information of the preceding vehicle 100-1 and the position information of the following vehicle 100-2.
  • “obtaining” includes “receiving”. That is, the communication unit 130 of the following vehicle 100-2 receives the position information of the preceding vehicle 100-1 from the preceding vehicle 100-1.
  • the following vehicle 100-2 uses the position information acquisition unit 110 to acquire the position information of the following vehicle 100-2.
  • the route creation unit 190 of the following vehicle 100-2 receives the position information of the preceding vehicle 100-1 received from the communication unit 130 via the control unit 120 and the position information received from the position information acquisition unit 110 via the control unit 120. In addition, the route is created based on the position information of the following vehicle 100-2.
  • the route creation unit 190 also receives a request to start autonomous driving to the target position from the preceding vehicle 100-1 via the communication unit 130.
  • the request includes the target position of the preceding vehicle 100-1.
  • Route creation section 190 stores the target position of preceding vehicle 100-1 in the memory within following vehicle 100-2. Then, the route creation unit 190 creates a route (second route) to the target position based on the target position and the position information received from the preceding vehicle 100-1.
  • Route creation unit 190 transmits information indicating the route to preceding vehicle 100-1 via communication unit 130.
  • the route creation unit 190 can create a route similar to that in the first embodiment.
  • FIG. 10 is a diagram illustrating an operation example according to the third embodiment.
  • the following vehicle 100-2 receives the request to start autonomous driving to the target position transmitted from the preceding vehicle 100-1 (step S50). In response to receiving the request, the following vehicle 100-2 may start following the preceding vehicle 100-1.
  • the route creation unit 190 of the following vehicle 100-2 pairs the identification information of the preceding vehicle 100-1 included in the request with the identification information of the own vehicle so as to recognize that the vehicle will follow the vehicle. Good too.
  • the following vehicle 100-2 After receiving the request, the following vehicle 100-2 receives position information from the preceding vehicle 100-1 (step S52).
  • the following vehicle 100-2 then performs a route search (step S54), and similarly to the first embodiment, based on the position information of the preceding vehicle 100-1 and the target position, the following vehicle 100-2 searches for a route (second route).
  • the following vehicle 100-2 transmits information regarding the route (second route) to the target position to the preceding vehicle 100-1 (step S56).
  • the position information of the preceding vehicle 100-1 step S55
  • the position information of the following vehicle 100-2 are combined. Based on this, a route (first route) from the position of the following vehicle 100-2 to the position of the preceding vehicle 100-1 is created.
  • the preceding vehicle 100-1 travels along the route to the position of the preceding vehicle 100-1 by traveling according to the information regarding the route to the target position.
  • the first condition is that the preceding vehicle 100-1 reaches the target position, and the position of the preceding vehicle 100-1 and the position of the following vehicle 100-2 match within a predetermined range. Steps S52 to S56 are repeated until at least one of the second conditions is satisfied (step S23).
  • the following vehicle 100-2 periodically receives the position information of the preceding vehicle 100-1 until at least one of the first condition and the second condition is satisfied (step S52).
  • FIG. 11 is a diagram illustrating an operation example of inter-vehicle distance control processing according to the third embodiment.
  • the following vehicle 100-2 receives position information from the preceding vehicle 100-1 (step S52), and then performs a process of recording the movement trajectory of the preceding vehicle 100-1 (step S60). . Further, after the route search (step S54), the following vehicle 100-2 calculates the moving speed of each vehicle 100-1 and 100-2 for traveling the route (step S61), similarly to the second embodiment. . The following vehicle 100-2 then performs inter-vehicle distance control processing (step S62). As in the second embodiment, the inter-vehicle distance control process is performed as shown in FIG. 6 or 7. The inter-vehicle distance control process is performed, for example, by the route creation unit 190 of the following vehicle 100-2.
  • the following vehicle 100-2 can create a route similarly to the server device 200 by receiving position information and the like from the preceding vehicle 100-1. Therefore, also in the third embodiment, the following vehicle 100-2 can appropriately follow the preceding vehicle 100-1. Further, in the third embodiment, follow-up travel is possible even if the server device 200 shown in the first embodiment is not present. Therefore, compared to the first embodiment, it is possible to reduce the cost of the entire vehicle traveling system 10.
  • the vehicle may follow the vehicle.
  • a program that causes a computer to execute each process according to the embodiments described above may be provided.
  • the program may be recorded on a computer readable medium.
  • Computer-readable media allow programs to be installed on a computer.
  • the computer-readable medium on which the program is recorded may be a non-transitory recording medium.
  • the non-transitory recording medium is not particularly limited, but may be a recording medium such as a CD-ROM or a DVD-ROM.
  • Such a recording medium may be included in the control unit 120 of the vehicle 100, the route creation unit 190 of the following vehicle 100-2, and the route creation unit 230 of the server device 200.
  • the control unit 120 of the vehicle 100, the route creation unit 190 of the following vehicle 100-2, and the route creation unit 230 of the server device 200 read the program from the recording medium and execute the program, thereby achieving the results according to the embodiment described above.
  • the functions described may be implemented. Therefore, the control unit 120, the route creation unit 190, and the route creation unit 230 may be a processor or a controller such as a CPU (Central Processing Unit) or a DSP (Digital Signal Processor).
  • the terms “based on” and “depending on” refer to “based solely on” and “depending solely on,” unless expressly stated otherwise. ” does not mean. Reference to “based on” means both “based solely on” and “based at least in part on.” Similarly, the phrase “in accordance with” means both “in accordance with” and “in accordance with, at least in part.” Furthermore, “obtain/acquire” may mean obtaining information from among stored information, or may mean obtaining information from among information received from other nodes. Alternatively, it may mean obtaining the information by generating the information.
  • any reference to elements using the designations "first,” “second,” etc. used in this disclosure does not generally limit the amount or order of those elements. These designations may be used herein as a convenient way of distinguishing between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed therein or that the first element must precede the second element in any way.
  • articles are added by translation, such as a, an, and the in English, these articles are used in the plural unless the context clearly indicates otherwise. shall include things.
  • (1) a vehicle control method the step of acquiring first position information indicating a first position of a first vehicle and second position information indicating a second position of a second vehicle; creating a first route from the second position to the first position based on the first position information and the second position information.
  • the step of acquiring includes the step of receiving the first position information from the first vehicle and receiving the second position information from the second vehicle, The method may further include the step of transmitting information indicating the first route to the second vehicle.
  • the acquiring step may include a step of receiving the first position information from the first vehicle.
  • the vehicle control method according to any one of (1) to (3) above, further comprising the step of receiving an autonomous driving start request from the first vehicle and a follow-up driving start request from the second vehicle,
  • the acquiring step may include receiving the first position information and the second position information after receiving the autonomous driving start request and the follow-up driving start request.
  • the vehicle control method further comprising the step of receiving an autonomous driving start request from the first vehicle, and the obtaining step includes the autonomous driving start request.
  • the method may include the step of receiving the first location information from the first vehicle after receiving the first location information.
  • the first condition is that the first vehicle reaches the target position, and that the first position and the second position are in a predetermined condition.
  • a step of periodically acquiring the first position information and the second position information until at least one of the second conditions that match in the range is satisfied; and a step of periodically creating the first route; can have.
  • the step of periodically acquiring the first position information from the first vehicle and the second position information from the second vehicle may further include the step of periodically receiving the first route from the vehicle, and periodically transmitting the first route to the second vehicle.
  • the step of periodically acquiring may include the step of periodically receiving the first position information from the first vehicle. .
  • the distance between the first vehicle and the second vehicle is determined according to the distance between the first position and the second position.
  • the method may further include the step of transmitting information for controlling an inter-vehicle distance to at least one of the first vehicle and the second vehicle.
  • the information for controlling the inter-vehicle distance may be any one of a deceleration request, a stop request, and a maximum speed limit request. can.
  • the method may further include the step of transmitting information for controlling an inter-vehicle distance between the two vehicles to the first vehicle.
  • the step of acquiring the travel information may include the step of receiving the travel information from the second vehicle.
  • the travel information may be information indicating a stop or a turn of the second vehicle.
  • a server device that communicates with a first vehicle and a second vehicle, wherein first position information indicating a first position of the first vehicle and second position information of the second vehicle are provided.
  • a communication unit that receives second location information indicating a location, and creates information indicating a first route from the second location to the first location based on the first location information and the second location information; a route creation section, and the communication section transmits information indicating the first route to the second vehicle.
  • a vehicle traveling system including a first vehicle, a second vehicle, and a server device, wherein first position information indicating a first position of the first vehicle; a communication unit that acquires second position information indicating a second position of two vehicles; and a communication unit that acquires second position information indicating a second position of two vehicles, and a first route from the second position to the first position based on the first position information and the second position information. and a route creation unit that creates information shown.
  • the server device may include the communication unit and the route creation unit.
  • the second vehicle may include the communication section and the route creation section.
  • a communication unit that is a vehicle and acquires first position information indicating a first position of another vehicle and second position information indicating a second position of the vehicle; and a route creation unit that creates information indicating a first route from the second location to the first location based on the first location information and the second location information.
  • Vehicle running system 100 Vehicle 100-1: Leading vehicle 100-2: Following vehicle 110: Position information acquisition unit 120: Control unit 130: Communication unit 150: Travel control unit 200: Server device 220: Communication section 190, 230: Route creation section

Abstract

This vehicle control method, according to one embodiment, includes a step for acquiring first position information indicating a first position of a first vehicle, and second position information indicating a second position of a second vehicle. The vehicle control method further includes a step for creating a first route from the second position to the first position, on the basis of the first position information and the second position information.

Description

車両制御方法、サーバ、車両走行システム、及び車両Vehicle control method, server, vehicle running system, and vehicle
 本開示は、車両制御方法、サーバ、車両走行システム、及び車両に関する。 The present disclosure relates to a vehicle control method, a server, a vehicle running system, and a vehicle.
 従来から、自律走行ロボット又は自動車などの自動運転技術がある。自動運転とは、乗り物及び/又は移動体の操縦を人の手によらず、機械が自律的に行うシステムである、とされる。自動運転技術により、例えば、交通流の円滑化のみならず、警備ロボットによる警備サービス、配送ロボットによる配送サービスなど、様々なサービスを自動で提供することが可能となる。 Autonomous driving technologies such as autonomous robots and automobiles have conventionally existed. Autonomous driving is defined as a system in which a vehicle and/or a moving body is operated autonomously by a machine without human intervention. Autonomous driving technology makes it possible to not only smooth traffic flow, but also automatically provide a variety of services, such as security services using security robots and delivery services using delivery robots.
 自動運転技術の一種に、追従走行がある。追従走行とは、例えば、車間距離を保ちながら、先行車両を後続車両が追従して走行することをいう。追従走行により、例えば、後続車両では、先行車両で行われる画像認識処理などを行うことがないため、先行車両と比較して、処理軽減を図ることができる。従って、先行車両と後続車両とを含む車両走行システム全体の処理軽減を図ることも可能である。 One type of autonomous driving technology is follow-up driving. Following driving means, for example, that a following vehicle follows a preceding vehicle while maintaining a distance between the vehicles. Due to following driving, for example, the following vehicle does not perform the image recognition processing performed by the preceding vehicle, so that processing can be reduced compared to the preceding vehicle. Therefore, it is also possible to reduce the processing of the entire vehicle traveling system including the preceding vehicle and the following vehicle.
 追従走行に関して、以下のような技術がある。すなわち、走行経路上に磁気情報源(磁気ネイル)が配列された自動走行用道路上において形成された車群において、車群を導く目標車両を設定し、目標車両が自車両の位置などの運転情報を追従車両に伝達することで、追従車両が車群走行制御を行う車群走行制御システムがある(例えば、以下の特許文献1)。 There are the following technologies regarding follow-up driving. In other words, in a group of vehicles formed on an automated driving road where magnetic information sources (magnetic nails) are arranged on the driving route, a target vehicle is set to guide the group of vehicles, and the target vehicle determines the driving position of the own vehicle. There is a vehicle group driving control system in which the following vehicle performs vehicle group driving control by transmitting information to the following vehicle (for example, Patent Document 1 below).
特開平10-162282号公報Japanese Patent Application Publication No. 10-162282
 第1の態様に係る車両制御方法は、第1車両の第1位置を示す第1位置情報と、第2車両の第2位置を示す第2位置情報とを取得するステップを有する。また、前記車両制御方法は、第1位置情報及び第2位置情報に基づいて、第2位置から第1位置への第1経路を作成するステップを有する。 The vehicle control method according to the first aspect includes the step of acquiring first position information indicating the first position of the first vehicle and second position information indicating the second position of the second vehicle. The vehicle control method also includes the step of creating a first route from the second position to the first position based on the first position information and the second position information.
 第2の態様に係るサーバ装置は、第1車両及び第2車両と通信を行うサーバ装置である。前記サーバ装置は、第1車両の第1位置を示す第1位置情報と、第2車両の第2位置を示す第2位置情報とを受信する通信部を有する。また、前記サーバ装置は、第1位置情報及び第2位置情報に基づいて、第2位置から第1位置への第1経路を示す情報を作成する経路作成部を有する。前記サーバ装置において、前記通信部は、第1経路を示す情報を第2車両へ送信する。 The server device according to the second aspect is a server device that communicates with the first vehicle and the second vehicle. The server device includes a communication unit that receives first position information indicating a first position of a first vehicle and second position information indicating a second position of a second vehicle. The server device also includes a route creation unit that creates information indicating a first route from the second location to the first location based on the first location information and the second location information. In the server device, the communication unit transmits information indicating the first route to the second vehicle.
 第3の態様に係る車両走行システムは、第1車両及び第2車両と、サーバ装置と、を有する車両走行システムである。前記車両走行システムは、第1車両の第1位置を示す第1位置情報と、第2車両の第2位置を示す第2位置情報とを取得する通信部を有する。また、前記車両走行システムは、第1位置情報及び第2位置情報に基づいて、第2位置から第1位置への第1経路を示す情報を作成する経路作成部を有する。 The vehicle running system according to the third aspect is a vehicle running system that includes a first vehicle, a second vehicle, and a server device. The vehicle traveling system includes a communication unit that acquires first position information indicating a first position of the first vehicle and second position information indicating a second position of the second vehicle. The vehicle travel system also includes a route creation unit that creates information indicating a first route from the second position to the first position based on the first position information and the second position information.
 第4の態様に係る車両は、他の車両の第1位置を示す第1位置情報と、車両の第2位置を示す第2位置情報とを取得する通信部を有する。また、前記車両は、第1位置情報及び第2位置情報に基づいて、第2位置から第1位置への第1経路を示す情報を作成する経路作成部を有する。 A vehicle according to a fourth aspect includes a communication unit that acquires first position information indicating a first position of another vehicle and second position information indicating a second position of the vehicle. The vehicle also includes a route creation unit that creates information indicating a first route from the second location to the first location based on the first location information and the second location information.
図1は、第1実施形態に係る車両走行システムの構成例を表す図である。FIG. 1 is a diagram illustrating a configuration example of a vehicle traveling system according to a first embodiment. 図2は、第1実施形態に係る車両の構成例を表す図である。FIG. 2 is a diagram illustrating a configuration example of a vehicle according to the first embodiment. 図3は、第1実施形態に係るサーバ装置の構成例を表す図である。FIG. 3 is a diagram illustrating a configuration example of the server device according to the first embodiment. 図4は、第1実施形態に係る動作例を表す図である。FIG. 4 is a diagram illustrating an operation example according to the first embodiment. 図5は、第2実施形態に係る動作例を表す図である。FIG. 5 is a diagram illustrating an operation example according to the second embodiment. 図6は、第2実施形態に係る車間距離制御処理の動作例を表す図である。FIG. 6 is a diagram illustrating an operation example of inter-vehicle distance control processing according to the second embodiment. 図7は、第2実施形態の第1変形例に係る車間距離制御処理の動作例を表す図である。FIG. 7 is a diagram illustrating an operation example of inter-vehicle distance control processing according to the first modification of the second embodiment. 図8は、第3実施形態に係る車両走行システムの構成例を表す図である。FIG. 8 is a diagram illustrating a configuration example of a vehicle traveling system according to the third embodiment. 図9は、第3実施形態に係る後続車両の構成例を表す図である。FIG. 9 is a diagram illustrating a configuration example of a following vehicle according to the third embodiment. 図10は、第3実施形態に係る動作例を表す図である。FIG. 10 is a diagram illustrating an operation example according to the third embodiment. 図11は、第3実施形態に係る車間距離制御処理の動作例を表す図である。FIG. 11 is a diagram illustrating an operation example of inter-vehicle distance control processing according to the third embodiment.
 上述した特許文献1の車群走行制御システムでは、目標車両が磁気情報源から外れた位置を走行する場合、目標車両の位置などの運転情報を正確に取得することができず、追従車両が目標車両を追従して走行することができない場合がある。 In the vehicle group driving control system of Patent Document 1 mentioned above, when the target vehicle travels in a position away from the magnetic information source, driving information such as the position of the target vehicle cannot be accurately acquired, and the following vehicle cannot move toward the target. It may not be possible to follow the vehicle.
 そこで、本開示の一態様は、先行車両に対して後続車両が追従走行を適切に行うことを可能にすることを目的にする。 Therefore, one aspect of the present disclosure aims to enable a following vehicle to appropriately follow the preceding vehicle.
 以下において、一実施形態に係る車両走行システムについて図面を参照しながら説明する。なお、以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。 Below, a vehicle traveling system according to an embodiment will be described with reference to the drawings. In addition, in the description of the following drawings, the same or similar parts are given the same or similar symbols.
[第1実施形態]
 最初に、第1実施形態について説明する。
[First embodiment]
First, a first embodiment will be described.
 図1は、第1実施形態に係る車両走行システム10の構成例を表す図である。 FIG. 1 is a diagram illustrating a configuration example of a vehicle traveling system 10 according to the first embodiment.
 図1に示すように、車両走行システム10は、車両100-1及び100-2と、サーバ装置200とを有する。 As shown in FIG. 1, the vehicle travel system 10 includes vehicles 100-1 and 100-2 and a server device 200.
 車両100-1及び100-2は、図1に示す例では、車両100-1を先行車両、車両100-2を後続車両として、後続車両100-2が先行車両100-1に対して追従走行を行っている例を表している。 In the example shown in FIG. 1, vehicles 100-1 and 100-2 are running following the preceding vehicle 100-1, with vehicle 100-1 being the leading vehicle and vehicle 100-2 being the following vehicle. This shows an example of doing this.
 先行車両100-1(第1車両)は、先行車両100-1の位置(第1位置)を示す位置情報(第1位置情報)をサーバ装置200へ送信する。また、後続車両100-2(第2車両)も、後続車両100-2の位置(第2位置)を示す位置情報(第2位置情報)をサーバ装置200へ送信する。サーバ装置200では、先行車両100-1の位置情報と、後続車両100-2の位置情報とに基づいて、後続車両100-2の位置から先行車両100-1の位置への経路(第1経路)を作成する。サーバ装置200は、当該経路を示す情報を後続車両100-2へ送信する。後続車両100-2は、当該経路を示す情報に基づいて、先行車両100-1に対して追従走行を行う。 The preceding vehicle 100-1 (first vehicle) transmits position information (first position information) indicating the position (first position) of the preceding vehicle 100-1 to the server device 200. Further, the following vehicle 100-2 (second vehicle) also transmits position information (second position information) indicating the position (second position) of the following vehicle 100-2 to the server device 200. The server device 200 creates a route (first route) from the position of the following vehicle 100-2 to the position of the preceding vehicle 100-1 based on the position information of the preceding vehicle 100-1 and the position information of the following vehicle 100-2. ). Server device 200 transmits information indicating the route to following vehicle 100-2. The following vehicle 100-2 follows the preceding vehicle 100-1 based on the information indicating the route.
 このように、第1実施形態に係る車両走行システム10では、先行車両100-1と後続車両100-2はともに位置情報をサーバ装置200へ送信し、後続車両100-2はサーバ装置200から当該経路に関する情報を取得して追従走行を行う。そのため、後続車両100-2は、前方の先行車両100-1を後続車両100-2に搭載するセンサ等により検出できない場合であっても、サーバ装置200から、先行車両100-1への経路を受信できるため、追従走行を適切に行うことができる。例えば、後続車両100-2と先行車両100-1との間に、カーブ及び/又は障害物などが存在する場合であっても、後続車両100-2は、サーバ装置200から経路を示す情報を受信することができる。また、後続車両100-2は、追従走行を行うに際して、経路探索などの処理を行うこともないため、経路探索を行う場合と比較して、処理軽減を図り、処理遅延による追従走行の遅延も抑制させることも可能となる。この点からも、後続車両100-2は、追従走行を適切に行うことができる。 In this way, in the vehicle traveling system 10 according to the first embodiment, both the preceding vehicle 100-1 and the following vehicle 100-2 transmit position information to the server device 200, and the following vehicle 100-2 receives the position information from the server device 200. It acquires information about the route and performs follow-up driving. Therefore, even if the following vehicle 100-2 cannot detect the preceding vehicle 100-1 by a sensor mounted on the following vehicle 100-2, the following vehicle 100-2 can determine the route to the preceding vehicle 100-1 from the server device 200. Since the information can be received, follow-up driving can be performed appropriately. For example, even if there is a curve and/or an obstacle between the following vehicle 100-2 and the preceding vehicle 100-1, the following vehicle 100-2 receives information indicating the route from the server device 200. can be received. In addition, since the following vehicle 100-2 does not perform processing such as route search when performing follow-up, processing is reduced compared to the case where route search is performed, and there is no delay in follow-up due to processing delays. It is also possible to suppress it. Also from this point of view, the following vehicle 100-2 can appropriately follow the vehicle.
 なお、以下では、先行車両100-1と後続車両100-2とを特に区別しない場合は、車両100と称する場合がある。 Note that hereinafter, the preceding vehicle 100-1 and the following vehicle 100-2 may be referred to as vehicle 100 unless they are particularly distinguished.
 車両100は、自律走行ロボットでもよい。自律走行ロボットは、工場内又は倉庫内において部品又は製品などを運搬する運搬ロボットであってもよい。また、自律走行ロボットは、ユーザ宅へ荷物を配送したり、レストランなどにおいて食品などを配送したりする配送ロボットであってもよい。更に、自律走行ロボットは、ビル内で警備を行う警備ロボットであってもよい。また、車両100は、普通自動車又は軽自動車等の自動車、又は自動二輪車(オートバイ)等であってもよい。更に、車両100は、自動運転車両であってもよい。更に、車両100は、ドローンなどの飛行体であってもよい。 The vehicle 100 may be an autonomous robot. The autonomous robot may be a transportation robot that transports parts, products, etc. within a factory or warehouse. Further, the autonomous robot may be a delivery robot that delivers packages to a user's home, or delivers food or the like to a restaurant or the like. Furthermore, the autonomous robot may be a security robot that performs security within a building. Further, the vehicle 100 may be a car such as a regular car or a light car, or a motorcycle (motorcycle). Furthermore, vehicle 100 may be an autonomous vehicle. Furthermore, vehicle 100 may be a flying object such as a drone.
 車両100は、サーバ装置200と通信を行う。車両100は、サーバ装置200と直接無線通信を行ってもよい。車両100は、基地局(又は路側機)を介して、サーバ装置200と通信を行ってもよい。この場合、車両100と基地局(又は路側機)との間は無線通信となり、基地局(又は路側機)とサーバ装置200との間は有線通信となる。なお、以下では、車両100とサーバ装置200とが直接無線通信を行うものとして説明する。 The vehicle 100 communicates with the server device 200. Vehicle 100 may perform wireless communication directly with server device 200. Vehicle 100 may communicate with server device 200 via a base station (or roadside device). In this case, wireless communication occurs between the vehicle 100 and the base station (or roadside device), and wired communication occurs between the base station (or roadside device) and the server device 200. Note that the following description will be made assuming that vehicle 100 and server device 200 directly communicate wirelessly.
 サーバ装置200は、車両100と通信を行って、経路探索を行うことで、後続車両100-2の先行車両100-1までの経路(第1経路)を作成する。また、サーバ装置200は、車両100と通信を行って、経路探索を行うことで、先行車両100-1の目標位置までの経路(第2経路)を作成する。サーバ装置200は、経路作成装置であってもよい。サーバ装置200は、後続車両100-2の位置から先行車両100-1の位置までの経路(第1経路)を後続車両100-2へ送信し、先行車両100-1の目標位置までの経路(第2経路)を先行車両100-1へ送信する。 The server device 200 creates a route (first route) for the following vehicle 100-2 to the preceding vehicle 100-1 by communicating with the vehicle 100 and performing route search. Furthermore, the server device 200 creates a route (second route) to the target position of the preceding vehicle 100-1 by communicating with the vehicle 100 and performing route search. Server device 200 may be a route creation device. The server device 200 transmits the route (first route) from the position of the following vehicle 100-2 to the position of the preceding vehicle 100-1 to the following vehicle 100-2, and transmits the route (first route) from the position of the preceding vehicle 100-1 to the target position of the preceding vehicle 100-1. 2nd route) to the preceding vehicle 100-1.
(車両の構成例)
 次に、第1実施形態に係る車両100の構成例について説明する。
(Example of vehicle configuration)
Next, a configuration example of the vehicle 100 according to the first embodiment will be described.
 図2は、第1実施形態に係る車両100の構成例を表す図である。 FIG. 2 is a diagram showing a configuration example of the vehicle 100 according to the first embodiment.
 図2に示すように、車両100は、位置情報取得部110と、制御部120と、通信部130と、アンテナ140と、走行制御部150と、走行駆動部160と、ステアリング部170と、ブレーキ部180とを有する。 As shown in FIG. 2, the vehicle 100 includes a position information acquisition section 110, a control section 120, a communication section 130, an antenna 140, a travel control section 150, a travel drive section 160, a steering section 170, and a brake. 180.
 位置情報取得部110は、車両100の現地位置を示す位置情報を取得する。位置情報取得部110は、GNSS(Global Navigation Satellite System)受信部であってもよい。GNSS受信部は、衛星から受信したGNSS受信信号に基づいて、車両100の位置を取得する。位置情報取得部110は、少なくとも一つのカメラと第1位置情報処理部とから構成されてもよい。少なくとも一つのカメラは車両100の周囲を撮像し、撮像した映像の映像信号を第1位置情報処理部へ出力する。第1位置情報処理部では、映像信号に基づいて、少なくとも一つのカメラで撮像した映像から車両100の位置を示す位置情報を取得する。第1位置情報処理部は、例えば、位置情報処理部内のメモリなどに周囲の映像に関する教師データを予め保持しておき、少なくとも一つのカメラで撮像した映像と教師データとを比較することで、位置情報を取得してもよい。位置情報取得部110は、取得した位置情報を制御部120へ出力する。位置情報取得部110は、少なくとも一つの測距装置と第2位置情報処理部と構成されてもよい。少なくとも一つの測距装置は、車両100の周囲をセンシングするように構成される。少なくとも一つの測距装置は、例えば、LiDAR(Laser Imaging Detection and Ranging)、ToF(Time of Flight)センサ、音波センサ、ミリ波レーダー、又は、これらの少なくとも2つを組み合わせたセンシングデバイスを含む。また、少なくとも一つの測距装置は、センシングデバイスの検出値を第2位置情報処理部へ出力する。第2位置情報処理部は、センシングデバイスの検出値に基づき、車両100の位置を示す位置情報を取得する。第2位置情報処理部は、例えば、第2位置情報処理部内のメモリなどに三次元地図データを予め保持しておき、センシングデバイスの検出値から推定される車両100周囲の地形と、三次元地図データとを比較することで、位置情報を取得してもよい。なお、第2位置情報処理部は、センシングデバイスを利用し、SLAM(Simultaneous Localization and Mapping)方式でメモリに保存する三次元地図データを作成してもよい。 The location information acquisition unit 110 acquires location information indicating the local location of the vehicle 100. The location information acquisition unit 110 may be a GNSS (Global Navigation Satellite System) receiving unit. The GNSS reception unit acquires the position of vehicle 100 based on the GNSS reception signal received from the satellite. The location information acquisition unit 110 may include at least one camera and a first location information processing unit. At least one camera images the surroundings of the vehicle 100 and outputs a video signal of the imaged image to the first position information processing section. The first position information processing section acquires position information indicating the position of the vehicle 100 from an image captured by at least one camera based on the video signal. For example, the first location information processing section stores training data regarding surrounding images in a memory in the location information processing section in advance, and compares the video captured by at least one camera with the training data to determine the location. Information may also be obtained. The position information acquisition unit 110 outputs the acquired position information to the control unit 120. The position information acquisition unit 110 may include at least one ranging device and a second position information processing unit. At least one ranging device is configured to sense the surroundings of vehicle 100. The at least one ranging device includes, for example, a LiDAR (Laser Imaging Detection and Ranging), a ToF (Time of Flight) sensor, a sonic sensor, a millimeter wave radar, or a sensing device that combines at least two of these. Furthermore, at least one distance measuring device outputs the detection value of the sensing device to the second position information processing section. The second position information processing section acquires position information indicating the position of vehicle 100 based on the detection value of the sensing device. The second location information processing section stores three-dimensional map data in advance in a memory within the second location information processing section, and calculates the topography around the vehicle 100 estimated from the detection value of the sensing device and the three-dimensional map. Location information may be obtained by comparing the data. Note that the second location information processing section may use a sensing device to create three-dimensional map data to be stored in a memory using a SLAM (Simultaneous Localization and Mapping) method.
 制御部120は、車両100の各部を制御する。制御部120は、位置情報取得部110から受け取った位置情報を通信部130へ出力する。 The control unit 120 controls each part of the vehicle 100. The control unit 120 outputs the position information received from the position information acquisition unit 110 to the communication unit 130.
 また、先行車両100-1における制御部120は、自律走行開始要求及び経路情報要求などを作成し、当該自律走行開始要求及び当該経路情報要求などを通信部130へ出力する。先行車両100-1における制御部120は、通信部130などを介して、サーバ装置200から、目標位置までの経路を示す情報を受信する。先行車両100-1における制御部120は、目標位置までの経路を示す情報を走行制御部150へ出力するとともに、当該目標位置までの経路に従って先行車両100-1を走行させるよう走行制御部150へ指示する。 Furthermore, the control unit 120 in the preceding vehicle 100-1 creates an autonomous driving start request, a route information request, etc., and outputs the autonomous driving start request, the route information request, etc. to the communication unit 130. Control unit 120 in preceding vehicle 100-1 receives information indicating the route to the target position from server device 200 via communication unit 130 or the like. The control unit 120 in the preceding vehicle 100-1 outputs information indicating the route to the target position to the traveling control unit 150, and also outputs information to the traveling control unit 150 to cause the preceding vehicle 100-1 to travel along the route to the target position. Instruct.
 更に、後続車両100-2における制御部120は、先行車両100-1への追従走行開始要求及び経路情報要求などを作成し、当該追従走行開始要求及び当該経路情報要求などを通信部130へ出力する。後続車両100-2における制御部120は、通信部130などを介して、サーバ装置200から、先行車両100-1の位置までの経路を示す情報を受信する。後続車両100-2における制御部120は、当該情報を走行制御部150へ出力するとともに、先行車両100-1の位置までの経路に従って後続車両100-2を走行させるよう走行制御部150へ指示する。 Furthermore, the control unit 120 in the following vehicle 100-2 creates a request to start following driving and a request for route information to the preceding vehicle 100-1, and outputs the request to start following driving and the request for route information, etc. to the communication unit 130. do. The control unit 120 in the following vehicle 100-2 receives information indicating the route to the position of the preceding vehicle 100-1 from the server device 200 via the communication unit 130 or the like. The control unit 120 in the following vehicle 100-2 outputs the information to the travel control unit 150 and instructs the travel control unit 150 to make the following vehicle 100-2 travel along the route to the position of the preceding vehicle 100-1. .
 通信部130は、サーバ装置200と通信を行う。通信部130は、サーバ装置200と無線通信を行ってもよい。この場合、通信部130は、ARIB(Association of Radio Industries and Businesses) STD-T109に準拠した通信方式を利用して、無線通信を行ってもよい。また、通信部130は、3GPP(登録商標)の通信方式(例えば、V2Xなど)を利用して、無線通信を行ってもよい。 The communication unit 130 communicates with the server device 200. The communication unit 130 may perform wireless communication with the server device 200. In this case, the communication unit 130 may perform wireless communication using a communication method compliant with ARIB (Association of Radio Industries and Businesses) STD-T109. Further, the communication unit 130 may perform wireless communication using a 3GPP (registered trademark) communication method (eg, V2X, etc.).
 通信部130は、制御部120から出力された位置情報、自律走行開始要求、追従走行開始要求、及び経路情報などを無線信号へ変換し、当該無線信号をアンテナ140へ出力する。また、通信部130は、アンテナ140から無線信号を受け取り、当該無線信号をベースバンド信号へ変換し、当該ベースバンド信号から各種情報を抽出する。例えば、先行車両100-1の通信部130は、ベースバンド信号から、目標位置までの経路を示す情報を抽出し、当該情報を制御部120へ出力する。また、例えば、後続車両100-2の通信部130は、ベースバンド信号から、先行車両100-1までの経路を示す情報を抽出し、当該情報を制御部120へ出力する。 The communication unit 130 converts the position information, autonomous driving start request, follow-up driving start request, route information, etc. output from the control unit 120 into a wireless signal, and outputs the wireless signal to the antenna 140. Further, the communication unit 130 receives a radio signal from the antenna 140, converts the radio signal into a baseband signal, and extracts various information from the baseband signal. For example, the communication unit 130 of the preceding vehicle 100-1 extracts information indicating the route to the target position from the baseband signal, and outputs the information to the control unit 120. Further, for example, the communication unit 130 of the following vehicle 100-2 extracts information indicating the route to the preceding vehicle 100-1 from the baseband signal, and outputs the information to the control unit 120.
 アンテナ140は、通信部130から出力された無線信号を送信する。また、アンテナ140は、サーバ装置200から送信された無線信号を受信する。 The antenna 140 transmits the wireless signal output from the communication unit 130. Furthermore, the antenna 140 receives a wireless signal transmitted from the server device 200.
 走行制御部150は、制御部120からの指示に従って、車両100の走行部分を制御する。すなわち、先行車両100-1の走行制御部150は、目標位置までの経路を示す情報に従って、走行駆動部160、ステアリング部170、及びブレーキ部180を適宜制御する。これにより、先行車両100-1は、当該情報に従って、目標位置まで当該経路に従って移動することが可能となる。また、後続車両100-2の走行制御部150は、先行車両100-1の位置までの経路を示す情報に従って、走行駆動部160、ステアリング部170、及びブレーキ部180を適宜制御する。これにより、後続車両100-2は、当該情報に従って、先行車両100-1の位置まで当該経路に従って移動することが可能となる。 The travel control unit 150 controls the travel portion of the vehicle 100 according to instructions from the control unit 120. That is, travel control section 150 of preceding vehicle 100-1 appropriately controls travel drive section 160, steering section 170, and brake section 180 according to information indicating the route to the target position. This allows the preceding vehicle 100-1 to move along the route to the target position in accordance with the information. Further, the running control unit 150 of the following vehicle 100-2 appropriately controls the running drive unit 160, the steering unit 170, and the brake unit 180 according to information indicating the route to the position of the preceding vehicle 100-1. This allows the following vehicle 100-2 to move along the route to the position of the preceding vehicle 100-1 in accordance with the information.
 走行駆動部160は、例えば、エンジン及び車輪など、車両100の走行を駆動するブロックである。走行駆動部160は、走行制御部150からの指示に従って、エンジン及び車輪などを制御することで、車両100を所定の速度まで加速させたり、減速させたりすることが可能となる。 The travel drive unit 160 is a block that drives the vehicle 100 to travel, such as an engine and wheels. The travel drive unit 160 can accelerate or decelerate the vehicle 100 to a predetermined speed by controlling the engine, wheels, etc. according to instructions from the travel control unit 150.
 ステアリング部170は、例えば、車両100の方向を維持したり変更したりする操縦部分である。ステアリング部170は、走行制御部150からの指示に従って、ステアリング部分を所定の角度まで回転制御したりすることで、車両100を直進させたり、右折又は左折させたりすることが可能となる。 The steering section 170 is, for example, a steering section that maintains or changes the direction of the vehicle 100. The steering unit 170 controls the rotation of the steering portion to a predetermined angle in accordance with instructions from the travel control unit 150, thereby making it possible for the vehicle 100 to go straight, turn right, or turn left.
 ブレーキ部180は、例えば、車輪の回転を抑制させるブロックである。ブレーキ部180は、走行制御部150からの指示に従って、車輪の回転を抑制させることで、車両100を所定速度まで減速させたり、停止させたりすることが可能となる。 The brake unit 180 is, for example, a block that suppresses rotation of the wheels. The brake unit 180 can decelerate the vehicle 100 to a predetermined speed or stop the vehicle 100 by suppressing the rotation of the wheels according to instructions from the travel control unit 150.
(サーバ装置の構成例)
 次に、第1実施形態に係るサーバ装置200の構成例について説明する。
(Example of configuration of server device)
Next, a configuration example of the server device 200 according to the first embodiment will be described.
 図3は、第1実施形態に係るサーバ装置200の構成例を示す図である。 FIG. 3 is a diagram showing a configuration example of the server device 200 according to the first embodiment.
 図3に示すように、サーバ装置200は、アンテナ210と、通信部220と、経路作成部230とを有する。 As shown in FIG. 3, the server device 200 includes an antenna 210, a communication section 220, and a route creation section 230.
 アンテナ210は、車両100から送信された無線信号を受信し、受信した無線信号を通信部220へ出力する。また、アンテナ210は、通信部220から出力された無線信号を送信する。 The antenna 210 receives a wireless signal transmitted from the vehicle 100 and outputs the received wireless signal to the communication unit 220. Further, the antenna 210 transmits a wireless signal output from the communication unit 220.
 通信部220は、先行車両100-1の位置(第1位置)を示す位置情報(第1位置情報)と、後続車両100-2の位置(第2位置)を示す位置情報(第2位置情報)とを取得する。ここで、「取得」は「受信」を含む。すなわち、通信部220は、先行車両100-1の位置を示す位置情報と、後続車両100-2の位置を示す位置情報とを受信する。通信部220は、先行車両100-1の位置を示す位置情報を先行車両100-1から受信し、後続車両100-2の位置を示す位置情報を後続車両100-2から受信する。 The communication unit 220 transmits position information (first position information) indicating the position (first position) of the preceding vehicle 100-1 and position information (second position information) indicating the position (second position) of the following vehicle 100-2. ) and get. Here, "obtaining" includes "receiving". That is, the communication unit 220 receives position information indicating the position of the preceding vehicle 100-1 and position information indicating the position of the following vehicle 100-2. Communication unit 220 receives position information indicating the position of preceding vehicle 100-1 from preceding vehicle 100-1, and receives position information indicating the position of following vehicle 100-2 from following vehicle 100-2.
 また、通信部220は、後続車両100-2の位置から先行車両100-1の位置への経路(第1経路)を示す情報を、後続車両100-2へ送信する。更に、通信部220は、先行車両100-1の位置から目標位置までの経路(第2経路)を示す情報を、先行車両100-1へ送信する。 Furthermore, the communication unit 220 transmits information indicating a route (first route) from the position of the following vehicle 100-2 to the position of the preceding vehicle 100-1 to the following vehicle 100-2. Further, the communication unit 220 transmits information indicating a route (second route) from the position of the preceding vehicle 100-1 to the target position to the preceding vehicle 100-1.
 具体的には、通信部220は、以下の処理を行ってもよい。すなわち、通信部220は、アンテナ210から受け取った無線信号をベースバンド信号へ変換し、ベースバンド信号から、位置情報、自律走行開始要求、追従走行開始要求、及び経路情報などを抽出する。通信部220は、抽出した位置情報、自律走行開始要求、追従走行開始要求、及び経路情報などを経路作成部230へ出力する。また、通信部220は、経路作成部230から受け取った、目標位置までの経路を示す情報、及び先行車両100-1までの経路を示す情報を、無線信号へ変換し、当該無線信号をアンテナ210へ出力する。 Specifically, the communication unit 220 may perform the following processing. That is, the communication unit 220 converts the wireless signal received from the antenna 210 into a baseband signal, and extracts position information, an autonomous driving start request, a following driving start request, route information, etc. from the baseband signal. The communication unit 220 outputs the extracted position information, autonomous driving start request, follow-up driving start request, route information, etc. to the route creation unit 230. Further, the communication unit 220 converts the information indicating the route to the target position and the information indicating the route to the preceding vehicle 100-1 received from the route creation unit 230 into a wireless signal, and transmits the wireless signal to the antenna 210. Output to.
 経路作成部230は、先行車両100-1の位置情報及び後続車両100-2の位置情報に基づいて、経路探索を行い、後続車両100-2の位置(第2位置)から先行車両100-1の位置(第1位置)への経路(第1経路)を作成する。経路作成部230は、当該経路を示す情報を通信部220へ出力する。なお、当該経路を示す情報は、緯度及び経度で表されてもよい。また、当該経路を示す情報には、ステアリング角度及び/又は車両速度が含まれてもよい。 The route creation unit 230 searches for a route based on the position information of the preceding vehicle 100-1 and the position information of the following vehicle 100-2, and searches the route from the position of the following vehicle 100-2 (second position) to the preceding vehicle 100-1. A route (first route) to the position (first position) is created. The route creation unit 230 outputs information indicating the route to the communication unit 220. Note that the information indicating the route may be expressed in latitude and longitude. Further, the information indicating the route may include the steering angle and/or the vehicle speed.
 また、経路作成部230は、先行車両100-1の位置情報及び目標位置に基づいて、経路探索を行い、先行車両100-1の位置(第1位置)から目標位置までの経路(第2経路)を作成する。経路作成部230は、当該経路を示す情報を、通信部220へ出力する。なお、当該経路を示す情報も、緯度及び経度で表されてもよい。或いは、当該情報は、ステアリング角度及び/又は車両速度が含まれてもよい。 The route creation unit 230 also performs route search based on the position information and target position of the preceding vehicle 100-1, and searches for a route (second route) from the position of the preceding vehicle 100-1 (first position) to the target position. ). The route creation unit 230 outputs information indicating the route to the communication unit 220. Note that the information indicating the route may also be expressed in latitude and longitude. Alternatively, the information may include steering angle and/or vehicle speed.
(第1実施形態の動作例)
 次に、第1実施形態に係る動作例について説明する。
(Operation example of the first embodiment)
Next, an example of operation according to the first embodiment will be described.
 図4は、第1実施形態に係る動作例を表す図である。サーバ装置200での動作は、主に、経路作成部230で行われる。 FIG. 4 is a diagram illustrating an operation example according to the first embodiment. Operations in the server device 200 are mainly performed by the route creation section 230.
 図4に示すように、ステップS10において、先行車両100-1は、目標位置への自律走行開始要求を送信する。当該自律走行開始要求には、例えば、当該目標位置と、当該先行車両100-1の識別情報とが含まれる。サーバ装置200は、先行車両100-1の目標位置をサーバ装置200内のメモリに記憶してもよい。ステップS11において、サーバ装置200は、当該要求を受信したことに応じて、当該要求を受信したことを示す応答(return)を先行車両100-1へ送信してもよい。 As shown in FIG. 4, in step S10, the preceding vehicle 100-1 transmits a request to start autonomous driving to the target position. The autonomous driving start request includes, for example, the target position and the identification information of the preceding vehicle 100-1. Server device 200 may store the target position of preceding vehicle 100-1 in a memory within server device 200. In step S11, in response to receiving the request, server device 200 may transmit a response indicating that the request has been received to preceding vehicle 100-1.
 ステップS12において、後続車両100-2は、先行車両100-1への追従走行開始要求を送信する。当該追従走行開始要求には、例えば、追従走行対象となる当該先行車両100-1の識別情報と、当該後続車両100-2の識別情報とが含まれる。ステップS13において、サーバ装置200は、当該要求を受信したことに応じて、当該要求を受信したことを示す応答(return)を後続車両100-2へ送信してもよい。 In step S12, the following vehicle 100-2 transmits a request to start following the preceding vehicle 100-1. The following drive start request includes, for example, identification information of the preceding vehicle 100-1 to be followed, and identification information of the following vehicle 100-2. In step S13, in response to receiving the request, the server device 200 may transmit a response indicating that the request has been received to the following vehicle 100-2.
 なお、サーバ装置200は、ステップS10で受信した自律走行開始要求と、ステップS12で受信した追従走行開始要求とに基づいて、先行車両100-1の識別情報及び後続車両100-2の識別情報をペアリングしてもよい。これにより、サーバ装置200は、車両100-1を先行車両、車両100-2を後続車両とする追従走行を行う車両どうしであることを認識するようにしてもよい。 Note that the server device 200 obtains the identification information of the preceding vehicle 100-1 and the identification information of the following vehicle 100-2 based on the autonomous driving start request received in step S10 and the following driving start request received in step S12. You can also pair. Thereby, the server device 200 may recognize that the vehicles are following each other, with the vehicle 100-1 being the leading vehicle and the vehicle 100-2 being the following vehicle.
 ステップS14において、先行車両100-1は、自車両の位置を表す位置情報を送信する。サーバ装置200は、当該位置情報を受信する。ステップS15において、サーバ装置200は、当該位置情報を受信したことに応じて、当該位置情報を受信したことを示す応答(return)を先行車両100-1へ送信してもよい。 In step S14, the preceding vehicle 100-1 transmits position information indicating the position of its own vehicle. Server device 200 receives the location information. In step S15, in response to receiving the position information, the server device 200 may transmit a response indicating that the position information has been received to the preceding vehicle 100-1.
 ステップS16において、後続車両100-2は、自車両の位置を表す位置情報を送信する。サーバ装置200は、当該位置情報を受信する。ステップS17において、サーバ装置200は、当該位置情報を受信したことに応じて、当該位置情報を受信したことを示す応答(return)を後続車両100-2へ送信してもよい。 In step S16, the following vehicle 100-2 transmits position information indicating the position of its own vehicle. Server device 200 receives the location information. In step S17, in response to receiving the position information, the server device 200 may transmit a response indicating that the position information has been received to the following vehicle 100-2.
 このように、サーバ装置200では、自律走行開始要求及び追従走行開始要求を受信(ステップS10及びステップS12)した後、先行車両100-1の位置情報及び後続車両100-2の位置情報を受信する(ステップS14及びステップS16)。 In this way, after receiving the autonomous driving start request and the following driving start request (step S10 and step S12), the server device 200 receives the position information of the preceding vehicle 100-1 and the position information of the following vehicle 100-2. (Step S14 and Step S16).
 ステップS18において、サーバ装置200は、経路探索を行う。サーバ装置200は、経路探索により、先行車両100-1に対しては、目標位置までの経路を探索し、後続車両100-2に対しては、先行車両100-1の位置までの経路を探索する。 In step S18, the server device 200 performs a route search. Through route searching, the server device 200 searches for a route to the target position for the preceding vehicle 100-1, and searches for a route to the position of the preceding vehicle 100-1 for the following vehicle 100-2. do.
 ステップS19において、先行車両100-1は、経路情報要求を送信する。 In step S19, the preceding vehicle 100-1 transmits a route information request.
 ステップS20において、サーバ装置200は、当該経路情報要求を受信したことに応じて、目標位置までの経路を示す情報を送信する。先行車両100-1は、当該情報を受信し、当該情報に基づいて、目標位置までの当該経路に従った自動走行を行う。 In step S20, the server device 200 transmits information indicating the route to the target position in response to receiving the route information request. The preceding vehicle 100-1 receives the information and automatically travels along the route to the target position based on the information.
 ステップS21において、後続車両100-2は、経路情報要求を送信する。 In step S21, the following vehicle 100-2 transmits a route information request.
 ステップS22において、サーバ装置200は、当該経路情報要求を受信したことに応じて、先行車両100-1の位置までの経路を示す情報を送信する。後続車両100-2は、当該情報を受信し、当該情報に基づいて、先行車両100-1の位置までの当該経路に従った自動走行を行う。 In step S22, the server device 200 transmits information indicating the route to the position of the preceding vehicle 100-1 in response to receiving the route information request. The following vehicle 100-2 receives the information and automatically travels along the route to the position of the preceding vehicle 100-1 based on the information.
 ステップS23において、先行車両100-1が目標位置に到達する第1条件、及び、先行車両100-1の位置と後続車両100-2の位置とが所定の範囲で一致する第2条件の少なくとも一方の条件が満たされるまで、ステップS14からステップS22までが繰り返される。 In step S23, at least one of a first condition that the preceding vehicle 100-1 reaches the target position and a second condition that the position of the preceding vehicle 100-1 and the position of the following vehicle 100-2 match within a predetermined range. Steps S14 to S22 are repeated until the following conditions are met.
 すなわち、第1条件及び第2条件のうち少なくとも一方の条件が満たされるまで、先行車両100-1は位置情報を周期的に送信し(ステップS14)、後続車両100-2も位置情報を周期的に送信し(ステップS16)、サーバ装置200は、2つの位置情報を周期的に取得(又は受信)する。また、第1条件及び第2条件のうち少なくとも一方の条件が満たされるまで、サーバ装置200は、先行車両100-1からの経路情報要求(ステップS19)に応じて、目標位置までの経路を示す情報を周期的に送信し(ステップS20)、後続車両100-2からの経路情報要求(ステップS21)に応じて、先行車両100-1の位置までの経路を示す情報を周期的に送信する(ステップS22)。 That is, until at least one of the first condition and the second condition is satisfied, the preceding vehicle 100-1 periodically transmits the position information (step S14), and the following vehicle 100-2 also periodically transmits the position information. (step S16), and the server device 200 periodically acquires (or receives) two pieces of position information. Further, until at least one of the first condition and the second condition is satisfied, the server device 200 indicates the route to the target position in response to the route information request (step S19) from the preceding vehicle 100-1. Information is periodically transmitted (step S20), and in response to a route information request from the following vehicle 100-2 (step S21), information indicating the route to the position of the preceding vehicle 100-1 is periodically transmitted ( Step S22).
 ここで、第1条件及び第2条件の少なくともいずれか一方の条件が満たされるか否かは、サーバ装置200が判定してもよい。具体的には、サーバ装置200の経路作成部230が判定してもよい。サーバ装置200は、先行車両100-1からの位置情報(ステップS14)と後続車両100-2からの位置情報(ステップS16)とに基づいて、当該条件を判定してもよい。 Here, the server device 200 may determine whether at least one of the first condition and the second condition is satisfied. Specifically, the route creation unit 230 of the server device 200 may make the determination. The server device 200 may determine the condition based on the position information from the preceding vehicle 100-1 (step S14) and the position information from the following vehicle 100-2 (step S16).
 また、第2条件について、先行車両100-1の位置と後続車両100-2の位置とが所定の範囲で一致することは、後続車両100-2が先行車両100-1に追いつくことを含む。サーバ装置200は、2つの位置情報に基づいて、先行車両100-1と後続車両100-2の各位置が所定の範囲内にあれば、第2条件を満たすと判定し、当該各位置が所定の範囲内になければ、第2条件を見たさないと判定してもよい。 Regarding the second condition, the fact that the position of the preceding vehicle 100-1 and the position of the following vehicle 100-2 match within a predetermined range includes that the following vehicle 100-2 catches up with the preceding vehicle 100-1. Based on the two pieces of position information, the server device 200 determines that the second condition is satisfied if the positions of the preceding vehicle 100-1 and the following vehicle 100-2 are within a predetermined range, and the respective positions are within the predetermined range. If it is not within the range, it may be determined that the second condition is not satisfied.
 一方、第1条件及び第2条件の少なくともいずれか一方の条件が満たされると、追従走行が終了する。 On the other hand, when at least one of the first condition and the second condition is satisfied, the follow-up travel ends.
 次に、第1実施形態の一例について説明する。本例は、主に、第1実施形態との相違点を中心に説明する。 Next, an example of the first embodiment will be described. This example will be explained mainly focusing on the differences from the first embodiment.
 第1実施形態では、2台の車両100-1及び100-2による追従走行の例について説明したがこれに限定されない。例えば、3台以上の車両100による追従走行が行われてもよい。 In the first embodiment, an example of follow-up driving by two vehicles 100-1 and 100-2 has been described, but the present invention is not limited to this. For example, three or more vehicles 100 may follow the vehicle.
 例えば、先頭に先行車両100-1、先行車両100-1に後続する第1後続車両100-2、更に、第1後続車両100-2に後続する第2後続車両100による追従走行が行われる場合は、以下となる。すなわち、第1後続車両100-2は、先行車両100-1に対して第1実施形態で説明した追従走行を行えばよく、第2後続車両100は、第1後続車両100-2を、第2後続車両100における先行車両として、第1実施形態で説明した追従走行を行えばよい。 For example, when following driving is performed by a leading vehicle 100-1 at the head, a first following vehicle 100-2 following the leading vehicle 100-1, and a second following vehicle 100 following the first following vehicle 100-2. is as follows. That is, the first following vehicle 100-2 only needs to follow the preceding vehicle 100-1 as described in the first embodiment, and the second following vehicle 100 may follow the first following vehicle 100-2. As the preceding vehicle in the second following vehicle 100, the following vehicle may perform the following driving described in the first embodiment.
 後続車両が先行する車両を先行車両として、第1実施形態で説明した追従走行を行うことで、3台以上の追従走行であっても、第1実施形態と同様に実施することが可能である。 By performing the following driving described in the first embodiment with the preceding vehicle as the preceding vehicle, it is possible to carry out the following driving in the same manner as in the first embodiment even if there are three or more vehicles. .
[第2実施形態]
 次に、第2実施形態について説明する。第2実施形態についても、主に、第1実施形態との相違点を中心に説明する。
[Second embodiment]
Next, a second embodiment will be described. The second embodiment will also be described mainly focusing on the differences from the first embodiment.
 第2実施形態では、先行車両100-1と後続車両100-2との車間距離を制御する実施形態である。 The second embodiment is an embodiment in which the inter-vehicle distance between the preceding vehicle 100-1 and the following vehicle 100-2 is controlled.
 具体的には、先行車両100-1の位置(第1位置)と後続車両100-2の位置(第2位置)との間の距離に応じて、先行車両100-1(第1車両)と後続車両100-2(第2車両)との間の車間距離を制御するための情報を、サーバ装置200が先行車両100-1及び後続車両100-2の少なくともいずれか一方に送信する。当該送信は、第2実施形態では、サーバ装置200において行われる。 Specifically, depending on the distance between the position of the preceding vehicle 100-1 (first position) and the position of the following vehicle 100-2 (second position), Server device 200 transmits information for controlling the inter-vehicle distance to following vehicle 100-2 (second vehicle) to at least one of preceding vehicle 100-1 and following vehicle 100-2. The transmission is performed in the server device 200 in the second embodiment.
 これにより、例えば、先行車両100-1と後続車両100-2との車間距離が所定距離以上離れたり、所定距離未満まで近づいたりする場合に、その車間距離が適切な距離に調整される。そのため、サーバ装置200において2つの車両100-1及び100-2の一方を見失ったり、2つの車両100-1及び100-2が衝突したりするなどの事態を抑制させることができる。よって、追従走行を適切に行わせることが可能となる。 As a result, for example, when the distance between the preceding vehicle 100-1 and the following vehicle 100-2 becomes greater than a predetermined distance or approaches less than a predetermined distance, the inter-vehicle distance is adjusted to an appropriate distance. Therefore, it is possible to suppress situations such as server device 200 losing sight of one of the two vehicles 100-1 and 100-2 or collision between the two vehicles 100-1 and 100-2. Therefore, it becomes possible to perform follow-up travel appropriately.
(第2実施形態に係る動作例)
 次に、第2実施形態に係る動作例について説明する。
(Operation example according to second embodiment)
Next, an example of operation according to the second embodiment will be described.
 図5は、第2実施形態に係る動作例を表す図である。図5において、第1実施形態と同一の処理には同一の符号が示されている。 FIG. 5 is a diagram illustrating an operation example according to the second embodiment. In FIG. 5, the same processes as in the first embodiment are indicated by the same reference numerals.
 図5に示すように、ステップS30において、サーバ装置200は、先行車両100-1から受信した位置情報(ステップS14)に基づいて、先行車両100-1の移動軌跡を記録する処理を行う。例えば、経路作成部230は、周期的に受信した位置情報(ステップS14)に基づいて、先行車両100-1の移動軌跡をメモリなどに記録する。 As shown in FIG. 5, in step S30, the server device 200 performs a process of recording the movement trajectory of the preceding vehicle 100-1 based on the position information received from the preceding vehicle 100-1 (step S14). For example, the route creation unit 230 records the movement trajectory of the preceding vehicle 100-1 in a memory or the like based on the periodically received position information (step S14).
 ステップS31において、サーバ装置200は、経路探索(ステップS18)後、経路を走行するための各車両100-1及び100-2の移動速度を計算する。例えば、経路作成部230は、先行車両100-1の移動軌跡(ステップS30)に基づいて、これまでに経過した時間を考慮して、目標位置までの経路を走行するための移動速度を計算してもよい。また、例えば、経路作成部230は、後続車両100-2が先行車両100-1に追従走行が可能となるように、先行車両100-1の移動速度に基づいて、先行車両100-1の位置までの後続車両100-2の移動速度を計算してもよい。 In step S31, the server device 200 calculates the moving speed of each vehicle 100-1 and 100-2 to travel on the route after the route search (step S18). For example, the route creation unit 230 calculates the travel speed for traveling the route to the target position based on the travel trajectory of the preceding vehicle 100-1 (step S30), taking into consideration the time that has passed so far. You can. Further, for example, the route creation unit 230 determines the position of the preceding vehicle 100-1 based on the moving speed of the preceding vehicle 100-1 so that the following vehicle 100-2 can follow the preceding vehicle 100-1. The moving speed of the following vehicle 100-2 up to the point may be calculated.
 ステップS32において、サーバ装置200は、車間距離制御処理を行う。 In step S32, the server device 200 performs inter-vehicle distance control processing.
 図6は、第2実施形態に係る車間距離制御処理の動作例を表す図である。車間距離制御処理は、例えば、経路作成部230において行われる。 FIG. 6 is a diagram illustrating an operation example of inter-vehicle distance control processing according to the second embodiment. The inter-vehicle distance control process is performed, for example, in the route creation unit 230.
 図6に示すように、ステップS320において、サーバ装置200は、車間距離制御処理を開始すると、ステップS321において、先行車両100-1の位置情報(ステップS14)及び後続車両100-2の位置情報(ステップS16)から、先行車両100-1と後続車両100-2との車間距離を計算する。 As shown in FIG. 6, in step S320, the server device 200 starts the inter-vehicle distance control process, and in step S321, the position information of the preceding vehicle 100-1 (step S14) and the position information of the following vehicle 100-2 ( From step S16), the inter-vehicle distance between the preceding vehicle 100-1 and the following vehicle 100-2 is calculated.
 ステップS322において、サーバ装置200は、車間距離が規定値以上か否かを判定する。車間距離が規定値以上のとき(ステップS322でYes)、処理はステップS323へ移行する。車間距離が規定値以上ではないとき(ステップS322でNo)、処理はステップS324へ移行する。 In step S322, the server device 200 determines whether the inter-vehicle distance is greater than or equal to a specified value. When the inter-vehicle distance is equal to or greater than the specified value (Yes in step S322), the process moves to step S323. When the inter-vehicle distance is not equal to or greater than the specified value (No in step S322), the process moves to step S324.
 ステップS323において、サーバ装置200は、先行車両100-1に対して停止要求を送信することを決定する。ステップS323において、サーバ装置200は、ステップS21で計算した先行車両100-1の移動速度に関し、当該移動速度よりも低い速度に減速することを要求する減速要求を送信することを決定してもよい。すなわち、サーバ装置200は、先行車両100-1と後続車両100-2との車間距離が規定値以上離れているため、先行車両100-1を停止又は減速させて、車間距離を規定値以内となるように制御する。この場合の車間距離を制御するための情報は、先行車両100-1に対する減速要求又は停止要求となり得る。 In step S323, the server device 200 decides to send a stop request to the preceding vehicle 100-1. In step S323, the server device 200 may decide to transmit a deceleration request requesting that the moving speed of the preceding vehicle 100-1 calculated in step S21 be reduced to a speed lower than the moving speed. . That is, since the inter-vehicle distance between the preceding vehicle 100-1 and the following vehicle 100-2 is greater than the specified value, the server device 200 stops or decelerates the preceding vehicle 100-1 to bring the inter-vehicle distance within the specified value. control so that The information for controlling the inter-vehicle distance in this case may be a request to decelerate or stop the preceding vehicle 100-1.
 そして、ステップS331において、サーバ装置200は、車間距離制御処理を終了する。 Then, in step S331, the server device 200 ends the inter-vehicle distance control process.
 一方、ステップS324において、サーバ装置200は、車間距離が規定値未満か否かを判定する。車間距離が規定値未満のとき(ステップS324でYes)、処理はステップS325へ移行する。車間距離が規定値未満ではないとき(ステップS324でNo)、処理はステップS326へ移行する。 On the other hand, in step S324, the server device 200 determines whether the inter-vehicle distance is less than a specified value. When the inter-vehicle distance is less than the specified value (Yes in step S324), the process moves to step S325. When the inter-vehicle distance is not less than the specified value (No in step S324), the process moves to step S326.
 ステップS325において、サーバ装置200は、後続車両100-2に対して停止要求を送信することを決定する。すなわち、サーバ装置200は、後続車両100-2が先行車両100-1との車間距離が規定値未満となるほど近づいているときは、後続車両100-2を停止させるように制御する。この場合の車間距離を制御するための情報は、後続車両100-2に対する停止要求となり得る。 In step S325, the server device 200 decides to send a stop request to the following vehicle 100-2. That is, when the following vehicle 100-2 approaches the preceding vehicle 100-1 so that the inter-vehicle distance becomes less than a specified value, the server device 200 controls the following vehicle 100-2 to stop. The information for controlling the inter-vehicle distance in this case may be a stop request to the following vehicle 100-2.
 そして、ステップS331において、サーバ装置200は、車間距離制御処理を終了する。 Then, in step S331, the server device 200 ends the inter-vehicle distance control process.
 一方、ステップS326において、サーバ装置200は、後続車両100-2が旋回中であるか否かを判定する。後続車両100-2が旋回中のとき(ステップS326でYes)、処理はステップS327へ移行する。後続車両100-2が旋回中ではないとき(ステップS326でNo)、処理はステップS328へ移行する。サーバ装置200は、後続車両100-2の走行情報に基づいて、後続車両100-2が旋回中か否かを判定してもよい。走行情報には、後続車両100-2が旋回中か否かを示す情報が含まれる。走行情報は、後続車両100-2から受信してもよい。サーバ装置200は、後続車両100-2から受信した位置情報(ステップS16)に基づいて、走行情報を取得するようにしてもよい。この場合、サーバ装置200は、複数の位置情報に基づいて、移動方向が所定角度以上変化したときに旋回中であると判定し、移動方向が所定角度以上変化しないとき旋回中ではないと判定してもよい。 On the other hand, in step S326, the server device 200 determines whether the following vehicle 100-2 is turning. When the following vehicle 100-2 is turning (Yes in step S326), the process moves to step S327. When the following vehicle 100-2 is not turning (No in step S326), the process moves to step S328. The server device 200 may determine whether the following vehicle 100-2 is turning based on the traveling information of the following vehicle 100-2. The traveling information includes information indicating whether the following vehicle 100-2 is turning. The driving information may be received from the following vehicle 100-2. The server device 200 may acquire travel information based on the position information received from the following vehicle 100-2 (step S16). In this case, the server device 200 determines that it is turning when the direction of movement changes by more than a predetermined angle based on the plurality of position information, and determines that it is not turning when the direction of movement does not change by more than a predetermined angle. You can.
 ステップS327において、サーバ装置200は、先行車両100-1の最高速度を制限することを決定する。すなわち、サーバ装置200は、後続車両100-2が旋回中のため、先行車両100-1の最高速度を制限することで、先行車両100-1が後続車両100-2から所定距離以上離れないように制御する。この場合の車間距離を制御するための情報は、先行車両100-1に対する最高速度制限要求となり得る。当該要求には、最高速度の制限値が含まれる。 In step S327, the server device 200 determines to limit the maximum speed of the preceding vehicle 100-1. That is, since the following vehicle 100-2 is turning, the server device 200 limits the maximum speed of the preceding vehicle 100-1 so that the preceding vehicle 100-1 does not move more than a predetermined distance from the following vehicle 100-2. to control. The information for controlling the inter-vehicle distance in this case may be a maximum speed limit request for the preceding vehicle 100-1. The request includes a maximum speed limit.
 そして、ステップS331において、サーバ装置200は、車間距離制御処理を終了する。 Then, in step S331, the server device 200 ends the inter-vehicle distance control process.
 一方、ステップS328において、サーバ装置200は、後続車両が停止中か否かを判定する。後続車両100-2が停止中のとき(ステップS328でYes)、処理はステップS329へ移行する。後続車両100-2が停止中ではないとき(ステップS328でNo)、処理はステップS330へ移行する。サーバ装置200は、後続車両100-2の走行情報に基づいて、後続車両100-2が停止中か否かを判定してもよい。走行情報には、後続車両100-2が停止中か否かを示す情報が含まれる。走行情報は、後続車両100-2から受信してもよい。サーバ装置200は、後続車両100-2から受信した位置情報(ステップS16)に基づいて、走行情報を取得するようにしてもよい。この場合、サーバ装置200は、複数の位置情報に基づいて、位置情報が連続して変化しないときに後続車両100-2が停止中であると判定し、位置情報が連続して変化するときに停止中ではないと判定してもよい。 On the other hand, in step S328, the server device 200 determines whether the following vehicle is stopped. When the following vehicle 100-2 is stopped (Yes in step S328), the process moves to step S329. When the following vehicle 100-2 is not stopped (No in step S328), the process moves to step S330. The server device 200 may determine whether the following vehicle 100-2 is stopped based on the traveling information of the following vehicle 100-2. The traveling information includes information indicating whether the following vehicle 100-2 is stopped. The driving information may be received from the following vehicle 100-2. The server device 200 may acquire travel information based on the position information received from the following vehicle 100-2 (step S16). In this case, based on the plurality of pieces of position information, the server device 200 determines that the following vehicle 100-2 is stopped when the position information does not change continuously, and determines that the following vehicle 100-2 is stopped when the position information changes continuously. It may be determined that it is not stopped.
 ステップS329において、サーバ装置200は、先行車両100-1の最高速度を制限することを決定する。すなわち、サーバ装置200は、後続車両100-2が停止中のため、先行車両100-1の最高速度を制限することで、先行車両100-1が後続車両100-2から所定距離以上離れないように制御する。この場合の車間距離を制御するための情報は、先行車両100-1に対する最高速度制限要求となり得る。当該要求に最高速度の制限値が含まれる。 In step S329, the server device 200 determines to limit the maximum speed of the preceding vehicle 100-1. That is, since the following vehicle 100-2 is stopped, the server device 200 limits the maximum speed of the preceding vehicle 100-1 so that the preceding vehicle 100-1 does not move more than a predetermined distance from the following vehicle 100-2. to control. The information for controlling the inter-vehicle distance in this case may be a maximum speed limit request for the preceding vehicle 100-1. The request includes a maximum speed limit.
 そして、ステップS331において、サーバ装置200は、車間距離制御処理を終了する。 Then, in step S331, the server device 200 ends the inter-vehicle distance control process.
 一方、ステップS330において、サーバ装置200は、車間距離に応じて、先行車両100-1の最高速度を制限することを決定する。この際、サーバ装置200は、車間距離及び最高速度の制限値を、サーバ装置200内のメモリ(又は当該メモリに記憶したテーブル)に保持してもよい。サーバ装置200は、先行車両100-1と後続車両100-2との車間距離が適切な距離となっており(ステップS322及びステップS324でともにNo)、後続車両100-2が旋回も停止もしていないとき(ステップS326及びステップS328でともにNo)、先行車両100-1の最高速度を車間距離に応じた速度に制限する。 On the other hand, in step S330, the server device 200 determines to limit the maximum speed of the preceding vehicle 100-1 according to the inter-vehicle distance. At this time, the server device 200 may hold the limit values of the inter-vehicle distance and the maximum speed in a memory within the server device 200 (or a table stored in the memory). The server device 200 determines that the distance between the preceding vehicle 100-1 and the following vehicle 100-2 is an appropriate distance (No in both steps S322 and S324), and that the following vehicle 100-2 is neither turning nor stopping. If not (No in both steps S326 and S328), the maximum speed of the preceding vehicle 100-1 is limited to a speed corresponding to the inter-vehicle distance.
 そして、ステップS331において、サーバ装置200は、車間距離制御処理を終了する。 Then, in step S331, the server device 200 ends the inter-vehicle distance control process.
 図5に戻り、車間距離制御処理(ステップS22)が終了した後、ステップS24において、サーバ装置200は、先行車両100-1に対する移動速度指示を送信する。当該移動速度指示には、車間距離制御処理(ステップS22)で決定した、先行車両100-1に対する停止要求(又は減速要求)(ステップS323)が含まれてもよい。また、当該移動速度指示には、車間距離制御処理で決定した、先行車両100-1の最高速度制限要求(ステップS327、ステップS329、及びステップS330)が含まれてもよい。ステップS24において、サーバ装置200は、後続車両100-2の走行情報に応じて、車間距離を制御するための情報(例えば、最高速度制限要求)を先行車両100-1へ送信する。先行車両100-1は、移動速度指示を受信すると、当該指示に従って、停止したり、減速したり、最高速度が制限された状態で当該移動速度により走行したりすることになる。 Returning to FIG. 5, after the inter-vehicle distance control process (step S22) is completed, in step S24, the server device 200 transmits a moving speed instruction to the preceding vehicle 100-1. The moving speed instruction may include a stop request (or deceleration request) (step S323) for the preceding vehicle 100-1 determined in the inter-vehicle distance control process (step S22). Further, the moving speed instruction may include a maximum speed limit request for the preceding vehicle 100-1 (steps S327, S329, and S330) determined in the inter-vehicle distance control process. In step S24, server device 200 transmits information for controlling the inter-vehicle distance (for example, a maximum speed limit request) to preceding vehicle 100-1 according to the traveling information of following vehicle 100-2. When the preceding vehicle 100-1 receives the moving speed instruction, it stops, decelerates, or travels at the moving speed with the maximum speed limited, in accordance with the instruction.
 ステップS25において、サーバ装置200は、後続車両100-2に対する移動速度指示を送信する。当該移動速度指示には、車間距離制御処理で決定した、後続車両100-2に対する停止要求(ステップS325)が含まれてもよい。後続車両100-2は、移動速度指示を受信すると、当該指示に従って、停止したり、当該移動速度で移動したりすることになる。 In step S25, the server device 200 transmits a moving speed instruction to the following vehicle 100-2. The moving speed instruction may include a request for the following vehicle 100-2 to stop (step S325) determined by the inter-vehicle distance control process. When the following vehicle 100-2 receives the movement speed instruction, it will stop or move at the movement speed in accordance with the instruction.
 なお、図5に示す動作例においても、第1実施形態と同様に、先行車両100-1が目標位置に到達する第1条件、及び、先行車両100-1の位置と後続車両100-2の位置とが所定の範囲で一致する第2条件の少なくとも一方の条件が満たされるまで、ステップS14からステップS25までの処理が繰り返されてもよい。 Note that in the operation example shown in FIG. 5, as in the first embodiment, the first condition is that the preceding vehicle 100-1 reaches the target position, and the position of the preceding vehicle 100-1 and the following vehicle 100-2 are The processes from step S14 to step S25 may be repeated until at least one of the second conditions that the position matches within a predetermined range is satisfied.
 次に、第2実施形態の一例について説明する。本例は、主に、第2実施形態との相違点を中心に説明する。 Next, an example of the second embodiment will be described. This example will be explained mainly focusing on the differences from the second embodiment.
 第2実施形態における車間距離制御処理(図6)では、主に、先行車両100-1に対する速度を制限する(ステップS327とステップS329)ことで、車間距離を保つ例について説明した。車間距離制御処理は、これに限定されない。例えば、車間距離制御処理は、先行車両100-1と後続車両100-2の双方の速度を考慮して行われてもよい。 In the inter-vehicle distance control process (FIG. 6) in the second embodiment, an example has been described in which the inter-vehicle distance is maintained mainly by limiting the speed relative to the preceding vehicle 100-1 (steps S327 and S329). The inter-vehicle distance control process is not limited to this. For example, the inter-vehicle distance control process may be performed in consideration of the speeds of both the preceding vehicle 100-1 and the following vehicle 100-2.
 図7は、第2実施形態の一例に係る車間距離制御処理の動作例を表す図である。図7において、図6と同一処理には同一符号が付されている。 FIG. 7 is a diagram illustrating an operation example of inter-vehicle distance control processing according to an example of the second embodiment. In FIG. 7, the same processes as those in FIG. 6 are given the same reference numerals.
 ステップS322において、サーバ装置200は、車間距離が規定値以上ではない(ステップS322でNo)とき、ステップS340を行う。 In step S322, the server device 200 performs step S340 when the inter-vehicle distance is not equal to or greater than the specified value (No in step S322).
 ステップS340において、サーバ装置200は、先行車両100-1と後続車両100-2の車間距離が基準しきい値以上か否かを判定する。車間距離が基準しきい値以上のとき(ステップS340でYes)、処理はステップS341へ移行し、車間距離が基準しきい値以上ではないとき(ステップS340でNo)、処理はステップS342へ移行する。 In step S340, the server device 200 determines whether the inter-vehicle distance between the preceding vehicle 100-1 and the following vehicle 100-2 is greater than or equal to a reference threshold value. When the inter-vehicle distance is greater than or equal to the reference threshold (Yes in step S340), the process moves to step S341, and when the inter-vehicle distance is not greater than or equal to the reference threshold (No in step S340), the process proceeds to step S342. .
 ステップS341において、サーバ装置200は、先行車両100-1の移動速度を後続車両200-2の移動速度よりも小さい値に補正する。ここで、規定値(ステップS322)と基準しきい値(ステップS340)との関係は、規定値>基準しきい値、である。規定値は限界値を表し、基準しきい値は調整値を表してもよい。すなわち、サーバ装置200は、先行車両100-1と後続車両100-2との車間距離が限界値(規定値)まで離れてはいないものの(ステップS322でNo)、基準しきい値(又は調整値)以上離れているときは(ステップS340でYes)、先行車両100-1の移動速度を後続車両100-2の移動速度よりも小さい値に補正する。これにより、例えば、先行車両100-1の移動速度が後続車両100-2の移動速度よりも小さくなることで、車間距離が基準しきい値以内となり、後続車両100-2との車間距離が一定距離で保つことが可能となる。 In step S341, the server device 200 corrects the moving speed of the preceding vehicle 100-1 to a value smaller than the moving speed of the following vehicle 200-2. Here, the relationship between the specified value (step S322) and the reference threshold value (step S340) is specified value>reference threshold value. The specified value may represent a limit value, and the reference threshold value may represent an adjustment value. That is, the server device 200 determines that although the inter-vehicle distance between the preceding vehicle 100-1 and the following vehicle 100-2 is not as far as the limit value (specified value) (No in step S322), the reference threshold value (or adjustment value) ) (Yes in step S340), the moving speed of the preceding vehicle 100-1 is corrected to a value smaller than the moving speed of the following vehicle 100-2. As a result, for example, the moving speed of the preceding vehicle 100-1 becomes smaller than the moving speed of the following vehicle 100-2, so that the inter-vehicle distance becomes within the reference threshold, and the inter-vehicle distance with the following vehicle 100-2 remains constant. It is possible to keep it at a distance.
 そして、ステップS344において、サーバ装置200は、車間距離制御処理を終了する。 Then, in step S344, the server device 200 ends the inter-vehicle distance control process.
 一方、ステップS342において、サーバ装置200は、先行車両100-1と後続車両100-2との車間距離が基準しきい値より小さいか否かを判定する。車間距離が基準しきい値より小さいとき(ステップS342でYes)、処理はステップS343へ移行する。一方、車間距離が基準しきい値より小さくないとき(ステップS342でNo)、サーバ装置200は、車間距離制御処理を終了する。 On the other hand, in step S342, the server device 200 determines whether the inter-vehicle distance between the preceding vehicle 100-1 and the following vehicle 100-2 is smaller than a reference threshold value. When the inter-vehicle distance is smaller than the reference threshold (Yes in step S342), the process moves to step S343. On the other hand, when the inter-vehicle distance is not smaller than the reference threshold value (No in step S342), the server device 200 ends the inter-vehicle distance control process.
 ステップS343において、サーバ装置200は、後続車両100-2の移動速度を先行車両100-1の移動速度よりも小さい値に補正する。すなわち、サーバ装置200は、先行車両100-1と後続車両100-2との車間距離が基準しきい値(又は調整値)未満となるまで近づいているときは、後続車両100-2の移動速度を先行車両100-1の移動速度よりも小さい値に補正する。これにより、例えば、後続車両100-2の移動速度が先行車両100-1よりも遅くなるため、車間距離が基準しきい値以内となり、先行車両100-1と後続車両100-2とが一定の距離を保つことが可能となる。 In step S343, the server device 200 corrects the moving speed of the following vehicle 100-2 to a value smaller than the moving speed of the preceding vehicle 100-1. That is, when the preceding vehicle 100-1 and the following vehicle 100-2 are approaching each other until the inter-vehicle distance becomes less than the reference threshold value (or adjustment value), the server device 200 determines the moving speed of the following vehicle 100-2. is corrected to a value smaller than the moving speed of the preceding vehicle 100-1. As a result, for example, the moving speed of the following vehicle 100-2 becomes slower than that of the preceding vehicle 100-1, so the inter-vehicle distance becomes within the reference threshold, and the distance between the preceding vehicle 100-1 and the following vehicle 100-2 becomes constant. It is possible to maintain distance.
 以降、サーバ装置200は、先行車両100-1の移動速度指示(図5のステップS24)において、後続車両100-2の移動速度(ステップS21)よりも小さい値に補正した移動速度(ステップS341)を指示してもよい。また、サーバ装置200は、後続車両100-2の移動速度指示(図5のステップS25)において、先行車両100-1の移動速度(ステップS21)よりも小さい値に補正した移動速度(ステップS343)を指示してもよい。 Thereafter, in the moving speed instruction of the preceding vehicle 100-1 (step S24 in FIG. 5), the server device 200 corrects the moving speed (step S341) to a value smaller than the moving speed of the following vehicle 100-2 (step S21). may be instructed. In addition, in the moving speed instruction of the following vehicle 100-2 (step S25 in FIG. 5), the server device 200 corrects the moving speed (step S343) to a value smaller than the moving speed of the preceding vehicle 100-1 (step S21). may be instructed.
 第2実施形態では、2台の車両100-1及び100-2による追従走行の例について説明したがこれに限定されない。例えば、第1実施形態で示した例のように、3台以上の車両による追従走行が行われてもよい。この場合も、第1実施形態で示した例のように、先行車両100-1、第1後続車両100-2、及び第2後続車両100の順で走行している場合、第2後続車両100は、第1後続車両100-2を先行車両として、車間距離制御処理(図6及び図7)を実行してもよい。 In the second embodiment, an example of follow-up driving by two vehicles 100-1 and 100-2 has been described, but the present invention is not limited thereto. For example, as in the example shown in the first embodiment, three or more vehicles may follow the vehicle. Also in this case, when the preceding vehicle 100-1, the first following vehicle 100-2, and the second following vehicle 100 are traveling in this order, as in the example shown in the first embodiment, the second following vehicle 100 may execute the inter-vehicle distance control process (FIGS. 6 and 7) using the first following vehicle 100-2 as the preceding vehicle.
 次に、第3実施形態について説明する。第3実施形態も、主に、第1実施形態との相違点を中心に説明する。 Next, a third embodiment will be described. The third embodiment will also be described mainly focusing on the differences from the first embodiment.
 第1実施形態では、経路作成がサーバ装置200で行われる例について説明したがこれに限定されない。例えば、経路作成は、後続車両100-2で行われてもよい。 Although the first embodiment describes an example in which route creation is performed by the server device 200, the present invention is not limited to this. For example, route creation may be performed by the following vehicle 100-2.
 図8は、第3実施形態に係る車両走行システム10の構成例を表す図である。図8に示すように、車両走行システム10は、先行車両100-1と後続車両100-2とを有する。 FIG. 8 is a diagram illustrating a configuration example of the vehicle traveling system 10 according to the third embodiment. As shown in FIG. 8, vehicle travel system 10 includes a preceding vehicle 100-1 and a following vehicle 100-2.
 図9は、第3実施形態に係る後続車両100-2の構成例を表す図である。先行車両100-1の構成例は、図2に示すように第1実施形態と同一構成でもよい。 FIG. 9 is a diagram illustrating a configuration example of a following vehicle 100-2 according to the third embodiment. An example of the configuration of the preceding vehicle 100-1 may be the same configuration as the first embodiment, as shown in FIG.
 図9に示すように、後続車両100-2には、更に、経路作成部190を有する。後続車両100-2は、第1実施形態のサーバ装置200と同様に経路探索を行う。 As shown in FIG. 9, the following vehicle 100-2 further includes a route creation section 190. The following vehicle 100-2 performs a route search similarly to the server device 200 of the first embodiment.
 具体的には、第1に、先行車両100-1(第1車両)の位置(第1位置)を示す位置情報(第1位置情報)と、後続車両100-2(第2車両)の位置(第2位置)を示す位置情報(第2位置情報)とを取得する。第2に、先行車両100-1の位置情報及び後続車両100-2の位置情報に基づいて、後続車両100-2の位置から先行車両100-1の位置への経路(第1経路)を作成する。ここで、「取得」は「受信」を含む。すなわち、後続車両100-2の通信部130は、先行車両100-1の位置情報を先行車両100-1から受信する。後続車両100-2は、位置情報取得部110により、後続車両100-2の位置情報を取得する。そして、後続車両100-2の経路作成部190では、制御部120を介して通信部130から受け取った、先行車両100-1の位置情報と、制御部120を介して位置情報取得部110から受け取った、後続車両100-2の位置情報とに基づいて、当該経路を作成する。 Specifically, first, position information (first position information) indicating the position (first position) of the preceding vehicle 100-1 (first vehicle), and the position of the following vehicle 100-2 (second vehicle). (second position). Second, a route (first route) from the position of the following vehicle 100-2 to the position of the preceding vehicle 100-1 is created based on the position information of the preceding vehicle 100-1 and the position information of the following vehicle 100-2. do. Here, "obtaining" includes "receiving". That is, the communication unit 130 of the following vehicle 100-2 receives the position information of the preceding vehicle 100-1 from the preceding vehicle 100-1. The following vehicle 100-2 uses the position information acquisition unit 110 to acquire the position information of the following vehicle 100-2. The route creation unit 190 of the following vehicle 100-2 receives the position information of the preceding vehicle 100-1 received from the communication unit 130 via the control unit 120 and the position information received from the position information acquisition unit 110 via the control unit 120. In addition, the route is created based on the position information of the following vehicle 100-2.
 また、経路作成部190は、通信部130を介して、先行車両100-1から目標位置への自律走行開始要求を受信する。当該要求には、先行車両100-1の目標位置が含まれる。経路作成部190は、先行車両100-1の目標位置を後続車両100-2内のメモリに記憶する。そして、経路作成部190は、当該目標位置と、先行車両100-1から受信した位置情報とに基づいて、当該目標位置への経路(第2経路)を作成する。経路作成部190は、当該経路を示す情報を、通信部130を介して、先行車両100-1へ送信する。 The route creation unit 190 also receives a request to start autonomous driving to the target position from the preceding vehicle 100-1 via the communication unit 130. The request includes the target position of the preceding vehicle 100-1. Route creation section 190 stores the target position of preceding vehicle 100-1 in the memory within following vehicle 100-2. Then, the route creation unit 190 creates a route (second route) to the target position based on the target position and the position information received from the preceding vehicle 100-1. Route creation unit 190 transmits information indicating the route to preceding vehicle 100-1 via communication unit 130.
 このように、経路作成部190では、第1実施形態と同様の経路作成を行うことが可能である。 In this way, the route creation unit 190 can create a route similar to that in the first embodiment.
(第3実施形態の動作例)
 次に、第3実施形態に係る動作例について説明する。
(Operation example of third embodiment)
Next, an example of operation according to the third embodiment will be described.
 図10は、第3実施形態に係る動作例を表す図である。 FIG. 10 is a diagram illustrating an operation example according to the third embodiment.
 後続車両100-2は、先行車両100-1から送信された、目標位置への自律走行開始要求を受信する(ステップS50)。後続車両100-2は、当該要求を受信したことに応じて、先行車両100-1に対する追従走行を開始してもよい。後続車両100-2の経路作成部190では、当該要求に含まれる先行車両100-1の識別情報と、自車両の識別情報とをペアリングして、追従走行を行うことを認識するようにしてもよい。 The following vehicle 100-2 receives the request to start autonomous driving to the target position transmitted from the preceding vehicle 100-1 (step S50). In response to receiving the request, the following vehicle 100-2 may start following the preceding vehicle 100-1. The route creation unit 190 of the following vehicle 100-2 pairs the identification information of the preceding vehicle 100-1 included in the request with the identification information of the own vehicle so as to recognize that the vehicle will follow the vehicle. Good too.
 後続車両100-2は、当該要求を受信した後、先行車両100-1から位置情報を受信する(ステップS52)。 After receiving the request, the following vehicle 100-2 receives position information from the preceding vehicle 100-1 (step S52).
 そして、後続車両100-2は、経路探索を行い(ステップS54)、第1実施形態と同様に、先行車両100-1の位置情報と目標位置とに基づいて、目標位置までの経路(第2経路)を作成する。後続車両100-2は、経路情報要求を受信(ステップS55)したことに応じて、目標位置までの経路(第2経路)に関する情報を先行車両100-1へ送信する(ステップS56)。この際、後続車両100-2では、当該後続車両100-2の位置情報を取得しているため、先行車両100-1の位置情報(ステップS55)と、当該後続車両100-2の位置情報とに基づいて、当該後続車両100-2の位置から先行車両100-1の位置までの経路(第1経路)を作成する。先行車両100-1は、目標位置までの経路に関する情報に従って走行することで、先行車両100-1の位置までの経路に従った走行を行う。 The following vehicle 100-2 then performs a route search (step S54), and similarly to the first embodiment, based on the position information of the preceding vehicle 100-1 and the target position, the following vehicle 100-2 searches for a route (second route). In response to receiving the route information request (step S55), the following vehicle 100-2 transmits information regarding the route (second route) to the target position to the preceding vehicle 100-1 (step S56). At this time, since the following vehicle 100-2 has acquired the position information of the following vehicle 100-2, the position information of the preceding vehicle 100-1 (step S55) and the position information of the following vehicle 100-2 are combined. Based on this, a route (first route) from the position of the following vehicle 100-2 to the position of the preceding vehicle 100-1 is created. The preceding vehicle 100-1 travels along the route to the position of the preceding vehicle 100-1 by traveling according to the information regarding the route to the target position.
 そして、第1実施形態と同様に、先行車両100-1が目標位置に到達する第1条件、及び、先行車両100-1の位置と後続車両100-2の位置とが所定の範囲で一致する第2条件の少なくとも一方の条件が満たされるまで、ステップS52からステップS56までが繰り返される(ステップS23)。 As in the first embodiment, the first condition is that the preceding vehicle 100-1 reaches the target position, and the position of the preceding vehicle 100-1 and the position of the following vehicle 100-2 match within a predetermined range. Steps S52 to S56 are repeated until at least one of the second conditions is satisfied (step S23).
 第1条件及び第2条件の少なくとも一方の条件が満たされるまで、後続車両100-2は、先行車両100-1の位置情報を周期的に受信する(ステップS52)ことになる。 The following vehicle 100-2 periodically receives the position information of the preceding vehicle 100-1 until at least one of the first condition and the second condition is satisfied (step S52).
 図11は、第3実施形態に係る車間距離制御処理の動作例を表す図である。 FIG. 11 is a diagram illustrating an operation example of inter-vehicle distance control processing according to the third embodiment.
 後続車両100-2は、第2実施形態と同様に、先行車両100-1から位置情報を受信(ステップS52)した後、先行車両100-1の移動軌跡を記録する処理を行う(ステップS60)。また、後続車両100-2は、経路探索(ステップS54)後、第2実施形態と同様に、経路を走行するための各車両100-1及び100-2の移動速度を計算する(ステップS61)。そして、後続車両100-2は、車間距離制御処理を行う(ステップS62)。車間距離制御処理は、第2実施形態と同様に、図6又は図7に示す処理が行われる。車間距離制御処理は、例えば、後続車両100-2の経路作成部190で行われる。 Similar to the second embodiment, the following vehicle 100-2 receives position information from the preceding vehicle 100-1 (step S52), and then performs a process of recording the movement trajectory of the preceding vehicle 100-1 (step S60). . Further, after the route search (step S54), the following vehicle 100-2 calculates the moving speed of each vehicle 100-1 and 100-2 for traveling the route (step S61), similarly to the second embodiment. . The following vehicle 100-2 then performs inter-vehicle distance control processing (step S62). As in the second embodiment, the inter-vehicle distance control process is performed as shown in FIG. 6 or 7. The inter-vehicle distance control process is performed, for example, by the route creation unit 190 of the following vehicle 100-2.
 このように、第3実施形態では、後続車両100-2は、先行車両100-1から位置情報などを受信することで、サーバ装置200と同様に経路作成を行うことができる。そのため、第3実施形態においても、後続車両100-2は、先行車両100-1に対して追従走行を適切に行うことが可能となる。また、第3実施形態では、第1実施形態に示すサーバ装置200が存在しなくても、追従走行が可能である。従って、第1実施形態と比較して、車両走行システム10全体のコスト削減を図ることができる。 In this way, in the third embodiment, the following vehicle 100-2 can create a route similarly to the server device 200 by receiving position information and the like from the preceding vehicle 100-1. Therefore, also in the third embodiment, the following vehicle 100-2 can appropriately follow the preceding vehicle 100-1. Further, in the third embodiment, follow-up travel is possible even if the server device 200 shown in the first embodiment is not present. Therefore, compared to the first embodiment, it is possible to reduce the cost of the entire vehicle traveling system 10.
 なお、第3実施形態においても、第1実施形態で示した例のように、車両100が3台以上であっても追従走行してもよい。 Note that in the third embodiment as well, as in the example shown in the first embodiment, even if there are three or more vehicles 100, the vehicle may follow the vehicle.
[その他の実施形態]
 上述した実施形態に係る各処理をコンピュータに実行させるプログラムが提供されてもよい。プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROM又はDVD-ROM等の記録媒体であってもよい。このような記録媒体は、車両100の制御部120、後続車両100-2の経路作成部190、及びサーバ装置200の経路作成部230に含まれてもよい。車両100の制御部120、後続車両100-2の経路作成部190、及びサーバ装置200の経路作成部230は、記録媒体からプログラムを読み出して、当該プログラムを実行することで、上述した実施形態で説明した機能を実現してもよい。そのため、制御部120、経路作成部190、及び経路作成部230は、CPU(Central Processing Unit)又はDSP(Digital Signal Processor)などのプロセッサ又はコントローラであってもよい。
[Other embodiments]
A program that causes a computer to execute each process according to the embodiments described above may be provided. The program may be recorded on a computer readable medium. Computer-readable media allow programs to be installed on a computer. Here, the computer-readable medium on which the program is recorded may be a non-transitory recording medium. The non-transitory recording medium is not particularly limited, but may be a recording medium such as a CD-ROM or a DVD-ROM. Such a recording medium may be included in the control unit 120 of the vehicle 100, the route creation unit 190 of the following vehicle 100-2, and the route creation unit 230 of the server device 200. The control unit 120 of the vehicle 100, the route creation unit 190 of the following vehicle 100-2, and the route creation unit 230 of the server device 200 read the program from the recording medium and execute the program, thereby achieving the results according to the embodiment described above. The functions described may be implemented. Therefore, the control unit 120, the route creation unit 190, and the route creation unit 230 may be a processor or a controller such as a CPU (Central Processing Unit) or a DSP (Digital Signal Processor).
 本開示で使用されている「に基づいて(based on)」、「に応じて(depending on)」という記載は、別段に明記されていない限り、「のみに基づいて」、「のみに応じて」を意味しない。「に基づいて」という記載は、「のみに基づいて」及び「に少なくとも部分的に基づいて」の両方を意味する。同様に、「に応じて」という記載は、「のみに応じて」及び「に少なくとも部分的に応じて」の両方を意味する。また、「取得する(obtain/acquire)」は、記憶されている情報の中から情報を取得することを意味してもよく、他のノードから受信した情報の中から情報を取得することを意味してもよく、又は、情報を生成することにより当該情報を取得することを意味してもよい。「含む(include)」、及び「備える(comprise)」、の用語は、列挙する項目のみを含むことを意味せず、列挙する項目のみを含んでもよいし、列挙する項目に加えてさらなる項目を含んでもよいことを意味する。また、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。さらに、本開示で使用されている「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。本開示において、例えば、英語でのa,an,及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含むものとする。 As used in this disclosure, the terms "based on" and "depending on" refer to "based solely on" and "depending solely on," unless expressly stated otherwise. ” does not mean. Reference to "based on" means both "based solely on" and "based at least in part on." Similarly, the phrase "in accordance with" means both "in accordance with" and "in accordance with, at least in part." Furthermore, "obtain/acquire" may mean obtaining information from among stored information, or may mean obtaining information from among information received from other nodes. Alternatively, it may mean obtaining the information by generating the information. The terms "include" and "comprise" do not mean to include only the listed items, but may include only the listed items, or may include additional items in addition to the listed items. This means that it may be included. Also, as used in this disclosure, the term "or" is not intended to be exclusive OR. Furthermore, any reference to elements using the designations "first," "second," etc. used in this disclosure does not generally limit the amount or order of those elements. These designations may be used herein as a convenient way of distinguishing between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed therein or that the first element must precede the second element in any way. In this disclosure, when articles are added by translation, such as a, an, and the in English, these articles are used in the plural unless the context clearly indicates otherwise. shall include things.
 以上、図面を参照して実施形態について詳しく説明したが、具体的な構成は上述のものに限られることはなく、要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。また、矛盾しない範囲で、各実施形態、各動作例、又は各処理を組み合わせることも可能である。 Although the embodiments have been described above in detail with reference to the drawings, the specific configuration is not limited to that described above, and various design changes can be made without departing from the gist. Furthermore, it is also possible to combine each embodiment, each operation example, or each process within a range that does not contradict each other.
 本願は、日本国特許出願第2022-085608号(2022年5月25日出願)の優先権を主張し、その内容の全てが本願明細書に組み込まれている。 This application claims priority to Japanese Patent Application No. 2022-085608 (filed on May 25, 2022), the entire content of which is incorporated into the specification of the present application.
(付記)
 一実施形態において、(1)車両制御方法であって、第1車両の第1位置を示す第1位置情報と、第2車両の第2位置を示す第2位置情報とを取得するステップと、前記第1位置情報及び前記第2位置情報に基づいて、前記第2位置から前記第1位置への第1経路を作成するステップと、を有する。
(Additional note)
In one embodiment, (1) a vehicle control method, the step of acquiring first position information indicating a first position of a first vehicle and second position information indicating a second position of a second vehicle; creating a first route from the second position to the first position based on the first position information and the second position information.
 (2)上記(1)の車両制御方法において、前記取得するステップは、前記第1位置情報を前記第1車両から受信し、前記第2位置情報を前記第2車両から受信するステップを含み、前記第1経路を示す情報を前記第2車両へ送信するステップ、を更に有することができる。 (2) In the vehicle control method of (1) above, the step of acquiring includes the step of receiving the first position information from the first vehicle and receiving the second position information from the second vehicle, The method may further include the step of transmitting information indicating the first route to the second vehicle.
 (3)上記(1)又は(2)の車両制御方法において、前記取得するステップは、前記第1車両から前記第1位置情報を受信するステップを含むことができる。 (3) In the vehicle control method of (1) or (2) above, the acquiring step may include a step of receiving the first position information from the first vehicle.
 (4)上記(1)乃至(3)のいずれかの車両制御方法において、前記第1車両から自律走行開始要求、及び前記第2車両から追従走行開始要求を受信するステップ、を更に有し、前記取得するステップは、前記自律走行開始要求及び前記追従走行開始要求を受信した後に、前記第1位置情報及び前記第2位置情報を受信するステップを含むことができる。 (4) The vehicle control method according to any one of (1) to (3) above, further comprising the step of receiving an autonomous driving start request from the first vehicle and a follow-up driving start request from the second vehicle, The acquiring step may include receiving the first position information and the second position information after receiving the autonomous driving start request and the follow-up driving start request.
 (5)上記(1)乃至(4)のいずれかの車両制御方法において、前記第1車両から自律走行開始要求を受信するステップ、を更に有し、前記取得するステップは、前記自律走行開始要求を受信した後に、前記第1車両から前記第1位置情報を受信するステップを含むことができる。 (5) The vehicle control method according to any one of (1) to (4) above, further comprising the step of receiving an autonomous driving start request from the first vehicle, and the obtaining step includes the autonomous driving start request. The method may include the step of receiving the first location information from the first vehicle after receiving the first location information.
 (6)上記(1)乃至(5)のいずれかの車両制御方法において、前記第1車両の目標位置を記憶するステップと、前記第1位置から前記目標位置への第2経路を作成するステップと、前記第2経路を示す情報を前記第1車両へ送信するステップと、を更に有することができる。 (6) In the vehicle control method according to any one of (1) to (5) above, storing the target position of the first vehicle, and creating a second route from the first position to the target position. and transmitting information indicating the second route to the first vehicle.
 (7)上記(1)乃至(6)のいずれかの車両制御方法において、前記第1車両が前記目標位置に到達する第1条件、及び、前記第1位置と前記第2位置とが所定の範囲で一致する第2条件の少なくとも一方の条件が満たされるまで、前記第1位置情報及び前記第2位置情報を周期的に取得するステップと、前記第1経路を周期的に作成するステップと、を有することができる。 (7) In the vehicle control method according to any one of (1) to (6) above, the first condition is that the first vehicle reaches the target position, and that the first position and the second position are in a predetermined condition. a step of periodically acquiring the first position information and the second position information until at least one of the second conditions that match in the range is satisfied; and a step of periodically creating the first route; can have.
 (8)上記(1)乃至(7)のいずれかの車両制御方法において、前記周期的に取得するステップは、前記第1位置情報を前記第1車両から及び前記第2位置情報を前記第2車両から周期的に受信するステップを含み、前記第1経路を周期的に前記第2車両へ送信するステップ、を更に有することができる。 (8) In the vehicle control method according to any one of (1) to (7) above, the step of periodically acquiring the first position information from the first vehicle and the second position information from the second vehicle. The method may further include the step of periodically receiving the first route from the vehicle, and periodically transmitting the first route to the second vehicle.
 (9)上記(1)乃至(8)のいずれの車両制御方法において、前記周期的に取得するステップは、前記第1位置情報を前記第1車両から周期的に受信するステップを含むことができる。 (9) In any of the vehicle control methods (1) to (8) above, the step of periodically acquiring may include the step of periodically receiving the first position information from the first vehicle. .
 (10)上記(1)乃至(9)のいずれかの車両制御方法において、前記第1位置及び前記第2位置の間の距離に応じて、前記第1車両と前記第2車両との間の車間距離を制御するための情報を前記第1車両及び前記第2車両の少なくともいずれか一方に送信するステップ、を更に有することができる。 (10) In the vehicle control method according to any one of (1) to (9) above, the distance between the first vehicle and the second vehicle is determined according to the distance between the first position and the second position. The method may further include the step of transmitting information for controlling an inter-vehicle distance to at least one of the first vehicle and the second vehicle.
 (11)上記(1)乃至(10)のいずれの車両制御方法において、前記車間距離を制御するための情報は、減速要求、停止要求、及び最高速度制限要求のいずれかの情報とすることができる。 (11) In any of the vehicle control methods described in (1) to (10) above, the information for controlling the inter-vehicle distance may be any one of a deceleration request, a stop request, and a maximum speed limit request. can.
 (12)上記(1)乃至(11)のいずれかの車両制御方法において、前記第2車両の走行情報を取得するステップと、前記走行情報に応じて、前記第1車両と前記第2車両との間の車間距離を制御するための情報を前記第1車両に送信するステップと、を更に有することができる。 (12) In the vehicle control method according to any one of (1) to (11) above, the step of acquiring travel information of the second vehicle, and controlling the first vehicle and the second vehicle according to the travel information. The method may further include the step of transmitting information for controlling an inter-vehicle distance between the two vehicles to the first vehicle.
 (13)上記(1)乃至(12)のいずれかの車両制御方法において、前記走行情報を取得するステップは、前記走行情報を前記第2車両から受信するステップを含むことができる。 (13) In the vehicle control method according to any one of (1) to (12) above, the step of acquiring the travel information may include the step of receiving the travel information from the second vehicle.
 (14)上記(1)乃至(13)のいずれかの車両制御方法において、前記走行情報は、前記第2車両の停止又は旋回を示す情報とすることができる。 (14) In the vehicle control method according to any one of (1) to (13) above, the travel information may be information indicating a stop or a turn of the second vehicle.
 また、一実施形態において、(15)第1車両及び第2車両と通信を行うサーバ装置であって、前記第1車両の第1位置を示す第1位置情報と、前記第2車両の第2位置を示す第2位置情報とを受信する通信部と、前記第1位置情報及び前記第2位置情報に基づいて、前記第2位置から前記第1位置への第1経路を示す情報を作成する経路作成部と、を有し、前記通信部は、前記第1経路を示す情報を前記第2車両へ送信する。 In one embodiment, (15) a server device that communicates with a first vehicle and a second vehicle, wherein first position information indicating a first position of the first vehicle and second position information of the second vehicle are provided. a communication unit that receives second location information indicating a location, and creates information indicating a first route from the second location to the first location based on the first location information and the second location information; a route creation section, and the communication section transmits information indicating the first route to the second vehicle.
 更に、一実施形態において、(16)第1車両及び第2車両と、サーバ装置と、を有する車両走行システムであって、前記第1車両の第1位置を示す第1位置情報と、前記第2車両の第2位置を示す第2位置情報とを取得する通信部と、前記第1位置情報及び前記第2位置情報に基づいて、前記第2位置から前記第1位置への第1経路を示す情報を作成する経路作成部と、を有する。 Furthermore, in one embodiment, (16) a vehicle traveling system including a first vehicle, a second vehicle, and a server device, wherein first position information indicating a first position of the first vehicle; a communication unit that acquires second position information indicating a second position of two vehicles; and a communication unit that acquires second position information indicating a second position of two vehicles, and a first route from the second position to the first position based on the first position information and the second position information. and a route creation unit that creates information shown.
 (17)上記(16)の車両走行システムにおいて、前記サーバ装置は、前記通信部及び前記経路作成部を有することができる。 (17) In the vehicle travel system of (16) above, the server device may include the communication unit and the route creation unit.
 (18)上記(16)又は(17)の車両走行システムにおいて、前記第2車両は、前記通信部及び前記経路作成部を有することができる。 (18) In the vehicle travel system of (16) or (17) above, the second vehicle may include the communication section and the route creation section.
 更に、一実施形態において、(19)車両であって、他の車両の第1位置を示す第1位置情報と、前記車両の第2位置を示す第2位置情報とを取得する通信部と、前記第1位置情報及び前記第2位置情報に基づいて、前記第2位置から前記第1位置への第1経路を示す情報を作成する経路作成部と、を有する。 Furthermore, in one embodiment, (19) a communication unit that is a vehicle and acquires first position information indicating a first position of another vehicle and second position information indicating a second position of the vehicle; and a route creation unit that creates information indicating a first route from the second location to the first location based on the first location information and the second location information.
10       :車両走行システム          
100      :車両
100-1    :先行車両                  
100-2    :後続車両
110        :位置情報取得部            
120        :制御部
130        :通信部                    
150        :走行制御部
200        :サーバ装置                
220        :通信部
190, 230 :経路作成部
10: Vehicle running system
100: Vehicle 100-1: Leading vehicle
100-2: Following vehicle 110: Position information acquisition unit
120: Control unit 130: Communication unit
150: Travel control unit 200: Server device
220: Communication section 190, 230: Route creation section

Claims (19)

  1.  第1車両の第1位置を示す第1位置情報と、第2車両の第2位置を示す第2位置情報とを取得することと、
     前記第1位置情報及び前記第2位置情報に基づいて、前記第2位置から前記第1位置への第1経路を作成することと、を有する、
     車両制御方法。
    acquiring first position information indicating a first position of the first vehicle and second position information indicating a second position of the second vehicle;
    creating a first route from the second location to the first location based on the first location information and the second location information;
    Vehicle control method.
  2.  前記取得することは、前記第1位置情報を前記第1車両から受信し、前記第2位置情報を前記第2車両から受信することを含み、
     前記第1経路を示す情報を前記第2車両へ送信すること、を更に有する、
     請求項1記載の車両制御方法。
    The obtaining includes receiving the first location information from the first vehicle and receiving the second location information from the second vehicle,
    further comprising transmitting information indicating the first route to the second vehicle;
    The vehicle control method according to claim 1.
  3.  前記取得することは、前記第1車両から前記第1位置情報を受信することを含む、
     請求項1又は2記載の車両制御方法。
    The obtaining includes receiving the first location information from the first vehicle.
    The vehicle control method according to claim 1 or 2.
  4.  前記第1車両から自律走行開始要求、及び前記第2車両から追従走行開始要求を受信すること、を更に有し、
     前記取得することは、前記自律走行開始要求及び前記追従走行開始要求を受信した後に、前記第1位置情報及び前記第2位置情報を受信することを含む、
     請求項1乃至3のいずれかに記載の車両制御方法。
    further comprising receiving an autonomous driving start request from the first vehicle and a follow-up driving start request from the second vehicle,
    The acquiring includes receiving the first position information and the second position information after receiving the autonomous driving start request and the follow-up driving start request,
    A vehicle control method according to any one of claims 1 to 3.
  5.  前記第1車両から自律走行開始要求を受信すること、を更に有し、
     前記取得することは、前記自律走行開始要求を受信した後に、前記第1車両から前記第1位置情報を受信することを含む、
     請求項1乃至4のいずれかに記載の車両制御方法。
    further comprising receiving an autonomous driving start request from the first vehicle,
    The acquiring includes receiving the first position information from the first vehicle after receiving the autonomous driving start request,
    A vehicle control method according to any one of claims 1 to 4.
  6.  前記第1車両の目標位置を記憶することと、
     前記第1位置から前記目標位置への第2経路を作成することと、
     前記第2経路を示す情報を前記第1車両へ送信することと、を更に有する、
     請求項1乃至5のいずれかに記載の車両制御方法。
    storing a target position of the first vehicle;
    creating a second route from the first position to the target position;
    further comprising: transmitting information indicating the second route to the first vehicle;
    A vehicle control method according to any one of claims 1 to 5.
  7.  前記第1車両が前記目標位置に到達する第1条件、及び、前記第1位置と前記第2位置とが所定の範囲で一致する第2条件の少なくとも一方の条件が満たされるまで、
     前記第1位置情報及び前記第2位置情報を周期的に取得することと、
     前記第1経路を周期的に作成することと、を有する、
     請求項1乃至6のいずれかに記載の車両制御方法。
    Until at least one of a first condition that the first vehicle reaches the target position and a second condition that the first position and the second position match within a predetermined range is satisfied,
    Periodically acquiring the first location information and the second location information;
    periodically creating the first route;
    A vehicle control method according to any one of claims 1 to 6.
  8.  前記周期的に取得することは、前記第1位置情報を前記第1車両から及び前記第2位置情報を前記第2車両から周期的に受信することを含み、
     前記第1経路を周期的に前記第2車両へ送信すること、を更に有する、
     請求項1乃至7のいずれかに記載の車両制御方法。
    The periodic acquisition includes periodically receiving the first location information from the first vehicle and the second location information from the second vehicle,
    further comprising periodically transmitting the first route to the second vehicle;
    A vehicle control method according to any one of claims 1 to 7.
  9.  前記周期的に取得することは、前記第1位置情報を前記第1車両から周期的に受信することを含む、
     請求項1乃至8のいずれかに記載の車両制御方法。
    The periodic acquisition includes periodically receiving the first location information from the first vehicle.
    A vehicle control method according to any one of claims 1 to 8.
  10.  前記第1位置及び前記第2位置の間の距離に応じて、前記第1車両と前記第2車両との間の車間距離を制御するための情報を前記第1車両及び前記第2車両の少なくともいずれか一方に送信すること、を更に有する、
     請求項1乃至9のいずれかに記載の車両制御方法。
    Depending on the distance between the first position and the second position, information for controlling the inter-vehicle distance between the first vehicle and the second vehicle is transmitted to at least one of the first vehicle and the second vehicle. further comprising: transmitting to either one;
    A vehicle control method according to any one of claims 1 to 9.
  11.  前記車間距離を制御するための情報は、減速要求、停止要求、及び最高速度制限要求のいずれかの情報である、
     請求項1乃至10のいずれかに記載の車両制御方法。
    The information for controlling the inter-vehicle distance is any one of a deceleration request, a stop request, and a maximum speed limit request,
    A vehicle control method according to any one of claims 1 to 10.
  12.  前記第2車両の走行情報を取得することと、
     前記走行情報に応じて、前記第1車両と前記第2車両との間の車間距離を制御するための情報を前記第1車両に送信することと、を更に有する、
     請求項1乃至11のいずれかに記載の車両制御方法。
    acquiring travel information of the second vehicle;
    further comprising transmitting information for controlling an inter-vehicle distance between the first vehicle and the second vehicle to the first vehicle according to the traveling information;
    A vehicle control method according to any one of claims 1 to 11.
  13.  前記走行情報を取得することは、前記走行情報を前記第2車両から受信することを含む、
     請求項1乃至12のいずれかに記載の車両制御方法。
    Obtaining the driving information includes receiving the driving information from the second vehicle,
    A vehicle control method according to any one of claims 1 to 12.
  14.  前記走行情報は、前記第2車両の停止又は旋回を示す情報である、
     請求項1乃至13のいずれかに記載の車両制御方法。
    The traveling information is information indicating whether the second vehicle stops or turns.
    A vehicle control method according to any one of claims 1 to 13.
  15.  第1車両及び第2車両と通信を行うサーバ装置であって、
     前記第1車両の第1位置を示す第1位置情報と、前記第2車両の第2位置を示す第2位置情報とを受信する通信部と、
     前記第1位置情報及び前記第2位置情報に基づいて、前記第2位置から前記第1位置への第1経路を示す情報を作成する経路作成部と、を有し、
     前記通信部は、前記第1経路を示す情報を前記第2車両へ送信する、
     サーバ装置。
    A server device that communicates with a first vehicle and a second vehicle,
    a communication unit that receives first position information indicating a first position of the first vehicle and second position information indicating a second position of the second vehicle;
    a route creation unit that creates information indicating a first route from the second location to the first location based on the first location information and the second location information;
    the communication unit transmits information indicating the first route to the second vehicle;
    server equipment.
  16.  第1車両及び第2車両と、
     サーバ装置と、を有する車両走行システムであって、
     前記第1車両の第1位置を示す第1位置情報と、前記第2車両の第2位置を示す第2位置情報とを取得する通信部と、
     前記第1位置情報及び前記第2位置情報に基づいて、前記第2位置から前記第1位置への第1経路を示す情報を作成する経路作成部と、を有する、
     車両走行システム。
    A first vehicle and a second vehicle,
    A vehicle running system comprising a server device,
    a communication unit that acquires first position information indicating a first position of the first vehicle and second position information indicating a second position of the second vehicle;
    a route creation unit that creates information indicating a first route from the second location to the first location based on the first location information and the second location information;
    Vehicle driving system.
  17.  前記サーバ装置は、前記通信部及び前記経路作成部を有する、
     請求項16記載の車両走行システム。
    The server device includes the communication section and the route creation section.
    The vehicle running system according to claim 16.
  18.  前記第2車両は、前記通信部及び前記経路作成部を有する、
     請求項16又は17記載の車両走行システム。
    The second vehicle includes the communication section and the route creation section.
    The vehicle running system according to claim 16 or 17.
  19.  車両であって、
     他の車両の第1位置を示す第1位置情報と、前記車両の第2位置を示す第2位置情報とを取得する通信部と、
     前記第1位置情報及び前記第2位置情報に基づいて、前記第2位置から前記第1位置への第1経路を示す情報を作成する経路作成部と、を有する、
     車両。
    A vehicle,
    a communication unit that acquires first position information indicating a first position of another vehicle and second position information indicating a second position of the vehicle;
    a route creation unit that creates information indicating a first route from the second location to the first location based on the first location information and the second location information;
    vehicle.
PCT/JP2023/017552 2022-05-25 2023-05-10 Vehicle control method, server, vehicle travel system, and vehicle WO2023228740A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-085608 2022-05-25
JP2022085608A JP2023173384A (en) 2022-05-25 2022-05-25 Vehicle control method, server, vehicle travel system, and vehicle

Publications (1)

Publication Number Publication Date
WO2023228740A1 true WO2023228740A1 (en) 2023-11-30

Family

ID=88919111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017552 WO2023228740A1 (en) 2022-05-25 2023-05-10 Vehicle control method, server, vehicle travel system, and vehicle

Country Status (2)

Country Link
JP (1) JP2023173384A (en)
WO (1) WO2023228740A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09210710A (en) * 1996-01-30 1997-08-15 Denso Corp Navigation system
JP2004138538A (en) * 2002-10-18 2004-05-13 Denso Corp Navigation apparatus and navigation system
US20050222756A1 (en) * 2004-04-05 2005-10-06 Davis Scott B Methods for displaying a route traveled by mobile users in a communication network
JP2008207729A (en) * 2007-02-27 2008-09-11 Mitsubishi Heavy Ind Ltd Automatic traveling vehicle and tracking system
JP2009092665A (en) * 2008-11-10 2009-04-30 Zenrin Datacom Co Ltd Information processor, control method of information processor, computer program, and recording medium
US20190213889A1 (en) * 2018-01-09 2019-07-11 Ford Global Technologies, Llc System and method for vehicle travelling in caravan mode
US20200300649A1 (en) * 2019-03-20 2020-09-24 Hyundai Motor Company Navigation system and route search method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09210710A (en) * 1996-01-30 1997-08-15 Denso Corp Navigation system
JP2004138538A (en) * 2002-10-18 2004-05-13 Denso Corp Navigation apparatus and navigation system
US20050222756A1 (en) * 2004-04-05 2005-10-06 Davis Scott B Methods for displaying a route traveled by mobile users in a communication network
JP2008207729A (en) * 2007-02-27 2008-09-11 Mitsubishi Heavy Ind Ltd Automatic traveling vehicle and tracking system
JP2009092665A (en) * 2008-11-10 2009-04-30 Zenrin Datacom Co Ltd Information processor, control method of information processor, computer program, and recording medium
US20190213889A1 (en) * 2018-01-09 2019-07-11 Ford Global Technologies, Llc System and method for vehicle travelling in caravan mode
US20200300649A1 (en) * 2019-03-20 2020-09-24 Hyundai Motor Company Navigation system and route search method thereof

Also Published As

Publication number Publication date
JP2023173384A (en) 2023-12-07

Similar Documents

Publication Publication Date Title
US10621869B2 (en) Driving control device, driving control method, and vehicle-to-vehicle communication system
US9550496B2 (en) Travel control apparatus
US10486701B2 (en) Driving control device, driving control method and vehicle-to-vehicle communication system
JP5668741B2 (en) Convoy travel device
US20150187216A1 (en) Autonomous driving vehicle and infrastructure for supporting autonomous driving thereof
US11915452B2 (en) Information processing device and information processing method
US11703599B2 (en) Partial point cloud-based pedestrians' velocity estimation method
JP6760179B2 (en) Driving support system
US20220390557A9 (en) Calibration apparatus, calibration method, program, and calibration system and calibration target
JP2022034086A (en) Information processing apparatus, information processing method, and program
US20220253065A1 (en) Information processing apparatus, information processing method, and information processing program
US20220185278A1 (en) Information processing apparatus, information processing method, movement control apparatus, and movement control method
JPWO2019073795A1 (en) Information processing device, self-position estimation method, program, and mobile
US11429115B2 (en) Vehicle-platoons implementation under autonomous driving system designed for single vehicle
EP3998609A2 (en) Automatic audio data labelling utilizing autonomous driving vehicle
CN112985435B (en) Method and system for operating an autonomously driven vehicle
CN113428173B (en) Static curvature error compensation control logic for an autonomous vehicle
WO2023228740A1 (en) Vehicle control method, server, vehicle travel system, and vehicle
JP2017047814A (en) Vehicle recognition device
WO2021189373A1 (en) Time determination of an inertial navigation system in autonomous driving systems
EP4147936A1 (en) Drive with caution under uncertainty for an autonomous driving vehicle
US11835629B2 (en) Neighbor-based point cloud filter system
US20210303874A1 (en) A point cloud-based low-height obstacle detection system
WO2023228777A1 (en) Route correction method, server device, and vehicle travel system
US11529969B2 (en) Pull over method based on quadratic programming for path planning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811615

Country of ref document: EP

Kind code of ref document: A1