WO2023228675A1 - Multi charged-particle beam irradiation device and multi charged-particle beam irradiation method - Google Patents

Multi charged-particle beam irradiation device and multi charged-particle beam irradiation method Download PDF

Info

Publication number
WO2023228675A1
WO2023228675A1 PCT/JP2023/016484 JP2023016484W WO2023228675A1 WO 2023228675 A1 WO2023228675 A1 WO 2023228675A1 JP 2023016484 W JP2023016484 W JP 2023016484W WO 2023228675 A1 WO2023228675 A1 WO 2023228675A1
Authority
WO
WIPO (PCT)
Prior art keywords
array substrate
aperture array
array
margin
beams
Prior art date
Application number
PCT/JP2023/016484
Other languages
French (fr)
Japanese (ja)
Inventor
裕史 松本
Original Assignee
株式会社ニューフレアテクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニューフレアテクノロジー filed Critical 株式会社ニューフレアテクノロジー
Publication of WO2023228675A1 publication Critical patent/WO2023228675A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • JP2022-084226 application number filed in Japan on May 24, 2022 as the basic application. All contents described in JP2022-084226 are incorporated into this application by reference.
  • One aspect of the present invention relates to a multi-charged particle beam irradiation device and a multi-charged particle beam irradiation method, and relates, for example, to a method of selecting the amount of current of a beam array that irradiates a substrate in a multi-beam lithography device.
  • Lithography technology which is responsible for the progress of miniaturization of semiconductor devices, is the only extremely important process in the semiconductor manufacturing process that generates patterns.
  • LSIs have become more highly integrated, the circuit line width required for semiconductor devices has become smaller year by year.
  • electron beam (electron beam) writing technology inherently has excellent resolution, and writing is performed on wafers and the like using electron beams.
  • a writing device that uses multiple beams. Compared to writing with a single electron beam, using multiple beams allows multiple beams to be irradiated at once, resulting in a significant improvement in throughput.
  • Such a problem is not limited to multi-beam lithography devices, but can similarly occur in irradiation devices that irradiate multi-beams, such as multi-beam inspection devices.
  • Methods for reducing the total amount of current include reducing the beam size or reducing the number of beams.
  • first and second shaping aperture arrays are arranged, and the multi-beam shaped by the first shaping aperture array is distributed between the first and second shaping aperture arrays.
  • a method has been disclosed in which a multi-beam is re-shaped by a second shaping aperture array by deflecting it with an arranged deflector (see, for example, Patent Document 1).
  • the beam array on one side of the rectangular outer periphery of the multi-beam can be blocked by shifting the position of a shutter that has a large aperture that allows the entire multi-beam to pass through. is possible.
  • the beam closer to the outer circumference has a larger beam diameter at the crossover position, and leakage beams are more likely to occur during blanking deflection. Therefore, when reducing the number of beams, it is desirable to use the central beam array as much as possible.
  • One aspect of the present invention provides a multi-beam irradiation device and method that can selectively switch between a large current amount mode and a small current amount mode.
  • a multi-charged particle beam irradiation device includes: a shaped aperture array substrate forming a multi-beam array of charged particle beams; a limiting aperture array substrate formed with a plurality of passage holes through which at least a portion of each beam of the multi-beam array can pass, and a shape of some of the passage holes of the plurality of passage holes is different from that of other passage holes; At least one of the shaping aperture array substrate, the limiting aperture array substrate, and the multibeam array is disposed in a direction perpendicular to the orbit center axis of the multibeams so that the relative position between the multibeam array and the limiting aperture array substrate changes.
  • a mechanism for moving the an optical system that irradiates a sample with a beam array of the multi-beam array that has passed through a limited aperture array substrate whose position relative to the multi-beam array is set at a predetermined position by movement It is characterized by having the following.
  • a multi-charged particle beam irradiation method includes: A multi-beam array is formed by a shaped aperture array in which a plurality of shaped openings are formed, The multi-beam array is designed so that the relative position between the shaped aperture array substrate and the limiting aperture array substrate, in which a plurality of passage holes through which each beam of the multi-beam array can pass, is formed and the shape of the plurality of passage holes is different for each area changes.
  • the relative position of the multi-beam array and the limiting aperture array substrate is varied by moving at least one of the shaping aperture array substrate, the limiting aperture array substrate, and the multi-beam array in a direction perpendicular to the center axis of the beam trajectory.
  • a beam array that has passed through a limited aperture array substrate whose position relative to the multi-beam array is set at a predetermined position by movement is irradiated onto the sample. It is characterized by
  • multi-beam irradiation that can be selectively switched between a large current amount mode and a small current amount mode is possible.
  • FIG. 1 is a conceptual diagram showing the configuration of a drawing device in Embodiment 1.
  • FIG. 2 is a conceptual diagram showing the configuration of a molded aperture array substrate in Embodiment 1.
  • FIG. 2 is a conceptual diagram showing the configuration of a limited aperture array substrate in Embodiment 1.
  • FIG. 3 is a diagram for explaining the state of multi-beams depending on the relative positions of the shaping aperture array substrate and the limiting aperture array substrate in the first embodiment.
  • FIG. 3 is a diagram for explaining the state of multi-beams depending on the relative positions of the shaping aperture array substrate and the limiting aperture array substrate in the first embodiment.
  • FIG. 3 is a diagram for explaining the state of multi-beams depending on the relative positions of the shaping aperture array substrate and the limiting aperture array substrate in the first embodiment.
  • FIG. 3 is a diagram illustrating an example of the shape of a passage hole of a limited aperture array substrate and a beam array passing therethrough in the first embodiment.
  • FIG. 7 is a diagram illustrating another example of the shape of the passage hole of the limited aperture array substrate and the beam array passing therethrough in the first embodiment.
  • FIG. 7 is a diagram illustrating another example of the shape of the passage hole of the limited aperture array substrate and the beam array passing therethrough in the first embodiment.
  • 3 is a diagram showing an example of the relationship between a beam array area and a passage area in Embodiment 1.
  • FIG. FIG. 3 is a diagram showing an example of a relationship table between sub-regions of the beam array region and passing regions in the first embodiment.
  • FIG. 3 is a diagram showing an example of the shape of a passage hole of a limited aperture array substrate in Embodiment 1.
  • FIG. 3 is a diagram showing an example of the shape of a passage hole of a limited aperture array substrate in Embodiment 1.
  • FIG. 3 is a diagram showing an example of the shape of a passage hole of a limited aperture array substrate in Embodiment 1.
  • FIG. 3 is a diagram showing an example of the shape of a passage hole of a limited aperture array substrate in Embodiment 1.
  • FIG. 7 is a diagram showing another example of the relationship between the beam array area and the passage area in the first embodiment.
  • FIG. 7 is a diagram illustrating another example of a relationship table between sub-regions of the beam array region and passage regions in Embodiment 1.
  • FIG. 7 is a diagram showing another example of the shape of the passage hole of the limited aperture array substrate in the first embodiment.
  • FIG. 7 is a diagram showing another example of the shape of the passage hole of the limited aperture array substrate in the first embodiment.
  • FIG. 7 is a diagram showing another example of the shape of the passage hole of the limited aperture array substrate in the first embodiment.
  • FIG. 7 is a diagram showing another example of the shape of the passage hole of the limited aperture array substrate in the first embodiment.
  • FIG. FIG. 3 is a conceptual top view showing a part of the configuration within the membrane region of the blanking aperture array mechanism in Embodiment 1.
  • FIG. FIG. 3 is a conceptual diagram for explaining an example of a region to be drawn in the first embodiment.
  • FIG. 3 is a diagram showing an example of a multi-beam irradiation area and pixels to be drawn in the first embodiment.
  • FIG. 3 is a conceptual diagram showing the configuration of a limited aperture array substrate in Embodiment 2.
  • FIG. 7 is a diagram for explaining the state of multi-beams depending on the relative positions of the shaping aperture array substrate and the limiting aperture array substrate in Embodiment 2;
  • FIG. 7 is a diagram for explaining the state of multi-beams depending on the relative positions of the shaping aperture array substrate and the limiting aperture array substrate in Embodiment 2;
  • the charged particle beam is not limited to an electron beam, and may be a beam using charged particles such as an ion beam.
  • a multi-electron beam lithography system will be described as an example of a multi-charged particle beam irradiation system.
  • the irradiation device is not limited to a drawing device, but may be an exposure device, an inspection device, or the like.
  • FIG. 1 is a conceptual diagram showing the configuration of a drawing apparatus in the first embodiment.
  • a drawing apparatus 100 includes a drawing mechanism 150 and a control system circuit 160.
  • the drawing apparatus 100 is an example of a multi-charged particle beam drawing apparatus, and also an example of a multi-charged particle beam irradiation apparatus.
  • the drawing mechanism 150 includes an electron lens barrel 102 (electron beam column) and a drawing chamber 103.
  • an electron gun 201 Inside the electron lens barrel 102, there are an electron gun 201, an illumination lens 202, a shaped aperture array substrate 203, a limiting aperture array substrate 212, a blanking aperture array mechanism 204, a reduction lens 205, a limiting aperture substrate 206, an objective lens 207, and a main deflector.
  • a deflector 208, a sub-deflector 209, and a drive circuit 214 are arranged.
  • An XY stage 105 is arranged inside the drawing chamber 103. On the XY stage 105, a sample 101 such as a mask, which becomes a substrate to be drawn during drawing (during exposure), is arranged.
  • the sample 101 includes an exposure mask used in manufacturing a semiconductor device, a semiconductor substrate (silicon wafer) on which a semiconductor device is manufactured, and the like. Further, the sample 101 includes a mask blank coated with resist but on which nothing has been drawn yet. A mirror 210 for position measurement of the XY stage 105 is further arranged on the XY stage 105.
  • the control system circuit 160 includes a control computer 110, a memory 112, a deflection control circuit 130, an aperture array control circuit 131, digital-to-analog conversion (DAC) amplifier units 132 and 134, a lens control circuit 136, a stage control mechanism 138, and a stage position measurement circuit. 139 and storage devices 140 and 142 such as magnetic disk devices.
  • the control computer 110, memory 112, deflection control circuit 130, aperture array control circuit 131, lens control circuit 136, stage control mechanism 138, stage position measuring device 139, and storage devices 140, 142 are connected to each other via a bus (not shown). ing.
  • the deflection control circuit 130 is connected to DAC amplifier units 132 and 134 and a blanking aperture array mechanism 204.
  • the sub-deflector 209 is composed of four or more electrodes, and each electrode is controlled by the deflection control circuit 130 via the DAC amplifier 132.
  • the main deflector 208 is composed of four or more electrodes, and each electrode is controlled by the deflection control circuit 130 via a DAC amplifier 134.
  • the illumination lens 202, the reduction lens 205, and the objective lens 207 are connected to the lens control circuit 136 and controlled respectively.
  • the stage position measuring device 139 measures the position of the XY stage 105 using the principle of laser interferometry by receiving the reflected light from the mirror 210.
  • a drive circuit 214 is connected to the aperture array control circuit 131 .
  • Drive circuit 214 moves at least one of shaping aperture array substrate 203 and limiting aperture array substrate 212.
  • the example in FIG. 1 shows a case where the drive circuit 214 moves the limited aperture array substrate 212.
  • a shot data generation section 62 Inside the control computer 110, a shot data generation section 62, a data processing section 64, a mode selection section 66, a transfer control section 79, and a drawing control section 80 are arranged.
  • Each of the "sections” such as the shot data generation section 62, the data processing section 64, the mode selection section 66, the transfer control section 79, and the drawing control section 80 has a processing circuit.
  • processing circuits include, for example, electrical circuits, computers, processors, circuit boards, quantum circuits, or semiconductor devices.
  • Each " ⁇ section” may use a common processing circuit (the same processing circuit) or may use different processing circuits (separate processing circuits).
  • Information input/output to/from the shot data generation section 62, data processing section 64, mode selection section 66, transfer control section 79, and drawing control section 80 and information being calculated are stored in the memory 112 each time.
  • the drawing operation of the drawing device 100 is controlled by the drawing control unit 80. Further, the process of transferring the irradiation time data of each shot to the deflection control circuit 130 is controlled by the transfer control unit 79.
  • chip data (drawing data) is input from outside the drawing apparatus 100 and stored in the storage device 140.
  • the chip data defines information on a plurality of graphic patterns that constitute a chip to be drawn. Specifically, for example, a graphic code, coordinates, size, etc. are defined for each graphic pattern.
  • FIG. 1 shows the configuration necessary for explaining the first embodiment.
  • the drawing apparatus 100 may normally include other necessary configurations.
  • FIG. 2 is a conceptual diagram showing the configuration of the molded aperture array substrate in the first embodiment.
  • a molded aperture array substrate 203 has openings (molded openings) 22 arranged in a matrix of p columns horizontally (x direction) x q stages vertically (y direction) (p, q ⁇ 2) at a predetermined arrangement pitch. It is formed in the shape of The example in FIG. 2 shows a case where, for example, the openings 22 are formed in eight rows and seven stages in the horizontal and vertical directions (x, y directions). The number of openings 22 is not limited to this.
  • the openings 22 may be formed in 512 rows and 512 stages.
  • Each opening 22 is formed in a rectangular shape with the same size and shape. Alternatively, they may be circular with the same diameter.
  • a multi-beam 20 is formed by a portion of the electron beam 200 passing through each of the plurality of apertures 22 .
  • shaped aperture array substrate 203 forms multiple beams 20 .
  • FIG. 3 is a conceptual diagram showing the configuration of the limited aperture array substrate in the first embodiment.
  • a plurality of passage holes 21 and 23, the same number as the number of beams of the multi-beam 20, are formed in a limited aperture array substrate 212.
  • the plurality of passage holes 21 and 23 are formed at each position (starting point) arranged at the beam pitch (Px, Py) of the multi-beam 20 on the limited aperture array substrate 212 so that the beam can pass therethrough.
  • the shape of some of the plurality of passage holes 23 is different from that of the other passage holes 21.
  • FIG. In the example of FIG.
  • the shape of the plurality of central passage holes 23 for the central beam array is different from the shape of the plurality of peripheral passage holes 21 for the peripheral beam groups. It differs from the shape.
  • the basic shape of the plurality of passage holes 21 for example, a square having a size equal to one beam size plus a margin is used.
  • the shape of the plurality of irregularly shaped passage holes 23 for example, a rectangle that is laterally elongated in the x direction is used. The length of the rectangle in the longitudinal direction (x direction) is formed to be at least twice the size of each beam in the x direction.
  • the area of the passage hole 23 formed in the center portion is larger than the area of the passage hole 21 formed in the outer peripheral portion.
  • An electron beam 200 emitted from an electron gun 201 illuminates the entire shaped aperture array substrate 203 almost vertically by an illumination lens 202.
  • a plurality of rectangular openings 22 are formed in the shaped aperture array substrate 203, and the electron beam 200 illuminates a region including all the plurality of openings 22.
  • Each part of the electron beam 200 irradiated to the positions of the plurality of openings 22 passes through the plurality of openings 22 of the shaped aperture array substrate 203, so that, for example, a rectangular multi-beam (multiple electron beams) is formed. ) 20 are formed.
  • the multibeam 20 After passing through the shaping aperture array substrate 203, the multibeam 20 advances to the limiting aperture array substrate 212.
  • the drive mechanism 214 changes the relative position of the shaping aperture array substrate 203 and the limiting aperture array substrate 212 depending on the mode selected from among a plurality of modes in which the beam array irradiates the sample 101 with different amounts of current. At least one of the shaping aperture array substrate 203 and the limiting aperture array substrate 212 is moved in a direction perpendicular to the orbit center axis of the multi-beam 20 so as to move.
  • FIGS. 4A to 4C are diagrams for explaining the state of the multi-beam according to the relative positions of the shaping aperture array substrate and the limiting aperture array substrate in the first embodiment.
  • the driving mechanism 214 moving at least one of the shaped aperture array substrate 203 and the limiting aperture array substrate 212, the limiting aperture array substrate 212 is moved according to the relative position of the shaped aperture array substrate 203 and the limiting aperture array substrate 212.
  • FIG. 4A shows a case where the entire multi-beam 20 is selectively passed through.
  • FIG. 4A shows a case where the entire multi-beam 20 is selectively passed through.
  • all the beams 13 of the multi-beam 200 that have passed through the plurality of apertures 22 of the shaped aperture array substrate 203 are inside any one of the plurality of passage holes 21 and 23 of the limiting aperture array substrate 212. This shows the case where the area overlaps with the position of the area.
  • all beams 13 of multi-beam 20 are allowed to pass through restricted aperture array substrate 212.
  • the sample 101 is irradiated with a beam array with a large amount of current.
  • the driving mechanism 214 moves at least one of the shaping aperture array substrate 203 and the limiting aperture array substrate 212, so that the limiting aperture array substrate 212 variably shapes the size of the multibeam 20.
  • each of the multibeams 200 that has passed through the plurality of openings 22 of the shaping aperture array substrate 203 is A case is shown in which the relative position of the beam 13 is shifted so that it partially overlaps each of the plurality of passage holes 21 and 23 of the limiting aperture array substrate 212.
  • each beam 13 overlaps with the upper left corner of the plurality of passage holes 21 and 23, and a portion of each beam 13 can pass through the limiting aperture array substrate 212, respectively.
  • the multi-beam 20 shaped by the shaping aperture array substrate 203 is reshaped by the limiting aperture array substrate 212 so that the beam size becomes smaller (two-stage shaping).
  • the beam size of the multi-beam 20 can be reduced to 1/4, for example, by two-stage forming.
  • each beam 13 can be variably shaped. Thereby, the beam size of each beam of the multi-beam 20 can be reduced. Therefore, the total amount of current flowing through the multi-beam 20 can be reduced.
  • the drive mechanism 214 moves at least one of the shaped aperture array substrate 203 and the limiting aperture array substrate 212, so that the limiting aperture array substrate 212 moves between the shaped aperture array substrate 203 and the limiting aperture array substrate 212.
  • a case is shown in which a part of the beam array of the entire multi-beam 20 is selectively passed according to the relative position of the beam array.
  • the limiting aperture array substrate 212 allows the central beam array of the entire multi-beam 20 to pass, when such a part of the beam array passes.
  • FIG. 4C shows a case where, for example, the limited aperture array substrate 212 is shifted in the x direction by a larger amount than the beam size of the multi-beam 20.
  • the beam 13 corresponding to the horizontally elongated passage hole 23 in the x direction of the limited aperture array substrate 212 passes through. It can pass through the hole 23. However, since the beam 13 corresponding to the square passage hole 21 is out of position from the passage hole 21, it is blocked by the limiting aperture array substrate 212.
  • the central beam arrays can each pass through the passage holes 23. However, the beam group at the periphery cannot pass through the passage hole 21 and is blocked. Thereby, the number of beams of the multi-beam 20 can be reduced.
  • the 8x7 beam array can be limited to a 4x5 beam array. Therefore, the total amount of current flowing through the multi-beam 20 can be reduced. Furthermore, the central beam array can be selectively extracted.
  • the multi-beam state described above can be achieved by moving at least one of the shaping aperture array substrate 203 and the limiting aperture array substrate 212 using the drive circuit 214.
  • the drive circuit 214 mechanically changes the relative position between the shaping aperture array substrate 203 and the limiting aperture array substrate 212, it is also possible to change the relative position by deflecting the electron beam 200 using the drive mechanism 214. good.
  • FIG. 5 is a diagram showing an example of the shape of the passage hole of the limited aperture array substrate and the beam array passing through in the first embodiment.
  • a region R1 is defined from a region through which, for example, a 256 ⁇ 256 beam array in the center of the 512 ⁇ 512 multibeams 20 irradiated onto the limited aperture array substrate 212;
  • the beam array area on the limited aperture array substrate 212 is divided into three groups: a region R2 excluding the region R1 from the region through which the 384 ⁇ 384 beam array passes, and a remaining region R3 surrounding the region R2.
  • the shifted position of the irradiation position is set to a position that limits the beam array to 384 x 384 beams.
  • a position where the irradiation position is relatively shifted by one beam size + margin in the +x direction from the starting point is set as a position that limits the beam array to 256 x 256 beams.
  • the beam is formed into a shape that allows the beam to pass through all positions where the irradiation position is relatively shifted by one beam size + margin in the +x direction from the starting point.
  • it is formed into a rectangle with a length more than three times (1 beam size + margin) in the x direction.
  • the beam can pass between the starting points arranged at the beam pitch and the position where the irradiation position is relatively shifted by one beam size + margin in the -x direction.
  • each passage hole 23a is formed in a rectangular shape having a length in the x direction that is more than twice (1 beam size + margin) and shorter than the passage hole 23b.
  • Each passage hole 21 formed in the region R3 is formed in a shape that allows the beam to pass only at the starting points arranged at the beam pitch.
  • each passage hole 21 is formed into a square with a size of (1 beam size + margin), for example. Note that the size of each of the passage holes 21, 23a, and 23b in the y direction may be the same size as 1 beam size+margin. In the example of FIG.
  • FIG. 6 is a diagram showing another example of the shape of the passage hole of the limited aperture array substrate and the beam array passing through in the first embodiment. From the state shown in FIG. 5, the irradiation position of each beam on the limiting aperture array substrate 212 is shifted in the -x direction by one beam size + margin, that is, the limiting aperture array substrate 212 is shifted relative to the position shown in FIG. A state in which the beam is moved by one beam size + margin in the x direction is shown. Alternatively, the shaped aperture array substrate 203 may be moved in the -x direction by one beam size plus a margin.
  • the limiting aperture array substrate 212 is moved in the x direction by (1 beam size + margin) x L (where L is 0 ⁇ L ⁇ 1), and the shaping aperture array substrate 203 is moved in the -x direction by (1 beam size + margin) x L (where L is 0 ⁇ L ⁇ 1). It is also possible to move by beam size + margin) x (1-L).
  • the position of the passage hole 21 deviates from the position of the beam 13, so each beam 13 in the region R3 is blocked by the limiting aperture array substrate 212.
  • each beam 13 in regions R1 and R2 passes through the limiting aperture array substrate 212 because the passage holes 23b and 23a are in positions that include the beams 13 within the passage holes. Therefore, the 512 x 512 multi-beams 20 can be limited to the 384 x 384 beam array in the center.
  • each beam 13 in region R1 passes through limiting aperture array substrate 212 because the passage hole 23b is at a position that includes the beam 13 within the passage hole.
  • the shaped aperture array substrate 203 may be moved in the +x direction by one beam size + margin.
  • the limiting aperture array substrate 212 is moved in the ⁇ x direction by (1 beam size + margin) ⁇ L (where L is 0 ⁇ L ⁇ 1)
  • the shaping aperture array substrate 203 is moved in the +x direction by (1 beam size + margin) ⁇ L (where L is 0 ⁇ L ⁇ 1). It is also possible to move by beam size + margin) x (1-L).
  • the 512 x 512 multi-beams 20 can be limited to the 256 x 256 beam array in the center.
  • the beam array passing through the limiting aperture array substrate 212 is changed to the case of the entire multi-beam 200.
  • a case has been described in which one of three groups can be selected: a 384 ⁇ 384 beam array in the center, and a 256 ⁇ 256 beam array in the center.
  • FIG. 7 is a diagram showing another example of the shape of the passage hole of the limited aperture array substrate and the beam array passing through in the first embodiment.
  • the limiting aperture array substrate 212 or the shaped aperture array substrate 203 in the x and y directions, it is possible to select one of five groups of beam arrays that pass through the limiting aperture array substrate 212. Make it.
  • FIG. 7 shows another example of the shape of the passage hole of the limited aperture array substrate and the beam array passing through in the first embodiment.
  • the beam array on the limited aperture array substrate 212 is divided into five groups: a region r4 obtained by excluding regions r1, r2, and r3 from the region through which the 448 ⁇ 448 beam array passes, and a remaining region r5 surrounding the region r4.
  • the irradiation is performed relatively from the starting point by, for example, one beam size + margin in the +y direction.
  • the shifted position is set to a position that limits the beam array to 128 x 128 beams.
  • a position where the irradiation position is relatively shifted from the starting point by, for example, one beam size + margin in the ⁇ x direction is set as a position that limits the beam array to 256 ⁇ 256 beams.
  • a position where the irradiation position is relatively shifted from the starting point by, for example, one beam size + margin in the ⁇ y direction is set as a position that limits the beam array to 384 ⁇ 384 beams. Further, a position where the irradiation position is relatively shifted from the starting point by, for example, one beam size + margin in the +x direction is set as a position that limits the beam array to 448 x 448 beams.
  • the plurality of passage holes 21, 23a, 23c, 23d, and 23e are formed, for example, by a combination of a rectangle and a shape different from the rectangle. This will be explained in detail below.
  • the 128 x 128 passage holes 23e formed in the region r1 there are a starting point arranged at the beam pitch, a position where the irradiation position is relatively shifted by one beam size + margin in the +y direction from the starting point, and a starting point.
  • the beam is formed into a shape that allows the beam to pass through both the positions where the irradiation position is relatively shifted by one beam size + margin in the direction.
  • the passage hole 23e is formed in a cross shape.
  • each passage hole 23d formed in region r2 there are starting points arranged at the beam pitch, a position where the irradiation position is relatively shifted by one beam size + margin in the -x direction from the starting point, and -y from the starting point.
  • the beam can pass through a position where the irradiation position is relatively shifted by 1 beam size + margin in the direction, and a position where the irradiation position is relatively shifted by 1 beam size + margin in the +x direction from the origin. formed into a shape.
  • the passage hole 23d is formed in a convex shape that is convex in the -y direction.
  • each passage hole 23c formed in region r3 there are starting points arranged at the beam pitch, a position where the irradiation position is relatively shifted by one beam size + margin in the -y direction from the starting point, and a position in the +x direction from the starting point.
  • the beam is formed into a shape that allows the beam to pass through the position where the irradiation position is relatively shifted by one beam size + margin.
  • the passage hole 23c is formed in an L-shape extending in the +x direction and the -y direction.
  • the beam passes through the starting points arranged at the beam pitch and at the position where the irradiation position is relatively shifted by one beam size + margin from the starting point in the +x direction. formed into any possible shape.
  • the passage hole 23a is formed into a rectangle extending in the +x direction.
  • Each passage hole 21 formed in the region r5 is formed in a shape that allows the beam to pass through the starting points arranged at the beam pitch.
  • the passage hole 21 is formed in a square shape.
  • each beam on the limiting aperture array substrate 212 is each starting point arranged at a beam pitch, that is, when the limiting aperture array substrate 212 is adjusted to a position matching each starting point, r1 to r5
  • the entire 512 ⁇ 512 multi-beams 20 pass through the limited aperture array substrate 212.
  • the irradiation position of each beam on the limited aperture array substrate 212 is a position relatively shifted by one beam size + margin in the +x direction from each starting point arranged at the beam pitch, that is, When the limiting aperture array substrate 212 is moved from the starting point in the -x direction by one beam size + margin, the position of the passage hole 21 is deviated from the position of the beam 13 in the region r5, so each beam 13 in the region r5 is restricted. It is shielded by an aperture array substrate 212.
  • each beam 13 in the regions r1 to r4 passes through the limiting aperture array substrate 212 because the passage holes 23e, 23d, 23c, and 23a are in positions that include the beams 13 within the passage holes. Therefore, the 512 x 512 multi-beams 20 can be limited to the 448 x 448 beam array at the center. Alternatively, the shaped aperture array substrate 203 may be moved in the +x direction by one beam size + margin.
  • the limiting aperture array substrate 212 is moved in the ⁇ x direction by (1 beam size + margin) ⁇ L (where L is 0 ⁇ L ⁇ 1), and the shaping aperture array substrate 203 is moved in the +x direction by (1 beam size + margin) ⁇ L (where L is 0 ⁇ L ⁇ 1). It is also possible to move by beam size + margin) x (1-L).
  • the moving method for shifting the relative positions of the shaped aperture array substrate 203 and the limited aperture array substrate 212 is the same below.
  • the irradiation position of each beam on the limited aperture array substrate 212 is a position relatively shifted by one beam size + margin in the ⁇ y direction from each starting point arranged at the beam pitch, that is, , when the limited aperture array substrate 212 is moved in the +y direction from the starting point by one beam size + margin, the positions of the passage holes 21 and 23a are deviated from the position of the beam 13 in areas r5 and r4, so Each beam 13 of is blocked by a limiting aperture array substrate 212.
  • each beam 13 in the regions r1 to r3 passes through the limiting aperture array substrate 212 because the passage holes 23e, 23d, and 23c are in positions that include the beams 13 within the passage holes. Therefore, the 512 x 512 multi-beams 20 can be limited to the 384 x 384 beam array in the center.
  • the irradiation position of each beam on the limited aperture array substrate 212 is a position relatively shifted by one beam size + margin in the ⁇ x direction from each starting point arranged at the beam pitch, that is, , when the limited aperture array substrate 212 is moved from the starting point in the +x direction by one beam size + margin, the positions of the passage holes 21, 23a, 23c will deviate from the position of the beam 13 in regions r5, r4, and r3, so Each beam 13 in regions r5, r4, and r3 is blocked by a restricted aperture array substrate 212.
  • each beam 13 in the regions r1 to r2 passes through the limited aperture array substrate 212 because the passage holes 23e and 23d are in positions that include the beams 13 within the passage holes. Therefore, the 512 ⁇ 512 multi-beams 20 can be limited to the 256 ⁇ 256 beam array in the center.
  • the irradiation position of each beam on the limited aperture array substrate 212 is a position relatively shifted by one beam size + margin in the +y direction from each starting point arranged at the beam pitch, that is, When the limited aperture array substrate 212 is moved from the starting point in the -y direction by one beam size + margin, the positions of the passage holes 21, 23a, 23c, and 23d will deviate from the position of the beam 13 in regions r5 to r2, so Each beam 13 in regions r5-r2 is blocked by a restricted aperture array substrate 212. In region r1, each beam 13 in region r1 passes through the limiting aperture array substrate 212 because the passage hole 23e is at a position that includes the beam 13 within the passage hole. Therefore, the 512 x 512 multi-beams 20 can be limited to the 128 x 128 beam array at the center.
  • FIG. 8 is a diagram showing an example of the relationship between the beam array area and the passing area in the first embodiment.
  • the beam array area 31 of the entire multi-beam 20 is divided into sub-areas 1 to 9.
  • Sub-region 1 is a region at the upper left corner of beam array region 31.
  • Sub-region 3 is a region at the upper right corner of beam array region 31.
  • the sub-region 7 is a region at the lower left corner of the beam array region 31.
  • the sub-region 9 is a region at the lower right corner of the beam array region 31.
  • Sub-region 2 is a region obtained by excluding sub-regions 1 and 3 from the upper end region of beam array region 31.
  • Sub-region 4 is a region obtained by excluding sub-regions 1 and 7 from the left end region of beam array region 31.
  • Sub-region 6 is a region obtained by excluding sub-regions 3 and 9 from the right end region of beam array region 31.
  • Sub-region 8 is a region obtained by excluding sub-regions 7 and 9 from the lower end region of beam array region 31.
  • Sub-region 5 is a central region of beam array region 31 excluding sub-regions 1 to 4 and 6 to 9 around it.
  • Passage areas A to D are then set to determine the beam array that passes through the limited aperture array substrate 212. In the passage area A, the entire multi-beam 20 (for example, a 512 ⁇ 512 beam array) is allowed to pass through.
  • a beam array at the center of the multi-beam 20 in which passage of the beams at the upper, lower, left, and right ends is restricted is passed (for example, a 384 ⁇ 384 beam array).
  • a beam array in the central part of the multi-beam 20 in which passage of the upper and lower end beams is restricted is allowed to pass (for example, a 512 x 384 beam array).
  • a central beam array for example, a 384 ⁇ 512 beam array in which passage of the left and right end beams of the multi-beam 20 is restricted is allowed to pass.
  • FIG. 9 is a diagram showing an example of a relationship table between sub-regions of the beam array region and passing regions in the first embodiment.
  • the vertical axis represents the sub-region shown in FIG.
  • the horizontal axis shows the passage area shown in FIG.
  • in order for the beam groups of sub-regions 1, 3, 7, and 9 to pass through the restricted aperture array substrate 212 it is necessary to set a passage area A, and they cannot pass through the passage areas B to D. (off).
  • the beam groups of sub-regions 2 and 8 In order for the beam groups of sub-regions 2 and 8 to pass through the limited aperture array substrate 212, it is necessary to set the passing region A or D, and the beams cannot pass in the passing regions B and C (off).
  • any of the passing regions A to D may be set.
  • FIGS. 10A to 10D are diagrams showing an example of the shape of the passage hole of the limited aperture array substrate in the first embodiment.
  • the passage area A of FIG. 8 is set at each position (starting point) arranged at a beam pitch on the limited aperture array substrate 212 where the multi-beam 20 is irradiated.
  • the passage area B in FIG. 8 is set at a position where the irradiation position is relatively shifted from the starting point by, for example, one beam size + margin in the +y direction.
  • the passage area D in FIG. 8 is set at a position where the irradiation position is relatively shifted from the starting point by, for example, one beam size + margin in the +x direction.
  • the passage area D in FIG. 8 is set at a position where the irradiation position is relatively shifted from the starting point by, for example, one beam size + margin in the ⁇ y direction.
  • the positions (starting points) (passing area A) arranged at the beam pitch, and the starting point For example, the position where the irradiation position is relatively shifted by 1 beam size + margin in the +y direction (passing area B) and the irradiation position relative to the starting point by 1 beam size + margin in the +x direction from the starting point, for example.
  • the beam passes through both the position where the beam is shifted (passing area C) and the position where the irradiation position is relatively shifted by one beam size + margin from the origin in the -y direction (passing area D). formed into any possible shape.
  • the passage hole is formed in a convex shape that is convex in the +x direction.
  • the passage hole is formed into a rectangle extending in the -y direction.
  • the positions (starting points) (passing area A) arranged at the beam pitch and is formed into a shape that allows the beam to pass at a position (passage area C) where the irradiation position is relatively shifted by one beam size + margin in the +x direction from the starting point, for example.
  • the passage hole is formed in a rectangular shape extending in the +x direction.
  • the positions (starting points) (passing points) arranged at the beam pitch are determined. Only area A) is formed in a shape that allows the beam to pass through. In the example of FIG. 10A, the passage hole is formed in a square shape.
  • FIG. 11 is a diagram showing another example of the relationship between the beam array area and the passage area in the first embodiment.
  • the beam array area 31 of the entire multi-beam 20 is divided into sub-areas 1 to 25.
  • the beam array area 31 is divided in the x direction at the positions of the 64th beam, the 128th beam, the 384th beam, and the 448th beam.
  • the beam is divided at the positions of the 64th beam, the 128th beam, the 384th beam, and the 448th beam in the y direction.
  • sub-region 1 is the upper left corner region of beam array region 31.
  • the 1st to 64th beams in the x direction and the 449th to 512th beams in the y direction are targeted.
  • Sub-region 2 is an upper region of beam array region 31, and targets the 65th to 128th beams in the x direction and the 449th to 512th beams in the y direction.
  • the sub-region 3 is an upper region of the beam array region 31, and targets the 129th to 384th beams in the x direction and the 449th to 512th beams in the y direction.
  • the sub-region 4 is an upper region of the beam array region 31, and targets the 385th to 448th beams in the x direction and the 449th to 512th beams in the y direction.
  • the sub-region 5 is an upper region of the beam array region 31, and targets the 449th to 512th beams in the x direction and the 449th to 512th beams in the y direction.
  • the areas that can be passed through are limited below.
  • the sub-region 13 is a central region of the beam array region 31, and targets the 129th to 384th beams in the x direction and the 129th to 384th beams in the y direction.
  • the sub-region 25 is a region at the lower right corner of the beam array region 31, and targets the 449th to 512th beams in the x direction and the 1st to 64th beams in the y direction.
  • a plurality of passing regions are set to determine the beam array that passes through the limited aperture array substrate 212.
  • the entire multi-beam 20 is allowed to pass through the passage area (512).
  • the central 384 ⁇ 384 beam array of the multi-beams 20 is passed.
  • the central 256 ⁇ 256 beam array of the multi-beams 20 is allowed to pass.
  • the central 384 ⁇ 512 beam array of the multi-beams 20 is passed in the x direction.
  • the central 256 ⁇ 512 beam array of the multi-beams 20 is passed in the x direction.
  • the central 512 x 384 beam array of the multi-beam 20 in the y direction passes through.
  • the central 512 x 384 beam array in the y direction of the multi-beam 20 passes through.
  • x256 beam array is passed.
  • FIG. 12 is a diagram showing another example of the relationship table between the sub-regions of the beam array region and the passage region in the first embodiment.
  • the vertical axis represents the sub-region shown in FIG. 11.
  • the horizontal axis indicates the passage area shown in FIG. 11.
  • a passing region (512), (384), (384') or (384'') may be set. It is necessary and cannot be passed in other passing areas (off).
  • a passing region (512), (384), (384'), (256'), or (384'') is set. It must be possible to pass through other passing areas (off).
  • a passing region (512), (384), (384'), (384''), or (256'') is set. It must be possible to pass through other passing areas (off).
  • the passing regions (512), (384), (256), (384'), (256'), (384''), (256 ”) may be set.
  • FIGS. 13A to 13C are diagrams showing other examples of the shapes of the passage holes of the limited aperture array substrate in Embodiment 1.
  • the passage areas (512) in FIG. 11 are set at each position (starting point) arranged at the beam pitch on the limited aperture array substrate 212 where the multi-beam 20 is irradiated.
  • the size of each side of the passage area (512) is set to twice the size of (1 beam size + margin).
  • the starting point may be set at the center of the passing area (512).
  • the passage area (384 ) is located at a position where the irradiation position is relatively shifted from the starting point by, for example, 0.5 beam size + margin in the +x direction and 1.5 beam size + margin in the +y direction.
  • the positions (starting points) (passing points) arranged at the beam pitch Only the region (512)) is formed in a shape that allows the beam to pass through.
  • the passage hole is formed into a square whose side is twice the size of (1 beam size + margin).
  • the positions (starting points) (passing points) arranged at the beam pitch area (512)) and a position where the irradiation position is relatively shifted from the origin by, for example, 1.5 beam size + margin in the +x direction and 0.5 beam size + margin in the +y direction (passing area ( 384')) is formed into a shape through which the beam can pass.
  • the passage hole is a square whose side is twice the size of (1 beam size + margin), and the upper half of the right side of the square has a side of the size (1 beam size + margin). It is formed in the shape of connected squares.
  • the passage hole has a size three times (1 beam size + margin) in the x direction and a size twice (1 beam size + margin) in the y direction. Formed into a rectangle of size.
  • the passage hole has a size twice as large as (1 beam size + margin). It is formed in a shape in which a square whose sides are connected and a square whose side is the size of (1 beam size + margin) are connected to the left half of the lower side of the square.
  • the beam is formed into a shape that allows the beam to pass through.
  • the passage hole has one side that is twice the size of (1 beam size + margin).
  • a square with one side having a size of (1 beam size + margin) is formed in a shape in which the left half of the top side of the square, the top half of the right side, and the left half of the bottom side of the square are connected to each other.
  • the irradiation position is relatively shifted from the starting point by, for example, 1.5 beam size + margin in the +x direction and 0.5 beam size + margin in the -y direction (passing area (256')).
  • the passage hole is formed into a square whose side is twice the size of (1 beam size + margin). Squares each having a side of the size (1 beam size + margin) are connected to the left half of the top side of the square, the top half of the right side, the bottom half of the right side, and the left half of the bottom side.
  • the passage holes are located in a square whose side is twice the size of (1 beam size + margin), the left half of the lower side of such a square, and the right half of the lower side.
  • a shape is formed in which squares each having a side having a size of (1 beam size + margin) are connected.
  • the passage hole is a square whose side is twice the size of (1 beam size + margin), the left half of the top side of the square, the top half of the right side, and the bottom side. The left half of the square and the right half of the lower side are formed into a shape in which squares each having one side of the size (1 beam size + margin) are connected.
  • the irradiation position is relatively shifted from the starting point by, for example, 0.5 beam size + margin in the -x direction and 1.5 beam size + margin in the +y direction (passing area (384)). , for example, a position where the irradiation position is relatively shifted by 0.5 beam size + margin in the +x direction and 1.5 beam size + margin in the +y direction (passing area (256)) and the starting point.
  • the position where the irradiation position is relatively shifted by 1.5 beam size + margin in the +x direction and 0.5 beam size + margin in the +y direction (passing area (384')) and from the origin for example, the position where the irradiation position is relatively shifted by 1.5 beam size + margin in the +x direction and 0.5 beam size + margin in the -y direction (passing area (256')) and from the starting point.
  • the position where the irradiation position is relatively shifted by 0.5 beam size + margin in the -x direction and 1.5 beam size + margin in the -y direction (passing area (384")) and the starting point.
  • the passage hole is a square whose side is twice the size of (1 beam size + margin), the left half of the top side of the square, the right half of the top side, the upper half of the right side, and the bottom of the right side.
  • a square whose side is (1 beam size + margin) is connected to each half, the left half of the lower side, and the right half of the lower side.
  • the beam array passing through the limiting aperture array substrate 212 is 512 beam array, 384 x 384 beam array in the center in x, y direction, 256 x 256 beam array in the center in x, y direction, 384 x 512 beam array in the center in x direction
  • the beam array (multi-beams 20) that has passed through the limiting aperture array substrate 212 whose relative position to the multi-beam array is set at a predetermined position by movement is irradiated.
  • the beam array (multi-beam 20) the sample 101 is irradiated by an electron optical system such as a blanking aperture array mechanism 204, a reduction lens 205, a limiting aperture substrate 206, an objective lens 207, a main deflector 208, and a sub-deflector 209.
  • the beam array (multi-beam 20) that has passed through the limiting aperture array substrate 212 advances to the blanking aperture array mechanism 204.
  • the multi-beams 20 that have passed through the limited aperture array substrate 212 pass through corresponding blankers (first deflectors: individual blanking mechanisms 47 ) of the blanking aperture array mechanism 204 .
  • Each of these blankers performs blanking control on the beam passing through the blanker so that the beam is in an ON state for a set drawing time (irradiation time).
  • FIG. 14 is a conceptual top view showing a part of the configuration within the membrane region of the blanking aperture array mechanism in the first embodiment.
  • the blanking aperture array mechanism 204 has passage holes 25 (openings) for each of the multi-beams to pass through, at positions corresponding to the passage holes of the limiting aperture array substrate 212, in a membrane region made thin in the center of the substrate.
  • the passage holes 25 are provided in accordance with the positions (starting points) arranged at the beam pitch.
  • a set of a control electrode 24 and a counter electrode 26 (blanker: blanking deflector) is arranged at a position facing each other across the corresponding passage hole 25 among the plurality of passage holes 25.
  • control circuit 41 (logic circuit; cell) that applies a deflection voltage to the control electrode 24 for each passage hole 25 is arranged inside the blanking aperture array substrate 31 near each passage hole 25 .
  • the counter electrode 26 for each beam is connected to ground.
  • Each beam is subjected to blanking control by switching the control potential applied to the control electrode 24 from the control circuit 41.
  • the multi-beam 20 that has passed through the blanking aperture array mechanism 204 is reduced by a reduction lens 205 and proceeds toward a central hole formed in a limiting aperture substrate 206.
  • the electron beam deflected by the potential difference between the control potential applied to the control electrode 24 in the blanker of the blanking aperture array mechanism 204 and the ground potential of the counter electrode 26 is deflected from the hole in the center of the limiting aperture substrate 206. off, and is shielded by the limiting aperture substrate 206.
  • the electron beam that is not deflected by the blanker of the blanking aperture array mechanism 204 passes through the central hole of the limiting aperture substrate 206, as shown in FIG.
  • the limited aperture substrate 206 blocks each beam that is deflected by the individual blanking mechanism 47 into a beam OFF state. Then, each beam of one shot is formed by the beam that has passed through the limiting aperture substrate 206 and is formed from when the beam is turned on until when the beam is turned off.
  • the multi-beam 20 that has passed through the limited aperture substrate 206 is focused by an objective lens 207 to become a pattern image with a desired reduction ratio, and the multi-beam 20 that has passed through the limited aperture substrate 206 is focused by a main deflector 208 and a sub-deflector 209. The entire beam is collectively deflected in the same direction, and each beam is applied to each irradiation position on the sample 101.
  • the entire multi-beam 20 is further deflected by the main deflector 208 or the sub-deflector 209 by the shift amount (Dx, Dy) of the shot.
  • the multi-beams 20 irradiated at once are ideally arranged at a pitch equal to the arrangement pitch of the plurality of apertures 22 of the shaped aperture array substrate 203 multiplied by the desired reduction ratio described above.
  • FIG. 15 is a conceptual diagram for explaining an example of a region to be drawn in the first embodiment.
  • the drawing area 30 of the sample 101 is virtually divided into a plurality of striped areas 32 having a predetermined width in the y direction, for example.
  • the drawing area 30 corresponds to a chip area defined in the chip data.
  • the XY stage 105 is moved and the multi-beam 20 is placed once at the left end of the first stripe area 32 or further to the left. Adjustment is made so that the irradiation area 34 that can be irradiated with the shot is located, and drawing is started.
  • the XY stage 105 When writing the first stripe area 32, the XY stage 105 is moved, for example, in the -x direction, thereby relatively progressing the writing in the x direction.
  • the XY stage 105 is continuously moved, for example, at a constant speed.
  • the stage position is moved in the -y direction, and the XY stage 105 is then moved, for example, in the x direction to perform drawing in the same way in the -x direction. .
  • This operation is repeated to sequentially draw each stripe area 32.
  • Drawing time can be shortened by drawing while changing the direction alternately.
  • the drawing is not limited to such a case where the drawing is performed while changing the direction alternately, but when drawing each stripe area 32, the drawing may proceed in the same direction.
  • a plurality of shot patterns the maximum number of which is the same as each opening 22, are formed at once.
  • FIG. 16 is a diagram showing an example of a multi-beam irradiation area and drawing target pixels in the first embodiment.
  • the stripe area 32 is divided into a plurality of mesh areas based on the beam size of the multi-beam 20, for example.
  • Each such mesh area becomes a pixel 36 (unit irradiation area, irradiation position, or drawing position) to be drawn.
  • the size of the drawing target pixel 36 is not limited to the beam size, and may be configured to have any size regardless of the beam size.
  • the beam size may be 1/n (n is an integer of 1 or more) of the beam size.
  • n is an integer of 1 or more
  • the drawing area of the sample 101 has a plurality of stripe areas 32 in the y direction with substantially the same width as the size of the irradiation area 34 (drawing field) that can be irradiated with one multi-beam 20 irradiation.
  • the size of the rectangular irradiation area 34 in the x direction can be defined as the number of beams in the x direction x the pitch between beams in the x direction.
  • the size of the rectangular irradiation area 34 in the y direction can be defined as the number of beams in the y direction x the pitch between beams in the y direction.
  • each sub-irradiation area 29 is composed of a rectangular area surrounded by the size of the beam pitch in the x and y directions.
  • each sub-irradiation area 29 is composed of, for example, 4 ⁇ 4 pixels.
  • a drawing sequence is set in each sub-irradiation area 29 so that all pixels 36 in each sub-irradiation area 29 can be drawn by being irradiated with a plurality of beams.
  • the mode selection unit 66 selects one from a plurality of drawing modes.
  • each writing mode a beam array used for writing is set.
  • Each drawing mode has a different group, for example, from the three groups of 512 x 512 beam arrays, 384 x 384 beam arrays, and 256 x 256 beam arrays shown in the example of Fig. 5.
  • One is set.
  • the writing mode in which a 512 ⁇ 512 beam array is set is a high-speed writing mode that emphasizes throughput.
  • the writing mode in which a 256 ⁇ 256 beam array is set is a high-precision writing mode that emphasizes writing accuracy.
  • a writing mode in which a 384 ⁇ 384 beam array is set is an intermediate writing mode between these, for example.
  • a user selects a drawing mode to be used for drawing processing of the chip from among a plurality of drawing modes prepared in advance using an interface (not shown) such as a GUI (graphic user interface).
  • an interface such as a GUI (graphic user interface).
  • the drawing mode used for chip data or drawing parameter data stored in the storage device 140 may be defined.
  • a variable shaping drawing mode is further added. The drawing mode can be changed for each board, so all chips on the same board can be set to the same drawing mode, or different drawing modes can be set for each chip or region on the same board. You can do it like this.
  • each writing mode may include, for example, a 512 x 512 beam array, a 448 x 448 beam array, or a 384 x 384 beam array as shown in the example of FIG. , a 256 ⁇ 256 beam array, and a 128 ⁇ 128 beam array, it is also preferable that one group is set differently from the others.
  • each drawing mode may include, for example, the 512 x 512 beam array (A) shown in the example of FIG. It is also preferable that one of the four groups of beam array (B), 512 x 384 beam array (C), and 384 x 512 beam array (D) is set. be.
  • each drawing mode may have, for example, 512 x 512 beams as shown in the example of FIG. array, 384 x 384 beam array, 256 x 256 beam array, 384 x 512 beam array, 256 x 512 beam array, 512 x 384 beam array, and 512 x 256 beam array It is also preferable that one of the seven groups is set, which is different from the others.
  • the aperture array control circuit 131 controls the drive circuit 214.
  • the drive circuit 214 moves the shaped aperture array substrate 203 and the limiting aperture array substrate 212 in a direction perpendicular to the orbit center axis of the multi-beam 20 so that the relative positions of the shaped aperture array substrate 203 and the limiting aperture array substrate 214 change. move at least one of the
  • the drive circuit 214 moves at least one of the shaping aperture array substrate 203 and the limiting aperture array substrate 212 so that the beam array set to the selected writing mode passes through the limiting aperture array substrate 212.
  • the restricted aperture array substrate 212 is moved. Thereby, writing can be performed using a beam array whose current amount is limited according to the selected writing mode.
  • the shot data generation unit 62 reads chip data (drawing data) from the storage device 140 and generates irradiation time data (shot data) for each pixel 36. It is preferable that the irradiation time is determined by taking into consideration the pattern density drawn within the pixel and/or the proximity effect. These calculation methods may be the same as conventional methods.
  • the data processing unit 64 rearranges the obtained irradiation time data in the order of shots.
  • the order of shots is determined by the drawing sequence controlled by the drawing control unit 80.
  • the obtained irradiation time data is stored in the storage device 142.
  • the transfer control unit 79 transfers the irradiation time data to the deflection control circuit 130 in shot order.
  • the deflection control circuit 130 then controls the DAC amplifier units 132 and 134 and the blanking aperture array mechanism 204 according to the shot.
  • the drawing mechanism 150 irradiates the sample 101 with a beam array that has passed through the limiting aperture array substrate 212 according to the relative position of the moving shaped aperture array substrate 203 and the limiting aperture array substrate 212 .
  • each sub-irradiation area 29 is deflected so that all pixels 36 within its own sub-irradiation area 29 can be irradiated with a plurality of preset beams.
  • each sub-irradiation area 29 is composed of 4 ⁇ 4 pixels 36 and all pixels are irradiated with any of the four beams
  • one-time tracking control will cause 1/4 of each sub-irradiation area 29 to be pixels (4 pixels) are drawn using, for example, 4 shots using one beam.
  • multi-beam irradiation can be performed in which the large current amount mode and the small current amount mode can be selectively switched.
  • FIG. 17 is a conceptual diagram showing the configuration of a limited aperture array substrate in the second embodiment.
  • the limited aperture array substrate 212 has a large passage hole 19 through which some of the multi-beams 20 can pass the entire beam array, and a remaining beam group through which the remaining beam groups of the multi-beams 20 can pass.
  • a plurality of (small) passage holes 21 of the same number as the number of (small) passage holes 21 are formed.
  • the large passage hole 19 and the plurality of passage holes 21 are formed so that all beams can pass through them at each position (starting point) arranged at the beam pitch (Px, Py) of the multi-beam 20 on the limited aperture array substrate 212. Ru.
  • FIG. 17 the limited aperture array substrate 212 has a large passage hole 19 through which some of the multi-beams 20 can pass the entire beam array, and a remaining beam group through which the remaining beam groups of the multi-beams 20 can pass.
  • a plurality of (small) passage holes 21 of the same number as the number of (
  • the large passage hole 19 is formed so that the entire 4 ⁇ 5 beam array in the center of the 8 ⁇ 7 multi-beams can pass through. Further, a case is shown in which 36 (small) passage holes 21 are formed so that the remaining surrounding beams, for example, 36 beams, can pass through. Note that the molded aperture array substrate 203 is the same as that shown in FIG. As the basic shape of the plurality of passage holes 21, for example, a square having a size equal to one beam size plus a margin is used. On the other hand, the shape of the large passage hole 19 is determined by multiplying (1 beam size + margin) by the number of passing beams in the x direction, and then adding, for example, a size larger than (1 beam size + margin).
  • a rectangle is used in which the x-direction size is the size of the rectangle, and the y-direction size is the product of (1 beam size + margin) by the number of passing beams in the y-direction.
  • the size greater than the sum (1 beam size + margin) is set to be smaller than the gap between adjacent (small) passage holes 21 .
  • FIGS. 18A and 18B are diagrams for explaining the state of the multi-beam depending on the relative position of the shaping aperture array substrate and the limiting aperture array substrate in the second embodiment.
  • FIG. 18A all the beams 13 of the multi-beam 20 that have passed through the plurality of openings 22 of the shaped aperture array substrate 203 pass through the large passage hole 19 and the plurality of passage holes 21 of the limited aperture array substrate 212. This shows the case where the area overlaps with the position of the area within.
  • all beams 13 of multi-beam 20 are allowed to pass through restricted aperture array substrate 212.
  • the sample 101 is irradiated with a beam array with a large amount of current.
  • the driving mechanism 214 moves at least one of the shaped aperture array substrate 203 and the limiting aperture array substrate 212, so that the limiting aperture array substrate 212 moves between the shaped aperture array substrate 203 and the limiting aperture array substrate 212.
  • the limiting aperture array substrate 212 allows the central beam array of the entire multi-beam 20 to pass, when such a part of the beam array passes.
  • FIG. 18B shows, for example, a case where the limited aperture array substrate 212 is shifted in the x direction by a larger amount than the beam size of the multi-beam 200.
  • the beam 13 corresponding to the large passage hole 19 of the limited aperture array substrate 212 passes through the large passage hole 19. Can pass. However, since the beam 13 corresponding to the square passage hole 21 is out of position from the passage hole 21, it is blocked by the limiting aperture array substrate 212.
  • the central beam array of the multi-beams 200 can each pass through the large passage hole 19. However, the beam group at the periphery cannot pass through the passage hole 21 and is blocked. Thereby, the number of beams of the multi-beam 20 can be reduced.
  • the 8x7 beam array can be limited to a 4x5 beam array. Therefore, the total amount of current flowing through the multi-beam 20 can be reduced. Furthermore, the central beam array can be selectively extracted.
  • the multi-beam beam can selectively switch between the large current amount mode and the small current amount mode using the central beam array. Can be irradiated.
  • the orbit center axis of the multi-beam 20 also moves in the same way. Therefore, it is preferable to arrange an alignment coil (not shown) to perform one or more stages of beam deflection to return the shifted orbit center axis to its original position. For example, it is preferable to arrange an alignment coil (not shown) between the limiting aperture array substrate 212 and the blanking aperture array mechanism 204 to restore the shifted trajectory center axis. Alternatively, the blanking aperture array mechanism 204 may be moved together with the molded aperture array substrate 203.
  • One aspect of the present invention relates to a multi-charged particle beam irradiation device and a multi-charged particle beam irradiation method, and can be used, for example, as a method for selecting the amount of current of a beam array that irradiates a substrate in a multi-beam writing device.

Abstract

A multi charged-particle beam irradiation device according to an aspect of the present invention is characterized by comprising: a shaping aperture array substrate that forms multi-beam arrays of a charged-particle beam; a limiting aperture array substrate in which a plurality of passing holes are formed through which at least some of the beams of the multi-beam arrays can pass, some of the plurality of passing holes having a shape different from that of the other passing holes; a mechanism for moving at least one of the shaping aperture array substrate, the limiting aperture array substrate, and the multi-beam arrays in a direction orthogonal to a trajectory central axis of the multi-beams so that the relative positions of the multi-beam arrays and the limiting aperture array substrate are changed; and an optical system that irradiates a sample with a beam array among the multi-beam arrays that has passed through the limiting aperture array substrate with the relative position to the multi-beam arrays having been moved to a predetermined position.

Description

マルチ荷電粒子ビーム照射装置及びマルチ荷電粒子ビーム照射方法Multi-charged particle beam irradiation device and multi-charged particle beam irradiation method
 本出願は、2022年5月24日に日本国に出願されたJP2022-084226(出願番号)を基礎出願とする優先権を主張する出願である。JP2022-084226に記載されたすべての内容は、参照されることにより本出願にインコーポレートされる。 This application is an application claiming priority to JP2022-084226 (application number) filed in Japan on May 24, 2022 as the basic application. All contents described in JP2022-084226 are incorporated into this application by reference.
 本発明の一態様は、マルチ荷電粒子ビーム照射装置及びマルチ荷電粒子ビーム照射方法に係り、例えば、マルチビーム描画装置における基板に照射されるビームアレイの電流量を選択する手法に関する。 One aspect of the present invention relates to a multi-charged particle beam irradiation device and a multi-charged particle beam irradiation method, and relates, for example, to a method of selecting the amount of current of a beam array that irradiates a substrate in a multi-beam lithography device.
 半導体デバイスの微細化の進展を担うリソグラフィ技術は半導体製造プロセスのなかでも唯一パターンを生成する極めて重要なプロセスである。近年、LSIの高集積化に伴い、半導体デバイスに要求される回路線幅は年々微細化されてきている。ここで、電子線(電子ビーム)描画技術は本質的に優れた解像性を有しており、ウェハ等へ電子線を使って描画することが行われている。 Lithography technology, which is responsible for the progress of miniaturization of semiconductor devices, is the only extremely important process in the semiconductor manufacturing process that generates patterns. In recent years, as LSIs have become more highly integrated, the circuit line width required for semiconductor devices has become smaller year by year. Here, electron beam (electron beam) writing technology inherently has excellent resolution, and writing is performed on wafers and the like using electron beams.
 例えば、マルチビームを使った描画装置がある。1本の電子ビームで描画する場合に比べて、マルチビームを用いることで一度に多くのビームを照射できるのでスループットを大幅に向上させることができる。 For example, there is a writing device that uses multiple beams. Compared to writing with a single electron beam, using multiple beams allows multiple beams to be irradiated at once, resulting in a significant improvement in throughput.
 ここで、マルチビーム描画では、全電流量を大きくするほど、照射時間を短縮できる或いは照射面積を大きくできるので、スループットを高めることができる。しかし、その反面、クーロン効果が大きくなるため描画精度は劣化する。逆に、全電流量を小さくするほどクーロン効果を小さくできるため描画精度を向上させることができる。しかし、その反面、照射時間が長くなる或いは照射面積が小さくなるので、スループットは劣化する。このように、スループットと描画精度はトレードオフの関係にある。しかし、描画装置では、描画精度を犠牲にしてもスループットを高めることが求められる処理と、スループットを犠牲にしても描画精度を高めることが求められる処理と、の両方が行われ得る。よって、大電流量モードと小電流量モードとの切り換えが可能な構成が望ましい。かかる問題は、マルチビーム描画装置に限るものではなく、例えば、マルチビーム検査装置等のマルチビームを照射する照射装置において同様に生じ得る。全電流量を小さくする手法として、ビームサイズを小さくすること、或いはビーム本数を少なくすることが挙げられる。 Here, in multi-beam writing, as the total current amount increases, the irradiation time can be shortened or the irradiation area can be increased, so the throughput can be increased. However, on the other hand, the drawing accuracy deteriorates because the Coulomb effect increases. Conversely, the smaller the total current amount, the smaller the Coulomb effect, and therefore the drawing accuracy can be improved. However, on the other hand, since the irradiation time becomes longer or the irradiation area becomes smaller, the throughput deteriorates. In this way, there is a trade-off relationship between throughput and drawing accuracy. However, in a drawing device, both processing that requires increasing throughput at the expense of drawing accuracy and processing that requires increasing drawing accuracy even at the cost of throughput can be performed. Therefore, it is desirable to have a configuration that allows switching between the large current amount mode and the small current amount mode. Such a problem is not limited to multi-beam lithography devices, but can similarly occur in irradiation devices that irradiate multi-beams, such as multi-beam inspection devices. Methods for reducing the total amount of current include reducing the beam size or reducing the number of beams.
 ここで、ビームサイズを小さくする手法として、第1と第2の成形アパーチャアレイを配置して、第1の成形アパーチャアレイで成形されたマルチビームを第1と第2の成形アパーチャアレイの間に配置された偏向器で偏向することで第2の成形アパーチャアレイでマルチビームを成形し直す手法が開示されている(例えば、特許文献1参照)。 Here, as a method to reduce the beam size, first and second shaping aperture arrays are arranged, and the multi-beam shaped by the first shaping aperture array is distributed between the first and second shaping aperture arrays. A method has been disclosed in which a multi-beam is re-shaped by a second shaping aperture array by deflecting it with an arranged deflector (see, for example, Patent Document 1).
 次に、ビーム本数を少なくする手法として、マルチビーム全体が通過可能な大開口が形成されたシャッターの位置をずらすことで、マルチビームの矩形外周部の1辺側のビーム列を遮蔽するといったことが考えられる。ここで、マルチビームのうち外周側のビームほどクロスオーバ位置でのビーム径が大きくなり、ブランキング偏向する際に漏れビームが生じやすい。そのため、ビーム本数を少なくする場合、できるだけ中央部のビームアレイを使用することが望まれる。しかしながら、かかる手法ではマルチビームの外周部全体を遮蔽することが困難であるばかりか、両サイドを同時に遮蔽することも困難である。 Next, as a method to reduce the number of beams, the beam array on one side of the rectangular outer periphery of the multi-beam can be blocked by shifting the position of a shutter that has a large aperture that allows the entire multi-beam to pass through. is possible. Here, among the multiple beams, the beam closer to the outer circumference has a larger beam diameter at the crossover position, and leakage beams are more likely to occur during blanking deflection. Therefore, when reducing the number of beams, it is desirable to use the central beam array as much as possible. However, with such a method, it is not only difficult to shield the entire outer periphery of the multi-beam, but also difficult to shield both sides simultaneously.
特開2018-098242号公報JP2018-098242A
 本発明の一態様は、大電流量モードと小電流量モードとを選択的に切り換えることが可能なマルチビーム照射装置及び方法を提供する。 One aspect of the present invention provides a multi-beam irradiation device and method that can selectively switch between a large current amount mode and a small current amount mode.
 本発明の一態様のマルチ荷電粒子ビーム照射装置は、
 荷電粒子ビームのマルチビームアレイを形成する成形アパーチャアレイ基板と、
 マルチビームアレイの各ビームの少なくとも一部が通過可能な、複数の通過孔が形成され、複数の通過孔の一部の通過孔の形状が他の通過孔と異なる制限アパーチャアレイ基板と、
 マルチビームアレイと制限アパーチャアレイ基板との相対位置が変化するように、マルチビームの軌道中心軸と直交する方向に、成形アパーチャアレイ基板と、制限アパーチャアレイ基板と、マルチビームアレイと、の少なくともいずれかを移動させる機構と、
 マルチビームアレイのうち、移動によりマルチビームアレイとの相対位置を所定の位置とした制限アパーチャアレイ基板を通過したビームアレイを試料に照射する光学系と、
 を備えたことを特徴とする。
A multi-charged particle beam irradiation device according to one embodiment of the present invention includes:
a shaped aperture array substrate forming a multi-beam array of charged particle beams;
a limiting aperture array substrate formed with a plurality of passage holes through which at least a portion of each beam of the multi-beam array can pass, and a shape of some of the passage holes of the plurality of passage holes is different from that of other passage holes;
At least one of the shaping aperture array substrate, the limiting aperture array substrate, and the multibeam array is disposed in a direction perpendicular to the orbit center axis of the multibeams so that the relative position between the multibeam array and the limiting aperture array substrate changes. a mechanism for moving the
an optical system that irradiates a sample with a beam array of the multi-beam array that has passed through a limited aperture array substrate whose position relative to the multi-beam array is set at a predetermined position by movement;
It is characterized by having the following.
 本発明の一態様のマルチ荷電粒子ビーム照射方法は、
 複数の成形開口部が形成された成形アパーチャアレイによりマルチビームアレイを形成し、
 成形アパーチャアレイ基板と、マルチビームアレイの各ビームが通過可能な、複数の通過孔が形成され、複数の通過孔形状が領域毎に異なる制限アパーチャアレイ基板との相対位置が変化するように、マルチビームの軌道中心軸と直交する方向に成形アパーチャアレイ基板、制限アパーチャアレイ基板と、マルチビームアレイと、の少なくとも一方を移動させることにより、マルチビームアレイと制限アパーチャアレイ基板との相対位置を変動させ、
 マルチビームアレイのうち、移動によりマルチビームアレイとの相対位置を所定の位置とした制限アパーチャアレイ基板を通過したビームアレイを試料に照射する、
 ことを特徴とする。
A multi-charged particle beam irradiation method according to one embodiment of the present invention includes:
A multi-beam array is formed by a shaped aperture array in which a plurality of shaped openings are formed,
The multi-beam array is designed so that the relative position between the shaped aperture array substrate and the limiting aperture array substrate, in which a plurality of passage holes through which each beam of the multi-beam array can pass, is formed and the shape of the plurality of passage holes is different for each area changes. The relative position of the multi-beam array and the limiting aperture array substrate is varied by moving at least one of the shaping aperture array substrate, the limiting aperture array substrate, and the multi-beam array in a direction perpendicular to the center axis of the beam trajectory. ,
Of the multi-beam array, a beam array that has passed through a limited aperture array substrate whose position relative to the multi-beam array is set at a predetermined position by movement is irradiated onto the sample.
It is characterized by
 本発明の一態様によれば、大電流量モードと小電流量モードとを選択的に切り換えることが可能なマルチビーム照射ができる。 According to one aspect of the present invention, multi-beam irradiation that can be selectively switched between a large current amount mode and a small current amount mode is possible.
実施の形態1における描画装置の構成を示す概念図である。1 is a conceptual diagram showing the configuration of a drawing device in Embodiment 1. FIG. 実施の形態1における成形アパーチャアレイ基板の構成を示す概念図である。2 is a conceptual diagram showing the configuration of a molded aperture array substrate in Embodiment 1. FIG. 実施の形態1における制限アパーチャアレイ基板の構成を示す概念図である。2 is a conceptual diagram showing the configuration of a limited aperture array substrate in Embodiment 1. FIG. 実施の形態1における成形アパーチャアレイ基板と制限アパーチャアレイ基板との相対位置に応じたマルチビームの状態を説明するための図である。FIG. 3 is a diagram for explaining the state of multi-beams depending on the relative positions of the shaping aperture array substrate and the limiting aperture array substrate in the first embodiment. 実施の形態1における成形アパーチャアレイ基板と制限アパーチャアレイ基板との相対位置に応じたマルチビームの状態を説明するための図である。FIG. 3 is a diagram for explaining the state of multi-beams depending on the relative positions of the shaping aperture array substrate and the limiting aperture array substrate in the first embodiment. 実施の形態1における成形アパーチャアレイ基板と制限アパーチャアレイ基板との相対位置に応じたマルチビームの状態を説明するための図である。FIG. 3 is a diagram for explaining the state of multi-beams depending on the relative positions of the shaping aperture array substrate and the limiting aperture array substrate in the first embodiment. 実施の形態1における制限アパーチャアレイ基板の通過孔の形状と通過するビームアレイとの一例を示す図である。FIG. 3 is a diagram illustrating an example of the shape of a passage hole of a limited aperture array substrate and a beam array passing therethrough in the first embodiment. 実施の形態1における制限アパーチャアレイ基板の通過孔の形状と通過するビームアレイとの他の一例を示す図である。FIG. 7 is a diagram illustrating another example of the shape of the passage hole of the limited aperture array substrate and the beam array passing therethrough in the first embodiment. 実施の形態1における制限アパーチャアレイ基板の通過孔の形状と通過するビームアレイとの他の一例を示す図である。FIG. 7 is a diagram illustrating another example of the shape of the passage hole of the limited aperture array substrate and the beam array passing therethrough in the first embodiment. 実施の形態1におけるビームアレイ領域と通過領域との関係の一例を示す図である。3 is a diagram showing an example of the relationship between a beam array area and a passage area in Embodiment 1. FIG. 実施の形態1におけるビームアレイ領域のサブ領域と通過領域との関係テーブルの一例を示す図である。FIG. 3 is a diagram showing an example of a relationship table between sub-regions of the beam array region and passing regions in the first embodiment. 実施の形態1における制限アパーチャアレイ基板の通過孔の形状の一例を示す図である。3 is a diagram showing an example of the shape of a passage hole of a limited aperture array substrate in Embodiment 1. FIG. 実施の形態1における制限アパーチャアレイ基板の通過孔の形状の一例を示す図である。3 is a diagram showing an example of the shape of a passage hole of a limited aperture array substrate in Embodiment 1. FIG. 実施の形態1における制限アパーチャアレイ基板の通過孔の形状の一例を示す図である。3 is a diagram showing an example of the shape of a passage hole of a limited aperture array substrate in Embodiment 1. FIG. 実施の形態1における制限アパーチャアレイ基板の通過孔の形状の一例を示す図である。3 is a diagram showing an example of the shape of a passage hole of a limited aperture array substrate in Embodiment 1. FIG. 実施の形態1におけるビームアレイ領域と通過領域との関係の他の一例を示す図である。7 is a diagram showing another example of the relationship between the beam array area and the passage area in the first embodiment. FIG. 実施の形態1におけるビームアレイ領域のサブ領域と通過領域との関係テーブルの他の一例を示す図である。7 is a diagram illustrating another example of a relationship table between sub-regions of the beam array region and passage regions in Embodiment 1. FIG. 実施の形態1における制限アパーチャアレイ基板の通過孔の形状の他の一例を示す図である。7 is a diagram showing another example of the shape of the passage hole of the limited aperture array substrate in the first embodiment. FIG. 実施の形態1における制限アパーチャアレイ基板の通過孔の形状の他の一例を示す図である。7 is a diagram showing another example of the shape of the passage hole of the limited aperture array substrate in the first embodiment. FIG. 実施の形態1における制限アパーチャアレイ基板の通過孔の形状の他の一例を示す図である。7 is a diagram showing another example of the shape of the passage hole of the limited aperture array substrate in the first embodiment. FIG. 実施の形態1におけるブランキングアパーチャアレイ機構のメンブレン領域内の構成の一部を示す上面概念図である。FIG. 3 is a conceptual top view showing a part of the configuration within the membrane region of the blanking aperture array mechanism in Embodiment 1. FIG. 実施の形態1における描画される領域の一例を説明するための概念図である。FIG. 3 is a conceptual diagram for explaining an example of a region to be drawn in the first embodiment. 実施の形態1におけるマルチビームの照射領域と描画対象画素との一例を示す図である。FIG. 3 is a diagram showing an example of a multi-beam irradiation area and pixels to be drawn in the first embodiment. 実施の形態2における制限アパーチャアレイ基板の構成を示す概念図である。FIG. 3 is a conceptual diagram showing the configuration of a limited aperture array substrate in Embodiment 2. FIG. 実施の形態2における成形アパーチャアレイ基板と制限アパーチャアレイ基板との相対位置に応じたマルチビームの状態を説明するための図である。FIG. 7 is a diagram for explaining the state of multi-beams depending on the relative positions of the shaping aperture array substrate and the limiting aperture array substrate in Embodiment 2; 実施の形態2における成形アパーチャアレイ基板と制限アパーチャアレイ基板との相対位置に応じたマルチビームの状態を説明するための図である。FIG. 7 is a diagram for explaining the state of multi-beams depending on the relative positions of the shaping aperture array substrate and the limiting aperture array substrate in Embodiment 2;
 以下、実施の形態では、荷電粒子ビームの一例として、電子ビームを用いた構成について説明する。但し、荷電粒子ビームは、電子ビームに限るものではなく、イオンビーム等の荷電粒子を用いたビームでも構わない。また、マルチ荷電粒子ビーム照射装置の一例として、マルチ電子ビーム描画装置について説明する。照射装置は描画装置に限るものではなく、露光装置、若しくは検査装置等であっても良い。 In the following embodiments, a configuration using an electron beam as an example of a charged particle beam will be described. However, the charged particle beam is not limited to an electron beam, and may be a beam using charged particles such as an ion beam. Furthermore, a multi-electron beam lithography system will be described as an example of a multi-charged particle beam irradiation system. The irradiation device is not limited to a drawing device, but may be an exposure device, an inspection device, or the like.
[実施の形態1]
 図1は、実施の形態1における描画装置の構成を示す概念図である。図1において、描画装置100は、描画機構150と制御系回路160を備えている。描画装置100は、マルチ荷電粒子ビーム描画装置の一例であると共に、マルチ荷電粒子ビーム照射装置の一例である。描画機構150は、電子鏡筒102(電子ビームカラム)と描画室103を備えている。電子鏡筒102内には、電子銃201、照明レンズ202、成形アパーチャアレイ基板203、制限アパーチャアレイ基板212、ブランキングアパーチャアレイ機構204、縮小レンズ205、制限アパーチャ基板206、対物レンズ207、主偏向器208、副偏向器209、及び駆動回路214が配置されている。描画室103内には、XYステージ105が配置される。XYステージ105上には、描画時(露光時)には描画対象基板となるマスク等の試料101が配置される。試料101には、半導体装置を製造する際の露光用マスク、或いは、半導体装置が製造される半導体基板(シリコンウェハ)等が含まれる。また、試料101には、レジストが塗布された、まだ何も描画されていないマスクブランクスが含まれる。XYステージ105上には、さらに、XYステージ105の位置測定用のミラー210が配置される。
[Embodiment 1]
FIG. 1 is a conceptual diagram showing the configuration of a drawing apparatus in the first embodiment. In FIG. 1, a drawing apparatus 100 includes a drawing mechanism 150 and a control system circuit 160. The drawing apparatus 100 is an example of a multi-charged particle beam drawing apparatus, and also an example of a multi-charged particle beam irradiation apparatus. The drawing mechanism 150 includes an electron lens barrel 102 (electron beam column) and a drawing chamber 103. Inside the electron lens barrel 102, there are an electron gun 201, an illumination lens 202, a shaped aperture array substrate 203, a limiting aperture array substrate 212, a blanking aperture array mechanism 204, a reduction lens 205, a limiting aperture substrate 206, an objective lens 207, and a main deflector. A deflector 208, a sub-deflector 209, and a drive circuit 214 are arranged. An XY stage 105 is arranged inside the drawing chamber 103. On the XY stage 105, a sample 101 such as a mask, which becomes a substrate to be drawn during drawing (during exposure), is arranged. The sample 101 includes an exposure mask used in manufacturing a semiconductor device, a semiconductor substrate (silicon wafer) on which a semiconductor device is manufactured, and the like. Further, the sample 101 includes a mask blank coated with resist but on which nothing has been drawn yet. A mirror 210 for position measurement of the XY stage 105 is further arranged on the XY stage 105.
 制御系回路160は、制御計算機110、メモリ112、偏向制御回路130、アパーチャアレイ制御回路131、デジタル・アナログ変換(DAC)アンプユニット132,134、レンズ制御回路136、ステージ制御機構138、ステージ位置測定器139及び磁気ディスク装置等の記憶装置140,142を有している。制御計算機110、メモリ112、偏向制御回路130、アパーチャアレイ制御回路131、レンズ制御回路136、ステージ制御機構138、ステージ位置測定器139及び記憶装置140,142は、図示しないバスを介して互いに接続されている。偏向制御回路130には、DACアンプユニット132,134及びブランキングアパーチャアレイ機構204が接続されている。副偏向器209は、4極以上の電極により構成され、電極毎にDACアンプ132を介して偏向制御回路130により制御される。主偏向器208は、4極以上の電極により構成され、電極毎にDACアンプ134を介して偏向制御回路130により制御される。レンズ制御回路136には、照明レンズ202、縮小レンズ205、及び対物レンズ207が接続され、それぞれ制御される。ステージ位置測定器139は、ミラー210からの反射光を受光することによって、レーザ干渉法の原理でXYステージ105の位置を測長する。アパーチャアレイ制御回路131には、駆動回路214が接続される。駆動回路214は、成形アパーチャアレイ基板203と制限アパーチャアレイ基板212との少なくとも一方を移動させる。図1の例では、駆動回路214が制限アパーチャアレイ基板212を移動させる場合について示している。 The control system circuit 160 includes a control computer 110, a memory 112, a deflection control circuit 130, an aperture array control circuit 131, digital-to-analog conversion (DAC) amplifier units 132 and 134, a lens control circuit 136, a stage control mechanism 138, and a stage position measurement circuit. 139 and storage devices 140 and 142 such as magnetic disk devices. The control computer 110, memory 112, deflection control circuit 130, aperture array control circuit 131, lens control circuit 136, stage control mechanism 138, stage position measuring device 139, and storage devices 140, 142 are connected to each other via a bus (not shown). ing. The deflection control circuit 130 is connected to DAC amplifier units 132 and 134 and a blanking aperture array mechanism 204. The sub-deflector 209 is composed of four or more electrodes, and each electrode is controlled by the deflection control circuit 130 via the DAC amplifier 132. The main deflector 208 is composed of four or more electrodes, and each electrode is controlled by the deflection control circuit 130 via a DAC amplifier 134. The illumination lens 202, the reduction lens 205, and the objective lens 207 are connected to the lens control circuit 136 and controlled respectively. The stage position measuring device 139 measures the position of the XY stage 105 using the principle of laser interferometry by receiving the reflected light from the mirror 210. A drive circuit 214 is connected to the aperture array control circuit 131 . Drive circuit 214 moves at least one of shaping aperture array substrate 203 and limiting aperture array substrate 212. The example in FIG. 1 shows a case where the drive circuit 214 moves the limited aperture array substrate 212.
 制御計算機110内には、ショットデータ生成部62、データ加工部64、モード選択部66、転送制御部79、及び描画制御部80が配置されている。ショットデータ生成部62、データ加工部64、モード選択部66、転送制御部79、及び描画制御部80といった各「~部」は、処理回路を有する。かかる処理回路は、例えば、電気回路、コンピュータ、プロセッサ、回路基板、量子回路、或いは、半導体装置を含む。各「~部」は、共通する処理回路(同じ処理回路)を用いても良いし、或いは異なる処理回路(別々の処理回路)を用いても良い。ショットデータ生成部62、データ加工部64、モード選択部66、転送制御部79、及び描画制御部80に入出力される情報および演算中の情報はメモリ112にその都度格納される。 Inside the control computer 110, a shot data generation section 62, a data processing section 64, a mode selection section 66, a transfer control section 79, and a drawing control section 80 are arranged. Each of the "sections" such as the shot data generation section 62, the data processing section 64, the mode selection section 66, the transfer control section 79, and the drawing control section 80 has a processing circuit. Such processing circuits include, for example, electrical circuits, computers, processors, circuit boards, quantum circuits, or semiconductor devices. Each "~ section" may use a common processing circuit (the same processing circuit) or may use different processing circuits (separate processing circuits). Information input/output to/from the shot data generation section 62, data processing section 64, mode selection section 66, transfer control section 79, and drawing control section 80 and information being calculated are stored in the memory 112 each time.
 描画装置100の描画動作は、描画制御部80によって制御される。また、各ショットの照射時間データの偏向制御回路130への転送処理は、転送制御部79によって制御される。 The drawing operation of the drawing device 100 is controlled by the drawing control unit 80. Further, the process of transferring the irradiation time data of each shot to the deflection control circuit 130 is controlled by the transfer control unit 79.
 また、描画装置100の外部からチップデータ(描画データ)が入力され、記憶装置140に格納される。チップデータには、描画されるためのチップを構成する複数の図形パターンの情報が定義される。具体的には、図形パターン毎に、例えば、図形コード、座標、及びサイズ等が定義される。 Additionally, chip data (drawing data) is input from outside the drawing apparatus 100 and stored in the storage device 140. The chip data defines information on a plurality of graphic patterns that constitute a chip to be drawn. Specifically, for example, a graphic code, coordinates, size, etc. are defined for each graphic pattern.
 ここで、図1では、実施の形態1を説明する上で必要な構成を記載している。描画装置100にとって、通常、必要なその他の構成を備えていても構わない。 Here, FIG. 1 shows the configuration necessary for explaining the first embodiment. The drawing apparatus 100 may normally include other necessary configurations.
 図2は、実施の形態1における成形アパーチャアレイ基板の構成を示す概念図である。図2において、成形アパーチャアレイ基板203には、横(x方向)p列×縦(y方向)q段(p,q≧2)の開口部(成形開口部)22が所定の配列ピッチでマトリクス状に形成されている。図2の例では、例えば、横縦(x,y方向)に8列×7段の開口部22が形成される場合を示している。開口部22の数は、これに限るものではない。例えば、512列×512段の開口部22が形成される場合であっても構わない。各開口部22は、共に同じ寸法形状の矩形で形成される。或いは、同じ直径の円形であっても構わない。これらの複数の開口部22を電子ビーム200の一部がそれぞれ通過することで、マルチビーム20が形成されることになる。言い換えれば、成形アパーチャアレイ基板203は、マルチビーム20を形成する。 FIG. 2 is a conceptual diagram showing the configuration of the molded aperture array substrate in the first embodiment. In FIG. 2, a molded aperture array substrate 203 has openings (molded openings) 22 arranged in a matrix of p columns horizontally (x direction) x q stages vertically (y direction) (p, q≧2) at a predetermined arrangement pitch. It is formed in the shape of The example in FIG. 2 shows a case where, for example, the openings 22 are formed in eight rows and seven stages in the horizontal and vertical directions (x, y directions). The number of openings 22 is not limited to this. For example, the openings 22 may be formed in 512 rows and 512 stages. Each opening 22 is formed in a rectangular shape with the same size and shape. Alternatively, they may be circular with the same diameter. A multi-beam 20 is formed by a portion of the electron beam 200 passing through each of the plurality of apertures 22 . In other words, shaped aperture array substrate 203 forms multiple beams 20 .
 図3は、実施の形態1における制限アパーチャアレイ基板の構成を示す概念図である。図3において、制限アパーチャアレイ基板212には、マルチビーム20のビーム本数と同じ数の複数の通過孔21,23が形成される。複数の通過孔21,23は、制限アパーチャアレイ基板212上でのマルチビーム20のビームピッチ(Px,Py)で配列される各位置(起点)において、ビームが通過可能に形成される。図3において、複数の通過孔の一部の通過孔23の形状が他の通過孔21とは異なる。図3の例では、マルチビーム20の複数の通過孔のうち、中央部のビームアレイ用の中央部の複数の通過孔23の形状が、周囲のビーム群用の周囲の複数の通過孔21の形状とは異なる。基本形となる複数の通過孔21の形状として、例えば、1ビームサイズ+マージン分のサイズの正方形が用いられる。これに対して、異形となる複数の通過孔23の形状として、例えば、x方向に横長の長方形が用いられる。長方形の長手方向(x方向)の長さは、各ビームのx方向のサイズの2倍以上になるように形成される。例えば、基本形のサイズに対してさらに+x方向に1ビームサイズ+マージン分が加算されたサイズの長方形が用いられる。言い換えれば、複数の通過孔は、中央部に形成される通過孔23の面積が、外周部に形成される通過孔21の面積よりも大きく形成される。 FIG. 3 is a conceptual diagram showing the configuration of the limited aperture array substrate in the first embodiment. In FIG. 3, a plurality of passage holes 21 and 23, the same number as the number of beams of the multi-beam 20, are formed in a limited aperture array substrate 212. The plurality of passage holes 21 and 23 are formed at each position (starting point) arranged at the beam pitch (Px, Py) of the multi-beam 20 on the limited aperture array substrate 212 so that the beam can pass therethrough. In FIG. 3, the shape of some of the plurality of passage holes 23 is different from that of the other passage holes 21. In FIG. In the example of FIG. 3, among the plurality of passage holes of the multi-beam 20, the shape of the plurality of central passage holes 23 for the central beam array is different from the shape of the plurality of peripheral passage holes 21 for the peripheral beam groups. It differs from the shape. As the basic shape of the plurality of passage holes 21, for example, a square having a size equal to one beam size plus a margin is used. On the other hand, as the shape of the plurality of irregularly shaped passage holes 23, for example, a rectangle that is laterally elongated in the x direction is used. The length of the rectangle in the longitudinal direction (x direction) is formed to be at least twice the size of each beam in the x direction. For example, a rectangle whose size is the size of the basic shape plus one beam size plus a margin in the +x direction is used. In other words, in the plurality of passage holes, the area of the passage hole 23 formed in the center portion is larger than the area of the passage hole 21 formed in the outer peripheral portion.
 次に、描画機構150の動作の具体例について説明する。電子銃201(放出源)から放出された電子ビーム200は、照明レンズ202によりほぼ垂直に成形アパーチャアレイ基板203全体を照明する。成形アパーチャアレイ基板203には、矩形の複数の開口部22が形成され、電子ビーム200は、すべての複数の開口部22が含まれる領域を照明する。複数の開口部22の位置に照射された電子ビーム200の各一部が、かかる成形アパーチャアレイ基板203の複数の開口部22をそれぞれ通過することによって、例えば矩形形状のマルチビーム(複数の電子ビーム)20が形成される。成形アパーチャアレイ基板203を通過したマルチビーム20は、制限アパーチャアレイ基板212に進む。駆動機構214は、試料101に照射されるビームアレイの電流量の異なる複数のモードとのうち、選択されるモードに応じて、成形アパーチャアレイ基板203と制限アパーチャアレイ基板212との相対位置が変化するように、マルチビーム20の軌道中心軸と直交する方向に成形アパーチャアレイ基板203と制限アパーチャアレイ基板212との少なくとも一方を移動させる。 Next, a specific example of the operation of the drawing mechanism 150 will be described. An electron beam 200 emitted from an electron gun 201 (emission source) illuminates the entire shaped aperture array substrate 203 almost vertically by an illumination lens 202. A plurality of rectangular openings 22 are formed in the shaped aperture array substrate 203, and the electron beam 200 illuminates a region including all the plurality of openings 22. Each part of the electron beam 200 irradiated to the positions of the plurality of openings 22 passes through the plurality of openings 22 of the shaped aperture array substrate 203, so that, for example, a rectangular multi-beam (multiple electron beams) is formed. ) 20 are formed. After passing through the shaping aperture array substrate 203, the multibeam 20 advances to the limiting aperture array substrate 212. The drive mechanism 214 changes the relative position of the shaping aperture array substrate 203 and the limiting aperture array substrate 212 depending on the mode selected from among a plurality of modes in which the beam array irradiates the sample 101 with different amounts of current. At least one of the shaping aperture array substrate 203 and the limiting aperture array substrate 212 is moved in a direction perpendicular to the orbit center axis of the multi-beam 20 so as to move.
 図4Aから図4Cは、実施の形態1における成形アパーチャアレイ基板と制限アパーチャアレイ基板との相対位置に応じたマルチビームの状態を説明するための図である。駆動機構214が成形アパーチャアレイ基板203と制限アパーチャアレイ基板212との少なくとも一方を移動させることによって、制限アパーチャアレイ基板212は、成形アパーチャアレイ基板203と制限アパーチャアレイ基板212との相対位置に応じて、マルチビーム20全体とマルチビーム20全体のうちの一部のビームアレイとの一方を選択的に通過させる。図4Aの例では、マルチビーム20全体を選択的に通過させる場合を示している。図4Aの例では、成形アパーチャアレイ基板203の複数の開口部22を通過したマルチビーム200のすべてのビーム13が、制限アパーチャアレイ基板212の複数の通過孔21,23のいずれかの通過孔内の領域の位置と重なる場合を示している。図4Aの例では、マルチビーム20のすべてのビーム13が、制限アパーチャアレイ基板212を通過できる。言い換えれば、大電流量のビームアレイで試料101が照射される。 FIGS. 4A to 4C are diagrams for explaining the state of the multi-beam according to the relative positions of the shaping aperture array substrate and the limiting aperture array substrate in the first embodiment. By the driving mechanism 214 moving at least one of the shaped aperture array substrate 203 and the limiting aperture array substrate 212, the limiting aperture array substrate 212 is moved according to the relative position of the shaped aperture array substrate 203 and the limiting aperture array substrate 212. , selectively passes either the entire multi-beam 20 or a part of the beam array of the entire multi-beam 20. The example in FIG. 4A shows a case where the entire multi-beam 20 is selectively passed through. In the example of FIG. 4A, all the beams 13 of the multi-beam 200 that have passed through the plurality of apertures 22 of the shaped aperture array substrate 203 are inside any one of the plurality of passage holes 21 and 23 of the limiting aperture array substrate 212. This shows the case where the area overlaps with the position of the area. In the example of FIG. 4A, all beams 13 of multi-beam 20 are allowed to pass through restricted aperture array substrate 212. In other words, the sample 101 is irradiated with a beam array with a large amount of current.
 図4Bの例では、駆動機構214が成形アパーチャアレイ基板203と制限アパーチャアレイ基板212との少なくとも一方を移動させることによって、制限アパーチャアレイ基板212は、マルチビーム20のサイズを可変成形する。図4Bの例では、例えば、制限アパーチャアレイ基板212をマルチビーム20の軌道中心軸に直交する方向に移動させることにより、成形アパーチャアレイ基板203の複数の開口部22を通過したマルチビーム200の各ビーム13が、制限アパーチャアレイ基板212の複数の通過孔21,23とそれぞれ一部ずつ重なるように相対位置をずらした場合を示している。これにより、図4Bの例では、各ビーム13が、複数の通過孔21,23の左上の角部と重なり、各ビーム13の一部がそれぞれ制限アパーチャアレイ基板212を通過できる。言い換えれば、成形アパーチャアレイ基板203によって成形されたマルチビーム20が、制限アパーチャアレイ基板212によって、ビームサイズが小さくなるように成形し直される(2段成形される)。図4Bの例では、2段成形により、マルチビーム20のビームサイズを例えば1/4にできる。成形アパーチャアレイ基板203と制限アパーチャアレイ基板212との相対位置の関係を調整することで各ビーム13を可変成形できる。これにより、マルチビーム20の各ビームのビームサイズを小さくできる。よって、マルチビーム20の全電流量を小さくできる。 In the example of FIG. 4B, the driving mechanism 214 moves at least one of the shaping aperture array substrate 203 and the limiting aperture array substrate 212, so that the limiting aperture array substrate 212 variably shapes the size of the multibeam 20. In the example of FIG. 4B, for example, each of the multibeams 200 that has passed through the plurality of openings 22 of the shaping aperture array substrate 203 is A case is shown in which the relative position of the beam 13 is shifted so that it partially overlaps each of the plurality of passage holes 21 and 23 of the limiting aperture array substrate 212. As a result, in the example of FIG. 4B, each beam 13 overlaps with the upper left corner of the plurality of passage holes 21 and 23, and a portion of each beam 13 can pass through the limiting aperture array substrate 212, respectively. In other words, the multi-beam 20 shaped by the shaping aperture array substrate 203 is reshaped by the limiting aperture array substrate 212 so that the beam size becomes smaller (two-stage shaping). In the example of FIG. 4B, the beam size of the multi-beam 20 can be reduced to 1/4, for example, by two-stage forming. By adjusting the relative positional relationship between the shaping aperture array substrate 203 and the limiting aperture array substrate 212, each beam 13 can be variably shaped. Thereby, the beam size of each beam of the multi-beam 20 can be reduced. Therefore, the total amount of current flowing through the multi-beam 20 can be reduced.
 図4Cの例では、駆動機構214が成形アパーチャアレイ基板203と制限アパーチャアレイ基板212との少なくとも一方を移動させることによって、制限アパーチャアレイ基板212は、成形アパーチャアレイ基板203と制限アパーチャアレイ基板212との相対位置に応じて、マルチビーム20全体のうちの一部のビームアレイを選択的に通過させる場合を示している。制限アパーチャアレイ基板212は、かかる一部のビームアレイを通過させる場合に、マルチビーム20全体のうち中央部のビームアレイを通過させる。図4Cの例では、例えば、制限アパーチャアレイ基板212をx方向にマルチビーム20のビームサイズよりも大きくずらした場合を示している。これにより、図4Cの例では、成形アパーチャアレイ基板203の複数の開口部22を通過したマルチビーム200のうち、制限アパーチャアレイ基板212のx方向に横長の通過孔23に対応するビーム13は通過孔23を通過できる。しかし、正方形の通過孔21に対応するビーム13は通過孔21から位置が外れるため制限アパーチャアレイ基板212によって遮蔽される。図4Cの例では、マルチビーム200のうち、中央部のビームアレイはそれぞれ通過孔23を通過できる。しかし、周辺部のビーム群は通過孔21を通過できずに遮蔽される。これにより、マルチビーム20のビーム本数を少なくすることができる。図4Cの例では、8×7本のビームアレイを4×5本のビームアレイに制限できる。よって、マルチビーム20の全電流量を小さくできる。さらに、中央部のビームアレイを選択的に抽出できる。 In the example of FIG. 4C, the drive mechanism 214 moves at least one of the shaped aperture array substrate 203 and the limiting aperture array substrate 212, so that the limiting aperture array substrate 212 moves between the shaped aperture array substrate 203 and the limiting aperture array substrate 212. A case is shown in which a part of the beam array of the entire multi-beam 20 is selectively passed according to the relative position of the beam array. The limiting aperture array substrate 212 allows the central beam array of the entire multi-beam 20 to pass, when such a part of the beam array passes. The example of FIG. 4C shows a case where, for example, the limited aperture array substrate 212 is shifted in the x direction by a larger amount than the beam size of the multi-beam 20. As a result, in the example of FIG. 4C, among the multi-beams 200 that have passed through the plurality of openings 22 of the shaped aperture array substrate 203, the beam 13 corresponding to the horizontally elongated passage hole 23 in the x direction of the limited aperture array substrate 212 passes through. It can pass through the hole 23. However, since the beam 13 corresponding to the square passage hole 21 is out of position from the passage hole 21, it is blocked by the limiting aperture array substrate 212. In the example of FIG. 4C, among the multi-beams 200, the central beam arrays can each pass through the passage holes 23. However, the beam group at the periphery cannot pass through the passage hole 21 and is blocked. Thereby, the number of beams of the multi-beam 20 can be reduced. In the example of FIG. 4C, the 8x7 beam array can be limited to a 4x5 beam array. Therefore, the total amount of current flowing through the multi-beam 20 can be reduced. Furthermore, the central beam array can be selectively extracted.
 上述したマルチビームの状態は、成形アパーチャアレイ基板203と制限アパーチャアレイ基板212の少なくとも一方を駆動回路214により移動させることにより達成できる。上述した例では、制限アパーチャアレイ基板212を通過するビームアレイをマルチビーム200全体の場合とマルチビーム200の中央部のビームアレイとの2つのグループのいずれか1つを選択する場合を説明した。制限アパーチャアレイ基板212における異形の通過孔の形状をさらに細分化することで、選択可能なビームアレイのグループをさらに増やすことができる。なお、駆動機構214により機械的に成形アパーチャアレイ基板203と制限アパーチャアレイ基板212との相対位置を変化させているが、駆動機構214により電子ビーム200を偏向させることによって、相対位置を変えてもよい。 The multi-beam state described above can be achieved by moving at least one of the shaping aperture array substrate 203 and the limiting aperture array substrate 212 using the drive circuit 214. In the above example, a case has been described in which one of two groups is selected as the beam array passing through the limited aperture array substrate 212: the entire multi-beam 200 and the central beam array of the multi-beam 200. By further subdividing the shapes of the irregularly shaped passage holes in the limited aperture array substrate 212, the number of selectable beam array groups can be further increased. Note that although the drive mechanism 214 mechanically changes the relative position between the shaping aperture array substrate 203 and the limiting aperture array substrate 212, it is also possible to change the relative position by deflecting the electron beam 200 using the drive mechanism 214. good.
 図5は、実施の形態1における制限アパーチャアレイ基板の通過孔の形状と通過するビームアレイとの一例を示す図である。図5の例では、制限アパーチャアレイ基板212上に照射される512×512本のマルチビーム20のうち中央部の例えば256×256本のビームアレイが通過する領域から領域R1と、中央部の例えば384×384本のビームアレイが通過する領域から領域R1を除いた領域R2と、領域R2を取り囲む残りの領域R3と、の3つのグループに、制限アパーチャアレイ基板212上のビームアレイ領域を分ける。512×512本のマルチビーム20が照射される制限アパーチャアレイ基板212上のビームピッチで配列された各位置を起点として、起点から、例えば、-x方向に1ビームサイズ+マージン分だけ相対的に照射位置がずれた位置を384×384本のビームアレイに制限する位置に設定する。起点から、例えば、+x方向に1ビームサイズ+マージン分だけ相対的に照射位置がずれた位置を256×256本のビームアレイに制限する位置に設定する。領域R1に形成される256×256個の通過孔23bについては、ビームピッチで配列された起点と、起点から-x方向に1ビームサイズ+マージン分だけ相対的に照射位置がずれた位置と、起点から+x方向に1ビームサイズ+マージン分だけ相対的に照射位置がずれた位置とのすべてにおいて、ビームが通過可能な形状に形成される。ここでは、x方向に(1ビームサイズ+マージン)の3倍以上の長さの長方形に形成される。領域R2に形成される各通過孔23aについては、ビームピッチで配列された起点と、-x方向に1ビームサイズ+マージン分だけ相対的に照射位置がずれた位置とにおいて、ビームが通過可能であって、+x方向に1ビームサイズ+マージン分だけ相対的に照射位置がずれた位置ではビームが通過できない形状に形成される。ここでは、各通過孔23aは、x方向に(1ビームサイズ+マージン)の2倍以上の長さであって通過孔23bよりも短い長さの長方形に形成される。領域R3に形成される各通過孔21については、ビームピッチで配列された起点でだけでビームが通過可能な形状に形成される。ここでは、各通過孔21は、例えば(1ビームサイズ+マージン)のサイズの正方形に形成される。なお、各通過孔21,23a,23bのy方向のサイズは1ビームサイズ+マージンの同じサイズで形成されればよい。図5の例では、成形アパーチャアレイ基板203を通過した512×512本のマルチビーム20のすべてのビーム13が、それぞれの領域の対応する通過孔21(23a或いは23b)を通過可能な位置に制限アパーチャアレイ基板212が調整されている場合を示している。 FIG. 5 is a diagram showing an example of the shape of the passage hole of the limited aperture array substrate and the beam array passing through in the first embodiment. In the example of FIG. 5, a region R1 is defined from a region through which, for example, a 256×256 beam array in the center of the 512×512 multibeams 20 irradiated onto the limited aperture array substrate 212; The beam array area on the limited aperture array substrate 212 is divided into three groups: a region R2 excluding the region R1 from the region through which the 384×384 beam array passes, and a remaining region R3 surrounding the region R2. Starting from each position arranged at the beam pitch on the limited aperture array substrate 212 where the 512 x 512 multi-beams 20 are irradiated, from the starting point, for example, relative to the -x direction by one beam size + margin. The shifted position of the irradiation position is set to a position that limits the beam array to 384 x 384 beams. For example, a position where the irradiation position is relatively shifted by one beam size + margin in the +x direction from the starting point is set as a position that limits the beam array to 256 x 256 beams. Regarding the 256×256 passage holes 23b formed in the region R1, a starting point arranged at the beam pitch, a position where the irradiation position is relatively shifted by one beam size + margin from the starting point in the -x direction, The beam is formed into a shape that allows the beam to pass through all positions where the irradiation position is relatively shifted by one beam size + margin in the +x direction from the starting point. Here, it is formed into a rectangle with a length more than three times (1 beam size + margin) in the x direction. Regarding each passage hole 23a formed in region R2, the beam can pass between the starting points arranged at the beam pitch and the position where the irradiation position is relatively shifted by one beam size + margin in the -x direction. Therefore, the beam is formed in such a shape that the beam cannot pass through the position where the irradiation position is relatively shifted by one beam size + margin in the +x direction. Here, each passage hole 23a is formed in a rectangular shape having a length in the x direction that is more than twice (1 beam size + margin) and shorter than the passage hole 23b. Each passage hole 21 formed in the region R3 is formed in a shape that allows the beam to pass only at the starting points arranged at the beam pitch. Here, each passage hole 21 is formed into a square with a size of (1 beam size + margin), for example. Note that the size of each of the passage holes 21, 23a, and 23b in the y direction may be the same size as 1 beam size+margin. In the example of FIG. 5, all beams 13 of the 512×512 multi-beams 20 that have passed through the shaped aperture array substrate 203 are restricted to positions where they can pass through the corresponding passage holes 21 (23a or 23b) in each area. A case is shown in which the aperture array substrate 212 is being adjusted.
 図6は、実施の形態1における制限アパーチャアレイ基板の通過孔の形状と通過するビームアレイとの他の一例を示す図である。図5に示した状態から、制限アパーチャアレイ基板212上での各ビームの照射位置が-x方向に1ビームサイズ+マージン分だけ相対的にずれた位置、すわなち、制限アパーチャアレイ基板212をx方向に1ビームサイズ+マージン分だけ移動させた状態を示す。或いは、成形アパーチャアレイ基板203を-x方向に1ビームサイズ+マージン分だけ移動させた場合であっても良い。或いは、制限アパーチャアレイ基板212をx方向に(1ビームサイズ+マージン分)×L(但し、Lは、0<L<1)だけ移動させると共に、成形アパーチャアレイ基板203を-x方向に(1ビームサイズ+マージン分)×(1-L)だけ移動させた場合であっても良い。これにより、領域R3では、通過孔21の位置がビーム13の位置から外れるので、領域R3の各ビーム13は制限アパーチャアレイ基板212によって遮蔽される。領域R1,R2では、通過孔23b,23aがビーム13を通過孔内に含む位置なので、領域R1,R2の各ビーム13は制限アパーチャアレイ基板212を通過する。よって、512×512本のマルチビーム20を中央部の384×384本のビームアレイに制限できる。 FIG. 6 is a diagram showing another example of the shape of the passage hole of the limited aperture array substrate and the beam array passing through in the first embodiment. From the state shown in FIG. 5, the irradiation position of each beam on the limiting aperture array substrate 212 is shifted in the -x direction by one beam size + margin, that is, the limiting aperture array substrate 212 is shifted relative to the position shown in FIG. A state in which the beam is moved by one beam size + margin in the x direction is shown. Alternatively, the shaped aperture array substrate 203 may be moved in the -x direction by one beam size plus a margin. Alternatively, the limiting aperture array substrate 212 is moved in the x direction by (1 beam size + margin) x L (where L is 0<L<1), and the shaping aperture array substrate 203 is moved in the -x direction by (1 beam size + margin) x L (where L is 0<L<1). It is also possible to move by beam size + margin) x (1-L). As a result, in the region R3, the position of the passage hole 21 deviates from the position of the beam 13, so each beam 13 in the region R3 is blocked by the limiting aperture array substrate 212. In regions R1 and R2, each beam 13 in regions R1 and R2 passes through the limiting aperture array substrate 212 because the passage holes 23b and 23a are in positions that include the beams 13 within the passage holes. Therefore, the 512 x 512 multi-beams 20 can be limited to the 384 x 384 beam array in the center.
 また、図5に示した状態から、制限アパーチャアレイ基板212上での各ビームの照射位置がx方向に1ビームサイズ+マージン分だけ相対的にずれた位置、すわなち、制限アパーチャアレイ基板212を-x方向に1ビームサイズ+マージン分だけ移動させた場合、領域R3,R2では、通過孔21,23aの位置がビーム13の位置から外れるので、領域R3,R2の各ビーム13は制限アパーチャアレイ基板212によって遮蔽される。領域R1では、通過孔23bがビーム13を通過孔内に含む位置なので、領域R1の各ビーム13は制限アパーチャアレイ基板212を通過する。或いは、成形アパーチャアレイ基板203を+x方向に1ビームサイズ+マージン分だけ移動させた場合であっても良い。或いは、制限アパーチャアレイ基板212を-x方向に(1ビームサイズ+マージン分)×L(但し、Lは、0<L<1)だけ移動させると共に、成形アパーチャアレイ基板203を+x方向に(1ビームサイズ+マージン分)×(1-L)だけ移動させた場合であっても良い。これにより、512×512本のマルチビーム20を中央部の256×256本のビームアレイに制限できる。 Further, from the state shown in FIG. 5, the irradiation position of each beam on the limiting aperture array substrate 212 is relatively shifted in the x direction by one beam size + margin, that is, the limiting aperture array substrate 212 When moved in the -x direction by one beam size + margin, the positions of the passage holes 21 and 23a are moved from the position of the beam 13 in the regions R3 and R2, so each beam 13 in the regions R3 and R2 has a limiting aperture. It is shielded by the array substrate 212. In region R1, each beam 13 in region R1 passes through limiting aperture array substrate 212 because the passage hole 23b is at a position that includes the beam 13 within the passage hole. Alternatively, the shaped aperture array substrate 203 may be moved in the +x direction by one beam size + margin. Alternatively, the limiting aperture array substrate 212 is moved in the −x direction by (1 beam size + margin)×L (where L is 0<L<1), and the shaping aperture array substrate 203 is moved in the +x direction by (1 beam size + margin)×L (where L is 0<L<1). It is also possible to move by beam size + margin) x (1-L). Thereby, the 512 x 512 multi-beams 20 can be limited to the 256 x 256 beam array in the center.
 上述した図5及び図6の例では、制限アパーチャアレイ基板212(或いは成形アパーチャアレイ基板203)をx方向に移動させることにより、制限アパーチャアレイ基板212を通過するビームアレイをマルチビーム200全体の場合と中央部の384×384本のビームアレイの場合と中央部の256×256本のビームアレイとの3つのグループのいずれか1つを選択可能な場合を説明した。制限アパーチャアレイ基板212における異形の通過孔の形状をさらに改良することで、選択可能なビームアレイのグループをさらに増やすことができる。 In the examples of FIGS. 5 and 6 described above, by moving the limiting aperture array substrate 212 (or the shaped aperture array substrate 203) in the x direction, the beam array passing through the limiting aperture array substrate 212 is changed to the case of the entire multi-beam 200. A case has been described in which one of three groups can be selected: a 384×384 beam array in the center, and a 256×256 beam array in the center. By further improving the shape of the irregularly shaped passage holes in the limited aperture array substrate 212, the number of selectable beam array groups can be further increased.
 図7は、実施の形態1における制限アパーチャアレイ基板の通過孔の形状と通過するビームアレイとの他の一例を示す図である。図7では、制限アパーチャアレイ基板212(或いは成形アパーチャアレイ基板203)をx,y方向に移動させることにより、制限アパーチャアレイ基板212を通過するビームアレイを5つのグループのいずれか1つを選択可能にする。図7の例では、制限アパーチャアレイ基板212上に照射される512×512本のマルチビーム20のうち中央部の例えば128×128本のビームアレイが通過する領域r1と、中央部の例えば256×256本のビームアレイが通過する領域から領域r1を除いた領域r2と、中央部の例えば384×384本のビームアレイが通過する領域から領域r1,r2を除いた領域r3と、中央部の例えば448×448本のビームアレイが通過する領域から領域r1,r2,r3を除いた領域r4と、領域r4を取り囲む残りの領域r5と、の5つのグループに、制限アパーチャアレイ基板212上のビームアレイ領域を分ける。512×512本のマルチビーム20が照射される制限アパーチャアレイ基板212上のビームピッチで配列された各位置を起点として、起点から、例えば、+y方向に1ビームサイズ+マージン分だけ相対的に照射位置がずれた位置を128×128本のビームアレイに制限する位置に設定する。また、起点から、例えば、-x方向に1ビームサイズ+マージン分だけ相対的に照射位置がずれた位置を256×256本のビームアレイに制限する位置に設定する。また、起点から、例えば、-y方向に1ビームサイズ+マージン分だけ相対的に照射位置がずれた位置を384×384本のビームアレイに制限する位置に設定する。また、起点から、例えば、+x方向に1ビームサイズ+マージン分だけ相対的に照射位置がずれた位置を448×448本のビームアレイに制限する位置に設定する。 FIG. 7 is a diagram showing another example of the shape of the passage hole of the limited aperture array substrate and the beam array passing through in the first embodiment. In FIG. 7, by moving the limiting aperture array substrate 212 (or the shaped aperture array substrate 203) in the x and y directions, it is possible to select one of five groups of beam arrays that pass through the limiting aperture array substrate 212. Make it. In the example of FIG. 7, among the 512 x 512 multi-beams 20 irradiated onto the limited aperture array substrate 212, there is a region r1 in the center through which, for example, a 128 x 128 beam array passes, and a region r1 in the center, for example, 256 A region r2, which is obtained by excluding region r1 from the region through which 256 beam arrays pass, a region r3, which is obtained by removing regions r1 and r2 from the region through which 384×384 beam arrays pass, for example, in the center, and The beam array on the limited aperture array substrate 212 is divided into five groups: a region r4 obtained by excluding regions r1, r2, and r3 from the region through which the 448×448 beam array passes, and a remaining region r5 surrounding the region r4. Separate areas. Starting from each position arranged at a beam pitch on the limited aperture array substrate 212 where 512 x 512 multi-beams 20 are irradiated, the irradiation is performed relatively from the starting point by, for example, one beam size + margin in the +y direction. The shifted position is set to a position that limits the beam array to 128 x 128 beams. Further, a position where the irradiation position is relatively shifted from the starting point by, for example, one beam size + margin in the −x direction is set as a position that limits the beam array to 256×256 beams. Further, a position where the irradiation position is relatively shifted from the starting point by, for example, one beam size + margin in the −y direction is set as a position that limits the beam array to 384×384 beams. Further, a position where the irradiation position is relatively shifted from the starting point by, for example, one beam size + margin in the +x direction is set as a position that limits the beam array to 448 x 448 beams.
 図7の例において、複数の通過孔21,23a,23c,23d,23eは、例えば、矩形と矩形とは異なる形状との組み合わせにより形成される。以下、具体的に説明する。 In the example of FIG. 7, the plurality of passage holes 21, 23a, 23c, 23d, and 23e are formed, for example, by a combination of a rectangle and a shape different from the rectangle. This will be explained in detail below.
 領域r1に形成される128×128個の通過孔23eについては、ビームピッチで配列された起点と、起点から+y方向に1ビームサイズ+マージン分だけ相対的に照射位置がずれた位置と、起点から-x方向に1ビームサイズ+マージン分だけ相対的に照射位置がずれた位置と、起点から-y方向に1ビームサイズ+マージン分だけ相対的に照射位置がずれた位置と、起点から+x方向に1ビームサイズ+マージン分だけ相対的に照射位置がずれた位置と、のすべてにおいて、ビームが通過可能な形状に形成される。図7の例では、通過孔23eは十字形に形成される。 Regarding the 128 x 128 passage holes 23e formed in the region r1, there are a starting point arranged at the beam pitch, a position where the irradiation position is relatively shifted by one beam size + margin in the +y direction from the starting point, and a starting point. A position where the irradiation position is relatively shifted by 1 beam size + margin in the -x direction from the origin, a position where the irradiation position is relatively shifted by 1 beam size + margin in the -y direction from the origin, and +x from the origin The beam is formed into a shape that allows the beam to pass through both the positions where the irradiation position is relatively shifted by one beam size + margin in the direction. In the example of FIG. 7, the passage hole 23e is formed in a cross shape.
 領域r2に形成される各通過孔23dについては、ビームピッチで配列された起点と、起点から-x方向に1ビームサイズ+マージン分だけ相対的に照射位置がずれた位置と、起点から-y方向に1ビームサイズ+マージン分だけ相対的に照射位置がずれた位置と、起点から+x方向に1ビームサイズ+マージン分だけ相対的に照射位置がずれた位置と、において、ビームが通過可能な形状に形成される。図7の例では、通過孔23dは-y方向に凸の凸形状に形成される。 For each passage hole 23d formed in region r2, there are starting points arranged at the beam pitch, a position where the irradiation position is relatively shifted by one beam size + margin in the -x direction from the starting point, and -y from the starting point. The beam can pass through a position where the irradiation position is relatively shifted by 1 beam size + margin in the direction, and a position where the irradiation position is relatively shifted by 1 beam size + margin in the +x direction from the origin. formed into a shape. In the example of FIG. 7, the passage hole 23d is formed in a convex shape that is convex in the -y direction.
 領域r3に形成される各通過孔23cについては、ビームピッチで配列された起点と、起点から-y方向に1ビームサイズ+マージン分だけ相対的に照射位置がずれた位置と、起点から+x方向に1ビームサイズ+マージン分だけ相対的に照射位置がずれた位置と、において、ビームが通過可能な形状に形成される。図7の例では、通過孔23cは+x方向と-y方向に延びるL字形状に形成される。 For each passage hole 23c formed in region r3, there are starting points arranged at the beam pitch, a position where the irradiation position is relatively shifted by one beam size + margin in the -y direction from the starting point, and a position in the +x direction from the starting point. The beam is formed into a shape that allows the beam to pass through the position where the irradiation position is relatively shifted by one beam size + margin. In the example of FIG. 7, the passage hole 23c is formed in an L-shape extending in the +x direction and the -y direction.
 領域r4に形成される各通過孔23aについては、ビームピッチで配列された起点と、起点から+x方向に1ビームサイズ+マージン分だけ相対的に照射位置がずれた位置と、において、ビームが通過可能な形状に形成される。図7の例では、通過孔23aは+x方向に延びる長方形に形成される。 For each passage hole 23a formed in the region r4, the beam passes through the starting points arranged at the beam pitch and at the position where the irradiation position is relatively shifted by one beam size + margin from the starting point in the +x direction. formed into any possible shape. In the example of FIG. 7, the passage hole 23a is formed into a rectangle extending in the +x direction.
 領域r5に形成される各通過孔21については、ビームピッチで配列された起点において、ビームが通過可能な形状に形成される。図7の例では、通過孔21は正方形に形成される。 Each passage hole 21 formed in the region r5 is formed in a shape that allows the beam to pass through the starting points arranged at the beam pitch. In the example of FIG. 7, the passage hole 21 is formed in a square shape.
 制限アパーチャアレイ基板212上での各ビームの照射位置がビームピッチで配列された各起点である場合、すわなち、制限アパーチャアレイ基板212を各起点に合わせた位置に調整した場合、r1~r5の512×512本のマルチビーム20全体が制限アパーチャアレイ基板212を通過する。 When the irradiation position of each beam on the limiting aperture array substrate 212 is each starting point arranged at a beam pitch, that is, when the limiting aperture array substrate 212 is adjusted to a position matching each starting point, r1 to r5 The entire 512×512 multi-beams 20 pass through the limited aperture array substrate 212.
 制限アパーチャアレイ基板212上での各ビームの照射位置がビームピッチで配列された各起点から、例えば、+x方向に1ビームサイズ+マージン分だけ相対的に照射位置がずれた位置、すわなち、制限アパーチャアレイ基板212を起点から-x方向に1ビームサイズ+マージン分だけ移動させた場合、領域r5では、通過孔21の位置がビーム13の位置から外れるので、領域r5の各ビーム13は制限アパーチャアレイ基板212によって遮蔽される。領域r1~r4では、通過孔23e,23d,23c,23aがビーム13を通過孔内に含む位置なので、領域r1~r4の各ビーム13は制限アパーチャアレイ基板212を通過する。よって、512×512本のマルチビーム20を中央部の448×448本のビームアレイに制限できる。或いは、成形アパーチャアレイ基板203を+x方向に1ビームサイズ+マージン分だけ移動させた場合であっても良い。或いは、制限アパーチャアレイ基板212を-x方向に(1ビームサイズ+マージン分)×L(但し、Lは、0<L<1)だけ移動させると共に、成形アパーチャアレイ基板203を+x方向に(1ビームサイズ+マージン分)×(1-L)だけ移動させた場合であっても良い。成形アパーチャアレイ基板203と制限アパーチャアレイ基板212との相対位置をずらす移動手法については、以下、同様である。 For example, the irradiation position of each beam on the limited aperture array substrate 212 is a position relatively shifted by one beam size + margin in the +x direction from each starting point arranged at the beam pitch, that is, When the limiting aperture array substrate 212 is moved from the starting point in the -x direction by one beam size + margin, the position of the passage hole 21 is deviated from the position of the beam 13 in the region r5, so each beam 13 in the region r5 is restricted. It is shielded by an aperture array substrate 212. In the regions r1 to r4, each beam 13 in the regions r1 to r4 passes through the limiting aperture array substrate 212 because the passage holes 23e, 23d, 23c, and 23a are in positions that include the beams 13 within the passage holes. Therefore, the 512 x 512 multi-beams 20 can be limited to the 448 x 448 beam array at the center. Alternatively, the shaped aperture array substrate 203 may be moved in the +x direction by one beam size + margin. Alternatively, the limiting aperture array substrate 212 is moved in the −x direction by (1 beam size + margin)×L (where L is 0<L<1), and the shaping aperture array substrate 203 is moved in the +x direction by (1 beam size + margin)×L (where L is 0<L<1). It is also possible to move by beam size + margin) x (1-L). The moving method for shifting the relative positions of the shaped aperture array substrate 203 and the limited aperture array substrate 212 is the same below.
 制限アパーチャアレイ基板212上での各ビームの照射位置がビームピッチで配列された各起点から、例えば、-y方向に1ビームサイズ+マージン分だけ相対的に照射位置がずれた位置、すわなち、制限アパーチャアレイ基板212を起点から+y方向に1ビームサイズ+マージン分だけ移動させた場合、領域r5,r4では、通過孔21,23aの位置がビーム13の位置から外れるので、領域r5,r4の各ビーム13は制限アパーチャアレイ基板212によって遮蔽される。領域r1~r3では、通過孔23e,23d,23cがビーム13を通過孔内に含む位置なので、領域r1~r3の各ビーム13は制限アパーチャアレイ基板212を通過する。よって、512×512本のマルチビーム20を中央部の384×384本のビームアレイに制限できる。 For example, the irradiation position of each beam on the limited aperture array substrate 212 is a position relatively shifted by one beam size + margin in the −y direction from each starting point arranged at the beam pitch, that is, , when the limited aperture array substrate 212 is moved in the +y direction from the starting point by one beam size + margin, the positions of the passage holes 21 and 23a are deviated from the position of the beam 13 in areas r5 and r4, so Each beam 13 of is blocked by a limiting aperture array substrate 212. In the regions r1 to r3, each beam 13 in the regions r1 to r3 passes through the limiting aperture array substrate 212 because the passage holes 23e, 23d, and 23c are in positions that include the beams 13 within the passage holes. Therefore, the 512 x 512 multi-beams 20 can be limited to the 384 x 384 beam array in the center.
 制限アパーチャアレイ基板212上での各ビームの照射位置がビームピッチで配列された各起点から、例えば、-x方向に1ビームサイズ+マージン分だけ相対的に照射位置がずれた位置、すわなち、制限アパーチャアレイ基板212を起点から+x方向に1ビームサイズ+マージン分だけ移動させた場合、領域r5,r4,r3では、通過孔21,23a,23cの位置がビーム13の位置から外れるので、領域r5,r4,r3の各ビーム13は制限アパーチャアレイ基板212によって遮蔽される。領域r1~r2では、通過孔23e,23dがビーム13を通過孔内に含む位置なので、領域r1~r2の各ビーム13は制限アパーチャアレイ基板212を通過する。よって、512×512本のマルチビーム20を中央部の256×256本のビームアレイに制限できる。 For example, the irradiation position of each beam on the limited aperture array substrate 212 is a position relatively shifted by one beam size + margin in the −x direction from each starting point arranged at the beam pitch, that is, , when the limited aperture array substrate 212 is moved from the starting point in the +x direction by one beam size + margin, the positions of the passage holes 21, 23a, 23c will deviate from the position of the beam 13 in regions r5, r4, and r3, so Each beam 13 in regions r5, r4, and r3 is blocked by a restricted aperture array substrate 212. In the regions r1 to r2, each beam 13 in the regions r1 to r2 passes through the limited aperture array substrate 212 because the passage holes 23e and 23d are in positions that include the beams 13 within the passage holes. Therefore, the 512×512 multi-beams 20 can be limited to the 256×256 beam array in the center.
 制限アパーチャアレイ基板212上での各ビームの照射位置がビームピッチで配列された各起点から、例えば、+y方向に1ビームサイズ+マージン分だけ相対的に照射位置がずれた位置、すわなち、制限アパーチャアレイ基板212を起点から-y方向に1ビームサイズ+マージン分だけ移動させた場合、領域r5~r2では、通過孔21,23a,23c,23dの位置がビーム13の位置から外れるので、領域r5~r2の各ビーム13は制限アパーチャアレイ基板212によって遮蔽される。領域r1では、通過孔23eがビーム13を通過孔内に含む位置なので、領域r1の各ビーム13は制限アパーチャアレイ基板212を通過する。よって、512×512本のマルチビーム20を中央部の128×128本のビームアレイに制限できる。 For example, the irradiation position of each beam on the limited aperture array substrate 212 is a position relatively shifted by one beam size + margin in the +y direction from each starting point arranged at the beam pitch, that is, When the limited aperture array substrate 212 is moved from the starting point in the -y direction by one beam size + margin, the positions of the passage holes 21, 23a, 23c, and 23d will deviate from the position of the beam 13 in regions r5 to r2, so Each beam 13 in regions r5-r2 is blocked by a restricted aperture array substrate 212. In region r1, each beam 13 in region r1 passes through the limiting aperture array substrate 212 because the passage hole 23e is at a position that includes the beam 13 within the passage hole. Therefore, the 512 x 512 multi-beams 20 can be limited to the 128 x 128 beam array at the center.
 次に、制限アパーチャアレイ基板212に形成される通過孔の形状を決めるための手法の一例を説明する。 Next, an example of a method for determining the shape of the passage hole formed in the limited aperture array substrate 212 will be described.
 図8は、実施の形態1におけるビームアレイ領域と通過領域との関係の一例を示す図である。図8において、マルチビーム20全体のビームアレイ領域31をサブ領域1~9に分割する。サブ領域1は、ビームアレイ領域31の左上の角部の領域である。サブ領域3は、ビームアレイ領域31の右上の角部の領域である。サブ領域7は、ビームアレイ領域31の左下の角部の領域である。サブ領域9は、ビームアレイ領域31の右下の角部の領域である。サブ領域2は、ビームアレイ領域31の上端部の領域からサブ領域1,3を除いた領域である。サブ領域4は、ビームアレイ領域31の左端部の領域からサブ領域1,7を除いた領域である。サブ領域6は、ビームアレイ領域31の右端部の領域からサブ領域3,9を除いた領域である。サブ領域8は、ビームアレイ領域31の下端部の領域からサブ領域7,9を除いた領域である。サブ領域5は、ビームアレイ領域31の周囲のサブ領域1~4,6~9を除いた中央部の領域である。そして、制限アパーチャアレイ基板212を通過させるビームアレイを決定する通過領域A~Dを設定する。通過領域Aでは、マルチビーム20全体(例えば512×512本のビームアレイ)を通過させる。通過領域Bでは、マルチビーム20のうち上下左右の端部のビームの通過を制限した中央部のビームアレイを通過させる(例えば384×384本のビームアレイ)。通過領域Cでは、マルチビーム20のうち上下端部のビームの通過を制限した中央部のビームアレイを通過させる(例えば512×384本のビームアレイ)。通過領域Dでは、マルチビーム20のうち左右端部のビームの通過を制限した中央部のビームアレイ(例えば384×512本のビームアレイ)を通過させる。 FIG. 8 is a diagram showing an example of the relationship between the beam array area and the passing area in the first embodiment. In FIG. 8, the beam array area 31 of the entire multi-beam 20 is divided into sub-areas 1 to 9. Sub-region 1 is a region at the upper left corner of beam array region 31. Sub-region 3 is a region at the upper right corner of beam array region 31. The sub-region 7 is a region at the lower left corner of the beam array region 31. The sub-region 9 is a region at the lower right corner of the beam array region 31. Sub-region 2 is a region obtained by excluding sub-regions 1 and 3 from the upper end region of beam array region 31. Sub-region 4 is a region obtained by excluding sub-regions 1 and 7 from the left end region of beam array region 31. Sub-region 6 is a region obtained by excluding sub-regions 3 and 9 from the right end region of beam array region 31. Sub-region 8 is a region obtained by excluding sub-regions 7 and 9 from the lower end region of beam array region 31. Sub-region 5 is a central region of beam array region 31 excluding sub-regions 1 to 4 and 6 to 9 around it. Passage areas A to D are then set to determine the beam array that passes through the limited aperture array substrate 212. In the passage area A, the entire multi-beam 20 (for example, a 512×512 beam array) is allowed to pass through. In the passage area B, a beam array at the center of the multi-beam 20 in which passage of the beams at the upper, lower, left, and right ends is restricted is passed (for example, a 384×384 beam array). In the passage area C, a beam array in the central part of the multi-beam 20 in which passage of the upper and lower end beams is restricted is allowed to pass (for example, a 512 x 384 beam array). In the passage area D, a central beam array (for example, a 384×512 beam array) in which passage of the left and right end beams of the multi-beam 20 is restricted is allowed to pass.
 図9は、実施の形態1におけるビームアレイ領域のサブ領域と通過領域との関係テーブルの一例を示す図である。図9において、縦軸に図8に示したサブ領域を示す。横軸に図8に示した通過領域を示す。図9において、サブ領域1,3,7,9のビーム群が制限アパーチャアレイ基板212を通過するためには、通過領域Aが設定されることが必要であり、通過領域B~Dでは通過できない(off)。サブ領域2,8のビーム群が制限アパーチャアレイ基板212を通過するためには、通過領域A又はDが設定されることが必要であり、通過領域B,Cでは通過できない(off)。サブ領域4,6のビーム群が制限アパーチャアレイ基板212を通過するためには、通過領域A又はCが設定されることが必要であり、通過領域B,Dでは通過できない(off)。サブ領域5のビーム群が制限アパーチャアレイ基板212を通過するためには、通過領域A~Dのいずれが設定されても構わない。 FIG. 9 is a diagram showing an example of a relationship table between sub-regions of the beam array region and passing regions in the first embodiment. In FIG. 9, the vertical axis represents the sub-region shown in FIG. The horizontal axis shows the passage area shown in FIG. In FIG. 9, in order for the beam groups of sub-regions 1, 3, 7, and 9 to pass through the restricted aperture array substrate 212, it is necessary to set a passage area A, and they cannot pass through the passage areas B to D. (off). In order for the beam groups of sub-regions 2 and 8 to pass through the limited aperture array substrate 212, it is necessary to set the passing region A or D, and the beams cannot pass in the passing regions B and C (off). In order for the beam groups of sub-regions 4 and 6 to pass through the limited aperture array substrate 212, it is necessary to set the passing region A or C, and the beams cannot pass in the passing regions B and D (off). In order for the beam group of the sub-region 5 to pass through the limited aperture array substrate 212, any of the passing regions A to D may be set.
 図10Aから図10Dは、実施の形態1における制限アパーチャアレイ基板の通過孔の形状の一例を示す図である。制限アパーチャアレイ基板212上の通過孔の形状を決定する場合には、例えば、以下の手法で決定すると好適である。図10Aから図10Dの例では、まず、マルチビーム20が照射される制限アパーチャアレイ基板212上のビームピッチで配列される各位置(起点)に図8の通過領域Aを設定する。そして、起点から、例えば、+y方向に1ビームサイズ+マージン分だけ相対的に照射位置がずれた位置に図8の通過領域Bを設定する。起点から、例えば、+x方向に1ビームサイズ+マージン分だけ相対的に照射位置がずれた位置に図8の通過領域Cを設定する。起点から、例えば、-y方向に1ビームサイズ+マージン分だけ相対的に照射位置がずれた位置に図8の通過領域Dを設定する。 FIGS. 10A to 10D are diagrams showing an example of the shape of the passage hole of the limited aperture array substrate in the first embodiment. When determining the shape of the passage hole on the limited aperture array substrate 212, it is preferable to determine the shape using the following method, for example. In the example of FIGS. 10A to 10D, first, the passage area A of FIG. 8 is set at each position (starting point) arranged at a beam pitch on the limited aperture array substrate 212 where the multi-beam 20 is irradiated. Then, the passage area B in FIG. 8 is set at a position where the irradiation position is relatively shifted from the starting point by, for example, one beam size + margin in the +y direction. The passage area C in FIG. 8 is set at a position where the irradiation position is relatively shifted from the starting point by, for example, one beam size + margin in the +x direction. The passage area D in FIG. 8 is set at a position where the irradiation position is relatively shifted from the starting point by, for example, one beam size + margin in the −y direction.
 図9の関係テーブルを参照して、サブ領域5のビーム用に制限アパーチャアレイ基板212に形成される各通過孔については、ビームピッチで配列された位置(起点)(通過領域A)と、起点から、例えば、+y方向に1ビームサイズ+マージン分だけ相対的に照射位置がずれた位置(通過領域B)と、起点から、例えば、+x方向に1ビームサイズ+マージン分だけ相対的に照射位置がずれた位置(通過領域C)と、起点から、例えば、-y方向に1ビームサイズ+マージン分だけ相対的に照射位置がずれた位置(通過領域D)と、のすべてにおいて、ビームが通過可能な形状に形成される。図10(d)の例では、通過孔は、+x方向に凸の凸形状に形成される。 Referring to the relationship table in FIG. 9, for each passing hole formed in the limited aperture array substrate 212 for the beam of sub-region 5, the positions (starting points) (passing area A) arranged at the beam pitch, and the starting point For example, the position where the irradiation position is relatively shifted by 1 beam size + margin in the +y direction (passing area B) and the irradiation position relative to the starting point by 1 beam size + margin in the +x direction from the starting point, for example. The beam passes through both the position where the beam is shifted (passing area C) and the position where the irradiation position is relatively shifted by one beam size + margin from the origin in the -y direction (passing area D). formed into any possible shape. In the example of FIG. 10(d), the passage hole is formed in a convex shape that is convex in the +x direction.
 図9の関係テーブルを参照して、サブ領域2,8のビーム用に制限アパーチャアレイ基板212に形成される各通過孔については、ビームピッチで配列された位置(起点)(通過領域A)と、起点から、例えば、-y方向に1ビームサイズ+マージン分だけ相対的に照射位置がずれた位置(通過領域D)と、において、ビームが通過可能な形状に形成される。図10Bの例では、通過孔は、-y方向に延びる長方形に形成される。 Referring to the relational table in FIG. 9, for each passage hole formed in the limiting aperture array substrate 212 for the beams of sub-regions 2 and 8, the positions (starting points) (passing area A) arranged at the beam pitch and , at a position (passing region D) where the irradiation position is relatively shifted from the starting point by, for example, one beam size + margin in the -y direction, and is formed into a shape that allows the beam to pass. In the example of FIG. 10B, the passage hole is formed into a rectangle extending in the -y direction.
 図9の関係テーブルを参照して、サブ領域4,6のビーム用に制限アパーチャアレイ基板212に形成される各通過孔については、ビームピッチで配列された位置(起点)(通過領域A)と、起点から、例えば、+x方向に1ビームサイズ+マージン分だけ相対的に照射位置がずれた位置(通過領域C)と、において、ビームが通過可能な形状に形成される。図10Cの例では、通過孔は、+x方向に延びる長方形に形成される。 Referring to the relational table in FIG. 9, for each passage hole formed in the limiting aperture array substrate 212 for the beams of sub-regions 4 and 6, the positions (starting points) (passing area A) arranged at the beam pitch and , is formed into a shape that allows the beam to pass at a position (passage area C) where the irradiation position is relatively shifted by one beam size + margin in the +x direction from the starting point, for example. In the example of FIG. 10C, the passage hole is formed in a rectangular shape extending in the +x direction.
 図9の関係テーブルを参照して、サブ領域1,3,7,9のビーム用に制限アパーチャアレイ基板212に形成される各通過孔については、ビームピッチで配列された位置(起点)(通過領域A)だけビームが通過可能な形状に形成される。図10Aの例では、通過孔は正方形に形成される。 Referring to the relationship table in FIG. 9, for each passage hole formed in the limiting aperture array substrate 212 for the beams of sub-regions 1, 3, 7, and 9, the positions (starting points) (passing points) arranged at the beam pitch are determined. Only area A) is formed in a shape that allows the beam to pass through. In the example of FIG. 10A, the passage hole is formed in a square shape.
 次に、さらに、通過領域を細分化させた場合における制限アパーチャアレイ基板212に形成される通過孔の形状を決めるための手法の一例を説明する。 Next, an example of a method for determining the shape of the passage hole formed in the limited aperture array substrate 212 when the passage area is further subdivided will be described.
 図11は、実施の形態1におけるビームアレイ領域と通過領域との関係の他の一例を示す図である。図11において、マルチビーム20全体のビームアレイ領域31をサブ領域1~25に分割する。ビームアレイ領域31をx方向に、64本目のビーム、128本目のビーム、384本目のビーム、及び448本目のビームの各位置で分割する。同様に、y方向に、64本目のビーム、128本目のビーム、384本目のビーム、及び448本目のビームの各位置で分割する。これにより、例えば、サブ領域1は、ビームアレイ領域31の左上の角部の領域である。具体的には、x方向に1本目~64本目までのビーム、及びy方向に449本目~512本目までのビームが対象となる。サブ領域2は、ビームアレイ領域31の上部の領域であって、x方向に65本目~128本目までのビーム、及びy方向に449本目~512本目までのビームが対象となる。サブ領域3は、ビームアレイ領域31の上部の領域であって、x方向に129本目~384本目までのビーム、及びy方向に449本目~512本目までのビームが対象となる。サブ領域4は、ビームアレイ領域31の上部の領域であって、x方向に385本目~448本目までのビーム、及びy方向に449本目~512本目までのビームが対象となる。サブ領域5は、ビームアレイ領域31の上部の領域であって、x方向に449本目~512本目までのビーム、及びy方向に449本目~512本目までのビームが対象となる。以下、それぞれに通過可能な領域が制限される。例えば、サブ領域13は、ビームアレイ領域31の中央部の領域であって、x方向に129本目~384本目までのビーム、及びy方向に129本目~384本目までのビームが対象となる。サブ領域25は、ビームアレイ領域31の右下の角部の領域であって、x方向に449本目~512本目までのビーム、及びy方向に1本目~64本目までのビームが対象となる。 FIG. 11 is a diagram showing another example of the relationship between the beam array area and the passage area in the first embodiment. In FIG. 11, the beam array area 31 of the entire multi-beam 20 is divided into sub-areas 1 to 25. The beam array area 31 is divided in the x direction at the positions of the 64th beam, the 128th beam, the 384th beam, and the 448th beam. Similarly, the beam is divided at the positions of the 64th beam, the 128th beam, the 384th beam, and the 448th beam in the y direction. Thus, for example, sub-region 1 is the upper left corner region of beam array region 31. Specifically, the 1st to 64th beams in the x direction and the 449th to 512th beams in the y direction are targeted. Sub-region 2 is an upper region of beam array region 31, and targets the 65th to 128th beams in the x direction and the 449th to 512th beams in the y direction. The sub-region 3 is an upper region of the beam array region 31, and targets the 129th to 384th beams in the x direction and the 449th to 512th beams in the y direction. The sub-region 4 is an upper region of the beam array region 31, and targets the 385th to 448th beams in the x direction and the 449th to 512th beams in the y direction. The sub-region 5 is an upper region of the beam array region 31, and targets the 449th to 512th beams in the x direction and the 449th to 512th beams in the y direction. The areas that can be passed through are limited below. For example, the sub-region 13 is a central region of the beam array region 31, and targets the 129th to 384th beams in the x direction and the 129th to 384th beams in the y direction. The sub-region 25 is a region at the lower right corner of the beam array region 31, and targets the 449th to 512th beams in the x direction and the 1st to 64th beams in the y direction.
 そして、図11において、制限アパーチャアレイ基板212を通過させるビームアレイを決定する複数の通過領域を設定する。通過領域(512)では、マルチビーム20全体を通過させる。通過領域(384)では、マルチビーム20のうち中央部の384×384本のビームアレイを通過させる。通過領域(256)では、マルチビーム20のうち中央部の256×256本のビームアレイを通過させる。通過領域(384’)では、マルチビーム20のうちx方向に中央部の384×512本のビームアレイを通過させる。通過領域(256’)では、マルチビーム20のうちx方向に中央部の256×512本のビームアレイを通過させる。通過領域(384”)では、マルチビーム20のうちy方向に中央部の512×384本のビームアレイを通過させる。通過領域(256”)では、マルチビーム20のうちy方向に中央部の512×256本のビームアレイを通過させる。 Then, in FIG. 11, a plurality of passing regions are set to determine the beam array that passes through the limited aperture array substrate 212. The entire multi-beam 20 is allowed to pass through the passage area (512). In the passage area (384), the central 384×384 beam array of the multi-beams 20 is passed. In the passage area (256), the central 256×256 beam array of the multi-beams 20 is allowed to pass. In the passing region (384'), the central 384×512 beam array of the multi-beams 20 is passed in the x direction. In the passing region (256'), the central 256×512 beam array of the multi-beams 20 is passed in the x direction. In the passing region (384"), the central 512 x 384 beam array of the multi-beam 20 in the y direction passes through. In the passing region (256"), the central 512 x 384 beam array in the y direction of the multi-beam 20 passes through. x256 beam array is passed.
 図12は、実施の形態1におけるビームアレイ領域のサブ領域と通過領域との関係テーブルの他の一例を示す図である。図12において、縦軸に図11に示したサブ領域を示す。横軸に図11に示した通過領域を示す。図12において、サブ領域1,5,21,25のビーム群が制限アパーチャアレイ基板212を通過するためには、通過領域(512)が設定されることが必要であり、その他の通過領域では通過できない(off)。 FIG. 12 is a diagram showing another example of the relationship table between the sub-regions of the beam array region and the passage region in the first embodiment. In FIG. 12, the vertical axis represents the sub-region shown in FIG. 11. The horizontal axis indicates the passage area shown in FIG. 11. In FIG. 12, in order for the beam groups of sub-regions 1, 5, 21, and 25 to pass through the limiting aperture array substrate 212, it is necessary to set a passing region (512); I can't do it (off).
 サブ領域2,4,22,24のビーム群が制限アパーチャアレイ基板212を通過するためには、通過領域(512)又は(384’)が設定されることが必要であり、その他の通過領域では通過できない(off)。 In order for the beam groups of sub-regions 2, 4, 22, and 24 to pass through the limited aperture array substrate 212, it is necessary to set a passing region (512) or (384'), and in other passing regions Cannot pass (off).
 サブ領域3,23のビーム群が制限アパーチャアレイ基板212を通過するためには、通過領域(512)、(384’)、又は(256’)が設定されることが必要であり、その他の通過領域では通過できない(off)。 In order for the beam groups of sub-regions 3 and 23 to pass through the limited aperture array substrate 212, it is necessary to set a passing region (512), (384'), or (256'), and other passing regions must be set. Cannot pass through the area (off).
 サブ領域6,10,16,20のビーム群が制限アパーチャアレイ基板212を通過するためには、通過領域(512)、又は(384”)が設定されることが必要であり、その他の通過領域では通過できない(off)。 In order for the beam groups of sub-regions 6, 10, 16, and 20 to pass through the limiting aperture array substrate 212, it is necessary to set a passage area (512) or (384''), and other passage areas. It cannot pass (off).
 サブ領域7,9,17,19のビーム群が制限アパーチャアレイ基板212を通過するためには、通過領域(512)、(384)、(384’)又は(384”)が設定されることが必要であり、その他の通過領域では通過できない(off)。 In order for the beam groups of sub-regions 7, 9, 17, and 19 to pass through the limited aperture array substrate 212, a passing region (512), (384), (384') or (384'') may be set. It is necessary and cannot be passed in other passing areas (off).
 サブ領域8,18のビーム群が制限アパーチャアレイ基板212を通過するためには、通過領域(512)、(384)、(384’)、(256’)、又は(384”)が設定されることが必要であり、その他の通過領域では通過できない(off)。 In order for the beam groups of sub-regions 8 and 18 to pass through the limited aperture array substrate 212, a passing region (512), (384), (384'), (256'), or (384'') is set. It must be possible to pass through other passing areas (off).
 サブ領域11,15のビーム群が制限アパーチャアレイ基板212を通過するためには、通過領域(512)、(384”)、又は(256”)が設定されることが必要であり、その他の通過領域では通過できない(off)。 In order for the beam groups of sub-regions 11 and 15 to pass through the limited aperture array substrate 212, it is necessary to set a passing region (512), (384"), or (256"), and other passing regions are required. Cannot pass through the area (off).
 サブ領域12,14のビーム群が制限アパーチャアレイ基板212を通過するためには、通過領域(512)、(384)、(384’)、(384”)、又は(256”)が設定されることが必要であり、その他の通過領域では通過できない(off)。 In order for the beam groups of the sub-regions 12 and 14 to pass through the limited aperture array substrate 212, a passing region (512), (384), (384'), (384''), or (256'') is set. It must be possible to pass through other passing areas (off).
 サブ領域13のビーム群が制限アパーチャアレイ基板212を通過するためには、通過領域(512),(384),(256),(384’),(256’),(384”),(256”)のいずれが設定されても構わない。 In order for the beam group of the sub-region 13 to pass through the limited aperture array substrate 212, the passing regions (512), (384), (256), (384'), (256'), (384''), (256 ”) may be set.
 図13Aから図13Cは、実施の形態1における制限アパーチャアレイ基板の通過孔の形状の他の一例を示す図である。制限アパーチャアレイ基板212上の通過孔の形状を決定する場合には、例えば、以下の手法で決定すると好適である。図13Aから図13Cの例では、まず、マルチビーム20が照射される制限アパーチャアレイ基板212上のビームピッチで配列される各位置(起点)に図11の通過領域(512)を設定する。図13Aから図13Cの例では、7つの制限アパーチャアレイ基板212の配置位置が必要であるため、通過領域(512)の各辺のサイズを(1ビームサイズ+マージン分)の2倍のサイズに設定する。起点は、通過領域(512)の中心に設定すればよい。 FIGS. 13A to 13C are diagrams showing other examples of the shapes of the passage holes of the limited aperture array substrate in Embodiment 1. When determining the shape of the passage hole on the limited aperture array substrate 212, it is preferable to determine the shape using the following method, for example. In the examples shown in FIGS. 13A to 13C, first, the passage areas (512) in FIG. 11 are set at each position (starting point) arranged at the beam pitch on the limited aperture array substrate 212 where the multi-beam 20 is irradiated. In the examples shown in FIGS. 13A to 13C, seven positions are required for the limiting aperture array substrate 212, so the size of each side of the passage area (512) is set to twice the size of (1 beam size + margin). Set. The starting point may be set at the center of the passing area (512).
 そして、起点から、例えば、-x方向に0.5ビームサイズ+マージン分、及び+y方向に1.5ビームサイズ+マージン分だけ相対的に照射位置がずれた位置に図11の通過領域(384)を設定する。そして、起点から、例えば、+x方向に0.5ビームサイズ+マージン分、及び+y方向に1.5ビームサイズ+マージン分だけ相対的に照射位置がずれた位置に図11の通過領域(256)を設定する。 Then, the passage area (384 ). Then, the passage area (256 in FIG. 11) is located at a position where the irradiation position is relatively shifted from the starting point by, for example, 0.5 beam size + margin in the +x direction and 1.5 beam size + margin in the +y direction. Set.
 そして、起点から、例えば、+x方向に1.5ビームサイズ+マージン分、及び+y方向に0.5ビームサイズ+マージン分だけ相対的に照射位置がずれた位置に図11の通過領域(384’)を設定する。そして、起点から、例えば、+x方向に1.5ビームサイズ+マージン分、及び-y方向に0.5ビームサイズ+マージン分だけ相対的に照射位置がずれた位置に図11の通過領域(256’)を設定する。 Then, from the starting point, for example, the passing area (384' ). Then, from the starting point, for example, the passing area (256 ').
 そして、起点から、例えば、+x方向に0.5ビームサイズ+マージン分、及び-y方向に1.5ビームサイズ+マージン分だけ相対的に照射位置がずれた位置に図11の通過領域(384”)を設定する。そして、起点から、例えば、+x方向に0.5ビームサイズ+マージン分、及び-y方向に1.5ビームサイズ+マージン分だけ相対的に照射位置がずれた位置に図11の通過領域(256”)を設定する。 Then, the passage area (384 ”).Then, the irradiation position is set relative to the starting point by, for example, 0.5 beam size + margin in the +x direction and 1.5 beam size + margin in the -y direction. 11 passing areas (256”) are set.
 図12の関係テーブルを参照して、サブ領域1,5,21,25のビーム用に制限アパーチャアレイ基板212に形成される各通過孔については、ビームピッチで配列された位置(起点)(通過領域(512))だけビームが通過可能な形状に形成される。図13Aの例では、通過孔は(1ビームサイズ+マージン分)の2倍のサイズを1辺とする正方形に形成される。 Referring to the relational table in FIG. 12, for each passage hole formed in the limiting aperture array substrate 212 for the beams of sub-regions 1, 5, 21, and 25, the positions (starting points) (passing points) arranged at the beam pitch Only the region (512)) is formed in a shape that allows the beam to pass through. In the example of FIG. 13A, the passage hole is formed into a square whose side is twice the size of (1 beam size + margin).
 図12の関係テーブルを参照して、サブ領域2,4,22,24のビーム用に制限アパーチャアレイ基板212に形成される各通過孔については、ビームピッチで配列された位置(起点)(通過領域(512))と、起点から、例えば、+x方向に1.5ビームサイズ+マージン分、及び+y方向に0.5ビームサイズ+マージン分だけ相対的に照射位置がずれた位置(通過領域(384’))とにおいてビームが通過可能な形状に形成される。図13Bの例では、通過孔は(1ビームサイズ+マージン分)の2倍のサイズを1辺とする正方形及びかかる正方形の右辺の上半分に(1ビームサイズ+マージン分)のサイズを1辺とする正方形がつながった形状に形成される。 Referring to the relational table in FIG. 12, for each passage hole formed in the limiting aperture array substrate 212 for the beams of sub-regions 2, 4, 22, and 24, the positions (starting points) (passing points) arranged at the beam pitch area (512)) and a position where the irradiation position is relatively shifted from the origin by, for example, 1.5 beam size + margin in the +x direction and 0.5 beam size + margin in the +y direction (passing area ( 384')) is formed into a shape through which the beam can pass. In the example of FIG. 13B, the passage hole is a square whose side is twice the size of (1 beam size + margin), and the upper half of the right side of the square has a side of the size (1 beam size + margin). It is formed in the shape of connected squares.
 図12の関係テーブルを参照して、サブ領域3,23のビーム用に制限アパーチャアレイ基板212に形成される各通過孔については、ビームピッチで配列された位置(起点)(通過領域(512))と、起点から、例えば、+x方向に1.5ビームサイズ+マージン分、及び+y方向に0.5ビームサイズ+マージン分だけ相対的に照射位置がずれた位置(通過領域(384’))と、起点から、例えば、+x方向に1.5ビームサイズ+マージン分、及び-y方向に0.5ビームサイズ+マージン分だけ相対的に照射位置がずれた位置(通過領域(256’))と、においてビームが通過可能な形状に形成される。図13Aから図13Cの例では、図示しないが、通過孔は、x方向に(1ビームサイズ+マージン分)の3倍のサイズ、及びy方向に(1ビームサイズ+マージン分)の2倍のサイズの長方形に形成される。 Referring to the relational table in FIG. 12, for each passing hole formed in the limiting aperture array substrate 212 for the beams of sub-regions 3 and 23, the positions (starting points) arranged at the beam pitch (passing area (512) ) and a position where the irradiation position is relatively shifted from the origin by, for example, 1.5 beam size + margin in the +x direction and 0.5 beam size + margin in the +y direction (passing area (384')) and a position where the irradiation position is relatively shifted from the starting point by, for example, 1.5 beam size + margin in the +x direction and 0.5 beam size + margin in the -y direction (passing area (256')) It is formed into a shape that allows the beam to pass through. In the examples of FIGS. 13A to 13C, although not shown, the passage hole has a size three times (1 beam size + margin) in the x direction and a size twice (1 beam size + margin) in the y direction. Formed into a rectangle of size.
 図12の関係テーブルを参照して、サブ領域6,10,16,20のビーム用に制限アパーチャアレイ基板212に形成される各通過孔については、ビームピッチで配列された位置(起点)(通過領域(512))と、起点から、例えば、+x方向に0.5ビームサイズ+マージン分、及び-y方向に1.5ビームサイズ+マージン分だけ相対的に照射位置がずれた位置(通過領域(384”))と、においてビームが通過可能な形状に形成される。図13Aから図13Cの例では、図示しないが、通過孔は(1ビームサイズ+マージン分)の2倍のサイズを1辺とする正方形及びかかる正方形の下辺の左半分に(1ビームサイズ+マージン分)のサイズを1辺とする正方形がつながった形状に形成される。 Referring to the relational table in FIG. 12, for each passage hole formed in the limiting aperture array substrate 212 for the beams of sub-regions 6, 10, 16, and 20, the positions (starting points) (passing points) arranged at the beam pitch area (512)), and a position (passing area (384")) is formed into a shape that allows the beam to pass through. In the examples of FIGS. 13A to 13C, although not shown, the passage hole has a size twice as large as (1 beam size + margin). It is formed in a shape in which a square whose sides are connected and a square whose side is the size of (1 beam size + margin) are connected to the left half of the lower side of the square.
 図12の関係テーブルを参照して、サブ領域7,9,17,19のビーム用に制限アパーチャアレイ基板212に形成される各通過孔については、ビームピッチで配列された位置(起点)(通過領域(512))と、起点から、例えば、-x方向に0.5ビームサイズ+マージン分、及び+y方向に1.5ビームサイズ+マージン分だけ相対的に照射位置がずれた位置(通過領域(384))と、起点から、例えば、+x方向に1.5ビームサイズ+マージン分、及び+y方向に0.5ビームサイズ+マージン分だけ相対的に照射位置がずれた位置(通過領域(384’))と、起点から、例えば、-x方向に0.5ビームサイズ+マージン分、及び-y方向に1.5ビームサイズ+マージン分だけ相対的に照射位置がずれた位置(通過領域(384”))と、においてビームが通過可能な形状に形成される。図13Aから図13Cの例では、図示しないが、通過孔は(1ビームサイズ+マージン分)の2倍のサイズを1辺とする正方形及びかかる正方形の上辺の左半分、右辺の上半分、及び下辺の左半分に(1ビームサイズ+マージン分)のサイズを1辺とする正方形がそれぞれつながった形状に形成される。 Referring to the relationship table in FIG. 12, for each passing hole formed in the limiting aperture array substrate 212 for the beams of sub-regions 7, 9, 17, and 19, the positions (starting points) (passing points) arranged at the beam pitch area (512)), and a position (passing area (384)) and a position where the irradiation position is relatively shifted from the origin by, for example, 1.5 beam size + margin in the +x direction and 0.5 beam size + margin in the +y direction (passing area (384) ')) and a position where the irradiation position is relatively shifted from the origin by, for example, 0.5 beam size + margin in the -x direction and 1.5 beam size + margin in the -y direction (passing area ( 384")), the beam is formed into a shape that allows the beam to pass through. In the examples of FIGS. 13A to 13C, although not shown, the passage hole has one side that is twice the size of (1 beam size + margin). A square with one side having a size of (1 beam size + margin) is formed in a shape in which the left half of the top side of the square, the top half of the right side, and the left half of the bottom side of the square are connected to each other.
 図12の関係テーブルを参照して、サブ領域8,18のビーム用に制限アパーチャアレイ基板212に形成される各通過孔については、ビームピッチで配列された位置(起点)(通過領域(512))と、起点から、例えば、-x方向に0.5ビームサイズ+マージン分、及び+y方向に1.5ビームサイズ+マージン分だけ相対的に照射位置がずれた位置(通過領域(384))と、起点から、例えば、+x方向に1.5ビームサイズ+マージン分、及び+y方向に0.5ビームサイズ+マージン分だけ相対的に照射位置がずれた位置(通過領域(384’))と、起点から、例えば、+x方向に1.5ビームサイズ+マージン分、及び-y方向に0.5ビームサイズ+マージン分だけ相対的に照射位置がずれた位置(通過領域(256’))と、起点から、例えば、-x方向に0.5ビームサイズ+マージン分、及び-y方向に1.5ビームサイズ+マージン分だけ相対的に照射位置がずれた位置(通過領域(384”))と、においてビームが通過可能な形状に形成される。図13Aから図13Cの例では、図示しないが、通過孔は(1ビームサイズ+マージン分)の2倍のサイズを1辺とする正方形及びかかる正方形の上辺の左半分、右辺の上半分、右辺の下半分、及び下辺の左半分に(1ビームサイズ+マージン分)のサイズを1辺とする正方形がそれぞれつながった形状に形成される。 Referring to the relational table in FIG. 12, for each passage hole formed in the limiting aperture array substrate 212 for the beams of sub-regions 8 and 18, the positions (starting points) arranged at the beam pitch (passing area (512) ) and a position where the irradiation position is relatively shifted from the origin by, for example, 0.5 beam size + margin in the -x direction and 1.5 beam size + margin in the +y direction (passing area (384)) Then, the irradiation position is relatively shifted from the starting point by, for example, 1.5 beam size + margin in the +x direction and 0.5 beam size + margin in the +y direction (passing area (384')). , the irradiation position is relatively shifted from the starting point by, for example, 1.5 beam size + margin in the +x direction and 0.5 beam size + margin in the -y direction (passing area (256')). , a position where the irradiation position is relatively shifted from the starting point by, for example, 0.5 beam size + margin in the -x direction and 1.5 beam size + margin in the -y direction (passing area (384")) In the examples shown in FIGS. 13A to 13C, although not shown, the passage hole is formed into a square whose side is twice the size of (1 beam size + margin). Squares each having a side of the size (1 beam size + margin) are connected to the left half of the top side of the square, the top half of the right side, the bottom half of the right side, and the left half of the bottom side.
 図12の関係テーブルを参照して、サブ領域11,15のビーム用に制限アパーチャアレイ基板212に形成される各通過孔については、ビームピッチで配列された位置(起点)(通過領域(512))と、起点から、例えば、-x方向に0.5ビームサイズ+マージン分、及び-y方向に1.5ビームサイズ+マージン分だけ相対的に照射位置がずれた位置(通過領域(384”))と、起点から、例えば、+x方向に0.5ビームサイズ+マージン分、及び-y方向に1.5ビームサイズ+マージン分だけ相対的に照射位置がずれた位置(通過領域(256”))と、においてビームが通過可能な形状に形成される。図13Aから図13Cの例では、図示しないが、通過孔は(1ビームサイズ+マージン分)の2倍のサイズを1辺とする正方形及びかかる正方形の下辺の左半分、及び下辺の右半分に(1ビームサイズ+マージン分)のサイズを1辺とする正方形がそれぞれつながった形状に形成される。 Referring to the relational table in FIG. 12, for each passing hole formed in the limiting aperture array substrate 212 for the beams of the sub-regions 11 and 15, the positions (starting points) arranged at the beam pitch (passing area (512) ) and a position where the irradiation position is relatively shifted from the origin by, for example, 0.5 beam size + margin in the -x direction and 1.5 beam size + margin in the -y direction (passing area (384" )) and a position where the irradiation position is relatively shifted from the origin by, for example, 0.5 beam size + margin in the +x direction and 1.5 beam size + margin in the -y direction (passing area (256" )) is formed into a shape through which the beam can pass. In the examples of FIGS. 13A to 13C, although not shown, the passage holes are located in a square whose side is twice the size of (1 beam size + margin), the left half of the lower side of such a square, and the right half of the lower side. A shape is formed in which squares each having a side having a size of (1 beam size + margin) are connected.
 図12の関係テーブルを参照して、サブ領域12,14のビーム用に制限アパーチャアレイ基板212に形成される各通過孔については、ビームピッチで配列された位置(起点)(通過領域(512))と、起点から、例えば、-x方向に0.5ビームサイズ+マージン分、及び+y方向に1.5ビームサイズ+マージン分だけ相対的に照射位置がずれた位置(通過領域(384))と、起点から、例えば、+x方向に1.5ビームサイズ+マージン分、及び+y方向に0.5ビームサイズ+マージン分だけ相対的に照射位置がずれた位置(通過領域(384’))と、起点から、例えば、-x方向に0.5ビームサイズ+マージン分、及び-y方向に1.5ビームサイズ+マージン分だけ相対的に照射位置がずれた位置(通過領域(384”))と、起点から、例えば、+x方向に0.5ビームサイズ+マージン分、及び-y方向に1.5ビームサイズ+マージン分だけ相対的に照射位置がずれた位置(通過領域(256”))と、においてビームが通過可能な形状に形成される。図13Aから図13Cの例では、図示しないが、通過孔は(1ビームサイズ+マージン分)の2倍のサイズを1辺とする正方形及びかかる正方形の上辺の左半分、右辺の上半分、下辺の左半分、及び下辺の右半分に(1ビームサイズ+マージン分)のサイズを1辺とする正方形がそれぞれつながった形状に形成される。 Referring to the relational table in FIG. 12, for each passing hole formed in the limiting aperture array substrate 212 for the beams of the sub-regions 12 and 14, the positions (starting points) arranged at the beam pitch (passing area (512) ) and a position where the irradiation position is relatively shifted from the origin by, for example, 0.5 beam size + margin in the -x direction and 1.5 beam size + margin in the +y direction (passing area (384)) Then, the irradiation position is relatively shifted from the starting point by, for example, 1.5 beam size + margin in the +x direction and 0.5 beam size + margin in the +y direction (passing area (384')). , a position where the irradiation position is relatively shifted from the starting point by, for example, 0.5 beam size + margin in the -x direction and 1.5 beam size + margin in the -y direction (passing area (384")) Then, the irradiation position is relatively shifted from the starting point by, for example, 0.5 beam size + margin in the +x direction and 1.5 beam size + margin in the -y direction (passing area (256")) It is formed into a shape that allows the beam to pass through. In the examples of FIGS. 13A to 13C, although not shown, the passage hole is a square whose side is twice the size of (1 beam size + margin), the left half of the top side of the square, the top half of the right side, and the bottom side. The left half of the square and the right half of the lower side are formed into a shape in which squares each having one side of the size (1 beam size + margin) are connected.
 図12の関係テーブルを参照して、サブ領域#13のビーム用に制限アパーチャアレイ基板212に形成される各通過孔については、ビームピッチで配列された位置(起点)(通過領域(512))と、起点から、例えば、-x方向に0.5ビームサイズ+マージン分、及び+y方向に1.5ビームサイズ+マージン分だけ相対的に照射位置がずれた位置(通過領域(384))と、起点から、例えば、+x方向に0.5ビームサイズ+マージン分、及び+y方向に1.5ビームサイズ+マージン分だけ相対的に照射位置がずれた位置(通過領域(256))と、起点から、例えば、+x方向に1.5ビームサイズ+マージン分、及び+y方向に0.5ビームサイズ+マージン分だけ相対的に照射位置がずれた位置(通過領域(384’))と、起点から、例えば、+x方向に1.5ビームサイズ+マージン分、及び-y方向に0.5ビームサイズ+マージン分だけ相対的に照射位置がずれた位置(通過領域(256’))と、起点から、例えば、-x方向に0.5ビームサイズ+マージン分、及び-y方向に1.5ビームサイズ+マージン分だけ相対的に照射位置がずれた位置(通過領域(384”))と、起点から、例えば、+x方向に0.5ビームサイズ+マージン分、及び-y方向に1.5ビームサイズ+マージン分だけ相対的に照射位置がずれた位置(通過領域(256”))と、においてビームが通過可能な形状に形成される。図13Cの例では、通過孔は(1ビームサイズ+マージン分)の2倍のサイズを1辺とする正方形及びかかる正方形の上辺の左半分、上辺の右半分、右辺の上半分、右辺の下半分、下辺の左半分、及び下辺の右半分に(1ビームサイズ+マージン分)のサイズを1辺とする正方形がそれぞれつながった形状に形成される。 Referring to the relational table in FIG. 12, for each passing hole formed in the limiting aperture array substrate 212 for the beam of sub-region #13, the positions (starting points) arranged at the beam pitch (passing area (512)) Then, the irradiation position is relatively shifted from the starting point by, for example, 0.5 beam size + margin in the -x direction and 1.5 beam size + margin in the +y direction (passing area (384)). , for example, a position where the irradiation position is relatively shifted by 0.5 beam size + margin in the +x direction and 1.5 beam size + margin in the +y direction (passing area (256)) and the starting point. For example, the position where the irradiation position is relatively shifted by 1.5 beam size + margin in the +x direction and 0.5 beam size + margin in the +y direction (passing area (384')) and from the origin , for example, the position where the irradiation position is relatively shifted by 1.5 beam size + margin in the +x direction and 0.5 beam size + margin in the -y direction (passing area (256')) and from the starting point. , for example, the position where the irradiation position is relatively shifted by 0.5 beam size + margin in the -x direction and 1.5 beam size + margin in the -y direction (passing area (384")) and the starting point. For example, at a position (passage area (256")) where the irradiation position is relatively shifted by 0.5 beam size + margin in the +x direction and 1.5 beam size + margin in the -y direction, It is formed into a shape that allows the beam to pass through. In the example of FIG. 13C, the passage hole is a square whose side is twice the size of (1 beam size + margin), the left half of the top side of the square, the right half of the top side, the upper half of the right side, and the bottom of the right side. A square whose side is (1 beam size + margin) is connected to each half, the left half of the lower side, and the right half of the lower side.
 以上のように図13Aから図13Cの例では、制限アパーチャアレイ基板212(或いは成形アパーチャアレイ基板203)をx,y方向に移動させることにより、制限アパーチャアレイ基板212を通過するビームアレイを512×512本のビームアレイと、x,y方向に中央部の384×384本のビームアレイと、x,y方向に中央部の256×256本のビームアレイと、x方向に中央部の384×512本のビームアレイと、x方向に中央部の256×512本のビームアレイと、y方向に中央部の512×384本のビームアレイと、y方向に中央部の512×256本のビームアレイと、との7つのグループのいずれか1つを選択できる。 As described above, in the examples shown in FIGS. 13A to 13C, by moving the limiting aperture array substrate 212 (or shaping aperture array substrate 203) in the x and y directions, the beam array passing through the limiting aperture array substrate 212 is 512 beam array, 384 x 384 beam array in the center in x, y direction, 256 x 256 beam array in the center in x, y direction, 384 x 512 beam array in the center in x direction A book beam array, a 256 x 512 beam array at the center in the x direction, a 512 x 384 beam array at the center in the y direction, and a 512 x 256 beam array at the center in the y direction. , you can select any one of the seven groups.
 以上のように、マルチビームアレイ(マルチビーム20)のうち、移動によりマルチビームアレイとの相対位置を所定の位置とした制限アパーチャアレイ基板212を通過したビームアレイ(マルチビーム20)により、試料101は照射される。言い換えれば、制限アパーチャアレイ基板212(或いは成形アパーチャアレイ基板203)の移動による成形アパーチャアレイ基板203と制限アパーチャアレイ基板212との相対位置に応じて制限アパーチャアレイ基板212を通過したビームアレイ(マルチビーム20)で、例えば、ブランキングアパーチャアレイ機構204、縮小レンズ205、制限アパーチャ基板206、対物レンズ207、主偏向器208、及び副偏向器209といった電子光学系によって試料101は照射される。まず、制限アパーチャアレイ基板212を通過したビームアレイ(マルチビーム20)は、ブランキングアパーチャアレイ機構204に進む。制限アパーチャアレイ基板212を通過したマルチビーム20は、ブランキングアパーチャアレイ機構204のそれぞれ対応するブランカー(第1の偏向器:個別ブランキング機構47)内を通過する。かかるブランカーは、それぞれ、設定された描画時間(照射時間)の間、ビームがON状態になるように個別に通過するビームをブランキング制御する。 As described above, among the multi-beam arrays (multi-beams 20), the beam array (multi-beams 20) that has passed through the limiting aperture array substrate 212 whose relative position to the multi-beam array is set at a predetermined position by movement, is irradiated. In other words, the beam array (multi-beam 20), the sample 101 is irradiated by an electron optical system such as a blanking aperture array mechanism 204, a reduction lens 205, a limiting aperture substrate 206, an objective lens 207, a main deflector 208, and a sub-deflector 209. First, the beam array (multi-beam 20) that has passed through the limiting aperture array substrate 212 advances to the blanking aperture array mechanism 204. The multi-beams 20 that have passed through the limited aperture array substrate 212 pass through corresponding blankers (first deflectors: individual blanking mechanisms 47 ) of the blanking aperture array mechanism 204 . Each of these blankers performs blanking control on the beam passing through the blanker so that the beam is in an ON state for a set drawing time (irradiation time).
 図14は、実施の形態1におけるブランキングアパーチャアレイ機構のメンブレン領域内の構成の一部を示す上面概念図である。ブランキングアパーチャアレイ機構204は、基板の中央部を薄くしたメンブレン領域に、制限アパーチャアレイ基板212の各通過孔に対応する位置にマルチビームのそれぞれのビームの通過用の通過孔25(開口部)が設けられる。例えば、ビームピッチで配列された位置(起点)に合わせて通過孔25が設けられる。そして、複数の通過孔25のうち対応する通過孔25を挟んで対向する位置に制御電極24と対向電極26の組(ブランカー:ブランキング偏向器)がそれぞれ配置される。また、各通過孔25の近傍のブランキングアパーチャアレイ基板31内部には、各通過孔25用の制御電極24に偏向電圧を印加する制御回路41(ロジック回路;セル)が配置される。各ビーム用の対向電極26は、グランド接続される。各ビームは、制御回路41から制御電極24に印加される制御電位が切り換えられることによりブランキング制御が成される。 FIG. 14 is a conceptual top view showing a part of the configuration within the membrane region of the blanking aperture array mechanism in the first embodiment. The blanking aperture array mechanism 204 has passage holes 25 (openings) for each of the multi-beams to pass through, at positions corresponding to the passage holes of the limiting aperture array substrate 212, in a membrane region made thin in the center of the substrate. will be provided. For example, the passage holes 25 are provided in accordance with the positions (starting points) arranged at the beam pitch. A set of a control electrode 24 and a counter electrode 26 (blanker: blanking deflector) is arranged at a position facing each other across the corresponding passage hole 25 among the plurality of passage holes 25. Furthermore, a control circuit 41 (logic circuit; cell) that applies a deflection voltage to the control electrode 24 for each passage hole 25 is arranged inside the blanking aperture array substrate 31 near each passage hole 25 . The counter electrode 26 for each beam is connected to ground. Each beam is subjected to blanking control by switching the control potential applied to the control electrode 24 from the control circuit 41.
 ブランキングアパーチャアレイ機構204を通過したマルチビーム20は、縮小レンズ205によって、縮小され、制限アパーチャ基板206に形成された中心の穴に向かって進む。ここで、ブランキングアパーチャアレイ機構204のブランカーにおける制御電極24に印加される制御電位と対向電極26のグランド電位との電位差によって偏向された電子ビームは、制限アパーチャ基板206の中心の穴から位置がはずれ、制限アパーチャ基板206によって遮蔽される。一方、ブランキングアパーチャアレイ機構204のブランカーによって偏向されなかった電子ビームは、図1に示すように制限アパーチャ基板206の中心の穴を通過する。このように、制限アパーチャ基板206は、個別ブランキング機構47によってビームOFFの状態になるように偏向された各ビームを遮蔽する。そして、ビームONになってからビームOFFになるまでに形成された、制限アパーチャ基板206を通過したビームにより、1回分のショットの各ビームが形成される。制限アパーチャ基板206を通過したマルチビーム20は、対物レンズ207により焦点が合わされ、所望の縮小率のパターン像となり、主偏向器208及び副偏向器209によって、制限アパーチャ基板206を通過したマルチビーム20全体が同方向にまとめて偏向され、各ビームの試料101上のそれぞれの照射位置に照射される。そして、各ショットにおいて、主偏向器208或いは副偏向器209によって、当該ショットのシフト量(Dx,Dy)だけさらにマルチビーム20全体が偏向される。一度に照射されるマルチビーム20は、理想的には成形アパーチャアレイ基板203の複数の開口部22の配列ピッチに上述した所望の縮小率を乗じたピッチで並ぶことになる。 The multi-beam 20 that has passed through the blanking aperture array mechanism 204 is reduced by a reduction lens 205 and proceeds toward a central hole formed in a limiting aperture substrate 206. Here, the electron beam deflected by the potential difference between the control potential applied to the control electrode 24 in the blanker of the blanking aperture array mechanism 204 and the ground potential of the counter electrode 26 is deflected from the hole in the center of the limiting aperture substrate 206. off, and is shielded by the limiting aperture substrate 206. On the other hand, the electron beam that is not deflected by the blanker of the blanking aperture array mechanism 204 passes through the central hole of the limiting aperture substrate 206, as shown in FIG. In this way, the limited aperture substrate 206 blocks each beam that is deflected by the individual blanking mechanism 47 into a beam OFF state. Then, each beam of one shot is formed by the beam that has passed through the limiting aperture substrate 206 and is formed from when the beam is turned on until when the beam is turned off. The multi-beam 20 that has passed through the limited aperture substrate 206 is focused by an objective lens 207 to become a pattern image with a desired reduction ratio, and the multi-beam 20 that has passed through the limited aperture substrate 206 is focused by a main deflector 208 and a sub-deflector 209. The entire beam is collectively deflected in the same direction, and each beam is applied to each irradiation position on the sample 101. Then, in each shot, the entire multi-beam 20 is further deflected by the main deflector 208 or the sub-deflector 209 by the shift amount (Dx, Dy) of the shot. The multi-beams 20 irradiated at once are ideally arranged at a pitch equal to the arrangement pitch of the plurality of apertures 22 of the shaped aperture array substrate 203 multiplied by the desired reduction ratio described above.
 図15は、実施の形態1における描画される領域の一例を説明するための概念図である。図15に示すように、試料101の描画領域30は、例えば、y方向に向かって所定の幅で短冊状の複数のストライプ領域32に仮想分割される。描画領域30は、チップデータに定義されたチップ領域が相当する。描画装置100で描画領域30にパターンを描画する場合には、例えば、まず、XYステージ105を移動させて、第1番目のストライプ領域32の左端、或いはさらに左側の位置に一回のマルチビーム20のショットで照射可能な照射領域34が位置するように調整し、描画が開始される。第1番目のストライプ領域32を描画する際には、XYステージ105を例えば-x方向に移動させることにより、相対的にx方向へと描画を進めていく。XYステージ105は例えば等速で連続移動させる。第1番目のストライプ領域32の描画終了後、ステージ位置を-y方向に移動させて、今度は、XYステージ105を例えばx方向に移動させることにより、-x方向に向かって同様に描画を行う。かかる動作を繰り返し、各ストライプ領域32を順に描画する。交互に向きを変えながら描画することで描画時間を短縮できる。但し、かかる交互に向きを変えながら描画する場合に限らず、各ストライプ領域32を描画する際、同じ方向に向かって描画を進めるようにしても構わない。1回のショットでは、成形アパーチャアレイ基板203の各開口部22を通過することによって形成されたマルチビームによって、最大で各開口部22と同数の複数のショットパターンが一度に形成される。 FIG. 15 is a conceptual diagram for explaining an example of a region to be drawn in the first embodiment. As shown in FIG. 15, the drawing area 30 of the sample 101 is virtually divided into a plurality of striped areas 32 having a predetermined width in the y direction, for example. The drawing area 30 corresponds to a chip area defined in the chip data. When drawing a pattern in the drawing area 30 with the drawing apparatus 100, for example, first, the XY stage 105 is moved and the multi-beam 20 is placed once at the left end of the first stripe area 32 or further to the left. Adjustment is made so that the irradiation area 34 that can be irradiated with the shot is located, and drawing is started. When writing the first stripe area 32, the XY stage 105 is moved, for example, in the -x direction, thereby relatively progressing the writing in the x direction. The XY stage 105 is continuously moved, for example, at a constant speed. After drawing the first stripe area 32, the stage position is moved in the -y direction, and the XY stage 105 is then moved, for example, in the x direction to perform drawing in the same way in the -x direction. . This operation is repeated to sequentially draw each stripe area 32. Drawing time can be shortened by drawing while changing the direction alternately. However, the drawing is not limited to such a case where the drawing is performed while changing the direction alternately, but when drawing each stripe area 32, the drawing may proceed in the same direction. In one shot, by the multi-beams formed by passing through each opening 22 of the shaped aperture array substrate 203, a plurality of shot patterns, the maximum number of which is the same as each opening 22, are formed at once.
 図16は、実施の形態1におけるマルチビームの照射領域と描画対象画素との一例を示す図である。図16において、ストライプ領域32は、例えば、マルチビーム20のビームサイズでメッシュ状の複数のメッシュ領域に分割される。かかる各メッシュ領域が、描画対象の画素36(単位照射領域、照射位置、或いは描画位置)となる。描画対象画素36のサイズは、ビームサイズに限定されるものではなく、ビームサイズとは関係なく任意の大きさで構成されるものでも構わない。例えば、ビームサイズの1/n(nは1以上の整数)のサイズで構成されても構わない。図12の例では、試料101の描画領域が、例えばy方向に、1回のマルチビーム20の照射で照射可能な照射領域34(描画フィールド)のサイズと実質同じ幅サイズで複数のストライプ領域32に分割された場合を示している。矩形の照射領域34のx方向のサイズは、x方向のビーム数×x方向のビーム間ピッチで定義できる。矩形の照射領域34のy方向のサイズは、y方向のビーム数×y方向のビーム間ピッチで定義できる。図16の例では、例えば512×512列のマルチビームの図示を8×8列のマルチビームに省略して示している。そして、照射領域34内に、1回のマルチビーム20のショットで照射可能な複数の画素28(ビームの描画位置)が示されている。隣り合う画素28間のピッチが試料101面上におけるマルチビームの各ビーム間のピッチとなる。x,y方向にビームピッチのサイズで囲まれた矩形の領域で1つのサブ照射領域29(ピッチセル)を構成する。図16の例では、各サブ照射領域29は、例えば4×4画素で構成される場合を示している。各サブ照射領域29内は、それぞれ、複数のビームによって照射されることにより各サブ照射領域29内のすべての画素36が描画可能になるように描画シーケンスが設定される。 FIG. 16 is a diagram showing an example of a multi-beam irradiation area and drawing target pixels in the first embodiment. In FIG. 16, the stripe area 32 is divided into a plurality of mesh areas based on the beam size of the multi-beam 20, for example. Each such mesh area becomes a pixel 36 (unit irradiation area, irradiation position, or drawing position) to be drawn. The size of the drawing target pixel 36 is not limited to the beam size, and may be configured to have any size regardless of the beam size. For example, the beam size may be 1/n (n is an integer of 1 or more) of the beam size. In the example of FIG. 12, the drawing area of the sample 101 has a plurality of stripe areas 32 in the y direction with substantially the same width as the size of the irradiation area 34 (drawing field) that can be irradiated with one multi-beam 20 irradiation. This shows the case where it is divided into . The size of the rectangular irradiation area 34 in the x direction can be defined as the number of beams in the x direction x the pitch between beams in the x direction. The size of the rectangular irradiation area 34 in the y direction can be defined as the number of beams in the y direction x the pitch between beams in the y direction. In the example of FIG. 16, for example, 512×512 columns of multibeams are abbreviated to 8×8 columns of multibeams. In the irradiation area 34, a plurality of pixels 28 (beam drawing positions) that can be irradiated with one shot of the multi-beam 20 are shown. The pitch between adjacent pixels 28 becomes the pitch between each beam of the multi-beam on the surface of the sample 101. One sub-irradiation area 29 (pitch cell) is composed of a rectangular area surrounded by the size of the beam pitch in the x and y directions. In the example of FIG. 16, each sub-irradiation area 29 is composed of, for example, 4×4 pixels. A drawing sequence is set in each sub-irradiation area 29 so that all pixels 36 in each sub-irradiation area 29 can be drawn by being irradiated with a plurality of beams.
 次に、実施の形態1における描画方法の要部工程について説明する。 Next, the main steps of the drawing method in Embodiment 1 will be explained.
 モード選択部66は、複数の描画モードの中から1つを選択する。各描画モードでは、描画に使用するビームアレイが設定される。各描画モードには、例えば、図5の例で示した512×512本のビームアレイ、384×384本のビームアレイ、及び256×256本のビームアレイの3つのグループのうち、他とは異なる1つが設定される。512×512本のビームアレイが設定される描画モードは、スループット重視の高速描画モードとなる。256×256本のビームアレイが設定される描画モードは、描画精度重視の高精度描画モードとなる。384×384本のビームアレイが設定される描画モードは、これらの中間の例えば中間描画モードとなる。予め用意された複数の描画モードの中から当該チップの描画処理に使用する描画モードをユーザがGUI(グラフィックユーザインタフェース)等の図示しないインターフェースを用いて選択する。或いは、記憶装置140に格納される、チップデータ或いは描画パラメータのデータに使用する描画モードを定義しておいても良い。その他、図4Bに示す可変成形を行う場合には、さらに可変成形描画モードが追加される。描画モードは1基板毎に変更することとして、同一基板上の全チップは同じ描画モードになるように設定してもよいし、同一基板上のチップ毎、または領域毎に異なる描画モードを設定できるようにしてもよい。 The mode selection unit 66 selects one from a plurality of drawing modes. In each writing mode, a beam array used for writing is set. Each drawing mode has a different group, for example, from the three groups of 512 x 512 beam arrays, 384 x 384 beam arrays, and 256 x 256 beam arrays shown in the example of Fig. 5. One is set. The writing mode in which a 512×512 beam array is set is a high-speed writing mode that emphasizes throughput. The writing mode in which a 256×256 beam array is set is a high-precision writing mode that emphasizes writing accuracy. A writing mode in which a 384×384 beam array is set is an intermediate writing mode between these, for example. A user selects a drawing mode to be used for drawing processing of the chip from among a plurality of drawing modes prepared in advance using an interface (not shown) such as a GUI (graphic user interface). Alternatively, the drawing mode used for chip data or drawing parameter data stored in the storage device 140 may be defined. In addition, when performing the variable shaping shown in FIG. 4B, a variable shaping drawing mode is further added. The drawing mode can be changed for each board, so all chips on the same board can be set to the same drawing mode, or different drawing modes can be set for each chip or region on the same board. You can do it like this.
 或いは、複数の描画モードをさらに細分化して、各描画モードには、例えば、図7の例で示した512×512本のビームアレイ、448×448本のビームアレイ、384×384本のビームアレイ、256×256本のビームアレイ、及び128×128本のビームアレイの5つのグループのうち、他とは異なる1つが設定されるようにしても好適である。 Alternatively, by further subdividing the plurality of writing modes, each writing mode may include, for example, a 512 x 512 beam array, a 448 x 448 beam array, or a 384 x 384 beam array as shown in the example of FIG. , a 256×256 beam array, and a 128×128 beam array, it is also preferable that one group is set differently from the others.
 或いは、各描画モードには、例えば、x方向或いはy方向の両側のビーム列を制限する場合を含めた図8の例で示した512×512本のビームアレイ(A)、384×384本のビームアレイ(B)、512×384本のビームアレイ(C)、及び384×512本のビームアレイ(D)の4つのグループのうち、他とは異なる1つが設定されるようにしても好適である。 Alternatively, each drawing mode may include, for example, the 512 x 512 beam array (A) shown in the example of FIG. It is also preferable that one of the four groups of beam array (B), 512 x 384 beam array (C), and 384 x 512 beam array (D) is set. be.
 或いは、複数の描画モードをさらに細分化して、各描画モードには、例えば、x方向或いはy方向の両側のビーム列を制限する場合を含めた図11の例で示した512×512本のビームアレイ、384×384本のビームアレイ、256×256本のビームアレイ、384×512本のビームアレイ、256×512本のビームアレイ、512×384本のビームアレイ、及び512×256本のビームアレイの7つのグループのうち、他とは異なる1つが設定されるようにしても好適である。 Alternatively, the plurality of drawing modes may be further subdivided, and each drawing mode may have, for example, 512 x 512 beams as shown in the example of FIG. array, 384 x 384 beam array, 256 x 256 beam array, 384 x 512 beam array, 256 x 512 beam array, 512 x 384 beam array, and 512 x 256 beam array It is also preferable that one of the seven groups is set, which is different from the others.
 描画制御部80による制御のもと、アパーチャアレイ制御回路131は、駆動回路214を制御する。駆動回路214は、成形アパーチャアレイ基板203と制限アパーチャアレイ基板214との相対位置が変化するように、マルチビーム20の軌道中心軸と直交する方向に成形アパーチャアレイ基板203と制限アパーチャアレイ基板212との少なくとも一方を移動させる。ここでは、駆動回路214は、選択された描画モードに設定されるビームアレイが制限アパーチャアレイ基板212を通過するように、成形アパーチャアレイ基板203と制限アパーチャアレイ基板212との少なくとも一方を移動させる。例えば制限アパーチャアレイ基板212を移動させる。これにより、選択された描画モードに応じた電流量に制限されたビームアレイで描画処理を行うことができる。 Under the control of the drawing control unit 80, the aperture array control circuit 131 controls the drive circuit 214. The drive circuit 214 moves the shaped aperture array substrate 203 and the limiting aperture array substrate 212 in a direction perpendicular to the orbit center axis of the multi-beam 20 so that the relative positions of the shaped aperture array substrate 203 and the limiting aperture array substrate 214 change. move at least one of the Here, the drive circuit 214 moves at least one of the shaping aperture array substrate 203 and the limiting aperture array substrate 212 so that the beam array set to the selected writing mode passes through the limiting aperture array substrate 212. For example, the restricted aperture array substrate 212 is moved. Thereby, writing can be performed using a beam array whose current amount is limited according to the selected writing mode.
 ショットデータ生成部62は、記憶装置140からチップデータ(描画データ)を読み出し、画素36毎の照射時間データ(ショットデータ)を生成する。照射時間は、画素内に描画されるパターン密度、及び/或いは近接効果等を考慮して求めると好適である。これらの計算手法は従来と同様の手法で構わない。 The shot data generation unit 62 reads chip data (drawing data) from the storage device 140 and generates irradiation time data (shot data) for each pixel 36. It is preferable that the irradiation time is determined by taking into consideration the pattern density drawn within the pixel and/or the proximity effect. These calculation methods may be the same as conventional methods.
 データ加工部64は、得られた照射時間データをショット順に並び替える。ショットの順序は描画制御部80によって制御される描画シーケンスによって定まる。得られた照射時間データは記憶装置142に格納される。 The data processing unit 64 rearranges the obtained irradiation time data in the order of shots. The order of shots is determined by the drawing sequence controlled by the drawing control unit 80. The obtained irradiation time data is stored in the storage device 142.
 転送制御部79は、ショット順に偏向制御回路130へと照射時間データを転送する。そして、偏向制御回路130は、DACアンプユニット132,134及びブランキングアパーチャアレイ機構204をショットに応じて制御する。描画機構150は、移動による成形アパーチャアレイ基板203と制限アパーチャアレイ基板212との相対位置に応じて制限アパーチャアレイ基板212を通過したビームアレイで試料101を照射する。 The transfer control unit 79 transfers the irradiation time data to the deflection control circuit 130 in shot order. The deflection control circuit 130 then controls the DAC amplifier units 132 and 134 and the blanking aperture array mechanism 204 according to the shot. The drawing mechanism 150 irradiates the sample 101 with a beam array that has passed through the limiting aperture array substrate 212 according to the relative position of the moving shaped aperture array substrate 203 and the limiting aperture array substrate 212 .
 なお、描画制御部80によって制御される描画シーケンスにおいて、例えばXYステージ105が連続移動している時、ビームの照射位置がXYステージ105の移動に追従するように主偏向器208によってトラッキング制御が行われる。そして、各サブ照射領域29は、予め設定された複数のビームによって自己のサブ照射領域29内のすべての画素36が照射され得るように偏向される。各サブ照射領域29が、例えば、4×4の画素36で構成され、いずれかの4つのビームで全画素を照射する場合、1回のトラッキング制御で、各サブ照射領域29内の1/4の画素(4画素)が1つのビームによる例えば4ショットで描画される。各回のトラッキング制御において照射するビームを交代させることで、4回のトラッキング制御で、4×4の画素36すべてが照射され得ることになる。 In the drawing sequence controlled by the drawing control unit 80, for example, when the XY stage 105 is continuously moving, tracking control is performed by the main deflector 208 so that the beam irradiation position follows the movement of the XY stage 105. be exposed. Each sub-irradiation area 29 is deflected so that all pixels 36 within its own sub-irradiation area 29 can be irradiated with a plurality of preset beams. For example, when each sub-irradiation area 29 is composed of 4×4 pixels 36 and all pixels are irradiated with any of the four beams, one-time tracking control will cause 1/4 of each sub-irradiation area 29 to be pixels (4 pixels) are drawn using, for example, 4 shots using one beam. By alternating the beams to be irradiated in each tracking control, all 4×4 pixels 36 can be irradiated in four tracking controls.
 以上のように実施の形態1によれば、大電流量モードと小電流量モードとを選択的に切り換えることが可能なマルチビーム照射ができる。 As described above, according to Embodiment 1, multi-beam irradiation can be performed in which the large current amount mode and the small current amount mode can be selectively switched.
[実施の形態2]
 実施の形態1では、マルチビーム20のビーム本数と同じ数の通過孔が制限アパーチャアレイ基板212に形成される構成について説明したが、これに限るものではない。実施の形態2では、マルチビーム20のビーム本数と異なる数の通過孔が制限アパーチャアレイ基板212に形成される構成について説明する。実施の形態2における描画装置100の構成は図1と同様である。以下、特に説明する点以外の内容は実施の形態1と同様である。
[Embodiment 2]
In the first embodiment, a configuration in which the same number of passage holes as the number of beams of the multi-beam 20 are formed in the limited aperture array substrate 212 has been described, but the present invention is not limited to this. In the second embodiment, a configuration will be described in which a number of passing holes different from the number of beams of the multi-beam 20 are formed in the limited aperture array substrate 212. The configuration of the drawing apparatus 100 in the second embodiment is the same as that in FIG. 1. Hereinafter, the contents other than those specifically explained are the same as those in the first embodiment.
 図17は、実施の形態2における制限アパーチャアレイ基板の構成を示す概念図である。図17において、制限アパーチャアレイ基板212には、マルチビーム20のうち一部のビームアレイ全体が通過可能な大通過孔19と、マルチビーム20の残りのビーム群が通過可能な、残りのビーム群の数と同じ数の複数の(小)通過孔21とが形成される。大通過孔19と複数の通過孔21は、制限アパーチャアレイ基板212上でのマルチビーム20のビームピッチ(Px,Py)で配列される各位置(起点)において、全ビームが通過可能に形成される。図17の例では、例えば、8×7本のマルチビームのうち、中央部の4×5本のビームアレイ全体が通過可能に、大通過孔19が形成される場合を示している。また、周囲の残りの例えば36本のビームがそれぞれ通過可能に、36個の(小)通過孔21が形成される場合を示している。なお、成形アパーチャアレイ基板203は、図2と同様である。基本形となる複数の通過孔21の形状として、例えば、1ビームサイズ+マージン分のサイズの正方形が用いられる。これに対して、大通過孔19の形状として、(1ビームサイズ+マージン分)に通過するx方向のビーム本数を乗じたサイズに、さらに例えば(1ビームサイズ+マージン分)以上のサイズを加算したサイズをx方向サイズとし、(1ビームサイズ+マージン分)に通過するy方向のビーム本数を乗じたサイズをy方向サイズとした矩形が用いられる。但し、加算する(1ビームサイズ+マージン分)以上のサイズは、隣り合う(小)通過孔21間の隙間より小さいサイズに設定する。 FIG. 17 is a conceptual diagram showing the configuration of a limited aperture array substrate in the second embodiment. In FIG. 17, the limited aperture array substrate 212 has a large passage hole 19 through which some of the multi-beams 20 can pass the entire beam array, and a remaining beam group through which the remaining beam groups of the multi-beams 20 can pass. A plurality of (small) passage holes 21 of the same number as the number of (small) passage holes 21 are formed. The large passage hole 19 and the plurality of passage holes 21 are formed so that all beams can pass through them at each position (starting point) arranged at the beam pitch (Px, Py) of the multi-beam 20 on the limited aperture array substrate 212. Ru. In the example of FIG. 17, for example, the large passage hole 19 is formed so that the entire 4×5 beam array in the center of the 8×7 multi-beams can pass through. Further, a case is shown in which 36 (small) passage holes 21 are formed so that the remaining surrounding beams, for example, 36 beams, can pass through. Note that the molded aperture array substrate 203 is the same as that shown in FIG. As the basic shape of the plurality of passage holes 21, for example, a square having a size equal to one beam size plus a margin is used. On the other hand, the shape of the large passage hole 19 is determined by multiplying (1 beam size + margin) by the number of passing beams in the x direction, and then adding, for example, a size larger than (1 beam size + margin). A rectangle is used in which the x-direction size is the size of the rectangle, and the y-direction size is the product of (1 beam size + margin) by the number of passing beams in the y-direction. However, the size greater than the sum (1 beam size + margin) is set to be smaller than the gap between adjacent (small) passage holes 21 .
 図18Aと図18Bは、実施の形態2における成形アパーチャアレイ基板と制限アパーチャアレイ基板との相対位置に応じたマルチビームの状態を説明するための図である。図18Aでは、成形アパーチャアレイ基板203の複数の開口部22を通過したマルチビーム20のすべてのビーム13が、制限アパーチャアレイ基板212の大通過孔19と複数の通過孔21のいずれかの通過孔内の領域の位置と重なる場合を示している。図18Aの例では、マルチビーム20のすべてのビーム13が、制限アパーチャアレイ基板212を通過できる。言い換えれば、大電流量のビームアレイで試料101が照射される。 FIGS. 18A and 18B are diagrams for explaining the state of the multi-beam depending on the relative position of the shaping aperture array substrate and the limiting aperture array substrate in the second embodiment. In FIG. 18A, all the beams 13 of the multi-beam 20 that have passed through the plurality of openings 22 of the shaped aperture array substrate 203 pass through the large passage hole 19 and the plurality of passage holes 21 of the limited aperture array substrate 212. This shows the case where the area overlaps with the position of the area within. In the example of FIG. 18A, all beams 13 of multi-beam 20 are allowed to pass through restricted aperture array substrate 212. In other words, the sample 101 is irradiated with a beam array with a large amount of current.
 図18Bの例では、駆動機構214が成形アパーチャアレイ基板203と制限アパーチャアレイ基板212との少なくとも一方を移動させることによって、制限アパーチャアレイ基板212は、成形アパーチャアレイ基板203と制限アパーチャアレイ基板212との相対位置に応じて、マルチビーム20全体とマルチビーム20全体のうちの一部のビームアレイとの一方を選択的に通過させる。制限アパーチャアレイ基板212は、かかる一部のビームアレイを通過させる場合に、マルチビーム20全体のうち中央部のビームアレイを通過させる。図18Bの例では、例えば、制限アパーチャアレイ基板212をx方向にマルチビーム200のビームサイズよりも大きくずらした場合を示している。これにより、図18Bの例では、成形アパーチャアレイ基板203の複数の開口部22を通過したマルチビーム200のうち、制限アパーチャアレイ基板212の大通過孔19に対応するビーム13は大通過孔19を通過できる。しかし、正方形の通過孔21に対応するビーム13は通過孔21から位置が外れるため制限アパーチャアレイ基板212によって遮蔽される。図18Bの例では、マルチビーム200のうち、中央部のビームアレイはそれぞれ大通過孔19を通過できる。しかし、周辺部のビーム群は通過孔21を通過できずに遮蔽される。これにより、マルチビーム20のビーム本数を少なくすることができる。図18Bの例では、8×7本のビームアレイを4×5本のビームアレイに制限できる。よって、マルチビーム20の全電流量を小さくできる。さらに、中央部のビームアレイを選択的に抽出できる。 In the example of FIG. 18B, the driving mechanism 214 moves at least one of the shaped aperture array substrate 203 and the limiting aperture array substrate 212, so that the limiting aperture array substrate 212 moves between the shaped aperture array substrate 203 and the limiting aperture array substrate 212. Depending on the relative position of the multi-beam 20, either the entire multi-beam 20 or a part of the beam array of the entire multi-beam 20 is selectively passed. The limiting aperture array substrate 212 allows the central beam array of the entire multi-beam 20 to pass, when such a part of the beam array passes. The example in FIG. 18B shows, for example, a case where the limited aperture array substrate 212 is shifted in the x direction by a larger amount than the beam size of the multi-beam 200. As a result, in the example of FIG. 18B, among the multi-beams 200 that have passed through the plurality of apertures 22 of the shaped aperture array substrate 203, the beam 13 corresponding to the large passage hole 19 of the limited aperture array substrate 212 passes through the large passage hole 19. Can pass. However, since the beam 13 corresponding to the square passage hole 21 is out of position from the passage hole 21, it is blocked by the limiting aperture array substrate 212. In the example of FIG. 18B, the central beam array of the multi-beams 200 can each pass through the large passage hole 19. However, the beam group at the periphery cannot pass through the passage hole 21 and is blocked. Thereby, the number of beams of the multi-beam 20 can be reduced. In the example of FIG. 18B, the 8x7 beam array can be limited to a 4x5 beam array. Therefore, the total amount of current flowing through the multi-beam 20 can be reduced. Furthermore, the central beam array can be selectively extracted.
 以上のように実施の形態2によれば、大通過孔19を用いる場合でも、大電流量モードと中央部のビームアレイを用いた小電流量モードとを選択的に切り換えることが可能なマルチビーム照射ができる。 As described above, according to the second embodiment, even when using the large passage hole 19, the multi-beam beam can selectively switch between the large current amount mode and the small current amount mode using the central beam array. Can be irradiated.
 以上、具体例を参照しつつ実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。 The embodiments have been described above with reference to specific examples. However, the present invention is not limited to these specific examples.
 また、駆動機構214が、制限アパーチャアレイ基板212の代わりに、成形アパーチャアレイ基板203を移動させる場合、マルチビーム20の軌道中心軸も同様に移動する。そのため、図示しないアライメントコイルを配置して一段以上のビーム偏向を行い、ずらした軌道中心軸を元に戻すと好適である。例えば、制限アパーチャアレイ基板212とブランキングアパーチャアレイ機構204との間に図示しないアライメントコイルを配置して、ずらした軌道中心軸を元に戻すと好適である。或いは、成形アパーチャアレイ基板203と共にブランキングアパーチャアレイ機構204も一緒に移動させても構わない。 Furthermore, when the drive mechanism 214 moves the shaping aperture array substrate 203 instead of the limiting aperture array substrate 212, the orbit center axis of the multi-beam 20 also moves in the same way. Therefore, it is preferable to arrange an alignment coil (not shown) to perform one or more stages of beam deflection to return the shifted orbit center axis to its original position. For example, it is preferable to arrange an alignment coil (not shown) between the limiting aperture array substrate 212 and the blanking aperture array mechanism 204 to restore the shifted trajectory center axis. Alternatively, the blanking aperture array mechanism 204 may be moved together with the molded aperture array substrate 203.
 また、装置構成や制御手法等、本発明の説明に直接必要しない部分等については記載を省略したが、必要とされる装置構成や制御手法を適宜選択して用いることができる。例えば、描画装置100を制御する制御部構成については、記載を省略したが、必要とされる制御部構成を適宜選択して用いることは言うまでもない。 Furthermore, descriptions of parts not directly necessary for explaining the present invention, such as the device configuration and control method, have been omitted, but the necessary device configuration and control method can be selected and used as appropriate. For example, although the description of the control unit configuration for controlling the drawing apparatus 100 has been omitted, it goes without saying that the required control unit configuration can be appropriately selected and used.
 その他、本発明の要素を具備し、当業者が適宜設計変更しうる全てのマルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法は、本発明の範囲に包含される。 In addition, all multi-charged particle beam lithography apparatuses and multi-charged particle beam lithography methods that include the elements of the present invention and whose designs can be modified as appropriate by those skilled in the art are included within the scope of the present invention.
 本発明の一態様は、マルチ荷電粒子ビーム照射装置及びマルチ荷電粒子ビーム照射方法に係り、例えば、マルチビーム描画装置における基板に照射されるビームアレイの電流量を選択する手法に利用できる。 One aspect of the present invention relates to a multi-charged particle beam irradiation device and a multi-charged particle beam irradiation method, and can be used, for example, as a method for selecting the amount of current of a beam array that irradiates a substrate in a multi-beam writing device.
10 大通過孔
13 ビーム
20 マルチビーム
22 開口部
21,23 通過孔
24 制御電極
25 通過孔
26 対向電極
28,36 画素
29 サブ照射領域
30 描画領域
31 ビームアレイ領域
32 ストライプ領域
34 照射領域
41 制御回路
47 個別ブランキング機構
62 ショットデータ生成部
64 データ加工部
66 モード選択部
79 転送制御部
80 描画制御部
100 描画装置
101 試料
102 電子鏡筒
103 描画室
105 XYステージ
106 ファラデイカップ
110 制御計算機
112 メモリ
130 偏向制御回路
131 アパーチャアレイ制御回路
132,134 DACアンプユニット
136 レンズ制御回路
138 ステージ制御機構
139 ステージ位置測定器
140,142 記憶装置
150 描画機構
160 制御系回路
200 電子ビーム
201 電子銃
202 照明レンズ
203 成形アパーチャアレイ基板
204 ブランキングアパーチャアレイ機構
205 縮小レンズ
206 制限アパーチャ基板
207 対物レンズ
208 主偏向器
209 副偏向器
210 ミラー
212 制限アパーチャアレイ基板
214 駆動回路
10 Large passage hole 13 Beam 20 Multi-beam 22 Openings 21, 23 Passing hole 24 Control electrode 25 Passing hole 26 Opposing electrodes 28, 36 Pixel 29 Sub-irradiation area 30 Drawing area 31 Beam array area 32 Stripe area 34 Irradiation area 41 Control circuit 47 Individual blanking mechanism 62 Shot data generation section 64 Data processing section 66 Mode selection section 79 Transfer control section 80 Drawing control section 100 Drawing device 101 Sample 102 Electronic lens barrel 103 Drawing chamber 105 XY stage 106 Faraday cup 110 Control computer 112 Memory 130 Deflection control circuit 131 Aperture array control circuit 132, 134 DAC amplifier unit 136 Lens control circuit 138 Stage control mechanism 139 Stage position measuring device 140, 142 Storage device 150 Drawing mechanism 160 Control system circuit 200 Electron beam 201 Electron gun 202 Illumination lens 203 Molded aperture array substrate 204 Blanking aperture array mechanism 205 Reducing lens 206 Limiting aperture substrate 207 Objective lens 208 Main deflector 209 Sub-deflector 210 Mirror 212 Limiting aperture array substrate 214 Drive circuit

Claims (10)

  1.  荷電粒子ビームのマルチビームアレイを形成する成形アパーチャアレイ基板と、
     前記マルチビームアレイの各ビームの少なくとも一部が通過可能な、複数の通過孔が形成され、前記複数の通過孔の一部の通過孔の形状が他の通過孔と異なる制限アパーチャアレイ基板と、
     前記マルチビームアレイと前記制限アパーチャアレイ基板との相対位置が変化するように、前記マルチビームの軌道中心軸と直交する方向に、前記成形アパーチャアレイ基板と、前記制限アパーチャアレイ基板と、前記マルチビームアレイと、の少なくともいずれかを移動させる機構と、
     前記マルチビームアレイのうち、前記移動により前記マルチビームアレイとの前記相対位置を所定の位置とした前記制限アパーチャアレイ基板を通過したビームアレイを試料に照射する光学系と、
     を備えたことを特徴とするマルチ荷電粒子ビーム照射装置。
    a shaped aperture array substrate forming a multi-beam array of charged particle beams;
    a limiting aperture array substrate in which a plurality of passage holes are formed through which at least a portion of each beam of the multi-beam array can pass, and a shape of some of the plurality of passage holes is different from that of other passage holes;
    The shaping aperture array substrate, the limiting aperture array substrate, and the multi-beam array are arranged in a direction perpendicular to the orbit center axis of the multi-beams so that the relative positions of the multi-beam array and the limiting aperture array substrate change. a mechanism for moving at least one of the array;
    an optical system that irradiates a sample with a beam array of the multi-beam array that has passed through the limited aperture array substrate whose relative position with respect to the multi-beam array is set to a predetermined position by the movement;
    A multi-charged particle beam irradiation device characterized by comprising:
  2.  前記制限アパーチャアレイ基板は、前記マルチビームアレイの一部が通過可能な大通過孔と、前記マルチビームアレイの前記一部以外のビームアレイが通過可能な、複数の小通過孔とが形成されたことを特徴とする請求項1記載のマルチ荷電粒子ビーム照射装置。 The limited aperture array substrate is formed with a large passage hole through which a part of the multi-beam array can pass, and a plurality of small passage holes through which beam arrays other than the part of the multi-beam array can pass. The multi-charged particle beam irradiation device according to claim 1, characterized in that:
  3.  前記制限アパーチャアレイ基板は、前記相対位置を変化させることで、前記マルチビームアレイと、前記マルチビームアレイの一部と、の一方を選択的に通過させることを特徴とする請求項1記載のマルチ荷電粒子ビーム照射装置。 2. The multi-beam array according to claim 1, wherein the limiting aperture array substrate selectively allows one of the multi-beam array and a portion of the multi-beam array to pass through by changing the relative position. Charged particle beam irradiation device.
  4.  前記複数の通過孔は、3つ以上の形状の複数のグループのうちいずれかのグループの形状に形成されることを特徴とする請求項1記載のマルチ荷電粒子ビーム照射装置。 The multi-charged particle beam irradiation device according to claim 1, wherein the plurality of passage holes are formed in the shape of any one of a plurality of groups of three or more shapes.
  5.  前記制限アパーチャアレイ基板は、前記マルチビームアレイの一部を通過させる場合に、前記マルチビームアレイのうち中央部のビームアレイを通過させることを特徴とする請求項3記載のマルチ荷電粒子ビーム照射装置。 4. The multi-charged particle beam irradiation apparatus according to claim 3, wherein the limiting aperture array substrate allows a central beam array of the multi-beam array to pass through when passing a part of the multi-beam array. .
  6.  前記制限アパーチャアレイ基板は、前記マルチビームアレイの少なくとも一部を通過させるとき、前記マルチビームアレイの各ビームのそれぞれ一部を通過させて可変成形することを特徴とする請求項1記載のマルチ荷電粒子ビーム照射装置。 The multi-charged multi-charged substrate according to claim 1, wherein the limiting aperture array substrate variably shapes a portion of each beam of the multi-beam array when passing at least a portion of the multi-beam array. Particle beam irradiation device.
  7.  前記複数の通過孔は、矩形と矩形とは異なる形状との組み合わせにより形成されることを特徴とする請求項1記載のマルチ荷電粒子ビーム照射装置。 The multi-charged particle beam irradiation device according to claim 1, wherein the plurality of passage holes are formed by a combination of a rectangular shape and a shape different from the rectangular shape.
  8.  前記複数の通過孔は、中央部に形成される通過孔の面積が、外周部に形成される通過孔の面積よりも大きく形成されることを特徴とする請求項1記載のマルチ荷電粒子ビーム照射装置。 The multi-charged particle beam irradiation according to claim 1, wherein the plurality of passage holes are formed such that the area of the passage hole formed in the central part is larger than the area of the passage hole formed in the outer peripheral part. Device.
  9.  複数の成形開口部が形成された成形アパーチャアレイによりマルチビームアレイを形成し、
     前記成形アパーチャアレイ基板と、前記マルチビームアレイの各ビームが通過可能な、複数の通過孔が形成され、前記複数の通過孔形状が領域毎に異なる制限アパーチャアレイ基板との相対位置が変化するように、前記マルチビームの軌道中心軸と直交する方向に前記成形アパーチャアレイ基板、前記制限アパーチャアレイ基板と、前記マルチビームアレイと、の少なくとも一方を移動させることにより、前記マルチビームアレイと前記制限アパーチャアレイ基板との相対位置を変動させ、
     前記マルチビームアレイのうち、前記移動により前記マルチビームアレイとの前記相対位置を所定の位置とした前記制限アパーチャアレイ基板を通過したビームアレイを試料に照射する、
     ことを特徴とするマルチ荷電粒子ビーム照射方法。
    A multi-beam array is formed by a shaped aperture array in which a plurality of shaped openings are formed,
    A plurality of passing holes are formed through which each beam of the multi-beam array can pass, and a relative position between the shaped aperture array substrate and a limiting aperture array substrate is formed such that the shapes of the plurality of passing holes vary from region to region. The multi-beam array and the limiting aperture are moved by moving at least one of the shaping aperture array substrate, the limiting aperture array substrate, and the multi-beam array in a direction perpendicular to the orbit center axis of the multi-beam. By varying the relative position with the array substrate,
    Irradiating the sample with a beam array of the multi-beam array that has passed through the limited aperture array substrate whose relative position with respect to the multi-beam array has been set to a predetermined position by the movement;
    A multi-charged particle beam irradiation method characterized by:
  10.  前記制限アパーチャアレイ基板は、前記マルチビームアレイの一部が通過可能な大通過孔と、前記マルチビームアレイの前記一部を除くビームアレイが通過可能な、複数の小通過孔とが形成されたことを特徴とする請求項9のマルチ荷電粒子ビーム照射方法。
     
     
    The limited aperture array substrate is formed with a large passage hole through which a part of the multi-beam array can pass, and a plurality of small passage holes through which a beam array other than the part of the multi-beam array can pass. 10. The multi-charged particle beam irradiation method according to claim 9.

PCT/JP2023/016484 2022-05-24 2023-04-26 Multi charged-particle beam irradiation device and multi charged-particle beam irradiation method WO2023228675A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-084226 2022-05-24
JP2022084226A JP2023172433A (en) 2022-05-24 2022-05-24 Multi-charged particle beam irradiation device and multi-charged particle beam irradiation method

Publications (1)

Publication Number Publication Date
WO2023228675A1 true WO2023228675A1 (en) 2023-11-30

Family

ID=88919151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016484 WO2023228675A1 (en) 2022-05-24 2023-04-26 Multi charged-particle beam irradiation device and multi charged-particle beam irradiation method

Country Status (2)

Country Link
JP (1) JP2023172433A (en)
WO (1) WO2023228675A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08153658A (en) * 1994-11-28 1996-06-11 Hitachi Ltd Electron beam drawing method and device
JP2014075409A (en) * 2012-10-03 2014-04-24 Jeol Ltd Multi-charged particle beam drawing device
JP2020503644A (en) * 2016-12-30 2020-01-30 エーエスエムエル ネザーランズ ビー.ブイ. Apparatus using multiple charged particle beams
JP2021132064A (en) * 2020-02-18 2021-09-09 株式会社ニューフレアテクノロジー Multi-beam drawing method and multi-beam drawing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08153658A (en) * 1994-11-28 1996-06-11 Hitachi Ltd Electron beam drawing method and device
JP2014075409A (en) * 2012-10-03 2014-04-24 Jeol Ltd Multi-charged particle beam drawing device
JP2020503644A (en) * 2016-12-30 2020-01-30 エーエスエムエル ネザーランズ ビー.ブイ. Apparatus using multiple charged particle beams
JP2021132064A (en) * 2020-02-18 2021-09-09 株式会社ニューフレアテクノロジー Multi-beam drawing method and multi-beam drawing device

Also Published As

Publication number Publication date
JP2023172433A (en) 2023-12-06

Similar Documents

Publication Publication Date Title
TWI477925B (en) Multi - beam charged particle beam mapping device and multi - beam charged particle beam rendering method
US9934943B2 (en) Beam grid layout
JP5743886B2 (en) Method and system for exposing a target
TWI581300B (en) Multi charged particle beam writing apparatus
TWI476808B (en) Multi - charged particle beam rendering device and multi - charged particle beam rendering method
JP6589758B2 (en) Multi-charged particle beam writing apparatus and multi-charged particle beam writing method
KR20110030466A (en) Imaging system
US10784073B2 (en) Blanking deflector, and multi charged particle beam writing apparatus using three deflector electrodes and a transmission line
GB2349737A (en) Electron beam exposure apparatus
KR102410976B1 (en) Multi charged particle beam drawing device and multi charged particle beam drawing method
US5455427A (en) Lithographic electron-beam exposure apparatus and methods
WO2023228675A1 (en) Multi charged-particle beam irradiation device and multi charged-particle beam irradiation method
JP2018137358A (en) Multiple charged particle beam lithography method and multiple charged particle beam lithography system
JP2024004285A (en) Multiple charged particle beam drawing method and multiple charged particle beam drawing apparatus
JP2020035871A (en) Multi-beam aperture set, and apparatus and method for multi-charged particle beam drawing
WO2023058290A1 (en) Multi-charged particle beam drawing apparatus and charged particle beam drawing method
US10586682B2 (en) Method of obtaining beam deflection shape and method of obtaining arrangement angle of blanking aperture array plate
KR102436194B1 (en) Multi charged particle beam evaluation method and multi charged particle beam writing apparatus
JP7446940B2 (en) Multi-charged particle beam lithography device and multi-charged particle beam lithography method
TW202412049A (en) Multi-charged particle beam irradiation device and multi-charged particle beam irradiation method
KR20230039530A (en) Multi-charged particle beam writing apparatus and multi-charged particle beam writing method
JP2023042356A (en) Multi-charged particle beam lithography method, multi-charged particle beam lithography apparatus and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811553

Country of ref document: EP

Kind code of ref document: A1