WO2023228642A1 - Inverter device and electric compressor comprising same - Google Patents

Inverter device and electric compressor comprising same Download PDF

Info

Publication number
WO2023228642A1
WO2023228642A1 PCT/JP2023/015933 JP2023015933W WO2023228642A1 WO 2023228642 A1 WO2023228642 A1 WO 2023228642A1 JP 2023015933 W JP2023015933 W JP 2023015933W WO 2023228642 A1 WO2023228642 A1 WO 2023228642A1
Authority
WO
WIPO (PCT)
Prior art keywords
common mode
mode coil
inverter
inverter circuit
phase
Prior art date
Application number
PCT/JP2023/015933
Other languages
French (fr)
Japanese (ja)
Inventor
康平 ▲高▼田
浩 吉田
孝次 小林
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Publication of WO2023228642A1 publication Critical patent/WO2023228642A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to an inverter device that drives a motor, and an electric compressor equipped with the inverter device.
  • an electric compressor equipped with a motor is used instead of an engine-driven compressor.
  • the vehicle is equipped with a high-voltage power source consisting of a high-voltage battery of about 300 VDC, for example, and a low-voltage power source consisting of a normal battery of about 12 VDC, and the inverter circuit of the inverter device converts the DC voltage of the high-voltage power source into alternating current. This voltage is supplied to the motor of the electric compressor.
  • a control circuit that controls an inverter circuit of an inverter device is supplied with power by converting, for example, a DC voltage from a low-voltage power supply into a predetermined voltage (for example, DC 15V, etc.) using a switching power supply device. Therefore, a switching power supply device is provided with a switching transformer made of an isolation transformer, and a low voltage circuit on the primary side of the switching transformer is insulated from a high voltage circuit on the secondary side. That is, an inverter device including a high voltage circuit supplied with power from a high voltage power supply and a low voltage circuit supplied with power from a low voltage power supply is housed in an inverter accommodating portion configured in the housing of the electric compressor. It was considered to be a form.
  • 100 is a conventional electric compressor that constitutes a refrigerant circuit of a vehicle air conditioner mounted on an electric vehicle, and 2 indicates its housing.
  • a compression mechanism (not shown) and a motor 8 for driving the compression mechanism are housed in the housing 2
  • an inverter circuit 34 for driving the motor 8 and an inverter circuit 34 for controlling the inverter circuit 34 are housed in the inverter accommodating portion 6 of the housing 2.
  • An inverter device 103 including a control circuit 36, a high voltage circuit filter (EMI filter) 37, a low voltage circuit filter (EMI filter) 38, a switching power supply device 39, and the like is housed.
  • EMI filter high voltage circuit filter
  • EMI filter low voltage circuit filter
  • the vehicle has a high voltage power source (HV power source) 41 consisting of, for example, a high voltage battery of about 300 V DC, for supplying power to the motor 8 of the electric compressor 100 and a driving motor (not shown), and a high voltage power source (HV power source) 41 of about 12 V DC.
  • HV power source high voltage power source
  • LV power supply low voltage power supply
  • the inverter circuit 34 of the inverter device 103 is composed of six switching elements (not shown) including three-phase bridge-connected IGBTs, etc., and each switching element is driven by a gate drive signal generated by a gate driver included in the control circuit 36. controlled. Further, each switching element is arranged in a heat exchange relationship with the housing 2, and the heat generated by the switching element is released to the housing 2, so that the switching element is cooled. That is, the housing 2 serves as a heat sink for each switching element.
  • the control circuit 36 is composed of a microprocessor (CPU), and converts the DC voltage of the high voltage power supply 41 into an AC voltage of a predetermined frequency by switching each switching element of the inverter circuit 34 with a gate driver and performing PWM modulation. , is supplied to the motor 8.
  • CPU microprocessor
  • the high voltage circuit filter 37 is connected between the high voltage power supply 41 and the inverter circuit 34 and is composed of a common mode coil 43, Y capacitors 44 and 46, and a smoothing capacitor 47. This high voltage circuit filter 37 functions to reduce EMI noise generated by switching of the inverter circuit 34.
  • the low voltage circuit filter 38 includes an X capacitor 48, a common mode coil 49, Y capacitors 51 and 52, and a smoothing capacitor 53. The low voltage circuit filter 38 is connected between the low voltage power supply 42 and the switching power supply device 39, and functions to reduce EMI noise generated by switching in the switching power supply device 39.
  • the switching power supply device 39 is a DC-DC converter that switches the low voltage power supply 42 (DC 12V) to generate a predetermined DC voltage (HV15V, HV5V) and supplies power to the control circuit 36.
  • HV15V is a voltage supplied to a gate driver (which the control circuit 36 has) that generates a gate drive signal for the inverter circuit 34
  • HV5V is a voltage that serves as a power source for the control circuit 36.
  • the switching power supply device 39 includes a switching transformer 60 including an isolation transformer (coupling transformer) including a primary winding 56 and a secondary winding 57 insulated from the primary winding 56; It has a switching element 58 connected to. Then, according to the turns ratio of the switching transformer 60, the switching element 58 is controlled to output DC15V (HV15V) and DC5V (HV5V).
  • a switching transformer 60 including an isolation transformer (coupling transformer) including a primary winding 56 and a secondary winding 57 insulated from the primary winding 56; It has a switching element 58 connected to. Then, according to the turns ratio of the switching transformer 60, the switching element 58 is controlled to output DC15V (HV15V) and DC5V (HV5V).
  • the switching power supply device 39 switches the low voltage power supply 42 to supply power to the control circuit 36, and also connects the low voltage circuit 101 on the low voltage power supply 42 side, where the primary winding 56 is located, and the secondary winding by the switching transformer 60.
  • the wire 57 is insulated from the high voltage circuit 102 on the high voltage power supply 41 side.
  • the high voltage circuit 102 and low voltage circuit 101 of the inverter device 103 thus insulated are housed in the inverter accommodating portion 6 in close proximity to each other.
  • noise due to common mode current flowing out through the stray capacitance 61 between the motor 8 and the housing 2 and the stray capacitance 62 between the inverter circuit 34 and the housing 2 is generated. Become dominant.
  • the three-phase common mode coil 104 is inserted into the output part of the inverter circuit 34 in the high voltage circuit 102 (between the inverter circuit 34 and the motor 8) as shown in FIG. Since it is used as a heat sink for the switching element, noise caused by the common mode current flowing from the switching element of the inverter circuit 34, which is a noise generation source, to the housing 2 via the stray capacitance 62 cannot be suppressed.
  • the present invention has been made to solve the conventional technical problems, and provides an inverter device that can effectively reduce noise caused by common mode current while also being miniaturized, and an electric compressor equipped with the inverter device.
  • the purpose is to provide a machine.
  • the inverter device of the invention according to claim 1 is provided with a three-phase inverter circuit constituted by switching elements, and drives a motor by this inverter circuit, the input side being inserted into the single-phase input section of the inverter circuit.
  • the common mode coil and the output common mode coil are inserted into the three-phase output section of the inverter circuit.
  • the two wires on the positive and negative sides of the mode coil are bifilar wound around the core, and the three UVW phase wires of the output common mode coil are trifilar wound around the core.
  • the inverter device of the invention according to claim 2 is provided with a three-phase inverter circuit constituted by switching elements, and drives a motor by this inverter circuit, and an input side inserted into a single-phase input section of the inverter circuit.
  • the common mode coil and the output common mode coil are inserted into the three-phase output section of the inverter circuit.
  • the two wires on the positive and negative sides of the mode coil are divided and wound around the core, and the three wires on the UVW phase of the output common mode coil are trifilar-wound around the core.
  • the inverter device of the invention according to claim 3 is provided with a three-phase inverter circuit constituted by switching elements, and drives a motor by this inverter circuit, and the input side inserted into the single-phase input section of the inverter circuit.
  • the common mode coil and the output common mode coil are inserted into the three-phase output section of the inverter circuit.
  • the two wires on the positive and negative sides of the mode coil and the three wires on the UVW phase of the output common mode coil are each divided and wound around the core.
  • the inverter device of the invention according to claim 4 is characterized in that, in each of the above inventions, the inverter device includes a high voltage circuit including an inverter circuit to which power is supplied from the high voltage power supply, and a low voltage circuit to which power is supplied from the low voltage power supply. shall be.
  • the electric compressor of the invention according to claim 5 is characterized in that it includes a housing in which the motor is housed, and an inverter accommodating part configured in the housing, and the inverter device of the invention is housed in the inverter accommodating part. do.
  • the electric compressor of the invention according to claim 6 is characterized in that the housing in the above invention serves as a heat sink for the switching element.
  • the electric compressor of the invention of claim 7 is characterized in that it is mounted on a vehicle in the invention of claim 5.
  • the input side common mode coil inserted in the single-phase input part of the inverter circuit and the output side common mode coil inserted in the three-phase output part of the inverter circuit are Since the core has an integral structure, the input side and the output side of the inverter circuit, which is the noise generation source, are magnetically coupled, and the impedance can be effectively increased before and after the noise source. This suppresses all common mode current flowing out through the stray capacitance between the motor and the housing that houses it, as well as the stray capacitance between the switching elements of the inverter circuit and the housing, significantly reducing common mode noise. You will be able to aim for
  • the input side common mode coil and the output side common mode coil are magnetically coupled, it can be handled with only one core and the number of turns can be reduced.
  • the inverter device including the high voltage circuit and the low voltage circuit as in the invention of claim 4 is accommodated in the housing, which is extremely advantageous for electric compressors as in claims 5 to 7 that require miniaturization. becomes.
  • this is a source measure that prevents noise from leaking into the housing, it is highly effective in suppressing high frequency noise.
  • FIG. 1 is a block diagram of an electric circuit of an electric compressor according to an embodiment of the present invention
  • FIG. 1 is a schematic cross-sectional view of an electric compressor according to an embodiment of the present invention
  • FIG. 2 is a diagram illustrating the structure of an example of a common mode coil inserted into an input part and an output part of an inverter circuit of the electric compressor shown in FIG. 1 (Example 1).
  • 4 is a diagram illustrating inter-winding parasitic capacitance of the common mode coil having the structure shown in FIG. 3.
  • FIG. FIG. 6 is a diagram illustrating impedance characteristics when the output side common mode coil of the inverter circuit is wound with a trifilar winding and when the input/output side common mode coil is wound with a pentafilar winding.
  • FIG. 2 is a diagram illustrating the structure of an example of a common mode coil inserted into an input part and an output part of an inverter circuit of the electric compressor shown in FIG. 1 (Example 1).
  • 4
  • FIG. 4 is a diagram illustrating impedance characteristics of a common mode coil having the structure shown in FIG. 3;
  • 2 is a diagram illustrating noise in a high voltage circuit in the electric compressor of FIG. 1.
  • FIG. 2 is a diagram illustrating noise in a low voltage circuit in the electric compressor of FIG. 1.
  • FIG. 2 is a diagram illustrating the structure of another example of the common mode coil inserted into the input part and the output part of the inverter circuit of the electric compressor shown in FIG. 1 (Example 2).
  • FIG. 3 is a diagram illustrating the structure of another example of the common mode coil inserted into the input part and the output part of the inverter circuit of the electric compressor shown in FIG. 1 (Example 3).
  • FIG. 11 is a diagram illustrating impedance characteristics of common mode coils having the structures shown in FIGS. 3, 9, and 10.
  • FIG. FIG. 2 is a block diagram of an electric circuit of a conventional electric compressor. 13 is a block diagram of an electric circuit when a common mode coil is inserted into the output section of the inverter circuit of the electric compressor shown in FIG. 12.
  • FIG. FIG. 2 is a diagram illustrating a structure in which a common mode coil on the input/output side of an inverter circuit is wound with a pentafilar winding.
  • the electric compressor 1 of the embodiment constitutes a part of a refrigerant circuit of a vehicle air conditioner installed in an electric vehicle such as a hybrid vehicle or an electric vehicle.
  • the inside of the metallic cylindrical housing 2 of the electric compressor 1 is divided into a compression mechanism housing part 4 and an inverter housing part by a partition wall 3 that intersects in the axial direction of the housing 2.
  • a scroll-type compression mechanism 7 and a motor 8 for driving the compression mechanism 7 are housed in the compression mechanism accommodating portion 4.
  • the motor 8 of the embodiment is an IPMSM (Interior Permanent Magnet Synchronous Motor) consisting of a stator 9 fixed to the housing 2 and a rotor 11 rotating inside the stator 9.
  • IPMSM Interior Permanent Magnet Synchronous Motor
  • a bearing part 12 is formed in the center of the partition wall 3 on the side of the compression mechanism housing part 4.
  • One end of the drive shaft 13 of the rotor 11 is supported by this bearing part 12, and the other end of the drive shaft 13 is connected to the compression mechanism housing part 4. It is connected to 7.
  • a suction port 14 is formed near the partition wall 3 at a position corresponding to the compression mechanism accommodating portion 4 of the housing 2, and when the rotor 11 (drive shaft 13) of the motor 8 rotates and the compression mechanism 7 is driven.
  • a low-temperature refrigerant which is a working fluid, flows into the compression mechanism accommodating portion 4 of the housing 2 through the suction port 14, and is sucked into the compression mechanism 7 and compressed.
  • the refrigerant compressed by the compression mechanism 7 to a high temperature and high pressure is discharged to the refrigerant circuit outside the housing 2 from a discharge port (not shown). Further, the low-temperature refrigerant flowing in from the suction port 14 passes near the partition wall 3, passes around the motor 8, and is sucked into the compression mechanism 7, so that the partition wall 3 is also cooled.
  • the inverter device 16 of the present invention that drives and controls the motor 8 is housed in the inverter housing section 6 that is separated from the compression mechanism housing section 4 by the partition wall 3 .
  • the inverter device 16 is configured to supply power to the motor 8 via a sealed terminal or lead wire that penetrates the partition wall 3 .
  • the inverter device 16 includes a substrate 17, six switching elements 18 wired on one side of the substrate 17, and wired on the other side of the substrate 17.
  • the control circuit 36 includes a control circuit 36, an HV connector, an LV connector, etc. (not shown).
  • each switching element 18 is composed of an insulated gate bipolar transistor (IGBT) or the like in which a MOS structure is incorporated in the gate portion.
  • IGBT insulated gate bipolar transistor
  • each switching element 18 constitutes a three-phase inverter circuit 34 to be described later, and the terminal portion 22 of each switching element 18 is connected to the substrate 17.
  • the inverter device 16 assembled in this way is housed in the inverter accommodating portion 6 and attached to the partition wall 3 with one side on which each switching element 18 is located facing the partition wall 3, and is attached to the partition wall 3 with the cover 23. Blocked.
  • the substrate 17 will be fixed to the partition wall 3 via the boss portion 24 that stands up from the partition wall 3.
  • each switching element 18 is in close contact with the partition wall 3 either directly or via a predetermined insulating heat conductive material, and is in a heat exchange relationship with the partition wall 3 of the housing 2. becomes.
  • each switching element 18A is in a heat exchange relationship with the sucked refrigerant through the partition wall 3.
  • the switching elements 18 are cooled by the refrigerant sucked into the compression mechanism accommodating portion 4 through the thickness, and each switching element 18 itself radiates heat to the refrigerant through the partition wall 3. That is, the housing 2 (partition wall 3) serves as a heat sink for each switching element 18.
  • inverter device 16 of the present invention includes an inverter circuit 34 for driving motor 8, a control circuit 36 for controlling this inverter circuit 34, and a high voltage circuit. It is composed of a filter (EMI filter) 37, a low voltage circuit filter (EMI filter) 38, a switching power supply device 39, etc., and these are wired on the board 17 mentioned above and housed in the inverter accommodating part 6 as mentioned above. Ru.
  • EMI filter filter
  • EMI filter low voltage circuit filter
  • the vehicle has a high voltage power source (HV power source) 41 consisting of, for example, a high voltage battery of approximately 300 V DC, for supplying power to the motor 8 of the electric compressor 1 and a driving motor (not shown), and a high voltage power source (HV power source) 41 of approximately 12 V DC.
  • HV power source high voltage power source
  • a low voltage power source (LV power source) 42 consisting of a battery is mounted, and the inverter device 16 is connected to the high voltage power source 41 through the aforementioned HV connector (not shown) and to the low voltage power source 42 through the LV connector.
  • the housing 2 is electrically connected to the vehicle body (ground).
  • the inverter circuit 34 is composed of the aforementioned six switching elements 18 connected in a three-phase bridge, and each switching element 18 is controlled by a gate drive signal generated by a gate driver included in the control circuit 36.
  • the control circuit 36 is composed of a microprocessor (CPU), and performs PWM modulation by switching each switching element 18 of the inverter circuit 34 with a gate driver, thereby converting the DC voltage of the high voltage power supply 41 into an AC voltage of a predetermined frequency. and supplies it to the motor 8.
  • CPU microprocessor
  • the high voltage circuit filter 37 is connected between the high voltage power supply 41 and the inverter circuit 34 and is composed of a common mode coil 43, Y capacitors 44 and 46, and a smoothing capacitor 47. This high voltage circuit filter 37 functions to reduce EMI noise generated by switching of the inverter circuit 34.
  • the low voltage circuit filter 38 includes an X capacitor 48, a common mode coil 49, Y capacitors 51 and 52, and a smoothing capacitor 53. The low voltage circuit filter 38 is connected between the low voltage power supply 42 and the switching power supply device 39, and functions to reduce EMI noise generated by switching in the switching power supply device 39.
  • the switching power supply device 39 is a DC-DC converter that switches the low voltage power supply 42 (DC 12V) to generate a predetermined DC voltage (HV15V, HV5V) and supplies power to the control circuit 36.
  • HV15V is a voltage supplied to a gate driver (which the control circuit 36 has) that generates a gate drive signal for the inverter circuit 34
  • HV5V is a voltage that serves as a power source for the control circuit 36.
  • the switching power supply device 39 includes a switching transformer 60 including an isolation transformer (coupling transformer) including a primary winding 56 and a secondary winding 57 insulated from the primary winding 56; It has a switching element 58 connected to. Then, according to the turns ratio of the switching transformer 60, the switching element 58 is controlled to output DC15V (HV15V) and DC5V (HV5V).
  • a switching transformer 60 including an isolation transformer (coupling transformer) including a primary winding 56 and a secondary winding 57 insulated from the primary winding 56; It has a switching element 58 connected to. Then, according to the turns ratio of the switching transformer 60, the switching element 58 is controlled to output DC15V (HV15V) and DC5V (HV5V).
  • the switching power supply device 39 switches the low voltage power supply 42 to supply power to the control circuit 36, and also connects the low voltage circuit 63 on the low voltage power supply 42 side, where the primary winding 56 is located, and the secondary winding by the switching transformer 60.
  • the wire 57 is insulated from the high voltage circuit 64 on the high voltage power supply 41 side.
  • the inverter device 16 is configured such that the high voltage circuit 64 and the low voltage circuit 63 which are insulated as described above are placed close to each other on the substrate 17, and is housed in the inverter accommodating portion 6.
  • the surge voltage (oscillating voltage) accompanying the switching of the switching element 18 constituting the inverter circuit 34 is transmitted to the motor 8 side, so the surge voltage (oscillating voltage) accompanying the switching of the switching element 18 constituting the inverter circuit 34 is transmitted to the motor 8 side.
  • Common mode current flows out. Furthermore, there is also a common mode current that flows out via the stray capacitance 62 between the inverter circuit 34 and the housing 2, which is a noise generation source (both are indicated by arrows in FIG. 1).
  • noise common mode noise
  • stray capacitance 61 between the motor 8 and the housing 2 stray capacitance 62 between the inverter circuit 34 and the housing 2. becomes dominant.
  • the input side common mode coil 67 is inserted into the single-phase input section of the inverter circuit 34 (the two wires between the smoothing capacitor 47 and the inverter circuit 34), and the input-side common mode coil 67 is inserted into the three-phase output section of the inverter circuit 34 (the inverter circuit 34).
  • An output side common mode coil 66 is inserted into the three wires between the circuit 34 and the motor 8 (FIG. 1).
  • the input side common mode coil 67 and the output side common mode coil 66 are wound around one common core 68 to form a common mode coil 69 having an integral structure. Thereby, the input side common mode coil 67 and the output side common mode coil 66 are magnetically coupled (FIG. 1).
  • the input side common mode coil 67 has a positive electrode wire (winding: coil) 67H connected to the positive electrode side of the high voltage power supply 41 and a negative electrode wire connected to the negative electrode side, as shown in FIG. (Winding wire: coil) 67L, and these two wires 67H and 67L on the positive electrode side and negative electrode side are bifilar-wound around the core 68, for example, in parallel.
  • the output side common mode coil 66 includes a U phase line (winding: coil) 66U connected to the U phase of the output of the inverter circuit 34, and a V phase line (winding: coil) connected to the V phase.
  • L1 indicates the frequency characteristic of the inter-winding parasitic capacitance of the common mode coil 69 having the structure shown in FIG. It shows.
  • the input side common mode coil 67 is bifilar-wound, and the output side common-mode coil 66 is trifilar-wound, so that L100 in the case of FIG. 3 is different from L100 in the case of FIG.
  • the parasitic capacitance between the input side common mode coil 67 and the output side common mode coil 66 is reduced (in the example, 20 pF is reduced to 10 pF).
  • the common mode coil 114 having the structure shown in FIG. 14 a resonance point is confirmed near the FM band. This is considered to be because unnecessary parasitic coupling (parasitic capacitance) occurred between the lines 111H, 111L, 112U, 112V, and 112W on the input side and the output side, which caused the deterioration in the vicinity of 30 MHz to 50 MHz in the example.
  • each wire 104U, 104V, 104W is wound in parallel around the core in a trifilar manner (L101), and the case shown in FIG. It shows the frequency characteristics of impedance in the case of the pentafilar-wound common mode coil 114 (L102).
  • FIG. 6 shows a case where the common mode coil 104 is connected as shown in FIG. 13, and each wire 104U, 104V, 104W is wound in a trifilar around the core in parallel (L101), and when the input side is connected as in the example (FIG. 3).
  • the frequency characteristics of the inverter in the case (L2) of the common mode coil 69 in which the common mode coil 67 is bifilar-wound and the output common mode coil 66 is trifilar-wound are shown.
  • the parasitic capacitance between the windings is large, the occurrence of resonance is large in the high frequency band, and there is a point where the impedance is lower than that of L101 (see FIG. 5), but the structure of the embodiment shown in FIG. It can be seen that the common mode coil 69 can suppress the parasitic coupling between the windings, so it is possible to maintain the characteristic L101 of the trifilar-wound three-phase common mode coil 104 (Fig. 13) in the high band, as shown by L2 (Fig. 6).
  • FIG. 7 shows the noise measurement results of the high voltage circuit 64 in FIG. 1, where the horizontal axis is frequency and the vertical axis is noise.
  • L103 indicates the case of the above-mentioned FIG. 12
  • L104 indicates the common mode coil 114 in the case of the above-mentioned FIG. 14,
  • L3 indicates the case of the common mode coil 69 as in the embodiment of FIG.
  • (b) in FIG. 7 shows the improvement difference: L104-L3.
  • FIG. 8 shows the noise measurement results of the low voltage circuit 63 in FIG. 1, where the horizontal axis is frequency and the vertical axis is noise.
  • L105 indicates the case of the above-described FIG. 12
  • L106 indicates the common mode coil 114 in the case of the above-mentioned FIG. 14,
  • L4 indicates the case of the common mode coil 69 as in the embodiment of FIG. 3.
  • (b) in FIG. 8 shows the improvement difference: L106-L4.
  • FIGS. 7(b) and 8(b) the larger the value is than 0, the more the noise is improved.
  • FIG. 7(b) in the case of the common mode coil 69 of the embodiment shown in FIG. The noise has been improved.
  • FIG. 8(b) there is no adverse effect on the low voltage circuit 63. This is considered to be because unnecessary coupling is reduced by separating the input side common mode coil 67 and the output side common mode coil 66.
  • FIG. 9 shows the structure of another embodiment of the common mode coil 69 in FIG. 1 (indicated by 69A).
  • the input side common mode coil 67 and the output side common mode coil 66 are wound around a single common core 68 to form an integrated common mode coil 69A.
  • the input side common mode coil 67 and the output side common mode coil 66 are magnetically coupled.
  • the input side common mode coil 67 has a positive electrode wire (winding: coil) 67H connected to the positive electrode side of the high voltage power supply 41 and a negative electrode wire connected to the negative electrode side, as shown in FIG. (Winding wire: coil)
  • Two wires of 67L are divided and wound around the core 68.
  • the output side common mode coil 66 has three UVW phase wires 66U, 66V, and 66W wound around the core 68 in a trifilar manner, for example, in parallel, as in the case of FIG.
  • the arrows in FIG. 9 indicate the direction of magnetic flux.
  • the insulation structure becomes easy, and the common mode coil 69A can be downsized.
  • FIG. 10 shows the structure of yet another embodiment of the common mode coil 69 in FIG. 1 (indicated by 69B).
  • the input side common mode coil 67 and the output side common mode coil 66 are wound around one common core 68 to form an integrated common mode coil 69A.
  • the input side common mode coil 67 and the output side common mode coil 66 are magnetically coupled.
  • the input side common mode coil 67 has a positive electrode wire (winding: coil) 67H connected to the positive electrode side of the high voltage power supply 41 and a negative electrode wire connected to the negative electrode side, as shown in FIG. (Winding wire: coil)
  • Winding wire: coil Two wires of 67L are divided and wound around the core 68.
  • the output side common mode coil 66 is also divided into three UVW phase wires 66U, 66V, and 66W and wound around the core 68. Note that the arrows in FIG. 10 indicate the direction of magnetic flux.
  • FIG. 11 shows the frequency characteristics of the impedance of each common mode coil in the cases of FIG. 3 (Example 1), FIG. 9 (Example 2), FIG. 10 (Example 3), and FIG.
  • L5 indicates the common mode coil 69 in FIG. 3
  • L6 indicates the common mode coil 69A in FIG. 9
  • L7 indicates the common mode coil 69B in FIG. 10
  • L107 indicates the common mode coil 114 in FIG. 14. .
  • both the common mode coil 69 (L5) in FIG. 3 and the common mode coil 69A (L6) in FIG. 9 have better impedance characteristics than the common mode coil 114 (L107) in FIG. 14.
  • the common mode coil 69 (L5: Example 1) in FIG. 3 and the common mode coil 69A (L6: Example 2) in FIG. It also has the effect of improving the impedance of. Moreover, it has the effect of being able to be made smaller compared to pentafilar winding (common mode coil 114: L107 in FIG. 14).
  • the common mode coil 69B (L7) in FIG. 10 has inferior characteristics to L107 (FIG. 14) from FIG. 11, but the common mode coil 69B (L7) in FIG. With respect to the trifilar winding of L6), the coupling coefficient of the three-phase output increases and the influence of mutual inductance increases, resulting in good impedance characteristics.
  • the input side common mode coil 67 inserted into the single-phase input part of the inverter circuit 34 and the output side common mode coil 66 inserted into the three-phase output part of the inverter circuit 34 Since the common core 68 has an integral structure, the input side and the output side of the inverter circuit 34, which is a noise generation source, can be magnetically coupled and the impedance can be increased. This suppresses all common mode current flowing out through the stray capacitance 61 between the motor 8 and the housing 2 and the stray capacitance 62 between the switching element 18 of the inverter circuit 34 and the housing 2, and significantly reduces common mode noise. This makes it possible to achieve significant reductions.
  • the input side common mode coil 67 and the output side common mode coil 66 are magnetically coupled, it can be handled with only one core 68, and the number of turns can also be reduced.
  • the inverter device 16 including the high voltage circuit 64 and the low voltage circuit 63 is housed in the housing 2 as in the embodiment, which is extremely advantageous for the electric compressor 1 that needs to be downsized. Furthermore, since this is a source measure to prevent noise from leaking into the housing 2, the effect of suppressing high frequency noise is high.
  • a high voltage power source 41 consisting of a high voltage battery of approximately 300 VDC and a low voltage power source 42 consisting of a battery of approximately 12 VDC are provided.
  • the present invention is not limited to this, and the direct current voltage (HV15V, HV5V) on the high voltage circuit 64 side may be directly generated from the high voltage power supply 41.
  • the present invention has been described using an inverter device that drives the motor of an electric compressor, but the inventions of claims 1 to 4 are not limited thereto, and can be applied to various inverter devices that drive the motor. . Further, the specific configurations and numerical values shown in the examples are not limited to those, and can be variously changed without departing from the spirit of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

[Problem] To provide an inverter device that can effectively reduce noise by a common mode current while having a reduced size. [Solution] The inverter device comprises: an input side common mode coil 67 that is inserted into a single phase input unit of an inverter circuit 34; and an output side common mode coil 66 that is inserted into a three phase output unit of the inverter circuit 34. The input side common mode coil 67 and the output side common mode coil 66 are in an integral structure with a common core. Two wires on the positive side and the negative side of the input side common mode coil 67 are bifilar wound onto the core. Three wires of the UVW phases of the output side common mode coil 66 are trifilar wound onto the core.

Description

インバータ装置及びそれを備えた電動圧縮機Inverter device and electric compressor equipped with it
 本発明は、モータを駆動するインバータ装置と、それを備えた電動圧縮機に関するものである。 The present invention relates to an inverter device that drives a motor, and an electric compressor equipped with the inverter device.
 ハイブリッド自動車や電気自動車等の電動車両の車室内を空調するための車両用空気調和装置では、エンジン駆動の圧縮機に代わってモータを備えた電動圧縮機が使用される。その場合、車両には例えばDC300V程の高電圧バッテリから成る高電圧電源と、DC12V程の通常のバッテリから成る低電圧電源が搭載され、インバータ装置のインバータ回路により、高電圧電源の直流電圧を交流とした電圧が電動圧縮機のモータに供給される。 In a vehicle air conditioner for air conditioning the interior of an electric vehicle such as a hybrid vehicle or an electric vehicle, an electric compressor equipped with a motor is used instead of an engine-driven compressor. In that case, the vehicle is equipped with a high-voltage power source consisting of a high-voltage battery of about 300 VDC, for example, and a low-voltage power source consisting of a normal battery of about 12 VDC, and the inverter circuit of the inverter device converts the DC voltage of the high-voltage power source into alternating current. This voltage is supplied to the motor of the electric compressor.
 一方、インバータ装置のインバータ回路を制御する制御回路には、例えば低電圧電源の直流電圧をスイッチング電源装置により所定の電圧(例えばDC15V等)に変換して給電する。そのため、スイッチング電源装置には絶縁トランスから成るスイッチングトランスが設けられ、このスイッチングトランスの一次側の低電圧回路と、二次側の高電圧回路とを絶縁している。即ち、高電圧電源から電源が供給される高電圧回路と、低電圧電源から電源が供給される低電圧回路を備えたインバータ装置が、電動圧縮機のハウジングに構成されたインバータ収容部に収容されるかたちとされていた。 On the other hand, a control circuit that controls an inverter circuit of an inverter device is supplied with power by converting, for example, a DC voltage from a low-voltage power supply into a predetermined voltage (for example, DC 15V, etc.) using a switching power supply device. Therefore, a switching power supply device is provided with a switching transformer made of an isolation transformer, and a low voltage circuit on the primary side of the switching transformer is insulated from a high voltage circuit on the secondary side. That is, an inverter device including a high voltage circuit supplied with power from a high voltage power supply and a low voltage circuit supplied with power from a low voltage power supply is housed in an inverter accommodating portion configured in the housing of the electric compressor. It was considered to be a form.
 図12を用いて係る従来の電動圧縮機100の電気回路を説明する。図12において100は電動車両に搭載される車両用空気調和装置の冷媒回路を構成する従来の電動圧縮機であり、2はそのハウジングを示している。このハウジング2内に図示しない圧縮機構と、当該圧縮機構を駆動するモータ8が収容され、ハウジング2のインバータ収容部6にはモータ8を運転するためのインバータ回路34、このインバータ回路34を制御する制御回路36、高電圧回路フィルタ(EMIフィルタ)37、低電圧回路フィルタ(EMIフィルタ)38、及び、スイッチング電源装置39等を備えたインバータ装置103が収納される。 The electric circuit of the conventional electric compressor 100 will be explained using FIG. 12. In FIG. 12, 100 is a conventional electric compressor that constitutes a refrigerant circuit of a vehicle air conditioner mounted on an electric vehicle, and 2 indicates its housing. A compression mechanism (not shown) and a motor 8 for driving the compression mechanism are housed in the housing 2, and an inverter circuit 34 for driving the motor 8 and an inverter circuit 34 for controlling the inverter circuit 34 are housed in the inverter accommodating portion 6 of the housing 2. An inverter device 103 including a control circuit 36, a high voltage circuit filter (EMI filter) 37, a low voltage circuit filter (EMI filter) 38, a switching power supply device 39, and the like is housed.
 尚、車両には電動圧縮機100のモータ8や、図示しない走行用のモータに給電して駆動するための例えばDC300V程の高電圧バッテリから成る高電圧電源(HV電源)41と、DC12V程のバッテリから成る低電圧電源(LV電源)42が搭載されている。また、ハウジング2は車体(グランド)に導通されている。 The vehicle has a high voltage power source (HV power source) 41 consisting of, for example, a high voltage battery of about 300 V DC, for supplying power to the motor 8 of the electric compressor 100 and a driving motor (not shown), and a high voltage power source (HV power source) 41 of about 12 V DC. A low voltage power supply (LV power supply) 42 consisting of a battery is mounted. Furthermore, the housing 2 is electrically connected to the vehicle body (ground).
 インバータ装置103のインバータ回路34は、三相ブリッジ接続されたIGBT等から成る図示しない6個のスイッチング素子から構成されており、各スイッチング素子は制御回路36が有するゲートドライバが生成するゲート駆動信号により制御される。また、各スイッチング素子はハウジング2と熱交換関係に配置され、スイッチング素子が発生する熱はハウジング2に放出され、スイッチング素子は冷却される構成とされている。即ち、ハウジング2が各スイッチング素子のヒートシンクとされている。 The inverter circuit 34 of the inverter device 103 is composed of six switching elements (not shown) including three-phase bridge-connected IGBTs, etc., and each switching element is driven by a gate drive signal generated by a gate driver included in the control circuit 36. controlled. Further, each switching element is arranged in a heat exchange relationship with the housing 2, and the heat generated by the switching element is released to the housing 2, so that the switching element is cooled. That is, the housing 2 serves as a heat sink for each switching element.
 制御回路36はマイクロプロセッサ(CPU)から構成されており、インバータ回路34の各スイッチング素子をゲートドライバによりスイッチングしてPWM変調を行うことで、高電圧電源41の直流電圧を所定周波数の交流電圧とし、モータ8に供給する。 The control circuit 36 is composed of a microprocessor (CPU), and converts the DC voltage of the high voltage power supply 41 into an AC voltage of a predetermined frequency by switching each switching element of the inverter circuit 34 with a gate driver and performing PWM modulation. , is supplied to the motor 8.
 高電圧回路フィルタ37は高電圧電源41とインバータ回路34の間に接続されており、コモンモードコイル43、Yコンデンサ44、46、平滑コンデンサ47から構成される。この高電圧回路フィルタ37は、インバータ回路34のスイッチングにより発生するEMIノイズを低減させる作用を奏する。低電圧回路フィルタ38は、Xコンデンサ48、コモンモードコイル49、Yコンデンサ51、52、平滑コンデンサ53から構成される。低電圧回路フィルタ38は、低電圧電源42とスイッチング電源装置39の間に接続され、スイッチング電源装置39でのスイッチングにより発生するEMIノイズを低減させる作用を奏する。 The high voltage circuit filter 37 is connected between the high voltage power supply 41 and the inverter circuit 34 and is composed of a common mode coil 43, Y capacitors 44 and 46, and a smoothing capacitor 47. This high voltage circuit filter 37 functions to reduce EMI noise generated by switching of the inverter circuit 34. The low voltage circuit filter 38 includes an X capacitor 48, a common mode coil 49, Y capacitors 51 and 52, and a smoothing capacitor 53. The low voltage circuit filter 38 is connected between the low voltage power supply 42 and the switching power supply device 39, and functions to reduce EMI noise generated by switching in the switching power supply device 39.
 スイッチング電源装置39は、低電圧電源42(DC12V)をスイッチングして所定の直流電圧(HV15V、HV5V)を生成し、制御回路36に給電するためのDC-DCコンバータである。尚、HV15Vはインバータ回路34のゲート駆動信号を生成するゲートドライバ(制御回路36が有する)に供給される電圧であり、HV5Vは制御回路36の電源となる電圧である。 The switching power supply device 39 is a DC-DC converter that switches the low voltage power supply 42 (DC 12V) to generate a predetermined DC voltage (HV15V, HV5V) and supplies power to the control circuit 36. Note that HV15V is a voltage supplied to a gate driver (which the control circuit 36 has) that generates a gate drive signal for the inverter circuit 34, and HV5V is a voltage that serves as a power source for the control circuit 36.
 スイッチング電源装置39は、一次巻線56と、この一次巻線56とは絶縁された二次巻線57から成る絶縁トランス(カップリングトランス)にて構成されたスイッチングトランス60と、一次巻線56に接続されたスイッチング素子58を有している。そして、スイッチングトランス60の巻数比に応じて、DC15V(HV15V)とDC5V(HV5V)が出力されるようにスイッチング素子58がスイッチング制御される。 The switching power supply device 39 includes a switching transformer 60 including an isolation transformer (coupling transformer) including a primary winding 56 and a secondary winding 57 insulated from the primary winding 56; It has a switching element 58 connected to. Then, according to the turns ratio of the switching transformer 60, the switching element 58 is controlled to output DC15V (HV15V) and DC5V (HV5V).
 スイッチング電源装置39は低電圧電源42をスイッチングして制御回路36に電源を供給すると共に、スイッチングトランス60により、一次巻線56が位置する低電圧電源42側の低電圧回路101と、二次巻線57が位置する高電圧電源41側の高電圧回路102とを絶縁する。そして、このように絶縁されたインバータ装置103の高電圧回路102と低電圧回路101が、インバータ収容部6内に近接して収容されることになる。 The switching power supply device 39 switches the low voltage power supply 42 to supply power to the control circuit 36, and also connects the low voltage circuit 101 on the low voltage power supply 42 side, where the primary winding 56 is located, and the secondary winding by the switching transformer 60. The wire 57 is insulated from the high voltage circuit 102 on the high voltage power supply 41 side. The high voltage circuit 102 and low voltage circuit 101 of the inverter device 103 thus insulated are housed in the inverter accommodating portion 6 in close proximity to each other.
特開2005-130575号公報Japanese Patent Application Publication No. 2005-130575
 ここで、インバータ回路34を構成するスイッチング素子のスイッチングに伴うサージ電圧(振動電圧)はモータ8側に伝達するため、電圧変動によりモータ8とハウジング2間の浮遊容量(図12に61で示す)を介してコモンモード電流が流出する。更に、ノイズ発生源であるインバータ回路34とハウジング2間の浮遊容量(図12に62で示す)を介して流出するコモンモード電流もある(何れも図12中に矢印で示す)。 Here, since the surge voltage (oscillating voltage) accompanying switching of the switching elements constituting the inverter circuit 34 is transmitted to the motor 8 side, the stray capacitance between the motor 8 and the housing 2 (indicated by 61 in FIG. 12) due to voltage fluctuations. Common mode current flows out through. Furthermore, there is also a common mode current flowing out through the stray capacitance (indicated by 62 in FIG. 12) between the inverter circuit 34 and the housing 2, which is a noise generation source (both indicated by arrows in FIG. 12).
 特に、上述したような電動圧縮機100では、モータ8とハウジング2間の浮遊容量61とインバータ回路34とハウジング2間の浮遊容量62を介して流出するコモンモード電流によるノイズ(コモンモードノイズ)が支配的となる。 In particular, in the electric compressor 100 as described above, noise (common mode noise) due to common mode current flowing out through the stray capacitance 61 between the motor 8 and the housing 2 and the stray capacitance 62 between the inverter circuit 34 and the housing 2 is generated. Become dominant.
 一方、従来より商用交流を電源とするエアコンや給湯器等の民生用機器においては、インバータ回路の出力部にコモンモードコイルやフェライトコアを挿入することにより、モータとハウジング間の浮遊容量を介して流出する経路のインピーダンスを高めてノイズの低減を図っていた。 On the other hand, in consumer equipment such as air conditioners and water heaters that use commercial AC as a power source, by inserting a common mode coil or ferrite core into the output section of the inverter circuit, the power source is Efforts were made to reduce noise by increasing the impedance of the outflow path.
 しかしながら、図12のような電動車両に搭載される電動圧縮機100のインバータ装置103では、小型軽量化(振動対策も含む)が必須事項であり、上述した民生用機器のようにインバータ回路34の出力部にコモンモードコイルを入れる、或いは、フェライトコアを付ける等といった対策を施し難い実情がある。 However, in the inverter device 103 of the electric compressor 100 mounted on an electric vehicle as shown in FIG. In reality, it is difficult to take measures such as inserting a common mode coil into the output section or attaching a ferrite core.
 また、図13に示すように高電圧回路102にあるインバータ回路34の出力部(インバータ回路34とモータ8の間)に三相のコモンモードコイル104を挿入しても、前述した如くハウジング2がスイッチング素子のヒートシンクとされているため、ノイズ発生源であるインバータ回路34のスイッチング素子から浮遊容量62を介してハウジング2に流出するコモンモード電流によるノイズまでは抑制できない。 Furthermore, even if the three-phase common mode coil 104 is inserted into the output part of the inverter circuit 34 in the high voltage circuit 102 (between the inverter circuit 34 and the motor 8) as shown in FIG. Since it is used as a heat sink for the switching element, noise caused by the common mode current flowing from the switching element of the inverter circuit 34, which is a noise generation source, to the housing 2 via the stray capacitance 62 cannot be suppressed.
 一方、特許文献1ではインバータ回路の入出力部にコモンモードコイルを接続し、これらを平行にコアに対して巻回している。この方法を電動圧縮機に適用して例えば図12のインバータ回路34の入出力にそれぞれコモンモードコイルを挿入し、これら単相入力の正極側と負極側の二線(111H、111Lとする)と、三相出力側のUVW相三線のコモンモードコイル(112U、112V、112Wとする)を図14に示すように平行にコア113に対してペンタファイラ巻きしたコモンモードコイル114とすれば、入力側と出力側を磁気結合させ、モータ8とハウジング2間の浮遊容量61、インバータ回路34とハウジング2間の浮遊容量62を介して流出するコモンモード電流(コモンモードノイズ)の抑制を図ることが期待できる(図中矢印は磁束の向き)。 On the other hand, in Patent Document 1, common mode coils are connected to the input/output section of the inverter circuit, and these are wound in parallel around the core. Applying this method to an electric compressor, for example, common mode coils are inserted into the input and output of the inverter circuit 34 shown in FIG. , if the UVW phase three-wire common mode coil (112U, 112V, 112W) on the three-phase output side is a common mode coil 114 wound in pentafilar around the core 113 in parallel as shown in FIG. It is expected that the common mode current (common mode noise) flowing out through the stray capacitance 61 between the motor 8 and the housing 2 and the stray capacitance 62 between the inverter circuit 34 and the housing 2 will be suppressed by magnetically coupling the output side with the motor 8. (The arrow in the figure indicates the direction of magnetic flux).
 しかしながら、図14の構造では入力側と出力側のコモンモードコイルの間で不要な寄生結合(寄生容量)が生じ、この寄生容量の影響で、三相出力コモンモードコイル単体時より高周波帯においてインピーダンスが低下し、この帯域におけるノイズ低減効果が悪化する。また、全ての線111H、111L、112U、112V、112Wの間で絶縁を図る必要が生じるため、コイルが大型化してしまい、前述した如き電動圧縮機100には不向きである。 However, in the structure shown in Figure 14, unnecessary parasitic coupling (parasitic capacitance) occurs between the common mode coils on the input side and the output side, and due to the influence of this parasitic capacitance, the impedance in the high frequency band is higher than that of the three-phase output common mode coil alone. decreases, and the noise reduction effect in this band deteriorates. Further, since it is necessary to insulate all the wires 111H, 111L, 112U, 112V, and 112W, the coil becomes large, which is not suitable for the electric compressor 100 as described above.
 本発明は、係る従来の技術的課題を解決するために成されたものであり、コモンモード電流によるノイズを効果的に低減しながら小型化も図ることができるインバータ装置及びそれを備えた電動圧縮機を提供することを目的とする。 The present invention has been made to solve the conventional technical problems, and provides an inverter device that can effectively reduce noise caused by common mode current while also being miniaturized, and an electric compressor equipped with the inverter device. The purpose is to provide a machine.
 請求項1の発明のインバータ装置は、スイッチング素子より構成された三相のインバータ回路を備え、このインバータ回路によりモータを駆動するものであって、インバータ回路の単相入力部に挿入された入力側コモンモードコイルと、インバータ回路の三相出力部に挿入された出力側コモンモードコイルを備え、入力側コモンモードコイルと出力側コモンモードコイルは、共通コアの一体構造とされると共に、入力側コモンモードコイルの正極側と負極側の二線はコアに対してバイファイラ巻きとされ、出力側コモンモードコイルのUVW相の三線はコアに対してトリファイラ巻きされていることを特徴とする。 The inverter device of the invention according to claim 1 is provided with a three-phase inverter circuit constituted by switching elements, and drives a motor by this inverter circuit, the input side being inserted into the single-phase input section of the inverter circuit. The common mode coil and the output common mode coil are inserted into the three-phase output section of the inverter circuit. The two wires on the positive and negative sides of the mode coil are bifilar wound around the core, and the three UVW phase wires of the output common mode coil are trifilar wound around the core.
 請求項2の発明のインバータ装置は、スイッチング素子より構成された三相のインバータ回路を備え、このインバータ回路によりモータを駆動するものであって、インバータ回路の単相入力部に挿入された入力側コモンモードコイルと、インバータ回路の三相出力部に挿入された出力側コモンモードコイルを備え、入力側コモンモードコイルと出力側コモンモードコイルは、共通コアの一体構造とされると共に、入力側コモンモードコイルの正極側と負極側の二線は、分割してコアに巻回され、出力側コモンモードコイルのUVW相の三線はコアに対してトリファイラ巻きされていることを特徴とする。 The inverter device of the invention according to claim 2 is provided with a three-phase inverter circuit constituted by switching elements, and drives a motor by this inverter circuit, and an input side inserted into a single-phase input section of the inverter circuit. The common mode coil and the output common mode coil are inserted into the three-phase output section of the inverter circuit. The two wires on the positive and negative sides of the mode coil are divided and wound around the core, and the three wires on the UVW phase of the output common mode coil are trifilar-wound around the core.
 請求項3の発明のインバータ装置は、スイッチング素子より構成された三相のインバータ回路を備え、このインバータ回路によりモータを駆動するものであって、インバータ回路の単相入力部に挿入された入力側コモンモードコイルと、インバータ回路の三相出力部に挿入された出力側コモンモードコイルを備え、入力側コモンモードコイルと出力側コモンモードコイルは、共通コアの一体構造とされると共に、入力側コモンモードコイルの正極側と負極側の二線と、出力側コモンモードコイルのUVW相の三線は、それぞれ分割してコアに巻回されていることを特徴とする。 The inverter device of the invention according to claim 3 is provided with a three-phase inverter circuit constituted by switching elements, and drives a motor by this inverter circuit, and the input side inserted into the single-phase input section of the inverter circuit. The common mode coil and the output common mode coil are inserted into the three-phase output section of the inverter circuit. The two wires on the positive and negative sides of the mode coil and the three wires on the UVW phase of the output common mode coil are each divided and wound around the core.
 請求項4の発明のインバータ装置は、上記各発明において高電圧電源から電源が供給されるインバータ回路を含む高電圧回路と、低電圧電源から電源が供給される低電圧回路を備えたことを特徴とする。 The inverter device of the invention according to claim 4 is characterized in that, in each of the above inventions, the inverter device includes a high voltage circuit including an inverter circuit to which power is supplied from the high voltage power supply, and a low voltage circuit to which power is supplied from the low voltage power supply. shall be.
 請求項5の発明の電動圧縮機は、モータが収容されるハウジングと、このハウジングに構成されたインバータ収容部を備え、上記発明のインバータ装置が、インバータ収容部に収容されていることを特徴とする。 The electric compressor of the invention according to claim 5 is characterized in that it includes a housing in which the motor is housed, and an inverter accommodating part configured in the housing, and the inverter device of the invention is housed in the inverter accommodating part. do.
 請求項6の発明の電動圧縮機は、上記発明においてハウジングが、スイッチング素子のヒートシンクとされていることを特徴とする。 The electric compressor of the invention according to claim 6 is characterized in that the housing in the above invention serves as a heat sink for the switching element.
 請求項7の発明の電動圧縮機は、請求項5の発明において車両に搭載されることを特徴とする。 The electric compressor of the invention of claim 7 is characterized in that it is mounted on a vehicle in the invention of claim 5.
 請求項1乃至請求項3の発明によれば、インバータ回路の単相入力部に挿入された入力側コモンモードコイルと、インバータ回路の三相出力部に挿入された出力側コモンモードコイルを、共通コアの一体構造としたので、ノイズ発生源であるインバータ回路の入力側と出力側を磁気結合し、ノイズ源の前後において、効果的にインピーダンスを高くすることができる。これにより、モータとそれが収容されるハウジング間の浮遊容量、及び、インバータ回路のスイッチング素子とハウジング間の浮遊容量を介して流出する全てのコモンモード電流を抑制し、コモンモードノイズの大幅な低減を図ることができるようになる。 According to the invention of claims 1 to 3, the input side common mode coil inserted in the single-phase input part of the inverter circuit and the output side common mode coil inserted in the three-phase output part of the inverter circuit are Since the core has an integral structure, the input side and the output side of the inverter circuit, which is the noise generation source, are magnetically coupled, and the impedance can be effectively increased before and after the noise source. This suppresses all common mode current flowing out through the stray capacitance between the motor and the housing that houses it, as well as the stray capacitance between the switching elements of the inverter circuit and the housing, significantly reducing common mode noise. You will be able to aim for
 また、入力側コモンモードコイルと出力側コモンモードコイルを磁気結合させているので、コア一つのみで対応可能であり、ターン数も削減できる。これにより、請求項4の発明の如き高電圧回路と低電圧回路を備えるインバータ装置がハウジングに収容され、小型化が必要な請求項5乃至請求項7の如き電動圧縮機にとっては極めて優位なこととなる。更に、ノイズをハウジングに漏らさない源流の対策であるので、高周波ノイズの抑制効果が高いものとなる。 In addition, since the input side common mode coil and the output side common mode coil are magnetically coupled, it can be handled with only one core and the number of turns can be reduced. As a result, the inverter device including the high voltage circuit and the low voltage circuit as in the invention of claim 4 is accommodated in the housing, which is extremely advantageous for electric compressors as in claims 5 to 7 that require miniaturization. becomes. Furthermore, since this is a source measure that prevents noise from leaking into the housing, it is highly effective in suppressing high frequency noise.
 特に、入力二線と出力三線をペンタファイラ巻きする構造に比して、磁気結合を維持しつつ、巻線間の不要な寄生結合を抑制することが可能となり、高周波帯におけるインピーダンスの低下を抑制して、ノイズ抑制効果が改善される。更に、ペンタファイラ巻きに比して巻線間の絶縁も簡素化されるので、更なる小型化を図ることも可能となる。 In particular, compared to a structure in which two input wires and three output wires are wound in a pentafilar manner, it is possible to maintain magnetic coupling while suppressing unnecessary parasitic coupling between the windings, suppressing a drop in impedance in high frequency bands. As a result, the noise suppression effect is improved. Furthermore, since the insulation between the windings is simplified compared to pentafilar winding, further miniaturization can be achieved.
本発明を適用した一実施例の電動圧縮機の電気回路のブロック図である。1 is a block diagram of an electric circuit of an electric compressor according to an embodiment of the present invention; FIG. 本発明の一実施例の電動圧縮機の概略断面図である。1 is a schematic cross-sectional view of an electric compressor according to an embodiment of the present invention. 図1の電動圧縮機のインバータ回路の入力部と出力部に挿入したコモンモードコイルの一実施例の構造を説明する図である(実施例1)。FIG. 2 is a diagram illustrating the structure of an example of a common mode coil inserted into an input part and an output part of an inverter circuit of the electric compressor shown in FIG. 1 (Example 1). 図3の構造のコモンモードコイルの巻線間寄生容量を説明する図である。4 is a diagram illustrating inter-winding parasitic capacitance of the common mode coil having the structure shown in FIG. 3. FIG. インバータ回路の出力側コモンモードコイルをトリファイラ巻きした場合と入出力側のコモンモードコイルをペンタファイラ巻きした場合のインピーダンス特性を説明する図である。FIG. 6 is a diagram illustrating impedance characteristics when the output side common mode coil of the inverter circuit is wound with a trifilar winding and when the input/output side common mode coil is wound with a pentafilar winding. 図3の構造のコモンモードコイルのインピーダンス特性を説明する図である。FIG. 4 is a diagram illustrating impedance characteristics of a common mode coil having the structure shown in FIG. 3; 図1の電動圧縮機における高電圧回路のノイズを説明する図である。2 is a diagram illustrating noise in a high voltage circuit in the electric compressor of FIG. 1. FIG. 図1の電動圧縮機における低電圧回路のノイズを説明する図である。2 is a diagram illustrating noise in a low voltage circuit in the electric compressor of FIG. 1. FIG. 図1の電動圧縮機のインバータ回路の入力部と出力部に挿入したコモンモードコイルの他の実施例の構造を説明する図である(実施例2)。FIG. 2 is a diagram illustrating the structure of another example of the common mode coil inserted into the input part and the output part of the inverter circuit of the electric compressor shown in FIG. 1 (Example 2). 図1の電動圧縮機のインバータ回路の入力部と出力部に挿入したコモンモードコイルのもう一つの他の実施例の構造を説明する図である(実施例3)。FIG. 3 is a diagram illustrating the structure of another example of the common mode coil inserted into the input part and the output part of the inverter circuit of the electric compressor shown in FIG. 1 (Example 3). 図3と図9と図10の構造のコモンモードコイルのインピーダンス特性を説明する図である。11 is a diagram illustrating impedance characteristics of common mode coils having the structures shown in FIGS. 3, 9, and 10. FIG. 従来の電動圧縮機の電気回路のブロック図である。FIG. 2 is a block diagram of an electric circuit of a conventional electric compressor. 図12の電動圧縮機のインバータ回路の出力部にコモンモードコイルを挿入した場合の電気回路のブロック図である。13 is a block diagram of an electric circuit when a common mode coil is inserted into the output section of the inverter circuit of the electric compressor shown in FIG. 12. FIG. インバータ回路の入出力側のコモンモードコイルをペンタファイラ巻きした構造を説明する図である。FIG. 2 is a diagram illustrating a structure in which a common mode coil on the input/output side of an inverter circuit is wound with a pentafilar winding.
 以下、本発明の実施の形態について、図面に基づいて詳細に説明する。尚、下記の各図において、図6や図7と同一符号で示すものは同一若しくは同様の機能を奏するものとする。 Hereinafter, embodiments of the present invention will be described in detail based on the drawings. In each of the figures below, the parts indicated by the same reference numerals as those in FIGS. 6 and 7 have the same or similar functions.
 先ず、図2を参照しながら本発明を適用した実施例の電動圧縮機(所謂インバータ一体型電動圧縮機)1について説明する。尚、実施例の電動圧縮機1は、ハイブリッド自動車や電気自動車等の電動車両に搭載される車両用空気調和装置の冷媒回路の一部を構成するものである。 First, an electric compressor (so-called inverter-integrated electric compressor) 1 according to an embodiment of the present invention will be described with reference to FIG. The electric compressor 1 of the embodiment constitutes a part of a refrigerant circuit of a vehicle air conditioner installed in an electric vehicle such as a hybrid vehicle or an electric vehicle.
 (1)電動圧縮機1の構成
 図2において、電動圧縮機1の金属性の筒状ハウジング2内は、当該ハウジング2の軸方向に交差する仕切壁3により圧縮機構収容部4とインバータ収容部6とに区画されており、圧縮機構収容部4内に例えばスクロール型の圧縮機構7と、この圧縮機構7を駆動するモータ8が収容されている。
(1) Structure of the electric compressor 1 In FIG. 2, the inside of the metallic cylindrical housing 2 of the electric compressor 1 is divided into a compression mechanism housing part 4 and an inverter housing part by a partition wall 3 that intersects in the axial direction of the housing 2. For example, a scroll-type compression mechanism 7 and a motor 8 for driving the compression mechanism 7 are housed in the compression mechanism accommodating portion 4.
 この場合、実施例のモータ8はハウジング2に固定されたステータ9と、このステータ9の内側で回転するロータ11から成るIPMSM(Interior Permanent Magnet Synchronous Motor)である。 In this case, the motor 8 of the embodiment is an IPMSM (Interior Permanent Magnet Synchronous Motor) consisting of a stator 9 fixed to the housing 2 and a rotor 11 rotating inside the stator 9.
 仕切壁3の圧縮機構収容部4側の中心部には軸受部12が形成されており、ロータ11の駆動軸13の一端はこの軸受部12に支持され、駆動軸13の他端は圧縮機構7に連結されている。ハウジング2の圧縮機構収容部4に対応する位置の仕切壁3近傍には吸入口14が形成されており、モータ8のロータ11(駆動軸13)が回転して圧縮機構7が駆動されると、この吸入口14からハウジング2の圧縮機構収容部4内に作動流体である低温の冷媒が流入し、圧縮機構7に吸引されて圧縮される。 A bearing part 12 is formed in the center of the partition wall 3 on the side of the compression mechanism housing part 4. One end of the drive shaft 13 of the rotor 11 is supported by this bearing part 12, and the other end of the drive shaft 13 is connected to the compression mechanism housing part 4. It is connected to 7. A suction port 14 is formed near the partition wall 3 at a position corresponding to the compression mechanism accommodating portion 4 of the housing 2, and when the rotor 11 (drive shaft 13) of the motor 8 rotates and the compression mechanism 7 is driven. A low-temperature refrigerant, which is a working fluid, flows into the compression mechanism accommodating portion 4 of the housing 2 through the suction port 14, and is sucked into the compression mechanism 7 and compressed.
 そして、この圧縮機構7で圧縮され、高温・高圧となった冷媒は、図示しない吐出口よりハウジング2外の前記冷媒回路に吐出される構成とされている。また、吸入口14から流入した低温の冷媒は、仕切壁3近傍を通ってモータ8の周囲を通過し、圧縮機構7に吸引されることから、仕切壁3も冷却されることになる。 The refrigerant compressed by the compression mechanism 7 to a high temperature and high pressure is discharged to the refrigerant circuit outside the housing 2 from a discharge port (not shown). Further, the low-temperature refrigerant flowing in from the suction port 14 passes near the partition wall 3, passes around the motor 8, and is sucked into the compression mechanism 7, so that the partition wall 3 is also cooled.
 そして、この仕切壁3で圧縮機構収容部4と区画されたインバータ収容部6内には、モータ8を駆動制御する本発明のインバータ装置16が収容される。この場合、インバータ装置16は、仕切壁3を貫通する密封端子やリード線を介してモータ8に給電する構成とされている。 The inverter device 16 of the present invention that drives and controls the motor 8 is housed in the inverter housing section 6 that is separated from the compression mechanism housing section 4 by the partition wall 3 . In this case, the inverter device 16 is configured to supply power to the motor 8 via a sealed terminal or lead wire that penetrates the partition wall 3 .
 (2)インバータ装置16の構造
 本発明の一実施例のインバータ装置16は、基板17と、この基板17の一面側に配線された6個のスイッチング素子18と、基板17の他面側に配線された制御回路36と、図示しないHVコネクタ、LVコネクタ等から構成されている。各スイッチング素子18は、実施例ではMOS構造をゲート部に組み込んだ絶縁ゲートバイポーラトランジスタ(IGBT)等から構成されている。
(2) Structure of the inverter device 16 The inverter device 16 according to one embodiment of the present invention includes a substrate 17, six switching elements 18 wired on one side of the substrate 17, and wired on the other side of the substrate 17. The control circuit 36 includes a control circuit 36, an HV connector, an LV connector, etc. (not shown). In the embodiment, each switching element 18 is composed of an insulated gate bipolar transistor (IGBT) or the like in which a MOS structure is incorporated in the gate portion.
 この場合、各スイッチング素子18が後述する三相のインバータ回路34を構成するものであり、各スイッチング素子18の端子部22は、基板17に接続されている。そして、このように組み立てられたインバータ装置16は、各スイッチング素子18がある一面側が仕切壁3側となった状態でインバータ収容部6内に収容されて仕切壁3に取り付けられ、カバー23にて塞がれる。この場合、基板17は仕切壁3から起立するボス部24を介して仕切壁3に固定されることになる。 In this case, each switching element 18 constitutes a three-phase inverter circuit 34 to be described later, and the terminal portion 22 of each switching element 18 is connected to the substrate 17. The inverter device 16 assembled in this way is housed in the inverter accommodating portion 6 and attached to the partition wall 3 with one side on which each switching element 18 is located facing the partition wall 3, and is attached to the partition wall 3 with the cover 23. Blocked. In this case, the substrate 17 will be fixed to the partition wall 3 via the boss portion 24 that stands up from the partition wall 3.
 このようにインバータ装置16が仕切壁3に取り付けられた状態で、各スイッチング素子18は仕切壁3に直接若しくは所定の絶縁熱伝導材を介して密着し、ハウジング2の仕切壁3と熱交換関係となる。そして、前述した如く仕切壁3は圧縮機構収容部4内に吸入される冷媒によって冷やされているので、各スイッチング素子18Aは仕切壁3を介して吸入冷媒と熱交換関係となり、仕切壁3の厚みを介して圧縮機構収容部4内に吸入された冷媒によって冷却され、各スイッチング素子18自体は仕切壁3を介して冷媒に放熱するかたちとなる。即ち、ハウジング2(仕切壁3)が各スイッチング素子18のヒートシンクとされている。 With the inverter device 16 attached to the partition wall 3 in this manner, each switching element 18 is in close contact with the partition wall 3 either directly or via a predetermined insulating heat conductive material, and is in a heat exchange relationship with the partition wall 3 of the housing 2. becomes. As described above, since the partition wall 3 is cooled by the refrigerant sucked into the compression mechanism housing section 4, each switching element 18A is in a heat exchange relationship with the sucked refrigerant through the partition wall 3. The switching elements 18 are cooled by the refrigerant sucked into the compression mechanism accommodating portion 4 through the thickness, and each switching element 18 itself radiates heat to the refrigerant through the partition wall 3. That is, the housing 2 (partition wall 3) serves as a heat sink for each switching element 18.
 (3)インバータ装置16の回路構成
 次に、図1において本発明のインバータ装置16は、モータ8を運転するためのインバータ回路34と、このインバータ回路34を制御する制御回路36と、高電圧回路フィルタ(EMIフィルタ)37と、低電圧回路フィルタ(EMIフィルタ)38と、スイッチング電源装置39等から構成され、これらが前述した基板17上に配線され、前述した如くインバータ収容部6内に収納される。
(3) Circuit configuration of inverter device 16 Next, in FIG. 1, inverter device 16 of the present invention includes an inverter circuit 34 for driving motor 8, a control circuit 36 for controlling this inverter circuit 34, and a high voltage circuit. It is composed of a filter (EMI filter) 37, a low voltage circuit filter (EMI filter) 38, a switching power supply device 39, etc., and these are wired on the board 17 mentioned above and housed in the inverter accommodating part 6 as mentioned above. Ru.
 尚、車両には電動圧縮機1のモータ8や、図示しない走行用のモータに給電して駆動するための例えばDC300V程の高電圧バッテリから成る高電圧電源(HV電源)41と、DC12V程のバッテリから成る低電圧電源(LV電源)42が搭載されており、インバータ装置16は前述した図示しないHVコネクタにより高電圧電源41に接続され、LVコネクタにより低電圧電源42に接続される。また、ハウジング2は車体(グランド)に導通されている。 The vehicle has a high voltage power source (HV power source) 41 consisting of, for example, a high voltage battery of approximately 300 V DC, for supplying power to the motor 8 of the electric compressor 1 and a driving motor (not shown), and a high voltage power source (HV power source) 41 of approximately 12 V DC. A low voltage power source (LV power source) 42 consisting of a battery is mounted, and the inverter device 16 is connected to the high voltage power source 41 through the aforementioned HV connector (not shown) and to the low voltage power source 42 through the LV connector. Furthermore, the housing 2 is electrically connected to the vehicle body (ground).
 インバータ回路34は、三相ブリッジ接続の前述した6個のスイッチング素子18から構成されており、各スイッチング素子18は制御回路36が有するゲートドライバが生成するゲート駆動信号により制御される。制御回路36はマイクロプロセッサ(CPU)から構成されており、インバータ回路34の各スイッチング素子18をゲートドライバによりスイッチングしてPWM変調を行うことで、高電圧電源41の直流電圧を所定周波数の交流電圧とし、モータ8に供給する。 The inverter circuit 34 is composed of the aforementioned six switching elements 18 connected in a three-phase bridge, and each switching element 18 is controlled by a gate drive signal generated by a gate driver included in the control circuit 36. The control circuit 36 is composed of a microprocessor (CPU), and performs PWM modulation by switching each switching element 18 of the inverter circuit 34 with a gate driver, thereby converting the DC voltage of the high voltage power supply 41 into an AC voltage of a predetermined frequency. and supplies it to the motor 8.
 高電圧回路フィルタ37は高電圧電源41とインバータ回路34の間に接続されており、コモンモードコイル43、Yコンデンサ44、46、平滑コンデンサ47から構成される。この高電圧回路フィルタ37は、インバータ回路34のスイッチングにより発生するEMIノイズを低減させる作用を奏する。低電圧回路フィルタ38は、Xコンデンサ48、コモンモードコイル49、Yコンデンサ51、52、平滑コンデンサ53から構成される。低電圧回路フィルタ38は、低電圧電源42とスイッチング電源装置39の間に接続され、スイッチング電源装置39でのスイッチングにより発生するEMIノイズを低減させる作用を奏する。 The high voltage circuit filter 37 is connected between the high voltage power supply 41 and the inverter circuit 34 and is composed of a common mode coil 43, Y capacitors 44 and 46, and a smoothing capacitor 47. This high voltage circuit filter 37 functions to reduce EMI noise generated by switching of the inverter circuit 34. The low voltage circuit filter 38 includes an X capacitor 48, a common mode coil 49, Y capacitors 51 and 52, and a smoothing capacitor 53. The low voltage circuit filter 38 is connected between the low voltage power supply 42 and the switching power supply device 39, and functions to reduce EMI noise generated by switching in the switching power supply device 39.
 スイッチング電源装置39は、低電圧電源42(DC12V)をスイッチングして所定の直流電圧(HV15V、HV5V)を生成し、制御回路36に給電するためのDC-DCコンバータである。尚、HV15Vはインバータ回路34のゲート駆動信号を生成するゲートドライバ(制御回路36が有する)に供給される電圧であり、HV5Vは制御回路36の電源となる電圧である。 The switching power supply device 39 is a DC-DC converter that switches the low voltage power supply 42 (DC 12V) to generate a predetermined DC voltage (HV15V, HV5V) and supplies power to the control circuit 36. Note that HV15V is a voltage supplied to a gate driver (which the control circuit 36 has) that generates a gate drive signal for the inverter circuit 34, and HV5V is a voltage that serves as a power source for the control circuit 36.
 スイッチング電源装置39は、一次巻線56と、この一次巻線56とは絶縁された二次巻線57から成る絶縁トランス(カップリングトランス)にて構成されたスイッチングトランス60と、一次巻線56に接続されたスイッチング素子58を有している。そして、スイッチングトランス60の巻数比に応じて、DC15V(HV15V)とDC5V(HV5V)が出力されるようにスイッチング素子58がスイッチング制御される。 The switching power supply device 39 includes a switching transformer 60 including an isolation transformer (coupling transformer) including a primary winding 56 and a secondary winding 57 insulated from the primary winding 56; It has a switching element 58 connected to. Then, according to the turns ratio of the switching transformer 60, the switching element 58 is controlled to output DC15V (HV15V) and DC5V (HV5V).
 スイッチング電源装置39は低電圧電源42をスイッチングして制御回路36に電源を供給すると共に、スイッチングトランス60により、一次巻線56が位置する低電圧電源42側の低電圧回路63と、二次巻線57が位置する高電圧電源41側の高電圧回路64とを絶縁する。そして、インバータ装置16は上記のように絶縁された高電圧回路64と低電圧回路63が基板17上で近接した状態で構成され、インバータ収容部6内に収容されている。 The switching power supply device 39 switches the low voltage power supply 42 to supply power to the control circuit 36, and also connects the low voltage circuit 63 on the low voltage power supply 42 side, where the primary winding 56 is located, and the secondary winding by the switching transformer 60. The wire 57 is insulated from the high voltage circuit 64 on the high voltage power supply 41 side. The inverter device 16 is configured such that the high voltage circuit 64 and the low voltage circuit 63 which are insulated as described above are placed close to each other on the substrate 17, and is housed in the inverter accommodating portion 6.
 ここで、前述した如くインバータ回路34を構成するスイッチング素子18のスイッチングに伴うサージ電圧(振動電圧)はモータ8側に伝達するため、電圧変動によりモータ8とハウジング2間の浮遊容量61を介してコモンモード電流が流出する。更に、ノイズ発生源であるインバータ回路34とハウジング2間の浮遊容量62を介して流出するコモンモード電流もある(何れも図1中に矢印で示す)。 Here, as mentioned above, the surge voltage (oscillating voltage) accompanying the switching of the switching element 18 constituting the inverter circuit 34 is transmitted to the motor 8 side, so the surge voltage (oscillating voltage) accompanying the switching of the switching element 18 constituting the inverter circuit 34 is transmitted to the motor 8 side. Common mode current flows out. Furthermore, there is also a common mode current that flows out via the stray capacitance 62 between the inverter circuit 34 and the housing 2, which is a noise generation source (both are indicated by arrows in FIG. 1).
 特に、実施例のような電動圧縮機1では、モータ8とハウジング2間の浮遊容量61とインバータ回路34とハウジング2間の浮遊容量62を介して流出するコモンモード電流によるノイズ(コモンモードノイズ)が支配的となる。 In particular, in the electric compressor 1 according to the embodiment, noise (common mode noise) is caused by a common mode current flowing out through the stray capacitance 61 between the motor 8 and the housing 2 and the stray capacitance 62 between the inverter circuit 34 and the housing 2. becomes dominant.
 そこで、この実施例ではインバータ回路34の単相入力部(平滑コンデンサ47とインバータ回路34の間の二線)に入力側コモンモードコイル67を挿入すると共に、インバータ回路34の三相出力部(インバータ回路34とモータ8の間の三線)に出力側コモンモードコイル66を挿入している(図1)。この場合、図3に示す如く入力側コモンモードコイル67と出力側コモンモードコイル66を、共通の一つのコア68に巻回して一体構造のコモンモードコイル69としている。これにより、入力側コモンモードコイル67と出力側コモンモードコイル66は磁気結合される(図1)。 Therefore, in this embodiment, the input side common mode coil 67 is inserted into the single-phase input section of the inverter circuit 34 (the two wires between the smoothing capacitor 47 and the inverter circuit 34), and the input-side common mode coil 67 is inserted into the three-phase output section of the inverter circuit 34 (the inverter circuit 34). An output side common mode coil 66 is inserted into the three wires between the circuit 34 and the motor 8 (FIG. 1). In this case, as shown in FIG. 3, the input side common mode coil 67 and the output side common mode coil 66 are wound around one common core 68 to form a common mode coil 69 having an integral structure. Thereby, the input side common mode coil 67 and the output side common mode coil 66 are magnetically coupled (FIG. 1).
 更に、この実施例の場合、入力側コモンモードコイル67は図3に示す如く高電圧電源41の正極側に接続された正極線(巻線:コイル)67Hと、負極側に接続された負極線(巻線:コイル)67Lから成り、これら正極側と負極側の二線67H、67Lが例えば平行に、コア68に対してバイファイラ巻きされている。また、出力側コモンモードコイル66は図3に示す如くインバータ回路34の出力のU相に接続されたU相線(巻線:コイル)66Uと、V相に接続されたV相線(巻線:コイル)66Vと、W相に接続されたW相線(巻線:コイル)66Wから成り、これらUVW相の三線66U、66V、66Wが例えば平行に、コア68に対してトリファイラ巻きされている。尚、図3中の矢印は磁束の向きを示す。 Furthermore, in the case of this embodiment, the input side common mode coil 67 has a positive electrode wire (winding: coil) 67H connected to the positive electrode side of the high voltage power supply 41 and a negative electrode wire connected to the negative electrode side, as shown in FIG. (Winding wire: coil) 67L, and these two wires 67H and 67L on the positive electrode side and negative electrode side are bifilar-wound around the core 68, for example, in parallel. Further, as shown in FIG. 3, the output side common mode coil 66 includes a U phase line (winding: coil) 66U connected to the U phase of the output of the inverter circuit 34, and a V phase line (winding: coil) connected to the V phase. : Coil) 66V and W phase wire (winding: coil) 66W connected to W phase, these three UVW phase wires 66U, 66V, 66W are trifilar wound around core 68 in parallel, for example. . Note that the arrows in FIG. 3 indicate the direction of magnetic flux.
 図4中L1は図3の構造のコモンモードコイル69の巻線間寄生容量の周波数特性を示し、L100は図14のペンタファイラ巻き構造のコモンモードコイル114の巻線間寄生容量の周波数特性を示している。図3の如く入力側コモンモードコイル67をバイファイラ巻きとし、出力側コモンモードコイル66をトリファイラ巻きとしたことで、図14の場合のL100に比して、図3の場合のL1から明らかな如く入力側コモンモードコイル67と出力側コモンモードコイル66の間の寄生容量が低減される(実施例では20pFが10pFに低減)。 In FIG. 4, L1 indicates the frequency characteristic of the inter-winding parasitic capacitance of the common mode coil 69 having the structure shown in FIG. It shows. As shown in FIG. 3, the input side common mode coil 67 is bifilar-wound, and the output side common-mode coil 66 is trifilar-wound, so that L100 in the case of FIG. 3 is different from L100 in the case of FIG. The parasitic capacitance between the input side common mode coil 67 and the output side common mode coil 66 is reduced (in the example, 20 pF is reduced to 10 pF).
 また、図14の構造のコモンモードコイル114ではFM帯近辺にて共振点が確認される。これは入力側と出力側の各線111H、111L、112U、112V、112Wの間で不要な寄生結合(寄生容量)が生じたため、実施例のものでは30MHz~50MHz近辺が悪化したものと考えられる。また、図14の構造では全ての線111H、111L、112U、112V、112Wの間で絶縁を図る必要が生じる必要があり、コイルが大型化するが、図3の構造では入力側コモンモードコイル67と出力側コモンモードコイル66の間の絶縁は考慮しなくて済むので、小型化が可能となり、電動圧縮機1には有利である。 Further, in the common mode coil 114 having the structure shown in FIG. 14, a resonance point is confirmed near the FM band. This is considered to be because unnecessary parasitic coupling (parasitic capacitance) occurred between the lines 111H, 111L, 112U, 112V, and 112W on the input side and the output side, which caused the deterioration in the vicinity of 30 MHz to 50 MHz in the example. In addition, in the structure of FIG. 14, it is necessary to insulate all the wires 111H, 111L, 112U, 112V, and 112W, which increases the size of the coil, but in the structure of FIG. Since there is no need to consider insulation between the output side common mode coil 66 and the output side common mode coil 66, miniaturization is possible, which is advantageous for the electric compressor 1.
 また、図5はインバータ回路34の出力側に図13の如くコモンモードコイル104を接続し、各線104U、104V、104Wを平行にコアに対してトリファイラ巻きした場合(L101)と、図14の如きペンタファイラ巻きのコモンモードコイル114の場合(L102)のインピーダンスの周波数特性を示している。 5 shows the case where the common mode coil 104 is connected to the output side of the inverter circuit 34 as shown in FIG. 13, and each wire 104U, 104V, 104W is wound in parallel around the core in a trifilar manner (L101), and the case shown in FIG. It shows the frequency characteristics of impedance in the case of the pentafilar-wound common mode coil 114 (L102).
 更に、図6は図13の如くコモンモードコイル104を接続し、各線104U、104V、104Wを平行にコアに対してトリファイラ巻きした場合(L101)と、実施例(図3)のように入力側コモンモードコイル67をバイファイラ巻きとし、出力側コモンモードコイル66をトリファイラ巻きとしたコモンモードコイル69の場合(L2)のインバータの周波数特性を示している。 Furthermore, FIG. 6 shows a case where the common mode coil 104 is connected as shown in FIG. 13, and each wire 104U, 104V, 104W is wound in a trifilar around the core in parallel (L101), and when the input side is connected as in the example (FIG. 3). The frequency characteristics of the inverter in the case (L2) of the common mode coil 69 in which the common mode coil 67 is bifilar-wound and the output common mode coil 66 is trifilar-wound are shown.
 図14のペンタファイラ巻き(L102)では巻線間寄生容量が大きく、高周波帯における共振の発生が大きく、L101よりもインピーダンスが低下するポイントがあるが(図5)、図3の実施例の構造のコモンモードコイル69では、巻線間の寄生結合を抑制できるため、L2で示すように、高帯域においてトリファイラ巻きの三相コモンモードコイル104(図13)の特性L101を維持できることが分かる(図6)。 In the pentafilar winding (L102) shown in FIG. 14, the parasitic capacitance between the windings is large, the occurrence of resonance is large in the high frequency band, and there is a point where the impedance is lower than that of L101 (see FIG. 5), but the structure of the embodiment shown in FIG. It can be seen that the common mode coil 69 can suppress the parasitic coupling between the windings, so it is possible to maintain the characteristic L101 of the trifilar-wound three-phase common mode coil 104 (Fig. 13) in the high band, as shown by L2 (Fig. 6).
 図7中の(a)は図1の高電圧回路64のノイズ測定結果を示し、横軸は周波数、縦軸はノイズである。また、L103は前述した図12の場合、L104は前述した図14の場合のコモンモードコイル114、L3は図3の実施例のようなコモンモードコイル69の場合を示している。また、図7中の(b)は、改善差違:L104-L3を示している。 (a) in FIG. 7 shows the noise measurement results of the high voltage circuit 64 in FIG. 1, where the horizontal axis is frequency and the vertical axis is noise. Further, L103 indicates the case of the above-mentioned FIG. 12, L104 indicates the common mode coil 114 in the case of the above-mentioned FIG. 14, and L3 indicates the case of the common mode coil 69 as in the embodiment of FIG. Further, (b) in FIG. 7 shows the improvement difference: L104-L3.
 図8中の(a)は図1の低電圧回路63のノイズ測定結果を示し、横軸は周波数、縦軸はノイズである。また、L105は前述した図12の場合、L106は前述した図14の場合のコモンモードコイル114、L4は図3の実施例のようなコモンモードコイル69の場合を示している。また、図8中の(b)は、改善差違:L106-L4を示している。 (a) in FIG. 8 shows the noise measurement results of the low voltage circuit 63 in FIG. 1, where the horizontal axis is frequency and the vertical axis is noise. Further, L105 indicates the case of the above-described FIG. 12, L106 indicates the common mode coil 114 in the case of the above-mentioned FIG. 14, and L4 indicates the case of the common mode coil 69 as in the embodiment of FIG. 3. Further, (b) in FIG. 8 shows the improvement difference: L106-L4.
 図7(b)、図8(b)は0より大きい程、ノイズが改善されていることを意味する。図7(b)から明らかな如く、図3の実施例のコモンモードコイル69の場合、入力側コモンモードコイル67と出力側コモンモードコイル66を分離したことで、高電圧回路64においてはVHF帯のノイズが改善されている。また、図8(b)から明らかな如く、低電圧回路63に対する悪影響もない。これは、入力側コモンモードコイル67と出力側コモンモードコイル66を分離したことで、不必要な結合が低減したことが要因と考えられる。 In FIGS. 7(b) and 8(b), the larger the value is than 0, the more the noise is improved. As is clear from FIG. 7(b), in the case of the common mode coil 69 of the embodiment shown in FIG. The noise has been improved. Further, as is clear from FIG. 8(b), there is no adverse effect on the low voltage circuit 63. This is considered to be because unnecessary coupling is reduced by separating the input side common mode coil 67 and the output side common mode coil 66.
 次に、図9は図1のコモンモードコイル69のもう一つの実施例の構造を示している(69Aで示す)。この実施例でも、図9に示す如く入力側コモンモードコイル67と出力側コモンモードコイル66は、共通の一つのコア68に巻回されて一体構造のコモンモードコイル69Aとされている。これにより、入力側コモンモードコイル67と出力側コモンモードコイル66は磁気結合される。 Next, FIG. 9 shows the structure of another embodiment of the common mode coil 69 in FIG. 1 (indicated by 69A). In this embodiment as well, as shown in FIG. 9, the input side common mode coil 67 and the output side common mode coil 66 are wound around a single common core 68 to form an integrated common mode coil 69A. Thereby, the input side common mode coil 67 and the output side common mode coil 66 are magnetically coupled.
 しかしながら、この実施例の場合、入力側コモンモードコイル67は図9に示す如く高電圧電源41の正極側に接続された正極線(巻線:コイル)67Hと、負極側に接続された負極線(巻線:コイル)67Lの二線が分割してコア68に巻回されている。尚、出力側コモンモードコイル66は図3の場合と同様にUVW相の三線66U、66V、66Wが例えば平行に、コア68に対してトリファイラ巻きされている。尚、図9中の矢印は磁束の向きを示す。この実施例のように高電圧電源41の正極側に接続された正極線(巻線:コイル)67Hと、負極側に接続された負極線(巻線:コイル)67Lを分割したことにより、更に絶縁構造が容易となり、コモンモードコイル69Aを小型化することが可能となる。 However, in the case of this embodiment, the input side common mode coil 67 has a positive electrode wire (winding: coil) 67H connected to the positive electrode side of the high voltage power supply 41 and a negative electrode wire connected to the negative electrode side, as shown in FIG. (Winding wire: coil) Two wires of 67L are divided and wound around the core 68. Note that the output side common mode coil 66 has three UVW phase wires 66U, 66V, and 66W wound around the core 68 in a trifilar manner, for example, in parallel, as in the case of FIG. Note that the arrows in FIG. 9 indicate the direction of magnetic flux. By dividing the positive electrode wire (winding: coil) 67H connected to the positive electrode side of the high voltage power supply 41 and the negative electrode wire (winding: coil) 67L connected to the negative electrode side as in this embodiment, The insulation structure becomes easy, and the common mode coil 69A can be downsized.
 また、図10は図1のコモンモードコイル69の更にもう一つの実施例の構造を示している(69Bで示す)。この実施例でも、図10に示す如く入力側コモンモードコイル67と出力側コモンモードコイル66は、共通の一つのコア68に巻回されて一体構造のコモンモードコイル69Aとされている。これにより、入力側コモンモードコイル67と出力側コモンモードコイル66は磁気結合される。 Further, FIG. 10 shows the structure of yet another embodiment of the common mode coil 69 in FIG. 1 (indicated by 69B). In this embodiment as well, as shown in FIG. 10, the input side common mode coil 67 and the output side common mode coil 66 are wound around one common core 68 to form an integrated common mode coil 69A. Thereby, the input side common mode coil 67 and the output side common mode coil 66 are magnetically coupled.
 しかしながら、この実施例の場合、入力側コモンモードコイル67は図10に示す如く高電圧電源41の正極側に接続された正極線(巻線:コイル)67Hと、負極側に接続された負極線(巻線:コイル)67Lの二線が分割してコア68に巻回されている。また、出力側コモンモードコイル66も、UVW相の三線66U、66V、66Wが分割してコア68に巻回されている。尚、図10中の矢印は磁束の向きを示す。 However, in the case of this embodiment, the input side common mode coil 67 has a positive electrode wire (winding: coil) 67H connected to the positive electrode side of the high voltage power supply 41 and a negative electrode wire connected to the negative electrode side, as shown in FIG. (Winding wire: coil) Two wires of 67L are divided and wound around the core 68. Further, the output side common mode coil 66 is also divided into three UVW phase wires 66U, 66V, and 66W and wound around the core 68. Note that the arrows in FIG. 10 indicate the direction of magnetic flux.
 そして、図11には図3(実施例1)、図9(実施例2)、図10(実施例3)、図14の場合の各コモンモードコイルのインピーダンスの周波数特性を示している。この図中、L5は図3のコモンモードコイル69、L6は図9のコモンモードコイル69A、L7は図10のコモンモードコイル69B、L107は図14のコモンモードコイル114の場合をそれぞれ示している。 FIG. 11 shows the frequency characteristics of the impedance of each common mode coil in the cases of FIG. 3 (Example 1), FIG. 9 (Example 2), FIG. 10 (Example 3), and FIG. In this figure, L5 indicates the common mode coil 69 in FIG. 3, L6 indicates the common mode coil 69A in FIG. 9, L7 indicates the common mode coil 69B in FIG. 10, and L107 indicates the common mode coil 114 in FIG. 14. .
 図3のコモンモードコイル69(L5)、図9のコモンモードコイル69A(L6)の何れの場合も、図14のコモンモードコイル114(L107)よりもインピーダンス特性は良好であることが分かる。図3のコモンモードコイル69(L5:実施例1)、図9のコモンモードコイル69A(L6:実施例2)においては、入出力の寄生容量を低減する効果に合わせて、相互インダクタンスによりコイル自体のインピーダンスも向上する効果がある。また、ペンタファイラ巻き(図14のコモンモードコイル114:L107)に対して、小型化することができる効果がある。尚、図10のコモンモードコイル69B(L7)は図11からするとL107(図14)よりも特性は劣っているが、図3のコモンモードコイル69(L5)や図9のコモンモードコイル69A(L6)のトリファイラ巻きに対して、三相出力の結合係数が上がり、相互インダクタンスの影響が大きくなるため、インピーダンス特性は良好となる。 It can be seen that both the common mode coil 69 (L5) in FIG. 3 and the common mode coil 69A (L6) in FIG. 9 have better impedance characteristics than the common mode coil 114 (L107) in FIG. 14. In the common mode coil 69 (L5: Example 1) in FIG. 3 and the common mode coil 69A (L6: Example 2) in FIG. It also has the effect of improving the impedance of. Moreover, it has the effect of being able to be made smaller compared to pentafilar winding (common mode coil 114: L107 in FIG. 14). Note that the common mode coil 69B (L7) in FIG. 10 has inferior characteristics to L107 (FIG. 14) from FIG. 11, but the common mode coil 69B (L7) in FIG. With respect to the trifilar winding of L6), the coupling coefficient of the three-phase output increases and the influence of mutual inductance increases, resulting in good impedance characteristics.
 以上のように本発明によれば、インバータ回路34の単相入力部に挿入された入力側コモンモードコイル67と、インバータ回路34の三相出力部に挿入された出力側コモンモードコイル66を、共通コア68の一体構造としたので、ノイズ発生源であるインバータ回路34の入力側と出力側を磁気結合し、インピーダンスを高くすることができる。これにより、モータ8とハウジング2間の浮遊容量61、及び、インバータ回路34のスイッチング素子18とハウジング2間の浮遊容量62を介して流出する全てのコモンモード電流を抑制し、コモンモードノイズの大幅な低減を図ることができるようになる。 As described above, according to the present invention, the input side common mode coil 67 inserted into the single-phase input part of the inverter circuit 34 and the output side common mode coil 66 inserted into the three-phase output part of the inverter circuit 34, Since the common core 68 has an integral structure, the input side and the output side of the inverter circuit 34, which is a noise generation source, can be magnetically coupled and the impedance can be increased. This suppresses all common mode current flowing out through the stray capacitance 61 between the motor 8 and the housing 2 and the stray capacitance 62 between the switching element 18 of the inverter circuit 34 and the housing 2, and significantly reduces common mode noise. This makes it possible to achieve significant reductions.
 また、入力側コモンモードコイル67と出力側コモンモードコイル66を磁気結合させているので、コア68一つのみで対応可能であり、ターン数も削減できる。これにより、実施例のように高電圧回路64と低電圧回路63を備えるインバータ装置16がハウジング2に収容され、小型化が必要な電動圧縮機1にとっては極めて優位なこととなる。更に、ノイズをハウジング2に漏らさない源流の対策であるので、高周波ノイズの抑制効果が高いものとなる。 Furthermore, since the input side common mode coil 67 and the output side common mode coil 66 are magnetically coupled, it can be handled with only one core 68, and the number of turns can also be reduced. As a result, the inverter device 16 including the high voltage circuit 64 and the low voltage circuit 63 is housed in the housing 2 as in the embodiment, which is extremely advantageous for the electric compressor 1 that needs to be downsized. Furthermore, since this is a source measure to prevent noise from leaking into the housing 2, the effect of suppressing high frequency noise is high.
 特に、入力二線と出力三線をペンタファイラ巻きする図14の構造に比して、磁気結合を維持しつつ、巻線間の不要な寄生結合を抑制することが可能となり、インピーダンスの低下を抑制して、ノイズ抑制効果が改善される。更に、ペンタファイラ巻き(図14)に比して巻線間の絶縁も簡素化されるので、更なる小型化を図ることも可能となる。 In particular, compared to the structure shown in Figure 14 in which two input wires and three output wires are wound in a pentafilar style, it is possible to maintain magnetic coupling while suppressing unnecessary parasitic coupling between the windings, thereby suppressing a drop in impedance. As a result, the noise suppression effect is improved. Furthermore, since the insulation between the windings is simplified compared to the pentafilar winding (FIG. 14), further miniaturization can be achieved.
 尚、実施例ではDC300V程の高電圧バッテリから成る高電圧電源41と、DC12V程のバッテリから成る低電圧電源42を設け、この低電圧電源42から高電圧回路64側の直流電圧(HV15V、HV5V)を生成する場合で説明したが、それに限らず、高電圧電源41から直接高電圧回路64側の直流電圧(HV15V、HV5V)を生成するようにしてもよい。 In the embodiment, a high voltage power source 41 consisting of a high voltage battery of approximately 300 VDC and a low voltage power source 42 consisting of a battery of approximately 12 VDC are provided. ), but the present invention is not limited to this, and the direct current voltage (HV15V, HV5V) on the high voltage circuit 64 side may be directly generated from the high voltage power supply 41.
 また、実施例では電動圧縮機のモータを駆動するインバータ装置で本発明を説明したが、請求項1乃至請求項4の発明ではそれに限らず、モータを駆動する種々のインバータ装置に適用可能である。更に、実施例で示した具体的な構成や数値はそれに限られるものでは無く、本発明の趣旨を逸脱しない範囲で種々変更可能である。 Further, in the embodiments, the present invention has been described using an inverter device that drives the motor of an electric compressor, but the inventions of claims 1 to 4 are not limited thereto, and can be applied to various inverter devices that drive the motor. . Further, the specific configurations and numerical values shown in the examples are not limited to those, and can be variously changed without departing from the spirit of the present invention.
 1 電動圧縮機
 2 ハウジング
 3 仕切壁
 6 インバータ収容部
 8 モータ
 16 インバータ装置
 17 基板
 18 スイッチング素子
 34 インバータ回路
 36 制御回路
 37 高電圧回路フィルタ
 38 低電圧回路フィルタ
 39 スイッチング電源装置
 41 高電圧電源
 42 低電圧電源
 63 低電圧回路
 64 高電圧回路
 66 出力側コモンモードコイル
 66U U相線
 66V V相線
 66W W相線
 67 入力側コモンモードコイル
 67H 正極線
 67L 負極線
 68 コア
 69、69A、69B コモンモードコイル
1 Electric compressor 2 Housing 3 Partition wall 6 Inverter housing 8 Motor 16 Inverter device 17 Board 18 Switching element 34 Inverter circuit 36 Control circuit 37 High voltage circuit filter 38 Low voltage circuit filter 39 Switching power supply device 41 High voltage power supply 42 Low voltage Power supply 63 Low voltage circuit 64 High voltage circuit 66 Output side common mode coil 66U U phase line 66V V phase line 66W W phase line 67 Input side common mode coil 67H Positive electrode line 67L Negative electrode line 68 Core 69, 69A, 69B Common mode coil

Claims (7)

  1.  スイッチング素子より構成された三相のインバータ回路を備え、該インバータ回路によりモータを駆動するインバータ装置において、
     前記インバータ回路の単相入力部に挿入された入力側コモンモードコイルと、
     前記インバータ回路の三相出力部に挿入された出力側コモンモードコイルを備え、
     前記入力側コモンモードコイルと前記出力側コモンモードコイルは、共通コアの一体構造とされると共に、
     前記入力側コモンモードコイルの正極側と負極側の二線は前記コアに対してバイファイラ巻きとされ、前記出力側コモンモードコイルのUVW相の三線は前記コアに対してトリファイラ巻きされていることを特徴とするインバータ装置。
    An inverter device comprising a three-phase inverter circuit configured with switching elements and driving a motor by the inverter circuit,
    an input side common mode coil inserted into the single-phase input section of the inverter circuit;
    comprising an output side common mode coil inserted in the three-phase output part of the inverter circuit,
    The input side common mode coil and the output side common mode coil have an integral structure of a common core, and
    The two wires on the positive and negative sides of the input common mode coil are bifilar wound around the core, and the three UVW phase wires of the output common mode coil are trifilar wound around the core. Features of the inverter device.
  2.  スイッチング素子より構成された三相のインバータ回路を備え、該インバータ回路によりモータを駆動するインバータ装置において、
     前記インバータ回路の単相入力部に挿入された入力側コモンモードコイルと、
     前記インバータ回路の三相出力部に挿入された出力側コモンモードコイルを備え、
     前記入力側コモンモードコイルと前記出力側コモンモードコイルは、共通コアの一体構造とされると共に、
     前記入力側コモンモードコイルの正極側と負極側の二線は、分割して前記コアに巻回され、前記出力側コモンモードコイルのUVW相の三線は前記コアに対してトリファイラ巻きされていることを特徴とするインバータ装置。
    An inverter device comprising a three-phase inverter circuit configured with switching elements and driving a motor by the inverter circuit,
    an input side common mode coil inserted into the single-phase input section of the inverter circuit;
    comprising an output side common mode coil inserted in the three-phase output part of the inverter circuit,
    The input side common mode coil and the output side common mode coil have an integral structure of a common core, and
    The two wires on the positive and negative sides of the input common mode coil are divided and wound around the core, and the three UVW phase wires of the output common mode coil are trifilar-wound around the core. An inverter device featuring:
  3.  スイッチング素子より構成された三相のインバータ回路を備え、該インバータ回路によりモータを駆動するインバータ装置において、
     前記インバータ回路の単相入力部に挿入された入力側コモンモードコイルと、
     前記インバータ回路の三相出力部に挿入された出力側コモンモードコイルを備え、
     前記入力側コモンモードコイルと前記出力側コモンモードコイルは、共通コアの一体構造とされると共に、
     前記入力側コモンモードコイルの正極側と負極側の二線と、前記出力側コモンモードコイルのUVW相の三線は、それぞれ分割して前記コアに巻回されていることを特徴とするインバータ装置。
    An inverter device comprising a three-phase inverter circuit configured with switching elements and driving a motor by the inverter circuit,
    an input side common mode coil inserted into the single-phase input section of the inverter circuit;
    comprising an output side common mode coil inserted in the three-phase output part of the inverter circuit,
    The input side common mode coil and the output side common mode coil have an integral structure of a common core, and
    An inverter device characterized in that two wires on the positive and negative sides of the input common mode coil and three wires on the UVW phase of the output common mode coil are each divided and wound around the core.
  4.  高電圧電源から電源が供給される前記インバータ回路を含む高電圧回路と、低電圧電源から電源が供給される低電圧回路を備えたことを特徴とする請求項1乃至請求項3のうちの何れかに記載のインバータ装置。 Any one of claims 1 to 3, comprising a high voltage circuit including the inverter circuit that is supplied with power from a high voltage power supply, and a low voltage circuit that is supplied with power from a low voltage power supply. The inverter device described in .
  5.  前記モータが収容されるハウジングと、該ハウジングに構成されたインバータ収容部を備え、
     前記インバータ装置は、前記インバータ収容部に収容されていることを特徴とする請求項4に記載のインバータ装置を備えた電動圧縮機。
    comprising a housing in which the motor is housed, and an inverter housing part configured in the housing,
    The electric compressor equipped with an inverter device according to claim 4, wherein the inverter device is accommodated in the inverter accommodating portion.
  6.  前記ハウジングが、前記スイッチング素子のヒートシンクとされていることを特徴とする請求項5に記載の電動圧縮機。 The electric compressor according to claim 5, wherein the housing serves as a heat sink for the switching element.
  7.  車両に搭載されることを特徴とする請求項5に記載の電動圧縮機。 The electric compressor according to claim 5, wherein the electric compressor is mounted on a vehicle.
PCT/JP2023/015933 2022-05-24 2023-04-21 Inverter device and electric compressor comprising same WO2023228642A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-084697 2022-05-24
JP2022084697A JP2023172709A (en) 2022-05-24 2022-05-24 Inverter device and motor compressor having the same

Publications (1)

Publication Number Publication Date
WO2023228642A1 true WO2023228642A1 (en) 2023-11-30

Family

ID=88918913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015933 WO2023228642A1 (en) 2022-05-24 2023-04-21 Inverter device and electric compressor comprising same

Country Status (2)

Country Link
JP (1) JP2023172709A (en)
WO (1) WO2023228642A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005130575A (en) * 2003-10-22 2005-05-19 Yaskawa Electric Corp Noise filter and motor driving device
JP2014082824A (en) * 2012-10-15 2014-05-08 Mitsubishi Electric Corp Mechatronic drive apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005130575A (en) * 2003-10-22 2005-05-19 Yaskawa Electric Corp Noise filter and motor driving device
JP2014082824A (en) * 2012-10-15 2014-05-08 Mitsubishi Electric Corp Mechatronic drive apparatus

Also Published As

Publication number Publication date
JP2023172709A (en) 2023-12-06

Similar Documents

Publication Publication Date Title
KR101911768B1 (en) Fluid machine
US11025141B2 (en) On-board electric compressor with a motor and noise reducing unit with inverter device having a damping unit reducing Q value of low pass filter circuit
EP2162976B1 (en) Common mode & differential mode filter for variable speed drive
KR101843375B1 (en) Vehicle inveter device and motor-driven compressor
US10879773B2 (en) On-vehicle motor-driven compressor
US11097592B2 (en) On-board electric compressor
KR102191200B1 (en) On-vehicle motor-driven compressor
US20110163705A1 (en) Inverter and integrated-inverter electric compressor
KR101972434B1 (en) Electric compressor
US10978981B2 (en) Drive apparatus for electric motor and air conditioner
WO2012114584A1 (en) Inverter integrated motor-driven compressor
WO2023228642A1 (en) Inverter device and electric compressor comprising same
WO2023228640A1 (en) Inverter device and electric compressor equipped therewith
WO2023228639A1 (en) Inverter device and electric compressor provided with same
WO2023228641A1 (en) Inverter device and electric compressor comprising same
WO2019198289A1 (en) Rotating electrical machine
WO2024024355A1 (en) Common mode coil, inverter device, and electric compressor
JP3831740B2 (en) Leakage current suppression circuit and air conditioner
CN114208007A (en) Circuit body and refrigeration cycle device
JP2014020257A (en) Refrigeration device
US20240145152A1 (en) Motor-driven compressor
JP6491761B2 (en) Power conversion circuit
JP2012010500A (en) Refrigerating device
CN116646153A (en) electric compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811520

Country of ref document: EP

Kind code of ref document: A1