WO2023228601A1 - Oxygen absorbing laminate - Google Patents

Oxygen absorbing laminate Download PDF

Info

Publication number
WO2023228601A1
WO2023228601A1 PCT/JP2023/014314 JP2023014314W WO2023228601A1 WO 2023228601 A1 WO2023228601 A1 WO 2023228601A1 JP 2023014314 W JP2023014314 W JP 2023014314W WO 2023228601 A1 WO2023228601 A1 WO 2023228601A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
acid
absorbing
resin
diisocyanate
Prior art date
Application number
PCT/JP2023/014314
Other languages
French (fr)
Japanese (ja)
Inventor
大樹 駒形
智弘 宮井
敬弘 赤羽根
佳織 島野
Original Assignee
東洋製罐グループホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋製罐グループホールディングス株式会社 filed Critical 東洋製罐グループホールディングス株式会社
Priority to JP2023544540A priority Critical patent/JPWO2023228601A1/ja
Publication of WO2023228601A1 publication Critical patent/WO2023228601A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes

Definitions

  • the present invention relates to an oxygen-absorbing laminate.
  • gas exchange packaging in which the air inside the package is replaced with an inert gas such as nitrogen while the contents are filled and sealed.
  • gas replacement involves sucking and exhausting air from the package when filling the contents, or forcibly replacing the air inside the package with inert gas, but gas replacement packaging also removes oxygen from the package. It is difficult to completely remove it. For this reason, the present applicant has proposed a packaging film having an oxygen absorption function, for example in Patent Document 1.
  • the oxygen-absorbing resin responsible for the oxygen-absorbing performance in the above-mentioned background art starts reacting with oxygen when exposed to air, so it cannot be used in the film manufacturing process, bag-making process, or packaging process for packaging objects. If the oxygen absorption reaction progresses, there is a risk that the oxygen absorption performance will be reduced upon completion of packaging.
  • the inventors of the present invention have conducted intensive studies to control the oxygen absorption reaction until the packaging is completed to more effectively utilize the limited oxygen absorption performance of the oxygen-absorbing resin.
  • the invention was completed.
  • the oxygen-absorbing laminate according to the present invention is an oxygen-absorbing laminate having at least an oxygen-absorbing resin layer containing an oxygen-absorbing resin and a transition metal catalyst, and an adjacent layer adjacent to the oxygen-absorbing resin layer.
  • the adjacent layer contains a resin composition having an acid value of 3 mgKOH/g or more.
  • the catalytic activity of the transition metal catalyst contained in the oxygen-absorbing resin layer can be suppressed to control the oxygen absorption reaction of the oxygen-absorbing resin.
  • the oxygen-absorbing laminate according to the present embodiment is a laminate having at least an oxygen-absorbing resin layer containing an oxygen-absorbing resin and a transition metal catalyst, and an adjacent layer adjacent to the oxygen-absorbing resin layer.
  • Such an oxygen-absorbing laminate is suitable for use as a packaging film having an oxygen-absorbing function, and arbitrary layers can be appropriately selected and laminated so as to be more suitable for such use.
  • a surface-side base material layer that is located on the front side and forms a surface layer
  • an inside-side base material layer that is located on the inside side and forms an inner layer that is in contact with the contents. Material layers etc. can be laminated.
  • the layer structure is a front-side base material layer/adjacent layer/oxygen-absorbing resin layer/inner-side base material layer.
  • the oxygen-absorbing resin layer contains an oxygen-absorbing resin as a main component, and also contains a transition metal catalyst for the main purpose of promoting the oxygen-absorbing reaction of the oxygen-absorbing resin.
  • transition metal catalysts include transition metals such as manganese, iron, cobalt, nickel, copper, silver, tin, titanium, vanadium, chromium, and zirconium, particularly preferably transition metals such as manganese, iron, cobalt, nickel, and copper.
  • transition metals such as manganese, iron, cobalt, nickel, copper, silver, tin, titanium, vanadium, chromium, and zirconium, particularly preferably transition metals such as manganese, iron, cobalt, nickel, and copper.
  • examples include inorganic salts, organic salts, and complex salts. More specifically, the transition metal catalyst includes a transition metal salt consisting of a transition metal selected from manganese, iron, cobalt, nickel, and copper and an organic acid.
  • the transition metal catalyst is preferably an organic acid salt of manganese, iron, or cobalt, and particularly preferably an organic acid salt of cobalt.
  • the content of the transition metal catalyst in the oxygen-absorbing resin layer is preferably 1 ppm to 1000 ppm, more preferably 10 ppm to 500 ppm, still more preferably 20 ppm to 300 ppm, in terms of metal.
  • the oxygen-absorbing resin it is preferable to use an oxygen-absorbing polyester resin whose structure includes a functional group or a bonding group that is reactive with oxygen.
  • the functional group or bonding group having reactivity with oxygen include a carbon-carbon double bond group, an aldehyde group, and a phenolic hydroxyl group.
  • unsaturated polyester resins having a carbon-carbon double bond group are preferred, and polyester resins having an unsaturated alicyclic structure are more preferred.
  • a polyester resin having an unsaturated alicyclic structure is advantageous because the amount of low molecular weight decomposed components that are by-products in the autooxidation reaction of the resin is suppressed.
  • polyester resins having an unsaturated alicyclic structure include polyesters obtained by using tetrahydrophthalic acid or its derivatives or tetrahydrophthalic anhydride or its derivatives as an acid component and polymerizing them with a diol component.
  • tetrahydrophthalic acid or its derivatives or tetrahydrophthalic anhydride or its derivatives may be esterified to methyl ester or the like.
  • Tetrahydrophthalic acid or its derivatives or tetrahydrophthalic anhydride or its derivatives include 4-methyl- ⁇ 3 -tetrahydrophthalic acid or 4-methyl- ⁇ 3 -tetrahydrophthalic anhydride, cis-3-methyl- ⁇ 4 -tetrahydro Particularly preferred is phthalic acid or cis-3-methyl- ⁇ 4 -tetrahydrophthalic anhydride.
  • These tetrahydrophthalic acid or its derivatives or tetrahydrophthalic anhydride or its derivatives have very high reactivity with oxygen and can therefore be suitably used as the acid component.
  • these tetrahydrophthalic acid or its derivatives or tetrahydrophthalic anhydride or its derivatives are 4-methyl- ⁇ 4 - which is obtained by reacting a C5 fraction of naphtha containing isoprene and trans-piperylene as main components with maleic anhydride. It can be obtained by structural isomerizing an isomer mixture containing tetrahydrophthalic anhydride, and is produced industrially.
  • diol components include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, trimethylene glycol, 1,3-butanediol, 1,4-butanediol, and 3-methyl.
  • aliphatic diols such as diethylene glycol, triethylene glycol, 1,4-butanediol, and more preferred is 1,4-butanediol.
  • 1,4-butanediol an oxygen-absorbing polyester resin with high oxygen-absorbing performance and a small amount of decomposed products produced during the oxidation process can be obtained.
  • These diol components can be used alone or in combination of two or more.
  • the oxygen-absorbing polyester resin may contain other acid components such as aromatic dicarboxylic acids, aliphatic dicarboxylic acids, aliphatic hydroxycarboxylic acids, or derivatives thereof. It may be copolymerized by including it in the raw material monomer.
  • Aromatic dicarboxylic acids and their derivatives include phthalic acid, phthalic anhydride, isophthalic acid, benzene dicarboxylic acids such as terephthalic acid, naphthalene dicarboxylic acids such as 2,6-naphthalene dicarboxylic acid, anthracene dicarboxylic acid, sulfoisophthalic acid, and sulfonate dicarboxylic acids. Examples include sodium isophthalate and derivatives thereof. Among these, phthalic acid, phthalic anhydride, isophthalic acid, and terephthalic acid are preferred.
  • Aliphatic dicarboxylic acids and their derivatives include oxalic acid, malonic acid, succinic acid, succinic anhydride, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, 3 , 3-dimethylpentanedioic acid, or derivatives thereof.
  • succinic acid, succinic anhydride, adipic acid, and sebacic acid are preferred, and succinic acid is particularly preferred.
  • Examples include hexahydrophthalic acid having an alicyclic structure, dimer acid, and derivatives thereof.
  • aliphatic hydroxycarboxylic acids and derivatives thereof include glycolic acid, lactic acid, hydroxypivalic acid, hydroxycaproic acid, hydroxyhexanoic acid, and derivatives thereof.
  • These other acid components may be esterified, such as dimethyl terephthalate and bis-2-hydroxydiethyl terephthalate, or may be acid anhydrides, such as phthalic anhydride and succinic anhydride. . These other acid components can be used alone or in combination of two or more.
  • the glass transition temperature of the resulting oxygen-absorbing polyester resin can be easily controlled, and the oxygen-absorbing performance can be improved. Furthermore, the solubility in organic solvents can be improved by controlling the crystallinity of the oxygen-absorbing polyester resin.
  • tetrahydrophthalic acid or its derivatives or tetrahydrophthalic anhydride or its derivatives are susceptible to radical crosslinking reactions due to heat during polymerization
  • other acid components may be blended to remove tetrahydrophthalic acid or its derivatives contained in the raw material monomers.
  • gelation during polymerization can be suppressed and a high molecular weight oxygen-absorbing polyester resin can be stably obtained.
  • the oxygen-absorbing polyester resin may further contain a structural unit derived from a polyhydric alcohol, a polycarboxylic acid, a derivative thereof, or the like.
  • a structural unit derived from a polyhydric alcohol, a polycarboxylic acid, a derivative thereof, or the like By controlling the branched structure by introducing a polyhydric alcohol and a polyhydric carboxylic acid, the melt viscosity characteristics and the solution viscosity characteristics of the polyester dissolved in the solvent can be adjusted.
  • Polyhydric alcohols and their derivatives include 1,2,3-propanetriol, sorbitol, 1,3,5-pentanetriol, 1,5,8-heptanetriol, trimethylolpropane, pentaerythritol, 3,5-dihydroxy
  • Examples include benzyl alcohol, glycerin, and derivatives thereof.
  • Examples of polycarboxylic acids and derivatives thereof include 1,2,3-propanetricarboxylic acid, meso-butane-1,2,3,4-tetracarboxylic acid, citric acid, trimellitic acid, pyromellitic acid, or these. Examples include derivatives.
  • the amount is preferably within 5 mol % based on the total acid component.
  • the oxygen-absorbing resin includes tetrahydrophthalic acid or its derivatives or tetrahydrophthalic anhydride or its derivatives as an acid component, 1,4-butanediol as a diol component, and succinic acid or succinic anhydride as an acid component. It is preferable to use an oxygen-absorbing polyester resin obtained by copolymerizing these as the acid component.
  • the structural unit derived from tetrahydrophthalic acid or its derivative or tetrahydrophthalic anhydride or its derivative contained in the oxygen-absorbing polyester resin preferably accounts for 70 to 95 mol% of the total acid component. , more preferably 75 to 95 mol%, still more preferably 80 to 95 mol%.
  • the structural unit derived from succinic acid or succinic anhydride preferably accounts for 0 to 15 mol%, more preferably 0 to 12.5 mol%, and even more preferably 0 to 12.5 mol% of the total acid components. It is 10 mol%.
  • the oxygen-absorbing polyester resin can be synthesized, for example, by interfacial polycondensation, solution polycondensation, melt polycondensation, or solid phase polycondensation.
  • a polymerization catalyst is not necessarily required, but a typical polyester polymerization catalyst such as titanium-based, germanium-based, antimony-based, tin-based, or aluminum-based catalyst can be used.
  • Known polymerization catalysts such as nitrogen-containing basic compounds, boric acid and boric acid esters, and organic sulfonic acid compounds can also be used.
  • various additives such as coloring inhibitors such as phosphorus compounds and antioxidants may be added. By adding an antioxidant, it is possible to suppress oxygen absorption during polymerization and subsequent processing, thereby suppressing performance deterioration and gelation of the oxygen-absorbing resin.
  • the raw material monomers are adjusted so that the melt viscosity at a shear rate of 100 s -1 at a temperature of 220° C. is less than 90 Pa.s, preferably less than 60 Pa.s, and more preferably less than 30 Pa.s. It is preferable to adjust polymerization conditions such as composition ratio and molecular weight as appropriate. By keeping the melt viscosity low, it is possible to exhibit good coating properties, and by adding a hardening agent, it is possible to achieve desired material strength, making it suitable as a solvent-soluble dry laminating adhesive. It can be suitably used.
  • the number average molecular weight of the oxygen-absorbing polyester resin is preferably 500 to 100,000, more preferably 2,000 to 10,000. Further, the weight average molecular weight is preferably 5,000 to 200,000, more preferably 10,000 to 100,000, and still more preferably 20,000 to 70,000. If the molecular weight is lower than the above range, the cohesive force or creep resistance of the resin will decrease, and if it is higher, the solubility in organic solvents will decrease and the coatability will decrease due to an increase in solution viscosity, which is not preferred.
  • the glass transition temperature of the oxygen-absorbing polyester resin is preferably -20°C to 10°C, more preferably -15°C to 6°C, and even more preferably -12°C to 2°C.
  • the acid value of the oxygen-absorbing polyester resin is preferably less than 3 mgKOH/g, more preferably less than 1 mgKOH/g, in order to obtain sufficient oxygen absorption performance. If the acid value exceeds 3 mgKOH/g, rapid autooxidation reaction may be hindered and stable oxygen absorption performance may not be obtained. Note that the method for measuring the acid value of the oxygen-absorbing polyester resin is based on JIS K 0070.
  • the laminate strength of oxygen-absorbing polyester resins may decrease due to internal stress generated along with oxygen-absorbing reactions (oxidative hardening reactions).
  • oxidative hardening reactions oxygen-absorbing reactions
  • the saturated polyester resin is a polyester resin that does not substantially contain carbon-carbon double bond groups, and can be obtained, for example, by polycondensation of a dicarboxylic acid component, a diol component, or a hydroxycarboxylic acid component.
  • the saturated polyester resin is preferably a polyester having an iodine value of 3 g/100 g or less, particularly a polyester having an iodine value of 1 g/100 g or less.
  • the iodine value of the saturated polyester resin exceeds 3 g/100 g, it is not preferable because low molecular weight decomposed components are likely to be generated due to the oxygen absorption reaction of the oxygen absorbing resin. Note that the method for measuring the iodine value is based on JIS K 0070.
  • dicarboxylic acid component examples include aromatic dicarboxylic acids, aliphatic dicarboxylic acids, hexahydrophthalic acid, dimer acids, and derivatives thereof, which are exemplified as components of the oxygen-absorbing polyester resin described above. These can be used alone or in combination of two or more.
  • diol component examples include the diols exemplified as components of the oxygen-absorbing polyester resin described above. These can be used alone or in combination of two or more.
  • hydroxycarboxylic acid component examples include the aliphatic hydroxycarboxylic acids exemplified as components of the oxygen-absorbing polyester resin described above.
  • the glass transition temperature of the saturated polyester resin is preferably -10°C or lower, more preferably -70°C to -15°C, and even more preferably -60°C to -20°C.
  • the ratio A/B of the oxygen-absorbing polyester resin (A) and the saturated polyester resin (B) is preferably 0.6 to 9, more preferably 1 to 9, and still more preferably 2 to 9. .
  • By setting the ratio A/B within such a range it is possible to exhibit excellent oxygen absorption performance and maintain strong laminate strength before and after oxygen absorption.
  • the oxygen-absorbing resin can be prepared by dissolving it in an organic solvent so that it can be used as an oxygen-absorbing adhesive.
  • organic solvent include ethyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, toluene, xylene, and isopropanol.
  • ethyl acetate is commonly used as a solvent for dry laminating adhesives for flexible packaging because it has relatively few odor problems caused by residual solvents, and when considering industrial applications, ethyl acetate, which does not contain toluene or xylene, is used.
  • one solvent is used.
  • an oxygen-absorbing polyester resin When using an oxygen-absorbing polyester resin, it can be used as a two-component curing adhesive by blending an isocyanate curing agent with it.
  • an isocyanate-based curing agent When an isocyanate-based curing agent is blended, adhesive strength and cohesive force are increased, and curing can be performed at a low temperature around room temperature.
  • the isocyanate curing agent include aliphatic isocyanates such as xylylene diisocyanate (XDI), hexamethylene diisocyanate (HDI), lysine diisocyanate, lysine methyl ester diisocyanate, trimethylhexamethylene diisocyanate, and n-pentane-1,4-diisocyanate.
  • Examples include alicyclic isocyanate-based curing agents such as isophorone diisocyanate (IPDI), cyclohexane-1,4-diisocyanate, methylcyclohexyl diisocyanate, and dicyclohexylmethane-4,4'-diisocyanate.
  • IPDI isophorone diisocyanate
  • XDI and HDI are preferable as the aliphatic isocyanate curing agent
  • IPDI is preferable as the alicyclic isocyanate curing agent.
  • Particularly preferred is XDI. By using XDI, the most excellent oxygen absorption performance is exhibited.
  • aliphatic and/or alicyclic isocyanate curing agents are preferably used as polyisocyanate compounds with increased molecular weight, such as adducts, isocyanurates, and burettes. Further, these aliphatic and/or alicyclic isocyanate curing agents may be used alone or in combination of two or more.
  • the isocyanate curing agent is preferably added in an amount of 3 phr to 30 phr, more preferably 3 phr to 20 phr, still more preferably 3 phr to 15 phr, based on the solid weight part, relative to the oxygen-absorbing polyester resin that is the main ingredient. If the amount added is too small, the adhesion and cohesive force will be insufficient, and if it is too large, the amount of the oxygen absorbing component contained in the unit weight of the resin composition will be small, resulting in insufficient oxygen absorption performance. Furthermore, if the mobility of the resin is significantly reduced due to curing, the oxygen absorption reaction will be difficult to proceed and the oxygen absorption performance will be reduced.
  • the adjacent layer contains a resin composition with an acid value of 3 mgKOH/g or more, preferably an acid value of 4 mgKOH/g or more, more preferably an acid value of 5 mgKOH/g or more, and a transition metal that promotes the oxygen absorption reaction of the oxygen-absorbing resin.
  • the layer is laminated adjacent to the oxygen-absorbing resin layer in order to trap the catalyst through coordination bonds or the like, suppress its catalytic activity, and control the oxygen-absorbing reaction of the oxygen-absorbing resin. Note that the method for measuring the acid value is based on JIS K 0070.
  • any resin composition that has an acidic group such as a carboxyl group in the side chain or at the end and has an acid value equal to or higher than the above-mentioned value can be used.
  • a resin composition preferably contains a polyurethane resin. More specifically, polyurethane resins produced by condensation reaction of polyol and polyisocyanate, or polyurethane polymers having terminal isocyanate groups, which are condensation reaction products of polyol and polyisocyanate, are produced by reaction with polyamines. It is preferable that the polyurethane resin (polyurethane urea resin) is contained.
  • a polyurethane resin in which a carboxyl group is introduced into the side chain or terminal.
  • the compound used to introduce a carboxyl group may be a compound that reacts with an isocyanate group and has a free carboxyl group, such as a hydroxycarboxylic acid or an aminocarboxylic acid, or a compound that reacts with an isocyanate group, or a compound that reacts with an isocyanate group, or a compound that reacts with an isocyanate group and that has a free carboxyl group, or a compound that reacts with an isocyanate group, and a compound that reacts with an isocyanate group, such as a hydroxycarboxylic acid or an aminocarboxylic acid that has a free carboxyl group, or a compound that reacts with an isocyanate group.
  • a cyclic dicarboxylic acid anhydride that forms a carboxyl group can be used.
  • a polyester polyol obtained by esterifying a dibasic acid and a diol can be used.
  • dibasic acids include oxalic acid, malonic acid, succinic acid, succinic anhydride, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, phthalic anhydride, and isophthalic acid.
  • diols examples include ethylene glycol, diethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 1, Linear diols such as 9-nonanediol, 1,4-butynediol, 1,4-butylenediol, diethylene glycol, triethylene glycol, 2-butyl-2-ethyl-1,3-propanediol, 2-methyl- 1,3-propanediol, 3-methyl-1,5-pentanediol, neopentyl glycol, pentylene glycol, 1,2-propylene glycol, 2,4-diethyl-1,5-pentanediol, 1,3- Branched diols such as butanediol and dipropylene glycol are mentioned. These can
  • polyisocyanates examples include 1,5-naphthylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 4,4'-diphenyldimethylmethane diisocyanate, 4,4'-dibenzylisocyanate, dialkyldiphenylmethane diisocyanate, and tetraalkyl diisocyanate.
  • polyamines examples include ethylenediamine, propylenediamine, hexamethylenediamine, isophoronediamine, dicyclohexylmethane-4,4'-diamine, 2-hydroxyethylethylenediamine, 2-hydroxyethylpropyldiamine, 2-hydroxyethylpropylenediamine, Di-2-hydroxyethylethylenediamine, di-2-hydroxyethylenediamine, di-2-hydroxyethylpropylenediamine, 2-hydroxypropylethylenediamine, di-2-hydroxypropylethylenediamine, diethylenetriamine, iminobispropylamine: (IBPA, 3,3'-diaminodipropylamine), N-(3-aminopropyl)butane-1,4-diamine: (spermidine), 6,6-iminodihexylamine, 3,7-diazanonane-1,9-diamine , N,N'-bis(3-
  • dibasic acids such as sebacic acid, succinic acid, dimer acid, ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 1,4-butanediol, neopentyl glycol, pentyl glycol, etc.
  • Diols such as lene glycol, diisocyanates such as 1,5-pentamethylene diisocyanate, and dimer diisocyanate are available as biomass-derived raw materials, and by copolymerizing polyurethane resin using these biomass-derived raw material components, Its biomass degree can be increased.
  • the adjacent layer can be formed, for example, by a printing ink prepared using the above resin composition as a binder resin.
  • resins other than polyurethane resins such as vinyl chloride-vinyl acetate copolymer resin, vinyl chloride-acrylic copolymer resin, cellulose resin, rosin resin, etc. It is preferable to prepare a binder resin by appropriately combining one or more types of components, and among these, it is particularly preferable to use a vinyl chloride-vinyl acetate copolymer resin.
  • the acid value of the resin composition used for the binder resin should be adjusted to be equal to or higher than the above-mentioned value.
  • the thickness of the adjacent layer is preferably 0.1 to 10 ⁇ m, more preferably 0.2 to 5 ⁇ m, and even more preferably 0.3 to 3 ⁇ m. It is.
  • the printing ink forming the adjacent layer may be prepared as a medium containing no pigment, or may be prepared as a colored ink containing an inorganic pigment or an organic pigment.
  • some inorganic pigments such as titanium oxide, which is generally known as a white pigment, function as catalysts that promote the oxygen absorption reaction of oxygen-absorbing resins, and such pigments may If it is contained in the above, it is not preferable because it impairs the effect of the present invention.
  • organic solvents for preparing printing inks include ethyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, toluene, xylene, isopropanol, and the like.
  • a biaxially stretched film made of polyester resin such as polyethylene terephthalate, polyamide resin such as nylon, etc. is used as the base film, and polyvinyl Coating layers based on oxygen barrier resins such as alcohol-based resins, ethylene-vinyl alcohol copolymers, polyacrylic acid-based resins, and vinylidene chloride-based resins, metal oxides such as silica and alumina, or vapor-deposited thin films of metals, etc.
  • a laminated film including a laminated film a laminated film formed by dry laminating a metal foil such as an aluminum foil on the base film with a urethane adhesive or the like interposed therebetween
  • the present invention is not limited thereto.
  • the inner side base material layer may be a single layer or a laminate.
  • the base resin include polyolefin resins and polyester resins.
  • polyolefin resins include low density polyethylene (LDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), linear low density polyethylene (LLDPE), linear very low density polyethylene (LVLDPE), and polypropylene.
  • PP ethylene-propylene copolymer
  • polybutene-1 polybutene-1
  • ethylene-butene-1 copolymer propylene-butene-1 copolymer
  • ethylene-propylene-butene-1 copolymer ethylene-vinyl acetate copolymer
  • ionomer ionically crosslinked olefin copolymer
  • LDPE and LLDPE which have excellent heat-sealability, are particularly preferred.
  • polyester resin polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), copolyesters thereof, or blends thereof are preferable.
  • polyester resin modified with isophthalic acid is preferable because it has low crystallinity and can be heat-sealed.
  • the oxygen-absorbing resin layer containing an oxygen-absorbing resin and a transition metal catalyst that promotes the oxygen-absorbing reaction has an acid value of 3 mgKOH/g or more (preferably the above-mentioned value).
  • the transition metal catalyst can be captured by coordination bonds or the like, and the catalytic activity can be suppressed. This reduces the amount of oxygen absorbed by the oxygen-absorbing resin at the initial stage of exposure to air and the start of the oxygen absorption reaction, thereby reducing the influence of air exposure and improving handling properties. It is possible to control the oxygen absorption reaction of the oxygen-absorbing resin so that the rate at which the oxygen absorption amount of the oxygen-absorbing resin decreases decreases over time. It becomes possible to exhibit absorption performance more effectively.
  • Example 1 As the acid component, a methyltetrahydrophthalic anhydride isomer mixture (manufactured by Hitachi Chemical Co., Ltd.; HN-2200) was used at a molar ratio of 0.9, as the other acid component was succinic anhydride at a molar ratio of 0.1, and as the diol component was a 1,4- A reaction vessel was charged with butanediol at a molar ratio of 1.3 and isopropyl titanate as a polymerization catalyst at a composition ratio of 300 ppm, and the mixture was reacted for about 6 hours in a nitrogen atmosphere while removing generated water at 150° C. to 200° C.
  • a methyltetrahydrophthalic anhydride isomer mixture manufactured by Hitachi Chemical Co., Ltd.; HN-2200
  • the oxygen-absorbing polyester resin (A) had a number average molecular weight (Mn) of 4,800, a weight average molecular weight (Mw) of 57,200, and a glass transition point (Tg) of -5.0°C.
  • a saturated polyester resin (B) manufactured by DIC Corporation; Polysizer W4010/Mn: 3600, Mw: 9500
  • Tg Tg
  • -26°C Tg
  • HDI/IPDI curing agent DI Graphics Co., Ltd. KL-75
  • cobalt neodecanoate was added in an amount of 80 ppm in terms of metal based on the total solid content, and dissolved in ethyl acetate to prepare an oxygen-absorbing adhesive solution with a solid content concentration of 20 wt%.
  • a resin composition containing a polyurethane resin prepared by copolymerizing raw materials containing neopentyl glycol, adipic acid, and isophorone diisocyanate and having an acid value of 7.5 mgKOH/g was diluted with ethyl acetate and transparently vapor-deposited using a bar coater. It was applied to the barrier coating surface of a nylon film (manufactured by Toppan Printing Co., Ltd.; GL-EY/film thickness 15 ⁇ m), and the solvent was evaporated with hot air from a hair dryer to form a 1 ⁇ m thick resin layer as an adjacent layer.
  • an oxygen-absorbing adhesive solution is applied to the adjacent layer using a #15 bar coater, and the solvent is evaporated with hot air from a hair dryer.
  • the resulting laminate was passed through a hot roll at 50°C with the corona-treated surfaces facing each other (40 ⁇ m) and cured for 5 days at 35°C under a nitrogen atmosphere to form a surface-side base material layer (transparent vapor-deposited nylon film: film).
  • An oxygen-absorbing laminate consisting of an adjacent layer (thickness: 15 ⁇ m)/an oxygen-absorbing resin layer (thickness: 4 ⁇ m)/inner side base material layer (LDPE film: thickness: 40 ⁇ m) was obtained.
  • the oxygen absorbing performance of the oxygen absorbing laminate thus obtained was evaluated.
  • the results are shown in Table 1. Note that the oxygen absorption performance was evaluated as follows. ⁇ Oxygen absorption performance> A test piece of the oxygen-absorbing laminate cut out to 2 cm x 15 cm was placed in an oxygen-impermeable steel foil laminated cup with an internal volume of 85 cm 3 , heat-sealed and sealed with an aluminum foil laminated film lid, and heated at 22°C - 90%. It was stored under RH atmosphere. Thereafter, the oxygen concentration in the cup was measured using a micro gas chromatograph (Shimadzu Corporation: GC-2014AT) after 6 hours (6 hours) and 24 hours (24 hours). The amount of oxygen absorbed per 1 cm 2 of the laminate was calculated.
  • GC-2014AT micro gas chromatograph
  • Example 2 A resin composition containing a polyurethane resin formed by copolymerizing raw materials containing 3-methyl-1,5-pentanediol, adipic acid, and isophorone diisocyanate and having an acid value of 5.3 mgKOH/g is used to An oxygen-absorbing laminate was obtained in the same manner as in Example 1 except that the layers were formed. The oxygen absorbing performance of the obtained oxygen absorbing laminate was evaluated in the same manner as in Example 1. The results are also shown in Table 1.
  • Example 3 A resin composition containing a polyurethane resin formed by copolymerizing raw materials containing 3-methyl-1,5-pentanediol, adipic acid, sebacic acid, and isophorone diisocyanate and adjusted to an acid value of 5.4 mgKOH/g is used.
  • An oxygen-absorbing laminate was obtained in the same manner as in Example 1, except that the adjacent layer was formed.
  • the oxygen absorbing performance of the obtained oxygen absorbing laminate was evaluated in the same manner as in Example 1. The results are also shown in Table 1.
  • Example 4 Except that the adjacent layer was formed using a resin composition containing a polyurethane resin formed by copolymerizing raw material components containing ethylene glycol, adipic acid, and isophorone diisocyanate and having an acid value of 4.2 mgKOH/g.
  • An oxygen-absorbing laminate was obtained in the same manner as in Example 1.
  • the oxygen absorbing performance of the obtained oxygen absorbing laminate was evaluated in the same manner as in Example 1. The results are also shown in Table 1.
  • Example 5 An oxygen-absorbing laminate was obtained in the same manner as in Example 1, except that 40% by weight of carbon black was added when preparing the resin composition. The oxygen absorbing performance of the obtained oxygen absorbing laminate was evaluated in the same manner as in Example 1. The results are also shown in Table 1.
  • Example 1 A resin composition containing a polyurethane resin formed by copolymerizing raw materials containing 3-methyl-1,5-pentanediol, adipic acid, and isophorone diisocyanate and having an acid value of 0.6 mgKOH/g is used to An oxygen-absorbing laminate was obtained in the same manner as in Example 1 except that the layers were formed. The oxygen absorbing performance of the obtained oxygen absorbing laminate was evaluated in the same manner as in Example 1. The results are also shown in Table 1.
  • Example 2 An oxygen-absorbing laminate was obtained in the same manner as in Example 1, except that cobalt neodecanoate as a catalyst was not added when preparing the oxygen-absorbing adhesive solution. The oxygen absorbing performance of the obtained oxygen absorbing laminate was evaluated in the same manner as in Example 1. The results are also shown in Table 1.

Abstract

The present invention controls oxygen absorbing reaction of an oxygen absorbing resin by providing a layer containing a resin composition with an acid value of 3 mgKOH/g or more such that the layer is adjacent to an oxygen absorbing resin layer that contains an oxygen absorbing resin and a transition metal catalyst. The present invention thus enables the finite oxygen absorbing performance of the oxygen absorbing resin to be demonstrated more effectively.

Description

酸素吸収性積層体Oxygen absorbing laminate
 本発明は、酸素吸収性積層体に関する。 The present invention relates to an oxygen-absorbing laminate.
 従来、内容物の変質などを防止するために、包装体内の空気を窒素などの不活性ガスに置き換えながら内容物を充填密封する、いわゆる、ガス置換包装が知られている。ガス置換に際しては、内容物の充填時に包装体内から空気を吸引排気したり、不活性ガスで強制的に包装体内の空気を置換したりしているが、ガス置換包装によっても包装体内の酸素を完全に除去するのは困難である。このため、本出願人は、例えば、特許文献1において、酸素吸収機能を有する包装用フィルムを提案している。 Conventionally, in order to prevent deterioration of the contents, so-called gas exchange packaging is known, in which the air inside the package is replaced with an inert gas such as nitrogen while the contents are filled and sealed. Gas replacement involves sucking and exhausting air from the package when filling the contents, or forcibly replacing the air inside the package with inert gas, but gas replacement packaging also removes oxygen from the package. It is difficult to completely remove it. For this reason, the present applicant has proposed a packaging film having an oxygen absorption function, for example in Patent Document 1.
特開2001-039475号公報Japanese Patent Application Publication No. 2001-039475
 このような酸素吸収機能を有する包装用フィルムを用いて、充填後の包装体内に残存する酸素を除去できるようにすることで、包装対象の酸化による変質などを防止して、長期保存を可能にすることができる。 By using a packaging film with such an oxygen-absorbing function to remove oxygen remaining inside the package after filling, it is possible to prevent deterioration of the packaged object due to oxidation and enable long-term storage. can do.
 しかしながら、上記背景技術において酸素吸収性能を担う酸素吸収性樹脂は、空気に暴露された時点で酸素との反応を開始してしまうため、フィルムの製造工程や製袋工程、包装対象の包装工程で酸素吸収反応が進んでしまうと、包装が完了した時点での酸素吸収性能を減じてしまう虞がある。 However, the oxygen-absorbing resin responsible for the oxygen-absorbing performance in the above-mentioned background art starts reacting with oxygen when exposed to air, so it cannot be used in the film manufacturing process, bag-making process, or packaging process for packaging objects. If the oxygen absorption reaction progresses, there is a risk that the oxygen absorption performance will be reduced upon completion of packaging.
 そこで、本発明者らは、包装が完了するまでの間の酸素吸収反応を制御して、限りある酸素吸収性樹脂の酸素吸収性能をより効果的に発揮させるべく鋭意検討を重ねた結果、本発明を完成するに至った。 Therefore, the inventors of the present invention have conducted intensive studies to control the oxygen absorption reaction until the packaging is completed to more effectively utilize the limited oxygen absorption performance of the oxygen-absorbing resin. The invention was completed.
 本発明に係る酸素吸収性積層体は、酸素吸収性樹脂及び遷移金属触媒を含む酸素吸収性樹脂層と、前記酸素吸収性樹脂層に隣接する隣接層とを少なくとも有する酸素吸収性積層体であって、前記隣接層に、酸価3mgKOH/g以上の樹脂組成物を含有する構成としてある。 The oxygen-absorbing laminate according to the present invention is an oxygen-absorbing laminate having at least an oxygen-absorbing resin layer containing an oxygen-absorbing resin and a transition metal catalyst, and an adjacent layer adjacent to the oxygen-absorbing resin layer. The adjacent layer contains a resin composition having an acid value of 3 mgKOH/g or more.
 本発明によれば、酸素吸収性樹脂層に含まれる遷移金属触媒の触媒活性を抑制して、酸素吸収性樹脂の酸素吸収反応を制御することができる。 According to the present invention, the catalytic activity of the transition metal catalyst contained in the oxygen-absorbing resin layer can be suppressed to control the oxygen absorption reaction of the oxygen-absorbing resin.
 以下、本発明に係る酸素吸収性積層体について、その実施形態を示しつつ説明する。 Hereinafter, the oxygen-absorbing laminate according to the present invention will be described while showing embodiments thereof.
 本実施形態に係る酸素吸収性積層体は、酸素吸収性樹脂及び遷移金属触媒を含む酸素吸収性樹脂層と、酸素吸収性樹脂層に隣接する隣接層とを少なくとも有する積層体である。かかる酸素吸収性積層体は、酸素吸収機能を有する包装用フィルムとしての用途に好適に適用され、そのような用途により好適となるように、任意の層を適宜選択して積層することができる。例えば、包装用フィルムとしての用途に適用した際に、表面側に位置して表面層を形成する表面側基材層や、内面側に位置して内容物と接する内面層を形成する内面側基材層等を積層することができる。酸素吸収性積層体の一例として、その層構成が、表面側基材層/隣接層/酸素吸収性樹脂層/内面側基材層とされたものを、好ましい実施形態として以下に説明する。 The oxygen-absorbing laminate according to the present embodiment is a laminate having at least an oxygen-absorbing resin layer containing an oxygen-absorbing resin and a transition metal catalyst, and an adjacent layer adjacent to the oxygen-absorbing resin layer. Such an oxygen-absorbing laminate is suitable for use as a packaging film having an oxygen-absorbing function, and arbitrary layers can be appropriately selected and laminated so as to be more suitable for such use. For example, when applied to a packaging film, there is a surface-side base material layer that is located on the front side and forms a surface layer, and an inside-side base material layer that is located on the inside side and forms an inner layer that is in contact with the contents. Material layers etc. can be laminated. As an example of an oxygen-absorbing laminate, a preferred embodiment will be described below in which the layer structure is a front-side base material layer/adjacent layer/oxygen-absorbing resin layer/inner-side base material layer.
[酸素吸収性樹脂層]
 酸素吸収性樹脂層には、主成分としての酸素吸収性樹脂が含まれるとともに、酸素吸収性樹脂の酸素吸収反応を促進させることを主目的として遷移金属触媒が含まれる。
[Oxygen-absorbing resin layer]
The oxygen-absorbing resin layer contains an oxygen-absorbing resin as a main component, and also contains a transition metal catalyst for the main purpose of promoting the oxygen-absorbing reaction of the oxygen-absorbing resin.
 遷移金属触媒としては、マンガン、鉄、コバルト、ニッケル、銅、銀、錫、チタン、バナジウム、クロム、ジルコニウム等の遷移金属、特に好ましくは、マンガン、鉄、コバルト、ニッケル、銅等の遷移金属の無機塩、有機塩、又は錯塩が挙げられる。より具体的には、遷移金属触媒としては、マンガン、鉄、コバルト、ニッケル及び銅から選択される遷移金属と有機酸とからなる遷移金属塩が挙げられる。特に、酸素吸収性樹脂の酸素吸収反応を促進させ、酸素吸収性を高めるという観点から、遷移金属触媒は、マンガン、鉄、コバルトの有機酸塩が好ましく、特に、コバルトの有機酸塩が好ましい。酸素吸収性樹脂層中における遷移金属触媒の含有量は、金属換算量で、好ましくは1ppm~1000ppmであり、より好ましくは10ppm~500ppmであり、さらに好ましくは20ppm~300ppmである。 Examples of transition metal catalysts include transition metals such as manganese, iron, cobalt, nickel, copper, silver, tin, titanium, vanadium, chromium, and zirconium, particularly preferably transition metals such as manganese, iron, cobalt, nickel, and copper. Examples include inorganic salts, organic salts, and complex salts. More specifically, the transition metal catalyst includes a transition metal salt consisting of a transition metal selected from manganese, iron, cobalt, nickel, and copper and an organic acid. In particular, from the viewpoint of accelerating the oxygen absorption reaction of the oxygen-absorbing resin and increasing the oxygen absorption property, the transition metal catalyst is preferably an organic acid salt of manganese, iron, or cobalt, and particularly preferably an organic acid salt of cobalt. The content of the transition metal catalyst in the oxygen-absorbing resin layer is preferably 1 ppm to 1000 ppm, more preferably 10 ppm to 500 ppm, still more preferably 20 ppm to 300 ppm, in terms of metal.
 酸素吸収性樹脂としては、酸素との反応性を有する官能基又は結合基を構造中に含む酸素吸収性ポリエステル系樹脂を用いるのが好ましい。酸素との反応性を有する官能基又は結合基として、例えば、炭素-炭素二重結合基、アルデヒド基、フェノール性水酸基等が挙げられる。特に、炭素-炭素二重結合基を有する不飽和のポリエステル系樹脂が好ましく、不飽和脂環構造を有するポリエステル系樹脂がより好ましい。不飽和脂環構造を有するポリエステル系樹脂は、当該樹脂の自動酸化反応における副生成物である低分子量の分解成分の発生量が抑制されるため有利である。 As the oxygen-absorbing resin, it is preferable to use an oxygen-absorbing polyester resin whose structure includes a functional group or a bonding group that is reactive with oxygen. Examples of the functional group or bonding group having reactivity with oxygen include a carbon-carbon double bond group, an aldehyde group, and a phenolic hydroxyl group. In particular, unsaturated polyester resins having a carbon-carbon double bond group are preferred, and polyester resins having an unsaturated alicyclic structure are more preferred. A polyester resin having an unsaturated alicyclic structure is advantageous because the amount of low molecular weight decomposed components that are by-products in the autooxidation reaction of the resin is suppressed.
 不飽和脂環構造を有するポリエステル系樹脂としては、例えば、テトラヒドロフタル酸若しくはその誘導体又はテトラヒドロ無水フタル酸若しくはその誘導体を酸成分に用いて、ジオール成分と重合させたポリエステルが挙げられる。テトラヒドロフタル酸若しくはその誘導体又はテトラヒドロ無水フタル酸若しくはその誘導体を酸成分とするにあたり、これらはメチルエステル等にエステル化されていてもよい。 Examples of polyester resins having an unsaturated alicyclic structure include polyesters obtained by using tetrahydrophthalic acid or its derivatives or tetrahydrophthalic anhydride or its derivatives as an acid component and polymerizing them with a diol component. When using tetrahydrophthalic acid or its derivatives or tetrahydrophthalic anhydride or its derivatives as the acid component, these may be esterified to methyl ester or the like.
 テトラヒドロフタル酸若しくはその誘導体又はテトラヒドロ無水フタル酸若しくはその誘導体としては、4-メチル-Δ-テトラヒドロフタル酸若しくは4-メチル-Δ-テトラヒドロ無水フタル酸、cis-3-メチル-Δ-テトラヒドロフタル酸若しくはcis-3-メチル-Δ-テトラヒドロ無水フタル酸が特に好ましい。これらのテトラヒドロフタル酸若しくはその誘導体又はテトラヒドロ無水フタル酸若しくはその誘導体は、酸素との反応性が非常に高いため、酸成分として好適に使用できる。 Tetrahydrophthalic acid or its derivatives or tetrahydrophthalic anhydride or its derivatives include 4-methyl-Δ 3 -tetrahydrophthalic acid or 4-methyl- Δ 3 -tetrahydrophthalic anhydride, cis-3-methyl-Δ 4 -tetrahydro Particularly preferred is phthalic acid or cis-3-methyl-Δ 4 -tetrahydrophthalic anhydride. These tetrahydrophthalic acid or its derivatives or tetrahydrophthalic anhydride or its derivatives have very high reactivity with oxygen and can therefore be suitably used as the acid component.
 なお、これらのテトラヒドロフタル酸若しくはその誘導体又はテトラヒドロ無水フタル酸若しくはその誘導体は、イソプレンおよびトランス-ピペリレンを主成分とするナフサのC5留分を無水マレイン酸と反応させた4-メチル-Δ-テトラヒドロ無水フタル酸を含む異性体混合物を、構造異性化することにより得ることができ、工業的に製造されている。 Note that these tetrahydrophthalic acid or its derivatives or tetrahydrophthalic anhydride or its derivatives are 4-methyl-Δ 4 - which is obtained by reacting a C5 fraction of naphtha containing isoprene and trans-piperylene as main components with maleic anhydride. It can be obtained by structural isomerizing an isomer mixture containing tetrahydrophthalic anhydride, and is produced industrially.
 ジオール成分としては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、トリメチレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、2-フェニルプロパンジオール、2-(4―ヒドロキシフェニル)エチルアルコール、α,α―ジヒドロキシ-1,3-ジイソプロピルベンゼン、o-キシレングリコール、m-キシレングリコール、p-キシレングリコール、α,α―ジヒドロキシ-1,4-ジイソプロピルベンゼン、ヒドロキノン、4,4-ジヒドロキシジフェニル、ナフタレンジオール、又はこれらの誘導体等が挙げられる。好ましくは、脂肪族ジオール、例えば、ジエチレングリコール、トリエチレングリコール、1,4-ブタンジオールであり、さらに好ましくは、1,4-ブタンジオールである。1,4-ブタンジオールを用いた場合は、酸素吸収性能が高く、酸化の過程で生じる分解物の量も少ない酸素吸収性ポリエステル系樹脂が得られる。これらのジオール成分は、単独、又は、2種類以上を組み合わせて使用できる。 Examples of diol components include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, trimethylene glycol, 1,3-butanediol, 1,4-butanediol, and 3-methyl. -1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, neopentyl glycol, 1,4-cyclohexanedimethanol, 2- Phenylpropanediol, 2-(4-hydroxyphenyl)ethyl alcohol, α,α-dihydroxy-1,3-diisopropylbenzene, o-xylene glycol, m-xylene glycol, p-xylene glycol, α,α-dihydroxy-1 , 4-diisopropylbenzene, hydroquinone, 4,4-dihydroxydiphenyl, naphthalene diol, or derivatives thereof. Preferred are aliphatic diols, such as diethylene glycol, triethylene glycol, 1,4-butanediol, and more preferred is 1,4-butanediol. When 1,4-butanediol is used, an oxygen-absorbing polyester resin with high oxygen-absorbing performance and a small amount of decomposed products produced during the oxidation process can be obtained. These diol components can be used alone or in combination of two or more.
 酸素吸収性ポリエステル系樹脂は、テトラヒドロフタル酸若しくはその誘導体又はテトラヒドロ無水フタル酸若しくはその誘導体の他に、芳香族ジカルボン酸、脂肪族ジカルボン酸、脂肪族ヒドロキシカルボン酸など、他の酸成分又はその誘導体を原料モノマー中に含んで共重合させたものであってもよい。 In addition to tetrahydrophthalic acid or its derivatives or tetrahydrophthalic anhydride or its derivatives, the oxygen-absorbing polyester resin may contain other acid components such as aromatic dicarboxylic acids, aliphatic dicarboxylic acids, aliphatic hydroxycarboxylic acids, or derivatives thereof. It may be copolymerized by including it in the raw material monomer.
 芳香族ジカルボン酸及びその誘導体としては、フタル酸、無水フタル酸、イソフタル酸、テレフタル酸等のベンゼンジカルボン酸、2,6-ナフタレンジカルボン酸等のナフタレンジカルボン酸、アントラセンジカルボン酸、スルホイソフタル酸、スルホイソフタル酸ナトリウム、又はこれらの誘導体等が挙げられる。これらの中でもフタル酸、無水フタル酸、イソフタル酸、テレフタル酸が好ましい。 Aromatic dicarboxylic acids and their derivatives include phthalic acid, phthalic anhydride, isophthalic acid, benzene dicarboxylic acids such as terephthalic acid, naphthalene dicarboxylic acids such as 2,6-naphthalene dicarboxylic acid, anthracene dicarboxylic acid, sulfoisophthalic acid, and sulfonate dicarboxylic acids. Examples include sodium isophthalate and derivatives thereof. Among these, phthalic acid, phthalic anhydride, isophthalic acid, and terephthalic acid are preferred.
 脂肪族ジカルボン酸及びその誘導体としては、シュウ酸、マロン酸、コハク酸、無水コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、3,3-ジメチルペンタン二酸、又はこれらの誘導体等が挙げられる。これらの中でもコハク酸、無水コハク酸、アジピン酸、セバシン酸が好ましく、特に、コハク酸が好ましい。脂環構造を有するヘキサヒドロフタル酸や、ダイマー酸及びその誘導体も挙げられる。 Aliphatic dicarboxylic acids and their derivatives include oxalic acid, malonic acid, succinic acid, succinic anhydride, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, 3 , 3-dimethylpentanedioic acid, or derivatives thereof. Among these, succinic acid, succinic anhydride, adipic acid, and sebacic acid are preferred, and succinic acid is particularly preferred. Examples include hexahydrophthalic acid having an alicyclic structure, dimer acid, and derivatives thereof.
 脂肪族ヒドロキシカルボン酸及びその誘導体としては、グリコール酸、乳酸、ヒドロキシピバリン酸、ヒドロキシカプロン酸、ヒドロキシヘキサン酸、又はこれらの誘導体が挙げられる。 Examples of aliphatic hydroxycarboxylic acids and derivatives thereof include glycolic acid, lactic acid, hydroxypivalic acid, hydroxycaproic acid, hydroxyhexanoic acid, and derivatives thereof.
 これらの他の酸成分は、例えば、テレフタル酸ジメチルやビス-2-ヒドロキシジエチルテレフタレートのようにエステル化されていてもよく、無水フタル酸や無水コハク酸のように酸無水物であってもよい。これらの他の酸成分は、単独、又は、2種類以上を組み合わせて使用できる。 These other acid components may be esterified, such as dimethyl terephthalate and bis-2-hydroxydiethyl terephthalate, or may be acid anhydrides, such as phthalic anhydride and succinic anhydride. . These other acid components can be used alone or in combination of two or more.
 他の酸成分を共重合させることによって、得られる酸素吸収性ポリエステル系樹脂のガラス転移温度を容易に制御することができ、酸素吸収性能を向上させることがきる。さらに、酸素吸収性ポリエステル系樹脂の結晶性を制御することにより有機溶剤への溶解性を向上させることもできる。 By copolymerizing other acid components, the glass transition temperature of the resulting oxygen-absorbing polyester resin can be easily controlled, and the oxygen-absorbing performance can be improved. Furthermore, the solubility in organic solvents can be improved by controlling the crystallinity of the oxygen-absorbing polyester resin.
 また、テトラヒドロフタル酸若しくはその誘導体又はテトラヒドロ無水フタル酸若しくはその誘導体は、重合中の熱によりラジカル架橋反応を起こしやすいため、他の酸成分を配合して、原料モノマー中に含まれるテトラヒドロフタル酸若しくはその誘導体又はテトラヒドロ無水フタル酸若しくはその誘導体の組成比を減少させることにより、重合中のゲル化が抑制され、高分子量の酸素吸収性ポリエステル系樹脂を安定的に得ることができる。 In addition, since tetrahydrophthalic acid or its derivatives or tetrahydrophthalic anhydride or its derivatives are susceptible to radical crosslinking reactions due to heat during polymerization, other acid components may be blended to remove tetrahydrophthalic acid or its derivatives contained in the raw material monomers. By reducing the composition ratio of its derivative or tetrahydrophthalic anhydride or its derivative, gelation during polymerization can be suppressed and a high molecular weight oxygen-absorbing polyester resin can be stably obtained.
 酸素吸収性ポリエステル系樹脂は、さらに多価アルコール、多価カルボン酸、又はそれらの誘導体等に由来する構造単位を含んでもよい。多価アルコール及び多価カルボン酸を導入し分岐構造を制御することにより、溶融粘度特性や溶媒に溶解したポリエステルの溶液粘度特性を調整できる。 The oxygen-absorbing polyester resin may further contain a structural unit derived from a polyhydric alcohol, a polycarboxylic acid, a derivative thereof, or the like. By controlling the branched structure by introducing a polyhydric alcohol and a polyhydric carboxylic acid, the melt viscosity characteristics and the solution viscosity characteristics of the polyester dissolved in the solvent can be adjusted.
 多価アルコール及びその誘導体としては、1,2,3-プロパントリオール、ソルビトール、1,3,5-ペンタントリオール、1,5,8-ヘプタントリオール、トリメチロールプロパン、ペンタエリスリトール、3,5-ジヒドロキシベンジルアルコール、グリセリン又はこれらの誘導体が挙げられる。
 多価カルボン酸及びその誘導体としては、1,2,3-プロパントリカルボン酸、メソ-ブタン-1,2,3,4-テトラカルボン酸、クエン酸、トリメリット酸、ピロメリット酸、又はこれらの誘導体が挙げられる。
 また、多価アルコールや多価カルボン酸等の3官能以上の官能基を有する成分を共重合させる場合は、全酸成分に対し5モル%以内にすることが好ましい。
Polyhydric alcohols and their derivatives include 1,2,3-propanetriol, sorbitol, 1,3,5-pentanetriol, 1,5,8-heptanetriol, trimethylolpropane, pentaerythritol, 3,5-dihydroxy Examples include benzyl alcohol, glycerin, and derivatives thereof.
Examples of polycarboxylic acids and derivatives thereof include 1,2,3-propanetricarboxylic acid, meso-butane-1,2,3,4-tetracarboxylic acid, citric acid, trimellitic acid, pyromellitic acid, or these. Examples include derivatives.
Further, when copolymerizing a component having a trifunctional or higher functional group such as a polyhydric alcohol or a polycarboxylic acid, the amount is preferably within 5 mol % based on the total acid component.
 本実施形態において、酸素吸収性樹脂としては、テトラヒドロフタル酸若しくはその誘導体又はテトラヒドロ無水フタル酸若しくはその誘導体を酸成分とし、1,4-ブタンジオールをジオール成分とし、コハク酸又は無水コハク酸を他の酸成分として、これらを共重合することによって得られた酸素吸収性ポリエステル系樹脂を使用するのが好ましい。 In this embodiment, the oxygen-absorbing resin includes tetrahydrophthalic acid or its derivatives or tetrahydrophthalic anhydride or its derivatives as an acid component, 1,4-butanediol as a diol component, and succinic acid or succinic anhydride as an acid component. It is preferable to use an oxygen-absorbing polyester resin obtained by copolymerizing these as the acid component.
 この場合、酸素吸収性ポリエステル系樹脂中に含まれるテトラヒドロフタル酸若しくはその誘導体又はテトラヒドロ無水フタル酸若しくはその誘導体に由来する構造単位は、全酸成分に対する割合の70~95モル%であるのが好ましく、より好ましくは75~95モル%であり、さらに好ましくは80~95モル%である。
 また、コハク酸又は無水コハク酸に由来する構造単位は、全酸成分に対する割合の0~15モル%であるのが好ましく、より好ましくは0~12.5モル%であり、さらに好ましくは0~10モル%である。
 このような組成比にすることにより、酸素吸収性能及び接着性に優れ、かつ、有機溶剤への溶解性に優れた酸素吸収性樹脂を得ることができる。
In this case, the structural unit derived from tetrahydrophthalic acid or its derivative or tetrahydrophthalic anhydride or its derivative contained in the oxygen-absorbing polyester resin preferably accounts for 70 to 95 mol% of the total acid component. , more preferably 75 to 95 mol%, still more preferably 80 to 95 mol%.
Further, the structural unit derived from succinic acid or succinic anhydride preferably accounts for 0 to 15 mol%, more preferably 0 to 12.5 mol%, and even more preferably 0 to 12.5 mol% of the total acid components. It is 10 mol%.
By using such a composition ratio, it is possible to obtain an oxygen-absorbing resin that has excellent oxygen-absorbing performance and adhesive properties, and also has excellent solubility in organic solvents.
 酸素吸収性ポリエステル系樹脂は、例えば、界面重縮合、溶液重縮合、溶融重縮合又は固相重縮合などによって合成することができる。その際、重合触媒は必ずしも必要としないが、例えば、チタン系、ゲルマニウム系、アンチモン系、スズ系、アルミニウム系等の通常のポリエステル重合触媒が使用可能である。含窒素塩基性化合物、ホウ酸及びホウ酸エステル、有機スルホン酸系化合物等の公知の重合触媒を使用することもできる。さらに、重合の際には、リン化合物等の着色防止剤や酸化防止剤等の各種添加剤を添加することもできる。酸化防止剤を添加することにより、重合中やその後の加工中の酸素吸収を抑制できるため、酸素吸収性樹脂の性能低下やゲル化を抑えることができる。 The oxygen-absorbing polyester resin can be synthesized, for example, by interfacial polycondensation, solution polycondensation, melt polycondensation, or solid phase polycondensation. At this time, a polymerization catalyst is not necessarily required, but a typical polyester polymerization catalyst such as titanium-based, germanium-based, antimony-based, tin-based, or aluminum-based catalyst can be used. Known polymerization catalysts such as nitrogen-containing basic compounds, boric acid and boric acid esters, and organic sulfonic acid compounds can also be used. Furthermore, during polymerization, various additives such as coloring inhibitors such as phosphorus compounds and antioxidants may be added. By adding an antioxidant, it is possible to suppress oxygen absorption during polymerization and subsequent processing, thereby suppressing performance deterioration and gelation of the oxygen-absorbing resin.
 また、重合に際しては、温度220℃の条件下において剪断速度100s-1のときの溶融粘度が90Pa・s未満、好ましくは60Pa・s未満、より好ましくは30Pa・s未満となるように、原料モノマーの組成比、分子量などの重合条件を適宜調整するのが好ましい。溶融粘度を低く抑えることで、良好な塗工性を発揮させることができ、また、硬化剤を配合することで任意の材料強度にすることができるため、溶剤可溶型のドライラミネート接着剤として好適に使用することができる。 In addition, during polymerization, the raw material monomers are adjusted so that the melt viscosity at a shear rate of 100 s -1 at a temperature of 220° C. is less than 90 Pa.s, preferably less than 60 Pa.s, and more preferably less than 30 Pa.s. It is preferable to adjust polymerization conditions such as composition ratio and molecular weight as appropriate. By keeping the melt viscosity low, it is possible to exhibit good coating properties, and by adding a hardening agent, it is possible to achieve desired material strength, making it suitable as a solvent-soluble dry laminating adhesive. It can be suitably used.
 酸素吸収性ポリエステル系樹脂の数平均分子量は、好ましくは500~100000であり、より好ましくは2000~10000である。また、重量平均分子量は、好ましくは5000~200000、より好ましくは10000~100000であり、さらに好ましくは20000~70000である。分子量が上記の範囲より低い場合は樹脂の凝集力すなわち耐クリープ性が低下し、高い場合は有機溶剤への溶解性の低下や溶液粘度の上昇による塗工性の低下が生じるため好ましくない。
 酸素吸収性ポリエステル系樹脂のガラス転移温度は、好ましくは-20℃~10℃であり、より好ましくは-15℃~6℃であり、さらに好ましくは-12℃~2℃である。ガラス転移温度をこのような範囲とすることで、十分な酸素吸収性能を得ることができる。
 酸素吸収性ポリエステル系樹脂の酸価は、十分な酸素吸収性能を得るために、好ましくは3mgKOH/g未満であり、より好ましくは1mgKOH/g未満である。酸価が3mgKOH/gを超える場合には、速やかな自動酸化反応が妨げられ、安定した酸素吸収性能が得られない場合がある。
 なお、酸素吸収性ポリエステル系樹脂の酸価の測定方法はJIS K 0070に準ずる。
The number average molecular weight of the oxygen-absorbing polyester resin is preferably 500 to 100,000, more preferably 2,000 to 10,000. Further, the weight average molecular weight is preferably 5,000 to 200,000, more preferably 10,000 to 100,000, and still more preferably 20,000 to 70,000. If the molecular weight is lower than the above range, the cohesive force or creep resistance of the resin will decrease, and if it is higher, the solubility in organic solvents will decrease and the coatability will decrease due to an increase in solution viscosity, which is not preferred.
The glass transition temperature of the oxygen-absorbing polyester resin is preferably -20°C to 10°C, more preferably -15°C to 6°C, and even more preferably -12°C to 2°C. By setting the glass transition temperature within such a range, sufficient oxygen absorption performance can be obtained.
The acid value of the oxygen-absorbing polyester resin is preferably less than 3 mgKOH/g, more preferably less than 1 mgKOH/g, in order to obtain sufficient oxygen absorption performance. If the acid value exceeds 3 mgKOH/g, rapid autooxidation reaction may be hindered and stable oxygen absorption performance may not be obtained.
Note that the method for measuring the acid value of the oxygen-absorbing polyester resin is based on JIS K 0070.
 また、酸素吸収性ポリエステル系樹脂は、酸素吸収反応(酸化硬化反応)に伴って発生する内部応力によってラミネート強度が低下する場合がある。これを抑制するために、飽和ポリエステル樹脂を主成分とするガラス転移温度の低い成分を配合することが好ましい。このような成分は酸化硬化反応に伴って発生する内部応力を、その柔軟性により緩和することができる。 Additionally, the laminate strength of oxygen-absorbing polyester resins may decrease due to internal stress generated along with oxygen-absorbing reactions (oxidative hardening reactions). In order to suppress this, it is preferable to blend a component with a low glass transition temperature that is mainly composed of a saturated polyester resin. Such a component can relieve the internal stress generated due to the oxidative hardening reaction due to its flexibility.
 飽和ポリエステル樹脂は、実質的に炭素-炭素二重結合基を含まないポリエステル系樹脂であって、例えば、ジカルボン酸成分とジオール成分、ヒドロキシカルボン酸成分との重縮合によって得ることができる。飽和ポリエステル樹脂は、好ましくはヨウ素価が3g/100g以下のポリエステル、特に1g/100g以下のポリエステルであるのが好ましい。飽和ポリエステル樹脂のヨウ素価が3g/100gを超える場合には、酸素吸収性樹脂の酸素吸収反応に伴い低分子量の分解成分が生じ易くなるため好ましくない。
 なお、ヨウ素価の測定方法はJIS K 0070に準ずる。
The saturated polyester resin is a polyester resin that does not substantially contain carbon-carbon double bond groups, and can be obtained, for example, by polycondensation of a dicarboxylic acid component, a diol component, or a hydroxycarboxylic acid component. The saturated polyester resin is preferably a polyester having an iodine value of 3 g/100 g or less, particularly a polyester having an iodine value of 1 g/100 g or less. When the iodine value of the saturated polyester resin exceeds 3 g/100 g, it is not preferable because low molecular weight decomposed components are likely to be generated due to the oxygen absorption reaction of the oxygen absorbing resin.
Note that the method for measuring the iodine value is based on JIS K 0070.
 ジカルボン酸成分としては、前述した酸素吸収性ポリエステル系樹脂の成分として例示した芳香族ジカルボン酸や脂肪族ジカルボン酸、ヘキサヒドロフタル酸、ダイマー酸、又はこれらの誘導体等が挙げられる。これらは、単独、又は、2種類以上を組み合わせて使用できる。
 ジオール成分としては、前述した酸素吸収性ポリエステル系樹脂の成分として例示したジオールが挙げられる。これらは、単独、又は、2種類以上を組み合わせて使用できる。
 ヒドロキシカルボン酸成分としては、前述した酸素吸収性ポリエステル系樹脂の成分として例示した脂肪族ヒドロキシカルボン酸等が挙げられる。
Examples of the dicarboxylic acid component include aromatic dicarboxylic acids, aliphatic dicarboxylic acids, hexahydrophthalic acid, dimer acids, and derivatives thereof, which are exemplified as components of the oxygen-absorbing polyester resin described above. These can be used alone or in combination of two or more.
Examples of the diol component include the diols exemplified as components of the oxygen-absorbing polyester resin described above. These can be used alone or in combination of two or more.
Examples of the hydroxycarboxylic acid component include the aliphatic hydroxycarboxylic acids exemplified as components of the oxygen-absorbing polyester resin described above.
 飽和ポリエステル樹脂のガラス転移温度は-10℃以下であるのが好ましく、より好ましくは-70℃~-15℃であり、さらに好ましくは-60℃~-20℃である。ガラス転移温度をこのような範囲とすることで、酸素吸収に伴う酸化硬化反応によって生ずる内部応力を効果的に緩和することができる。 The glass transition temperature of the saturated polyester resin is preferably -10°C or lower, more preferably -70°C to -15°C, and even more preferably -60°C to -20°C. By setting the glass transition temperature within such a range, internal stress caused by oxidative hardening reaction due to oxygen absorption can be effectively alleviated.
 酸素吸収性ポリエステル系樹脂(A)と飽和ポリエステル樹脂(B)の比率A/Bは、好ましくは0.6~9であり、より好ましくは1~9であり、さらに好ましくは2~9である。比率A/Bをこのような範囲とすることにより、優れた酸素吸収性能を発現しつつ、酸素吸収前後にわたって強いラミネート強度を維持することができる。 The ratio A/B of the oxygen-absorbing polyester resin (A) and the saturated polyester resin (B) is preferably 0.6 to 9, more preferably 1 to 9, and still more preferably 2 to 9. . By setting the ratio A/B within such a range, it is possible to exhibit excellent oxygen absorption performance and maintain strong laminate strength before and after oxygen absorption.
 また、酸素吸収性樹脂層を形成するにあたり、酸素吸収性樹脂は、有機溶剤に溶解させて酸素吸収性接着剤として使用できるように調製することができる。有機溶剤としては、酢酸エチル、アセトン、メチルエチルケトン、メチルイソブチルケトン、トルエン、キシレン、イソプロパノール等が挙げられる。特に、酢酸エチルは残留溶剤を原因とする異臭トラブルが比較的少ないことから、軟包装のドライラミネート接着剤の溶剤として一般的であり、産業応用を考慮するとトルエンやキシレン等を含有しない酢酸エチル単一溶剤を用いるのが好ましい。 Furthermore, in forming the oxygen-absorbing resin layer, the oxygen-absorbing resin can be prepared by dissolving it in an organic solvent so that it can be used as an oxygen-absorbing adhesive. Examples of the organic solvent include ethyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, toluene, xylene, and isopropanol. In particular, ethyl acetate is commonly used as a solvent for dry laminating adhesives for flexible packaging because it has relatively few odor problems caused by residual solvents, and when considering industrial applications, ethyl acetate, which does not contain toluene or xylene, is used. Preferably, one solvent is used.
 酸素吸収性ポリエステル系樹脂を使用する場合には、イソシアネート系硬化剤を配合して2液硬化型接着剤として使用することができる。イソシアネート系硬化剤を配合した場合、接着強度及び凝集力が高くなり、また、室温付近の低温でキュアが可能となる。
 イソシアネート系硬化剤としては、例えば、キシリレンジイソシアネート(XDI)、ヘキサメチレンジイソシアネート(HDI)、リジンジイソシアネート、リジンメチルエステルジイソシアネート、トリメチルヘキサメチレンジイソシアネート、n-ペンタン-1,4-ジイソシアネート等の脂肪族イソシアネート系硬化剤、イソホロンジイソシアネート(IPDI)、シクロヘキサン-1,4-ジイソシアネート、メチルシクロヘキシルジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート等の脂環族イソシアネート系硬化剤が挙げられる。これらの中でも、脂肪族イソシアネート系硬化剤としては、XDI及びHDIが好ましく、脂環族イソシアネート系硬化剤としては、IPDIが好ましい。特に好ましくはXDIである。XDIを使用することにより、最も優れた酸素吸収性能を発揮する。
 これらの脂肪族及び/又は脂環族イソシアネート系硬化剤は、アダクトやイソシアヌレート、ビュレット体等、分子量を増大させたポリイソシアネート化合物として使用されることが好ましい。
 また、これらの脂肪族及び/又は脂環族イソシアネート系硬化剤は単独で用いてもよく、2種以上を組み合わせて用いてもよい。
When using an oxygen-absorbing polyester resin, it can be used as a two-component curing adhesive by blending an isocyanate curing agent with it. When an isocyanate-based curing agent is blended, adhesive strength and cohesive force are increased, and curing can be performed at a low temperature around room temperature.
Examples of the isocyanate curing agent include aliphatic isocyanates such as xylylene diisocyanate (XDI), hexamethylene diisocyanate (HDI), lysine diisocyanate, lysine methyl ester diisocyanate, trimethylhexamethylene diisocyanate, and n-pentane-1,4-diisocyanate. Examples include alicyclic isocyanate-based curing agents such as isophorone diisocyanate (IPDI), cyclohexane-1,4-diisocyanate, methylcyclohexyl diisocyanate, and dicyclohexylmethane-4,4'-diisocyanate. Among these, XDI and HDI are preferable as the aliphatic isocyanate curing agent, and IPDI is preferable as the alicyclic isocyanate curing agent. Particularly preferred is XDI. By using XDI, the most excellent oxygen absorption performance is exhibited.
These aliphatic and/or alicyclic isocyanate curing agents are preferably used as polyisocyanate compounds with increased molecular weight, such as adducts, isocyanurates, and burettes.
Further, these aliphatic and/or alicyclic isocyanate curing agents may be used alone or in combination of two or more.
 イソシアネート系硬化剤は、主剤である酸素吸収性ポリエステル系樹脂に対して、固形分重量部で3phr~30phr添加することが好ましく、より好ましくは3phr~20phr、さらに好ましくは3phr~15phrである。添加量が少なすぎると、接着性及び凝集力が不十分となり、多すぎると、樹脂組成物単位重量中に含まれる酸素吸収成分の配合量が少なくなり、酸素吸収性能が不十分となる。また、硬化により樹脂の運動性が著しく低下した場合、酸素吸収反応が進行しにくくなり、酸素吸収性能は低下する。 The isocyanate curing agent is preferably added in an amount of 3 phr to 30 phr, more preferably 3 phr to 20 phr, still more preferably 3 phr to 15 phr, based on the solid weight part, relative to the oxygen-absorbing polyester resin that is the main ingredient. If the amount added is too small, the adhesion and cohesive force will be insufficient, and if it is too large, the amount of the oxygen absorbing component contained in the unit weight of the resin composition will be small, resulting in insufficient oxygen absorption performance. Furthermore, if the mobility of the resin is significantly reduced due to curing, the oxygen absorption reaction will be difficult to proceed and the oxygen absorption performance will be reduced.
[隣接層]
 隣接層は、酸価3mgKOH/g以上、好ましくは酸価4mgKOH/g以上、より好ましくは酸価5mgKOH/g以上の樹脂組成物を含有し、酸素吸収性樹脂の酸素吸収反応を促進させる遷移金属触媒を配位結合などによって捕捉して、その触媒活性を抑制し、酸素吸収性樹脂の酸素吸収反応を制御するために、酸素吸収性樹脂層に隣接して積層される。
 なお、酸価の測定方法はJIS K 0070に準ずる。
[Adjacent layer]
The adjacent layer contains a resin composition with an acid value of 3 mgKOH/g or more, preferably an acid value of 4 mgKOH/g or more, more preferably an acid value of 5 mgKOH/g or more, and a transition metal that promotes the oxygen absorption reaction of the oxygen-absorbing resin. The layer is laminated adjacent to the oxygen-absorbing resin layer in order to trap the catalyst through coordination bonds or the like, suppress its catalytic activity, and control the oxygen-absorbing reaction of the oxygen-absorbing resin.
Note that the method for measuring the acid value is based on JIS K 0070.
 本実施形態において、隣接層に含有させる樹脂組成物としては、カルボキシル基などの酸性基を側鎖や末端に有し、酸価が前述した値以上に調製された任意の樹脂組成物を使用できるが、そのような樹脂組成物には、ポリウレタン樹脂が含まれているのが好ましい。より具体的には、ポリオールと、ポリイソシアネートとを縮合反応させてなるポリウレタン樹脂や、ポリオールと、ポリイソシアネートとの縮合反応物である末端にイソシアネート基を有するウレタンポリマーと、ポリアミンとの反応により得られるポリウレタン樹脂(ポリウレタンウレア樹脂)が含まれているのが好ましい。特に、側鎖や末端にカルボキシル基が導入された、ポリウレタン樹脂が含まれているのが好ましい。カルボキシル基を導入するために使用される化合物としては、必要に応じて、イソシアネート基と反応する化合物であって、遊離のカルボキシル基を有するヒドロキシカルボン酸、アミノカルボン酸などや、開環して遊離のカルボキシル基を形成する環式ジカルボン酸無水物などを用いることができる。 In this embodiment, as the resin composition to be contained in the adjacent layer, any resin composition that has an acidic group such as a carboxyl group in the side chain or at the end and has an acid value equal to or higher than the above-mentioned value can be used. However, such a resin composition preferably contains a polyurethane resin. More specifically, polyurethane resins produced by condensation reaction of polyol and polyisocyanate, or polyurethane polymers having terminal isocyanate groups, which are condensation reaction products of polyol and polyisocyanate, are produced by reaction with polyamines. It is preferable that the polyurethane resin (polyurethane urea resin) is contained. In particular, it is preferable to include a polyurethane resin in which a carboxyl group is introduced into the side chain or terminal. The compound used to introduce a carboxyl group may be a compound that reacts with an isocyanate group and has a free carboxyl group, such as a hydroxycarboxylic acid or an aminocarboxylic acid, or a compound that reacts with an isocyanate group, or a compound that reacts with an isocyanate group, or a compound that reacts with an isocyanate group and that has a free carboxyl group, or a compound that reacts with an isocyanate group, and a compound that reacts with an isocyanate group, such as a hydroxycarboxylic acid or an aminocarboxylic acid that has a free carboxyl group, or a compound that reacts with an isocyanate group. A cyclic dicarboxylic acid anhydride that forms a carboxyl group can be used.
 ポリオールとしては、例えば、二塩基酸とジオールとをエステル化してなるポリエステルポリオールを用いることができる。二塩基酸としては、例えば、シュウ酸、マロン酸、コハク酸、無水コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、マレイン酸、フマル酸、無水フタル酸、イソフタル酸、テレフタル酸、1,4-シクロヘキシルジカルボン酸、ダイマー酸、水添ダイマー酸等が挙げられる。これらは、単独、又は、2種類以上を組み合わせて使用できる。 As the polyol, for example, a polyester polyol obtained by esterifying a dibasic acid and a diol can be used. Examples of dibasic acids include oxalic acid, malonic acid, succinic acid, succinic anhydride, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, phthalic anhydride, and isophthalic acid. acid, terephthalic acid, 1,4-cyclohexyldicarboxylic acid, dimer acid, hydrogenated dimer acid, and the like. These can be used alone or in combination of two or more.
 また、ジオールとしては、例えば、エチレングリコール、ジエチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,4-ブチンジオール、1,4-ブチレンジオール、ジエチレングリコール、トリエチレングリコール等の直鎖状ジオール、2-ブチル-2-エチル-1,3-プロパンジオール、2-メチル-1,3-プロパンジオール、3-メチル-1,5-ペンタンジオール、ネオペンチルグリコール、ペンチレングリコール、1,2-プロピレングリコール、2,4-ジエチル-1,5-ペンタンジオール、1,3-ブタンジオール、ジプロピレングリコール等の分岐状ジオールが挙げられる。これらは、単独、又は、2種類以上を組み合わせて使用できる。 Examples of diols include ethylene glycol, diethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 1, Linear diols such as 9-nonanediol, 1,4-butynediol, 1,4-butylenediol, diethylene glycol, triethylene glycol, 2-butyl-2-ethyl-1,3-propanediol, 2-methyl- 1,3-propanediol, 3-methyl-1,5-pentanediol, neopentyl glycol, pentylene glycol, 1,2-propylene glycol, 2,4-diethyl-1,5-pentanediol, 1,3- Branched diols such as butanediol and dipropylene glycol are mentioned. These can be used alone or in combination of two or more.
 また、ポリイソシアネートとしては、例えば、1,5-ナフチレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルジメチルメタンジイソシアネート、4、4’-ジベンジルイソシアネート、ジアルキルジフェニルメタンジイソシアネート、テトラアルキルジフェニルメタンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、トリレンジイソシアネート、ブタン-1,4-ジイソシアネート、1,5-ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、イソプロピレンジイソシアネート、メチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、シクロヘキサン-1,4-ジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネート、リジンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン、メチルシクロヘキサンジイソシアネート、m-テトラメチルキシリレンジイソシアネート、ダイマー酸のカルボキシル基をイソシアネート基に転化したダイマージイソシアネート等が挙げられる。これらは、単独、又は、2種類以上を組み合わせて使用できる。 Examples of polyisocyanates include 1,5-naphthylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 4,4'-diphenyldimethylmethane diisocyanate, 4,4'-dibenzylisocyanate, dialkyldiphenylmethane diisocyanate, and tetraalkyl diisocyanate. Diphenylmethane diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, tolylene diisocyanate, butane-1,4-diisocyanate, 1,5-pentamethylene diisocyanate, hexamethylene diisocyanate, isopropylene diisocyanate, methylene diisocyanate, 2, 2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, cyclohexane-1,4-diisocyanate, xylylene diisocyanate, isophorone diisocyanate, lysine diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, 1, Examples include 3-bis(isocyanatomethyl)cyclohexane, methylcyclohexane diisocyanate, m-tetramethylxylylene diisocyanate, and dimer diisocyanate obtained by converting the carboxyl group of dimer acid into an isocyanate group. These can be used alone or in combination of two or more.
 また、ポリアミンとしては、例えば、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、イソホロンジアミン、ジシクロヘキシルメタン-4,4’-ジアミン、2-ヒドロキシエチルエチレンジアミン、2-ヒドロキシエチルプロピルジアミン、2-ヒドロキシエチルプロピレンジアミン、ジ-2-ヒドロキシエチルエチレンジアミン、ジ-2-ヒドロキシエチレンジアミン、ジ-2-ヒドロキシエチルプロピレンジアミン、2-ヒドロキシピロピルエチレンジアミン、ジ-2-ヒドロキシピロピルエチレンジアミン、ジエチレントリアミン、イミノビスプロピルアミン:(IBPA、3,3’-ジアミノジプロピルアミン)、N-(3-アミノプロピル)ブタン-1,4-ジアミン:(スペルミジン)、6,6-イミノジヘキシルアミン、3,7-ジアザノナン-1,9-ジアミン、N,N’-ビス(3-アミノプロピル)エチレンジアミン等が挙げられる。これらは、単独、又は、2種類以上を組み合わせて使用できる。 Examples of polyamines include ethylenediamine, propylenediamine, hexamethylenediamine, isophoronediamine, dicyclohexylmethane-4,4'-diamine, 2-hydroxyethylethylenediamine, 2-hydroxyethylpropyldiamine, 2-hydroxyethylpropylenediamine, Di-2-hydroxyethylethylenediamine, di-2-hydroxyethylenediamine, di-2-hydroxyethylpropylenediamine, 2-hydroxypropylethylenediamine, di-2-hydroxypropylethylenediamine, diethylenetriamine, iminobispropylamine: (IBPA, 3,3'-diaminodipropylamine), N-(3-aminopropyl)butane-1,4-diamine: (spermidine), 6,6-iminodihexylamine, 3,7-diazanonane-1,9-diamine , N,N'-bis(3-aminopropyl)ethylenediamine, and the like. These can be used alone or in combination of two or more.
 なお、上記原料成分において、セバシン酸、コハク酸、ダイマー酸等の二塩基酸、エチレングリコール、1,2-プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、ネオペンチルグリコール、ペンチレングリコール等のジオール、1,5-ペンタメチレンジイソシアネート、ダイマージイソシアネート等のジイソシアネートは、バイオマス由来の原料として入手可能であり、これらのバイオマス由来の原料成分を用いてポリウレタン樹脂を共重合することによって、そのバイオマス度を高めることができる。 In addition, in the above raw material components, dibasic acids such as sebacic acid, succinic acid, dimer acid, ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 1,4-butanediol, neopentyl glycol, pentyl glycol, etc. Diols such as lene glycol, diisocyanates such as 1,5-pentamethylene diisocyanate, and dimer diisocyanate are available as biomass-derived raw materials, and by copolymerizing polyurethane resin using these biomass-derived raw material components, Its biomass degree can be increased.
 隣接層は、例えば、上記樹脂組成物をバインダー樹脂に用いて調製された印刷インキによって形成することができる。この場合、印刷適性や耐ブロッキング性を良好なものとするために、塩化ビニル-酢酸ビニル共重合樹脂、塩化ビニル-アクリル系共重合樹脂、セルロース系樹脂、ロジン系樹脂などのポリウレタン樹脂以外の樹脂成分を一種又は二種以上、適宜併用してバインダー樹脂を調製するのが好ましく、これらの中でも、塩化ビニル-酢酸ビニル共重合樹脂を併用するのが特に好ましい。
 なお、ポリウレタン樹脂以外の樹脂成分を併用する場合であっても、バインダー樹脂に用いる樹脂組成物の酸価が前述した値以上となるように調製するものとする。隣接層を酸素吸収性樹脂層に隣接して積層するにあたり、隣接層の厚みは、0.1~10μmであるのが好ましく、より好ましくは0.2~5μm、さらに好ましくは0.3~3μmである。
The adjacent layer can be formed, for example, by a printing ink prepared using the above resin composition as a binder resin. In this case, in order to have good printability and blocking resistance, resins other than polyurethane resins such as vinyl chloride-vinyl acetate copolymer resin, vinyl chloride-acrylic copolymer resin, cellulose resin, rosin resin, etc. It is preferable to prepare a binder resin by appropriately combining one or more types of components, and among these, it is particularly preferable to use a vinyl chloride-vinyl acetate copolymer resin.
Note that even when resin components other than polyurethane resin are used in combination, the acid value of the resin composition used for the binder resin should be adjusted to be equal to or higher than the above-mentioned value. When laminating the adjacent layer adjacent to the oxygen-absorbing resin layer, the thickness of the adjacent layer is preferably 0.1 to 10 μm, more preferably 0.2 to 5 μm, and even more preferably 0.3 to 3 μm. It is.
 また、隣接層を形成する印刷インキは、顔料を含まないメジウムとして調製してもよく、無機顔料又は有機顔料を含む着色インキとして調製してもよい。ただし、一般に白色顔料として知られている酸化チタンなどの一部の無機顔料にあっては、酸素吸収性樹脂の酸素吸収反応を促進させる触媒として機能するものもあり、そのような顔料が隣接層に含まれていると、本発明の効果を損ねてしまうため好ましくない。 Furthermore, the printing ink forming the adjacent layer may be prepared as a medium containing no pigment, or may be prepared as a colored ink containing an inorganic pigment or an organic pigment. However, some inorganic pigments such as titanium oxide, which is generally known as a white pigment, function as catalysts that promote the oxygen absorption reaction of oxygen-absorbing resins, and such pigments may If it is contained in the above, it is not preferable because it impairs the effect of the present invention.
 また、印刷インキを調製する有機溶剤としては、酢酸エチル、アセトン、メチルエチルケトン、メチルイソブチルケトン、トルエン、キシレン、イソプロパノール等が挙げられる。 Furthermore, examples of organic solvents for preparing printing inks include ethyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, toluene, xylene, isopropanol, and the like.
[表面側基材層]
 表面側基材層には、耐擦傷性、耐薬品性などの観点から、例えば、ポリエチレンテレフタレート等のポリエステル系樹脂、ナイロン等のポリアミド系樹脂などからなる二軸延伸フィルムを基材フィルムとし、ポリビニルアルコール系樹脂、エチレン-ビニルアルコール共重合体、ポリアクリル酸系樹脂、塩化ビニリデン系樹脂等の酸素バリア性樹脂を主剤とするコーティング層、シリカ、アルミナ等の金属酸化物又は金属の蒸着薄膜などを含む積層フィルムや、上記基材フィルムに、ウレタン系接着剤等を介してアルミニウム箔等の金属箔をドライラミネートしてなる積層フィルムなどを用いるのが好ましいが、これに限定されない。
[Surface side base material layer]
For the surface side base material layer, from the viewpoint of scratch resistance and chemical resistance, for example, a biaxially stretched film made of polyester resin such as polyethylene terephthalate, polyamide resin such as nylon, etc. is used as the base film, and polyvinyl Coating layers based on oxygen barrier resins such as alcohol-based resins, ethylene-vinyl alcohol copolymers, polyacrylic acid-based resins, and vinylidene chloride-based resins, metal oxides such as silica and alumina, or vapor-deposited thin films of metals, etc. Although it is preferable to use a laminated film including a laminated film, a laminated film formed by dry laminating a metal foil such as an aluminum foil on the base film with a urethane adhesive or the like interposed therebetween, the present invention is not limited thereto.
[内面側基材層]
 内面側基材層は、単層であっても、積層体であってもよい。その基材樹脂としては、ポリオレフィン系樹脂やポリエステル系樹脂などが挙げられる。このうち、ポリオレフィン系樹脂としては、低密度ポリエチレン(LDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)、線状低密度ポリエチレン(LLDPE)、線状超低密度ポリエチレン(LVLDPE)、ポリプロピレン(PP)、エチレン-プロピレン共重合体、ポリブテン-1、エチレン-ブテン-1共重合体、プロピレン-ブテン-1共重合体、エチレン-プロピレン-ブテン-1共重合体、エチレン-酢酸ビニル共重合体、イオン架橋オレフィン共重合体(アイオノマー)又はこれらのブレンド物等が好ましく、特に、包装用フィルムのヒートシール層に用いる場合には、ヒートシール性に優れるLDPEやLLDPEが特に好ましい。ポリエステル系樹脂としては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、若しくはこれらの共重合ポリエステル、又はこれらのブレンド物等が好ましい。また、イソフタル酸変性したポリエステル樹脂は、結晶性が低くなりヒートシール可能となることから好ましい。
[Inner side base material layer]
The inner side base material layer may be a single layer or a laminate. Examples of the base resin include polyolefin resins and polyester resins. Among these, polyolefin resins include low density polyethylene (LDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), linear low density polyethylene (LLDPE), linear very low density polyethylene (LVLDPE), and polypropylene. (PP), ethylene-propylene copolymer, polybutene-1, ethylene-butene-1 copolymer, propylene-butene-1 copolymer, ethylene-propylene-butene-1 copolymer, ethylene-vinyl acetate copolymer A combination, an ionically crosslinked olefin copolymer (ionomer), or a blend thereof is preferred. In particular, when used in a heat-sealing layer of a packaging film, LDPE and LLDPE, which have excellent heat-sealability, are particularly preferred. As the polyester resin, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), copolyesters thereof, or blends thereof are preferable. Moreover, polyester resin modified with isophthalic acid is preferable because it has low crystallinity and can be heat-sealed.
 以上のような本実施形態にあっては、酸素吸収性樹脂と、その酸素吸収反応を促進させる遷移金属触媒とを含む酸素吸収性樹脂層に、酸価3mgKOH/g以上(好ましくは前述した値以上)の樹脂組成物を含有する層を隣接させることによって、当該遷移金属触媒を配位結合などによって捕捉して、その触媒活性を抑制できるようにしている。これにより、空気に暴露されて酸素吸収反応が開始された初期にあっては、酸素吸収性樹脂の酸素吸収量が低減し、空気暴露の影響を少なくしてハンドリング性を向上させることができる。そして、時間の経過とともに、酸素吸収性樹脂の酸素吸収量が低減する割合が小さくなっていくように、酸素吸収性樹脂の酸素吸収反応を制御することができ、限りある酸素吸収性樹脂の酸素吸収性能をより効果的に発揮させることが可能になる。 In this embodiment as described above, the oxygen-absorbing resin layer containing an oxygen-absorbing resin and a transition metal catalyst that promotes the oxygen-absorbing reaction has an acid value of 3 mgKOH/g or more (preferably the above-mentioned value). By placing the layers containing the resin compositions (above) adjacent to each other, the transition metal catalyst can be captured by coordination bonds or the like, and the catalytic activity can be suppressed. This reduces the amount of oxygen absorbed by the oxygen-absorbing resin at the initial stage of exposure to air and the start of the oxygen absorption reaction, thereby reducing the influence of air exposure and improving handling properties. It is possible to control the oxygen absorption reaction of the oxygen-absorbing resin so that the rate at which the oxygen absorption amount of the oxygen-absorbing resin decreases decreases over time. It becomes possible to exhibit absorption performance more effectively.
 以下、具体的な実施例を挙げて、本発明をより詳細に説明する。 Hereinafter, the present invention will be explained in more detail with reference to specific examples.
[実施例1]
 酸成分としてメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN-2200)をモル比0.9、その他の酸成分として無水コハク酸をモル比0.1、ジオール成分として1,4-ブタンジオールをモル比1.3、重合触媒としてイソプロピルチタナートを300ppmの組成比で反応釜に仕込み、窒素雰囲気中150℃~200℃で生成する水を除きながら約6時間反応させた。引き続いて0.1kPaの減圧下、200~220℃で約3時間重合を行い、酸素吸収性ポリエステル樹脂(A)を得た。酸素吸収性ポリエステル樹脂(A)の数平均分子量(Mn)は4800であり、重量平均分子量(Mw)は57200であり、ガラス転移点(Tg)は-5.0℃であった。
[Example 1]
As the acid component, a methyltetrahydrophthalic anhydride isomer mixture (manufactured by Hitachi Chemical Co., Ltd.; HN-2200) was used at a molar ratio of 0.9, as the other acid component was succinic anhydride at a molar ratio of 0.1, and as the diol component was a 1,4- A reaction vessel was charged with butanediol at a molar ratio of 1.3 and isopropyl titanate as a polymerization catalyst at a composition ratio of 300 ppm, and the mixture was reacted for about 6 hours in a nitrogen atmosphere while removing generated water at 150° C. to 200° C. Subsequently, polymerization was performed at 200 to 220° C. for about 3 hours under a reduced pressure of 0.1 kPa to obtain an oxygen-absorbing polyester resin (A). The oxygen-absorbing polyester resin (A) had a number average molecular weight (Mn) of 4,800, a weight average molecular weight (Mw) of 57,200, and a glass transition point (Tg) of -5.0°C.
 得られた酸素吸収性ポリエステル樹脂(A)に、Tg-26℃の飽和ポリエステル樹脂(B)(DIC社製;ポリサイザーW4010/Mn:3600、Mw:9500)を固形分重量比A/Bが4.0となるように混合し、その混合物の固形分に対してイソシアネート系硬化剤として、固形分換算で7phr(parts per hundred resin)となるように、HDI/IPDI系硬化剤(DICグラフィックス社製;KL-75)を混合した。さらに、触媒として、ネオデカン酸コバルトを全固形分に対する金属換算量で80ppmになるように添加し、酢酸エチルに溶解して、固形分濃度20wt%の酸素吸収性接着剤溶液を調製した。 To the obtained oxygen-absorbing polyester resin (A), a saturated polyester resin (B) (manufactured by DIC Corporation; Polysizer W4010/Mn: 3600, Mw: 9500) with a Tg of -26°C was added to the solid content weight ratio A/B of 4. HDI/IPDI curing agent (DIC Graphics Co., Ltd.) KL-75) was mixed. Further, as a catalyst, cobalt neodecanoate was added in an amount of 80 ppm in terms of metal based on the total solid content, and dissolved in ethyl acetate to prepare an oxygen-absorbing adhesive solution with a solid content concentration of 20 wt%.
 ネオペンチルグリコール、アジピン酸、イソホロンジイソシアネートを含む原料成分を共重合してなるポリウレタン樹脂を含み、酸価7.5mgKOH/gに調製された樹脂組成物を酢酸エチルで希釈し、バーコーターで透明蒸着ナイロンフィルム(凸版印刷社製;GL-EY/膜厚15μm)のバリアコーティング面に塗布し、ヘアドライヤーの温風にて溶剤を揮発させ、厚さ1μmの樹脂層を隣接層として形成した。 A resin composition containing a polyurethane resin prepared by copolymerizing raw materials containing neopentyl glycol, adipic acid, and isophorone diisocyanate and having an acid value of 7.5 mgKOH/g was diluted with ethyl acetate and transparently vapor-deposited using a bar coater. It was applied to the barrier coating surface of a nylon film (manufactured by Toppan Printing Co., Ltd.; GL-EY/film thickness 15 μm), and the solvent was evaporated with hot air from a hair dryer to form a 1 μm thick resin layer as an adjacent layer.
 次いで、隣接層に酸素吸収性接着剤溶液を#15のバーコーターで塗布し、ヘアドライヤーの温風にて溶剤を揮発させた後、酸素吸収性接着剤の塗布面と、LDPEフィルム(膜厚40μm)のコロナ処理面とを対向させて50℃の熱ロールに通し、得られた積層体を35℃窒素雰囲気下で5日間キュアすることで、表面側基材層(透明蒸着ナイロンフィルム:膜厚15μm)/隣接層(膜厚1μm)/酸素吸収性樹脂層(膜厚4μm)/内面側基材層(LDPEフィルム:膜厚40μm)からなる酸素吸収性積層体を得た。 Next, an oxygen-absorbing adhesive solution is applied to the adjacent layer using a #15 bar coater, and the solvent is evaporated with hot air from a hair dryer. The resulting laminate was passed through a hot roll at 50°C with the corona-treated surfaces facing each other (40 μm) and cured for 5 days at 35°C under a nitrogen atmosphere to form a surface-side base material layer (transparent vapor-deposited nylon film: film). An oxygen-absorbing laminate consisting of an adjacent layer (thickness: 15 μm)/an oxygen-absorbing resin layer (thickness: 4 μm)/inner side base material layer (LDPE film: thickness: 40 μm) was obtained.
 このようにして得られた酸素吸収性積層体の酸素吸収性能を評価した。その結果を表1に示す。
 なお、酸素吸収性能は以下のように評価した。
<酸素吸収性能>
 2cm×15cmに切り出した酸素吸収性積層体の試験片を、内容積85cmの酸素不透過性のスチール箔積層カップに仕込んで、アルミニウム箔積層フィルム蓋でヒートシール密封し、22℃-90%RH雰囲気下にて保存した。その後、6時間経過後(6時間区)、24時間経過後(24時間区)のカップ内の酸素濃度をマイクロガスクロマトグラフ装置(島津製作所社製:GC-2014AT)にて測定し、酸素吸収性積層体1cm当たりの酸素吸収量を算出した。
<評価基準>
 隣接層を有しない以外は、上記と同様の層構成の酸素吸収性積層体を用意して、その1cm当たりの酸素吸収量を上記と同様にして算出し、これを100%として、本実施例の酸素吸収性積層体における6時間区、24時間区の酸素吸収量のそれぞれの割合(すなわち、隣接層により低減した酸素吸収量の割合)を求め、6時間区が85%未満、かつ、24時間区が85%以上の場合を、良好な触媒活性抑制機能を発揮できているとして表1に「〇」で示し、それ以外を触媒活性抑制機能が発揮されないとして表1に「×」で示した。
The oxygen absorbing performance of the oxygen absorbing laminate thus obtained was evaluated. The results are shown in Table 1.
Note that the oxygen absorption performance was evaluated as follows.
<Oxygen absorption performance>
A test piece of the oxygen-absorbing laminate cut out to 2 cm x 15 cm was placed in an oxygen-impermeable steel foil laminated cup with an internal volume of 85 cm 3 , heat-sealed and sealed with an aluminum foil laminated film lid, and heated at 22°C - 90%. It was stored under RH atmosphere. Thereafter, the oxygen concentration in the cup was measured using a micro gas chromatograph (Shimadzu Corporation: GC-2014AT) after 6 hours (6 hours) and 24 hours (24 hours). The amount of oxygen absorbed per 1 cm 2 of the laminate was calculated.
<Evaluation criteria>
An oxygen-absorbing laminate having the same layer structure as above except for not having an adjacent layer was prepared, and the amount of oxygen absorbed per 1 cm 2 was calculated in the same manner as above, and this was taken as 100%. The ratio of the amount of oxygen absorbed in the 6-hour period and the 24-hour period (i.e., the percentage of the amount of oxygen absorption reduced by the adjacent layer) in the oxygen-absorbing laminate of the example is determined, and the 6-hour period is less than 85%, and If the 24-hour period is 85% or more, it is indicated as "〇" in Table 1, indicating that a good catalyst activity suppressing function is exhibited, and otherwise, it is indicated as "x" in Table 1, indicating that the catalyst activity suppressing function is not exhibited. Indicated.
[実施例2]
 3-メチル-1,5-ペンタンジオール、アジピン酸、イソホロンジイソシアネートを含む原料成分を共重合してなるポリウレタン樹脂を含み、酸価5.3mgKOH/gに調製された樹脂組成物を使用して隣接層を形成した以外は、実施例1と同様にして酸素吸収性積層体を得た。得られた酸素吸収性積層体について、実施例1と同様にして酸素吸収性能を評価した。その結果を表1に併せて示す。
[Example 2]
A resin composition containing a polyurethane resin formed by copolymerizing raw materials containing 3-methyl-1,5-pentanediol, adipic acid, and isophorone diisocyanate and having an acid value of 5.3 mgKOH/g is used to An oxygen-absorbing laminate was obtained in the same manner as in Example 1 except that the layers were formed. The oxygen absorbing performance of the obtained oxygen absorbing laminate was evaluated in the same manner as in Example 1. The results are also shown in Table 1.
[実施例3]
 3-メチル-1,5-ペンタンジオール、アジピン酸、セバシン酸、イソホロンジイソシアネートを含む原料成分を共重合してなるポリウレタン樹脂を含み、酸価5.4mgKOH/gに調製された樹脂組成物を使用して隣接層を形成した以外は、実施例1と同様にして酸素吸収性積層体を得た。得られた酸素吸収性積層体について、実施例1と同様にして酸素吸収性能を評価した。その結果を表1に併せて示す。
[Example 3]
A resin composition containing a polyurethane resin formed by copolymerizing raw materials containing 3-methyl-1,5-pentanediol, adipic acid, sebacic acid, and isophorone diisocyanate and adjusted to an acid value of 5.4 mgKOH/g is used. An oxygen-absorbing laminate was obtained in the same manner as in Example 1, except that the adjacent layer was formed. The oxygen absorbing performance of the obtained oxygen absorbing laminate was evaluated in the same manner as in Example 1. The results are also shown in Table 1.
[実施例4]
 エチレングリコール、アジピン酸、イソホロンジイソシアネートを含む原料成分を共重合してなるポリウレタン樹脂を含み、酸価4.2mgKOH/gに調製された樹脂組成物を使用して隣接層を形成した以外は、実施例1と同様にして酸素吸収性積層体を得た。得られた酸素吸収性積層体について、実施例1と同様にして酸素吸収性能を評価した。その結果を表1に併せて示す。
[Example 4]
Except that the adjacent layer was formed using a resin composition containing a polyurethane resin formed by copolymerizing raw material components containing ethylene glycol, adipic acid, and isophorone diisocyanate and having an acid value of 4.2 mgKOH/g. An oxygen-absorbing laminate was obtained in the same manner as in Example 1. The oxygen absorbing performance of the obtained oxygen absorbing laminate was evaluated in the same manner as in Example 1. The results are also shown in Table 1.
[実施例5]
 樹脂組成物を調製する際に、カーボンブラックを40重量%加えた以外は実施例1と同様にして酸素吸収性積層体を得た。得られた酸素吸収性積層体について、実施例1と同様にして酸素吸収性能を評価した。その結果を表1に併せて示す。
[Example 5]
An oxygen-absorbing laminate was obtained in the same manner as in Example 1, except that 40% by weight of carbon black was added when preparing the resin composition. The oxygen absorbing performance of the obtained oxygen absorbing laminate was evaluated in the same manner as in Example 1. The results are also shown in Table 1.
[比較例1]
 3-メチル-1,5-ペンタンジオール、アジピン酸、イソホロンジイソシアネートを含む原料成分を共重合してなるポリウレタン樹脂を含み、酸価0.6mgKOH/gに調製された樹脂組成物を使用して隣接層を形成した以外は、実施例1と同様にして酸素吸収性積層体を得た。得られた酸素吸収性積層体について、実施例1と同様にして酸素吸収性能を評価した。その結果を表1に併せて示す。
[Comparative example 1]
A resin composition containing a polyurethane resin formed by copolymerizing raw materials containing 3-methyl-1,5-pentanediol, adipic acid, and isophorone diisocyanate and having an acid value of 0.6 mgKOH/g is used to An oxygen-absorbing laminate was obtained in the same manner as in Example 1 except that the layers were formed. The oxygen absorbing performance of the obtained oxygen absorbing laminate was evaluated in the same manner as in Example 1. The results are also shown in Table 1.
[比較例2]
 酸素吸収性接着剤溶液を調製する際に、触媒としてのネオデカン酸コバルトを添加しなかった以外は、実施例1と同様にして酸素吸収性積層体を得た。得られた酸素吸収性積層体について、実施例1と同様にして酸素吸収性能を評価した。その結果を表1に併せて示す。
[Comparative example 2]
An oxygen-absorbing laminate was obtained in the same manner as in Example 1, except that cobalt neodecanoate as a catalyst was not added when preparing the oxygen-absorbing adhesive solution. The oxygen absorbing performance of the obtained oxygen absorbing laminate was evaluated in the same manner as in Example 1. The results are also shown in Table 1.
 これらの結果から、空気に暴露されて酸素吸収反応が開始された初期には酸素吸収量が低減し、時間の経過とともに、その低減する割合が小さくなっていることが確認できる(実施例1~5参照)。さらに、隣接層に含有させる樹脂組成物の酸価が小さいと酸素吸収量は低減せず(比較例1参照)、隣接層に含有させる樹脂組成物の酸価を大きくしても、酸素吸収性樹脂層に遷移金属触媒が含まれていないと酸素吸収量が低減しないことが確認できる(比較例2参照)。したがって、これらの結果を考察することにより、本発明によれば、遷移金属触媒の触媒活性を抑制でき、これによって、酸素吸収反応を制御できることが理解できる。 From these results, it can be confirmed that the amount of oxygen absorbed decreases at the beginning of the oxygen absorption reaction after exposure to air, and that the rate of decrease decreases as time passes (Examples 1 to 3). (see 5). Furthermore, if the acid value of the resin composition contained in the adjacent layer is small, the oxygen absorption amount will not be reduced (see Comparative Example 1), and even if the acid value of the resin composition contained in the adjacent layer is increased, the oxygen absorption It can be confirmed that the amount of oxygen absorption does not decrease if the resin layer does not contain a transition metal catalyst (see Comparative Example 2). Therefore, by considering these results, it can be understood that according to the present invention, the catalytic activity of the transition metal catalyst can be suppressed, and thereby the oxygen absorption reaction can be controlled.
 以上、本発明について、好ましい実施形態を示して説明したが、本発明は、上述した実施形態にのみ限定されるものではなく、本発明の範囲で種々の変更実施が可能であることは言うまでもない。 Although the present invention has been described above by showing preferred embodiments, it goes without saying that the present invention is not limited to the above-described embodiments, and that various modifications can be made within the scope of the present invention. .

Claims (4)

  1.  酸素吸収性樹脂及び遷移金属触媒を含む酸素吸収性樹脂層と、前記酸素吸収性樹脂層に隣接する隣接層とを少なくとも有する酸素吸収性積層体であって、
     前記隣接層に、酸価3mgKOH/g以上の樹脂組成物を含有することを特徴とする酸素吸収性積層体。
    An oxygen-absorbing laminate comprising at least an oxygen-absorbing resin layer containing an oxygen-absorbing resin and a transition metal catalyst, and an adjacent layer adjacent to the oxygen-absorbing resin layer,
    An oxygen-absorbing laminate characterized in that the adjacent layer contains a resin composition having an acid value of 3 mgKOH/g or more.
  2.  前記樹脂組成物が、ポリウレタン樹脂を含む請求項1に記載の酸素吸収性積層体。 The oxygen-absorbing laminate according to claim 1, wherein the resin composition contains a polyurethane resin.
  3.  前記樹脂組成物が、ポリウレタン樹脂と塩化ビニル-酢酸ビニル共重合樹脂とを含む請求項1に記載の酸素吸収性積層体。 The oxygen-absorbing laminate according to claim 1, wherein the resin composition contains a polyurethane resin and a vinyl chloride-vinyl acetate copolymer resin.
  4.  前記隣接層が、前記樹脂組成物をバインダー樹脂に用いた印刷インキによって形成されている請求項1~3のいずれか一項に記載の酸素吸収性積層体。 The oxygen-absorbing laminate according to any one of claims 1 to 3, wherein the adjacent layer is formed by a printing ink using the resin composition as a binder resin.
PCT/JP2023/014314 2022-05-27 2023-04-07 Oxygen absorbing laminate WO2023228601A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023544540A JPWO2023228601A1 (en) 2022-05-27 2023-04-07

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022087211 2022-05-27
JP2022-087211 2022-05-27

Publications (1)

Publication Number Publication Date
WO2023228601A1 true WO2023228601A1 (en) 2023-11-30

Family

ID=88919129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014314 WO2023228601A1 (en) 2022-05-27 2023-04-07 Oxygen absorbing laminate

Country Status (2)

Country Link
JP (1) JPWO2023228601A1 (en)
WO (1) WO2023228601A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015217558A (en) * 2014-05-15 2015-12-07 凸版印刷株式会社 Gas barrier packaging material
JP2016199744A (en) * 2015-04-07 2016-12-01 日本合成化学工業株式会社 Resin composition and multilayer structure using the same
JP2020040321A (en) * 2018-09-12 2020-03-19 大日本印刷株式会社 Oxygen-absorbing laminate and packaging material and package bag using the same
JP2021074969A (en) * 2019-11-11 2021-05-20 東洋製罐グループホールディングス株式会社 Oxygen absorbing laminate and method for producing the same
JP2021171941A (en) * 2020-04-21 2021-11-01 三菱ケミカル株式会社 Multilayer structure
JP2022014243A (en) * 2020-07-06 2022-01-19 大日本印刷株式会社 Oxygen-absorbing paper-based laminate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015217558A (en) * 2014-05-15 2015-12-07 凸版印刷株式会社 Gas barrier packaging material
JP2016199744A (en) * 2015-04-07 2016-12-01 日本合成化学工業株式会社 Resin composition and multilayer structure using the same
JP2020040321A (en) * 2018-09-12 2020-03-19 大日本印刷株式会社 Oxygen-absorbing laminate and packaging material and package bag using the same
JP2021074969A (en) * 2019-11-11 2021-05-20 東洋製罐グループホールディングス株式会社 Oxygen absorbing laminate and method for producing the same
JP2021171941A (en) * 2020-04-21 2021-11-01 三菱ケミカル株式会社 Multilayer structure
JP2022014243A (en) * 2020-07-06 2022-01-19 大日本印刷株式会社 Oxygen-absorbing paper-based laminate

Also Published As

Publication number Publication date
JPWO2023228601A1 (en) 2023-11-30

Similar Documents

Publication Publication Date Title
KR101553268B1 (en) Two-part curable oxygen-absorbable resin composition, and oxygen-absorbable adhesive agent
JP5910998B2 (en) Oxygen-absorbing adhesive resin and oxygen-absorbing adhesive
CN108368411B (en) Gas barrier adhesive, film, and gas barrier film
JP7156176B2 (en) LAMINATE ADHESIVE HAVING RELEABILITY FROM COMPOSITE FILM, LAMINATE, AND METHOD FOR RECYCLING SHEET SUBSTRATE
US8673173B2 (en) Oxygen-absorbable solvent-soluble resin and oxygen-absorbable adhesive resin composition
JPH0551574A (en) Adhesive composition
JP7406707B2 (en) Oxygen-absorbing laminate or manufacturing method thereof
WO2023228601A1 (en) Oxygen absorbing laminate
JP7225701B2 (en) Oxygen-absorbing laminate and its manufacturing method
JP6996291B2 (en) Method for manufacturing adhesive composition and laminate
JP6115708B2 (en) Oxygen absorbing film
JP6443823B2 (en) Oxygen absorbing film
JP5671816B2 (en) Oxygen-absorbing solvent-soluble resin and oxygen-absorbing adhesive resin composition
US20230158473A1 (en) Oxygen-absorbing film
JP6075710B2 (en) Oxygen-absorbing adhesive resin composition
JPH0762128B2 (en) adhesive
KR20150105972A (en) Oxygen-absorbing film, and oxygen-absorbing adhesive agent resin composition
JP7177977B2 (en) Oxygen-absorbing resin composition and oxygen-absorbing film containing the same
JP6090566B2 (en) Oxygen-absorbing resin composition and oxygen-absorbing adhesive resin composition
JP2021159002A (en) Food product packaging method and food product packaged body
WO2023092445A1 (en) A moisture resistant two-component adhesive composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811479

Country of ref document: EP

Kind code of ref document: A1