WO2023228468A1 - Twisted wire, insulated wire, and cable - Google Patents

Twisted wire, insulated wire, and cable Download PDF

Info

Publication number
WO2023228468A1
WO2023228468A1 PCT/JP2023/001424 JP2023001424W WO2023228468A1 WO 2023228468 A1 WO2023228468 A1 WO 2023228468A1 JP 2023001424 W JP2023001424 W JP 2023001424W WO 2023228468 A1 WO2023228468 A1 WO 2023228468A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
child
strands
stranded wire
stranded
Prior art date
Application number
PCT/JP2023/001424
Other languages
French (fr)
Japanese (ja)
Inventor
昭人 星間
健太 松岡
健吾 金本
大五 佐藤
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2023228468A1 publication Critical patent/WO2023228468A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/08Several wires or the like stranded in the form of a rope
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/04Flexible cables, conductors, or cords, e.g. trailing cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring

Definitions

  • the present disclosure relates to stranded wires, insulated wires, and cables.
  • Stranded wires, insulated wires, and cables used in moving parts that bend during operation in FA (Factory Automation) equipment, robots, automobiles, other industrial equipment, consumer equipment, etc. have only tensile strength and other strengths. Rather, durability against repeated bending stress, that is, bending resistance is required.
  • a clad wire that includes a steel core wire and a copper coating layer that covers the drawn wire as the wire (for example, Japanese Patent Application Laid-Open No. 2020-21620 (Patent Document 1) reference).
  • the steel core wire contributes to improved strength, and the copper coating layer provides high conductivity.
  • a stranded wire according to the present disclosure is a stranded wire in which a plurality of child strands are twisted together.
  • Each of the child stranded wires has the same structure in which a plurality of wires each having a circular cross-sectional shape perpendicular to the longitudinal direction and having the same diameter are twisted together.
  • the strand includes a steel core wire and a copper or copper alloy coating layer that covers the surface of the core wire.
  • the twisting pitch of the child strands is 40 times or more the diameter of the circumscribed circle of the child strands.
  • the twisting pitch of the stranded wire is 5 times or more and 20 times or less the diameter of the circumscribed circle of the stranded wire.
  • FIG. 1 is a schematic diagram showing the structure of a twisted wire.
  • FIG. 2 is a schematic diagram showing the structure of a child strand.
  • FIG. 3 is a schematic cross-sectional view showing the structure of the wire.
  • FIG. 4 is a schematic cross-sectional view showing the structure of the twisted wire.
  • FIG. 5 is a schematic diagram for explaining the twist pitch of the twisted wire and the child twisted wire.
  • FIG. 6 is a flowchart outlining a method for manufacturing stranded wire.
  • FIG. 7 is a schematic diagram showing the structure of twisted wires in the second embodiment.
  • FIG. 8 is a schematic diagram showing the structure of an insulated wire in Embodiment 3.
  • FIG. 9 is a schematic diagram showing the structure of a cable in Embodiment 4.
  • FIG. 1 is a schematic diagram showing the structure of a twisted wire.
  • FIG. 2 is a schematic diagram showing the structure of a child strand.
  • FIG. 3 is a schematic cross-
  • FIG. 10 is a schematic diagram showing the structure of a cable in Embodiment 5.
  • FIG. 11 is a schematic perspective view showing a connection state between an insulated wire and a crimp terminal.
  • FIG. 12 is a schematic diagram for explaining the tensile test method.
  • FIG. 13 is a schematic perspective view showing the structure of a test device for a bending test.
  • FIG. 14 is a schematic diagram for explaining the bending test method.
  • FIG. 15 is a schematic diagram for explaining the bending test method.
  • connection with crimp terminals is important as a simple connection method.
  • the core wire may crack when connected to a crimp terminal. Due to this cracking of the core wire, a problem may arise in that the crimp strength decreases.
  • the stranded wire of the present disclosure is a stranded wire in which a plurality of child strands are twisted together.
  • Each of the child stranded wires has the same structure in which a plurality of wires each having a circular cross-sectional shape perpendicular to the longitudinal direction and having the same diameter are twisted together.
  • the strand includes a steel core wire and a copper or copper alloy coating layer that covers the surface of the core wire.
  • the twisting pitch of the child strands is 40 times or more the diameter of the circumscribed circle of the child strands.
  • the twisting pitch of the stranded wire is 5 times or more and 20 times or less the diameter of the circumscribed circle of the stranded wire.
  • the stranded wire of the present disclosure is configured by further twisting a plurality of child stranded wires, which are formed by twisting element wires together. This provides high flexibility and ensures a certain degree of bending resistance.
  • the strands constituting the child stranded wire include a steel core wire and a coating layer made of copper or copper alloy that covers the surface of the core wire. This makes it possible to achieve both strength and conductivity. Since the shape of the cross section perpendicular to the longitudinal direction of each strand is circular with the same diameter, local stress concentration during repeated bending is reduced, contributing to improvement in bending resistance.
  • the twisting pitch of the child stranded wire is set to 40 times or more the diameter of the circumscribed circle of the child stranded wire, and some of the wires are stress concentration is avoided. As a result, cracking of the core wire during connection with the crimp terminal is suppressed. Furthermore, by making the twisting pitch of the stranded wire five times or more the diameter of the circumscribed circle of the stranded wire, unevenness on the surface of the stranded wire can be suppressed and bending resistance can be improved.
  • the twisting pitch of the stranded wires is 20 times or less the diameter of the circumscribed circle of the stranded wires, it is possible to avoid concentration of stress on some child strands during bending.
  • the state in which the strands constituting a child strand have the same diameter means that the average diameter and the diameter of each strand are the same, with respect to the average diameter of a plurality of strands constituting each child strand A state in which the difference between the two is 6.0% or less.
  • the stranded wire of the present disclosure it is possible to not only improve bending resistance but also achieve both strength and conductivity, as well as suppress cracking of the core wire when connecting with a crimp terminal. .
  • the diameter of the strands may be 0.02 mm or more and 0.09 mm or less.
  • the diameter of the strands By setting the diameter of the strands to 0.02 mm or more, it is possible to suppress breakage of the strands in the stranded wire manufacturing process and improve productivity.
  • the diameter of the strand By setting the diameter of the strand to 0.09 mm or less, the difference in strain between the outside and the inside of the bend when the strand is bent is suppressed, and the bending resistance is further improved.
  • the tensile strength of the core wire may be 1800 MPa or more and 4500 MPa or less.
  • the tensile strength of the core wire is 1800 MPa or more, it becomes easy to impart sufficient strength to the core wire.
  • the tensile strength of the core wire is 4500 MPa or less, it becomes easy to impart sufficient toughness to the core wire.
  • the carbon content of the steel constituting the core wire may be 0.70% by mass or more and 0.95% by mass or less.
  • the carbon content of steel has a significant impact on the strength and toughness of the steel.
  • the area of the coating layer relative to the area of the strands may be 20% or more and 80% or less.
  • the area of the coating layer By setting the area of the coating layer to the area of the wire to be 20% or more, it becomes easy to obtain sufficient conductivity.
  • the stranded wire in one aspect of the present disclosure is a stranded wire in which a plurality of child stranded wires are twisted together.
  • Each of the child stranded wires has the same structure in which a plurality of wires each having a circular cross-sectional shape perpendicular to the longitudinal direction and having the same diameter are twisted together.
  • the strand includes a steel core wire and a copper or copper alloy coating layer that covers the surface of the core wire.
  • the twisting pitch of the child strands is 40 times or more the diameter of the circumscribed circle of the child strands.
  • the twisting pitch of the stranded wire is 5 times or more and 20 times or less the diameter of the circumscribed circle of the stranded wire.
  • the diameter of the core wire is 0.02 mm or more and 0.09 mm or less.
  • the tensile strength of the core wire is 1800 MPa or more and 4500 MPa or less.
  • the carbon content of the steel constituting the core wire is 0.70% by mass or more and 0.95% by mass or less.
  • the area of the coating layer relative to the area of the wire is 20% or more and 80% or less.
  • the plurality of child stranded wires are arranged in contact with the central child stranded wire so as to surround the central child stranded wire and the outer peripheral side of the central child stranded wire. and six first peripheral child strands.
  • the child strands include 2 or more and 20 or less strands.
  • a stranded wire in another aspect of the present disclosure is a stranded wire in which a plurality of child strands are twisted together.
  • Each of the child stranded wires has the same structure in which a plurality of wires each having a circular cross-sectional shape perpendicular to the longitudinal direction and having the same diameter are twisted together.
  • the strand includes a steel core wire and a copper or copper alloy coating layer that covers the surface of the core wire.
  • the twisting pitch of the child strands is 40 times or more the diameter of the circumscribed circle of the child strands.
  • the twisting pitch of the stranded wire is 5 times or more and 20 times or less the diameter of the circumscribed circle of the stranded wire.
  • the diameter of the core wire is 0.02 mm or more and 0.09 mm or less.
  • the tensile strength of the core wire is 1800 MPa or more and 4500 MPa or less.
  • the carbon content of the steel constituting the core wire is 0.70% by mass or more and 0.95% by mass or less.
  • the area of the coating layer relative to the area of the wire is 20% or more and 80% or less.
  • the plurality of child stranded wires are arranged in contact with the central child stranded wire so as to surround the central child stranded wire and the outer peripheral side of the central child stranded wire.
  • first circumferential twisted wires arranged in contact with the first circumferential twisted wires and 12 second circumferential twisted wires arranged in contact with the first circumferential twisted wires on the outer peripheral side of the area where the first circumferential twisted wires are arranged. and, including.
  • the child strands include 2 or more and 20 or less strands.
  • the child strands have a structure including a center child strand and a first peripheral child strand as described above, or a structure including a center child strand, a first peripheral child strand, and a second peripheral child strand.
  • the cross section perpendicular to the longitudinal direction of the stranded wire becomes nearly circular.
  • the child stranded wire includes two or more strands, the flexibility of the stranded wire can be ensured and the bending resistance can be improved.
  • the child stranded wire includes 20 or less strands, a practical outer diameter of the stranded wire can be obtained when used as an electric wire.
  • the coating layer may be a plating layer. That is, the covering layer may be formed by plating.
  • the plating layer is suitable as the coating layer of the present disclosure because its thickness can be easily adjusted and it can be formed by a simple process.
  • An insulated wire according to one embodiment of the present disclosure includes the stranded wire of the present disclosure described above and an insulating layer that covers the outer periphery of the stranded wire.
  • the insulated wire not only has improved bending resistance, but also achieves both strength and conductivity, and can suppress cracking of the core wire when connected to a crimp terminal.
  • An insulated wire according to another aspect of the present disclosure includes a core in which a plurality of insulated strands are twisted together, and a protective layer made of an insulator that covers the outer periphery of the core.
  • Each of the insulated strands includes the strands of the present disclosure described above and an insulating layer covering the outer periphery of the strands.
  • an insulated wire that not only improves bending resistance but also achieves both strength and conductivity, and can suppress cracking of the core wire when connected to a crimp terminal. can be provided.
  • a cable according to one aspect of the present disclosure includes the insulated wire according to the above-described one aspect of the present disclosure, a shield portion made of a conductor that is arranged to surround the outer periphery of the insulated wire, and a cable that is arranged so as to surround the outer periphery of the shield portion. an outer skin layer made of an insulator.
  • the present disclosure can not only improve bending resistance but also achieve both strength and conductivity, and suppress cracking of the core wire when connecting with a crimp terminal.
  • I can do it.
  • a cable according to another aspect of the present disclosure includes the insulated wire according to the other aspect of the present disclosure, a shield portion made of a conductor arranged so as to surround the outer periphery of the insulated wire, and a shield portion arranged so as to surround the outer periphery of the shield portion. and an outer skin layer made of an insulator.
  • the cable has not only improved bending resistance but also achieves both strength and conductivity, and can suppress cracking of the core wire when connecting with a crimp terminal.
  • FIG. 1 is a schematic diagram showing the structure of a twisted wire.
  • stranded wire 1 in this embodiment has a structure in which a plurality of child stranded wires 10 are twisted together.
  • the plurality of child strands 10 include one central child strand 10A and six first peripheral child strands 10B.
  • the central child strand 10A is located at the center.
  • the six first peripheral child strands 10B are arranged in contact with the center child strand 10A so as to surround the outer peripheral side of the center child strand 10A.
  • the central child strand 10A is in contact with all six first peripheral child strands 10B on its outer peripheral surface.
  • Each first peripheral child strand 10B is in contact with two circumferentially adjacent first peripheral child strands 10B and the center child strand 10A on the outer peripheral surface.
  • FIG. 2 is a schematic diagram showing the structure of the child strands.
  • each of the child strands 10 has the same structure in which a plurality of wires 100 whose cross-sectional shape perpendicular to the longitudinal direction is circular and have the same diameter are twisted together.
  • the plurality of wires 100 include one central wire 100A and six first peripheral wires 100B.
  • the child twisted wire 10 includes 2 or more and 20 or less (specifically 7) strands 100.
  • the central strand 100A is arranged at the center.
  • the six first peripheral wires 100B are arranged in contact with the center wire 100A so as to surround the outer peripheral side of the center wire 100A.
  • the central strand 100A is in contact with all six first peripheral strands 100B on its outer peripheral surface.
  • Each first peripheral strand 100B is in contact with two first peripheral strands 100B adjacent to each other in the circumferential direction and the center strand 100A on the outer peripheral surface.
  • FIG. 3 is a schematic cross-sectional view showing the structure of the wire.
  • FIG. 3 shows a cross section perpendicular to the longitudinal direction of the strand.
  • strand 100 includes a core wire 101 and a covering layer 102.
  • Core wire 101 is made of steel.
  • the diameter of the wire 100 is, for example, 0.02 mm or more and 0.09 mm or less.
  • the carbon content of the steel that constitutes the core wire 101 can be, for example, 0.70% by mass or more and 0.95% by mass or less.
  • the carbon content of the steel that constitutes the core wire 101 may be 0.90% by mass or less.
  • As the steel constituting the core wire 101 for example, steel corresponding to piano wire specified in JIS (Japanese Industrial Standards) G3502 can be adopted.
  • the tensile strength of the core wire 101 may be, for example, 1800 MPa or more and 4500 MPa or less.
  • the tensile strength of the core wire 101 can be 2500 MPa or more.
  • the tensile strength of the core wire 101 can be 3800 MPa or less.
  • the covering layer 102 is made of copper (Cu) or a copper alloy.
  • the covering layer 102 covers the surface 101A (outer peripheral surface) of the core wire 101.
  • the thickness of the covering layer 102 is constant in the circumferential direction.
  • the coating layer 102 may be a plating layer.
  • the covering layer 102 may be a layer formed by plating. In a cross section perpendicular to the longitudinal direction of the wire 100 (the cross section shown in FIG. 3), the area of the coating layer 102 relative to the area of the wire 100 may be 20% or more and 80% or less.
  • the state where the thickness of the coating layer 102 is constant in the circumferential direction means that the difference between the maximum value and the minimum value of the thickness is 7.0 with respect to the average value of the thickness of the coating layer 102 in each strand 100. % or less.
  • FIG. 4 is a schematic cross-sectional view showing the structure of the twisted wire.
  • FIG. 5 is a schematic diagram for explaining the twist pitch of the twisted wire and the child twisted wire.
  • FIG. 4 shows a cross section perpendicular to the longitudinal direction of the strand 1.
  • the twist pitch P of the child strands 10 is 40 times or more the diameter d2 of the circumscribed circle of the child strands 10.
  • the length is defined as the length measured parallel to the longitudinal direction of the child strands 10.
  • the twist pitch P of the stranded wire 1 is 5 times or more and 20 times or less the diameter d1 of the circumscribed circle of the stranded wire 1.
  • the reference numbers (excluding those written in parentheses) in FIG. is defined as the length measured parallel to the longitudinal direction of the strand 1.
  • the stranded wire 1 of this embodiment is configured by further twisting a plurality of child strands 10, which are formed by twisting the strands 100 together. This provides high flexibility and ensures a certain degree of bending resistance.
  • the strands 100 constituting the child stranded wire 10 include a core wire 101 made of steel and a coating layer 102 made of copper or copper alloy that covers the surface 101A of the core wire 101. This makes it possible to achieve both strength and conductivity. Since the shape of the cross section perpendicular to the longitudinal direction of each strand 100 is circular with the same diameter, local stress concentration during repeated bending is reduced, contributing to improvement in bending resistance.
  • the twist pitch P of the child stranded wire 10 is set to 40 times or more the diameter d2 of the circumscribed circle of the child stranded wire 10.
  • the strands 100 are appropriately rearranged when connecting with a crimp terminal, Concentration of stress on some of the wires 100 is avoided.
  • cracking of the core wire 101 during connection with a crimp terminal is suppressed.
  • the stranded wire 1 of this embodiment not only improves bending resistance, but also achieves both strength and conductivity, and can suppress cracking of the core wire when connecting with a crimp terminal. It is a twisted wire.
  • each of the plurality of child strands 10 constituting the stranded wire 1 has a central child strand 10A disposed at the center and a central child strand 10A arranged at the center in a cross section perpendicular to the longitudinal direction of the strand 1. It includes six first peripheral child strands 10B arranged in contact with the central child strand 10A so as to surround the outer circumferential side of the strand 10A.
  • the child twisted wire 10 includes 2 or more and 20 or less strands 100. As a result, the cross section perpendicular to the longitudinal direction of the stranded wire 1 becomes nearly circular. As a result, local stress concentration during repeated bending is reduced and bending resistance is improved.
  • the child stranded wire 10 includes two or more strands 100, it is possible to ensure the flexibility of the stranded wire 1 and improve its bending resistance. Since the child stranded wire 10 includes 20 or less strands 100, it is possible to obtain a practical outer diameter of the stranded wire 1 when used as an electric wire.
  • FIG. 6 is a flowchart outlining a method for manufacturing stranded wire.
  • a raw material steel wire preparation step is first performed as step S10.
  • a raw material steel wire is prepared.
  • a steel wire made of steel having a carbon content of 0.70% by mass or more and 0.95% by mass or less is prepared.
  • the steel constituting the raw steel wire contains silicon (Si) of 0.4% by mass to 2.5% by mass, manganese (Mn) of 0.6% to 0.9% by mass, and 0.1% by mass. It may contain chromium (Cr) in an amount of 1.8% by mass or less.
  • a piano wire rod for example, SWRS82A
  • G3502 a piano wire rod
  • step S20 patenting is performed on the raw material steel wire prepared in step S10. Specifically, after the raw steel wire is heated to a temperature range equal to or higher than the austenitization temperature (A1 point), it is rapidly cooled to a temperature range higher than the martensitization start temperature (MS point), and then maintained in the temperature range. A heat treatment is performed. As a result, the metal structure of the raw material steel wire becomes a fine pearlite structure with a small lamella interval.
  • the treatment of heating the raw steel wire to a temperature range of A1 point or higher is preferably carried out in an inert gas atmosphere from the viewpoint of suppressing the occurrence of decarburization.
  • a surface roughening step is performed as step S30.
  • a surface roughening treatment is performed on the raw steel wire that has been patented in step S20.
  • the surface roughness of the raw steel wire is increased by bringing the surface of the raw steel wire into contact with an acid such as hydrochloric acid or sulfuric acid.
  • the concentration of hydrochloric acid can be, for example, 35% by mass, and the concentration of sulfuric acid can be, for example, 65% by mass.
  • a coating layer forming step is performed as step S40.
  • a coating layer is formed on the first intermediate steel wire obtained by performing steps up to step S30.
  • a coating layer made of copper is formed on the first intermediate steel wire by plating.
  • a metal layer such as tin (Sn) or zinc (Zn) may be formed by plating, and by alloying these, a coating layer made of a copper alloy may be formed.
  • step S50 a wire drawing step is performed as step S50.
  • wire drawing drawing
  • the true strain in the wire drawing process in step S50 can be, for example, 2.3 or more and 4.9 or less, and preferably 3.0 or more and 4.0 or less.
  • the strand 100 in this embodiment is obtained.
  • step S60 a first stranding step is performed as step S60.
  • the child stranded wire 10 is produced by twisting together the strands 100 obtained by performing steps up to step S50. Specifically, referring to FIG. 2, seven strands 100 produced in steps S10 to S50 are prepared, and one strand is twisted as a center strand 100A and six strands are twisted as a first peripheral strand 100B. match. As a result, a child twisted wire 10 is obtained.
  • the twist pitch P of the child stranded wire 10 is set to be 40 times or more the diameter d2 of the circumscribed circle of the child stranded wire 10.
  • step S70 a second stranding step is performed as step S70.
  • the child strands 10 obtained in step S60 are twisted together to produce the strand 1.
  • seven child strands 10 produced in step S60 are prepared, one as the central child strand 10A, and six as the first peripheral child strand 10B. Twist together.
  • a twisted wire 1 is obtained.
  • the twist pitch P of the stranded wire 1 is set to be at least 5 times and at most 20 times the diameter d1 of the circumscribed circle of the stranded wire 1.
  • FIG. 7 is a schematic diagram showing the structure of twisted wires in the second embodiment.
  • stranded wire 1 in Embodiment 2 basically has the same structure as stranded wire 1 in Embodiment 1, and produces similar effects.
  • the stranded wire 1 of the second embodiment differs from that of the first embodiment in the number of child stranded wires 10 that constitute the stranded wire 1.
  • the plurality of child strands 10 constituting the strand 1 of the present embodiment include a central child strand 10A arranged at the center in a cross section perpendicular to the longitudinal direction of the strand 1; Six first peripheral child strands 10B arranged in contact with the center child strand 10A so as to surround the outer peripheral side of the center child strand 10A, and the outer periphery of the area where the first peripheral child strands 10B are arranged. Twelve second circumferential strands 10C are disposed on the side in contact with the first circumferential strands 10B.
  • the twisted wire 1 includes 19 child twisted wires 10.
  • the central child strand 10A is in contact with all six first peripheral child strands 10B on the outer peripheral surface.
  • Each first peripheral child strand 10B is in contact with two circumferentially adjacent first peripheral child strands 10B and the center child strand 10A on the outer peripheral surface.
  • Each of the second circumferential strands 10C is in contact with two circumferentially adjacent second circumferential strands 10C and a first circumferential strand 10B located on the inside in the radial direction on its outer peripheral surface.
  • the stranded wire 1 of this embodiment in which the number and arrangement of child stranded wires 10 included in the stranded wire 1 are changed in this way also has improved bending resistance, similar to the stranded wire 1 of the first embodiment. Rather, it is a stranded wire that achieves both strength and conductivity and can suppress cracking of the core wire when connected to a crimp terminal.
  • FIG. 8 is a schematic diagram showing the structure of an insulated wire in Embodiment 3.
  • insulated wire 3 of this embodiment includes a core 9 and an insulating layer 12.
  • the core 9 has a structure in which a plurality of (here, two) insulated strands 2 are twisted together.
  • the insulating layer 12 is made of an insulator such as resin.
  • the insulating layer 12 is a protective layer disposed to cover the outer periphery of the core 9.
  • the insulated stranded wire 2 includes the stranded wire 1 of the first embodiment or the second embodiment described above, and an insulating layer 11 that covers the outer periphery of the stranded wire 1.
  • the insulating layer 11 is made of an insulator such as resin.
  • the insulated wire 3 of this embodiment not only has improved bending resistance, but also achieves both strength and conductivity, and can suppress cracking of the core wire when connected to a crimp terminal.
  • the stranded wire 1 of form 1 or 2 it is possible not only to improve bending resistance but also to achieve both strength and conductivity, and to suppress cracking of the core wire 101 when connecting with a crimp terminal.
  • the insulated stranded wire 2 constituting the core 9 can also be used as an insulated wire. That is, an insulated stranded wire 2 as an insulated wire in another embodiment includes the stranded wire 1 of the first or second embodiment described above, and an insulating layer 11 that covers the outer periphery of the stranded wire 1.
  • the insulated stranded wire 2 not only has improved bending resistance, but also achieves both strength and conductivity, and can suppress cracking of the core wire 101 when connected to a crimp terminal.
  • the insulated wire not only improves bending resistance but also achieves both strength and conductivity, and can suppress cracking of the core wire 101 when connected to a crimp terminal. It becomes.
  • FIG. 9 is a schematic diagram showing the structure of a cable in Embodiment 4.
  • cable 300 includes stranded wire 1 of Embodiment 1 or Embodiment 2, insulating layer 4 disposed so as to cover outer periphery 1A of stranded wire 1, and outer peripheral surface of insulating layer 4. 4A, and an outer skin layer 6 that is arranged to cover the outer periphery 5A of the shield part 5.
  • the cable 300 includes the insulated stranded wire 2 as the insulated wire described in the third embodiment, and the shield portion 5 made of a conductor arranged so as to surround the outer periphery of the insulated stranded wire 2. , and an outer skin layer 6 made of an insulator disposed so as to surround the outer periphery of the shield portion 5.
  • the shield portion 5 may have a structure in which metal wires are woven. As the metal wire constituting the shield portion 5, the strand 100 in the above embodiment may be employed.
  • the cable 300 of this embodiment not only has improved bending resistance, but also achieves both strength and conductivity, and can suppress cracking of the core wire 101 when connecting with a crimp terminal.
  • the stranded wire 1 of form 1 or 2 it is possible not only to improve bending resistance but also to achieve both strength and conductivity, and to suppress cracking of the core wire 101 when connecting with a crimp terminal. It is a cable.
  • FIG. 10 is a schematic diagram showing the structure of a cable in Embodiment 5.
  • a cable 400 according to the present embodiment includes the insulated wire 3 (see FIG. 8) described in the third embodiment, and a conductor made of a conductor arranged so as to surround the outer periphery of the insulated wire 3. It includes a shield part 5 and an outer skin layer 6 made of an insulator and arranged so as to surround the outer periphery 5A of the shield part 5.
  • the shield portion 5 may have a structure in which metal wires are woven. As the metal wire constituting the shield portion 5, the strand 100 in the above embodiment may be employed.
  • the cable 400 of this embodiment not only has improved bending resistance, but also achieves both strength and conductivity, and can suppress cracking of the core wire 101 when connected to a crimp terminal.
  • the stranded wire 1 of form 1 or 2 it is possible not only to improve bending resistance but also to achieve both strength and conductivity, and to suppress cracking of the core wire 101 when connecting with a crimp terminal. It is a cable.
  • Twisted wire 1 was prepared according to the manufacturing method described in Embodiment 1 above.
  • the outer peripheral surface of this stranded wire 1 was covered with an insulating layer 11 to produce an insulated wire (insulated stranded wire 2).
  • SWRS82A which is a piano wire specified in JIS G3502, was used as the raw material steel wire prepared in step S10.
  • a pure copper coating layer 102 was formed by plating. By adjusting the thickness of the coating layer 102, the area ratio of the coating layer 102 in a cross section perpendicular to the longitudinal direction of the wire 100 was changed.
  • wire drawing was performed so that the outer diameter (diameter) of the wire 100 was 0.05 mm.
  • step S60 the twisting pitch of the child stranded wire 10 was changed to 60, and the number of strands 100 included in the child stranded wire 10 was varied in the range of 7 to 16. Further, in step S70, the twist pitch of the twisted wire 1 was changed. In this way, samples A to S were obtained. Further, in step S10, raw steel wires having different outer diameters and carbon contents were prepared, and by wire drawing in step S50, the outer diameter of the strands 100 was changed, thereby producing samples T to W.
  • FIG. 11 is a schematic perspective view showing a connection state between an insulated wire and a crimp terminal.
  • FIG. 12 is a schematic diagram for explaining the tensile test method.
  • the crimp terminal 80 includes a main body 83, a conductor barrel 81 connected to the main body 83, and an insulator connected to the opposite side of the conductor barrel 81 from the side connected to the main body 83.
  • ration barrel 82 When connecting the insulated stranded wire 2, which is an insulated wire, to the crimp terminal 80, the insulating layer 11 at the end of the insulated stranded wire 2 is first removed to expose the stranded wire 1.
  • the conductor barrel 81 by crimping the conductor barrel 81, the exposed strands 1 are held by the conductor barrel 81, and the insulating layer 11 is held by the insulation barrel 82. At this time, if cracks occur in the core wire 101 of the strands 100 constituting the stranded wire 1 held by the conductor barrel 81, the strength of the connection between the conductor barrel 81 and the stranded wire 1 decreases.
  • Fig. 13 is a schematic perspective view showing the structure of a test device for a bending test.
  • 14 and 15 are schematic diagrams for explaining the bending test method.
  • bending test device 70 includes mandrels 71 and 72, a pair of jigs 73a and 73b, and a weight 74.
  • a weight 74 is attached to one end of the insulated stranded wire 2 in the longitudinal direction. In this test, the mass of the weight 74 was 100 g.
  • a pair of jigs 73a and 73b sandwich the insulated strands 2.
  • Mandrels 71 and 72 each having a cylindrical shape are arranged between the weight 74 and the jigs 73a and 73b.
  • the outer circumferential surface 711 of the mandrel 71 and the outer circumferential surface 721 of the mandrel 72 contact the outer circumferential surface of the insulated stranded wire 2 .
  • the longitudinal direction of the mandrels 71 and 72 is perpendicular to the longitudinal direction of the insulated stranded wire 2.
  • the diameter Q of the mandrels 71, 72 is 20 mm (see FIGS. 14 and 15).
  • the state shown in FIG. 13 is assumed to be the initial state. Then, the test is conducted as follows.
  • the insulated strand 2 is bent in the direction of arrow R1 in FIG. At this time, the insulated strands 2 are bent along the outer circumferential surface 711 of the mandrel 71, as shown in FIG. The maximum bending angle ⁇ 1 of the insulated strands 2 is 90°.
  • the insulated strands 2 are bent in the direction of arrow R2 in FIG. At this time, the insulated strands 2 are bent along the outer peripheral surface 721 of the mandrel 72, as shown in FIG.
  • the maximum bending angle ⁇ 2 of the insulated strands 2 is 90°.
  • the above operation was repeated, and the number of times each sample was bent until the strand 1 in the stranded insulated wire 2 broke was investigated.
  • Table 1 shows the experimental results of (1) and (2) above.
  • the state where the column of twist pitch/ d2 of child stranded wire in Table 1 is ⁇ (infinity) means the state in which the strands constituting the child strand are not twisted, that is, the strands are in the longitudinal direction of the child strand. It means the state of being arranged parallel to the direction.
  • the expression "No breakage" in the column of the number of bends before breakage in Table 1 means that no breakage occurred after 10 million bendings and the test was discontinued.
  • samples F and G in which the twist pitch/d 1 (diameter of the circumscribed circle of the stranded wire) of the stranded wire is outside the range of 5 or more and 20 or less, which is the range of the present disclosure, other samples are Although it did not break even after repeated bending, it did break at an early stage.
  • sample G since the surface of the stranded wire 1 had large irregularities, it was also confirmed that poor insulation occurred. From the above experimental results, it was confirmed that the stranded wire, insulated wire, and cable of the present disclosure not only improve bending resistance but also suppress cracking of the core wire when connected to a crimp terminal.

Landscapes

  • Non-Insulated Conductors (AREA)

Abstract

This twisted wire is obtained by twisting a plurality of sub-twisted wires together. Each of the sub-twisted wires has the same structure in which a plurality of strands of which the cross-sectional shapes perpendicular to the longitudinal direction are circles of the same diameter, are twisted together. The strands include a steel core wire, and a copper or copper alloy cover layer covering the surface of the core wire. The twist pitch of the sub-twisted wires is at least 40 times the diameter of the circumscribed circle of the sub-twisted wires. The twist pitch of the twisted wires is 5-20 times the diameter of the circumscribed circle of the twisted wires.

Description

撚り線、絶縁電線およびケーブルStranded wire, insulated wire and cable
 本開示は、撚り線、絶縁電線およびケーブルに関するものである。 The present disclosure relates to stranded wires, insulated wires, and cables.
 本出願は、2022年5月26日出願の日本出願第2022-85853号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。 This application claims priority based on Japanese Application No. 2022-85853 filed on May 26, 2022, and incorporates all the contents described in the said Japanese application.
 FA(Factory Automation)機器、ロボット、自動車、その他の産業用機器、民生用機器などにおいて、動作中に屈曲する可動部に使用される撚り線、絶縁電線およびケーブルには、引張強度などの強度だけでなく、繰り返し曲げ応力に対する耐久性、すなわち耐屈曲性が求められる。これに対し、鋼製の芯線と、伸線を覆う銅製の被覆層とを含むクラッド線材を素線として採用することが提案されている(たとえば、特開2020-21620号公報(特許文献1)参照)。鋼製の芯線が強度の向上に寄与し、銅製の被覆層が高い導電性を担う。 Stranded wires, insulated wires, and cables used in moving parts that bend during operation in FA (Factory Automation) equipment, robots, automobiles, other industrial equipment, consumer equipment, etc. have only tensile strength and other strengths. Rather, durability against repeated bending stress, that is, bending resistance is required. On the other hand, it has been proposed to use a clad wire that includes a steel core wire and a copper coating layer that covers the drawn wire as the wire (for example, Japanese Patent Application Laid-Open No. 2020-21620 (Patent Document 1) reference). The steel core wire contributes to improved strength, and the copper coating layer provides high conductivity.
特開2020-21620号公報JP2020-21620A
 本開示に従った撚り線は、複数の子撚り線が互いに撚り合わされた撚り線である。子撚り線のそれぞれは、長手方向に垂直な断面形状が同一直径の円形である複数の素線が互いに撚り合わされた同一の構造を有している。素線は、鋼製の芯線と、芯線の表面を覆う、銅または銅合金製の被覆層と、を含む。子撚り線の撚りピッチは、子撚り線の外接円の直径の40倍以上である。撚り線の撚りピッチは、撚り線の外接円の直径の5倍以上20倍以下である。 A stranded wire according to the present disclosure is a stranded wire in which a plurality of child strands are twisted together. Each of the child stranded wires has the same structure in which a plurality of wires each having a circular cross-sectional shape perpendicular to the longitudinal direction and having the same diameter are twisted together. The strand includes a steel core wire and a copper or copper alloy coating layer that covers the surface of the core wire. The twisting pitch of the child strands is 40 times or more the diameter of the circumscribed circle of the child strands. The twisting pitch of the stranded wire is 5 times or more and 20 times or less the diameter of the circumscribed circle of the stranded wire.
図1は、撚り線の構造を示す概略図である。FIG. 1 is a schematic diagram showing the structure of a twisted wire. 図2は、子撚り線の構造を示す概略図である。FIG. 2 is a schematic diagram showing the structure of a child strand. 図3は、素線の構造を示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing the structure of the wire. 図4は、撚り線の構造を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing the structure of the twisted wire. 図5は、撚り線および子撚り線の撚りピッチを説明するための概略図である。FIG. 5 is a schematic diagram for explaining the twist pitch of the twisted wire and the child twisted wire. 図6は、撚り線の製造方法の概略を示すフローチャートである。FIG. 6 is a flowchart outlining a method for manufacturing stranded wire. 図7は、実施の形態2における撚り線の構造を示す概略図である。FIG. 7 is a schematic diagram showing the structure of twisted wires in the second embodiment. 図8は、実施の形態3における絶縁電線の構造を示す概略図である。FIG. 8 is a schematic diagram showing the structure of an insulated wire in Embodiment 3. 図9は、実施の形態4におけるケーブルの構造を示す概略図である。FIG. 9 is a schematic diagram showing the structure of a cable in Embodiment 4. 図10は、実施の形態5におけるケーブルの構造を示す概略図である。FIG. 10 is a schematic diagram showing the structure of a cable in Embodiment 5. 図11は、絶縁電線と圧着端子との接続状態を示す概略斜視図である。FIG. 11 is a schematic perspective view showing a connection state between an insulated wire and a crimp terminal. 図12は、引張試験の方法を説明するための概略図である。FIG. 12 is a schematic diagram for explaining the tensile test method. 図13は、屈曲試験の試験装置の構造を示す概略斜視図である。FIG. 13 is a schematic perspective view showing the structure of a test device for a bending test. 図14は、屈曲試験の方法を説明するための概略図である。FIG. 14 is a schematic diagram for explaining the bending test method. 図15は、屈曲試験の方法を説明するための概略図である。FIG. 15 is a schematic diagram for explaining the bending test method.
 [本開示が解決しようとする課題]
 上記撚り線、絶縁電線およびケーブルにおいて、圧着端子との接続は、簡易的な接続方法として重要である。しかし、上記クラッド線材を素線として採用した場合、鋼製の芯線の靭性が低いため、圧着端子との接続において芯線に割れが生じる場合がある。この芯線の割れに起因して、圧着強度が低下するという問題が生じうる。
[Problems that this disclosure seeks to solve]
In the above stranded wires, insulated wires, and cables, connection with crimp terminals is important as a simple connection method. However, when the above-mentioned clad wire is used as a wire, since the toughness of the steel core wire is low, the core wire may crack when connected to a crimp terminal. Due to this cracking of the core wire, a problem may arise in that the crimp strength decreases.
 そこで、耐屈曲性の向上だけでなく、強度および導電性の両立を達成するとともに、圧着端子との接続時における芯線の割れを抑制することが可能な撚り線、絶縁電線およびケーブルを提供することを本開示の目的の1つとする。 Therefore, it is an object of the present invention to provide stranded wires, insulated wires, and cables that not only improve bending resistance but also achieve both strength and conductivity, and can suppress cracking of core wires when connected to crimp terminals. is one of the objectives of this disclosure.
 [本開示の効果]
 上記撚り線によれば、耐屈曲性の向上だけでなく、強度および導電性の両立を達成するとともに、圧着端子との接続時における芯線の割れを抑制することができる。
[Effects of this disclosure]
According to the above-mentioned stranded wire, it is possible not only to improve bending resistance but also to achieve both strength and conductivity, and to suppress cracking of the core wire during connection with a crimp terminal.
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。本開示の撚り線は、複数の子撚り線が互いに撚り合わされた撚り線である。子撚り線のそれぞれは、長手方向に垂直な断面形状が同一直径の円形である複数の素線が互いに撚り合わされた同一の構造を有している。素線は、鋼製の芯線と、芯線の表面を覆う、銅または銅合金製の被覆層と、を含む。子撚り線の撚りピッチは、子撚り線の外接円の直径の40倍以上である。撚り線の撚りピッチは、撚り線の外接円の直径の5倍以上20倍以下である。
[Description of embodiments of the present disclosure]
First, embodiments of the present disclosure will be listed and described. The stranded wire of the present disclosure is a stranded wire in which a plurality of child strands are twisted together. Each of the child stranded wires has the same structure in which a plurality of wires each having a circular cross-sectional shape perpendicular to the longitudinal direction and having the same diameter are twisted together. The strand includes a steel core wire and a copper or copper alloy coating layer that covers the surface of the core wire. The twisting pitch of the child strands is 40 times or more the diameter of the circumscribed circle of the child strands. The twisting pitch of the stranded wire is 5 times or more and 20 times or less the diameter of the circumscribed circle of the stranded wire.
 本開示の撚り線は、素線が撚り合されて構成される複数の子撚り線が、さらに撚り合わせれて構成されている。これにより、高い可撓性が得られ、一定の耐屈曲性が確保される。そして、子撚り線を構成する素線は、鋼製の芯線と、芯線の表面を覆う、銅または銅合金製の被覆層とを含む。これにより、強度および導電性の両立を達成することができる。各素線の長手方向に垂直な断面の形状が同一直径の円形であることにより、繰り返し曲げにおける局所的な応力集中が低減され、耐屈曲性の向上に寄与する。さらに、子撚り線の撚りピッチが、子撚り線の外接円の直径の40倍以上に設定されることにより、圧着端子との接続に際して素線が適切に再配列し、一部の素線への応力の集中が回避される。その結果、圧着端子との接続時における芯線の割れが抑制される。さらに、撚り線の撚りピッチを撚り線の外接円の直径の5倍以上とすることにより、撚り線の表面における凹凸を抑制し、耐屈曲性を向上させることができる。また、撚り線の撚りピッチを撚り線の外接円の直径の20倍以下とすることにより、屈曲時における一部の子撚り線への応力の集中を回避することができる。なお、本願において、子撚り線を構成する素線が同一直径である状態とは、各子撚り線を構成する複数の素線の平均直径に対して、当該平均直径と各素線の直径との差が6.0%以下である状態をいう。 The stranded wire of the present disclosure is configured by further twisting a plurality of child stranded wires, which are formed by twisting element wires together. This provides high flexibility and ensures a certain degree of bending resistance. The strands constituting the child stranded wire include a steel core wire and a coating layer made of copper or copper alloy that covers the surface of the core wire. This makes it possible to achieve both strength and conductivity. Since the shape of the cross section perpendicular to the longitudinal direction of each strand is circular with the same diameter, local stress concentration during repeated bending is reduced, contributing to improvement in bending resistance. Furthermore, by setting the twisting pitch of the child stranded wire to 40 times or more the diameter of the circumscribed circle of the child stranded wire, the wires are properly rearranged when connecting with the crimp terminal, and some of the wires are stress concentration is avoided. As a result, cracking of the core wire during connection with the crimp terminal is suppressed. Furthermore, by making the twisting pitch of the stranded wire five times or more the diameter of the circumscribed circle of the stranded wire, unevenness on the surface of the stranded wire can be suppressed and bending resistance can be improved. Furthermore, by setting the twisting pitch of the stranded wires to be 20 times or less the diameter of the circumscribed circle of the stranded wires, it is possible to avoid concentration of stress on some child strands during bending. In addition, in this application, the state in which the strands constituting a child strand have the same diameter means that the average diameter and the diameter of each strand are the same, with respect to the average diameter of a plurality of strands constituting each child strand A state in which the difference between the two is 6.0% or less.
 以上のように、本開示の撚り線によれば、耐屈曲性の向上だけでなく、強度および導電性の両立を達成するとともに、圧着端子との接続時における芯線の割れを抑制することができる。 As described above, according to the stranded wire of the present disclosure, it is possible to not only improve bending resistance but also achieve both strength and conductivity, as well as suppress cracking of the core wire when connecting with a crimp terminal. .
 上記撚り線において、素線の直径は、0.02mm以上0.09mm以下であってもよい。素線の直径を0.02mm以上とすることにより、撚り線の製造プロセスにおける素線の断線を抑制し、生産性を向上させることができる。素線の直径を0.09mm以下とすることにより、素線が屈曲した場合における曲げの外側と内側とのひずみの差が抑制され、耐屈曲性がさらに向上する。 In the above stranded wire, the diameter of the strands may be 0.02 mm or more and 0.09 mm or less. By setting the diameter of the strands to 0.02 mm or more, it is possible to suppress breakage of the strands in the stranded wire manufacturing process and improve productivity. By setting the diameter of the strand to 0.09 mm or less, the difference in strain between the outside and the inside of the bend when the strand is bent is suppressed, and the bending resistance is further improved.
 上記撚り線において、芯線の引張強度は1800MPa以上4500MPa以下であってもよい。芯線の引張強度が1800MPa以上であることにより、芯線に十分な強度を付与することが容易となる。芯線の引張強度が4500MPa以下であることにより、芯線に十分な靭性を付与することが容易となる。 In the above stranded wire, the tensile strength of the core wire may be 1800 MPa or more and 4500 MPa or less. When the tensile strength of the core wire is 1800 MPa or more, it becomes easy to impart sufficient strength to the core wire. When the tensile strength of the core wire is 4500 MPa or less, it becomes easy to impart sufficient toughness to the core wire.
 上記撚り線において、芯線を構成する鋼の炭素含有量は0.70質量%以上0.95質量%以下であってもよい。鋼の炭素含有量は、鋼の強度および靭性に大きな影響を及ぼす。芯線を構成する鋼の炭素含有量を0.70質量%以上とすることにより、芯線に十分な強度を付与することが容易となる。芯線を構成する鋼の炭素含有量を0.95質量%以下とすることにより、芯線に十分な靭性を付与することが容易となる。 In the above stranded wire, the carbon content of the steel constituting the core wire may be 0.70% by mass or more and 0.95% by mass or less. The carbon content of steel has a significant impact on the strength and toughness of the steel. By setting the carbon content of the steel constituting the core wire to 0.70% by mass or more, it becomes easy to impart sufficient strength to the core wire. By setting the carbon content of the steel constituting the core wire to 0.95% by mass or less, it becomes easy to impart sufficient toughness to the core wire.
 上記撚り線において、素線の長手方向に垂直な断面において、素線の面積に対する被覆層の面積は20%以上80%以下であってもよい。素線の面積に対する被覆層の面積を20%以上とすることにより、十分な導電性を得ることが容易となる。素線の面積に対する被覆層の面積を80%以下とすることにより、十分な強度および耐屈曲性を得ることが容易となる。 In the above-mentioned stranded wire, in a cross section perpendicular to the longitudinal direction of the strands, the area of the coating layer relative to the area of the strands may be 20% or more and 80% or less. By setting the area of the coating layer to the area of the wire to be 20% or more, it becomes easy to obtain sufficient conductivity. By controlling the area of the coating layer to 80% or less of the area of the wire, it becomes easy to obtain sufficient strength and bending resistance.
 本開示の一態様における撚り線は、複数の子撚り線が互いに撚り合わされた撚り線である。子撚り線のそれぞれは、長手方向に垂直な断面形状が同一直径の円形である複数の素線が互いに撚り合わされた同一の構造を有している。素線は、鋼製の芯線と、芯線の表面を覆う、銅または銅合金製の被覆層と、を含む。子撚り線の撚りピッチは、子撚り線の外接円の直径の40倍以上である。撚り線の撚りピッチは、撚り線の外接円の直径の5倍以上20倍以下である。芯線の直径は、0.02mm以上0.09mm以下である。芯線の引張強度は1800MPa以上4500MPa以下である。芯線を構成する鋼の炭素含有量は0.70質量%以上0.95質量%以下である。素線の長手方向に垂直な断面において、素線の面積に対する被覆層の面積は20%以上80%以下である。複数の上記子撚り線は、撚り線の長手方向に垂直な断面において、中央に配置される中央子撚り線と、中央子撚り線の外周側を取り囲むように中央子撚り線に接触して配置される6本の第1周囲子撚り線と、を含む。子撚り線は、2本以上20本以下の素線を含む。 The stranded wire in one aspect of the present disclosure is a stranded wire in which a plurality of child stranded wires are twisted together. Each of the child stranded wires has the same structure in which a plurality of wires each having a circular cross-sectional shape perpendicular to the longitudinal direction and having the same diameter are twisted together. The strand includes a steel core wire and a copper or copper alloy coating layer that covers the surface of the core wire. The twisting pitch of the child strands is 40 times or more the diameter of the circumscribed circle of the child strands. The twisting pitch of the stranded wire is 5 times or more and 20 times or less the diameter of the circumscribed circle of the stranded wire. The diameter of the core wire is 0.02 mm or more and 0.09 mm or less. The tensile strength of the core wire is 1800 MPa or more and 4500 MPa or less. The carbon content of the steel constituting the core wire is 0.70% by mass or more and 0.95% by mass or less. In a cross section perpendicular to the longitudinal direction of the wire, the area of the coating layer relative to the area of the wire is 20% or more and 80% or less. In a cross section perpendicular to the longitudinal direction of the stranded wires, the plurality of child stranded wires are arranged in contact with the central child stranded wire so as to surround the central child stranded wire and the outer peripheral side of the central child stranded wire. and six first peripheral child strands. The child strands include 2 or more and 20 or less strands.
 本開示の他の態様における撚り線は、複数の子撚り線が互いに撚り合わされた撚り線である。子撚り線のそれぞれは、長手方向に垂直な断面形状が同一直径の円形である複数の素線が互いに撚り合わされた同一の構造を有している。素線は、鋼製の芯線と、芯線の表面を覆う、銅または銅合金製の被覆層と、を含む。子撚り線の撚りピッチは、子撚り線の外接円の直径の40倍以上である。撚り線の撚りピッチは、撚り線の外接円の直径の5倍以上20倍以下である。芯線の直径は、0.02mm以上0.09mm以下である。芯線の引張強度は1800MPa以上4500MPa以下である。芯線を構成する鋼の炭素含有量は0.70質量%以上0.95質量%以下である。素線の長手方向に垂直な断面において、素線の面積に対する被覆層の面積は20%以上80%以下である。複数の上記子撚り線は、撚り線の長手方向に垂直な断面において、中央に配置される中央子撚り線と、中央子撚り線の外周側を取り囲むように中央子撚り線に接触して配置される6本の第1周囲子撚り線と、第1周囲子撚り線が配置される領域の外周側に第1周囲子撚り線に接触して配置される12本の第2周囲子撚り線と、を含む。子撚り線は、2本以上20本以下の素線を含む。 A stranded wire in another aspect of the present disclosure is a stranded wire in which a plurality of child strands are twisted together. Each of the child stranded wires has the same structure in which a plurality of wires each having a circular cross-sectional shape perpendicular to the longitudinal direction and having the same diameter are twisted together. The strand includes a steel core wire and a copper or copper alloy coating layer that covers the surface of the core wire. The twisting pitch of the child strands is 40 times or more the diameter of the circumscribed circle of the child strands. The twisting pitch of the stranded wire is 5 times or more and 20 times or less the diameter of the circumscribed circle of the stranded wire. The diameter of the core wire is 0.02 mm or more and 0.09 mm or less. The tensile strength of the core wire is 1800 MPa or more and 4500 MPa or less. The carbon content of the steel constituting the core wire is 0.70% by mass or more and 0.95% by mass or less. In a cross section perpendicular to the longitudinal direction of the wire, the area of the coating layer relative to the area of the wire is 20% or more and 80% or less. In a cross section perpendicular to the longitudinal direction of the stranded wires, the plurality of child stranded wires are arranged in contact with the central child stranded wire so as to surround the central child stranded wire and the outer peripheral side of the central child stranded wire. 6 first circumferential twisted wires arranged in contact with the first circumferential twisted wires and 12 second circumferential twisted wires arranged in contact with the first circumferential twisted wires on the outer peripheral side of the area where the first circumferential twisted wires are arranged. and, including. The child strands include 2 or more and 20 or less strands.
 子撚り線が、上記のように中央子撚り線および第1周囲子撚り線を含む構造、または中央子撚り線、第1周囲子撚り線および第2周囲子撚り線を含む構造とされることにより、撚り線の長手方向に垂直な断面が円形に近くなる。その結果、繰り返し曲げにおける局所的な応力集中が低減され、耐屈曲性が向上する。さらに、子撚り線が2本以上の素線を含むことにより、撚り線の可撓性を確保して耐屈曲性を向上させることができる。子撚り線が20本以下の素線を含むことにより、電線として使用する場合に実用的な撚り線の外径を得ることができる。 The child strands have a structure including a center child strand and a first peripheral child strand as described above, or a structure including a center child strand, a first peripheral child strand, and a second peripheral child strand. As a result, the cross section perpendicular to the longitudinal direction of the stranded wire becomes nearly circular. As a result, local stress concentration during repeated bending is reduced and bending resistance is improved. Furthermore, since the child stranded wire includes two or more strands, the flexibility of the stranded wire can be ensured and the bending resistance can be improved. When the child stranded wire includes 20 or less strands, a practical outer diameter of the stranded wire can be obtained when used as an electric wire.
 上記撚り線において、被覆層はめっき層であってもよい。すなわち、被覆層は、めっきにより形成されたものであってもよい。めっき層は、厚みの調整が容易で、かつ簡易なプロセスにより形成可能であるため、本開示の被覆層として好適である。 In the above stranded wire, the coating layer may be a plating layer. That is, the covering layer may be formed by plating. The plating layer is suitable as the coating layer of the present disclosure because its thickness can be easily adjusted and it can be formed by a simple process.
 本開示の一態様における絶縁電線は、上記本開示の撚り線と、撚り線の外周を覆う絶縁層と、を備える。本開示の一態様における絶縁電線によれば、耐屈曲性の向上だけでなく、強度および導電性の両立を達成するとともに、圧着端子との接続時における芯線の割れを抑制することが可能な本開示の撚り線を含むことにより、耐屈曲性の向上だけでなく、強度および導電性の両立を達成するとともに、圧着端子との接続時における芯線の割れを抑制することが可能な絶縁電線を提供することができる。 An insulated wire according to one embodiment of the present disclosure includes the stranded wire of the present disclosure described above and an insulating layer that covers the outer periphery of the stranded wire. According to an insulated wire according to one aspect of the present disclosure, the insulated wire not only has improved bending resistance, but also achieves both strength and conductivity, and can suppress cracking of the core wire when connected to a crimp terminal. Provides an insulated wire that not only improves bending resistance but also achieves both strength and conductivity by including the disclosed stranded wire, and can suppress cracking of the core wire when connected to a crimp terminal. can do.
 本開示の他の態様における絶縁電線は、複数の絶縁撚り線が互いに撚り合わされたコアと、コアの外周を覆う絶縁体製の保護層と、を備える。絶縁撚り線のそれぞれは、上記本開示の撚り線と、撚り線の外周を覆う絶縁層と、を含む。本開示の他の態様における絶縁電線によれば、耐屈曲性の向上だけでなく、強度および導電性の両立を達成するとともに、圧着端子との接続時における芯線の割れを抑制することが可能な本開示の撚り線を含むことにより、耐屈曲性の向上だけでなく、強度および導電性の両立を達成するとともに、圧着端子との接続時における芯線の割れを抑制することが可能な絶縁電線を提供することができる。 An insulated wire according to another aspect of the present disclosure includes a core in which a plurality of insulated strands are twisted together, and a protective layer made of an insulator that covers the outer periphery of the core. Each of the insulated strands includes the strands of the present disclosure described above and an insulating layer covering the outer periphery of the strands. According to the insulated wire according to another aspect of the present disclosure, it is possible not only to improve bending resistance but also to achieve both strength and conductivity, and to suppress cracking of the core wire when connecting with a crimp terminal. By including the stranded wire of the present disclosure, an insulated wire that not only improves bending resistance but also achieves both strength and conductivity, and can suppress cracking of the core wire when connected to a crimp terminal. can be provided.
 本開示の一態様におけるケーブルは、上記本開示の一態様における絶縁電線と、絶縁電線の外周を取り囲むように配置される導電体製のシールド部と、シールド部の外周を取り囲むように配置される絶縁体製の外皮層と、を含む。本開示の一態様におけるケーブルによれば、耐屈曲性の向上だけでなく、強度および導電性の両立を達成するとともに、圧着端子との接続時における芯線の割れを抑制することが可能な本開示の撚り線を含むことにより、耐屈曲性の向上だけでなく、強度および導電性の両立を達成するとともに、圧着端子との接続時における芯線の割れを抑制することが可能なケーブルを提供することができる。 A cable according to one aspect of the present disclosure includes the insulated wire according to the above-described one aspect of the present disclosure, a shield portion made of a conductor that is arranged to surround the outer periphery of the insulated wire, and a cable that is arranged so as to surround the outer periphery of the shield portion. an outer skin layer made of an insulator. According to the cable according to one aspect of the present disclosure, the present disclosure can not only improve bending resistance but also achieve both strength and conductivity, and suppress cracking of the core wire when connecting with a crimp terminal. To provide a cable that not only improves bending resistance but also achieves both strength and conductivity by including stranded wires, and can suppress cracking of the core wire when connecting with a crimp terminal. I can do it.
 本開示の他の態様におけるケーブルは、上記本開示の他の態様における絶縁電線と、絶縁電線の外周を取り囲むように配置される導電体製のシールド部と、シールド部の外周を取り囲むように配置される絶縁体製の外皮層と、を含む。本開示の他の態様におけるケーブルによれば、耐屈曲性の向上だけでなく、強度および導電性の両立を達成するとともに、圧着端子との接続時における芯線の割れを抑制することが可能な本開示の撚り線を含むことにより、耐屈曲性の向上だけでなく、強度および導電性の両立を達成するとともに、圧着端子との接続時における芯線の割れを抑制することが可能なケーブルを提供することができる。 A cable according to another aspect of the present disclosure includes the insulated wire according to the other aspect of the present disclosure, a shield portion made of a conductor arranged so as to surround the outer periphery of the insulated wire, and a shield portion arranged so as to surround the outer periphery of the shield portion. and an outer skin layer made of an insulator. According to a cable according to another aspect of the present disclosure, the cable has not only improved bending resistance but also achieves both strength and conductivity, and can suppress cracking of the core wire when connecting with a crimp terminal. To provide a cable that not only improves bending resistance but also achieves both strength and conductivity by including the disclosed stranded wire, and can suppress cracking of the core wire when connecting with a crimp terminal. be able to.
 [本開示の実施形態の詳細]
 次に、本開示にかかる撚り線、絶縁電線およびケーブルの実施の形態を、以下に図面を参照しつつ説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。
[Details of embodiments of the present disclosure]
Next, embodiments of stranded wires, insulated wires, and cables according to the present disclosure will be described below with reference to the drawings. In the following drawings, the same or corresponding parts are given the same reference numerals and the description thereof will not be repeated.
 (実施の形態1)
 図1は、撚り線の構造を示す概略図である。図1を参照して、本実施の形態における撚り線1は、複数の子撚り線10が互いに撚り合わされた構造を有している。本実施の形態において、複数の子撚り線10は、1本の中央子撚り線10Aと、6本の第1周囲子撚り線10Bとを含んでいる。撚り線1の長手方向に垂直な断面において、中央子撚り線10Aは、中央に配置される。6本の第1周囲子撚り線10Bは、中央子撚り線10Aの外周側を取り囲むように中央子撚り線10Aに接触して配置されている。中央子撚り線10Aは、外周面において6本の第1周囲子撚り線10B全てと接触している。各第1周囲子撚り線10Bは、周方向において隣り合う2本の第1周囲子撚り線10Bと、中央子撚り線10Aとに、外周面において接触している。
(Embodiment 1)
FIG. 1 is a schematic diagram showing the structure of a twisted wire. Referring to FIG. 1, stranded wire 1 in this embodiment has a structure in which a plurality of child stranded wires 10 are twisted together. In this embodiment, the plurality of child strands 10 include one central child strand 10A and six first peripheral child strands 10B. In a cross section perpendicular to the longitudinal direction of the stranded wire 1, the central child strand 10A is located at the center. The six first peripheral child strands 10B are arranged in contact with the center child strand 10A so as to surround the outer peripheral side of the center child strand 10A. The central child strand 10A is in contact with all six first peripheral child strands 10B on its outer peripheral surface. Each first peripheral child strand 10B is in contact with two circumferentially adjacent first peripheral child strands 10B and the center child strand 10A on the outer peripheral surface.
 図2は、子撚り線の構造を示す概略図である。図2を参照して、子撚り線10のそれぞれは、長手方向に垂直な断面形状が同一直径の円形である複数の素線100が互いに撚り合わされた同一の構造を有している。本実施の形態において、複数の素線100は、1本の中央素線100Aと、6本の第1周囲素線100Bとを含んでいる。子撚り線10は、2本以上20本以下(具体的には7本)の素線100を含んでいる。撚り線1の長手方向に垂直な断面において、中央素線100Aは、中央に配置される。6本の第1周囲素線100Bは、中央素線100Aの外周側を取り囲むように中央素線100Aに接触して配置されている。中央素線100Aは、外周面において6本の第1周囲素線100B全てと接触している。各第1周囲素線100Bは、周方向において隣り合う2本の第1周囲素線100Bと、中央素線100Aとに、外周面において接触している。 FIG. 2 is a schematic diagram showing the structure of the child strands. Referring to FIG. 2, each of the child strands 10 has the same structure in which a plurality of wires 100 whose cross-sectional shape perpendicular to the longitudinal direction is circular and have the same diameter are twisted together. In this embodiment, the plurality of wires 100 include one central wire 100A and six first peripheral wires 100B. The child twisted wire 10 includes 2 or more and 20 or less (specifically 7) strands 100. In a cross section perpendicular to the longitudinal direction of the stranded wire 1, the central strand 100A is arranged at the center. The six first peripheral wires 100B are arranged in contact with the center wire 100A so as to surround the outer peripheral side of the center wire 100A. The central strand 100A is in contact with all six first peripheral strands 100B on its outer peripheral surface. Each first peripheral strand 100B is in contact with two first peripheral strands 100B adjacent to each other in the circumferential direction and the center strand 100A on the outer peripheral surface.
 図3は、素線の構造を示す概略断面図である。図3は、素線の長手方向に垂直な断面を示す。図3を参照して、素線100は、芯線101と、被覆層102とを含んでいる。芯線101は、鋼製である。素線100の直径は、たとえば0.02mm以上0.09mm以下である。芯線101を構成する鋼の炭素含有量は、たとえば0.70質量%以上0.95質量%以下とすることができる。芯線101を構成する鋼の炭素含有量は、0.90質量%以下であってもよい。芯線101を構成する鋼としては、たとえばJIS規格(Japanese Industrial Standards)G3502に規定されるピアノ線材に対応する鋼を採用することができる。芯線101の引張強度は、たとえば1800MPa以上4500MPa以下であってもよい。芯線101の引張強度は、2500MPa以上とすることができる。芯線101の引張強度は、3800MPa以下とすることができる。 FIG. 3 is a schematic cross-sectional view showing the structure of the wire. FIG. 3 shows a cross section perpendicular to the longitudinal direction of the strand. Referring to FIG. 3, strand 100 includes a core wire 101 and a covering layer 102. Core wire 101 is made of steel. The diameter of the wire 100 is, for example, 0.02 mm or more and 0.09 mm or less. The carbon content of the steel that constitutes the core wire 101 can be, for example, 0.70% by mass or more and 0.95% by mass or less. The carbon content of the steel that constitutes the core wire 101 may be 0.90% by mass or less. As the steel constituting the core wire 101, for example, steel corresponding to piano wire specified in JIS (Japanese Industrial Standards) G3502 can be adopted. The tensile strength of the core wire 101 may be, for example, 1800 MPa or more and 4500 MPa or less. The tensile strength of the core wire 101 can be 2500 MPa or more. The tensile strength of the core wire 101 can be 3800 MPa or less.
 被覆層102は、銅(Cu)または銅合金製である。被覆層102は、芯線101の表面101A(外周面)を覆っている。被覆層102の厚みは、周方向において一定である。被覆層102は、めっき層であってもよい。被覆層102は、めっきにより形成された層であってもよい。素線100の長手方向に垂直な断面(図3に示す断面)において、素線100の面積に対する被覆層102の面積は20%以上80%以下であってもよい。なお、被覆層102の厚みが周方向において一定である状態とは、各素線100内における被覆層102の厚みの平均値に対して、厚みの最大値と最小値との差が7.0%以下である状態をいう。 The covering layer 102 is made of copper (Cu) or a copper alloy. The covering layer 102 covers the surface 101A (outer peripheral surface) of the core wire 101. The thickness of the covering layer 102 is constant in the circumferential direction. The coating layer 102 may be a plating layer. The covering layer 102 may be a layer formed by plating. In a cross section perpendicular to the longitudinal direction of the wire 100 (the cross section shown in FIG. 3), the area of the coating layer 102 relative to the area of the wire 100 may be 20% or more and 80% or less. Note that the state where the thickness of the coating layer 102 is constant in the circumferential direction means that the difference between the maximum value and the minimum value of the thickness is 7.0 with respect to the average value of the thickness of the coating layer 102 in each strand 100. % or less.
 図4は、撚り線の構造を示す概略断面図である。図5は、撚り線および子撚り線の撚りピッチを説明するための概略図である。図4は、撚り線1の長手方向に垂直な断面を示す。図4および図5を参照して、本実施の形態において、子撚り線10の撚りピッチPは、子撚り線10の外接円の直径dの40倍以上である。ここで、図5の括弧内の参照番号を参照して、子撚り線10の撚りピッチPは、子撚り線10を構成する1本の素線100が子撚り線10の周りを一回転する長さを子撚り線10の長手方向に平行に測定した長さと定義される。また、本実施の形態において、撚り線1の撚りピッチPは、撚り線1の外接円の直径dの5倍以上20倍以下である。ここで、図5の参照番号(括弧内に記載されたものを除く)を参照して、撚り線1の撚りピッチPは、撚り線1を構成する1本の子撚り線10が撚り線1の周りを一回転する長さを撚り線1の長手方向に平行に測定した長さと定義される。 FIG. 4 is a schematic cross-sectional view showing the structure of the twisted wire. FIG. 5 is a schematic diagram for explaining the twist pitch of the twisted wire and the child twisted wire. FIG. 4 shows a cross section perpendicular to the longitudinal direction of the strand 1. Referring to FIGS. 4 and 5, in this embodiment, the twist pitch P of the child strands 10 is 40 times or more the diameter d2 of the circumscribed circle of the child strands 10. Here, with reference to the reference numbers in parentheses in FIG. The length is defined as the length measured parallel to the longitudinal direction of the child strands 10. Further, in this embodiment, the twist pitch P of the stranded wire 1 is 5 times or more and 20 times or less the diameter d1 of the circumscribed circle of the stranded wire 1. Here, with reference to the reference numbers (excluding those written in parentheses) in FIG. is defined as the length measured parallel to the longitudinal direction of the strand 1.
 本実施の形態の撚り線1は、素線100が撚り合されて構成される複数の子撚り線10が、さらに撚り合わせれて構成されている。これにより、高い可撓性が得られ、一定の耐屈曲性が確保されている。そして、子撚り線10を構成する素線100は、鋼製の芯線101と、芯線101の表面101Aを覆う、銅または銅合金製の被覆層102とを含んでいる。これにより、強度および導電性の両立を達成することができる。各素線100の長手方向に垂直な断面の形状が同一直径の円形であることにより、繰り返し曲げにおける局所的な応力集中が低減され、耐屈曲性の向上に寄与している。さらに、子撚り線10の撚りピッチPが、子撚り線10の外接円の直径dの40倍以上に設定されることにより、圧着端子との接続に際して素線100が適切に再配列し、一部の素線100への応力の集中が回避されている。その結果、圧着端子との接続時における芯線101の割れが抑制されている。さらに、撚り線1の撚りピッチPを撚り線1の外接円の直径dの5倍以上とすることにより、撚り線1の表面における凹凸を抑制し、耐屈曲性を向上させることが可能となっている。また、撚り線1の撚りピッチPを撚り線1の外接円の直径dの20倍以下とすることにより、屈曲時における一部の子撚り線10への応力の集中を回避することができる。このように、本実施の形態の撚り線1は、耐屈曲性の向上だけでなく、強度および導電性の両立を達成するとともに、圧着端子との接続時における芯線の割れを抑制することが可能な撚り線となっている。 The stranded wire 1 of this embodiment is configured by further twisting a plurality of child strands 10, which are formed by twisting the strands 100 together. This provides high flexibility and ensures a certain degree of bending resistance. The strands 100 constituting the child stranded wire 10 include a core wire 101 made of steel and a coating layer 102 made of copper or copper alloy that covers the surface 101A of the core wire 101. This makes it possible to achieve both strength and conductivity. Since the shape of the cross section perpendicular to the longitudinal direction of each strand 100 is circular with the same diameter, local stress concentration during repeated bending is reduced, contributing to improvement in bending resistance. Furthermore, by setting the twist pitch P of the child stranded wire 10 to 40 times or more the diameter d2 of the circumscribed circle of the child stranded wire 10, the strands 100 are appropriately rearranged when connecting with a crimp terminal, Concentration of stress on some of the wires 100 is avoided. As a result, cracking of the core wire 101 during connection with a crimp terminal is suppressed. Furthermore, by making the twist pitch P of the stranded wire 1 five times or more the diameter d1 of the circumscribed circle of the stranded wire 1, it is possible to suppress unevenness on the surface of the stranded wire 1 and improve the bending resistance. It has become. Furthermore, by setting the twist pitch P of the stranded wire 1 to 20 times or less the diameter d1 of the circumscribed circle of the stranded wire 1, it is possible to avoid concentration of stress on some of the child strands 10 during bending. . In this way, the stranded wire 1 of this embodiment not only improves bending resistance, but also achieves both strength and conductivity, and can suppress cracking of the core wire when connecting with a crimp terminal. It is a twisted wire.
 また、本実施の形態において、撚り線1を構成する複数の子撚り線10のそれぞれは、撚り線1の長手方向に垂直な断面において、中央に配置される中央子撚り線10Aと、中央子撚り線10Aの外周側を取り囲むように中央子撚り線10Aに接触して配置される6本の第1周囲子撚り線10Bとを含んでいる。子撚り線10は、2本以上20本以下の素線100を含んでいる。これにより、撚り線1の長手方向に垂直な断面が円形に近くなっている。その結果、繰り返し曲げにおける局所的な応力集中が低減され、耐屈曲性が向上している。さらに、子撚り線10が2本以上の素線100を含むことにより、撚り線1の可撓性を確保して耐屈曲性を向上させることが可能となっている。子撚り線10が20本以下の素線100を含むことにより、電線として使用する場合に実用的な撚り線1の外径を得ることが可能となっている。 Further, in the present embodiment, each of the plurality of child strands 10 constituting the stranded wire 1 has a central child strand 10A disposed at the center and a central child strand 10A arranged at the center in a cross section perpendicular to the longitudinal direction of the strand 1. It includes six first peripheral child strands 10B arranged in contact with the central child strand 10A so as to surround the outer circumferential side of the strand 10A. The child twisted wire 10 includes 2 or more and 20 or less strands 100. As a result, the cross section perpendicular to the longitudinal direction of the stranded wire 1 becomes nearly circular. As a result, local stress concentration during repeated bending is reduced and bending resistance is improved. Furthermore, since the child stranded wire 10 includes two or more strands 100, it is possible to ensure the flexibility of the stranded wire 1 and improve its bending resistance. Since the child stranded wire 10 includes 20 or less strands 100, it is possible to obtain a practical outer diameter of the stranded wire 1 when used as an electric wire.
 次に、本実施の形態における撚り線1の製造方法について説明する。図6は、撚り線の製造方法の概略を示すフローチャートである。図6を参照して、本実施の形態における撚り線1の製造方法では、まず工程S10として原料鋼線準備工程が実施される。この工程S10では、原料鋼線が準備される。具体的には、炭素含有量が0.70質量%以上0.95質量%以下の鋼からなる鋼線が準備される。原料鋼線を構成する鋼は、0.4質量%以上2.5質量%以下の珪素(Si)、0.6質量%以上0.9質量%以下のマンガン(Mn)、0.1質量%以上1.8質量%以下のクロム(Cr)を含有していてもよい。原料鋼線を構成する鋼としては、G3502に規定されるピアノ線材(たとえばSWRS82A)を採用することができる。 Next, a method for manufacturing the stranded wire 1 in this embodiment will be described. FIG. 6 is a flowchart outlining a method for manufacturing stranded wire. Referring to FIG. 6, in the method for manufacturing stranded wire 1 according to the present embodiment, a raw material steel wire preparation step is first performed as step S10. In this step S10, a raw material steel wire is prepared. Specifically, a steel wire made of steel having a carbon content of 0.70% by mass or more and 0.95% by mass or less is prepared. The steel constituting the raw steel wire contains silicon (Si) of 0.4% by mass to 2.5% by mass, manganese (Mn) of 0.6% to 0.9% by mass, and 0.1% by mass. It may contain chromium (Cr) in an amount of 1.8% by mass or less. As the steel constituting the raw material steel wire, a piano wire rod (for example, SWRS82A) specified in G3502 can be adopted.
 次に、工程S20としてパテンティング工程が実施される。この工程S20では、工程S10において準備された原料鋼線に対してパテンティングが実施される。具体的には、原料鋼線がオーステナイト化温度(A1点)以上の温度域に加熱された後、マルテンサイト化開始温度(MS点)よりも高い温度域まで急冷され、当該温度域で保持される熱処理が実施される。これにより、原料鋼線の金属組織がラメラ間隔の小さい微細パーライト組織となる。ここで、上記パテンティング処理において、原料鋼線をA1点以上の温度域に加熱する処理は、脱炭の発生を抑制する観点から不活性ガス雰囲気中で実施されることが好ましい。 Next, a patenting step is performed as step S20. In this step S20, patenting is performed on the raw material steel wire prepared in step S10. Specifically, after the raw steel wire is heated to a temperature range equal to or higher than the austenitization temperature (A1 point), it is rapidly cooled to a temperature range higher than the martensitization start temperature (MS point), and then maintained in the temperature range. A heat treatment is performed. As a result, the metal structure of the raw material steel wire becomes a fine pearlite structure with a small lamella interval. Here, in the above patenting treatment, the treatment of heating the raw steel wire to a temperature range of A1 point or higher is preferably carried out in an inert gas atmosphere from the viewpoint of suppressing the occurrence of decarburization.
 次に、工程S30として粗面化工程が実施される。この工程S30では、工程S20においてパテンティングが実施された原料鋼線に対して、粗面化処理が実施される。具体的には、原料鋼線の表面を塩酸、硫酸などの酸に接触させることにより表面粗さを増大させる。塩酸の濃度は、例えば35質量%とすることができ、硫酸の濃度は、例えば65質量%とすることができる。 Next, a surface roughening step is performed as step S30. In this step S30, a surface roughening treatment is performed on the raw steel wire that has been patented in step S20. Specifically, the surface roughness of the raw steel wire is increased by bringing the surface of the raw steel wire into contact with an acid such as hydrochloric acid or sulfuric acid. The concentration of hydrochloric acid can be, for example, 35% by mass, and the concentration of sulfuric acid can be, for example, 65% by mass.
 次に、工程S40として被覆層形成工程が実施される。この工程S40では、工程S30までが実施されて得られた第1中間鋼線に被覆層が形成される。具体的には、たとえば第1中間鋼線に、銅(純銅)からなる被覆層がめっきにより形成される。また、銅のほか、錫(Sn)、亜鉛(Zn)などの金属層がめっきにより形成され、これらが合金化されることにより銅合金からなる被覆層が形成されてもよい。 Next, a coating layer forming step is performed as step S40. In this step S40, a coating layer is formed on the first intermediate steel wire obtained by performing steps up to step S30. Specifically, for example, a coating layer made of copper (pure copper) is formed on the first intermediate steel wire by plating. Further, in addition to copper, a metal layer such as tin (Sn) or zinc (Zn) may be formed by plating, and by alloying these, a coating layer made of a copper alloy may be formed.
 次に、工程S50として伸線工程が実施される。この工程S50では、工程S40までが実施されて得られた第2中間鋼線に対して伸線(引き抜き加工)が実施される。工程S50の伸線加工における真歪みは、たとえば2.3以上4.9以下とすることができ、3.0以上4.0以下とすることが好ましい。これにより、本実施の形態における素線100が得られる。 Next, a wire drawing step is performed as step S50. In this step S50, wire drawing (drawing) is performed on the second intermediate steel wire obtained by performing steps up to step S40. The true strain in the wire drawing process in step S50 can be, for example, 2.3 or more and 4.9 or less, and preferably 3.0 or more and 4.0 or less. Thereby, the strand 100 in this embodiment is obtained.
 次に、工程S60として第1撚り線工程が実施される。この工程S60では、工程S50までが実施されて得られた素線100が撚り合されることにより、子撚り線10が作製される。具体的には、図2を参照して、工程S10~S50にて作製された7本の素線100を準備し、1本を中央素線100A、6本を第1周囲素線100Bとして撚り合わせる。これにより、子撚り線10が得られる。このとき、図4および図5を参照して、子撚り線10の撚りピッチPは、子撚り線10の外接円の直径dの40倍以上とされる。 Next, a first stranding step is performed as step S60. In this step S60, the child stranded wire 10 is produced by twisting together the strands 100 obtained by performing steps up to step S50. Specifically, referring to FIG. 2, seven strands 100 produced in steps S10 to S50 are prepared, and one strand is twisted as a center strand 100A and six strands are twisted as a first peripheral strand 100B. match. As a result, a child twisted wire 10 is obtained. At this time, referring to FIGS. 4 and 5, the twist pitch P of the child stranded wire 10 is set to be 40 times or more the diameter d2 of the circumscribed circle of the child stranded wire 10.
 次に、工程S70として第2撚り線工程が実施される。この工程S70では、工程S60において得られた子撚り線10が撚り合されることにより、撚り線1が作製される。具体的には、図1を参照して、工程S60にて作製された7本の子撚り線10を準備し、1本を中央子撚り線10A、6本を第1周囲子撚り線10Bとして撚り合わせる。これにより、撚り線1が得られる。このとき、図4および図5を参照して、撚り線1の撚りピッチPは、撚り線1の外接円の直径dの5倍以上20倍以下以上とされる。以上の手順により、本実施の形態の撚り線1を容易に製造することができる。 Next, a second stranding step is performed as step S70. In this step S70, the child strands 10 obtained in step S60 are twisted together to produce the strand 1. Specifically, with reference to FIG. 1, seven child strands 10 produced in step S60 are prepared, one as the central child strand 10A, and six as the first peripheral child strand 10B. Twist together. As a result, a twisted wire 1 is obtained. At this time, referring to FIGS. 4 and 5, the twist pitch P of the stranded wire 1 is set to be at least 5 times and at most 20 times the diameter d1 of the circumscribed circle of the stranded wire 1. Through the above procedure, the stranded wire 1 of this embodiment can be easily manufactured.
 (実施の形態2)
 次に、本開示の他の実施の形態である実施の形態2について説明する。図7は、実施の形態2における撚り線の構造を示す概略図である。図7および図1を参照して、実施の形態2における撚り線1は、基本的には実施の形態1の撚り線1と同様の構造を有し、同様の効果を奏する。しかし、実施の形態2の撚り線1は、撚り線1を構成する子撚り線10の本数において実施の形態1の場合とは異なっている。
(Embodiment 2)
Next, Embodiment 2, which is another embodiment of the present disclosure, will be described. FIG. 7 is a schematic diagram showing the structure of twisted wires in the second embodiment. Referring to FIG. 7 and FIG. 1, stranded wire 1 in Embodiment 2 basically has the same structure as stranded wire 1 in Embodiment 1, and produces similar effects. However, the stranded wire 1 of the second embodiment differs from that of the first embodiment in the number of child stranded wires 10 that constitute the stranded wire 1.
 図7を参照して、本実施の形態の撚り線1を構成する複数の子撚り線10は、撚り線1の長手方向に垂直な断面において、中央に配置される中央子撚り線10Aと、中央子撚り線10Aの外周側を取り囲むように中央子撚り線10Aに接触して配置される6本の第1周囲子撚り線10Bと、第1周囲子撚り線10Bが配置される領域の外周側に第1周囲子撚り線10Bに接触して配置される12本の第2周囲子撚り線10Cとを含んでいる。本実施の形態において、撚り線1は19本の子撚り線10を含んでいる。 Referring to FIG. 7, the plurality of child strands 10 constituting the strand 1 of the present embodiment include a central child strand 10A arranged at the center in a cross section perpendicular to the longitudinal direction of the strand 1; Six first peripheral child strands 10B arranged in contact with the center child strand 10A so as to surround the outer peripheral side of the center child strand 10A, and the outer periphery of the area where the first peripheral child strands 10B are arranged. Twelve second circumferential strands 10C are disposed on the side in contact with the first circumferential strands 10B. In this embodiment, the twisted wire 1 includes 19 child twisted wires 10.
 中央子撚り線10Aは、外周面において6本の第1周囲子撚り線10B全てと接触している。各第1周囲子撚り線10Bは、周方向において隣り合う2本の第1周囲子撚り線10Bと、中央子撚り線10Aとに、外周面において接触している。各第2周囲子撚り線10Cは、周方向において隣り合う2本の第2周囲子撚り線10Cと、径方向内側に位置する第1周囲子撚り線10Bとに外周面において接触している。撚り線1に含まれる子撚り線10の本数および配置がこのように変更された本実施の形態の撚り線1も、上記実施の形態1の撚り線1と同様に、耐屈曲性の向上だけでなく、強度および導電性の両立を達成するとともに、圧着端子との接続時における芯線の割れを抑制することが可能な撚り線となっている。 The central child strand 10A is in contact with all six first peripheral child strands 10B on the outer peripheral surface. Each first peripheral child strand 10B is in contact with two circumferentially adjacent first peripheral child strands 10B and the center child strand 10A on the outer peripheral surface. Each of the second circumferential strands 10C is in contact with two circumferentially adjacent second circumferential strands 10C and a first circumferential strand 10B located on the inside in the radial direction on its outer peripheral surface. The stranded wire 1 of this embodiment in which the number and arrangement of child stranded wires 10 included in the stranded wire 1 are changed in this way also has improved bending resistance, similar to the stranded wire 1 of the first embodiment. Rather, it is a stranded wire that achieves both strength and conductivity and can suppress cracking of the core wire when connected to a crimp terminal.
 (実施の形態3)
 次に、本開示の実施の形態3として、本開示の絶縁電線の一例について説明する。図8は、実施の形態3における絶縁電線の構造を示す概略図である。図8を参照して、本実施の形態の絶縁電線3は、コア9と、絶縁層12とを備えている。コア9は、複数の(ここでは2本の)絶縁撚り線2が互いに撚り合わされた構造を有している。絶縁層12は、樹脂などの絶縁体から構成されている。絶縁層12はコア9の外周を覆うように配置されている保護層である。絶縁撚り線2は、上記実施の形態1または実施の形態2の撚り線1と、撚り線1の外周を覆う絶縁層11とを含んでいる。絶縁層11は、樹脂などの絶縁体からなっている。
(Embodiment 3)
Next, as a third embodiment of the present disclosure, an example of an insulated wire of the present disclosure will be described. FIG. 8 is a schematic diagram showing the structure of an insulated wire in Embodiment 3. Referring to FIG. 8, insulated wire 3 of this embodiment includes a core 9 and an insulating layer 12. The core 9 has a structure in which a plurality of (here, two) insulated strands 2 are twisted together. The insulating layer 12 is made of an insulator such as resin. The insulating layer 12 is a protective layer disposed to cover the outer periphery of the core 9. The insulated stranded wire 2 includes the stranded wire 1 of the first embodiment or the second embodiment described above, and an insulating layer 11 that covers the outer periphery of the stranded wire 1. The insulating layer 11 is made of an insulator such as resin.
 本実施の形態の絶縁電線3は、耐屈曲性の向上だけでなく、強度および導電性の両立を達成するとともに、圧着端子との接続時における芯線の割れを抑制することが可能な上記実施の形態1または2の撚り線1を含むことにより、耐屈曲性の向上だけでなく、強度および導電性の両立を達成するとともに、圧着端子との接続時における芯線101の割れを抑制することが可能な絶縁電線となっている。また、コア9を構成する絶縁撚り線2を絶縁電線として用いることもできる。すなわち、別の実施の形態における絶縁電線としての絶縁撚り線2は、上記実施の形態1または実施の形態2の撚り線1と、撚り線1の外周を覆う絶縁層11とを備えている。絶縁撚り線2は、耐屈曲性の向上だけでなく、強度および導電性の両立を達成するとともに、圧着端子との接続時における芯線101の割れを抑制することが可能な上記実施の形態1または2の撚り線1を含むことにより、耐屈曲性の向上だけでなく、強度および導電性の両立を達成するとともに、圧着端子との接続時における芯線101の割れを抑制することが可能な絶縁電線となっている。 The insulated wire 3 of this embodiment not only has improved bending resistance, but also achieves both strength and conductivity, and can suppress cracking of the core wire when connected to a crimp terminal. By including the stranded wire 1 of form 1 or 2, it is possible not only to improve bending resistance but also to achieve both strength and conductivity, and to suppress cracking of the core wire 101 when connecting with a crimp terminal. It is an insulated wire. Further, the insulated stranded wire 2 constituting the core 9 can also be used as an insulated wire. That is, an insulated stranded wire 2 as an insulated wire in another embodiment includes the stranded wire 1 of the first or second embodiment described above, and an insulating layer 11 that covers the outer periphery of the stranded wire 1. The insulated stranded wire 2 not only has improved bending resistance, but also achieves both strength and conductivity, and can suppress cracking of the core wire 101 when connected to a crimp terminal. By including the strands 1 of 2, the insulated wire not only improves bending resistance but also achieves both strength and conductivity, and can suppress cracking of the core wire 101 when connected to a crimp terminal. It becomes.
 (実施の形態4)
 次に、本開示の実施の形態4として、本開示のケーブルの一例について説明する。図9は、実施の形態4におけるケーブルの構造を示す概略図である。図9を参照して、ケーブル300は、実施の形態1または実施の形態2の撚り線1と、撚り線1の外周1Aを覆うように配置される絶縁層4と、絶縁層4の外周面4Aを取り囲むように配置されるシールド部5と、シールド部5の外周5Aを覆うように配置される外皮層6と、を含む。別の観点から説明すると、ケーブル300は、上記実施の形態3において説明した絶縁電線としての絶縁撚り線2と、絶縁撚り線2の外周を取り囲むように配置される導電体製のシールド部5と、シールド部5の外周を取り囲むように配置される絶縁体製の外皮層6とを含んでいる。シールド部5は、金属線が編まれた構造を有していてもよい。シールド部5を構成する金属線として、上記実施の形態における素線100が採用されてもよい。
(Embodiment 4)
Next, as Embodiment 4 of the present disclosure, an example of the cable of the present disclosure will be described. FIG. 9 is a schematic diagram showing the structure of a cable in Embodiment 4. Referring to FIG. 9, cable 300 includes stranded wire 1 of Embodiment 1 or Embodiment 2, insulating layer 4 disposed so as to cover outer periphery 1A of stranded wire 1, and outer peripheral surface of insulating layer 4. 4A, and an outer skin layer 6 that is arranged to cover the outer periphery 5A of the shield part 5. To explain from another point of view, the cable 300 includes the insulated stranded wire 2 as the insulated wire described in the third embodiment, and the shield portion 5 made of a conductor arranged so as to surround the outer periphery of the insulated stranded wire 2. , and an outer skin layer 6 made of an insulator disposed so as to surround the outer periphery of the shield portion 5. The shield portion 5 may have a structure in which metal wires are woven. As the metal wire constituting the shield portion 5, the strand 100 in the above embodiment may be employed.
 本実施の形態のケーブル300は、耐屈曲性の向上だけでなく、強度および導電性の両立を達成するとともに、圧着端子との接続時における芯線101の割れを抑制することが可能な本実施の形態1または2の撚り線1を含むことにより、耐屈曲性の向上だけでなく、強度および導電性の両立を達成するとともに、圧着端子との接続時における芯線101の割れを抑制することが可能なケーブルとなっている。 The cable 300 of this embodiment not only has improved bending resistance, but also achieves both strength and conductivity, and can suppress cracking of the core wire 101 when connecting with a crimp terminal. By including the stranded wire 1 of form 1 or 2, it is possible not only to improve bending resistance but also to achieve both strength and conductivity, and to suppress cracking of the core wire 101 when connecting with a crimp terminal. It is a cable.
 (実施の形態5)
 次に、本開示の実施の形態5として、本開示のケーブルの他の一例について説明する。図10は、実施の形態5におけるケーブルの構造を示す概略図である。図10を参照して、本実施の形態のケーブル400は、上記実施の形態3において説明した絶縁電線3(図8参照)と、絶縁電線3の外周を取り囲むように配置される導電体製のシールド部5と、シールド部5の外周5Aを取り囲むように配置される絶縁体製の外皮層6とを含んでいる。シールド部5は、金属線が編まれた構造を有していてもよい。シールド部5を構成する金属線として、上記実施の形態における素線100が採用されてもよい。
(Embodiment 5)
Next, as Embodiment 5 of the present disclosure, another example of the cable of the present disclosure will be described. FIG. 10 is a schematic diagram showing the structure of a cable in Embodiment 5. Referring to FIG. 10, a cable 400 according to the present embodiment includes the insulated wire 3 (see FIG. 8) described in the third embodiment, and a conductor made of a conductor arranged so as to surround the outer periphery of the insulated wire 3. It includes a shield part 5 and an outer skin layer 6 made of an insulator and arranged so as to surround the outer periphery 5A of the shield part 5. The shield portion 5 may have a structure in which metal wires are woven. As the metal wire constituting the shield portion 5, the strand 100 in the above embodiment may be employed.
 本実施の形態のケーブル400は、耐屈曲性の向上だけでなく、強度および導電性の両立を達成するとともに、圧着端子との接続時における芯線101の割れを抑制することが可能な本実施の形態1または2の撚り線1を含むことにより、耐屈曲性の向上だけでなく、強度および導電性の両立を達成するとともに、圧着端子との接続時における芯線101の割れを抑制することが可能なケーブルとなっている。 The cable 400 of this embodiment not only has improved bending resistance, but also achieves both strength and conductivity, and can suppress cracking of the core wire 101 when connected to a crimp terminal. By including the stranded wire 1 of form 1 or 2, it is possible not only to improve bending resistance but also to achieve both strength and conductivity, and to suppress cracking of the core wire 101 when connecting with a crimp terminal. It is a cable.
 本開示の撚り線、絶縁電線およびケーブルの耐屈曲性、および圧着端子との接続時における芯線の割れの抑制について確認する実験を行った。実験の手順は以下のとおりである。 An experiment was conducted to confirm the bending resistance of the stranded wire, insulated wire, and cable of the present disclosure, and the suppression of cracking of the core wire when connected to a crimp terminal. The experimental procedure is as follows.
 上記実施の形態1において説明した製造方法に沿って撚り線1を準備した。この撚り線1の外周面を絶縁層11にて被覆し、絶縁電線(絶縁撚り線2)を作製した。工程S10準備される原料鋼線として、JIS G3502に規定されるピアノ線材であるSWRS82Aを採用した。工程S40においては、めっきにより純銅製の被覆層102を形成した。被覆層102の厚みを調整することにより、素線100の長手方向に垂直な断面における被覆層102の面積率を変化させた。工程S50において、素線100の外径(直径)が0.05mmとなるように伸線を実施した。さらに、工程S60において、子撚り線10の撚りピッチを60、子撚り線10に含まれる素線100の本数を7~16本の範囲で変化させた。また、工程S70において、撚り線1の撚りピッチを変化させた。このようにして、サンプルA~Sを得た。また、工程S10において外径、炭素含有量が異なる原料鋼線を準備し、工程S50における伸線によって素線100の外径を変化させることにより、サンプルT~Wを作製した。 Twisted wire 1 was prepared according to the manufacturing method described in Embodiment 1 above. The outer peripheral surface of this stranded wire 1 was covered with an insulating layer 11 to produce an insulated wire (insulated stranded wire 2). SWRS82A, which is a piano wire specified in JIS G3502, was used as the raw material steel wire prepared in step S10. In step S40, a pure copper coating layer 102 was formed by plating. By adjusting the thickness of the coating layer 102, the area ratio of the coating layer 102 in a cross section perpendicular to the longitudinal direction of the wire 100 was changed. In step S50, wire drawing was performed so that the outer diameter (diameter) of the wire 100 was 0.05 mm. Furthermore, in step S60, the twisting pitch of the child stranded wire 10 was changed to 60, and the number of strands 100 included in the child stranded wire 10 was varied in the range of 7 to 16. Further, in step S70, the twist pitch of the twisted wire 1 was changed. In this way, samples A to S were obtained. Further, in step S10, raw steel wires having different outer diameters and carbon contents were prepared, and by wire drawing in step S50, the outer diameter of the strands 100 was changed, thereby producing samples T to W.
 そして、得られたサンプルについて、(1)圧着端子との接続時における圧着部の強度および(2)耐屈曲性を以下のように測定した。 Then, for the obtained sample, (1) the strength of the crimp part when connected to the crimp terminal and (2) the bending resistance were measured as follows.
 (1)圧着端子との接続時における接続部の強度
 図11は、絶縁電線と圧着端子との接続状態を示す概略斜視図である。図12は、引張試験の方法を説明するための概略図である。図11を参照して、圧着端子80は、本体部83と、本体部83に接続された導体バレル81と、導体バレル81の本体部83に接続される側とは反対側に接続されたインシュレーションバレル82とを含んでいる。絶縁電線である絶縁撚り線2を圧着端子80に接続する場合、まず絶縁撚り線2の端部における絶縁層11を除去し、撚り線1を露出させる。そして、導体バレル81を加締めることにより露出した撚り線1を導体バレル81によって保持するとともに、絶縁層11をインシュレーションバレル82によって保持する。このとき、導体バレル81によって保持される撚り線1を構成する素線100の芯線101に割れが発生すると、導体バレル81と撚り線1との接続部の強度が低下する。
(1) Strength of connection part when connected to crimp terminal FIG. 11 is a schematic perspective view showing a connection state between an insulated wire and a crimp terminal. FIG. 12 is a schematic diagram for explaining the tensile test method. Referring to FIG. 11, the crimp terminal 80 includes a main body 83, a conductor barrel 81 connected to the main body 83, and an insulator connected to the opposite side of the conductor barrel 81 from the side connected to the main body 83. ration barrel 82. When connecting the insulated stranded wire 2, which is an insulated wire, to the crimp terminal 80, the insulating layer 11 at the end of the insulated stranded wire 2 is first removed to expose the stranded wire 1. Then, by crimping the conductor barrel 81, the exposed strands 1 are held by the conductor barrel 81, and the insulating layer 11 is held by the insulation barrel 82. At this time, if cracks occur in the core wire 101 of the strands 100 constituting the stranded wire 1 held by the conductor barrel 81, the strength of the connection between the conductor barrel 81 and the stranded wire 1 decreases.
 本実験では、各サンプルについて上記の通り導体バレル81にて撚り線1を保持する一方で、インシュレーションバレル82による絶縁層11の保持は行わない状態にて絶縁撚り線2と圧着端子80とを接続した。そして、図12に示すように、圧着端子80の本体部83を引張試験機の第1チャック91で保持し、絶縁撚り線2を引張試験機の第2チャック92で保持した状態で引張試験を行い、破断時の荷重にて接続部の強度を評価した。 In this experiment, for each sample, while the stranded wire 1 was held by the conductor barrel 81 as described above, the insulated stranded wire 2 and the crimp terminal 80 were held in a state where the insulation layer 11 was not held by the insulation barrel 82. Connected. Then, as shown in FIG. 12, a tensile test is performed with the main body 83 of the crimp terminal 80 held by the first chuck 91 of the tensile tester, and the insulated stranded wire 2 held by the second chuck 92 of the tensile tester. The strength of the connection was evaluated based on the load at break.
 (2)耐屈曲性
 図13は、屈曲試験の試験装置の構造を示す概略斜視図である。図14および図15は、屈曲試験の方法を説明するための概略図である。図13を参照して、屈曲試験装置70は、マンドレル71,72と、一対の治具73a,73bと、おもり74と、を含む。絶縁撚り線2の長手方向における一方の端部には、おもり74が取り付けられる。本試験では、おもり74の質量を100gとした。一対の治具73a,73bが、絶縁撚り線2を挟む。おもり74と治具73a,73bとの間には、円柱状の形状を有するマンドレル71,72が配置される。マンドレル71の外周面711と、マンドレル72の外周面721とが絶縁撚り線2の外周面に接触する。マンドレル71,72の長手方向が絶縁撚り線2の長手方向と直交する。マンドレル71,72の直径Qは、20mmである(図14および図15参照)。図13に示す状態を初期状態とする。そして、以下のように試験が実施される。
(2) Flexibility Fig. 13 is a schematic perspective view showing the structure of a test device for a bending test. 14 and 15 are schematic diagrams for explaining the bending test method. Referring to FIG. 13, bending test device 70 includes mandrels 71 and 72, a pair of jigs 73a and 73b, and a weight 74. A weight 74 is attached to one end of the insulated stranded wire 2 in the longitudinal direction. In this test, the mass of the weight 74 was 100 g. A pair of jigs 73a and 73b sandwich the insulated strands 2. Mandrels 71 and 72 each having a cylindrical shape are arranged between the weight 74 and the jigs 73a and 73b. The outer circumferential surface 711 of the mandrel 71 and the outer circumferential surface 721 of the mandrel 72 contact the outer circumferential surface of the insulated stranded wire 2 . The longitudinal direction of the mandrels 71 and 72 is perpendicular to the longitudinal direction of the insulated stranded wire 2. The diameter Q of the mandrels 71, 72 is 20 mm (see FIGS. 14 and 15). The state shown in FIG. 13 is assumed to be the initial state. Then, the test is conducted as follows.
 図13~図15を参照して、まず絶縁撚り線2が図13の矢印Rの向きに屈曲される。このとき、絶縁撚り線2は、図14に示すように、マンドレル71の外周面711に沿って屈曲する。絶縁撚り線2の最大屈曲角度θは、90°である。次に、図13に示す初期状態に戻された後、絶縁撚り線2が図13の矢印Rの向きに屈曲される。このとき、絶縁撚り線2は、図15に示すように、マンドレル72の外周面721に沿って屈曲する。絶縁撚り線2の最大屈曲角度θは、90°である。以上の動作を繰り返し、絶縁撚り線2内の撚り線1が破断するまでの屈曲回数を各サンプルについて調査した。 Referring to FIGS. 13 to 15, first, the insulated strand 2 is bent in the direction of arrow R1 in FIG. At this time, the insulated strands 2 are bent along the outer circumferential surface 711 of the mandrel 71, as shown in FIG. The maximum bending angle θ 1 of the insulated strands 2 is 90°. Next, after returning to the initial state shown in FIG. 13, the insulated strands 2 are bent in the direction of arrow R2 in FIG. At this time, the insulated strands 2 are bent along the outer peripheral surface 721 of the mandrel 72, as shown in FIG. The maximum bending angle θ 2 of the insulated strands 2 is 90°. The above operation was repeated, and the number of times each sample was bent until the strand 1 in the stranded insulated wire 2 broke was investigated.
 表1に上記(1)および(2)の実験結果を示す。 Table 1 shows the experimental results of (1) and (2) above.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の子撚り線の撚りピッチ/dの欄が∞(無限大)である状態とは、子撚り線を構成する素線が撚られていない状態、すなわち素線が子撚り線の長手方向に平行に配置された状態を意味する。また、表1の破断までの屈曲回数の欄の「破断せず」との表示は、1000万回の屈曲を繰り返した時点で破断が発生せず、試験を中止したことを意味している。 The state where the column of twist pitch/ d2 of child stranded wire in Table 1 is ∞ (infinity) means the state in which the strands constituting the child strand are not twisted, that is, the strands are in the longitudinal direction of the child strand. It means the state of being arranged parallel to the direction. In addition, the expression "No breakage" in the column of the number of bends before breakage in Table 1 means that no breakage occurred after 10 million bendings and the test was discontinued.
 表1を参照して、子撚り線の撚りピッチ/d(子撚り線の外接円の直径)の値が本開示の範囲内である40以下であるサンプルA~Cの接続部の強度は、子撚り線の撚りピッチ/dの値が本開示の範囲外であるサンプルD、E、H、K、NおよびQの接続部の強度を明確に上回っている。これは、圧着端子80との接続時における芯線101の割れが抑制されたためであると考えられる。また、撚り線の撚りピッチ/d(撚り線の外接円の直径)が本開示の範囲である5以上20以下の範囲外であるサンプルFおよびGについては、他のサンプルが1000万回の屈曲を繰り返した時点でも破断しなかったのに対して、早期に破断している。また、サンプルGについては、撚り線1の表面における凹凸が大きかったため、絶縁不良の発生も確認された。以上の実験結果より、本開示の撚り線、絶縁電線およびケーブルによれば、耐屈曲性の向上だけでなく、圧着端子との接続時における芯線の割れを抑制できることが確認された。 Referring to Table 1, the strength of the connections of samples A to C in which the value of the twist pitch/d 2 (diameter of the circumscribed circle of the child strands) of the child strands is 40 or less, which is within the range of the present disclosure, is , the value of the twist pitch/ d2 of the child strands clearly exceeds the strength of the connections of samples D, E, H, K, N and Q, which are outside the scope of the present disclosure. This is considered to be because cracking of the core wire 101 during connection with the crimp terminal 80 was suppressed. In addition, regarding samples F and G in which the twist pitch/d 1 (diameter of the circumscribed circle of the stranded wire) of the stranded wire is outside the range of 5 or more and 20 or less, which is the range of the present disclosure, other samples are Although it did not break even after repeated bending, it did break at an early stage. In addition, regarding sample G, since the surface of the stranded wire 1 had large irregularities, it was also confirmed that poor insulation occurred. From the above experimental results, it was confirmed that the stranded wire, insulated wire, and cable of the present disclosure not only improve bending resistance but also suppress cracking of the core wire when connected to a crimp terminal.
 今回開示された実施の形態および実施例はすべての点で例示であって、どのような面からも制限的なものではないと理解されるべきである。本発明の範囲は上記した説明ではなく、請求の範囲によって規定され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be understood that the embodiments and examples disclosed herein are illustrative in all respects and are not restrictive in any respect. The scope of the present invention is defined not by the above description but by the claims, and is intended to include meanings equivalent to the claims and all changes within the scope.
 1 撚り線、1A 外周、2 絶縁撚り線、3 絶縁電線、4 絶縁層、4A 外周面、5 シールド部、5A 外周、6 外皮層、9 コア、10 子撚り線、10A 中央子撚り線、10B 第1周囲子撚り線、10C 第2周囲子撚り線、11 絶縁層、12 絶縁層、70 屈曲試験装置、71 マンドレル、72 マンドレル、73a 治具、73b 治具、80 圧着端子、81 導体バレル、82 インシュレーションバレル、83 本体部、91 第1チャック、92 第2チャック、100 素線、100A 中央素線、100B 第1周囲素線、101 芯線、101A 表面、102 被覆層、300 ケーブル、400 ケーブル、711 外周面、721 外周面、P 撚りピッチ、R 矢印、R 矢印、θ 最大屈曲角度、θ 最大屈曲角度。 1 stranded wire, 1A outer periphery, 2 insulated stranded wire, 3 insulated wire, 4 insulating layer, 4A outer periphery, 5 shield part, 5A outer periphery, 6 outer skin layer, 9 core, 10 child stranded wire, 10A center child stranded wire, 10B 1st peripheral stranded wire, 10C 2nd peripheral stranded wire, 11 insulating layer, 12 insulating layer, 70 bending test device, 71 mandrel, 72 mandrel, 73a jig, 73b jig, 80 crimp terminal, 81 conductor barrel, 82 insulation barrel, 83 main body, 91 first chuck, 92 second chuck, 100 strand, 100A central strand, 100B first peripheral strand, 101 core wire, 101A surface, 102 coating layer, 300 cable, 400 cable , 711 outer peripheral surface, 721 outer peripheral surface, P twist pitch, R 1 arrow, R 2 arrow, θ 1 maximum bending angle, θ 2 maximum bending angle.

Claims (12)

  1.  複数の子撚り線が互いに撚り合わされた撚り線であって、
     前記子撚り線のそれぞれは、長手方向に垂直な断面形状が同一直径の円形である複数の素線が互いに撚り合わされた同一の構造を有し、
     前記素線は、
     鋼製の芯線と、
     前記芯線の表面を覆う、銅または銅合金製の被覆層と、を含み、
     前記子撚り線の撚りピッチは、前記子撚り線の外接円の直径の40倍以上であり、
     前記撚り線の撚りピッチは、前記撚り線の外接円の直径の5倍以上20倍以下である、撚り線。
    A stranded wire in which a plurality of child strands are twisted together,
    Each of the child stranded wires has the same structure in which a plurality of wires whose cross-sectional shape perpendicular to the longitudinal direction is circular with the same diameter are twisted together,
    The wire is
    steel core wire,
    A coating layer made of copper or copper alloy that covers the surface of the core wire,
    The twisting pitch of the child stranded wire is 40 times or more the diameter of the circumscribed circle of the child stranded wire,
    The stranded wire has a twist pitch that is 5 times or more and 20 times or less the diameter of the circumscribed circle of the stranded wire.
  2.  前記素線の直径は、0.02mm以上0.09mm以下である、請求項1に記載の撚り線。 The stranded wire according to claim 1, wherein the diameter of the wire is 0.02 mm or more and 0.09 mm or less.
  3.  前記芯線の引張強度は1800MPa以上4500MPa以下である、請求項1または請求項2に記載の撚り線。 The stranded wire according to claim 1 or 2, wherein the core wire has a tensile strength of 1800 MPa or more and 4500 MPa or less.
  4.  前記芯線を構成する鋼の炭素含有量は0.70質量%以上0.95質量%以下である、請求項1から請求項3のいずれか1項に記載の撚り線。 The stranded wire according to any one of claims 1 to 3, wherein the carbon content of the steel constituting the core wire is 0.70% by mass or more and 0.95% by mass or less.
  5.  前記素線の長手方向に垂直な断面において、前記素線の面積に対する前記被覆層の面積は20%以上80%以下である、請求項1から請求項4のいずれか1項に記載の撚り線。 The stranded wire according to any one of claims 1 to 4, wherein in a cross section perpendicular to the longitudinal direction of the strand, the area of the coating layer with respect to the area of the strand is 20% or more and 80% or less. .
  6.  複数の子撚り線が互いに撚り合わされた撚り線であって、
     前記子撚り線のそれぞれは、長手方向に垂直な断面形状が同一直径の円形である複数の素線が互いに撚り合わされた同一の構造を有し、
     前記素線は、
     鋼製の芯線と、
     前記芯線の表面を覆う、銅または銅合金製の被覆層と、を含み、
     前記子撚り線の撚りピッチは、前記子撚り線の外接円の直径の40倍以上であり、
     前記撚り線の撚りピッチは、前記撚り線の外接円の直径の5倍以上20倍以下であり、
     前記芯線の直径は、0.02mm以上0.09mm以下であり、
     前記芯線の引張強度は1800MPa以上4500MPa以下であり、
     前記芯線を構成する鋼の炭素含有量は0.70質量%以上0.95質量%以下であり、
     前記素線の長手方向に垂直な断面において、前記素線の面積に対する前記被覆層の面積は20%以上80%以下であり、
     複数の前記子撚り線は、前記撚り線の長手方向に垂直な断面において、
     中央に配置される中央子撚り線と、
     前記中央子撚り線の外周側を取り囲むように前記中央子撚り線に接触して配置される6本の第1周囲子撚り線と、を含み、
     前記子撚り線は、それぞれ2本以上20本以下の前記素線を含む、撚り線。
    A stranded wire in which a plurality of child strands are twisted together,
    Each of the child stranded wires has the same structure in which a plurality of wires whose cross-sectional shape perpendicular to the longitudinal direction is circular with the same diameter are twisted together,
    The wire is
    steel core wire,
    A coating layer made of copper or copper alloy that covers the surface of the core wire,
    The twisting pitch of the child stranded wire is 40 times or more the diameter of the circumscribed circle of the child stranded wire,
    The twisting pitch of the stranded wire is 5 times or more and 20 times or less the diameter of the circumscribed circle of the stranded wire,
    The diameter of the core wire is 0.02 mm or more and 0.09 mm or less,
    The tensile strength of the core wire is 1800 MPa or more and 4500 MPa or less,
    The carbon content of the steel constituting the core wire is 0.70% by mass or more and 0.95% by mass or less,
    In a cross section perpendicular to the longitudinal direction of the strand, the area of the coating layer relative to the area of the strand is 20% or more and 80% or less,
    The plurality of child strands have a cross section perpendicular to the longitudinal direction of the strands,
    a central child strand located in the center;
    six first peripheral child strands arranged in contact with the center child strands so as to surround the outer peripheral side of the center child strands;
    The child strands each include 2 or more and 20 or less of the strands.
  7.  複数の子撚り線が互いに撚り合わされた撚り線であって、
     前記子撚り線のそれぞれは、長手方向に垂直な断面形状が同一直径の円形である複数の素線が互いに撚り合わされた同一の構造を有し、
     前記素線は、
     鋼製の芯線と、
     前記芯線の表面を覆う、銅または銅合金製の被覆層と、を含み、
     前記子撚り線の撚りピッチは、前記子撚り線の外接円の直径の40倍以上であり、
     前記撚り線の撚りピッチは、前記撚り線の外接円の直径の5倍以上20倍以下であり、
     前記芯線の直径は、0.02mm以上0.09mm以下であり、
     前記芯線の引張強度は1800MPa以上4500MPa以下であり、
     前記芯線を構成する鋼の炭素含有量は0.70質量%以上0.95質量%以下であり、
     前記素線の長手方向に垂直な断面において、前記素線の面積に対する前記被覆層の面積は20%以上80%以下であり、
     複数の前記子撚り線は、前記撚り線の長手方向に垂直な断面において、
     中央に配置される中央子撚り線と、
     前記中央子撚り線の外周側を取り囲むように前記中央子撚り線に接触して配置される6本の第1周囲子撚り線と、
     前記第1周囲子撚り線が配置される領域の外周側に前記第1周囲子撚り線に接触して配置される12本の第2周囲子撚り線と、を含み、
     前記子撚り線は、それぞれ2本以上20本以下の前記素線を含む、撚り線。
    A stranded wire in which a plurality of child strands are twisted together,
    Each of the child stranded wires has the same structure in which a plurality of wires whose cross-sectional shape perpendicular to the longitudinal direction is circular with the same diameter are twisted together,
    The wire is
    steel core wire,
    A coating layer made of copper or copper alloy that covers the surface of the core wire,
    The twisting pitch of the child stranded wire is 40 times or more the diameter of the circumscribed circle of the child stranded wire,
    The twisting pitch of the stranded wire is 5 times or more and 20 times or less the diameter of the circumscribed circle of the stranded wire,
    The diameter of the core wire is 0.02 mm or more and 0.09 mm or less,
    The tensile strength of the core wire is 1800 MPa or more and 4500 MPa or less,
    The carbon content of the steel constituting the core wire is 0.70% by mass or more and 0.95% by mass or less,
    In a cross section perpendicular to the longitudinal direction of the strand, the area of the coating layer relative to the area of the strand is 20% or more and 80% or less,
    The plurality of child strands have a cross section perpendicular to the longitudinal direction of the strands,
    a central child strand located in the center;
    six first peripheral child strands arranged in contact with the center child strand so as to surround the outer peripheral side of the center child strand;
    12 second circumferential twisted wires arranged on the outer peripheral side of a region where the first circumferential twisted wires are arranged in contact with the first circumferential twisted wires,
    The child strands each include 2 or more and 20 or less of the strands.
  8.  前記被覆層はめっき層である、請求項1から請求項7のいずれか1項に記載の撚り線。 The stranded wire according to any one of claims 1 to 7, wherein the coating layer is a plating layer.
  9.  請求項1から請求項8のいずれか1項に記載の撚り線と、
     前記撚り線の外周を覆う絶縁層と、を備える、絶縁電線。
    The stranded wire according to any one of claims 1 to 8,
    An insulated wire, comprising: an insulating layer covering the outer periphery of the stranded wire.
  10.  複数の絶縁撚り線が互いに撚り合わされたコアと、
     前記コアの外周を覆う絶縁体製の保護層と、を備え、
     前記絶縁撚り線のそれぞれは、
     請求項1から請求項8のいずれか1項に記載の撚り線と、
     前記撚り線の外周を覆う絶縁層と、を含む、絶縁電線。
    a core in which a plurality of insulated strands are twisted together;
    a protective layer made of an insulator that covers the outer periphery of the core,
    Each of the insulated strands is
    The stranded wire according to any one of claims 1 to 8,
    An insulated wire, comprising: an insulating layer covering the outer periphery of the stranded wire.
  11.  請求項9に記載の絶縁電線と、
     前記絶縁電線の外周を取り囲むように配置される導電体製のシールド部と、
     前記シールド部の外周を取り囲むように配置される絶縁体製の外皮層と、を含む、ケーブル。
    The insulated wire according to claim 9;
    a shield made of a conductor arranged to surround the outer periphery of the insulated wire;
    A cable comprising: an outer skin layer made of an insulator and disposed so as to surround the outer periphery of the shield portion.
  12.  請求項10に記載の絶縁電線と、
     前記絶縁電線の外周を取り囲むように配置される導電体製のシールド部と、
     前記シールド部の外周を取り囲むように配置される絶縁体製の外皮層と、を含む、ケーブル。
    The insulated wire according to claim 10;
    a shield made of a conductor arranged to surround the outer periphery of the insulated wire;
    A cable comprising: an outer skin layer made of an insulator and disposed so as to surround the outer periphery of the shield portion.
PCT/JP2023/001424 2022-05-26 2023-01-19 Twisted wire, insulated wire, and cable WO2023228468A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-085853 2022-05-26
JP2022085853 2022-05-26

Publications (1)

Publication Number Publication Date
WO2023228468A1 true WO2023228468A1 (en) 2023-11-30

Family

ID=88918905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001424 WO2023228468A1 (en) 2022-05-26 2023-01-19 Twisted wire, insulated wire, and cable

Country Status (1)

Country Link
WO (1) WO2023228468A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112174A1 (en) * 2013-01-16 2014-07-24 住友電装株式会社 Twisted wire conductor, covered electrical wire, and method for manufacturing twisted wire conductor
JP2015201322A (en) * 2014-04-08 2015-11-12 日立金属株式会社 Electric wire
WO2020261564A1 (en) * 2019-06-28 2020-12-30 住友電気工業株式会社 Copper-coated steel wire, spring, stranded wire, insulated electric wire and cable
JP2021082488A (en) * 2019-11-20 2021-05-27 日立金属株式会社 Multicore cable

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112174A1 (en) * 2013-01-16 2014-07-24 住友電装株式会社 Twisted wire conductor, covered electrical wire, and method for manufacturing twisted wire conductor
JP2015201322A (en) * 2014-04-08 2015-11-12 日立金属株式会社 Electric wire
WO2020261564A1 (en) * 2019-06-28 2020-12-30 住友電気工業株式会社 Copper-coated steel wire, spring, stranded wire, insulated electric wire and cable
JP2021082488A (en) * 2019-11-20 2021-05-27 日立金属株式会社 Multicore cable

Similar Documents

Publication Publication Date Title
US20220238248A1 (en) Copper-coated steel wire, spring, stranded wire, insulated electric wire, and cable
KR950005852B1 (en) Cable conductor for auto-mobil
CN112534519B (en) Copper-clad steel wire and stranded wire
JP6185419B2 (en) Aluminum plated stainless steel wire
JPH0731939B2 (en) High strength, highly flexible conductor
WO2023228468A1 (en) Twisted wire, insulated wire, and cable
US11459644B2 (en) Copper-coated steel wire and canted coil spring
WO2018092350A1 (en) Twisted wire for wire harness and wire harness
JP5442294B2 (en) Wire conductor manufacturing method, and wire conductor and insulated wire
JP5497321B2 (en) Compressed stranded conductor, method for producing the same, and insulated wire
JP5136248B2 (en) Copper alloy wire and manufacturing method thereof, copper alloy twisted wire and manufacturing method thereof, insulated electric wire, coaxial cable and multi-core cable using these
CN113811958B (en) Copper-clad steel wire, twisted wire, insulated wire and cable
JP4986522B2 (en) Wires for automobile wires and electric wires for automobiles
JPH06187831A (en) Automobile wire conductor and automobile wire
CN107887053B (en) Plated copper wire, plated stranded wire, insulated wire, and method for producing plated copper wire
JP6424925B2 (en) Plating copper wire, plated stranded wire and insulated wire, and method of manufacturing plated copper wire
JP7180774B2 (en) Copper coated steel wire, stranded wire, insulated wire and cable
CN113966539B (en) Copper-clad steel wire, twisted wire, insulated wire, and cable
JP7424042B2 (en) Stranded conductor, insulated wire, and method for manufacturing stranded conductor
JP7295817B2 (en) Conductor stranded wire for wire harness
US10293397B2 (en) Metal wire and electric wire
WO2023047514A1 (en) Insulated wire, method for producing same, terminal-equipped insulated wire, and method for producing same
JP2021068572A (en) Flex-resistance insulated wire
JP2021068576A (en) Flex-resistance insulated wire
JP2000176534A (en) Stainless steel covered copper wire and its production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811349

Country of ref document: EP

Kind code of ref document: A1