WO2023228303A1 - Alignment method - Google Patents

Alignment method Download PDF

Info

Publication number
WO2023228303A1
WO2023228303A1 PCT/JP2022/021353 JP2022021353W WO2023228303A1 WO 2023228303 A1 WO2023228303 A1 WO 2023228303A1 JP 2022021353 W JP2022021353 W JP 2022021353W WO 2023228303 A1 WO2023228303 A1 WO 2023228303A1
Authority
WO
WIPO (PCT)
Prior art keywords
side direction
optical
input
optical fiber
fiber
Prior art date
Application number
PCT/JP2022/021353
Other languages
French (fr)
Japanese (ja)
Inventor
達 三浦
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/021353 priority Critical patent/WO2023228303A1/en
Publication of WO2023228303A1 publication Critical patent/WO2023228303A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device

Definitions

  • the present invention relates to a method for alignment in optical connection between an optical device and an optical fiber.
  • Non-Patent Document 1 Non-Patent Document 2
  • an active element such as a laser diode (LD)
  • LD laser diode
  • PD photodiode
  • a normal single mode fiber has a core diameter of about 10 ⁇ m, and the optical waveguide often has a core size of several ⁇ m. Need to detect light. Therefore, if the relative positional relationship between the optical fiber and the optical waveguide cannot be grasped at the start of alignment, there is a problem in that alignment is difficult or takes a long time.
  • the present invention has been made in order to solve the above-mentioned problems, and it is an object of the present invention to enable alignment to be carried out more easily.
  • the alignment method includes the steps of: facing an input/output end of an optical fiber and a fiber end to be optically coupled to a rectangular end face of an optical device in which an input/output end of an optical waveguide to be optically coupled to the optical fiber is arranged; By moving the optical device and the optical fiber relatively, the inspection light emitted from the fiber end is scanned with an optical axis perpendicular to the end face, and the state of the reflected light reflected from the end face and incident on the fiber end is determined. Rough alignment of the optical waveguide and the optical fiber is performed based on the scanning position at which the change has been made and the positional information of the input and output ends on the set end face.
  • the scanning position at which the state of the reflected light that is reflected by the rectangular end face of the optical device in which the input/output end of the optical waveguide is arranged and enters the fiber end of the optical fiber changes. Since coarse alignment between the optical waveguide and the optical fiber is performed based on the positional information of the input and output ends on the set end face, alignment can be performed more easily.
  • FIG. 1 is a flowchart for explaining an alignment method according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing the configuration of the optical device 105 in which the notch 107 is formed.
  • FIG. 3 is a configuration diagram showing the configuration of a measurement system that measures changes in the state of reflected light.
  • FIG. 4A is a characteristic diagram showing the result of calculating the spectrum of reflected light when the resonator length is 50 ⁇ m.
  • FIG. 4B is a characteristic diagram showing the result of calculating the spectrum of reflected light when the resonator length is 300 ⁇ m.
  • FIG. 5A is an explanatory diagram for explaining an example of measuring a change in the state of reflected light.
  • FIG. 5B is a characteristic diagram showing an example of the measurement results of resonance characteristics.
  • FIG. 5C is a characteristic diagram showing an example of measurement results of reflection intensity.
  • FIG. 6A is an explanatory diagram for explaining an example of measuring a change in the state of reflected light.
  • FIG. 6B is a characteristic diagram showing an example of the measurement results of reflection intensity.
  • step S101 the input and output ends of the optical fiber and the fiber end to be optically coupled are attached to the rectangular end face of the optical device in which the input and output ends of the optical waveguide to be optically coupled to the optical fiber are arranged. Face each other.
  • step S102 by moving the optical device and the optical fiber relatively, the inspection light emitted from the fiber end is scanned with an optical axis perpendicular to the end surface.
  • step S103 when it is detected that the state of the reflected light that has entered the fiber end has changed (step S103: yes), in step S104, the state of the reflected light that has been reflected at the end face and entered the fiber end has changed.
  • Rough alignment of the optical waveguide and the optical fiber is performed based on the scanning position and the positional information of the input and output ends on the set end face.
  • scanning is performed in each of the long side direction and the short side direction of the end surface, and the scan positions where the intensity of reflected light changes in the long side direction and the short side direction are respectively scanned at the long side direction end and short side direction of the end surface.
  • the roughness of the optical waveguide and optical fiber is detected from the position of the long side end, the short side end position, and the input/output end position information on the set end face. Alignment can be performed.
  • a recess is formed at a position of a known length in the long side direction from the input/output end on the end face, and coarse centering can be performed by the following method.
  • the scanning position where the state of the reflected light changes is detected as the position of the recess.
  • the scanning position where the wavelength characteristics of the reflected light change can be detected as the position of the recess.
  • the scanning position where the intensity of the reflected light changes can be detected as the position of the recess.
  • the position of the detected recess, the position information of the input/output end on the set end face, and the known position information of the recess, the optical waveguide and optical fiber are Coarse alignment can be performed with Generally, the rectangular end face of an optical device in which the input/output end of an optical waveguide is arranged is often a rectangle in which the long side is longer than the short side. Therefore, when detecting the long side end by scanning in the long side direction, scanning over a longer distance in the short side direction is required. On the other hand, by providing the recessed portion, it becomes possible to shorten the scanning distance in the long side direction, and more rapid alignment becomes possible.
  • the recess can be, for example, a notch 107 formed in the optical device 105, as shown in FIG.
  • the notch 107 is provided in the end surface 151 of the optical device 105.
  • the optical device 105 has a rectangular external shape, and an input/output end 153 of an optical waveguide 152 built in the optical device 105 is arranged at an end surface 151.
  • the input optical fiber 101 is optically coupled to the input/output end 153 .
  • the end surface 151 has a rectangular shape, and a notch 107 can be formed at a predetermined distance from the input/output end 153.
  • the distance between the input/output end 153 and the notch 107 can be known (designed value).
  • the notch 107 has a surface that is parallel to the end surface 151.
  • a resonator 106 is formed between the fiber end of the optical fiber 101 and the end face of the optical device 105.
  • the distance between the fiber end of the optical fiber 101 and the end face of the optical device 105 is the resonator length of the resonator 106, and when the resonator length changes, the resonant wavelength interval changes. This change in the resonant wavelength interval is reflected in the measurement results of the wavelength characteristics of the reflected light using a broadband light source as the light source 103 and a spectrum analyzer as the measuring device 104.
  • FIG. 4A shows an example of calculating the spectrum of reflected light when the resonator length is 50 ⁇ m. Further, FIG. 4B shows an example of calculating the spectrum of reflected light when the resonator length is 300 ⁇ m.
  • the resonance wavelength interval is 17 nm. Further, when the resonator length is 300 ⁇ m, the resonance wavelength interval is 2.85 nm.
  • the difference in the distance between the optical fiber 101 and the optical device 105 (end surface 151) can be detected. Therefore, as shown in FIG. 5A, if the resonance characteristics are examined while scanning the optical fiber 101 in the long side direction on the rectangular end face 151, the position in the long side direction and the resonance wavelength will be determined as shown in FIG. 5B. relationship can be obtained. From the relationship obtained in this way, the position (B) of the notch 107 in the long side direction can be specified. The optical fiber 101 is moved from the position (B) of the notch 107 to the position p of the input/output end of the optical waveguide 152 by a known distance x in the long side direction. can be carried.
  • the short side direction while looking at the measurement results by the measuring device 104, as shown in FIG. If examined, the relationship between the position in the short side direction and the reflection intensity can be obtained, as shown in FIG. 5C.
  • a power meter as the measuring device 104, changes in reflection intensity can be measured.
  • the light is not reflected and does not return, and this state is reflected in the measurement result of the reflection intensity. From the relationship obtained in this way, the position (E) in the short side direction of the short side end of the end surface 151 can be specified.
  • the light is transferred to the input/output end of the optical waveguide 152 by moving in the short side direction by a known distance y.
  • a fiber 101 can be carried.
  • the position of the input/output end of the optical waveguide 152 can be specified, and the position of the input/output end of the identified input/output end can be determined.
  • coarse alignment can be performed.
  • fine alignment can be achieved.
  • measurement of light intensity can also be used to detect the position of the recess.
  • reflection intensity can also be used to detect the position of the recess.
  • FIG. 6A in the case of a recess 107a formed by cutting with a dicing blade, none of the surfaces forming the recess 107a are parallel to the end surface 151. In other words, the recess 107a does not have a surface parallel to the end surface 151. Therefore, reflected light does not return to the optical fiber 101 scanning on the end face 151 in the region of the recess 107a.
  • the position (C') in the long side direction of the recess 107a can be specified.
  • the optical fiber is moved from the position (C') of the recess 107a to the position p of the input/output end of the optical waveguide 152 by a known distance x' in the long side direction. It can carry 101. Note that the short side direction is the same as described above.
  • the scanning position at which the state of the reflected light that is reflected by the rectangular end face of the optical device in which the input and output ends of the optical waveguide are arranged and enters the fiber end of the optical fiber changes. Since the coarse alignment of the optical waveguide and the optical fiber is performed based on the positional information of the input and output ends on the set end face, the alignment can be performed more easily.
  • Optical fiber 101... Optical fiber, 102... Optical circulator, 103... Light source, 104... Measuring device, 105... Optical device, 106... Resonator, 107... Notch, 151... End surface, 152... Optical waveguide, 153... Input/output end.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

ステップS101で、光ファイバと光結合させる光導波路の入出射端が配置された光デバイスの長方形の端面に、光ファイバの入出射端と光結合させるファイバ端とを向かい合わせ、ステップS102で、光デバイスと光ファイバとを相対的に移動させることで、端面に対して垂直な光軸でファイバ端より出射させた検査光を走査し、ステップS103で、ファイバ端に入射した反射光の状態が変化したことを検出すると(ステップS103のyes)、ステップS104で、端面で反射してファイバ端に入射した反射光の状態が変化した走査位置と、設定されている端面における入出射端の位置情報とから、光導波路と光ファイバとの粗調芯を行う。 In step S101, the end of an optical fiber to be optically coupled with an input/output end of an optical waveguide, which is to be optically coupled to the optical fiber, is made to face a rectangular end surface of an optical device on which the input/output end is disposed. In step S102, the optical device and the optical fiber are moved relative to each other, whereby inspection light emitted from the fiber end is scanned via an optical axis perpendicular to the end surface. When it is detected in step S103 that the state of reflected light incident on the fiber end has changed (yes in step S103), rough alignment of the optical waveguide and the optical fiber is performed in step S104 from the scan position at which the state of reflected light that was reflected by the end surface and impinged on the fiber end changed, and position information regarding the position of the input/output end on the end surface that has been set.`

Description

調芯方法Alignment method
 本発明は、光デバイスと光ファイバとの光接続における調芯方法に関する。 The present invention relates to a method for alignment in optical connection between an optical device and an optical fiber.
 光デバイスの測定、検査の際には、光を入出力させる光ファイバと測定対象の光デバイスの間の光結合をさせるために、光デバイス内に作られた光導波路と、光ファイバとの調芯が必要である。光の入力、出力ともに光ファイバで行う必要があるデバイスでは、多くの場合、入射側の光ファイバと光導波路との結合状態を、出力端に設置されたIR(Infrared)カメラなどで観察しながら入射側の結合状態を確立し、この後、出力端の光ファイバと光導波路との調芯を行う(非特許文献1、非特許文献2)。 When measuring and inspecting optical devices, it is necessary to adjust the optical waveguide created inside the optical device and the optical fiber to achieve optical coupling between the optical fiber that inputs and outputs light and the optical device to be measured. A core is required. In devices that require optical fibers for both light input and output, the coupling state between the input side optical fiber and the optical waveguide is often observed using an IR (Infrared) camera installed at the output end. A coupling state on the input side is established, and then the optical fiber at the output end and the optical waveguide are aligned (Non-Patent Document 1, Non-Patent Document 2).
 また、レーザーダイオード(LD)などの能動素子の場合、発振した光を光ファイバで受けるため、出力端の光ファイバを調芯する必要がある。フォトダイオード(PD)の場合は、光ファイバで入力して、PDで検出する。いずれにしても、光デバイスの測定をする際には、測定対象のデバイスに適した方法で、最低1本の光ファイバを調芯する必要がある。 Furthermore, in the case of an active element such as a laser diode (LD), since the oscillated light is received by an optical fiber, it is necessary to align the optical fiber at the output end. In the case of a photodiode (PD), it is input through an optical fiber and detected by the PD. In any case, when measuring an optical device, it is necessary to align at least one optical fiber using a method suitable for the device to be measured.
 通常のシングルモードファイバは、コア径が約10μmであり、光導波路も数μmのコアサイズであることが多く、ミクロンオーダの空間分解能で光導波路が存在しうる範囲を光ファイバにて走査し、光を検出する必要がある。このため、調芯開始時に、光ファイバと光導波路との相対的な位置関係を把握できていなければ、調芯が困難、もしくは、調芯に時間を要してしまうという問題があった。 A normal single mode fiber has a core diameter of about 10 μm, and the optical waveguide often has a core size of several μm. Need to detect light. Therefore, if the relative positional relationship between the optical fiber and the optical waveguide cannot be grasped at the start of alignment, there is a problem in that alignment is difficult or takes a long time.
 本発明は、以上のような問題点を解消するためになされたものであり、より容易に調芯が実施できるようにすることを目的とする。 The present invention has been made in order to solve the above-mentioned problems, and it is an object of the present invention to enable alignment to be carried out more easily.
 本発明に係る調芯方法は、光ファイバと光結合させる光導波路の入出射端が配置された光デバイスの長方形の端面に、光ファイバの入出射端と光結合させるファイバ端とを向かい合わせ、光デバイスと光ファイバとを相対的に移動させることで、端面に対して垂直な光軸でファイバ端より出射させた検査光を走査し、端面で反射してファイバ端に入射した反射光の状態が変化した走査位置と、設定されている端面における入出射端の位置情報とから、光導波路と光ファイバとの粗調芯を行う。 The alignment method according to the present invention includes the steps of: facing an input/output end of an optical fiber and a fiber end to be optically coupled to a rectangular end face of an optical device in which an input/output end of an optical waveguide to be optically coupled to the optical fiber is arranged; By moving the optical device and the optical fiber relatively, the inspection light emitted from the fiber end is scanned with an optical axis perpendicular to the end face, and the state of the reflected light reflected from the end face and incident on the fiber end is determined. Rough alignment of the optical waveguide and the optical fiber is performed based on the scanning position at which the change has been made and the positional information of the input and output ends on the set end face.
 以上説明したように、本発明によれば、光導波路の入出射端が配置された光デバイスの長方形の端面で反射して光ファイバのファイバ端に入射した反射光の状態が変化した走査位置と、設定されている端面における入出射端の位置情報とから、光導波路と光ファイバとの粗調芯を行うので、より容易に調芯が実施できる。 As explained above, according to the present invention, the scanning position at which the state of the reflected light that is reflected by the rectangular end face of the optical device in which the input/output end of the optical waveguide is arranged and enters the fiber end of the optical fiber changes. Since coarse alignment between the optical waveguide and the optical fiber is performed based on the positional information of the input and output ends on the set end face, alignment can be performed more easily.
図1は、本発明の実施の形態に係る調芯方法を説明するためのフローチャートである。FIG. 1 is a flowchart for explaining an alignment method according to an embodiment of the present invention. 図2は、切欠き107が形成された光デバイス105の構成を示す斜視図である。FIG. 2 is a perspective view showing the configuration of the optical device 105 in which the notch 107 is formed. 図3は、反射光の状態変化を測定する測定システムの構成を示す構成図である。FIG. 3 is a configuration diagram showing the configuration of a measurement system that measures changes in the state of reflected light. 図4Aは、共振器長が50μmの場合の反射光のスペクトルを計算した結果を示す特性図である。FIG. 4A is a characteristic diagram showing the result of calculating the spectrum of reflected light when the resonator length is 50 μm. 図4Bは、共振器長が300μmの場合の反射光のスペクトルを計算した結果を示す特性図である。FIG. 4B is a characteristic diagram showing the result of calculating the spectrum of reflected light when the resonator length is 300 μm. 図5Aは、反射光の状態変化の測定例を説明するための説明図である。FIG. 5A is an explanatory diagram for explaining an example of measuring a change in the state of reflected light. 図5Bは、共振特性の測定結果の一例を示す特性図である。FIG. 5B is a characteristic diagram showing an example of the measurement results of resonance characteristics. 図5Cは、反射強度の測定結果の一例を示す特性図である。FIG. 5C is a characteristic diagram showing an example of measurement results of reflection intensity. 図6Aは、反射光の状態変化の測定例を説明するための説明図である。FIG. 6A is an explanatory diagram for explaining an example of measuring a change in the state of reflected light. 図6Bは、反射強度の測定結果の一例を示す特性図である。FIG. 6B is a characteristic diagram showing an example of the measurement results of reflection intensity.
 以下、本発明の実施の形態に係る調芯方法について図1を参照して説明する。この調芯方法は、まず、ステップS101で、光ファイバと光結合させる光導波路の入出射端が配置された光デバイスの長方形の端面に、光ファイバの入出射端と光結合させるファイバ端とを向かい合わせる。 Hereinafter, an alignment method according to an embodiment of the present invention will be described with reference to FIG. 1. In this alignment method, first, in step S101, the input and output ends of the optical fiber and the fiber end to be optically coupled are attached to the rectangular end face of the optical device in which the input and output ends of the optical waveguide to be optically coupled to the optical fiber are arranged. Face each other.
 次に、ステップS102で、光デバイスと光ファイバとを相対的に移動させることで、端面に対して垂直な光軸でファイバ端より出射させた検査光を走査する。 Next, in step S102, by moving the optical device and the optical fiber relatively, the inspection light emitted from the fiber end is scanned with an optical axis perpendicular to the end surface.
 次に、ステップS103で、ファイバ端に入射した反射光の状態が変化したことを検出すると(ステップS103のyes)、ステップS104で、端面で反射してファイバ端に入射した反射光の状態が変化した走査位置と、設定されている端面における入出射端の位置情報とから、光導波路と光ファイバとの粗調芯を行う。 Next, in step S103, when it is detected that the state of the reflected light that has entered the fiber end has changed (step S103: yes), in step S104, the state of the reflected light that has been reflected at the end face and entered the fiber end has changed. Rough alignment of the optical waveguide and the optical fiber is performed based on the scanning position and the positional information of the input and output ends on the set end face.
 例えば、端面の長辺方向および短辺方向の各々において走査を実施し、長辺方向および短辺方向の各々において、反射光の強度が変化した走査位置を端面の長辺方向端部および短辺方向端部の位置として検出し、検出した長辺方向端部の位置および短辺方向端部の位置と、設定されている端面における入出射端の位置情報とから光導波路と光ファイバとの粗調芯を行うことができる。 For example, scanning is performed in each of the long side direction and the short side direction of the end surface, and the scan positions where the intensity of reflected light changes in the long side direction and the short side direction are respectively scanned at the long side direction end and short side direction of the end surface. The roughness of the optical waveguide and optical fiber is detected from the position of the long side end, the short side end position, and the input/output end position information on the set end face. Alignment can be performed.
 また、例えば、端面において、入出射端から長辺方向に既知の長さの位置に凹部が形成しておき、次に示すことにより、粗調芯を行うことができる。まず、端面の長辺方向および短辺方向の各々において走査を実施する。この走査において、短辺方向において、反射光の強度が変化した走査位置を端面の短辺方向端部の位置として検出する。 Further, for example, a recess is formed at a position of a known length in the long side direction from the input/output end on the end face, and coarse centering can be performed by the following method. First, scanning is performed in each of the long side direction and the short side direction of the end surface. In this scanning, the scanning position where the intensity of the reflected light changes in the short side direction is detected as the position of the end of the end face in the short side direction.
 また、長辺方向において、反射光の状態が変化した走査位置を凹部の位置として検出する。例えば、長辺方向において、反射光の波長特性が変化した走査位置を凹部の位置として検出することができる。また、長辺方向において、反射光の強度が変化した走査位置を凹部の位置として検出することができる。 Additionally, in the long side direction, the scanning position where the state of the reflected light changes is detected as the position of the recess. For example, in the long side direction, the scanning position where the wavelength characteristics of the reflected light change can be detected as the position of the recess. Further, in the long side direction, the scanning position where the intensity of the reflected light changes can be detected as the position of the recess.
 このようにして検出した短辺方向端部の位置、および検出した凹部の位置と、設定されている端面における入出射端の位置情報、および凹部の既知の位置情報とから、光導波路と光ファイバとの粗調芯を行うことができる。一般に、光導波路の入出射端が配置される光デバイスの長方形の端面は、短辺に対して長辺がより長い長方形となっている場合が多い。このため、長辺方向の走査で長辺方向端部を検出する場合、短辺方向に対してより長い距離の走査が必要となる。これに対し、凹部を設けることで、長辺方向の走査距離を短くすることが可能となり、より迅速な調芯が可能となる。 Based on the position of the end in the short side direction detected in this way, the position of the detected recess, the position information of the input/output end on the set end face, and the known position information of the recess, the optical waveguide and optical fiber are Coarse alignment can be performed with Generally, the rectangular end face of an optical device in which the input/output end of an optical waveguide is arranged is often a rectangle in which the long side is longer than the short side. Therefore, when detecting the long side end by scanning in the long side direction, scanning over a longer distance in the short side direction is required. On the other hand, by providing the recessed portion, it becomes possible to shorten the scanning distance in the long side direction, and more rapid alignment becomes possible.
 凹部は、例えば、図2に示すように、光デバイス105に形成された切欠き107とすることができる。切欠き107は、光デバイス105の端面151に設けられている。光デバイス105は、外形が直方体とされ、光デバイス105が内蔵する光導波路152の入出射端153が端面151に配置されている。入出射端153に、入射用の光ファイバ101を光結合させる。端面151は、長方形とされ、入出射端153から所定の距離離れた箇所に切欠き107を形成しておくことができる。入出射端153と切欠き107との距離は、既知(設計値)とすることができる。この例において、切欠き107は、端面151と互いに平行な関係を有する面を備えている。 The recess can be, for example, a notch 107 formed in the optical device 105, as shown in FIG. The notch 107 is provided in the end surface 151 of the optical device 105. The optical device 105 has a rectangular external shape, and an input/output end 153 of an optical waveguide 152 built in the optical device 105 is arranged at an end surface 151. The input optical fiber 101 is optically coupled to the input/output end 153 . The end surface 151 has a rectangular shape, and a notch 107 can be formed at a predetermined distance from the input/output end 153. The distance between the input/output end 153 and the notch 107 can be known (designed value). In this example, the notch 107 has a surface that is parallel to the end surface 151.
 光ファイバ101を端面151で走査した際の光の反射強度、もしくは、スペクトルを観察することで、光導波路152の入出射端153の位置を特定し、アライメント(調芯)することが可能である。 By observing the reflection intensity or spectrum of the light when the optical fiber 101 is scanned by the end face 151, it is possible to identify the position of the input/output end 153 of the optical waveguide 152 and perform alignment. .
 光ファイバ101から光デバイス105へ光入射する際に、図3に示すように、光ファイバ101に、3ポートの光サーキュレータ102を介して、光源103と測定器104を接続し、光デバイス105の端面に光を入射すると、光デバイス105の端面で光が反射され、反射光が光ファイバ101に戻る。 When light enters the optical device 105 from the optical fiber 101, as shown in FIG. When light is incident on the end face, the light is reflected on the end face of the optical device 105 and the reflected light returns to the optical fiber 101.
 この際に、光ファイバ101のファイバ端と光デバイス105の端面と間に共振器106が形成される。光ファイバ101のファイバ端と光デバイス105の端面との距離は、共振器106の共振器長であり、共振器長が変化すると、共振波長間隔が変化する。この共振波長間隔の変化は、光源103として広帯域光源を用い、測定器104としてスペクトラムアナライザを用いた反射光の波長特性の測定結果に反映する。 At this time, a resonator 106 is formed between the fiber end of the optical fiber 101 and the end face of the optical device 105. The distance between the fiber end of the optical fiber 101 and the end face of the optical device 105 is the resonator length of the resonator 106, and when the resonator length changes, the resonant wavelength interval changes. This change in the resonant wavelength interval is reflected in the measurement results of the wavelength characteristics of the reflected light using a broadband light source as the light source 103 and a spectrum analyzer as the measuring device 104.
 図4Aに共振器長が50μmの場合の反射光のスペクトルを計算した例を示す。また、図4Bに共振器長が300μmの場合の反射光のスペクトルを計算した例を示す。共振器長が50μmのとき、共振波長間隔は、17nmとなっている。また、共振器長が300μmのとき、共振波長間隔は、2.85nmとなっている。 FIG. 4A shows an example of calculating the spectrum of reflected light when the resonator length is 50 μm. Further, FIG. 4B shows an example of calculating the spectrum of reflected light when the resonator length is 300 μm. When the resonator length is 50 μm, the resonance wavelength interval is 17 nm. Further, when the resonator length is 300 μm, the resonance wavelength interval is 2.85 nm.
 このように、光ファイバ101と光デバイス105(端面151)との間隔の違いを検出することができる。このため、図5Aに示すように、長方形の端面151の上において、光ファイバ101を長辺方向に走査しながら共振特性を調べれば、図5Bに示すように、長辺方向の位置と共振波長の関係を得ることができる。このようにして得られた関係より、切欠き107の長辺方向の位置(B)を特定することができる。切欠き107の位置(B)から光導波路152の入出射端の位置pへは、既知である距離xの分だけ長辺方向に移動することで、光導波路152の入出射端に光ファイバ101を運ぶことができる。 In this way, the difference in the distance between the optical fiber 101 and the optical device 105 (end surface 151) can be detected. Therefore, as shown in FIG. 5A, if the resonance characteristics are examined while scanning the optical fiber 101 in the long side direction on the rectangular end face 151, the position in the long side direction and the resonance wavelength will be determined as shown in FIG. 5B. relationship can be obtained. From the relationship obtained in this way, the position (B) of the notch 107 in the long side direction can be specified. The optical fiber 101 is moved from the position (B) of the notch 107 to the position p of the input/output end of the optical waveguide 152 by a known distance x in the long side direction. can be carried.
 また、短辺方向についても、同様に、測定器104による測定結果を見ながら、図5Aに示すように、光ファイバ101を端面151の上で短辺方向に走査することで反射強度の変化を調べれば、図5Cに示すように、短辺方向の位置と反射強度との関係を得ることができる。測定器104としてパワーメータを用いることで、反射強度の変化が測定できる。端面151の短辺方向端部を超えた箇所では、光が反射することなく戻らなくなり、この状態が反射強度の測定結果に反映する。このようにして得られた関係より、端面151の短辺方向端部の短辺方向の位置(E)を特定することができる。短辺方向端部の位置(E)から光導波路152の入出射端の位置pへは、既知である距離yの分だけ短辺方向に移動することで、光導波路152の入出射端に光ファイバ101を運ぶことができる。 Similarly, regarding the short side direction, while looking at the measurement results by the measuring device 104, as shown in FIG. If examined, the relationship between the position in the short side direction and the reflection intensity can be obtained, as shown in FIG. 5C. By using a power meter as the measuring device 104, changes in reflection intensity can be measured. At a location beyond the end of the end face 151 in the short side direction, the light is not reflected and does not return, and this state is reflected in the measurement result of the reflection intensity. From the relationship obtained in this way, the position (E) in the short side direction of the short side end of the end surface 151 can be specified. From the position (E) of the end in the short side direction to the position p of the input/output end of the optical waveguide 152, the light is transferred to the input/output end of the optical waveguide 152 by moving in the short side direction by a known distance y. A fiber 101 can be carried.
 上述したことにより、光デバイス105の端面151上で、光ファイバ101を長辺方向および短辺方向に走査することで、光導波路152の入出射端の位置が特定でき、特定した入出射端の位置に光ファイバ101を運ぶことで、粗調芯が実施できる。この後、測定対象の光デバイス105に応じた微調芯をすることで、最適位置へアライメントすることができる。 As described above, by scanning the optical fiber 101 in the long side direction and the short side direction on the end face 151 of the optical device 105, the position of the input/output end of the optical waveguide 152 can be specified, and the position of the input/output end of the identified input/output end can be determined. By transporting the optical fiber 101 to a certain position, coarse alignment can be performed. Thereafter, by performing fine alignment according to the optical device 105 to be measured, alignment to the optimum position can be achieved.
 また、凹部の位置の検出においても、光強度(反射強度)の測定を用いることができる。例えば、図6Aに示すように、ダイシングブレードによる切削などで形成された凹部107aの場合、凹部107aを形成するいずれの面も、端面151と平行な状態とはならない。言い換えると、凹部107aは、端面151と互いに平行な面を備えていない。このため、端面151の上で走査している光ファイバ101に、凹部107aの領域では反射光が戻らない。 Furthermore, measurement of light intensity (reflection intensity) can also be used to detect the position of the recess. For example, as shown in FIG. 6A, in the case of a recess 107a formed by cutting with a dicing blade, none of the surfaces forming the recess 107a are parallel to the end surface 151. In other words, the recess 107a does not have a surface parallel to the end surface 151. Therefore, reflected light does not return to the optical fiber 101 scanning on the end face 151 in the region of the recess 107a.
 このような場合、反射強度を測定することで、図6Bに示すように、凹部107aに到達した箇所C’では、光が反射することなく戻らなくなり、この状態が反射強度の測定結果に反映する。このようにして得られた関係より、凹部107aの長辺方向の位置(C’)を特定することができる。凹部107aの位置(C’)から光導波路152の入出射端の位置pへは、既知である距離x’の分だけ長辺方向に移動することで、光導波路152の入出射端に光ファイバ101を運ぶことができる。なお、短辺方向については、前述同様である。 In such a case, by measuring the reflection intensity, as shown in FIG. 6B, at the point C' where the light reaches the recess 107a, the light does not return without being reflected, and this state is reflected in the measurement result of the reflection intensity. . From the relationship obtained in this way, the position (C') in the long side direction of the recess 107a can be specified. The optical fiber is moved from the position (C') of the recess 107a to the position p of the input/output end of the optical waveguide 152 by a known distance x' in the long side direction. It can carry 101. Note that the short side direction is the same as described above.
 以上に説明したように、本発明によれば、光導波路の入出射端が配置された光デバイスの長方形の端面で反射して光ファイバのファイバ端に入射した反射光の状態が変化した走査位置と、設定されている端面における入出射端の位置情報とから、光導波路と光ファイバとの粗調芯を行うので、より容易に調芯が実施できるようになる。 As described above, according to the present invention, the scanning position at which the state of the reflected light that is reflected by the rectangular end face of the optical device in which the input and output ends of the optical waveguide are arranged and enters the fiber end of the optical fiber changes. Since the coarse alignment of the optical waveguide and the optical fiber is performed based on the positional information of the input and output ends on the set end face, the alignment can be performed more easily.
 なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。 It should be noted that the present invention is not limited to the embodiments described above, and many modifications and combinations can be made within the technical idea of the present invention by those having ordinary knowledge in this field. That is clear.
 101…光ファイバ、102…光サーキュレータ、103…光源、104…測定器、105…光デバイス、106…共振器、107…切欠き、151…端面、152…光導波路、153…入出射端。 101... Optical fiber, 102... Optical circulator, 103... Light source, 104... Measuring device, 105... Optical device, 106... Resonator, 107... Notch, 151... End surface, 152... Optical waveguide, 153... Input/output end.

Claims (5)

  1.  光ファイバと光結合させる光導波路の入出射端が配置された光デバイスの長方形の端面に、前記光ファイバの前記入出射端と光結合させるファイバ端とを向かい合わせ、
     前記光デバイスと前記光ファイバとを相対的に移動させることで、前記端面に対して垂直な光軸で前記ファイバ端より出射させた検査光を走査し、
     前記端面で反射して前記ファイバ端に入射した反射光の状態が変化した走査位置と、設定されている前記端面における前記入出射端の位置情報とから、前記光導波路と前記光ファイバとの粗調芯を行うことを特徴とする調芯方法。
    The input/output end of the optical fiber and the fiber end to be optically coupled are facing a rectangular end face of an optical device in which the input/output end of the optical waveguide to be optically coupled to the optical fiber is arranged,
    scanning the inspection light emitted from the fiber end with an optical axis perpendicular to the end surface by relatively moving the optical device and the optical fiber;
    The roughness of the optical waveguide and the optical fiber can be determined from the scanning position at which the state of the reflected light that has been reflected by the end face and entered the fiber end has changed, and the set position information of the input and output ends on the end face. A core alignment method characterized by performing core alignment.
  2.  請求項1記載の調芯方法において、
     前記端面の長辺方向および短辺方向の各々において前記走査を実施し、
     長辺方向および短辺方向の各々において、前記反射光の強度が変化した走査位置を前記端面の長辺方向端部および短辺方向端部の位置として検出し、検出した前記長辺方向端部の位置および前記短辺方向端部の位置と、設定されている前記端面における前記入出射端の位置情報とから前記光導波路と前記光ファイバとの粗調芯を行うことを特徴とする調芯方法。
    In the alignment method according to claim 1,
    carrying out the scanning in each of the long side direction and the short side direction of the end surface,
    In each of the long side direction and the short side direction, the scanning position where the intensity of the reflected light changes is detected as the position of the long side end and the short side end of the end surface, and the detected long side end is detected. The alignment is characterized in that coarse alignment of the optical waveguide and the optical fiber is performed based on the position of the optical waveguide, the position of the end in the short side direction, and the position information of the input and output ends on the set end face. Method.
  3.  請求項1記載の調芯方法において、
     前記端面は、前記入出射端から長辺方向に既知の長さの位置に凹部が形成され、
     前記端面の長辺方向および短辺方向の各々において前記走査を実施し、
     短辺方向において、前記反射光の強度が変化した走査位置を前記端面の短辺方向端部の位置として検出し、
     長辺方向において、前記反射光の状態が変化した走査位置を前記凹部の位置として検出し、
     検出した前記短辺方向端部の位置、および検出した前記凹部の位置と、設定されている前記端面における前記入出射端の位置情報、および前記凹部の既知の位置情報とから前記光導波路と前記光ファイバとの粗調芯を行うことを特徴とする調芯方法。
    In the alignment method according to claim 1,
    The end face has a recess formed at a position of a known length in the long side direction from the input/output end,
    carrying out the scanning in each of the long side direction and the short side direction of the end surface,
    detecting a scanning position where the intensity of the reflected light changes in the short side direction as a position of an end in the short side direction of the end surface;
    detecting a scanning position at which the state of the reflected light has changed in the long side direction as the position of the recess;
    Based on the detected position of the short side end, the detected position of the recess, the position information of the input/output end on the set end face, and the known position information of the recess, the optical waveguide and the recess are determined. An alignment method characterized by performing coarse alignment with an optical fiber.
  4.  請求項3記載の調芯方法において、
     長辺方向において、前記反射光の波長特性が変化した走査位置を前記凹部の位置として検出することを特徴とする調芯方法。
    In the alignment method according to claim 3,
    An alignment method characterized in that a scanning position where the wavelength characteristic of the reflected light changes in the long side direction is detected as the position of the recess.
  5.  請求項3記載の調芯方法において、
     長辺方向において、前記反射光の強度が変化した走査位置を前記凹部の位置として検出することを特徴とする調芯方法。
    In the alignment method according to claim 3,
    An alignment method characterized by detecting a scanning position at which the intensity of the reflected light changes in the long side direction as the position of the recess.
PCT/JP2022/021353 2022-05-25 2022-05-25 Alignment method WO2023228303A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/021353 WO2023228303A1 (en) 2022-05-25 2022-05-25 Alignment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/021353 WO2023228303A1 (en) 2022-05-25 2022-05-25 Alignment method

Publications (1)

Publication Number Publication Date
WO2023228303A1 true WO2023228303A1 (en) 2023-11-30

Family

ID=88918653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021353 WO2023228303A1 (en) 2022-05-25 2022-05-25 Alignment method

Country Status (1)

Country Link
WO (1) WO2023228303A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07174942A (en) * 1993-12-20 1995-07-14 Hitachi Ltd Optical coupling mechanism
JPH08334655A (en) * 1995-06-08 1996-12-17 Nippon Telegr & Teleph Corp <Ntt> Method for packaging optical element
JP2002258172A (en) * 2001-02-28 2002-09-11 Nippon Sheet Glass Co Ltd Scanning method and apparatus therefor, inspecting method of light intensity and apparatus therefor, aligning method and apparatus therefor
JP2007019298A (en) * 2005-07-08 2007-01-25 Nippon Telegr & Teleph Corp <Ntt> Manufacturing method of optical module
JP2012225984A (en) * 2011-04-15 2012-11-15 Tokyo Institute Of Technology Optical transmission line connection system and optical transmission line connection method
JP2014235154A (en) * 2013-06-05 2014-12-15 日本電信電話株式会社 Optical axis adjustment device and process therefor
JP2015064514A (en) * 2013-09-26 2015-04-09 株式会社フジクラ Core adjustment device and core adjustment method for multiple core optical fiber
JP2018077276A (en) * 2016-11-07 2018-05-17 Nttエレクトロニクス株式会社 Optical circuit board, optical device, and alignment method
WO2019244554A1 (en) * 2018-06-18 2019-12-26 日本電信電話株式会社 Planar lightwave circuit and optical device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07174942A (en) * 1993-12-20 1995-07-14 Hitachi Ltd Optical coupling mechanism
JPH08334655A (en) * 1995-06-08 1996-12-17 Nippon Telegr & Teleph Corp <Ntt> Method for packaging optical element
JP2002258172A (en) * 2001-02-28 2002-09-11 Nippon Sheet Glass Co Ltd Scanning method and apparatus therefor, inspecting method of light intensity and apparatus therefor, aligning method and apparatus therefor
JP2007019298A (en) * 2005-07-08 2007-01-25 Nippon Telegr & Teleph Corp <Ntt> Manufacturing method of optical module
JP2012225984A (en) * 2011-04-15 2012-11-15 Tokyo Institute Of Technology Optical transmission line connection system and optical transmission line connection method
JP2014235154A (en) * 2013-06-05 2014-12-15 日本電信電話株式会社 Optical axis adjustment device and process therefor
JP2015064514A (en) * 2013-09-26 2015-04-09 株式会社フジクラ Core adjustment device and core adjustment method for multiple core optical fiber
JP2018077276A (en) * 2016-11-07 2018-05-17 Nttエレクトロニクス株式会社 Optical circuit board, optical device, and alignment method
WO2019244554A1 (en) * 2018-06-18 2019-12-26 日本電信電話株式会社 Planar lightwave circuit and optical device

Similar Documents

Publication Publication Date Title
US10345233B2 (en) Optical measuring device having photonic chip with interferometer and phase adjuster set for minimizing signal from interference region
US20100322555A1 (en) Grating Structures for Simultaneous Coupling to TE and TM Waveguide Modes
US5930423A (en) Semiconductor optical waveguide devices with integrated beam expander coupled to flat fibers
JP2018021869A (en) Optical fiber evaluation method and optical fiber evaluation device
JP5277761B2 (en) Optical semiconductor device and manufacturing method thereof
Bhandari et al. Compact and broadband edge coupler based on multi-stage silicon nitride tapers
WO2023228303A1 (en) Alignment method
US20220299718A1 (en) Alignment and Readout of Optical Chips
WO2012118021A1 (en) Optical waveguide, laser light irradiation device, and method for assembling laser light irradiation device
US20140036258A1 (en) Optical transmission line connection system and optical transmission line connection method
US5508805A (en) Interferometer, optical scanning type tunneling microscope and optical probe
US20060198582A1 (en) Photodetection device and light source module
CN114911009A (en) Optical fiber filter
US11125943B2 (en) Optical modulator and optical measurement apparatus
Säynätjoki et al. Characterization of photonic crystal waveguides using Fabry–Perot resonances
Aalto et al. Broadband and polarization independent waveguide-fiber coupling
Du et al. Demonstration of a low loss, highly stable and re-useable edge coupler for high heralding efficiency and low g (2)(0) SOI correlated photon pair sources
Beltman Monolithic 4H-SiC Strip-loaded Waveguide and Optical Fiber Alignment Methods for Improved Future Optical EIT Control
Saito et al. Vertical-Coupling Mirror Array for InP-PIC Wafer-Level Optical I/O with> 100-nm Wavelength Bandwidth
Çelikel Mode field diameter and cut-off wavelength measurements of single mode optical fiber standards used in OTDR calibrations
KR100604357B1 (en) apparatus for measuring the refractive index profile of optical devices using confocal scanning microscopy
Zhong et al. End-capping hollow-core fibers with suppressed coupling into higher-order modes
JPH08179148A (en) Method and device for optical axis adjustment
KR100334764B1 (en) Apparatus for measuring refractive index profile of an optical fiber
Guo et al. Observation of Unique Coupling-Independent Resonances in Coupled Spiral Resonators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943707

Country of ref document: EP

Kind code of ref document: A1