WO2023228269A1 - Light amplifier and light amplification method - Google Patents

Light amplifier and light amplification method Download PDF

Info

Publication number
WO2023228269A1
WO2023228269A1 PCT/JP2022/021214 JP2022021214W WO2023228269A1 WO 2023228269 A1 WO2023228269 A1 WO 2023228269A1 JP 2022021214 W JP2022021214 W JP 2022021214W WO 2023228269 A1 WO2023228269 A1 WO 2023228269A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
core
mechanical
optical
frequency
Prior art date
Application number
PCT/JP2022/021214
Other languages
French (fr)
Japanese (ja)
Inventor
竜一 太田
拓矢 鳩村
ヴァレンシア ヴィクトル マヌエル バスティダス
学俊 徐
克弥 小栗
ウィリアム ジョン マンロ
創 岡本
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/021214 priority Critical patent/WO2023228269A1/en
Publication of WO2023228269A1 publication Critical patent/WO2023228269A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating

Definitions

  • the present invention relates to an optical amplifier and an optical amplification method.
  • Rare-earth impurity levels in solids and defect levels in diamond have excellent light-emitting properties, so they have been applied to various optical amplifiers as light-emitting centers.
  • the resonant wavelength of the luminescent center contained in the solid changes due to local electric field or strain within the solid. For this reason, these luminescent centers are spread throughout the solid with their resonance wavelengths being non-uniform. As a result, for pump light of a specific wavelength, there are many luminescent centers that do not contribute to light emission or amplification.
  • Non-Patent Document 1 a rare earth element that has a resonance wavelength in the communication wavelength band
  • the non-uniform spread of emission levels can be reduced to below 1 GHz by using yttrium silicate as the base material.
  • the non-uniform spread of the resonance frequency of the emission center in the solid crystal is more than 1,000 times wider than the resonance line width of a single erbium element, contributing to amplification. It contains many emission levels that do not.
  • Non-Patent Document 2 It has been theoretically proposed that even in a large number of emission centers with a wide non-uniform spread of resonance frequencies, the non-uniform spread can be effectively reduced by utilizing interaction with an optical resonator (Non-Patent Document 2). , has also been experimentally demonstrated (Non-Patent Document 3).
  • This technique is based on the fact that the resonant wavelengths of a large number of emission centers interact strongly with the electromagnetic field in the resonator, thereby being drawn into the resonant wavelength of the resonator. Therefore, by using an optical resonator with a narrow linewidth, it is possible to reduce the non-uniform spread of the resonance frequency of the emission center to the linewidth of the resonator.
  • the above-mentioned technique cannot reduce the non-uniform spread of the resonant wavelength of the emission center to a single resonant linewidth. It is difficult. Furthermore, the resonant frequency is determined by the material and structure of the optical resonator, and it is difficult to dynamically control it. Therefore, with this technique, it is difficult to externally control the wavelength that can be optically amplified.
  • the present invention has been made to solve the above-mentioned problems, and in optical amplification using a luminescent center, it is possible to reduce the non-uniform spread of the resonance wavelength of the luminescent center to a single resonant linewidth.
  • the purpose is to do so.
  • the optical amplifier according to the present invention includes an optical waveguide consisting of a core containing a light emission center, and a mechanical resonance section provided in the core.
  • signal light to be amplified, pump light, and Control light having a difference frequency between the resonant frequency of the emission center and the resonant frequency of the mechanical resonator is input to amplify the signal light.
  • the core constituting the optical waveguide includes the luminescent center, and the core is further provided with a mechanical resonance part, so that in optical amplification using the luminescent center, resonance of the luminescent center is achieved.
  • Non-uniform wavelength spread can be reduced to a single resonant linewidth.
  • FIG. 1 is a configuration diagram showing the configuration of an optical amplifier according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing a more detailed configuration of the optical amplifier according to the embodiment of the present invention.
  • FIG. 3A is a configuration diagram showing the configuration of another optical amplifier according to an embodiment of the present invention.
  • FIG. 3B is a configuration diagram showing the configuration of another optical amplifier according to an embodiment of the present invention.
  • FIG. 3C is a configuration diagram showing the configuration of another optical amplifier according to the embodiment of the present invention.
  • FIG. 4A is a characteristic diagram showing simulation results of the relationship between the frequency of light and the number of excited Er.
  • FIG. 4B is a characteristic diagram showing a simulation result of the control light dependence of the transmission spectrum in the optical amplifier according to the embodiment.
  • FIG. 4C is a characteristic diagram showing a simulation result of the control light dependence of the transmission spectrum in the optical amplifier according to the embodiment.
  • FIG. 4D is a characteristic diagram showing a simulation result of the control light dependence of the
  • This optical amplifier includes an optical waveguide 102 made up of a core 101 containing a light emission center, and a mechanical resonator 103 provided in the core 101.
  • the luminescent center can be at least one of a rare earth element or a defect level of diamond.
  • the mechanical resonance section 103 can be provided, for example, at the center of the core 101 in the waveguide direction.
  • the core 101 can be made of, for example, a crystal of yttrium silicate (Y 2 SiO 5 ).
  • the rare earth may be, for example, erbium (Er).
  • the core 101 made of Y 2 SiO 5 can have, for example, a cross-sectional shape of about 1 ⁇ m in width and 500 nm in thickness.
  • the core 101 can be made of diamond, and the emission center can be a defect level of diamond.
  • the luminescent center can be an NV center, which is a complex impurity defect consisting of a pair of nitrogen that has entered a carbon substitution position in the diamond lattice and a vacancy in which a carbon atom adjacent to this substitution nitrogen has disappeared. .
  • the core 101 is installed on the upper surfaces of two opposing side walls 105 and 106 perpendicular to the open surface of a rectangular box 104 with one open surface. It can be configured to support.
  • the core 101 in the region sandwiched between the two portions supported by the side walls 105 and 106 is allowed to vibrate, and can be used as a mechanical resonance section 103 .
  • the optical waveguide 102 can be configured using the core 101 and the air around the core 101 as a cladding. With this configuration, the vibration mode of the mechanical resonance section 103 of the core 101 can be confined within the optical waveguide 102.
  • the signal light to be amplified, the pump light, and the difference frequency between the resonant frequency of the emission center and the resonant frequency of the mechanical resonator are transmitted from one end of the optical waveguide by the core 101 that vibrably supports the mechanical resonator 103.
  • the amplified light can be emitted from the other end of the optical waveguide.
  • the mechanical resonance part 103 of the core 101 resonates, and due to the strain generated by the vibration of this mechanical resonance, the internal (introduced) )
  • a large number of luminescent centers interact with resonant vibrations. This causes the luminescent center to be drawn to a specific frequency.
  • the frequency at which the light emitting center is attracted is the sum of the resonant frequency of the resonant vibration and the frequency of the incident control light, so by changing the frequency of the control light, it is possible to control the frequency at which the emission center is drawn. becomes.
  • the resonance linewidth of the resonant vibrations is also five orders of magnitude narrower than that of an optical resonator. Therefore, according to an embodiment using interaction with mechanical vibration, the resonance linewidth of the emission center, which was determined by the non-uniform spread of the resonance wavelength, can be made narrower than the resonance linewidth of a single emission center. becomes possible. A large number of luminescent centers that interact with mechanical vibrations behave as if they were one gigantic luminescent center, making it possible to dramatically increase the output of optical amplifiers and reduce noise.
  • the core 101 is made of (Y 2 SiO 5 ) crystal, and the cross-sectional dimensions of the core 101 are approximately 1 ⁇ m in width and 500 nm in thickness. Furthermore, erbium (Er), a rare earth element, was introduced into the core 101 as a luminescent center.
  • the core 101 also functions as a mechanical resonator with a resonant frequency of approximately 5 GHz, so it emits control light that is the difference frequency between the resonant frequency of Er, which is the emission center, and the resonant frequency of the vibration mode of the mechanical resonator.
  • the optical waveguide 102 it is possible to create an interaction between the two.
  • Embodiment 2 Next, an optical amplifier according to Embodiment 2 of the present invention will be described with reference to FIGS. 3A, 3B, and 3C.
  • This optical amplifier includes an optical waveguide 102 made up of a core 101 containing a light emission center, and a mechanical resonator 103 provided in the core 101. These configurations are similar to those in the first embodiment.
  • Embodiment 2 further includes two reflecting portions formed in the core 101 with the mechanical resonant portion 103 in between. The two reflection parts confine vibrations to a region sandwiched between the two reflection parts (mechanical resonance part 103).
  • two reflection sections 107a can be formed on both sides of the mechanical resonance section 103a.
  • two reflecting portions 107b can be formed by a plurality of through holes (holes) provided periodically in a straight line at predetermined intervals.
  • the one-dimensional slab type photonic crystal is composed of through holes (lattice elements) that are periodically provided linearly at predetermined intervals in a core 101.
  • a configuration in which the core width is periodically modulated can provide two reflecting portions 107c.
  • the interaction between the emission center and the mechanical resonator provides improved amplification gain and controllability of the operating wavelength, but the strength of the interaction is inversely proportional to the volume of the mechanical resonator. Therefore, by confining the vibrations in as small a region as possible, it is possible to improve the amplification gain with low control light power.
  • the two reflecting parts described above also function as optical resonators that confine the signal light and control light propagating (waveguided) through the optical waveguide 102 in the mechanical resonance part 103.
  • the two reflecting parts 107b described using FIG. 3B are composed of photonic crystals with holes periodically formed in a one-dimensional manner, and the area sandwiched between the two reflecting parts 107b having this structure is can confine light and can be used as an optical resonator.
  • the two reflecting parts 107c described using FIG. 3C function as a diffraction grating and can be a distributed Bragg reflector (DBR).
  • DBR distributed Bragg reflector
  • the region sandwiched between the two reflecting portions 107c having this configuration can confine light and can be used as an optical resonator.
  • FIGS. 4A, 4B, 4C, and 4D simulation results of the control light dependence of the transmission spectrum in the optical amplifier according to the embodiment described above are shown in FIGS. 4A, 4B, 4C, and 4D.
  • the frequency obtained by subtracting 2 ⁇ 10 5 from the signal frequency is set to 0 on the horizontal axis.
  • FIG. 4A shows the relationship between the frequency of light and the number of excited Er.
  • the resonant frequency center of Er is 200 THz
  • the resonant line width of Er is 8 MHz
  • the non-uniform spread of Er is 200 MHz
  • the resonant frequency of the optical resonator is 200 THz
  • the line width of the optical resonator is 10 GHz (Q value: 20,000 )
  • the resonance frequency of the mechanical resonator is 5 GHz
  • the line width of the mechanical resonance vibration is 4 MHz (Q value: 1,250).
  • the frequency of the control light is the difference (199.995 THz) between the resonance frequencies of the optical resonator and the vibration resonator.
  • FIG. 4C shows the transmission spectrum under the condition that control light is incident and 3 ⁇ 10 5 Er are excited. Due to the interaction between Er and the resonance vibration, under the condition where the control light intensity is 0 as shown in FIG. 4B, the peak that was spread in the center is split into two. When the intensity of the control light is further increased to excite about 6 ⁇ 10 5 Er, it was confirmed that the linewidth of the split peak becomes narrower than the original resonance linewidth of Er, as shown in Figure 4D. Ta.
  • Y 2 SiO 5 crystal was used as the core material and Er was used as the luminescent center, but the present invention is not limited to a specific crystal or luminescent center.
  • Er which has resonance in the communication wavelength band, has attracted a lot of attention as an optical amplifier, it can also be applied to defect levels in other rare earth elements and diamond, which have narrow resonance linewidths and wide non-uniform spreads.
  • the mechanical resonance structure is not limited to the configuration of the embodiment described above, and various other mechanical resonance structures can be used in the same manner.
  • the core constituting the optical waveguide includes the light emission center, and the core is further provided with a mechanical resonance part, so that the signal light to be amplified, the pump light, and the light emission center are Signal light can be amplified by injecting control light with a difference frequency between the resonant frequency of the resonant frequency and the resonant frequency of the mechanical resonator. can be reduced to a single resonant linewidth.

Abstract

Provided are a light amplification method and a light amplifier in which: a core that encapsulates luminescence centers is installed and supported, in a rectangular box body having one surface being opened, on upper surfaces of two mutually-facing side walls of the box body that are perpendicular to the open surface, and is made so as to be able to vibrate, thereby constituting a mechanical sympathetic vibration unit; signal light, pump light, and control light that has a difference frequency between the resonance frequency of the luminescence center and the resonance frequency of the mechanical sympathetic vibration unit are made to enter the core, thereby causing the mechanical sympathetic vibration unit to vibrate sympathetically, the signal light, pump light, and control light being the object of amplification; and, due to distortion produced by the mechanical sympathetic vibration, the numerous luminescence centers encapsulated in the core are made to interact with the sympathetic vibration so that, through drawing of the luminescence centers to a prescribed frequency, non-uniform spread of resonant wavelengths of the luminescence centers can be reduced to the width of a single resonance line.

Description

光増幅器および光増幅方法Optical amplifier and optical amplification method
 本発明は、光増幅器および光増幅方法に関する。 The present invention relates to an optical amplifier and an optical amplification method.
 固体中の希土類不純物準位やダイヤモンド中の欠陥準位は、優れた発光特性を有するため、これまでに発光中心として様々な光増幅器へ応用されている。しかしながら、固体中の局所的な電場や歪を受けることにより、固体に内包されている発光中心の共鳴波長が変化する。このため、これらの発光中心は、共鳴波長が不均一な状態で固体の中に広がっている。この結果、特定の波長のポンプ光に対し、発光や増幅に寄与しない発光中心が多数存在する状態となっている。発光中心を内包させた固体を用いる光増幅器における高出力化や低ノイズ化には、如何にして増幅に寄与する発光中心を増やすか、言い換えると、上述した発光中心の共鳴波長の不均一広がりを抑えることが重要な課題となる。 Rare-earth impurity levels in solids and defect levels in diamond have excellent light-emitting properties, so they have been applied to various optical amplifiers as light-emitting centers. However, the resonant wavelength of the luminescent center contained in the solid changes due to local electric field or strain within the solid. For this reason, these luminescent centers are spread throughout the solid with their resonance wavelengths being non-uniform. As a result, for pump light of a specific wavelength, there are many luminescent centers that do not contribute to light emission or amplification. In order to increase output and reduce noise in optical amplifiers that use solid-state materials containing luminescent centers, it is necessary to increase the number of luminescent centers that contribute to amplification.In other words, it is necessary to increase the number of luminescent centers that contribute to amplification. An important issue is to suppress this.
 発光中心の共振波長の不均一広がりの低減のため、母材となる固体結晶の品質向上が行われている。例えば、通信波長帯に共鳴波長を有する希土類元素のエルビウムでは、母材にイットリウムシリケイトを用いることで発光準位の不均一広がりを1GHz以下まで低減できることが明らかとなっている(非特許文献1)。しかしながら、高品質な固体結晶を用いた場合においても、固体結晶中の発光中心の共振周波数の不均一広がりは、単一エルビウム元素の共鳴線幅に比べると1,000倍以上広く、増幅に寄与しない発光準位が多数含まれている。 In order to reduce the non-uniform spread of the resonant wavelength at the emission center, improvements are being made to the quality of the solid crystal that serves as the base material. For example, in the case of erbium, a rare earth element that has a resonance wavelength in the communication wavelength band, it has been revealed that the non-uniform spread of emission levels can be reduced to below 1 GHz by using yttrium silicate as the base material (Non-Patent Document 1). . However, even when using a high-quality solid crystal, the non-uniform spread of the resonance frequency of the emission center in the solid crystal is more than 1,000 times wider than the resonance line width of a single erbium element, contributing to amplification. It contains many emission levels that do not.
 共鳴周波数の広い不均一広がりを有する多数の発光中心においても、光共振器との相互作用を利用することで、不均一広がりを実効的に低減できることが理論的に提案され(非特許文献2)、また実験的に実証されている(非特許文献3)。この技術は、多数の発光中心の共鳴波長が共振器中の電磁場と強く相互作用することにより、共振器の共鳴波長に引き込まれるためである。したがって、狭線幅な光共振器を用いることにより、発光中心の共鳴周波数の不均一広がりを、共振器の線幅にまで低減することが可能となる。 It has been theoretically proposed that even in a large number of emission centers with a wide non-uniform spread of resonance frequencies, the non-uniform spread can be effectively reduced by utilizing interaction with an optical resonator (Non-Patent Document 2). , has also been experimentally demonstrated (Non-Patent Document 3). This technique is based on the fact that the resonant wavelengths of a large number of emission centers interact strongly with the electromagnetic field in the resonator, thereby being drawn into the resonant wavelength of the resonator. Therefore, by using an optical resonator with a narrow linewidth, it is possible to reduce the non-uniform spread of the resonance frequency of the emission center to the linewidth of the resonator.
 しかしながら、光共振器の線幅は、単一発光中心の共鳴線幅より一般的に広いため、上述した技術では、発光中心の共鳴波長の不均一広がりを単一の共鳴線幅まで低減することは困難である。また、光共振器の材料や構造によって共振周波数は決まってしまい、これを動的に制御することは難しい。したがって、この技術では、光増幅可能な波長を外部から制御することは困難である。 However, since the linewidth of an optical resonator is generally wider than the resonant linewidth of a single emission center, the above-mentioned technique cannot reduce the non-uniform spread of the resonant wavelength of the emission center to a single resonant linewidth. It is difficult. Furthermore, the resonant frequency is determined by the material and structure of the optical resonator, and it is difficult to dynamically control it. Therefore, with this technique, it is difficult to externally control the wavelength that can be optically amplified.
 本発明は、以上のような問題点を解消するためになされたものであり、発光中心を用いた光増幅において、発光中心の共鳴波長の不均一広がりを、単一の共鳴線幅まで低減できるようにすることを目的とする。 The present invention has been made to solve the above-mentioned problems, and in optical amplification using a luminescent center, it is possible to reduce the non-uniform spread of the resonance wavelength of the luminescent center to a single resonant linewidth. The purpose is to do so.
 本発明に係る光増幅器は、発光中心が内包されているコアからなる光導波路と、コアに設けられた機械共振部とを備える。 The optical amplifier according to the present invention includes an optical waveguide consisting of a core containing a light emission center, and a mechanical resonance section provided in the core.
 また、本発明に係る光増幅方法は、発光中心が内包されているコアからなる光導波路と、コアに設けられた機械共振部とを備える光増幅器に、増幅対象の信号光、ポンプ光、および発光中心の共鳴周波数と機械共振部の共振周波数との差周波の制御光を入射させて信号光を増幅する。 Furthermore, in the optical amplification method according to the present invention, signal light to be amplified, pump light, and Control light having a difference frequency between the resonant frequency of the emission center and the resonant frequency of the mechanical resonator is input to amplify the signal light.
 以上説明したように、本発明によれば、光導波路を構成するコアに発光中心を内包させ、さらに、コアに機械共振部を設けたので、発光中心を用いた光増幅において、発光中心の共鳴波長の不均一広がりを、単一の共鳴線幅まで低減できる。 As explained above, according to the present invention, the core constituting the optical waveguide includes the luminescent center, and the core is further provided with a mechanical resonance part, so that in optical amplification using the luminescent center, resonance of the luminescent center is achieved. Non-uniform wavelength spread can be reduced to a single resonant linewidth.
図1は、本発明の実施の形態に係る光増幅器の構成を示す構成図である。FIG. 1 is a configuration diagram showing the configuration of an optical amplifier according to an embodiment of the present invention. 図2は、本発明の実施の形態に係る光増幅器の、より詳細な構成を示す斜視図である。FIG. 2 is a perspective view showing a more detailed configuration of the optical amplifier according to the embodiment of the present invention. 図3Aは、本発明の実施の形態に係る他の光増幅器の構成を示す構成図である。FIG. 3A is a configuration diagram showing the configuration of another optical amplifier according to an embodiment of the present invention. 図3Bは、本発明の実施の形態に係る他の光増幅器の構成を示す構成図である。FIG. 3B is a configuration diagram showing the configuration of another optical amplifier according to an embodiment of the present invention. 図3Cは、本発明の実施の形態に係る他の光増幅器の構成を示す構成図である。FIG. 3C is a configuration diagram showing the configuration of another optical amplifier according to the embodiment of the present invention. 図4Aは、光の周波数と励起されたErの数との関係のシミュレーション結果示す特性図である。FIG. 4A is a characteristic diagram showing simulation results of the relationship between the frequency of light and the number of excited Er. 図4Bは、実施の形態に係る光増幅器における透過スペクトルの制御光依存性のシミュレーション結果を示す特性図である。FIG. 4B is a characteristic diagram showing a simulation result of the control light dependence of the transmission spectrum in the optical amplifier according to the embodiment. 図4Cは、実施の形態に係る光増幅器における透過スペクトルの制御光依存性のシミュレーション結果を示す特性図である。FIG. 4C is a characteristic diagram showing a simulation result of the control light dependence of the transmission spectrum in the optical amplifier according to the embodiment. 図4Dは、実施の形態に係る光増幅器における透過スペクトルの制御光依存性のシミュレーション結果を示す特性図である。FIG. 4D is a characteristic diagram showing a simulation result of the control light dependence of the transmission spectrum in the optical amplifier according to the embodiment.
 以下、本発明の実施の形態に係る光増幅器について説明する。 Hereinafter, an optical amplifier according to an embodiment of the present invention will be described.
[実施の形態1]
 はじめに、本発明の実施の形態1に係る光増幅器について図1を参照して説明する。この光増幅器は、発光中心が内包されているコア101からなる光導波路102と、コア101に設けられた機械共振部103とを備える。発光中心は、希土類元素、またはダイヤモンドの欠陥準位の少なくとも1つとすることができる。機械共振部103は、例えば、コア101の導波方向中心部に設けることができる。
[Embodiment 1]
First, an optical amplifier according to Embodiment 1 of the present invention will be described with reference to FIG. This optical amplifier includes an optical waveguide 102 made up of a core 101 containing a light emission center, and a mechanical resonator 103 provided in the core 101. The luminescent center can be at least one of a rare earth element or a defect level of diamond. The mechanical resonance section 103 can be provided, for example, at the center of the core 101 in the waveguide direction.
 コア101は、例えば、イットリウムシリケイト(Y2SiO5)の結晶から構成することができる。希土類は、例えば、エルビウム(Er)とすることができる。Y2SiO5から構成したコア101は、例えば、断面視の形状を、幅1μm、厚さ500nm程度とすることができる。また、コア101は、ダイヤモンドから構成することができ、発光中心は、ダイヤモンドの欠陥準位とすることができる。例えば、発光中心は、ダイヤモンド格子中の炭素の置換位置に入った窒素と、この置換窒素に隣接する炭素原子が抜けた空孔との対からなる複合不純物欠陥であるNV中心とすることができる。 The core 101 can be made of, for example, a crystal of yttrium silicate (Y 2 SiO 5 ). The rare earth may be, for example, erbium (Er). The core 101 made of Y 2 SiO 5 can have, for example, a cross-sectional shape of about 1 μm in width and 500 nm in thickness. Further, the core 101 can be made of diamond, and the emission center can be a defect level of diamond. For example, the luminescent center can be an NV center, which is a complex impurity defect consisting of a pair of nitrogen that has entered a carbon substitution position in the diamond lattice and a vacancy in which a carbon atom adjacent to this substitution nitrogen has disappeared. .
 例えば、図2に示すように、1つの面が解放されている長方形状の箱体104の、解放面に垂直な各々対向する2つの側壁105、側壁106の上面に、コア101を架設して支持する構成とすることができる。側壁105および側壁106に支持されている2カ所に挾まれた領域のコア101は、振動可能な状態とされ、機械共振部103とすることができる。コア101と、コア101の周囲の空気をクラッドとして、光導波路102を構成することができる。この構成とすることで、コア101の機械共振部103の振動モードを、光導波路102内に閉じ込めることができる。 For example, as shown in FIG. 2, the core 101 is installed on the upper surfaces of two opposing side walls 105 and 106 perpendicular to the open surface of a rectangular box 104 with one open surface. It can be configured to support. The core 101 in the region sandwiched between the two portions supported by the side walls 105 and 106 is allowed to vibrate, and can be used as a mechanical resonance section 103 . The optical waveguide 102 can be configured using the core 101 and the air around the core 101 as a cladding. With this configuration, the vibration mode of the mechanical resonance section 103 of the core 101 can be confined within the optical waveguide 102.
 上述したように、機械共振部103を振動可能に支持したコア101による光導波路の一端から、増幅対象の信号光、ポンプ光、および発光中心の共鳴周波数と機械共振部の共振周波数との差周波の制御光を入射させて信号光を増幅することで、光導波路の他端から増幅光を出射させることができる。 As described above, the signal light to be amplified, the pump light, and the difference frequency between the resonant frequency of the emission center and the resonant frequency of the mechanical resonator are transmitted from one end of the optical waveguide by the core 101 that vibrably supports the mechanical resonator 103. By inputting the control light and amplifying the signal light, the amplified light can be emitted from the other end of the optical waveguide.
 上述した制御光を、発光中心の共鳴周波数のポンプ光とともに光導波路に入射することで、コア101の機械共振部103は共振し、この機械共振の振動で生じる歪により、コア101に内包(導入)されている多数の発光中心は、共振振動と相互作用する。これにより、発光中心は特定の周波数に引き込まれる。この際、引き込まれる周波数は、共振振動の共鳴周波数と、入射された制御光の周波数の和周波となるため、制御光の周波数を変えることによって、発光中心が引き込まれる周波数を制御することが可能となる。 By injecting the above-mentioned control light into the optical waveguide together with the pump light having the resonance frequency of the emission center, the mechanical resonance part 103 of the core 101 resonates, and due to the strain generated by the vibration of this mechanical resonance, the internal (introduced) ) A large number of luminescent centers interact with resonant vibrations. This causes the luminescent center to be drawn to a specific frequency. At this time, the frequency at which the light emitting center is attracted is the sum of the resonant frequency of the resonant vibration and the frequency of the incident control light, so by changing the frequency of the control light, it is possible to control the frequency at which the emission center is drawn. becomes.
 また、一般に共振する機械振動の共鳴周波数は、光共振器の共鳴周波数に比べ5桁以上低いため、共振振動の共鳴線幅も光共振器と比べると5桁以上狭くなる。このため、機械振動との相互作用を用いる実施の形態によれば、共鳴波長の不均一広がりによって決まっていた発光中心の共鳴線幅を、単一の発光中心の共鳴線幅よりも狭くさせることが可能となる。機械振動と相互作用する多数の発光中心は、あたかも巨大なひとつの発光中心として振る舞い、光増幅器の飛躍的な出力増大とノイズの低減が可能となる。 Furthermore, since the resonant frequency of generally resonant mechanical vibrations is more than five orders of magnitude lower than the resonant frequency of an optical resonator, the resonance linewidth of the resonant vibrations is also five orders of magnitude narrower than that of an optical resonator. Therefore, according to an embodiment using interaction with mechanical vibration, the resonance linewidth of the emission center, which was determined by the non-uniform spread of the resonance wavelength, can be made narrower than the resonance linewidth of a single emission center. becomes possible. A large number of luminescent centers that interact with mechanical vibrations behave as if they were one gigantic luminescent center, making it possible to dramatically increase the output of optical amplifiers and reduce noise.
 以下、より詳細に説明する。以下では、コア101を、(Y2SiO5)結晶から構成し、また、コア101の断面の寸法を幅1μm、厚さ500nm程度とした。また、発光中心として、希土類元素のエルビウム(Er)を、コア101に導入した。この例において、コア101は、共振周波数が約5GHzの機械共振器としても機能するため、発光中心となるErの共鳴周波数と,機械共振器の振動モードの共振周波数の差周波となる制御光を光導波路102に入射することで、両者の間に相互作用を生み出すことが可能である。 This will be explained in more detail below. In the following description, the core 101 is made of (Y 2 SiO 5 ) crystal, and the cross-sectional dimensions of the core 101 are approximately 1 μm in width and 500 nm in thickness. Furthermore, erbium (Er), a rare earth element, was introduced into the core 101 as a luminescent center. In this example, the core 101 also functions as a mechanical resonator with a resonant frequency of approximately 5 GHz, so it emits control light that is the difference frequency between the resonant frequency of Er, which is the emission center, and the resonant frequency of the vibration mode of the mechanical resonator. By entering the optical waveguide 102, it is possible to create an interaction between the two.
[実施の形態2]
 次に、本発明の実施の形態2に係る光増幅器について図3A、図3B、図3Cを参照して説明する。この光増幅器は、発光中心が内包されているコア101からなる光導波路102と、コア101に設けられた機械共振部103とを備える。これらの構成は、実施の形態1と同様である。実施の形態2では、さらに、機械共振部103を挾んでコア101に形成された2つの反射部をさらに備える。2つの反射部により、2つの反射部に挾まれた領域(機械共振部103)に、振動を閉じ込める。
[Embodiment 2]
Next, an optical amplifier according to Embodiment 2 of the present invention will be described with reference to FIGS. 3A, 3B, and 3C. This optical amplifier includes an optical waveguide 102 made up of a core 101 containing a light emission center, and a mechanical resonator 103 provided in the core 101. These configurations are similar to those in the first embodiment. Embodiment 2 further includes two reflecting portions formed in the core 101 with the mechanical resonant portion 103 in between. The two reflection parts confine vibrations to a region sandwiched between the two reflection parts (mechanical resonance part 103).
 例えば、図3Aに示すように、コア101の他の領域に比較して機械共振部103aを幅拡とすることで、機械共振部103aの両脇に2つの反射部107aを形成することができる。 For example, as shown in FIG. 3A, by widening the width of the mechanical resonance section 103a compared to other regions of the core 101, two reflection sections 107a can be formed on both sides of the mechanical resonance section 103a. .
 また、図3Bに示すように、所定の間隔で直線状に周期的に設けられた複数の貫通孔(空孔)により、2つの反射部107bとすることができる。1次元スラブ型のフォトニック結晶は、コア101に、所定の間隔で直線状に周期的に設けられた貫通孔(格子要素)から構成されている。また、図3Cに示すように、周期的にコア幅を変調させた構成により、2つの反射部107cとすることができる。 Further, as shown in FIG. 3B, two reflecting portions 107b can be formed by a plurality of through holes (holes) provided periodically in a straight line at predetermined intervals. The one-dimensional slab type photonic crystal is composed of through holes (lattice elements) that are periodically provided linearly at predetermined intervals in a core 101. Furthermore, as shown in FIG. 3C, a configuration in which the core width is periodically modulated can provide two reflecting portions 107c.
 前述したように、発光中心と機械共振器との相互作用によって増幅利得の向上と動作波長の制御性が得られるが、相互作用の強さは機械共振器の体積に反比例する。このため、なるべく小さな領域に振動を閉じ込めることによって、低い制御光パワーで、増幅利得の向上が可能となる。 As mentioned above, the interaction between the emission center and the mechanical resonator provides improved amplification gain and controllability of the operating wavelength, but the strength of the interaction is inversely proportional to the volume of the mechanical resonator. Therefore, by confining the vibrations in as small a region as possible, it is possible to improve the amplification gain with low control light power.
 また、上述した2つの反射部は、光導波路102を伝搬(導波)する信号光や制御光を、機械共振部103に閉じ込める光共振器としても機能する。例えば、図3Bを用いて説明した2つの反射部107bは、1次元状に周期的に形成された穴によるフォトニック結晶から構成され、この構成とされた2つの反射部107bに挾まれた領域には、光を閉じ込めることができ、光共振器とすることができる。 Furthermore, the two reflecting parts described above also function as optical resonators that confine the signal light and control light propagating (waveguided) through the optical waveguide 102 in the mechanical resonance part 103. For example, the two reflecting parts 107b described using FIG. 3B are composed of photonic crystals with holes periodically formed in a one-dimensional manner, and the area sandwiched between the two reflecting parts 107b having this structure is can confine light and can be used as an optical resonator.
 また、例えば、図3Cを用いて説明した2つの反射部107cは、回折格子として機能し、分布ブラッグ反射鏡(Distributed Bragg Reflector:DBR)とすることができる。この構成とされた2つの反射部107cに挾まれた領域には、光を閉じ込めることができ、光共振器とすることができる。 Further, for example, the two reflecting parts 107c described using FIG. 3C function as a diffraction grating and can be a distributed Bragg reflector (DBR). The region sandwiched between the two reflecting portions 107c having this configuration can confine light and can be used as an optical resonator.
 これらのように、機械振動の共振器に光共振器を組み合わせることで、増幅利得などの性能をさらに向上させることができる。 As shown above, by combining an optical resonator with a mechanical vibration resonator, performance such as amplification gain can be further improved.
 次に、上述した実施の形態に係る光増幅器における透過スペクトルの制御光依存性のシミュレーション結果を、図4A、図4B、図4C、図4Dに示す。図4A、図4B、図4C、図4Dでは、信号周波数から2×105を減じた周波数を、横軸の0としている。図4Aは、光の周波数と励起されたErの数との関係を示している。 Next, simulation results of the control light dependence of the transmission spectrum in the optical amplifier according to the embodiment described above are shown in FIGS. 4A, 4B, 4C, and 4D. In FIGS. 4A, 4B, 4C, and 4D, the frequency obtained by subtracting 2×10 5 from the signal frequency is set to 0 on the horizontal axis. FIG. 4A shows the relationship between the frequency of light and the number of excited Er.
 なお、Erの共鳴周波数中心は200THz、Erの共鳴線幅は8MHz、Erの不均一広がりは200MHz、光共振器の共振周波数は200THz、光共振器の線幅は10GHz(Q値:20,000)、機械共振器の共振周波数は5GHz、機械共振振動の線幅は4MHz(Q値:1,250)である。また、制御光の周波数は光共振器と振動共振器の共振周波数の差(199.995THz)である。 Furthermore, the resonant frequency center of Er is 200 THz, the resonant line width of Er is 8 MHz, the non-uniform spread of Er is 200 MHz, the resonant frequency of the optical resonator is 200 THz, and the line width of the optical resonator is 10 GHz (Q value: 20,000 ), the resonance frequency of the mechanical resonator is 5 GHz, and the line width of the mechanical resonance vibration is 4 MHz (Q value: 1,250). Further, the frequency of the control light is the difference (199.995 THz) between the resonance frequencies of the optical resonator and the vibration resonator.
 制御光強度を0とすると、図4Bに示すように、Erと共振振動の相互作用は起こらない。そのため、不均一広がりを反映した吸収ピークが共振器の透過スペクトル中央に広がる。図4Cに、制御光を入射し、3×105個のErが励起される条件とした場合の透過スペクトルを示す。Erと共振振動の相互作用によって、図4Bに示す制御光強度を0の条件では、中央に広がっていたピークが、2つに分裂する。さらに制御光強度を高め6×105個程度のErが励起されると、図4Dに示すように、2つに分裂したピークの線幅がEr本来の共鳴線幅より細くなることが確かめられた。 When the control light intensity is set to 0, no interaction between Er and resonance vibration occurs, as shown in FIG. 4B. Therefore, an absorption peak reflecting the non-uniform spread spreads at the center of the transmission spectrum of the resonator. FIG. 4C shows the transmission spectrum under the condition that control light is incident and 3×10 5 Er are excited. Due to the interaction between Er and the resonance vibration, under the condition where the control light intensity is 0 as shown in FIG. 4B, the peak that was spread in the center is split into two. When the intensity of the control light is further increased to excite about 6×10 5 Er, it was confirmed that the linewidth of the split peak becomes narrower than the original resonance linewidth of Er, as shown in Figure 4D. Ta.
 これらの結果は、異なる共鳴波長をもった多数のErがあたかも同じ共鳴波長に重なっているように振る舞っていることを示している。実施の形態に係る光増幅器にポンプ光を入射して発光中心の反転分布を形成することにより、別途入射する信号光の増幅が可能となる。なお、図4B、図4C、図4Dに示すように、増幅利得はピーク強度に比例することから、実施の形態に係る光増幅器によれば、制御光の入射によって増幅利得が飛躍的に増大する。また、図4Dに示すピーク周波数は、制御光の周波数によって制御することが可能である。 These results indicate that a large number of Er with different resonance wavelengths behave as if they overlap with the same resonance wavelength. By injecting pump light into the optical amplifier according to the embodiment to form an inverted population at the emission center, it becomes possible to amplify the separately incident signal light. Note that, as shown in FIGS. 4B, 4C, and 4D, since the amplification gain is proportional to the peak intensity, according to the optical amplifier according to the embodiment, the amplification gain is dramatically increased by the incidence of the control light. . Furthermore, the peak frequency shown in FIG. 4D can be controlled by the frequency of the control light.
 上述した実施の形態では、コアの材料としてY2SiO5結晶を用い、発光中心としてErを用いたが、本発明は特定の結晶や発光中心に限らない。光増幅器としては通信波長帯に共鳴を有するErが高い注目を集めているが、細い共鳴線幅と広い不均一広がりを有する他の希土類元素やダイヤモンド中の欠陥準位に対しても適用される。また、上述では、機械共振構造は、上述した実施例の構成に限るものではなく、他の様々な機械共振構造を同様に用いることが可能である。 In the embodiment described above, Y 2 SiO 5 crystal was used as the core material and Er was used as the luminescent center, but the present invention is not limited to a specific crystal or luminescent center. Although Er, which has resonance in the communication wavelength band, has attracted a lot of attention as an optical amplifier, it can also be applied to defect levels in other rare earth elements and diamond, which have narrow resonance linewidths and wide non-uniform spreads. . Further, in the above description, the mechanical resonance structure is not limited to the configuration of the embodiment described above, and various other mechanical resonance structures can be used in the same manner.
 以上に説明したように、本発明によれば、光導波路を構成するコアに発光中心を内包させ、さらに、コアに機械共振部を設けたので、増幅対象の信号光、ポンプ光、および発光中心の共鳴周波数と機械共振部の共振周波数との差周波の制御光を入射させることで、信号光を増幅することができ、発光中心を用いた光増幅において、発光中心の共鳴波長の不均一広がりを、単一の共鳴線幅まで低減できるようになる。 As explained above, according to the present invention, the core constituting the optical waveguide includes the light emission center, and the core is further provided with a mechanical resonance part, so that the signal light to be amplified, the pump light, and the light emission center are Signal light can be amplified by injecting control light with a difference frequency between the resonant frequency of the resonant frequency and the resonant frequency of the mechanical resonator. can be reduced to a single resonant linewidth.
 なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。 It should be noted that the present invention is not limited to the embodiments described above, and many modifications and combinations can be made within the technical idea of the present invention by those having ordinary knowledge in this field. That is clear.
 101…コア、102…光導波路、103…機械共振部。 101...core, 102...optical waveguide, 103...mechanical resonance part.

Claims (6)

  1.  発光中心が内包されているコアからなる光導波路と、前記コアに設けられた機械共振部とを備える光増幅器に、増幅対象の信号光、ポンプ光、および前記発光中心の共鳴周波数と前記機械共振部の共振周波数との差周波の制御光を入射させて前記信号光を増幅することを特徴とする光増幅方法。 A signal light to be amplified, pump light, and the resonant frequency of the luminescent center and the mechanical resonance are transmitted to an optical amplifier including an optical waveguide consisting of a core containing a luminescent center and a mechanical resonator provided in the core. 1. An optical amplification method, characterized in that the signal light is amplified by inputting control light having a difference frequency from a resonant frequency of the section.
  2.  請求項1記載の光増幅方法において、
     前記機械共振部を挾んで前記コアに形成された2つの反射部をさらに備えることを特徴とする光増幅方法。
    The optical amplification method according to claim 1,
    The optical amplification method further comprises two reflecting parts formed in the core sandwiching the mechanical resonant part.
  3.  請求項1または2記載の光増幅方法において、
     前記発光中心は、希土類元素、またはダイヤモンドの欠陥準位の少なくとも1つであることを特徴とする光増幅方法。
    The optical amplification method according to claim 1 or 2,
    An optical amplification method characterized in that the luminescent center is at least one of a rare earth element or a defect level of diamond.
  4.  発光中心が内包されているコアからなる光導波路と、
     前記コアに設けられた機械共振部と
     を備える光増幅器。
    an optical waveguide consisting of a core containing a luminescent center;
    An optical amplifier comprising: a mechanical resonator provided in the core.
  5.  請求項4記載の光増幅器において、
     前記機械共振部を挾んで前記コアに形成された2つの反射部をさらに備えることを特徴とする光増幅器。
    The optical amplifier according to claim 4,
    An optical amplifier further comprising two reflecting sections formed in the core sandwiching the mechanical resonant section.
  6.  請求項4または5記載の光増幅器において、
     前記発光中心は、希土類元素、またはダイヤモンドの欠陥準位の少なくとも1つであることを特徴とする光増幅器。
    The optical amplifier according to claim 4 or 5,
    An optical amplifier characterized in that the luminescent center is at least one of a rare earth element or a defect level of diamond.
PCT/JP2022/021214 2022-05-24 2022-05-24 Light amplifier and light amplification method WO2023228269A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/021214 WO2023228269A1 (en) 2022-05-24 2022-05-24 Light amplifier and light amplification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/021214 WO2023228269A1 (en) 2022-05-24 2022-05-24 Light amplifier and light amplification method

Publications (1)

Publication Number Publication Date
WO2023228269A1 true WO2023228269A1 (en) 2023-11-30

Family

ID=88918643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021214 WO2023228269A1 (en) 2022-05-24 2022-05-24 Light amplifier and light amplification method

Country Status (1)

Country Link
WO (1) WO2023228269A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06268310A (en) * 1993-03-11 1994-09-22 Toshiba Corp Wavelength stabilizer for semiconductor laser
JPH07283434A (en) * 1994-04-07 1995-10-27 Kobe Steel Ltd Diamond light emitting element
JPH1022560A (en) * 1996-07-02 1998-01-23 Nippon Telegr & Teleph Corp <Ntt> Q-switch optical fiber laser
JPH1187824A (en) * 1997-09-08 1999-03-30 Kokusai Denshin Denwa Co Ltd <Kdd> Light amplifier
JP2001284689A (en) * 2000-04-04 2001-10-12 Nippon Telegr & Teleph Corp <Ntt> Optical amplifier
JP2004193541A (en) * 2002-10-15 2004-07-08 Nippon Telegr & Teleph Corp <Ntt> Optical amplifier
JP2008172166A (en) * 2007-01-15 2008-07-24 Sumitomo Electric Ind Ltd Noise-like laser light source and wide-band light source
JP2014134689A (en) * 2013-01-10 2014-07-24 Ntt Electornics Corp Optical module
US20150295381A1 (en) * 2007-02-13 2015-10-15 Fei Luo Q-switched all-fiber laser
JP2019522815A (en) * 2016-06-30 2019-08-15 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Method and system for readout of quantum states of microwave frequency qubits using photons of optical frequency

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06268310A (en) * 1993-03-11 1994-09-22 Toshiba Corp Wavelength stabilizer for semiconductor laser
JPH07283434A (en) * 1994-04-07 1995-10-27 Kobe Steel Ltd Diamond light emitting element
JPH1022560A (en) * 1996-07-02 1998-01-23 Nippon Telegr & Teleph Corp <Ntt> Q-switch optical fiber laser
JPH1187824A (en) * 1997-09-08 1999-03-30 Kokusai Denshin Denwa Co Ltd <Kdd> Light amplifier
JP2001284689A (en) * 2000-04-04 2001-10-12 Nippon Telegr & Teleph Corp <Ntt> Optical amplifier
JP2004193541A (en) * 2002-10-15 2004-07-08 Nippon Telegr & Teleph Corp <Ntt> Optical amplifier
JP2008172166A (en) * 2007-01-15 2008-07-24 Sumitomo Electric Ind Ltd Noise-like laser light source and wide-band light source
US20150295381A1 (en) * 2007-02-13 2015-10-15 Fei Luo Q-switched all-fiber laser
JP2014134689A (en) * 2013-01-10 2014-07-24 Ntt Electornics Corp Optical module
JP2019522815A (en) * 2016-06-30 2019-08-15 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Method and system for readout of quantum states of microwave frequency qubits using photons of optical frequency

Similar Documents

Publication Publication Date Title
US7181120B2 (en) Optical active device
JP4243327B2 (en) Photonic band gap fiber and fiber amplifier
US5438639A (en) Ion-beam deposited, gain enhanced ring resonators
JP4921038B2 (en) Resonator and light emitting device using the same
JPH11330619A (en) Optical device
US7502393B2 (en) Light-emitting device having resonator and light source unit including the light-emitting device
US6831938B1 (en) Optical system using active cladding layer
WO2006016410A1 (en) Fundamental wave light source and wavelength converter
JP2016115783A (en) Optical element
US20090103576A1 (en) System and Method of Providing Second Harmonic Generation (SHG) Light in a Single Pass
KR100617693B1 (en) Semiconductor optical amplifier with optical detector and method for manufacturing the same
Zhang et al. 2.56 W Single‐Frequency All‐Fiber Oscillator at 1720 nm
JP2003168844A (en) Semiconductor laser device and light amplifier
WO2023228269A1 (en) Light amplifier and light amplification method
JP4789320B2 (en) Semiconductor optical amplifier
US7440166B2 (en) Raman diffusion optical amplifier
JPH04232419A (en) Waveguide resonator and micro-optical thin-film gyroscope
JP3854615B2 (en) Gain-clamped semiconductor optical amplifier having horizontal lasing structure and manufacturing method thereof
JP4810208B2 (en) Light emitting device
US7079309B1 (en) Use of a photonic crystal for optical amplifier gain control
JP5184167B2 (en) Ring type laser equipment
WO2019230712A1 (en) Semiconductor laser
US20030117699A1 (en) Use of photonic band gap structures in optical amplifiers
JP3255853B2 (en) Wavelength converter
Xiao et al. Single-frequency dual-cavity laser on erbium-doped lithium niobate on insulator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943674

Country of ref document: EP

Kind code of ref document: A1