WO2023228253A1 - Thermal displacement model training device, thermal displacement estimation device, processing system, and processing method - Google Patents

Thermal displacement model training device, thermal displacement estimation device, processing system, and processing method Download PDF

Info

Publication number
WO2023228253A1
WO2023228253A1 PCT/JP2022/021128 JP2022021128W WO2023228253A1 WO 2023228253 A1 WO2023228253 A1 WO 2023228253A1 JP 2022021128 W JP2022021128 W JP 2022021128W WO 2023228253 A1 WO2023228253 A1 WO 2023228253A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal displacement
data
machine tool
learning
time
Prior art date
Application number
PCT/JP2022/021128
Other languages
French (fr)
Japanese (ja)
Inventor
遼輔 池田
一樹 高幣
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/021128 priority Critical patent/WO2023228253A1/en
Priority to JP2022554937A priority patent/JP7221459B1/en
Publication of WO2023228253A1 publication Critical patent/WO2023228253A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4155Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by programme execution, i.e. part programme or machine function execution, e.g. selection of a programme

Definitions

  • the present disclosure relates to a thermal displacement model learning device, a thermal displacement estimation device, a machining system, and a machining method for correcting thermal displacement of a machine tool.
  • a machine tool is a processing device that removes and processes a workpiece, called a workpiece, into a desired shape by driving a feed axis and changing the relative position of the workpiece and a tool.
  • Machine tools such as milling machines and lathes, attach a tool or workpiece to a spindle, and perform machining while rotating the spindle.
  • a machine tool includes an actuator for driving a feed axis and a main axis, and a servo amplifier for generating electric power for driving the actuator.
  • a machine tool equipped with an actuator measures the position of a feed axis using a position detector, and performs positioning by controlling the position so that the actual position matches the commanded position.
  • heat is generated within the machine tool.
  • actuators and servo amplifiers generate heat when converting electric power into motive power.
  • heat is generated due to material deformation, friction, etc.
  • the friction that occurs when the feed shaft is operated also generates heat.
  • the temperature of the mechanical structures of the machine tool increases and thermal expansion occurs. This deformation of the structure due to thermal expansion is called thermal displacement.
  • the temperature of a structure may not change uniformly, and in this case, different thermal displacements occur depending on the location within the structure, which may cause displacement other than simple expansion and contraction, such as collapse, distortion, or twisting of the structure. . It is known that such thermal displacement reduces the positioning accuracy of the machine tool, causing an error in the relative position between the tool and the workpiece, which may reduce machining accuracy.
  • Patent Document 1 describes a technology that makes it possible to estimate the amount of thermal displacement from the measurement data through machine learning using measurement data acquired during machining of a machine tool and actual measured values of the amount of thermal displacement.
  • the machine learning device disclosed in Patent Document 1 includes a measurement data acquisition unit that acquires a measurement data group, a thermal displacement amount acquisition unit that acquires an actual measured value of the amount of thermal displacement, and a device that inputs the measurement data group.
  • Thermal displacement is calculated based on a group of measured data by performing machine learning using the training data.
  • a calculation formula learning unit that sets a quantity prediction calculation formula.
  • the storage unit stores the measurement data group as teacher data for a predetermined period of time.
  • the accuracy of estimating the amount of thermal displacement generated in the machine tool decreases.
  • the time it takes for heat from a certain heat source to cause thermal displacement is affected by the positional relationship with other heat sources, the surrounding environment, etc. Therefore, if the storage period is too short, measurement data that affects thermal displacement may not be included in the stored teacher data during learning, and the accuracy of estimating the amount of thermal displacement may decrease.
  • the memorization period is too long, the accuracy of estimating the amount of thermal displacement may decrease due to erroneous learning of measurement data that is included in the data and has a small contribution to thermal displacement. be.
  • the present disclosure has been made in view of the above, and aims to provide a thermal displacement model learning device that can improve the accuracy of estimating the amount of thermal displacement.
  • the thermal displacement model learning device of the present disclosure provides input data that includes at least temperature data representing the time-series temperature of the machine tool, and input data that includes the time-series thermal displacement of the machine tool.
  • a learning data acquisition unit that acquires learning data in which thermal displacement data representing a quantity is associated with time;
  • a dataset generation unit that generates a dataset in which a part of the learning data is extracted from the learning data;
  • a learning unit that uses the data set to generate a learned thermal displacement model for estimating the amount of thermal displacement from input data of a machine tool;
  • the two data sets are characterized in that the data sets are generated such that the time lengths of the extracted time intervals are different from each other.
  • a diagram showing the configuration of a processing system according to Embodiment 1 A diagram showing the functional configuration of a machine tool according to Embodiment 1 A diagram showing an example of the installation position of a temperature sensor in the machine tool according to the first embodiment.
  • An explanatory diagram of an example of changes in the operating status of a machine tool A diagram showing the functional configuration of the thermal displacement model learning device according to the first embodiment
  • Explanatory diagram of the first example of the dataset generation method Explanatory diagram of the second example of the dataset generation method
  • Explanatory diagram of the third example of the dataset generation method Explanatory diagram of learning method of thermal displacement model Diagram of neural network Flowchart for explaining the operation of the thermal displacement model learning device shown in FIG.
  • FIG. 12 A diagram showing the configuration of a processing system according to Embodiment 2 A diagram showing the functional configuration of a machine tool according to Embodiment 2 A diagram showing a functional configuration of a thermal displacement estimating device according to a second embodiment Flowchart for explaining the operation of the processing system shown in FIG. 12 Diagram showing an example of hardware configuration A diagram showing a functional configuration of a thermal displacement model learning device according to a modification of the second embodiment A diagram showing the configuration of a processing system according to Embodiment 3 A diagram showing the configuration of a processing system according to Embodiment 4
  • thermal displacement model learning device a thermal displacement estimation device, a machining system, and a machining method according to embodiments of the present disclosure will be described in detail based on the drawings.
  • FIG. 1 is a diagram showing the configuration of a processing system 100-1 according to the first embodiment.
  • the machining system 100-1 includes a machine tool 1 and a thermal displacement model learning device 2.
  • the machine tool 1 is a processing device that removes and processes a workpiece using a tool.
  • the thermal displacement model learning device 2 learns a thermal displacement model for estimating the amount of thermal displacement from input data, based on thermal displacement data, temperature data, and machine state data acquired from the machine tool 1.
  • FIG. 2 is a diagram showing the functional configuration of the machine tool 1 according to the first embodiment.
  • the machine tool 1 includes a feed shaft 11 on which a tool T for processing a workpiece W is installed, a feed shaft 11 that changes the relative position between the tool T and the workpiece W, and a feed shaft motor 12 that is an actuator that drives the feed shaft 11.
  • a main shaft 13 that rotates the tool T or workpiece W
  • a main shaft motor 14 that is an actuator that drives the main shaft 13, a control device 15 that controls the machine tool 1, and a cooling device that suppresses heat generation when the actuator is driven.
  • It has a peripheral device 16, a temperature sensor TS for measuring the temperature of the machine tool 1, and a displacement sensor DS for measuring the relative position between the tool T and the workpiece W.
  • the displacement sensor DS is installed in the machine tool 1 so as to be able to detect the relative position of the tool T and workpiece W.
  • the displacement sensor DS measures the relative position and outputs the measured relative position to the thermal displacement model learning device 2 as thermal displacement data.
  • the displacement sensor DS may be any sensor that can detect displacement in at least one axial direction, and for example, a triangulation type laser sensor or a TOF (Time Of Flight) type laser sensor can be used. Note that a configuration may be adopted in which a plurality of orthogonal displacement sensors are installed to detect displacements in a plurality of axial directions.
  • the temperature sensor TS is installed on the machine tool 1.
  • the temperature sensor TS detects temperature and outputs the detected temperature to the thermal displacement model learning device 2 as temperature data.
  • the processing system 100-1 includes a plurality of temperature sensors TS. It is desirable to install the temperature sensor TS at a location where temperature changes are estimated to be large or where thermal displacement is estimated to have a large effect. Moreover, it is desirable that the temperature sensor TS is also installed outside the machine tool 1 so that the temperature sensor TS can measure the temperature of the space in which the machine tool 1 is installed.
  • FIG. 3 is a diagram showing an example of the installation position of the temperature sensor TS in the machine tool 1 according to the first embodiment.
  • the machine tool 1 shown in FIG. 3 is a milling machine type processing device, in which a Y-axis feed shaft motor 12 and a table TA are installed on a bed 17, and a workpiece W is placed on the table TA. Further, in the machine tool 1, X-axis and Z-axis feed shaft motors 12, a main shaft 13, and a main shaft motor 14 are installed on a column 18.
  • the black circles in FIG. 3 indicate an example of the installation position of the temperature sensor TS.
  • the temperature sensor TS is preferably installed at a location where the temperature change is estimated to be large and a location where it is estimated to have a large influence on thermal displacement.
  • a location where the temperature change is estimated to be large is drive mechanisms such as the feed shaft motor 12 for driving the X, Y, and Z axes and the main shaft motor 14 for rotating the main shaft 13.
  • locations that are estimated to have a large effect on thermal displacement include structures of the machine tool 1 such as the bed 17, column 18, and feed screw 19.
  • the temperature sensor TS is preferably installed at the apex of the structure, at a point between a plurality of apexes, or inside the structure.
  • the peripheral device 16 is a cooling device, and is installed to cool the machine tool 1 and prevent thermal displacement.
  • the peripheral equipment 16 performs heat exchange between the structure of the machine tool 1 , the workpiece W, and the tool T, and the outside air outside the machine tool 1 .
  • the peripheral equipment 16 includes a coolant device that injects cutting oil to cool the workpiece W, a pump that circulates a refrigerant that cools a heat exchange pipe installed in the machine tool 1, and the like.
  • the peripheral device 16 outputs operation information of the peripheral device 16 to the control device 15.
  • the operation information of the peripheral device 16 includes at least an operating state indicating whether or not the peripheral device 16 is in operation.
  • the operation information of the peripheral device 16 may include power consumption, power of the peripheral device 16, etc. in addition to the operating state.
  • the operating state included in the operating information of the peripheral device 16 can be expressed numerically. For example, an operating state of "1" represents a “state in which the peripheral device 16 is operating", and an operating state of "0" represents a "state in which the peripheral device 16 is stopped”.
  • a machining program is a series of commands given to the control device 15 so that the feed axis 11, main spindle 13, and peripheral equipment 16 of the machine tool 1 perform desired operations.
  • the machining program can include information representing a position command for the feed shaft 11, a speed command for the feed shaft 11, a rotation speed command for the main shaft 13, an operation and stop command for the peripheral device 16, and the like.
  • the control device 15 reads the machining program and analyzes the commands written in the machining program. Further, the control device 15 generates a command position and a command speed for the feed shaft 11 in order to cause the feed shaft 11 to perform a desired operation, and provides an operation amount to the feed shaft motor 12. Further, the control device 15 generates a command speed for the main shaft 13 to cause the main shaft 13 to perform a desired operation, and provides an operation amount to the main shaft motor 14 .
  • the control device 15 outputs machine state data representing the operating state of the machine tool 1 to the thermal displacement model learning device 2.
  • the machine state data is data representing the operating state of the machine tool 1, and indicates, for example, the operating state of the peripheral device 16 that adjusts the temperature of the machine tool 1, and the operating state of the actuator provided in the machine tool 1.
  • the machine state data includes at least one type of information among a command position for the feed shaft 11, a command speed for the feed shaft 11, a command speed for the main shaft 13, and operation information of the peripheral device 16.
  • the control device 15 is configured so that the difference between the actual position detected by the position detector and the commanded position, or between the actual speed and the commanded speed becomes 0. Feedback control may also be performed.
  • the machine state data can include information on one or more of the actual position of the feed shaft 11, the actual speed of the feed shaft 11, and the actual speed of the main shaft 13.
  • thermal displacement a machining error between the tool T and the workpiece W caused by thermal changes in the machine tool 1 is referred to as thermal displacement.
  • FIG. 4 is an explanatory diagram of an example of a change in the operating state of the machine tool 1.
  • FIG. 4 shows changes in the operating state of the machine tool 1 from when the power is turned on and the machine tool 1 is operated according to a machining program until the power is turned off.
  • FIG. 4 shows an example of how the operating states of the main spindle 13, feed axis 11, and peripheral equipment 16, which are the components of the machine tool 1, and the machining program execution state change over time.
  • the horizontal axis in FIG. 4 represents time, and t0 to t9 represent time. Details from time t0 to time t9 will be described later.
  • the machining program execution state indicates whether the machine tool 1 is running the program or stopped.
  • Program operation means that the machine tool 1 operates according to instructions written in a machining program.
  • the machine tool 1 performs a programmed operation for performing a certain machining process, and when the programmed operation is completed, an operator performs work such as replacing the workpiece W. After that, the work is performed in a flow such as program operation for the next machining.
  • the power to the machine tool 1 is turned on at time t0, and the power to the machine tool 1 is turned off at time t9.
  • the period from time t0 to time t1 represents a standby state until operation according to the machining program is started. Further, the period from time t8 to time t9 represents the period from the end of the operation according to the machining program until the power of the machine tool 1 is cut off.
  • machining program execution state program operation according to machining program #1 is performed between time t1 and time t5, and program operation according to machining program #2 is performed between time t6 and time t8.
  • main spindle speed which is the rotational speed of the main spindle 13
  • the feed rate which is the speed of the feed shaft 11
  • the operating state of the peripheral equipment 16 change over time.
  • spindle speed indicates the rotational speed of the main shaft 13.
  • S1000 a state in which the main shaft 13 is rotating at 1000 revolutions per minute
  • the spindle motor 14 has a rotation speed of 1000 revolutions per minute between time t1 and time t4, and a rotation speed of 3000 revolutions per minute between time t4 and time t5. From time t6 to time t8, each rotates at a rotation speed of 3000 revolutions per minute.
  • the spindle speed changes according to the commands of the machining program, the amount of heat generated by the spindle 13 also changes according to the machining program.
  • Feeing speed in FIG. 4 indicates the moving speed of the feeding shaft 11.
  • a state in which the feed shaft 11 moves 100 mm per minute is expressed as "F100".
  • the feed shaft motor 12 operates at a rotation speed of 100 mm per minute to operate the feed shaft 11 between time t1 and time t3, and at a rotation speed of 300 mm per minute between time t3 and time t5. 11, and from time t6 to time t8, each rotates at a rotation speed that operates the 300 mm feed shaft 11.
  • the feed shaft 11 operates, heat is generated from the feed shaft motor 12 and the structure of the feed shaft 11. The higher the feed speed, the greater the amount of heat generated. Since the feed rate changes according to the instructions of the machining program, the amount of heat generated by the feed shaft 11 also changes according to the machining program.
  • the "operating state of peripheral equipment" in FIG. 4 indicates whether the peripheral equipment 16 for cooling the machine tool 1 is in operation or stopped.
  • the peripheral equipment 16 does not always operate during machining, but operates and stops according to instructions written in the machining program.
  • the peripheral device 16 is in operation between time t2 and time t5
  • the peripheral device 16 is stopped between time t5 and time t7
  • the peripheral device 16 is in operation between time t7 and time t8.
  • Peripheral equipment 16 operates.
  • heat is transferred from the machine tool 1 to the external environment of the machine tool 1, and the machine tool 1 is cooled down. Since the operating state of the peripheral device 16 changes according to the commands of the machining program, the cooling state of the peripheral device 16 also changes according to the machining program.
  • the heat generated by the feed shaft 11 and the main shaft 13 and the cooling state by the peripheral equipment 16 are not constant, so the amount of thermal displacement of the machine tool 1 also changes over time depending on the machining program. Change.
  • time t5 and time t6 there are times, such as between time t5 and time t6, during which operation according to the machining program is not performed.
  • the machine tool 1 may be stopped due to setup work, such as when a worker is loading and unloading the workpiece W or cleaning the inside of the machine tool 1. be.
  • setup work such as when a worker is loading and unloading the workpiece W or cleaning the inside of the machine tool 1.
  • each section in which the operating state of the machine tool 1 differs is defined as an operating operation unit.
  • the time length of the driving operation unit is variable because it changes depending on the timing of the command written in the machining program.
  • FIG. 4 shows an example in which the machine tool 1 runs two different types of machining programs, it is sufficient to execute the machining programs at least once, and the types of machining programs and the number of executions are not limited to this example. .
  • the machine tool 1 may be powered off and then powered on again to run the machining program.
  • the time period from when the power is turned off to when it is turned on again is defined as one driving operation unit.
  • FIG. 5 is a diagram showing the functional configuration of the thermal displacement model learning device 2 according to the first embodiment.
  • the thermal displacement model learning device 2 uses data output by the machine tool 1 during operation to learn a thermal displacement model for estimating the amount of thermal displacement from input data including at least temperature data.
  • the thermal displacement model learning device 2 includes a learning data acquisition section 21, a dataset generation section 22, a learning section 23, and a model storage section 24.
  • the learning data acquisition unit 21 acquires thermal displacement data, temperature data, and machine state data output by the machine tool 1, and generates learning data by temporally synchronizing the acquired data.
  • the temperature data and machine condition data are examples of information included in the input data.
  • the input data includes at least temperature data.
  • the learning data is time-series data in which thermal displacement data, temperature data, and machine state data are arranged at a constant time period.
  • the constant time period represents a sampling period preset in the learning data acquisition unit 21.
  • the learning data acquisition unit 21 receives data of a time section corresponding to at least one driving operation unit from the machine tool 1, and generates learning data.
  • the learning data acquisition unit 21 outputs the generated learning data to the dataset generation unit 22.
  • the data set generation unit 22 detects a specific time based on the operating state of the machine tool 1, and extracts thermal displacement data, temperature data, and machine state data from the learning data using the detected time as a reference. Then, the extracted data are compiled into one set of data sets, and the plural sets of data sets are output to the learning section 23.
  • the specific time detected by the data set generation unit 22 will be referred to as an extraction reference time.
  • the extraction reference time will be explained using FIG. 4.
  • the data set generation unit 22 detects each time from time t1 to time t8 as a time when the operating state of the machine tool 1 changes. In addition, in FIG.
  • the extraction reference time is the time when any of the spindle speed, feed rate, change in the operating state of the peripheral equipment 16, and start and end of the machining program changes. is not limited to these examples.
  • the timing of calling and ending a subprogram, the timing of replacing the tool T, etc. can also be considered as changes in the operating state of the machine tool 1.
  • the data set generation unit 22 may be configured to read this information. Note that the data set generation unit 22 may temporally interpolate the two extraction reference times to additionally set a new extraction reference time.
  • the data set generation unit 22 extracts a part of the learning data from the learning data using the extraction reference time as a reference to generate a data set.
  • FIG. 6 is an explanatory diagram of the first example of the data set generation method.
  • a first example of a method in which the dataset generation unit 22 generates a dataset from learning data will be described using FIG. 6.
  • FIG. 6 shows data sets #a1 to #an extracted from the learning data when the extraction reference time t1 is the initial reference time for data extraction.
  • Input data #a1 to #an are temperature data and machine state data whose initial time is extraction reference time t1.
  • the time interval of input data #ai is temporally extended backward by a predetermined time extension width T1 from the end of the time interval of input data #ai-1. ing.
  • the time length of input data #a2 is longer than the time length of input data #a1 by time extension width T1. Further, the time length of the input data #a3 is longer than the time length of the input data #a2 by the time extension width T1. That is, if the time width of input data #a1 is T, then the time width of input data #ai is "T+(i-1)T1".
  • Input data #a1 to #an are data of a time interval of each time width "T+(i-1)T1" starting from the extraction reference time t1.
  • Teacher data #a1 to #an are thermal displacement data at the respective terminal times of input data #a1 to #an. As shown in FIG.
  • the data set generation unit 22 generates a plurality of sets of data sets #a1 to #an from one extraction reference time t1. Through the above processing, the dataset generation unit 22 generates datasets such that the time lengths of the extracted time sections of the plurality of datasets #a1 to #an generated from one extraction reference time t1 are different. be able to. The data set generation unit 22 performs the above processing for each of the plurality of extraction reference times included in the learning data. Note that, as in data set #an, the end time may exceed t2, which is the next extraction reference time after extraction reference time t1.
  • FIG. 7 is an explanatory diagram of a second example of the data set generation method. A second example of how the dataset generation unit 22 generates a dataset from learning data will be described using FIG. 7.
  • FIG. 7 shows data sets #b1 to #bn extracted from the learning data when the extraction reference time t2 is the end reference time of data extraction.
  • Input data #b1 to #bn are temperature data and machine state data whose termination time is the extraction reference time t2.
  • the time interval of input data #bi is temporally extended backward by a predetermined time extension width T1 from the start of the time interval of input data #bi-1. ing.
  • the time width of input data #bi is "T+(i-1)T1", where T is the time width of input data #b1.
  • the input data #b1 to #bn are data of a time interval of each time width "T+(i-1)T1" ending at the extraction reference time t2.
  • Teacher data #b1 to #bn are thermal displacement data at the respective terminal times of input data #b1 to #bn.
  • the data set generation unit 22 generates a plurality of data sets #b1 to #bn from one extraction reference time t2.
  • the dataset generation unit 22 generates datasets such that the time lengths of the extracted time sections of the plurality of datasets #b1 to #bn generated from one extraction reference time t2 are different. be able to.
  • the data set generation unit 22 performs the above processing for each of the plurality of extraction reference times included in the learning data. Note that, as in data set #bn, the initial time may go back to a time past t1, which is the extraction reference time before the extraction reference time t2.
  • FIG. 8 is an explanatory diagram of a third example of the data set generation method.
  • the dataset generation unit 22 generates datasets such that the data sets included in all datasets uniformly include the entire acquired data. Specifically, the data set generation unit 22 generates a data set by dividing the period from extraction reference time t1 to extraction reference time t2 next to extraction reference time t1 into n pieces at equal intervals. n is a natural number.
  • FIG. 8 shows data sets #c1 to #cn extracted from learning data between the final extraction reference time t2 and the extraction reference time t1, which is the initial reference time for data extraction.
  • Input data #c1 is temperature data and machine state data whose initial time is extraction reference time t1 and whose terminal time is time t1+(t2-t1)/n.
  • input data #c2 is temperature data and machine state data whose initial time is time t1+(t2-t1)/n and whose terminal time is time t1+2 ⁇ (t2-t1)/n.
  • Input data #ci is temperature data and machine state data whose initial time is time t1+(i-1) ⁇ (t2-t1)/n and whose terminal time is time t1+i ⁇ (t2-t1)/n.
  • Teacher data #c1 to #cn are thermal displacement data at the respective terminal times of input data #c1 to #cn.
  • the data set generation unit 22 can generate a data set such that the period from the extraction reference time t1 to the time t2 is uniformly included in the input data without overlap.
  • the data set generation unit 22 executes the above process for each of the plurality of extraction reference times included in the learning data.
  • the time lengths of the extracted time sections are uniform for the data sets #c1 to #cn generated between the extraction reference times t1 and t2.
  • the time length between adjacent extraction reference times is not uniform, and the time length of the time interval extracted when the data set generation unit 22 generates a data set is different from the time length between two adjacent extraction reference times. It is determined depending on the length of time between the extraction reference times. Therefore, by performing the above processing for each of all extraction reference times, a plurality of data sets with different time lengths of extracted time sections are generated as a whole.
  • the teacher data #a1 to #an, #b1 to #bn, #c1 to #cn are the input data #a1 to #an, #b1 ⁇ #bn, #c1 ⁇ #cn
  • the thermal displacement data is for one time corresponding to the terminal time, but the time length of the teacher data is not limited to one time, and may be time series data.
  • the teacher data #a1 to #an, #b1 to #bn, #c1 to #cn are time series having the same time length as the input data #a1 to #an, #b1 to #bn, #c1 to #cn. It may be data.
  • time interval #a1 corresponding to input data #a1 is selected n times from input data #a1 to input data #an and is adopted as input data.
  • the number of times the extended section #a2 is used as input data is (n-1) times, and the number of times that the extended section #an is used as input data is only one time.
  • time interval #b1 corresponding to input data #b1 is selected n times from input data #b1 to input data #bn and adopted as input data.
  • the number of times the extended section #b2 is used as input data is (n-1) times, and the number of times that the extended section #bn is used as input data is only one time. That is, in a plurality of input data generated using one extraction reference time as a temporal reference, there are sections where the number of extractions is large and sections where the number of extractions is small.
  • the dataset generation unit 22 equalizes the number of times each time interval and extended interval are extracted over the entire learning data. Specifically, when all datasets generated using each extraction reference time are combined and the variation in the number of extractions in a time interval is greater than or equal to a tolerance value, the dataset generation unit 22 performs histogram equalization. Execute processing.
  • the dataset generation unit 22 can equalize the bias in the number of data extractions over the entire learning data.
  • the entire set of data sets generated by the data set generation unit 22 does not extract only a specific section from the learning data, but instead consists of multiple data that uniformly reflect the driving conditions included in the learning data. Can generate sets. Note that although the explanation has been given here regarding equalizing the number of extractions by focusing on input data, it is also possible to equalize the number of extractions by focusing on teacher data.
  • the time length of the extracted time interval differs based on the extraction reference time when the operating state of the machine tool 1 changed.
  • Multiple datasets can be generated.
  • data sets are generated such that the data sets included in all data sets uniformly include the entire acquired data.
  • the learning unit 23 which will be described below, learns the thermal displacement model, it can uniformly target the entire learning data, and over-fitting where the model matches only some data. This further has the effect of suppressing the thermal displacement model and improving the generalization performance of the thermal displacement model.
  • FIG. 9 is an explanatory diagram of a learning method for a thermal displacement model.
  • the learning unit 23 has a function of learning a thermal displacement model for estimating the amount of thermal displacement from the input data using the input data and teacher data included in the dataset generated by the dataset generating unit 22.
  • the learning unit 23 has a thermal displacement model therein that outputs the amount of thermal displacement in time series when the input data included in the data set is inputted in time series.
  • the learning unit 23 optimizes the internal parameters of the thermal displacement model so that the difference between the estimated value of the amount of thermal displacement, which is the output of the thermal displacement model, and the teacher data included in the data set is minimized. Thereby, the learning unit 23 identifies a thermal displacement model that can estimate the amount of thermal displacement from the input data, and outputs it as a learned thermal displacement model.
  • the thermal displacement model learning device 2 is characterized in that the data set output by the data set generation unit 22 has a variable length. That is, in at least two of the plurality of data sets output by the data set generation unit 22, the time lengths of the extracted time intervals are different from each other. Therefore, the learning unit 23 uses a thermal displacement model corresponding to variable length input data.
  • the learning unit 23 learns the amount of thermal displacement by, for example, so-called supervised learning according to a neural network.
  • supervised learning refers to a method in which learning data, which is a data set of input and result, is given to a learning device to learn features in the learning data and infer results from the input.
  • an example will be described in which the learning unit 23 learns a thermal displacement model using an RNN (Recurrent Neural Network).
  • RNN is a neural network having a structure in which the output of an intermediate layer is recursively input to the layer that outputs the result.
  • the learning unit 23 can use, for example, a neural network having the structure shown in FIG. FIG. 10 is an explanatory diagram of a neural network.
  • the neural network shown in Figure 10 is an RNN in which the input layer consists of n inputs from x1 to xn, the middle layer consists of m nodes from h1 to hm, and the output layer consists of one output of y1.
  • the upper diagram in FIG. 10 shows the state of the neural network at time t ⁇ 1
  • the lower diagram in FIG. 10 shows the state of the neural network at time t.
  • the intermediate layer at time t outputs a weighted sum of the value calculated from the input to the input layer at time t and the term calculated from the value input from the intermediate layer at time t-1 to the output layer.
  • x t is the vector that bundles the input layers x1 to xn at time t
  • h t is the vector that bundles the middle layers h1 to hm at time t
  • h t is expressed by the following formula (1). be able to.
  • Equation (1) when the dimension of the vector x t is n and the dimension of the vector h t is m, W becomes an n ⁇ m-dimensional linear transformation matrix.
  • R represents an M ⁇ M-dimensional linear transformation matrix
  • b represents a bias vector
  • g represents an activation function.
  • the learning unit 23 uses the diachronic error backpropagation method to adjust the weighting of the neural network so that the output thermal displacement amount matches the thermal displacement data.
  • FIG. 10 shows an example of a neural network in which the input layer is n-dimensional, the intermediate layer is m-dimensional, and the output layer is one-dimensional, the dimensions of each layer are not limited to this example and can be any dimension. I can do it. Further, although FIG. 10 shows an example of a neural network having one intermediate layer, the number of intermediate layers may be plural.
  • the learning unit 23 uses methods such as "dropout” to randomly remove neurons during learning, and “early stopping” to monitor errors and stop learning early. May be used.
  • a thermal displacement model can be constructed and learned using other known RNNs such as LSTM (Long Short Term Memory) or GRU (Gated Recurrent Unit). You may do so.
  • the learning unit 23 may perform learning by regression analysis using an autoregressive model.
  • FIG. 11 is a flowchart for explaining the operation of the thermal displacement model learning device 2 shown in FIG. 5.
  • the thermal displacement model learning device 2 can generate a learned thermal displacement model by executing the process shown in FIG.
  • the learning data acquisition unit 21 of the thermal displacement model learning device 2 acquires thermal displacement data, temperature data, and machine state data from the machine tool 1 (step S101).
  • the learning data acquisition unit 21 generates learning data by associating the acquired thermal displacement data, temperature data, and machine state data with respect to time (step S102).
  • the dataset generation unit 22 generates a plurality of datasets from the learning data (step S103).
  • the learning unit 23 uses the dataset to optimize internal parameters of the thermal displacement model so that when input data included in the dataset is input, the amount of thermal displacement outputted matches the teacher data included in the dataset. By doing this, the thermal displacement model is learned (step S104).
  • the dataset generation unit 22 generates multiple types of variable length datasets, and extracts mutually from at least two datasets among the multiple datasets.
  • a thermal displacement model is trained using data sets with different time lengths.
  • the thermal displacement model learning device 2 can perform thermal displacement model learning using a data set generated using a time interval with an appropriate time length for the thermal displacement occurring in the machine tool 1. , it becomes possible to improve the estimation accuracy of the amount of thermal displacement.
  • the thermal displacement model learning device 2 can improve the accuracy of estimating the amount of thermal displacement without depending on the operation duration of the machine tool 1.
  • the machine tool 1 operates according to machining programs whose time lengths are variable depending on the finished shapes of various workpieces W, and whose operation patterns are different.
  • the data set used for learning must be obtained from a machining program and the time length must be variable.
  • the data set used by the learning unit 23 to learn the thermal displacement model is generated based on the time when the operating state of the machine tool 1 that is operated based on the machining program changes. Therefore, the thermal displacement model learning device 2 in the first embodiment can perform learning of a thermal displacement model using a data set whose temporal reference is a change in the operating state of the machine tool 1 during actual machining. Therefore, the thermal displacement model can learn input-output relationships that reflect the operating conditions of the machine tool.
  • the data set generation unit 22 when using the first example and second example of the data set generation method described above, the data set generation unit 22 generates a data set for a time that is a multiple of the predetermined time extension width T1 from the time defined as the extraction reference time.
  • a dataset can be generated by extracting data with a wide range from the training data.
  • the thermal displacement model is a temporally recursive model
  • the thermal displacement model learning device 2 can perform learning using not only the temperature data and machine state data at the moment when thermal displacement is calculated, but also the influence of changes in these data over time.
  • FIG. 12 is a diagram showing the configuration of a processing system 100-2 according to the second embodiment.
  • a machining system 100-2 according to the second embodiment includes a machine tool 1A, a thermal displacement model learning device 2, and a thermal displacement estimation device 3.
  • Machining system 100-2 has a thermal displacement estimation device 3 in addition to the configuration of machining system 100-1 according to Embodiment 1, and has machine tool 1A instead of machine tool 1 of machining system 100-1. .
  • the processing performed by the thermal displacement model learning device 2 is the same as in Embodiment 1 except for outputting the learned thermal displacement model to the thermal displacement estimating device 3, so a description thereof will be omitted here.
  • the thermal displacement estimating device 3 acquires the trained thermal displacement model generated by the thermal displacement model learning device 2 and input data for inference including at least temperature data representing the time series temperature of the machine tool 1A to be inferred. do.
  • the thermal displacement estimating device 3 uses a thermal displacement model to generate an estimated value of the amount of thermal displacement of the machine tool 1A to be inferred from the input data.
  • the thermal displacement estimating device 3 outputs the estimated value of the amount of thermal displacement to the machine tool 1A.
  • the machine tool 1A has a function of outputting temperature data and machine state data to the thermal displacement estimating device 3, and based on the estimated value of the amount of thermal displacement output by the thermal displacement estimating device 3, It also has a function to correct thermal displacement.
  • FIG. 13 is a diagram showing the functional configuration of the machine tool 1A according to the second embodiment.
  • the configuration of the machine tool 1A is the same as that of the machine tool 1 except that it includes a control device 15A instead of the control device 15 of the machine tool 1.
  • the control device 15A corrects the operation amount of at least one of the main shaft motor 14 that drives the main shaft 13 and the feed shaft motor 12 that drives the feed shaft 11 based on the estimated value of the amount of thermal displacement output by the thermal displacement estimation device 3. By doing so, the thermal displacement is corrected.
  • the machine tool 1A performs removal machining using the corrected operation amount.
  • FIG. 14 is a diagram showing the functional configuration of the thermal displacement estimation device 3 according to the second embodiment.
  • the thermal displacement estimating device 3 includes an inference data acquisition section 31 , a thermal displacement model acquisition section 32 , and an inference section 33 .
  • the inference data acquisition unit 31 acquires temperature data and machine state data from the machine tool 1A to be inferred, and synchronizes the obtained temperature data and machine state data in time to the inference unit 33 as inference data. Output.
  • the inference data includes at least temperature data, and is generated so that the learned thermal displacement model has the same combination of data as the input data used during learning. Furthermore, the inference data is sequentially output at the same time period as the learning data generated by the thermal displacement model learning device 2.
  • the thermal displacement model acquisition unit 32 acquires a learned thermal displacement model used for inference from the model storage unit 24 of the thermal displacement model learning device 2.
  • the thermal displacement model acquisition section 32 outputs the acquired thermal displacement model to the inference section 33.
  • the inference unit 33 uses the learned thermal displacement model to output an estimated value of the amount of thermal displacement from the input data included in the inference data.
  • the inference unit 33 outputs the estimated value of the amount of thermal displacement to the machine tool 1A.
  • the inference unit 33 inputs the machine state data included in the inference data into the learned thermal displacement model in the same data structure and time period as during learning, thereby calculating the amount of thermal displacement in the same time period as the input.
  • An estimated value can be calculated.
  • the inference unit 33 outputs the calculated estimated value of the amount of thermal displacement to the control device 15A of the machine tool 1A at the same cycle as the input interval of the inference data.
  • the control device 15A of the machine tool 1A receives the estimated value of the amount of thermal displacement outputted by the inference unit 33, and corrects, for example, the position command of the feed shaft 11 so as to offset the thermal displacement indicated by the estimated value of the amount of thermal displacement. do. Then, the feed shaft motor 12, which is the actuator of the feed shaft 11, is operated using the corrected position command. Correction of the position command is updated at every input interval of inference data.
  • FIG. 15 is a flowchart for explaining the operation of the processing system 100-2 shown in FIG. 12.
  • the thermal displacement model learning device 2 of the processing system 100-2 performs thermal displacement model generation processing (step S121). Note that the process in step S121 corresponds to the process in steps S101 to S104 shown in FIG. These processes are performed before processing for correcting thermal displacement is performed.
  • the machine tool 1A starts a programmed operation for machining for which thermal displacement is to be corrected (step S122).
  • the processing from step S123 onwards is performed while the processing for which the thermal displacement is to be corrected is being performed.
  • the inference data acquisition unit 31 receives temperature data and machine state data that are sequentially output during machining of the machine tool 1A, and generates inference data from the received data (step S123).
  • the inference data has a data structure similar to the input data of the thermal displacement model generated in step S121.
  • the generated inference data is sequentially output to the inference unit 33 at the same time period as the learning data generated by the thermal displacement model learning device 2.
  • the inference unit 33 estimates the amount of thermal displacement from the inference data using the thermal displacement model (step S124).
  • the estimated value of the amount of thermal displacement is calculated at the same time period as the inference data generated in step S123, and is output to the control device 15A of the machine tool 1A.
  • the control device 15A of the machine tool 1A corrects the position command and performs machining by correcting the operation amount to the actuator using the estimated value of the amount of thermal displacement (step S125).
  • the machine tool 1A determines whether the program operation of the machining for which thermal displacement is to be corrected has ended (step S126). If the program operation has not ended (step S126: No), the process returns to step S123, and the machining system 100-2 repeats the processes from step S123 to step S126. If the programmed operation has ended (step S126: Yes), the machining system 100-2 ends the process.
  • the processing system 100-2 includes the thermal displacement estimating device 3 that estimates the amount of thermal displacement using a learned thermal displacement model. Furthermore, the machine tool 1A corrects the operation amount of the actuator of the machine tool 1A based on the estimated value of the amount of thermal displacement so as to offset the thermal displacement indicated by the estimated value.
  • the inference unit 33 can sequentially calculate the estimated value of the amount of thermal displacement for the sequentially input inference data and output the estimated value to the machine tool 1A. Therefore, no matter how long the machining program executed by the machine tool 1A takes, it is possible to estimate the amount of thermal displacement. Furthermore, since the estimated value of the amount of thermal displacement is calculated from a thermal displacement model that is a temporally recursive model, not only the temperature data and mechanical state data at the moment when the estimated value of the amount of thermal displacement is calculated, but also these data are used. It is possible to estimate the amount of thermal displacement, including the influence of changes in the data over time. Therefore, the machine tool 1A can accurately correct thermal displacement without depending on the elapsed time from the start of operation.
  • step S126 shown in FIG. 15 it is determined whether or not the power to the machine tool 1A is cut off, and the processing system 100-2 performs step S123 until the power to the machine tool 1A is cut off. You may return to continue processing. In this case, it is possible to continue correcting thermal displacement even when the program operation is performed multiple times in succession.
  • the thermal displacement model learning device 2 of Embodiment 1 and Embodiment 2 is realized by, for example, a computer system.
  • the thermal displacement model learning device 2 may be realized by one computer system, or may be realized by multiple computer systems.
  • the thermal displacement model learning device 2 may be realized by a cloud system.
  • a cloud system it is possible to arbitrarily set up the separation between computer system hardware and devices such as servers for each function.
  • one computer system may function as multiple devices, or multiple computer systems may function as one device.
  • FIG. 16 is a diagram showing an example of the hardware configuration. As shown in FIG. 16, this computer system includes a control section 101, an input section 102, a storage section 103, a display section 104, a communication section 105, and an output section 106, which are connected via a system bus 107. There is.
  • the control unit 101 is, for example, a CPU (Central Processing Unit).
  • the control unit 101 executes a thermal displacement model learning program in which each process performed by the thermal displacement model learning device 2 of this embodiment is described.
  • the input unit 102 includes, for example, a keyboard, a mouse, etc., and is used by a user of the computer system to input various information.
  • the storage unit 103 includes various memories such as RAM (Random Access Memory) and ROM (Read Only Memory), and storage devices such as hard disks, and stores programs to be executed by the control unit 101 and necessary information obtained in the process of processing. Store data etc.
  • the storage unit 103 is also used as a temporary storage area for programs.
  • the display unit 104 is composed of an LCD (Liquid Crystal Display) or the like, and displays various screens to the user of the computer system.
  • the communication unit 105 is a communication circuit or the like that performs communication processing.
  • the communication unit 105 may be configured with a plurality of communication circuits each corresponding to a plurality of communication methods.
  • the output unit 106 is an output interface that outputs data to an external device such as a printer or an external storage device.
  • FIG. 16 is an example, and the configuration of the computer system is not limited to the example of FIG. 16.
  • the computer system may not include the output unit 106.
  • all of these computer systems do not need to be the computer systems shown in FIG. 16.
  • some computer systems may not include at least one of the display section 104, output section 106, and input section 102 shown in FIG.
  • a computer system having the above-mentioned configuration includes, for example, a thermal displacement model learning program stored in a CD-ROM or DVD-ROM set in a CD (Compact Disc)-ROM drive or DVD (Digital Versatile Disc)-ROM drive (not shown). is installed in the storage unit 103. Then, when the thermal displacement model learning program is executed, the thermal displacement model learning program read from the storage unit 103 is stored in an area of the storage unit 103 that serves as the main storage device. In this state, the control unit 101 executes processing as the thermal displacement model learning device 2 of the first and second embodiments according to the thermal displacement model learning program stored in the storage unit 103.
  • a CD-ROM or DVD-ROM is used as a recording medium to provide a program that describes the processing in the thermal displacement model learning device 2.
  • a program provided via a transmission medium such as the Internet via the communication unit 105 may be used.
  • the thermal displacement model learning program of Embodiment 1 and Embodiment 2 provides a computer with input data including at least temperature data representing the time-series temperature of the machine tool 1 and the time-series thermal displacement amount of the machine tool 1.
  • a step of acquiring learning data in which the thermal displacement data to be expressed is associated with time, a step of generating a data set by extracting a part of the learning data from the learning data, and using the data set, the machine tool 1A generating a learned thermal displacement model for estimating the amount of thermal displacement from the input data of.
  • the data sets are generated such that the time lengths of the extracted time intervals are different from each other in at least two data sets among the plurality of data sets.
  • the learning data acquisition section 21 shown in FIG. 5 is realized by the communication section 105 shown in FIG. 16, and the model storage section 24 shown in FIG. 5 is a part of the storage section 103 shown in FIG.
  • the data set generation unit 22 and the learning unit 23 shown in FIG. 5 are realized by the control unit 101 shown in FIG.
  • the thermal displacement estimation device 3 is also realized by one or more computer systems.
  • a program for the thermal displacement estimating device 3 to perform the operations described in the second embodiment is provided by a storage medium, a transmission medium, etc., and installed in a computer system, similarly to the thermal displacement model learning program described above. Thereby, the above-described operation of the thermal displacement estimating device 3 is realized.
  • the inference data acquisition section 31 and the thermal displacement model acquisition section 32 shown in FIG. 14 are realized by the communication section 105 shown in FIG. 16, and the inference section 33 shown in FIG. 14 is realized by the control section 101 shown in FIG. Realized.
  • the division of functions in each device shown in FIGS. 5 and 14 is an example, and if the processing systems 100-1 and 100-2 can perform the operations described above, the division of functions in each device is as shown in FIG. and is not limited to the example shown in FIG.
  • the thermal displacement model learning device 2 and the thermal displacement estimation device 3 may be integrated so that the thermal displacement model learning device 2 also has the function of the thermal displacement estimation device 3. good.
  • FIG. 17 is a diagram showing the functional configuration of a thermal displacement model learning device 2A according to a modification of the second embodiment.
  • the thermal displacement model learning device 2A has the functions of the thermal displacement estimation device 3 in addition to the functions of the thermal displacement model learning device 2.
  • the functions of each component have already been explained in FIG. 14, so the explanation will be omitted here.
  • the functions of the thermal displacement model acquisition section 32 are realized by exchanging data within the computer system.
  • FIG. 18 is a diagram showing the configuration of a processing system 100-3 according to the third embodiment.
  • the machining system 100-3 includes a plurality of machine tools 1 and a thermal displacement model learning device 2B provided on a server.
  • the thermal displacement model learning device 2B performs thermal displacement model learning based on thermal displacement data, temperature data, and machine state data received from a plurality of machine tools 1.
  • the functions of the machine tool 1 are the same as those of the first embodiment, and the functions of the thermal displacement model learning device 2B are the same as those of the first embodiment except that the thermal displacement models of a plurality of machine tools 1 are learned for each machine tool 1. It is similar to
  • FIG. 19 is a diagram showing the configuration of a processing system 100-4 according to the fourth embodiment.
  • the machining system 100-4 includes a plurality of machine tools 1 and 1A, a thermal displacement model learning device 2B provided on a server, and a thermal displacement estimation device 3B.
  • the machine tool 1 is a processing device to be learned, and the embodiments are different from each other except that characteristic information, which is information indicating characteristics of the machine tool 1 including at least the model number of the machine tool 1, is output to the thermal displacement model learning device 2B.
  • characteristic information which is information indicating characteristics of the machine tool 1 including at least the model number of the machine tool 1
  • the machine tool 1A is a processing device to be estimated, and is similar to the second embodiment except that it outputs characteristic information, which is information indicating the characteristics of the machine tool 1A, including at least the model number of the machine tool 1A, to the thermal displacement estimating device 3B. This is the same as machine tool 1A.
  • the thermal displacement model learning device 2B is the same as the thermal displacement model learning device 2B of Embodiment 3 except that it receives feature information from the machine tools 1, and generates learning data based on data received from a plurality of machine tools 1. and a model storage unit 24B that stores each of a plurality of thermal displacement models in association with characteristic information of the machine tool 1 from which the learning data is acquired.
  • the thermal displacement estimation device 3B has a thermal displacement model acquisition section 32B instead of the thermal displacement model acquisition section 32 of the thermal displacement estimation device 3.
  • the thermal displacement model acquisition unit 32B selects a thermal displacement model to be used by the inference unit 33 from among the plurality of thermal displacement models stored in the model storage unit 24B, based on the characteristic information received from the inference target machine tool 1A. It has a model selection section 321 for selection.
  • the characteristic information includes at least the model number, and in addition to the model number, can include information indicating the state of the machine tool 1, 1A, such as the environment of the factory where the machine tool 1, 1A is installed, installation conditions, etc.
  • the model selection unit 321 is a thermal displacement model generated based on data obtained from a machine tool 1 having the same model number as the inference target machine tool 1A and having a state similar to the inference target machine tool 1A. can be selected. As a result, even if there is no thermal displacement model generated from the data of the machine tool 1A itself to be inferred, it is possible to use a machine tool 1 that has the same model number as the machine tool 1A and is used in a similar environment. Using the thermal displacement model generated from the data of No. 1, it becomes possible to obtain an estimated value of the amount of thermal displacement.
  • the thermal displacement model acquisition part 32B acquires multiple types of thermal displacement models from the model storage part 24B, and the inference part 33 , a configuration may be adopted in which an estimated value to be output is selected from among a plurality of thermal displacement estimated values calculated using a plurality of types of thermal displacement models, based on the characteristic information.
  • the functions of the thermal displacement model learning device 2 and the thermal displacement estimation device 3 may be built into the machine tool 1.
  • the thermal displacement model learning device 2B is used in the same area. Learning data may be acquired from multiple machine tools 1, or the thermal displacement model may be learned using learning data collected from multiple machine tools 1 that operate independently in different areas. . Furthermore, it is also possible to add or remove the machine tool 1 from which learning data is to be collected midway through the process. Furthermore, the thermal displacement model learning device 2 that has learned the thermal displacement model for a certain machine tool 1 is applied to another machine tool 1 to relearn and update the thermal displacement model for the other machine tool 1. You may also do so.

Abstract

This thermal displacement model training device (2) is characterized by comprising: a training data acquisition unit (21) which acquires training data in which input data including at least temperature data that represents the temperature of a machine tool in time series is associated in time with thermal displacement data that represents a thermal displacement amount of the machine tool in time series; a data set generation unit (22) which generates a data set obtained by extracting a portion of the training data; and a training unit (23) which uses the data set to generate a trained thermal displacement model for estimating the thermal displacement amount from the input data of the machine tool, wherein the data set generation unit (22) generates a plurality of data sets so that time lengths of time periods extracted from at least two among the plurality of data sets are different from each other.

Description

熱変位モデル学習装置、熱変位推定装置、加工システム、および加工方法Thermal displacement model learning device, thermal displacement estimation device, machining system, and machining method
 本開示は、工作機械の熱変位を補正するための熱変位モデル学習装置、熱変位推定装置、加工システム、および加工方法に関する。 The present disclosure relates to a thermal displacement model learning device, a thermal displacement estimation device, a machining system, and a machining method for correcting thermal displacement of a machine tool.
 工作機械は送り軸を駆動して加工対象物と工具との相対位置を変化させることで、ワークと呼ばれる加工対象物を所望の形状に除去加工する加工装置である。フレイス盤、旋盤などに代表される工作機械は、工具または加工対象物を主軸に装着し、主軸を回転させた状態で加工を行う。工作機械は、送り軸および主軸を駆動させるためのアクチュエータと、アクチュエータを駆動させるための電力を発生させるサーボアンプなどを備える。アクチュエータを備える工作機械は、送り軸の位置を位置検出器によって測定し、実際の位置が指令した位置に一致するように制御することで位置決めを行う。 A machine tool is a processing device that removes and processes a workpiece, called a workpiece, into a desired shape by driving a feed axis and changing the relative position of the workpiece and a tool. Machine tools, such as milling machines and lathes, attach a tool or workpiece to a spindle, and perform machining while rotating the spindle. A machine tool includes an actuator for driving a feed axis and a main axis, and a servo amplifier for generating electric power for driving the actuator. A machine tool equipped with an actuator measures the position of a feed axis using a position detector, and performs positioning by controlling the position so that the actual position matches the commanded position.
 工作機械がワークを加工する際には、工作機械中で熱が発生する。例えば、アクチュエータおよびサーボアンプは、電力を動力に変換する際に熱が発生する。また、切削、研磨といった加工では、材料の変形、摩擦などに伴う熱が発生する。さらに送り軸を動作させた際に生じる摩擦も熱を発生させる。これらの熱がコラム、ベッドをはじめとする工作機械の構造物に伝達されると、工作機械の機械構造の温度が上昇して熱膨張が発生する。この熱膨張による構造物の変形は、熱変位と呼ばれる。また構造物の温度は均等に変化しない場合もあり、この場合、構造物中の位置によって異なる熱変位が生じることで構造物の倒れ、歪み、ねじれなど単純な伸縮以外の変位が生じることがある。このような熱変位は、工作機械の位置決め精度を低下させるため、工具とワークとの相対位置に誤差を生じさせ、加工精度が低下する場合があることが知られている。 When a machine tool processes a workpiece, heat is generated within the machine tool. For example, actuators and servo amplifiers generate heat when converting electric power into motive power. Furthermore, during processing such as cutting and polishing, heat is generated due to material deformation, friction, etc. Furthermore, the friction that occurs when the feed shaft is operated also generates heat. When this heat is transferred to the columns, beds, and other structures of the machine tool, the temperature of the mechanical structures of the machine tool increases and thermal expansion occurs. This deformation of the structure due to thermal expansion is called thermal displacement. In addition, the temperature of a structure may not change uniformly, and in this case, different thermal displacements occur depending on the location within the structure, which may cause displacement other than simple expansion and contraction, such as collapse, distortion, or twisting of the structure. . It is known that such thermal displacement reduces the positioning accuracy of the machine tool, causing an error in the relative position between the tool and the workpiece, which may reduce machining accuracy.
 特許文献1には、工作機械の加工中に取得された計測データと、熱変位量の実測値とを用いて、機械学習により、計測データから熱変位量を推定することを可能にする技術が開示されている。具体的には、特許文献1に開示された機械学習装置は、計測データ群を取得する計測データ取得部と、熱変位量の実測値を取得する熱変位量取得部と、計測データ群を入力データとし、熱変位量の実測値をラベルとして互いに関連づけて教師データとして記憶する記憶部と、教師データを用いて機械学習を行うことで、熱変位量を計測データ群に基づいて算出する熱変位量予測計算式を設定する計算式学習部と、を備える。記憶部は、計測データ群を教師データとして所定の期間記憶する。 Patent Document 1 describes a technology that makes it possible to estimate the amount of thermal displacement from the measurement data through machine learning using measurement data acquired during machining of a machine tool and actual measured values of the amount of thermal displacement. Disclosed. Specifically, the machine learning device disclosed in Patent Document 1 includes a measurement data acquisition unit that acquires a measurement data group, a thermal displacement amount acquisition unit that acquires an actual measured value of the amount of thermal displacement, and a device that inputs the measurement data group. Thermal displacement is calculated based on a group of measured data by performing machine learning using the training data. A calculation formula learning unit that sets a quantity prediction calculation formula. The storage unit stores the measurement data group as teacher data for a predetermined period of time.
特開2019-111648号公報JP 2019-111648 Publication
 しかしながら、上記従来の技術によれば、記憶部が教師データを記憶する期間が、工作機械で発生する熱変位に対して適正でない場合には、工作機械に発生する熱変位量の推定精度が低下する場合があるという問題があった。例えば、ある熱源による熱が熱変位を生じるまでの時間は、他の熱源との位置関係、周囲環境などが影響する。このため、記憶する期間が短すぎる場合、学習の際に、熱変位に影響する計測データが記憶された教師データに含まれておらず、熱変位量の推定精度が低下する場合がある。また、記憶する期間が長すぎる場合、学習の際に、当該データに含まれ、且つ、熱変位への寄与が少ない計測データを誤って学習することによって熱変位量の推定精度が低下する場合がある。 However, according to the above-mentioned conventional technology, if the period during which the storage unit stores the teacher data is not appropriate for the thermal displacement generated in the machine tool, the accuracy of estimating the amount of thermal displacement generated in the machine tool decreases. There was a problem that sometimes For example, the time it takes for heat from a certain heat source to cause thermal displacement is affected by the positional relationship with other heat sources, the surrounding environment, etc. Therefore, if the storage period is too short, measurement data that affects thermal displacement may not be included in the stored teacher data during learning, and the accuracy of estimating the amount of thermal displacement may decrease. In addition, if the memorization period is too long, the accuracy of estimating the amount of thermal displacement may decrease due to erroneous learning of measurement data that is included in the data and has a small contribution to thermal displacement. be.
 本開示は、上記に鑑みてなされたものであって、熱変位量の推定精度を向上させることが可能な熱変位モデル学習装置を得ることを目的とする。 The present disclosure has been made in view of the above, and aims to provide a thermal displacement model learning device that can improve the accuracy of estimating the amount of thermal displacement.
 上述した課題を解決し、目的を達成するために、本開示の熱変位モデル学習装置は、工作機械の時系列の温度を表す温度データを少なくとも含む入力データと、工作機械の時系列の熱変位量を表す熱変位データとを時間で対応づけた学習用データを取得する学習用データ取得部と、学習用データから学習用データの一部を抽出したデータセットを生成するデータセット生成部と、データセットを用いて、工作機械の入力データから熱変位量を推定するための学習済の熱変位モデルを生成する学習部と、を備え、データセット生成部は、複数のデータセットの中の少なくとも2つのデータセットにおいて、互いに抽出した時間区間の時間長が異なるように、データセットを生成することを特徴とする。 In order to solve the above-mentioned problems and achieve the objectives, the thermal displacement model learning device of the present disclosure provides input data that includes at least temperature data representing the time-series temperature of the machine tool, and input data that includes the time-series thermal displacement of the machine tool. a learning data acquisition unit that acquires learning data in which thermal displacement data representing a quantity is associated with time; a dataset generation unit that generates a dataset in which a part of the learning data is extracted from the learning data; a learning unit that uses the data set to generate a learned thermal displacement model for estimating the amount of thermal displacement from input data of a machine tool; The two data sets are characterized in that the data sets are generated such that the time lengths of the extracted time intervals are different from each other.
 本開示によれば、熱変位量の推定精度を向上させることが可能であるという効果を奏する。 According to the present disclosure, it is possible to improve the estimation accuracy of the amount of thermal displacement.
実施の形態1にかかる加工システムの構成を示す図A diagram showing the configuration of a processing system according to Embodiment 1 実施の形態1にかかる工作機械の機能構成を示す図A diagram showing the functional configuration of a machine tool according to Embodiment 1 実施の形態1にかかる工作機械において温度センサの設置位置の一例を示す図A diagram showing an example of the installation position of a temperature sensor in the machine tool according to the first embodiment. 工作機械の運転状態の変化の一例の説明図An explanatory diagram of an example of changes in the operating status of a machine tool 実施の形態1にかかる熱変位モデル学習装置の機能構成を示す図A diagram showing the functional configuration of the thermal displacement model learning device according to the first embodiment データセットの生成方法の第1の例の説明図Explanatory diagram of the first example of the dataset generation method データセットの生成方法の第2の例の説明図Explanatory diagram of the second example of the dataset generation method データセットの生成方法の第3の例の説明図Explanatory diagram of the third example of the dataset generation method 熱変位モデルの学習方法の説明図Explanatory diagram of learning method of thermal displacement model ニューラルネットワークの説明図Diagram of neural network 図5に示す熱変位モデル学習装置の動作を説明するためのフローチャートFlowchart for explaining the operation of the thermal displacement model learning device shown in FIG. 5 実施の形態2にかかる加工システムの構成を示す図A diagram showing the configuration of a processing system according to Embodiment 2 実施の形態2にかかる工作機械の機能構成を示す図A diagram showing the functional configuration of a machine tool according to Embodiment 2 実施の形態2にかかる熱変位推定装置の機能構成を示す図A diagram showing a functional configuration of a thermal displacement estimating device according to a second embodiment 図12に示す加工システムの動作を説明するためのフローチャートFlowchart for explaining the operation of the processing system shown in FIG. 12 ハードウェア構成の一例を示す図Diagram showing an example of hardware configuration 実施の形態2の変形例にかかる熱変位モデル学習装置の機能構成を示す図A diagram showing a functional configuration of a thermal displacement model learning device according to a modification of the second embodiment 実施の形態3にかかる加工システムの構成を示す図A diagram showing the configuration of a processing system according to Embodiment 3 実施の形態4にかかる加工システムの構成を示す図A diagram showing the configuration of a processing system according to Embodiment 4
 以下に、本開示の実施の形態にかかる熱変位モデル学習装置、熱変位推定装置、加工システム、および加工方法を図面に基づいて詳細に説明する。 Below, a thermal displacement model learning device, a thermal displacement estimation device, a machining system, and a machining method according to embodiments of the present disclosure will be described in detail based on the drawings.
実施の形態1.
 図1は、実施の形態1にかかる加工システム100-1の構成を示す図である。加工システム100-1は、工作機械1と、熱変位モデル学習装置2とを有する。工作機械1は、工具によって加工対象物を除去加工する加工装置である。熱変位モデル学習装置2は、工作機械1から取得する熱変位データ、温度データ、および機械状態データに基づいて、入力データから熱変位量を推定するための熱変位モデルを学習する。
Embodiment 1.
FIG. 1 is a diagram showing the configuration of a processing system 100-1 according to the first embodiment. The machining system 100-1 includes a machine tool 1 and a thermal displacement model learning device 2. The machine tool 1 is a processing device that removes and processes a workpiece using a tool. The thermal displacement model learning device 2 learns a thermal displacement model for estimating the amount of thermal displacement from input data, based on thermal displacement data, temperature data, and machine state data acquired from the machine tool 1.
 図2は、実施の形態1にかかる工作機械1の機能構成を示す図である。工作機械1は、ワークWを加工する工具Tが設置され、工具TとワークWとの間の相対位置を変化させる送り軸11と、送り軸11を駆動するアクチュエータである送り軸モータ12と、工具TまたはワークWを回転させる主軸13と、主軸13を駆動するアクチュエータである主軸モータ14と、工作機械1を制御する制御装置15と、アクチュエータが駆動する際の発熱を抑制するための冷却機器である周辺機器16と、工作機械1の温度を測定するための温度センサTSと、工具TとワークWとの間の相対的な位置を測定する変位センサDSとを有する。 FIG. 2 is a diagram showing the functional configuration of the machine tool 1 according to the first embodiment. The machine tool 1 includes a feed shaft 11 on which a tool T for processing a workpiece W is installed, a feed shaft 11 that changes the relative position between the tool T and the workpiece W, and a feed shaft motor 12 that is an actuator that drives the feed shaft 11. A main shaft 13 that rotates the tool T or workpiece W, a main shaft motor 14 that is an actuator that drives the main shaft 13, a control device 15 that controls the machine tool 1, and a cooling device that suppresses heat generation when the actuator is driven. It has a peripheral device 16, a temperature sensor TS for measuring the temperature of the machine tool 1, and a displacement sensor DS for measuring the relative position between the tool T and the workpiece W.
 変位センサDSは、工具TとワークWとの相対的な位置を検出することができるように工作機械1に設置される。変位センサDSは相対位置を測定し、測定した相対位置を熱変位データとして熱変位モデル学習装置2に出力する。変位センサDSは、少なくとも1軸方向の変位の検出が可能なセンサであればよく、例えば、三角測量方式のレーザセンサ、TOF(Time Of Flight)方式のレーザセンサを用いることができる。なお、直交する複数の変位センサを設置して複数軸方向の変位を検出する構成としてもよい。 The displacement sensor DS is installed in the machine tool 1 so as to be able to detect the relative position of the tool T and workpiece W. The displacement sensor DS measures the relative position and outputs the measured relative position to the thermal displacement model learning device 2 as thermal displacement data. The displacement sensor DS may be any sensor that can detect displacement in at least one axial direction, and for example, a triangulation type laser sensor or a TOF (Time Of Flight) type laser sensor can be used. Note that a configuration may be adopted in which a plurality of orthogonal displacement sensors are installed to detect displacements in a plurality of axial directions.
 温度センサTSは、工作機械1に設置される。温度センサTSは、温度を検出し、検出した温度を温度データとして熱変位モデル学習装置2に出力する。図2では1つの温度センサTSが図示されているが、加工システム100-1は、複数の温度センサTSを備えることが望ましい。温度センサTSは、温度変化が大きいと推定される場所、熱変位に大きな影響を与えると推定される場所に設置することが望ましい。また、温度センサTSは、工作機械1が設置された空間の温度を測定することができるように、工作機械1の外部にも温度センサTSを設置することが望ましい。 The temperature sensor TS is installed on the machine tool 1. The temperature sensor TS detects temperature and outputs the detected temperature to the thermal displacement model learning device 2 as temperature data. Although one temperature sensor TS is illustrated in FIG. 2, it is desirable that the processing system 100-1 includes a plurality of temperature sensors TS. It is desirable to install the temperature sensor TS at a location where temperature changes are estimated to be large or where thermal displacement is estimated to have a large effect. Moreover, it is desirable that the temperature sensor TS is also installed outside the machine tool 1 so that the temperature sensor TS can measure the temperature of the space in which the machine tool 1 is installed.
 図3は、実施の形態1にかかる工作機械1において温度センサTSの設置位置の一例を示す図である。図3に示す工作機械1は、フライス盤型の加工装置であり、ベッド17にY軸の送り軸モータ12、テーブルTAが設置されており、テーブルTA上にワークWが載置される。また、工作機械1は、コラム18上にX軸およびZ軸の送り軸モータ12と、主軸13と、主軸モータ14とが設置される。図3の黒丸は、温度センサTSの設置位置の一例を示している。上述の通り、温度センサTSの設置場所は、温度変化が大きいと推定される場所、および熱変位に大きな影響を与えると推定される場所がよい。温度変化が大きいと推定される場所の一例としては、X,Y,Z軸を駆動させるための送り軸モータ12、主軸13を回転させる主軸モータ14などの駆動機構が挙げられる。熱変位に大きな影響を与えると推定される場所の一例としては、ベッド17、コラム18、送りねじ19といった工作機械1の構造物が挙げられる。温度センサTSは、構造物の頂点、複数の頂点の間にある点、内側などに設置するのがよい。 FIG. 3 is a diagram showing an example of the installation position of the temperature sensor TS in the machine tool 1 according to the first embodiment. The machine tool 1 shown in FIG. 3 is a milling machine type processing device, in which a Y-axis feed shaft motor 12 and a table TA are installed on a bed 17, and a workpiece W is placed on the table TA. Further, in the machine tool 1, X-axis and Z-axis feed shaft motors 12, a main shaft 13, and a main shaft motor 14 are installed on a column 18. The black circles in FIG. 3 indicate an example of the installation position of the temperature sensor TS. As mentioned above, the temperature sensor TS is preferably installed at a location where the temperature change is estimated to be large and a location where it is estimated to have a large influence on thermal displacement. An example of a location where the temperature change is estimated to be large is drive mechanisms such as the feed shaft motor 12 for driving the X, Y, and Z axes and the main shaft motor 14 for rotating the main shaft 13. Examples of locations that are estimated to have a large effect on thermal displacement include structures of the machine tool 1 such as the bed 17, column 18, and feed screw 19. The temperature sensor TS is preferably installed at the apex of the structure, at a point between a plurality of apexes, or inside the structure.
 図2の説明に戻る。周辺機器16は、冷却機器であり、工作機械1を冷却して熱変位を防止するために設置される。周辺機器16は、工作機械1の構造体、ワークWおよび工具Tと、工作機械1の外部にある外気との間で、熱交換を行う。例えば、周辺機器16は、ワークWを冷却するための切削油を射出するクーラント装置、工作機械1に設置された熱交換パイプを冷却する冷媒を循環させるポンプなどが含まれる。周辺機器16は、制御装置15に周辺機器16の動作情報を出力する。 Returning to the explanation of FIG. 2. The peripheral device 16 is a cooling device, and is installed to cool the machine tool 1 and prevent thermal displacement. The peripheral equipment 16 performs heat exchange between the structure of the machine tool 1 , the workpiece W, and the tool T, and the outside air outside the machine tool 1 . For example, the peripheral equipment 16 includes a coolant device that injects cutting oil to cool the workpiece W, a pump that circulates a refrigerant that cools a heat exchange pipe installed in the machine tool 1, and the like. The peripheral device 16 outputs operation information of the peripheral device 16 to the control device 15.
 周辺機器16の動作情報は、周辺機器16の動作の有無を示す稼働状態を少なくとも含む。周辺機器16の動作情報は、稼働状態に加えて、消費電力、周辺機器16の動力などを含んでもよい。ここで、周辺機器16の動作情報に含まれる稼働状態は、数値で表すことができる。例えば、稼働状態が「1」は、「周辺機器16が動作している状態」を表し、稼働状態が「0」は「周辺機器16が停止している状態」を表す。 The operation information of the peripheral device 16 includes at least an operating state indicating whether or not the peripheral device 16 is in operation. The operation information of the peripheral device 16 may include power consumption, power of the peripheral device 16, etc. in addition to the operating state. Here, the operating state included in the operating information of the peripheral device 16 can be expressed numerically. For example, an operating state of "1" represents a "state in which the peripheral device 16 is operating", and an operating state of "0" represents a "state in which the peripheral device 16 is stopped".
 加工プログラムは、工作機械1の送り軸11、主軸13および周辺機器16が所望の動作をするために、制御装置15に与えられる一連の命令文である。具体的には、加工プログラムは、送り軸11の位置指令、送り軸11の速度指令、主軸13の回転速度指令、周辺機器16の稼働および停止指令などを表す情報を含むことができる。 A machining program is a series of commands given to the control device 15 so that the feed axis 11, main spindle 13, and peripheral equipment 16 of the machine tool 1 perform desired operations. Specifically, the machining program can include information representing a position command for the feed shaft 11, a speed command for the feed shaft 11, a rotation speed command for the main shaft 13, an operation and stop command for the peripheral device 16, and the like.
 制御装置15は、加工プログラムを読み込み、加工プログラムに記述された指令を解析する。また制御装置15は、送り軸11に所望の動作をさせるため送り軸11に対する指令位置および指令速度を生成し、送り軸モータ12に対して操作量を与える。また制御装置15は、主軸13に所望の動作をさせるため主軸13に対する指令速度を生成し、主軸モータ14に対して操作量を与える。 The control device 15 reads the machining program and analyzes the commands written in the machining program. Further, the control device 15 generates a command position and a command speed for the feed shaft 11 in order to cause the feed shaft 11 to perform a desired operation, and provides an operation amount to the feed shaft motor 12. Further, the control device 15 generates a command speed for the main shaft 13 to cause the main shaft 13 to perform a desired operation, and provides an operation amount to the main shaft motor 14 .
 さらに制御装置15は、工作機械1の運転状態を表す機械状態データを熱変位モデル学習装置2に出力する。機械状態データは、工作機械1の運転状態を表すデータであり、例えば、工作機械1の温度を調整する周辺機器16の稼働状態と、工作機械1に備わるアクチュエータの動作状態とを示す。具体的には、機械状態データは、送り軸11に対する指令位置、送り軸11に対する指令速度、主軸13に対する指令速度、および、周辺機器16の動作情報のうち1種類以上の情報を少なくとも含む。 Further, the control device 15 outputs machine state data representing the operating state of the machine tool 1 to the thermal displacement model learning device 2. The machine state data is data representing the operating state of the machine tool 1, and indicates, for example, the operating state of the peripheral device 16 that adjusts the temperature of the machine tool 1, and the operating state of the actuator provided in the machine tool 1. Specifically, the machine state data includes at least one type of information among a command position for the feed shaft 11, a command speed for the feed shaft 11, a command speed for the main shaft 13, and operation information of the peripheral device 16.
 また、制御装置15は、工作機械1に位置検出器が設置される場合には、位置検出器で検出される実位置と指令位置、または、実速度と指令速度の差分が0となるようにフィードバック制御を行ってもよい。この場合、機械状態データは、送り軸11の実位置、送り軸11の実速度、および、主軸13の実速度のうち1種類以上の情報を含むことができる。 In addition, when a position detector is installed in the machine tool 1, the control device 15 is configured so that the difference between the actual position detected by the position detector and the commanded position, or between the actual speed and the commanded speed becomes 0. Feedback control may also be performed. In this case, the machine state data can include information on one or more of the actual position of the feed shaft 11, the actual speed of the feed shaft 11, and the actual speed of the main shaft 13.
 ここで、工作機械1の内外に発生する熱と、熱の授受について説明する。制御装置15が送り軸モータ12、および主軸モータ14を駆動させる際に与える電気的なエネルギーの一部が損失熱となる。さらに、送り軸11や主軸13の動作時には機械的な摩擦により損失熱が生じる。これらの損失熱は工作機械1の構造物の温度を上昇させる作用を有するが、同時に周辺機器16によって冷却もされる。さらに、工具TとワークWとの間で加工がなされるとき加工熱が発生する。さらに、工作機械1の本体と周囲環境との間の温度差が存在すると、その温度差に応じて工作機械1の構造物の温度は経時的に変化する。上記で述べた工作機械1の内外で発生する発熱と放熱と強制冷却とが構造物の温度変化をもたらし、構造物に熱膨張と熱ひずみを生む。このような構造物の熱的な変化が結果として工具TとワークWとの間の加工誤差となる。本開示では、工作機械1の熱的な変化によって生じる工具TとワークWとの間の加工誤差を熱変位と呼ぶ。 Here, the heat generated inside and outside the machine tool 1 and the exchange of heat will be explained. A part of the electrical energy given by the control device 15 when driving the feed shaft motor 12 and the main shaft motor 14 becomes heat loss. Furthermore, when the feed shaft 11 and the main shaft 13 operate, heat loss occurs due to mechanical friction. These lost heats have the effect of increasing the temperature of the structure of the machine tool 1, but are also cooled by the peripheral equipment 16 at the same time. Furthermore, when machining is performed between the tool T and the workpiece W, machining heat is generated. Furthermore, if there is a temperature difference between the main body of the machine tool 1 and the surrounding environment, the temperature of the structure of the machine tool 1 changes over time in accordance with the temperature difference. The heat generation, heat radiation, and forced cooling generated inside and outside the machine tool 1 described above cause temperature changes in the structure, causing thermal expansion and thermal strain in the structure. Such thermal changes in the structure result in machining errors between the tool T and the workpiece W. In this disclosure, a machining error between the tool T and the workpiece W caused by thermal changes in the machine tool 1 is referred to as thermal displacement.
 次に工作機械の運転状態について説明する。図4は、工作機械1の運転状態の変化の一例の説明図である。図4には、工作機械1が、電源を投入し、加工プログラムに従い運転を行い、電源が遮断されるまでの運転状態の変化を表している。 Next, the operating status of the machine tool will be explained. FIG. 4 is an explanatory diagram of an example of a change in the operating state of the machine tool 1. FIG. 4 shows changes in the operating state of the machine tool 1 from when the power is turned on and the machine tool 1 is operated according to a machining program until the power is turned off.
 図4には、工作機械1の構成要素である主軸13、送り軸11、および周辺機器16、のそれぞれの稼動状態と加工プログラム実行状態との時間に伴う推移の例が示される。図4の横軸は時間を表し、t0からt9は時刻を表す。時刻t0から時刻t9までの詳細については後述する。加工プログラム実行状態は、工作機械1がプログラム運転を行っているか停止しているかを示している。プログラム運転とは、加工プログラムに記載された指令に従い、工作機械1が動作することである。工作機械1はある加工をするためのプログラム運転を行い、プログラム運転が終了すると、作業者によってワークWの取り換えなどの作業が行われる。その後、次の加工のためのプログラム運転を行うといったような流れで作業が行われる。 FIG. 4 shows an example of how the operating states of the main spindle 13, feed axis 11, and peripheral equipment 16, which are the components of the machine tool 1, and the machining program execution state change over time. The horizontal axis in FIG. 4 represents time, and t0 to t9 represent time. Details from time t0 to time t9 will be described later. The machining program execution state indicates whether the machine tool 1 is running the program or stopped. Program operation means that the machine tool 1 operates according to instructions written in a machining program. The machine tool 1 performs a programmed operation for performing a certain machining process, and when the programmed operation is completed, an operator performs work such as replacing the workpiece W. After that, the work is performed in a flow such as program operation for the next machining.
 図4に示した例では、時刻t0に工作機械1の電源が投入され、時刻t9に工作機械1の電源が遮断される。時刻t0から時刻t1の間は、加工プログラムによる運転が開始されるまでの待機状態を表す。また、時刻t8から時刻t9の間は、加工プログラムによる運転が終了してから工作機械1の電源が遮断されるまでを表す。 In the example shown in FIG. 4, the power to the machine tool 1 is turned on at time t0, and the power to the machine tool 1 is turned off at time t9. The period from time t0 to time t1 represents a standby state until operation according to the machining program is started. Further, the period from time t8 to time t9 represents the period from the end of the operation according to the machining program until the power of the machine tool 1 is cut off.
 また、加工プログラム実行状態が示すように、時刻t1から時刻t5の間は加工プログラム#1によるプログラム運転が行われ、時刻t6から時刻t8の間は加工プログラム#2によるプログラム運転が行われる。これらの加工プログラムを実行すると、主軸13の回転速度である主軸速度と、送り軸11の速度である送り速度と、周辺機器16の稼働状態とが時間と共に変化する。 Furthermore, as shown in the machining program execution state, program operation according to machining program #1 is performed between time t1 and time t5, and program operation according to machining program #2 is performed between time t6 and time t8. When these machining programs are executed, the main spindle speed, which is the rotational speed of the main spindle 13, the feed rate, which is the speed of the feed shaft 11, and the operating state of the peripheral equipment 16 change over time.
 図4の「主軸速度」は、主軸13の回転速度を示している。ここで図4では、1分あたり1000回転で主軸13が回転している状態を「S1000」のように示す。図4の主軸速度が示すように、主軸モータ14は時刻t1から時刻t4の間は1分あたり1000回転の回転速度で、時刻t4から時刻t5の間は1分あたり3000回転の回転速度で、時刻t6から時刻t8の間は1分あたり3000回転の回転速度でそれぞれ回転する。主軸13が回転すると、主軸モータ14や主軸13の構造から熱が発生する。主軸速度が高速であるほど主軸13の発熱量は大きくなる。主軸速度は加工プログラムの命令に応じて変化するため、主軸13の発熱量も加工プログラムに応じて変化する。 "Spindle speed" in FIG. 4 indicates the rotational speed of the main shaft 13. Here, in FIG. 4, a state in which the main shaft 13 is rotating at 1000 revolutions per minute is indicated as "S1000". As shown by the spindle speed in FIG. 4, the spindle motor 14 has a rotation speed of 1000 revolutions per minute between time t1 and time t4, and a rotation speed of 3000 revolutions per minute between time t4 and time t5. From time t6 to time t8, each rotates at a rotation speed of 3000 revolutions per minute. When the main shaft 13 rotates, heat is generated from the main shaft motor 14 and the structure of the main shaft 13. The higher the spindle speed is, the greater the amount of heat generated by the spindle 13 becomes. Since the spindle speed changes according to the commands of the machining program, the amount of heat generated by the spindle 13 also changes according to the machining program.
 図4の「送り速度」は、送り軸11の移動速度を示している。ここで、図4では、1分あたり100mm送り軸11が動作する状態を、「F100」のように表す。図4の送り速度が示すように送り軸モータ12は時刻t1から時刻t3の間は1分あたり100mm送り軸11を動作させる回転速度で、時刻t3から時刻t5の間は1分あたり300mm送り軸11を動作させる回転速度で、時刻t6から時刻t8の間は300mm送り軸11を動作させる回転速度でそれぞれ回転する。送り軸11が動作すると、送り軸モータ12や送り軸11の構造から熱が発生する。送り速度が高速であるほど発熱量は大きくなる。送り速度は加工プログラムの命令に応じて変化するため、送り軸11の発熱量も加工プログラムに応じて変化する。 "Feeding speed" in FIG. 4 indicates the moving speed of the feeding shaft 11. Here, in FIG. 4, a state in which the feed shaft 11 moves 100 mm per minute is expressed as "F100". As shown in the feed speed in FIG. 4, the feed shaft motor 12 operates at a rotation speed of 100 mm per minute to operate the feed shaft 11 between time t1 and time t3, and at a rotation speed of 300 mm per minute between time t3 and time t5. 11, and from time t6 to time t8, each rotates at a rotation speed that operates the 300 mm feed shaft 11. When the feed shaft 11 operates, heat is generated from the feed shaft motor 12 and the structure of the feed shaft 11. The higher the feed speed, the greater the amount of heat generated. Since the feed rate changes according to the instructions of the machining program, the amount of heat generated by the feed shaft 11 also changes according to the machining program.
 図4の「周辺機器の稼働状態」は、工作機械1を冷却するための周辺機器16が稼働中であるか停止中であるかを表す。周辺機器16は、加工中に常時稼働しているわけではなく、加工プログラムに記載された命令に従って稼働したり停止したりする。図4の周辺機器の稼働状態の例では、時刻t2から時刻t5の間は周辺機器16が稼働し、時刻t5から時刻t7の間は周辺機器16が停止し、時刻t7から時刻t8の間は周辺機器16が稼働する。周辺機器16が稼働すると、工作機械1から工作機械1の外部環境へ熱を移動し、工作機械1は冷却される。周辺機器16の稼働状態は加工プログラムの命令に応じて変化するため、周辺機器16による冷却の状態も加工プログラムに応じて変化する。 The "operating state of peripheral equipment" in FIG. 4 indicates whether the peripheral equipment 16 for cooling the machine tool 1 is in operation or stopped. The peripheral equipment 16 does not always operate during machining, but operates and stops according to instructions written in the machining program. In the example of the operation state of the peripheral devices in FIG. 4, the peripheral device 16 is in operation between time t2 and time t5, the peripheral device 16 is stopped between time t5 and time t7, and the peripheral device 16 is in operation between time t7 and time t8. Peripheral equipment 16 operates. When the peripheral equipment 16 operates, heat is transferred from the machine tool 1 to the external environment of the machine tool 1, and the machine tool 1 is cooled down. Since the operating state of the peripheral device 16 changes according to the commands of the machining program, the cooling state of the peripheral device 16 also changes according to the machining program.
 図4を用いて説明したように、送り軸11と主軸13で発生する熱と周辺機器16による冷却の状態は一定とならないため、工作機械1の熱変位量も加工プログラムに応じて経時的に変化する。 As explained using FIG. 4, the heat generated by the feed shaft 11 and the main shaft 13 and the cooling state by the peripheral equipment 16 are not constant, so the amount of thermal displacement of the machine tool 1 also changes over time depending on the machining program. Change.
 また、時刻t5と時刻t6との間のように、加工プログラムによる運転が実施されない時間も存在する。時刻t5と時刻t6との間は例えば、作業者がワークWの着脱を行っていたり、工作機械1の機内の清掃を実施していたりと、段取り作業により工作機械1が停止していることがある。このように工作機械1が停止している場合は、主軸13と送り軸11と周辺機器16の動作状況がプログラム運転中とは異なるため、発生する熱変位量もプログラム運転中とは異なる傾向を示す。 Additionally, there are times, such as between time t5 and time t6, during which operation according to the machining program is not performed. Between time t5 and time t6, for example, the machine tool 1 may be stopped due to setup work, such as when a worker is loading and unloading the workpiece W or cleaning the inside of the machine tool 1. be. When the machine tool 1 is stopped in this way, the operating conditions of the main spindle 13, feed axis 11, and peripheral equipment 16 are different from those during program operation, so the amount of thermal displacement generated also tends to be different from that during program operation. show.
 以上説明したように、送り軸11および主軸13の速度や、周辺機器16の稼働状態は熱変位の発生に影響を与える。本実施の形態では、時刻t0から時刻t1の区間、時刻t1から時刻t2の区間、のように工作機械1の動作状態が異なる各区間を運転動作単位と定義する。運転動作単位の時間長は、加工プログラムに記載された命令のタイミングにより変化するため可変長となる。 As explained above, the speeds of the feed shaft 11 and the main shaft 13 and the operating state of the peripheral equipment 16 affect the occurrence of thermal displacement. In this embodiment, each section in which the operating state of the machine tool 1 differs, such as the section from time t0 to time t1 and the section from time t1 to time t2, is defined as an operating operation unit. The time length of the driving operation unit is variable because it changes depending on the timing of the command written in the machining program.
 なお、図4では工作機械1が2種類の異なる加工プログラムを運転する例を示したが、少なくとも1回以上加工プログラムを実行すればよく、加工プログラムの種類や実行回数はこの例の限りではない。 Although FIG. 4 shows an example in which the machine tool 1 runs two different types of machining programs, it is sufficient to execute the machining programs at least once, and the types of machining programs and the number of executions are not limited to this example. .
 さらに、工作機械1は電源を遮断した後に再び電源を投入して加工プログラムを運転してもよい。この場合は、電源を遮断してから再び投入するまでの時間区間を1つの運転動作単位と定義する。 Further, the machine tool 1 may be powered off and then powered on again to run the machining program. In this case, the time period from when the power is turned off to when it is turned on again is defined as one driving operation unit.
 続いて、熱変位モデル学習装置2の機能構成について説明する。図5は、実施の形態1にかかる熱変位モデル学習装置2の機能構成を示す図である。熱変位モデル学習装置2は、工作機械1が運転中に出力するデータを用いて、少なくとも温度データを含む入力データから熱変位量を推定するための熱変位モデルを学習する。 Next, the functional configuration of the thermal displacement model learning device 2 will be explained. FIG. 5 is a diagram showing the functional configuration of the thermal displacement model learning device 2 according to the first embodiment. The thermal displacement model learning device 2 uses data output by the machine tool 1 during operation to learn a thermal displacement model for estimating the amount of thermal displacement from input data including at least temperature data.
 熱変位モデル学習装置2は、学習用データ取得部21と、データセット生成部22と、学習部23と、モデル記憶部24とを有する。 The thermal displacement model learning device 2 includes a learning data acquisition section 21, a dataset generation section 22, a learning section 23, and a model storage section 24.
 学習用データ取得部21は、工作機械1が出力する熱変位データ、温度データ、機械状態データを取得し、取得したデータを時間的に同期させた学習用データを生成する。ここで、温度データおよび機械状態データは、入力データに含まれる情報の一例である。入力データは、少なくとも温度データを含む。学習用データは、熱変位データ、温度データおよび機械状態データが一定の時間周期で並んだ時系列データである。ここで、一定の時間周期とは学習用データ取得部21に予め設定されているサンプリング周期を表す。学習用データ取得部21は、少なくとも1区間以上の運転動作単位分の時間区間のデータを工作機械1から受け取り、学習用データを生成する。学習用データ取得部21は、生成した学習用データをデータセット生成部22に出力する。 The learning data acquisition unit 21 acquires thermal displacement data, temperature data, and machine state data output by the machine tool 1, and generates learning data by temporally synchronizing the acquired data. Here, the temperature data and machine condition data are examples of information included in the input data. The input data includes at least temperature data. The learning data is time-series data in which thermal displacement data, temperature data, and machine state data are arranged at a constant time period. Here, the constant time period represents a sampling period preset in the learning data acquisition unit 21. The learning data acquisition unit 21 receives data of a time section corresponding to at least one driving operation unit from the machine tool 1, and generates learning data. The learning data acquisition unit 21 outputs the generated learning data to the dataset generation unit 22.
 データセット生成部22は、工作機械1の運転状態に基づいて特定の時刻を検出し、検出した時刻を基準として、学習用データから、熱変位データと、温度データと、機械状態データとを抽出し、抽出したデータを1組のデータセットとしてまとめ、複数組のデータセットを学習部23へ出力する。以下では、データセット生成部22が検出する特定の時刻を抽出基準時刻と称する。抽出基準時刻について、図4を用いて説明する。データセット生成部22は、時刻t1~t8の各時刻を、工作機械1の運転状態が変化した時刻として検出する。なお、図4では、主軸速度と、送り速度と、周辺機器16の稼働状態の変化と、加工プログラムの開始および終了とのうちいずれかが変化した時刻を抽出基準時刻としているが、抽出基準時刻はこれらの例に限定されない。例えば、サブプログラムの呼び出しおよび終了のタイミング、工具Tを交換したタイミングなども工作機械1の運転状態の変化とみなすことができる。また、加工プログラムに予め運転状態の変化タイミングが指示されている場合、データセット生成部22がこの情報を読み取る構成としてもよい。なお、データセット生成部22は、2つの抽出基準時刻を時間的に内挿して新たな抽出基準時刻を追加設定してもよい。 The data set generation unit 22 detects a specific time based on the operating state of the machine tool 1, and extracts thermal displacement data, temperature data, and machine state data from the learning data using the detected time as a reference. Then, the extracted data are compiled into one set of data sets, and the plural sets of data sets are output to the learning section 23. Hereinafter, the specific time detected by the data set generation unit 22 will be referred to as an extraction reference time. The extraction reference time will be explained using FIG. 4. The data set generation unit 22 detects each time from time t1 to time t8 as a time when the operating state of the machine tool 1 changes. In addition, in FIG. 4, the extraction reference time is the time when any of the spindle speed, feed rate, change in the operating state of the peripheral equipment 16, and start and end of the machining program changes. is not limited to these examples. For example, the timing of calling and ending a subprogram, the timing of replacing the tool T, etc. can also be considered as changes in the operating state of the machine tool 1. Furthermore, if the timing of changing the operating state is instructed in advance in the machining program, the data set generation unit 22 may be configured to read this information. Note that the data set generation unit 22 may temporally interpolate the two extraction reference times to additionally set a new extraction reference time.
 データセット生成部22は、抽出基準時刻を基準として、学習用データから学習用データの一部を抽出してデータセットを生成する。 The data set generation unit 22 extracts a part of the learning data from the learning data using the extraction reference time as a reference to generate a data set.
 図6は、データセットの生成方法の第1の例の説明図である。図6を用いて、データセット生成部22が学習用データからデータセットを生成する方法の第1の例について説明する。図6は、抽出基準時刻t1がデータ抽出の初期基準時刻である場合に、学習用データから抽出されたデータセット#a1~#anを示している。入力データ#a1~#anは、抽出基準時刻t1を初期時刻とした温度データおよび機械状態データである。i番目の入力データを入力データ#aiとすると、入力データ#aiの時間区間は、入力データ#ai-1の時間区間の終端から予め定められた時間延長幅T1だけ時間的に後方に延長されている。入力データ#a2の時間長は、入力データ#a1の時間長よりも時間延長幅T1だけ長い。また、入力データ#a3の時間長は、入力データ#a2の時間長よりも時間延長幅T1だけ長い。つまり、入力データ#a1の時間幅をTとした場合、入力データ#aiの時間幅は、「T+(i-1)T1」となる。入力データ#a1~#anは、抽出基準時刻t1を始端とするそれぞれの時間幅「T+(i-1)T1」の時間区間のデータとなる。教師データ#a1~#anは、入力データ#a1~#anのそれぞれの終端時刻における熱変位データである。データセット生成部22は、図6に示すように、1つの抽出基準時刻t1から複数組のデータセット#a1~#anを生成する。以上の処理により、データセット生成部22は、1つの抽出基準時刻t1から生成される複数のデータセット#a1~#anのそれぞれの抽出した時間区間の時間長が異なるようにデータセットを生成することができる。データセット生成部22は、上記の処理を、学習データに含まれる複数の抽出基準時刻のそれぞれについて行う。なお、データセット#anのように、終端時刻は、抽出基準時刻t1の次の抽出基準時刻であるt2を超えてもよい。 FIG. 6 is an explanatory diagram of the first example of the data set generation method. A first example of a method in which the dataset generation unit 22 generates a dataset from learning data will be described using FIG. 6. FIG. 6 shows data sets #a1 to #an extracted from the learning data when the extraction reference time t1 is the initial reference time for data extraction. Input data #a1 to #an are temperature data and machine state data whose initial time is extraction reference time t1. When the i-th input data is input data #ai, the time interval of input data #ai is temporally extended backward by a predetermined time extension width T1 from the end of the time interval of input data #ai-1. ing. The time length of input data #a2 is longer than the time length of input data #a1 by time extension width T1. Further, the time length of the input data #a3 is longer than the time length of the input data #a2 by the time extension width T1. That is, if the time width of input data #a1 is T, then the time width of input data #ai is "T+(i-1)T1". Input data #a1 to #an are data of a time interval of each time width "T+(i-1)T1" starting from the extraction reference time t1. Teacher data #a1 to #an are thermal displacement data at the respective terminal times of input data #a1 to #an. As shown in FIG. 6, the data set generation unit 22 generates a plurality of sets of data sets #a1 to #an from one extraction reference time t1. Through the above processing, the dataset generation unit 22 generates datasets such that the time lengths of the extracted time sections of the plurality of datasets #a1 to #an generated from one extraction reference time t1 are different. be able to. The data set generation unit 22 performs the above processing for each of the plurality of extraction reference times included in the learning data. Note that, as in data set #an, the end time may exceed t2, which is the next extraction reference time after extraction reference time t1.
 図7は、データセットの生成方法の第2の例の説明図である。図7を用いて、データセット生成部22が学習用データからデータセットを生成する方法の第2の例について説明する。図7は、抽出基準時刻t2がデータ抽出の終端基準時刻である場合に、学習用データから抽出されたデータセット#b1~#bnを示している。入力データ#b1~#bnは、抽出基準時刻t2を終端時刻とした温度データおよび機械状態データである。i番目の入力データを入力データ#biとすると、入力データ#biの時間区間は、入力データ#bi-1の時間区間の始端から予め定められた時間延長幅T1だけ時間的に後方に延長されている。第1の例と同様に、入力データ#biの時間幅は、入力データ#b1の時間幅をTとした場合、「T+(i-1)T1」となる。入力データ#b1~#bnは、抽出基準時刻t2を終端とするそれぞれの時間幅「T+(i-1)T1」の時間区間のデータとなる。教師データ#b1~#bnは、入力データ#b1~#bnのそれぞれの終端時刻における熱変位データである。データセット生成部22は、図7に示すように、1つの抽出基準時刻t2から複数組のデータセット#b1~#bnを生成する。以上の処理により、データセット生成部22は、1つの抽出基準時刻t2から生成される複数のデータセット#b1~#bnのそれぞれの抽出した時間区間の時間長が異なるようにデータセットを生成することができる。データセット生成部22は、上記の処理を、学習データに含まれる複数の抽出基準時刻のそれぞれについて行う。なお、データセット#bnのように、初期時刻は、抽出基準時刻t2の前の抽出基準時刻であるt1よりも過去の時刻まで遡ってもよい。 FIG. 7 is an explanatory diagram of a second example of the data set generation method. A second example of how the dataset generation unit 22 generates a dataset from learning data will be described using FIG. 7. FIG. 7 shows data sets #b1 to #bn extracted from the learning data when the extraction reference time t2 is the end reference time of data extraction. Input data #b1 to #bn are temperature data and machine state data whose termination time is the extraction reference time t2. When the i-th input data is input data #bi, the time interval of input data #bi is temporally extended backward by a predetermined time extension width T1 from the start of the time interval of input data #bi-1. ing. As in the first example, the time width of input data #bi is "T+(i-1)T1", where T is the time width of input data #b1. The input data #b1 to #bn are data of a time interval of each time width "T+(i-1)T1" ending at the extraction reference time t2. Teacher data #b1 to #bn are thermal displacement data at the respective terminal times of input data #b1 to #bn. As shown in FIG. 7, the data set generation unit 22 generates a plurality of data sets #b1 to #bn from one extraction reference time t2. Through the above processing, the dataset generation unit 22 generates datasets such that the time lengths of the extracted time sections of the plurality of datasets #b1 to #bn generated from one extraction reference time t2 are different. be able to. The data set generation unit 22 performs the above processing for each of the plurality of extraction reference times included in the learning data. Note that, as in data set #bn, the initial time may go back to a time past t1, which is the extraction reference time before the extraction reference time t2.
 図8は、データセットの生成方法の第3の例の説明図である。第3の例において、データセット生成部22は、全てのデータセットに含まれるデータの集合が取得データの全体を均一に含むようにデータセットを生成する。具体的には、データセット生成部22は、抽出基準時刻t1から、抽出基準時刻t1の次の抽出基準時刻t2までの間をn個で等間隔に分割することでデータセットを生成する。nは自然数である。図8は、抽出基準時刻t1がデータ抽出の初期基準時刻である場合に、終端の抽出基準時刻t2との間の学習用データから抽出されたデータセット#c1~#cnを示している。入力データ#c1は、抽出基準時刻t1を初期時刻とし、時刻t1+(t2-t1)/nを終端時刻とする温度データおよび機械状態データである。また、入力データ#c2は、時刻t1+(t2-t1)/nを初期時刻とし、時刻t1+2×(t2-t1)/nを終端時刻とする温度データおよび機械状態データである。入力データ#ciは、初期時刻を時刻t1+(i-1)×(t2-t1)/nとし、終端時刻を時刻t1+i×(t2-t1)/nとする温度データおよび機械状態データである。教師データ#c1~#cnは、入力データ#c1~#cnのそれぞれの終端時刻における熱変位データである。以上の処理によりデータセット生成部22は、抽出基準時刻t1から時刻t2の間が重複なく均一に入力データに含まれるようにデータセットを生成することができる。データセット生成部22は、上記の処理を学習データに含まれる複数の抽出基準時刻のそれぞれに対して実行する。なお、第3の例では、抽出基準時刻t1からt2の間で生成されるデータセット#c1~#cnについては、抽出した時間区間の時間長は均一となる。しかしながら、図4に示したように、隣り合う抽出基準時刻間の時間長は均一ではなく、データセット生成部22がデータセットを生成するときに抽出する時間区間の時間長は、隣り合う2つの抽出基準時刻の間の時間長に依存して定まる。このため、全ての抽出基準時刻のそれぞれに対して上記の処理を行うことで、全体としては、抽出した時間区間の時間長が異なる複数のデータセットが生成されることになる。 FIG. 8 is an explanatory diagram of a third example of the data set generation method. In the third example, the dataset generation unit 22 generates datasets such that the data sets included in all datasets uniformly include the entire acquired data. Specifically, the data set generation unit 22 generates a data set by dividing the period from extraction reference time t1 to extraction reference time t2 next to extraction reference time t1 into n pieces at equal intervals. n is a natural number. FIG. 8 shows data sets #c1 to #cn extracted from learning data between the final extraction reference time t2 and the extraction reference time t1, which is the initial reference time for data extraction. Input data #c1 is temperature data and machine state data whose initial time is extraction reference time t1 and whose terminal time is time t1+(t2-t1)/n. Further, input data #c2 is temperature data and machine state data whose initial time is time t1+(t2-t1)/n and whose terminal time is time t1+2×(t2-t1)/n. Input data #ci is temperature data and machine state data whose initial time is time t1+(i-1)×(t2-t1)/n and whose terminal time is time t1+i×(t2-t1)/n. Teacher data #c1 to #cn are thermal displacement data at the respective terminal times of input data #c1 to #cn. Through the above processing, the data set generation unit 22 can generate a data set such that the period from the extraction reference time t1 to the time t2 is uniformly included in the input data without overlap. The data set generation unit 22 executes the above process for each of the plurality of extraction reference times included in the learning data. Note that in the third example, the time lengths of the extracted time sections are uniform for the data sets #c1 to #cn generated between the extraction reference times t1 and t2. However, as shown in FIG. 4, the time length between adjacent extraction reference times is not uniform, and the time length of the time interval extracted when the data set generation unit 22 generates a data set is different from the time length between two adjacent extraction reference times. It is determined depending on the length of time between the extraction reference times. Therefore, by performing the above processing for each of all extraction reference times, a plurality of data sets with different time lengths of extracted time sections are generated as a whole.
 上記のデータセットの生成方法の第1の例~第3の例では、教師データ#a1~#an,#b1~#bn,#c1~#cnは、入力データ#a1~#an,#b1~#bn,#c1~#cnの終端時刻に対応する1時刻の熱変位データであることとしたが、教師データの時間長は1時刻に限定されず、時系列データであってもよい。例えば、教師データ#a1~#an,#b1~#bn,#c1~#cnは、入力データ#a1~#an,#b1~#bn,#c1~#cnと同じ時間長を有する時系列データであってもよい。 In the first to third examples of the above data set generation method, the teacher data #a1 to #an, #b1 to #bn, #c1 to #cn are the input data #a1 to #an, #b1 ~#bn, #c1~#cn The thermal displacement data is for one time corresponding to the terminal time, but the time length of the teacher data is not limited to one time, and may be time series data. For example, the teacher data #a1 to #an, #b1 to #bn, #c1 to #cn are time series having the same time length as the input data #a1 to #an, #b1 to #bn, #c1 to #cn. It may be data.
 なお、上記のデータセットの生成方法の第1の例では、入力データ#a1に相当する時間区間#a1は入力データ#a1から入力データ#anまでn回選択されて入力データとして採用されている。これに対して、延長区間#a2が入力データとして採用された回数は(n-1)回となり、延長区間#anが入力データとして採用された回数は1回のみとなる。同様に、第2の例では、入力データ#b1に相当する時間区間#b1は入力データ#b1から入力データ#bnまでn回選択されて入力データとして採用されている。これに対して、延長区間#b2が入力データとして採用された回数は(n-1)回となり、延長区間#bnが入力データとして採用された回数は1回のみとなる。すなわち、ひとつの抽出基準時刻を時間的な基準として生成した複数の入力データには、抽出回数が多い区間と少ない区間が存在する。データセット生成部22は、各抽出基準時刻からデータセットを生成する際に、学習用データの全体に渡って各時間区間および延長区間の抽出回数を均一化する。具体的には、各抽出基準時刻を基準として生成したすべてのデータセットの組を組み合わせたときに、時間区間の抽出回数のばらつきが許容値以上の場合に、データセット生成部22はヒストグラム均等化処理を実行する。ここで、ヒストグラム均等化処理は公知のアルゴリズムを採用することができる。このような処理により、データセット生成部22は、データ抽出回数の偏りを学習用データ全体に渡って均一化することができる。これにより、データセット生成部22が生成するデータセットの組全体は、学習用データのうち特定の区間だけ抽出されることはなく、学習用データに含まれる運転状態を均一に反映した複数のデータセットを生成できる。なお、ここでは入力データに着目した抽出回数の均一化について説明したが、教師データに着目して抽出回数を均一化してもよい。 Note that in the first example of the above data set generation method, time interval #a1 corresponding to input data #a1 is selected n times from input data #a1 to input data #an and is adopted as input data. . On the other hand, the number of times the extended section #a2 is used as input data is (n-1) times, and the number of times that the extended section #an is used as input data is only one time. Similarly, in the second example, time interval #b1 corresponding to input data #b1 is selected n times from input data #b1 to input data #bn and adopted as input data. On the other hand, the number of times the extended section #b2 is used as input data is (n-1) times, and the number of times that the extended section #bn is used as input data is only one time. That is, in a plurality of input data generated using one extraction reference time as a temporal reference, there are sections where the number of extractions is large and sections where the number of extractions is small. When generating a dataset from each extraction reference time, the dataset generation unit 22 equalizes the number of times each time interval and extended interval are extracted over the entire learning data. Specifically, when all datasets generated using each extraction reference time are combined and the variation in the number of extractions in a time interval is greater than or equal to a tolerance value, the dataset generation unit 22 performs histogram equalization. Execute processing. Here, a known algorithm can be employed for the histogram equalization process. Through such processing, the dataset generation unit 22 can equalize the bias in the number of data extractions over the entire learning data. As a result, the entire set of data sets generated by the data set generation unit 22 does not extract only a specific section from the learning data, but instead consists of multiple data that uniformly reflect the driving conditions included in the learning data. Can generate sets. Note that although the explanation has been given here regarding equalizing the number of extractions by focusing on input data, it is also possible to equalize the number of extractions by focusing on teacher data.
 以上説明したように、上記のデータセットの生成方法の第1の例~第3の例では、工作機械1の運転状態が変化した抽出基準時刻に基づいて、抽出した時間区間の時間長が異なる複数のデータセットを生成することができる。また、第3の例では、全てのデータセットに含まれるデータの集合が取得データの全体を均一に含むようにデータセットを生成する。これにより、以下で説明する学習部23が熱変位モデルの学習を行う際に、学習用データの全体を均一に学習の対象とすることができ、一部のデータにのみモデルが一致する過学習を抑制し、熱変位モデルの汎化性能を向上させるという効果をさらに奏する。 As explained above, in the first to third examples of the above data set generation method, the time length of the extracted time interval differs based on the extraction reference time when the operating state of the machine tool 1 changed. Multiple datasets can be generated. Furthermore, in the third example, data sets are generated such that the data sets included in all data sets uniformly include the entire acquired data. As a result, when the learning unit 23, which will be described below, learns the thermal displacement model, it can uniformly target the entire learning data, and over-fitting where the model matches only some data. This further has the effect of suppressing the thermal displacement model and improving the generalization performance of the thermal displacement model.
 また、上記のデータセットの生成方法の第3の例では、隣り合う2つの抽出基準時刻の間をn個で等間隔に分割する例を挙げたが、隣り合う2つの抽出基準時刻の間を一定ではない時間長で入力データの重複がないように分割しても、第3の例と同様の効果がある。 In addition, in the third example of the above data set generation method, an example was given in which the space between two adjacent extraction reference times is divided into n pieces at equal intervals. Even if the input data is divided by non-constant time lengths so that there is no duplication, the same effect as in the third example can be obtained.
 続いて学習部23について説明する。図9は、熱変位モデルの学習方法の説明図である。学習部23は、データセット生成部22が生成したデータセットに含まれる入力データおよび教師データを用いて、入力データから熱変位量を推定するための熱変位モデルを学習する機能を有する。学習部23は、データセットに含まれる入力データを時系列に入力すると、熱変位量を時系列に出力する熱変位モデルを内部に有する。学習部23は、熱変位モデルの出力である熱変位量の推定値と、データセットに含まれる教師データとの差が最小化するように、熱変位モデルの内部パラメータを最適化する。これにより、学習部23は入力データから熱変位量を推定可能な熱変位モデルの同定を行い、学習済の熱変位モデルとして出力する。 Next, the learning section 23 will be explained. FIG. 9 is an explanatory diagram of a learning method for a thermal displacement model. The learning unit 23 has a function of learning a thermal displacement model for estimating the amount of thermal displacement from the input data using the input data and teacher data included in the dataset generated by the dataset generating unit 22. The learning unit 23 has a thermal displacement model therein that outputs the amount of thermal displacement in time series when the input data included in the data set is inputted in time series. The learning unit 23 optimizes the internal parameters of the thermal displacement model so that the difference between the estimated value of the amount of thermal displacement, which is the output of the thermal displacement model, and the teacher data included in the data set is minimized. Thereby, the learning unit 23 identifies a thermal displacement model that can estimate the amount of thermal displacement from the input data, and outputs it as a learned thermal displacement model.
 熱変位モデル学習装置2において、データセット生成部22が出力するデータセットは可変長であるという特徴がある。つまり、データセット生成部22が出力する複数のデータセットの中の少なくとも2つのデータセットにおいて、互いに抽出した時間区間の時間長は異なる。したがって、学習部23は、可変長の入力データに対応する熱変位モデルを使用する。学習部23は、例えば、ニューラルネットワークに従って、いわゆる教師あり学習により、熱変位量を学習する。ここで、教師あり学習とは、入力と結果とのデータの組である学習用データを学習装置に与えることで、学習用データにある特徴を学習し、入力から結果を推論する手法をいう。ここでは、学習部23は、RNN(Recurrent Neural Network:リカレントニューラルネットワーク)を用いて熱変位モデルを学習する例について説明する。 The thermal displacement model learning device 2 is characterized in that the data set output by the data set generation unit 22 has a variable length. That is, in at least two of the plurality of data sets output by the data set generation unit 22, the time lengths of the extracted time intervals are different from each other. Therefore, the learning unit 23 uses a thermal displacement model corresponding to variable length input data. The learning unit 23 learns the amount of thermal displacement by, for example, so-called supervised learning according to a neural network. Here, supervised learning refers to a method in which learning data, which is a data set of input and result, is given to a learning device to learn features in the learning data and infer results from the input. Here, an example will be described in which the learning unit 23 learns a thermal displacement model using an RNN (Recurrent Neural Network).
 RNNは、中間層の出力が再帰的にその結果を出力した層に入力される構造を持つニューラルネットワークである。学習部23は、例えば、図10に示す構造のニューラルネットワークを用いることができる。図10は、ニューラルネットワークの説明図である。図10に示すニューラルネットワークは、入力層がx1からxnまでのn個の入力から成り、中間層がh1からhmまでのm個のノードから成り、出力層がy1の1出力から成るRNNである。ここで、図10の上部の図は時刻t-1のニューラルネットワークの状態を示しており、図10の下部の図は時刻tのニューラルネットワークの状態を示している。時刻tの中間層は、時刻tの入力層の入力から算出した値に、さらに、時刻t-1の中間層から入力された値から算出した項との重み付け和を出力層へ出力する。ここで、時刻tにおける入力層x1からxnまでを束ねたベクトルをxt、時刻tにおける中間層h1からhmを束ねたベクトルをhtとすると、htは、以下の数式(1)で表すことができる。なお、数式(1)において、ベクトルxtの次元をn、ベクトルhtの次元をmとすると、Wは、n×m次元の線形変換行列となる。また、Rは、M×M次元の線形変換行列を示し、bはバイアスベクトルを示し、gは活性化関数を示す。 RNN is a neural network having a structure in which the output of an intermediate layer is recursively input to the layer that outputs the result. The learning unit 23 can use, for example, a neural network having the structure shown in FIG. FIG. 10 is an explanatory diagram of a neural network. The neural network shown in Figure 10 is an RNN in which the input layer consists of n inputs from x1 to xn, the middle layer consists of m nodes from h1 to hm, and the output layer consists of one output of y1. . Here, the upper diagram in FIG. 10 shows the state of the neural network at time t−1, and the lower diagram in FIG. 10 shows the state of the neural network at time t. The intermediate layer at time t outputs a weighted sum of the value calculated from the input to the input layer at time t and the term calculated from the value input from the intermediate layer at time t-1 to the output layer. Here, if x t is the vector that bundles the input layers x1 to xn at time t, and h t is the vector that bundles the middle layers h1 to hm at time t, then h t is expressed by the following formula (1). be able to. Note that in Equation (1), when the dimension of the vector x t is n and the dimension of the vector h t is m, W becomes an n×m-dimensional linear transformation matrix. Further, R represents an M×M-dimensional linear transformation matrix, b represents a bias vector, and g represents an activation function.
 ht=g(Wxt+Rht-1+b) ・・・(1) h t =g(Wx t +Rh t-1 +b)...(1)
 学習部23は、通時的誤差逆伝搬法を用いて、出力である熱変位量が熱変位データと一致するようにニューラルネットワークの重み付けを調整する。 The learning unit 23 uses the diachronic error backpropagation method to adjust the weighting of the neural network so that the output thermal displacement amount matches the thermal displacement data.
 なお、図10では入力層がn次元、中間層がm次元、出力層が1次元で構成されるニューラルネットワークの例を示したが、各層の次元はこの例に限らず任意の次元をとることができる。また、図10では中間層が1層であるニューラルネットワークの例を示したが、中間層の数は複数であってもよい。 Note that although Fig. 10 shows an example of a neural network in which the input layer is n-dimensional, the intermediate layer is m-dimensional, and the output layer is one-dimensional, the dimensions of each layer are not limited to this example and can be any dimension. I can do it. Further, although FIG. 10 shows an example of a neural network having one intermediate layer, the number of intermediate layers may be plural.
 なお、学習部23は、熱変位モデルの汎化性能を向上させるために、学習の際にニューロンをランダムに除外する「dropout」、誤差を監視して学習を早く打ち切る「early stopping」といった手法を用いてもよい。 In order to improve the generalization performance of the thermal displacement model, the learning unit 23 uses methods such as "dropout" to randomly remove neurons during learning, and "early stopping" to monitor errors and stop learning early. May be used.
 なお、上記ではRNNの中でもelman netを用いた例を説明したが、他の公知のRNNであるLSTM(Long Short Term Memory)またはGRU(Gated Recurrent Unit)を用いて熱変位モデルを構築して学習を行ってもよい。さらに別の方法として、学習部23は、自己回帰モデルを用いた回帰分析によって、学習を行ってもよい。 In addition, although an example using Elman net among RNNs was explained above, a thermal displacement model can be constructed and learned using other known RNNs such as LSTM (Long Short Term Memory) or GRU (Gated Recurrent Unit). You may do so. As yet another method, the learning unit 23 may perform learning by regression analysis using an autoregressive model.
 図11は、図5に示す熱変位モデル学習装置2の動作を説明するためのフローチャートである。熱変位モデル学習装置2は、図11に示す処理を実行することで、学習済の熱変位モデルを生成することができる。 FIG. 11 is a flowchart for explaining the operation of the thermal displacement model learning device 2 shown in FIG. 5. The thermal displacement model learning device 2 can generate a learned thermal displacement model by executing the process shown in FIG.
 熱変位モデル学習装置2の学習用データ取得部21は、工作機械1から熱変位データ、温度データ、および機械状態データを取得する(ステップS101)。学習用データ取得部21は、取得した熱変位データ、温度データ、および機械状態データを時間で対応させて学習用データを生成する(ステップS102)。 The learning data acquisition unit 21 of the thermal displacement model learning device 2 acquires thermal displacement data, temperature data, and machine state data from the machine tool 1 (step S101). The learning data acquisition unit 21 generates learning data by associating the acquired thermal displacement data, temperature data, and machine state data with respect to time (step S102).
 データセット生成部22は、学習用データからデータセットを複数組生成する(ステップS103)。学習部23は、データセットを用いて、データセットに含まれる入力データを入力すると出力される熱変位量がデータセットに含まれる教師データと一致するように熱変位モデルの内部パラメータの最適化を行うことによって熱変位モデルの学習を行う(ステップS104)。 The dataset generation unit 22 generates a plurality of datasets from the learning data (step S103). The learning unit 23 uses the dataset to optimize internal parameters of the thermal displacement model so that when input data included in the dataset is input, the amount of thermal displacement outputted matches the teacher data included in the dataset. By doing this, the thermal displacement model is learned (step S104).
 以上説明したように、実施の形態1によれば、データセット生成部22は、複数種類の可変長のデータセットを生成し、複数のデータセットの中の少なくとも2つのデータセットにおいて、互いに抽出した時間区間の時間長が異なるデータセットを用いて、熱変位モデルの学習が行われる。これにより、熱変位モデル学習装置2は、工作機械1で発生する熱変位に対して適切な時間長の時間区間を用いて生成されたデータセットを用いて熱変位モデルの学習を行うことができ、熱変位量の推定精度を向上させることが可能になる。ここで、熱変位モデル学習装置2は、工作機械1の運転継続時間に依存せず、熱変位量の推定精度を向上させることが可能になる。 As described above, according to the first embodiment, the dataset generation unit 22 generates multiple types of variable length datasets, and extracts mutually from at least two datasets among the multiple datasets. A thermal displacement model is trained using data sets with different time lengths. As a result, the thermal displacement model learning device 2 can perform thermal displacement model learning using a data set generated using a time interval with an appropriate time length for the thermal displacement occurring in the machine tool 1. , it becomes possible to improve the estimation accuracy of the amount of thermal displacement. Here, the thermal displacement model learning device 2 can improve the accuracy of estimating the amount of thermal displacement without depending on the operation duration of the machine tool 1.
 工作機械1は様々なワークWの仕上がり形状に応じて、加工プログラムの時間長が可変長であるうえ、運転パターンが異なる加工プログラムに従い動作する。熱変位量を精度よく推定できる熱変位モデルを生成するためには、学習に用いるデータセットが加工プログラムから得られており、時間長が可変長である必要がある。 The machine tool 1 operates according to machining programs whose time lengths are variable depending on the finished shapes of various workpieces W, and whose operation patterns are different. In order to generate a thermal displacement model that can accurately estimate the amount of thermal displacement, the data set used for learning must be obtained from a machining program and the time length must be variable.
 実施の形態1において、学習部23が熱変位モデルの学習に用いるデータセットは、加工プログラムに基づいて運転する工作機械1の運転状態が変化する時刻をもとに生成される。よって実施の形態1における熱変位モデル学習装置2は、実加工における工作機械1の運転状態の変化を時間的な基準としたデータセットを用いて熱変位モデルの学習を実行することができる。したがって、熱変位モデルは工作機械の運転状態を反映した入出力関係を学習することができる。 In the first embodiment, the data set used by the learning unit 23 to learn the thermal displacement model is generated based on the time when the operating state of the machine tool 1 that is operated based on the machining program changes. Therefore, the thermal displacement model learning device 2 in the first embodiment can perform learning of a thermal displacement model using a data set whose temporal reference is a change in the operating state of the machine tool 1 during actual machining. Therefore, the thermal displacement model can learn input-output relationships that reflect the operating conditions of the machine tool.
 また、上記のデータセットの生成方法の第1の例および第2の例を用いる場合、データセット生成部22は、抽出基準時刻と定義した時刻から予め定められた時間延長幅T1の倍数の時間幅を持つデータを学習用データから抽出することで、データセットを生成することができる。 Furthermore, when using the first example and second example of the data set generation method described above, the data set generation unit 22 generates a data set for a time that is a multiple of the predetermined time extension width T1 from the time defined as the extraction reference time. A dataset can be generated by extracting data with a wide range from the training data.
 さらに、熱変位モデルは、時間的に再帰的なモデルであるため、熱変位量の推定値を算出した時刻に入力された入力データに加えて、その時刻よりも過去の入力データに含まれる情報の影響も受けた熱変位量を算出するように学習を行うことができる。したがって熱変位モデル学習装置2は、熱変位を算出する瞬間の温度データおよび機械状態データだけでなく、それらのデータの経時的な変化の影響も含んで学習を行うことができる。 Furthermore, since the thermal displacement model is a temporally recursive model, in addition to the input data input at the time when the estimated value of the thermal displacement amount was calculated, information contained in the input data past that time It is possible to perform learning to calculate the amount of thermal displacement that is also affected by . Therefore, the thermal displacement model learning device 2 can perform learning using not only the temperature data and machine state data at the moment when thermal displacement is calculated, but also the influence of changes in these data over time.
実施の形態2.
 図12は、実施の形態2にかかる加工システム100-2の構成を示す図である。実施の形態2にかかる加工システム100-2は、工作機械1Aと、熱変位モデル学習装置2と、熱変位推定装置3とを有する。加工システム100-2は、実施の形態1にかかる加工システム100-1の構成に加えて、熱変位推定装置3を有し、加工システム100-1の工作機械1の代わりに工作機械1Aを有する。
Embodiment 2.
FIG. 12 is a diagram showing the configuration of a processing system 100-2 according to the second embodiment. A machining system 100-2 according to the second embodiment includes a machine tool 1A, a thermal displacement model learning device 2, and a thermal displacement estimation device 3. Machining system 100-2 has a thermal displacement estimation device 3 in addition to the configuration of machining system 100-1 according to Embodiment 1, and has machine tool 1A instead of machine tool 1 of machining system 100-1. .
 熱変位モデル学習装置2が行う処理は、熱変位推定装置3に学習済の熱変位モデルを出力する以外は実施の形態1と同様であるため、ここでは説明を省略する。熱変位推定装置3は、熱変位モデル学習装置2が生成する学習済の熱変位モデルと、推論対象の工作機械1Aの時系列の温度を表す温度データを少なくとも含む推論用の入力データとを取得する。熱変位推定装置3は、熱変位モデルを用いて、入力データから推論対象の工作機械1Aの熱変位量の推定値を生成する。熱変位推定装置3は、熱変位量の推定値を、工作機械1Aに出力する。 The processing performed by the thermal displacement model learning device 2 is the same as in Embodiment 1 except for outputting the learned thermal displacement model to the thermal displacement estimating device 3, so a description thereof will be omitted here. The thermal displacement estimating device 3 acquires the trained thermal displacement model generated by the thermal displacement model learning device 2 and input data for inference including at least temperature data representing the time series temperature of the machine tool 1A to be inferred. do. The thermal displacement estimating device 3 uses a thermal displacement model to generate an estimated value of the amount of thermal displacement of the machine tool 1A to be inferred from the input data. The thermal displacement estimating device 3 outputs the estimated value of the amount of thermal displacement to the machine tool 1A.
 工作機械1Aは、工作機械1の機能に加えて、熱変位推定装置3に温度データおよび機械状態データを出力する機能と、熱変位推定装置3が出力する熱変位量の推定値に基づいて、熱変位の補正を行う機能とを有する。 In addition to the functions of the machine tool 1, the machine tool 1A has a function of outputting temperature data and machine state data to the thermal displacement estimating device 3, and based on the estimated value of the amount of thermal displacement output by the thermal displacement estimating device 3, It also has a function to correct thermal displacement.
 図13は、実施の形態2にかかる工作機械1Aの機能構成を示す図である。工作機械1Aの構成は、工作機械1の制御装置15の代わりに制御装置15Aを有する以外は、工作機械1と同様である。制御装置15Aは、熱変位推定装置3が出力する熱変位量の推定値に基づいて、主軸13を駆動する主軸モータ14および送り軸11を駆動する送り軸モータ12の少なくとも一方の操作量を補正することによって、熱変位を補正する。工作機械1Aは、補正後の操作量を用いて、除去加工を行う。 FIG. 13 is a diagram showing the functional configuration of the machine tool 1A according to the second embodiment. The configuration of the machine tool 1A is the same as that of the machine tool 1 except that it includes a control device 15A instead of the control device 15 of the machine tool 1. The control device 15A corrects the operation amount of at least one of the main shaft motor 14 that drives the main shaft 13 and the feed shaft motor 12 that drives the feed shaft 11 based on the estimated value of the amount of thermal displacement output by the thermal displacement estimation device 3. By doing so, the thermal displacement is corrected. The machine tool 1A performs removal machining using the corrected operation amount.
 図14は、実施の形態2にかかる熱変位推定装置3の機能構成を示す図である。熱変位推定装置3は、推論用データ取得部31と、熱変位モデル取得部32と、推論部33とを有する。 FIG. 14 is a diagram showing the functional configuration of the thermal displacement estimation device 3 according to the second embodiment. The thermal displacement estimating device 3 includes an inference data acquisition section 31 , a thermal displacement model acquisition section 32 , and an inference section 33 .
 推論用データ取得部31は、推論対象の工作機械1Aから温度データおよび機械状態データを取得し、取得した温度データと機械状態データとを時間で同期させたものを推論用データとして推論部33に出力する。推論用データは、少なくとも温度データを含み、学習済の熱変位モデルが学習時に用いた入力データと同様のデータの組み合わせとなるように生成される。また、推論用データは、熱変位モデル学習装置2で生成した学習用データと同一の時間周期で逐次出力される。 The inference data acquisition unit 31 acquires temperature data and machine state data from the machine tool 1A to be inferred, and synchronizes the obtained temperature data and machine state data in time to the inference unit 33 as inference data. Output. The inference data includes at least temperature data, and is generated so that the learned thermal displacement model has the same combination of data as the input data used during learning. Furthermore, the inference data is sequentially output at the same time period as the learning data generated by the thermal displacement model learning device 2.
 熱変位モデル取得部32は、推論に用いる学習済の熱変位モデルを熱変位モデル学習装置2のモデル記憶部24から取得する。熱変位モデル取得部32は、取得した熱変位モデルを推論部33に出力する。 The thermal displacement model acquisition unit 32 acquires a learned thermal displacement model used for inference from the model storage unit 24 of the thermal displacement model learning device 2. The thermal displacement model acquisition section 32 outputs the acquired thermal displacement model to the inference section 33.
 推論部33は、学習済の熱変位モデルを用いて、推論用データに含まれる入力データから熱変位量の推定値を出力する。推論部33は、熱変位量の推定値を工作機械1Aに出力する。推論部33は、推論用データに含まれる機械状態データを学習時と同様のデータ構造、及び時間周期で学習済の熱変位モデルに入力することで、入力と同様の時間周期で熱変位量の推定値を算出することができる。推論部33は、算出した熱変位量の推定値を、推論用データの入力間隔と同じ周期で工作機械1Aの制御装置15Aへと出力する。 The inference unit 33 uses the learned thermal displacement model to output an estimated value of the amount of thermal displacement from the input data included in the inference data. The inference unit 33 outputs the estimated value of the amount of thermal displacement to the machine tool 1A. The inference unit 33 inputs the machine state data included in the inference data into the learned thermal displacement model in the same data structure and time period as during learning, thereby calculating the amount of thermal displacement in the same time period as the input. An estimated value can be calculated. The inference unit 33 outputs the calculated estimated value of the amount of thermal displacement to the control device 15A of the machine tool 1A at the same cycle as the input interval of the inference data.
 工作機械1Aの制御装置15Aは、推論部33が出力した熱変位量の推定値を受け取り、熱変位量の推定値が示す熱変位を相殺するように、例えば、送り軸11の位置指令を補正する。そして補正した位置指令を用いて送り軸11のアクチュエータである送り軸モータ12を動作させる。位置指令の補正は、推論用データの入力間隔ごとに更新される。 The control device 15A of the machine tool 1A receives the estimated value of the amount of thermal displacement outputted by the inference unit 33, and corrects, for example, the position command of the feed shaft 11 so as to offset the thermal displacement indicated by the estimated value of the amount of thermal displacement. do. Then, the feed shaft motor 12, which is the actuator of the feed shaft 11, is operated using the corrected position command. Correction of the position command is updated at every input interval of inference data.
 図15は、図12に示す加工システム100-2の動作を説明するためのフローチャートである。加工システム100-2の熱変位モデル学習装置2は、熱変位モデル生成処理を行う(ステップS121)。なお、ステップS121の処理は、図11に示すステップS101~S104の処理に相当する。これらの処理は、熱変位を補正する加工を実施するよりも前に実施される。 FIG. 15 is a flowchart for explaining the operation of the processing system 100-2 shown in FIG. 12. The thermal displacement model learning device 2 of the processing system 100-2 performs thermal displacement model generation processing (step S121). Note that the process in step S121 corresponds to the process in steps S101 to S104 shown in FIG. These processes are performed before processing for correcting thermal displacement is performed.
 工作機械1Aは、熱変位を補正する対象の加工のプログラム運転を開始する(ステップS122)。ステップS123以降の処理は、熱変位を補正する対象の加工を実施中に行われる。 The machine tool 1A starts a programmed operation for machining for which thermal displacement is to be corrected (step S122). The processing from step S123 onwards is performed while the processing for which the thermal displacement is to be corrected is being performed.
 推論用データ取得部31は、工作機械1Aの加工中に逐次出力される温度データおよび機械状態データを受け取り、受け取ったデータから推論用データを生成する(ステップS123)。推論用データはステップS121で生成された熱変位モデルの入力データと同様のデータ構造を持つ。生成された推論用データは、熱変位モデル学習装置2で生成された学習用データと同一の時間周期で推論部33へ逐次出力される。 The inference data acquisition unit 31 receives temperature data and machine state data that are sequentially output during machining of the machine tool 1A, and generates inference data from the received data (step S123). The inference data has a data structure similar to the input data of the thermal displacement model generated in step S121. The generated inference data is sequentially output to the inference unit 33 at the same time period as the learning data generated by the thermal displacement model learning device 2.
 推論部33は、熱変位モデルを用いて、推論用データから熱変位量を推定する(ステップS124)。熱変位量の推定値は、ステップS123で生成された推論用データと同様の時間周期で算出され、工作機械1Aの制御装置15Aへ出力される。 The inference unit 33 estimates the amount of thermal displacement from the inference data using the thermal displacement model (step S124). The estimated value of the amount of thermal displacement is calculated at the same time period as the inference data generated in step S123, and is output to the control device 15A of the machine tool 1A.
 工作機械1Aの制御装置15Aは、熱変位量の推定値を用いて、アクチュエータへの操作量を補正することによって、位置指令を補正して加工を行う(ステップS125)。工作機械1Aは、熱変位を補正する対象となる加工のプログラム運転が終了したか否かを判断する(ステップS126)。プログラム運転が終了していない場合(ステップS126:No)、ステップS123に戻り、加工システム100-2は、ステップS123からステップS126の処理を繰り返す。プログラム運転が終了した場合(ステップS126:Yes)、加工システム100-2は、処理を終了する。 The control device 15A of the machine tool 1A corrects the position command and performs machining by correcting the operation amount to the actuator using the estimated value of the amount of thermal displacement (step S125). The machine tool 1A determines whether the program operation of the machining for which thermal displacement is to be corrected has ended (step S126). If the program operation has not ended (step S126: No), the process returns to step S123, and the machining system 100-2 repeats the processes from step S123 to step S126. If the programmed operation has ended (step S126: Yes), the machining system 100-2 ends the process.
 以上説明したように、実施の形態2にかかる加工システム100-2は、学習済の熱変位モデルを用いて熱変位量を推定する熱変位推定装置3を有する。また、工作機械1Aは、熱変位量の推定値に基づいて、推定値が示す熱変位を相殺するように、工作機械1Aのアクチュエータの操作量を補正する。 As described above, the processing system 100-2 according to the second embodiment includes the thermal displacement estimating device 3 that estimates the amount of thermal displacement using a learned thermal displacement model. Furthermore, the machine tool 1A corrects the operation amount of the actuator of the machine tool 1A based on the estimated value of the amount of thermal displacement so as to offset the thermal displacement indicated by the estimated value.
 また、推論部33は、逐次入力される推論用データに対して、熱変位量の推定値を逐次算出して工作機械1Aに出力することができる。このため、工作機械1Aが実行する加工プログラムが要する時間がどれだけ長時間であったとしても、熱変位量を推定することが可能である。さらに、熱変位量の推定値は、時間的に再帰的なモデルである熱変位モデルから算出されるため、熱変位量の推定値を算出する瞬間の温度データおよび機械状態データだけでなく、これらのデータの経時的な変化の影響も含んで熱変位量を推定することができる。このため、工作機械1Aは、運転開始からの経過時間に依存せず熱変位を精度よく補正することが可能になる。 Furthermore, the inference unit 33 can sequentially calculate the estimated value of the amount of thermal displacement for the sequentially input inference data and output the estimated value to the machine tool 1A. Therefore, no matter how long the machining program executed by the machine tool 1A takes, it is possible to estimate the amount of thermal displacement. Furthermore, since the estimated value of the amount of thermal displacement is calculated from a thermal displacement model that is a temporally recursive model, not only the temperature data and mechanical state data at the moment when the estimated value of the amount of thermal displacement is calculated, but also these data are used. It is possible to estimate the amount of thermal displacement, including the influence of changes in the data over time. Therefore, the machine tool 1A can accurately correct thermal displacement without depending on the elapsed time from the start of operation.
 なお、別の方法として、図15に示すステップS126では、工作機械1Aの電源が遮断されたか否かを判断し、加工システム100-2は、工作機械1Aの電源が遮断されるまで、ステップS123に戻り処理を継続してもよい。この場合、連続して複数回プログラム運転を実施する場合であっても、熱変位の補正を継続することができる。 Alternatively, in step S126 shown in FIG. 15, it is determined whether or not the power to the machine tool 1A is cut off, and the processing system 100-2 performs step S123 until the power to the machine tool 1A is cut off. You may return to continue processing. In this case, it is possible to continue correcting thermal displacement even when the program operation is performed multiple times in succession.
 ここで、熱変位モデル学習装置2のハードウェア構成について説明する。実施の形態1および実施の形態2の熱変位モデル学習装置2は、例えば、コンピュータシステムにより実現される。熱変位モデル学習装置2は、1つのコンピュータシステムにより実現されてもよいし、複数のコンピュータシステムにより実現されてもよい。例えば、熱変位モデル学習装置2はクラウドシステムにより実現されてもよい。クラウドシステムでは、コンピュータシステムのハードウェアと、機能ごとのサーバ等の装置との切り分けを任意に設定できる。例えば、1台のコンピュータシステムが複数の装置としての機能を有していてもよいし、複数台のコンピュータシステムで1つの装置としての機能を有していてもよい。 Here, the hardware configuration of the thermal displacement model learning device 2 will be explained. The thermal displacement model learning device 2 of Embodiment 1 and Embodiment 2 is realized by, for example, a computer system. The thermal displacement model learning device 2 may be realized by one computer system, or may be realized by multiple computer systems. For example, the thermal displacement model learning device 2 may be realized by a cloud system. In a cloud system, it is possible to arbitrarily set up the separation between computer system hardware and devices such as servers for each function. For example, one computer system may function as multiple devices, or multiple computer systems may function as one device.
 熱変位モデル学習装置2を実現するコンピュータシステムの構成例を説明する。図16は、ハードウェア構成の一例を示す図である。図16に示すように、このコンピュータシステムは、制御部101と入力部102と記憶部103と表示部104と通信部105と出力部106とを備え、これらはシステムバス107を介して接続されている。 An example of the configuration of a computer system that implements the thermal displacement model learning device 2 will be described. FIG. 16 is a diagram showing an example of the hardware configuration. As shown in FIG. 16, this computer system includes a control section 101, an input section 102, a storage section 103, a display section 104, a communication section 105, and an output section 106, which are connected via a system bus 107. There is.
 図16において、制御部101は、例えば、CPU(Central Processing Unit)等である。制御部101は、本実施の形態の熱変位モデル学習装置2が実施する各処理が記述された熱変位モデル学習プログラムを実行する。入力部102は、たとえばキーボード、マウス等で構成され、コンピュータシステムのユーザが、各種情報の入力を行うために使用する。記憶部103は、RAM(Random Access Memory),ROM(Read Only Memory)等の各種メモリおよびハードディスク等のストレージデバイスを含み、上記制御部101が実行すべきプログラム、処理の過程で得られた必要なデータ等を記憶する。また、記憶部103は、プログラムの一時的な記憶領域としても使用される。表示部104は、LCD(Liquid Crystal Display:液晶表示パネル)等で構成され、コンピュータシステムのユーザに対して各種画面を表示する。通信部105は、通信処理を実施する通信回路等である。通信部105は、複数の通信方式にそれぞれ対応する複数の通信回路で構成されていてもよい。出力部106は、プリンタ、外部記憶装置等の外部の装置へデータを出力する出力インタフェイスである。 In FIG. 16, the control unit 101 is, for example, a CPU (Central Processing Unit). The control unit 101 executes a thermal displacement model learning program in which each process performed by the thermal displacement model learning device 2 of this embodiment is described. The input unit 102 includes, for example, a keyboard, a mouse, etc., and is used by a user of the computer system to input various information. The storage unit 103 includes various memories such as RAM (Random Access Memory) and ROM (Read Only Memory), and storage devices such as hard disks, and stores programs to be executed by the control unit 101 and necessary information obtained in the process of processing. Store data etc. The storage unit 103 is also used as a temporary storage area for programs. The display unit 104 is composed of an LCD (Liquid Crystal Display) or the like, and displays various screens to the user of the computer system. The communication unit 105 is a communication circuit or the like that performs communication processing. The communication unit 105 may be configured with a plurality of communication circuits each corresponding to a plurality of communication methods. The output unit 106 is an output interface that outputs data to an external device such as a printer or an external storage device.
 なお、図16は、一例であり、コンピュータシステムの構成は図16の例に限定されない。例えば、コンピュータシステムは出力部106を備えていなくてもよい。また、熱変位モデル学習装置2が複数のコンピュータシステムにより実現される場合、これらの全てのコンピュータシステムが図16に示したコンピュータシステムでなくてもよい。例えば、一部のコンピュータシステムは図16に示した表示部104、出力部106および入力部102のうち少なくとも1つを備えていなくてもよい。 Note that FIG. 16 is an example, and the configuration of the computer system is not limited to the example of FIG. 16. For example, the computer system may not include the output unit 106. Moreover, when the thermal displacement model learning device 2 is realized by a plurality of computer systems, all of these computer systems do not need to be the computer systems shown in FIG. 16. For example, some computer systems may not include at least one of the display section 104, output section 106, and input section 102 shown in FIG.
 ここで、実施の形態1および実施の形態2の熱変位モデル学習装置2の処理が記述された熱変位モデル学習プログラムが実行可能な状態になるまでのコンピュータシステムの動作例について説明する。上述した構成をとるコンピュータシステムには、たとえば、図示しないCD(Compact Disc)-ROMドライブまたはDVD(Digital Versatile Disc)-ROMドライブにセットされたCD-ROMまたはDVD-ROMから、熱変位モデル学習プログラムが記憶部103にインストールされる。そして、熱変位モデル学習プログラムの実行時に、記憶部103から読み出された熱変位モデル学習プログラムが記憶部103の主記憶装置となる領域に格納される。この状態で、制御部101は、記憶部103に格納された熱変位モデル学習プログラムに従って、実施の形態1および実施の形態2の熱変位モデル学習装置2としての処理を実行する。 Here, an example of the operation of the computer system until the thermal displacement model learning program in which the processing of the thermal displacement model learning device 2 of Embodiment 1 and Embodiment 2 is described becomes executable will be described. A computer system having the above-mentioned configuration includes, for example, a thermal displacement model learning program stored in a CD-ROM or DVD-ROM set in a CD (Compact Disc)-ROM drive or DVD (Digital Versatile Disc)-ROM drive (not shown). is installed in the storage unit 103. Then, when the thermal displacement model learning program is executed, the thermal displacement model learning program read from the storage unit 103 is stored in an area of the storage unit 103 that serves as the main storage device. In this state, the control unit 101 executes processing as the thermal displacement model learning device 2 of the first and second embodiments according to the thermal displacement model learning program stored in the storage unit 103.
 なお、上記の説明においては、CD-ROMまたはDVD-ROMを記録媒体として、熱変位モデル学習装置2における処理を記述したプログラムを提供しているが、これに限らず、コンピュータシステムの構成、提供するプログラムの容量等に応じて、たとえば、通信部105を経由してインターネット等の伝送媒体により提供されたプログラムを用いることとしてもよい。 In the above description, a CD-ROM or DVD-ROM is used as a recording medium to provide a program that describes the processing in the thermal displacement model learning device 2. Depending on the capacity of the program to be used, for example, a program provided via a transmission medium such as the Internet via the communication unit 105 may be used.
 実施の形態1および実施の形態2の熱変位モデル学習プログラムは、コンピュータに、工作機械1の時系列の温度を表す温度データを少なくとも含む入力データと、工作機械1の時系列の熱変位量を表す熱変位データとを時間で対応づけた学習用データを取得するステップと、学習用データから学習用データの一部を抽出したデータセットを生成するステップと、データセットを用いて、工作機械1Aの入力データから熱変位量を推定するための学習済の熱変位モデルを生成するステップと、を実行させる。ここで、データセットを生成するステップでは、複数のデータセットの中の少なくとも2つのデータセットにおいて、互いに抽出した時間区間の時間長が異なるように、データセットが生成される。 The thermal displacement model learning program of Embodiment 1 and Embodiment 2 provides a computer with input data including at least temperature data representing the time-series temperature of the machine tool 1 and the time-series thermal displacement amount of the machine tool 1. A step of acquiring learning data in which the thermal displacement data to be expressed is associated with time, a step of generating a data set by extracting a part of the learning data from the learning data, and using the data set, the machine tool 1A generating a learned thermal displacement model for estimating the amount of thermal displacement from the input data of. Here, in the step of generating the data sets, the data sets are generated such that the time lengths of the extracted time intervals are different from each other in at least two data sets among the plurality of data sets.
 図5に示した学習用データ取得部21は、図16に示した通信部105により実現され、図5に示したモデル記憶部24は図16に示した記憶部103の一部であり、図5に示したデータセット生成部22および学習部23は図16に示した制御部101により実現される。 The learning data acquisition section 21 shown in FIG. 5 is realized by the communication section 105 shown in FIG. 16, and the model storage section 24 shown in FIG. 5 is a part of the storage section 103 shown in FIG. The data set generation unit 22 and the learning unit 23 shown in FIG. 5 are realized by the control unit 101 shown in FIG.
 熱変位推定装置3についても、熱変位モデル学習装置2と同様に、1つまたは複数のコンピュータシステムにより実現される。熱変位推定装置3が実施の形態2で述べた動作を行うためのプログラムは、上述した熱変位モデル学習プログラムと同様に、記憶媒体、伝送媒体などにより提供され、コンピュータシステムにインストールされる。これにより、熱変位推定装置3における上述した動作が実現される。 Similarly to the thermal displacement model learning device 2, the thermal displacement estimation device 3 is also realized by one or more computer systems. A program for the thermal displacement estimating device 3 to perform the operations described in the second embodiment is provided by a storage medium, a transmission medium, etc., and installed in a computer system, similarly to the thermal displacement model learning program described above. Thereby, the above-described operation of the thermal displacement estimating device 3 is realized.
 図14に示した推論用データ取得部31および熱変位モデル取得部32は、図16に示した通信部105により実現され、図14に示した推論部33は図16に示した制御部101により実現される。 The inference data acquisition section 31 and the thermal displacement model acquisition section 32 shown in FIG. 14 are realized by the communication section 105 shown in FIG. 16, and the inference section 33 shown in FIG. 14 is realized by the control section 101 shown in FIG. Realized.
 なお、図5および図14に示した各装置における機能の切り分けは一例であり、加工システム100-1,100-2が、上述した動作を行うことができれば、各装置における機能の切り分けは図5および図14に示した例に限定されない。例えば、以下に変形例として示すように、熱変位モデル学習装置2と熱変位推定装置3とを統合して、熱変位モデル学習装置2が熱変位推定装置3としての機能も有するようにしてもよい。 Note that the division of functions in each device shown in FIGS. 5 and 14 is an example, and if the processing systems 100-1 and 100-2 can perform the operations described above, the division of functions in each device is as shown in FIG. and is not limited to the example shown in FIG. For example, as shown below as a modification, the thermal displacement model learning device 2 and the thermal displacement estimation device 3 may be integrated so that the thermal displacement model learning device 2 also has the function of the thermal displacement estimation device 3. good.
 図17は、実施の形態2の変形例にかかる熱変位モデル学習装置2Aの機能構成を示す図である。熱変位モデル学習装置2Aは、熱変位モデル学習装置2の機能に加えて、熱変位推定装置3の機能を有する。各構成要素の機能については、図14において説明済であるため、ここでは説明を省略する。図17に示す構成において、熱変位モデル学習装置2Aの機能が1つのコンピュータシステムにより実現される場合、熱変位モデル取得部32の機能は、コンピュータシステム内部のデータのやり取りによって実現される。 FIG. 17 is a diagram showing the functional configuration of a thermal displacement model learning device 2A according to a modification of the second embodiment. The thermal displacement model learning device 2A has the functions of the thermal displacement estimation device 3 in addition to the functions of the thermal displacement model learning device 2. The functions of each component have already been explained in FIG. 14, so the explanation will be omitted here. In the configuration shown in FIG. 17, when the functions of the thermal displacement model learning device 2A are realized by one computer system, the functions of the thermal displacement model acquisition section 32 are realized by exchanging data within the computer system.
実施の形態3.
 図18は、実施の形態3にかかる加工システム100-3の構成を示す図である。加工システム100-3は、複数台の工作機械1と、サーバ上に設けられた熱変位モデル学習装置2Bとを有する。熱変位モデル学習装置2Bは、複数の工作機械1から受け取る熱変位データ、温度データ、および機械状態データに基づいて、熱変位モデルの学習を行う。工作機械1の機能は、実施の形態1と同様であり、熱変位モデル学習装置2Bの機能は、複数の工作機械1の熱変位モデルの学習を工作機械1毎に行う以外は実施の形態1と同様である。
Embodiment 3.
FIG. 18 is a diagram showing the configuration of a processing system 100-3 according to the third embodiment. The machining system 100-3 includes a plurality of machine tools 1 and a thermal displacement model learning device 2B provided on a server. The thermal displacement model learning device 2B performs thermal displacement model learning based on thermal displacement data, temperature data, and machine state data received from a plurality of machine tools 1. The functions of the machine tool 1 are the same as those of the first embodiment, and the functions of the thermal displacement model learning device 2B are the same as those of the first embodiment except that the thermal displacement models of a plurality of machine tools 1 are learned for each machine tool 1. It is similar to
実施の形態4.
 図19は、実施の形態4にかかる加工システム100-4の構成を示す図である。加工システム100-4は、複数台の工作機械1,1Aと、サーバ上に設けられた熱変位モデル学習装置2Bと、熱変位推定装置3Bとを有する。
Embodiment 4.
FIG. 19 is a diagram showing the configuration of a processing system 100-4 according to the fourth embodiment. The machining system 100-4 includes a plurality of machine tools 1 and 1A, a thermal displacement model learning device 2B provided on a server, and a thermal displacement estimation device 3B.
 工作機械1は、学習対象の加工装置であって、熱変位モデル学習装置2Bに、工作機械1の型番を少なくとも含む工作機械1の特徴を示す情報である特徴情報を出力する以外は実施の形態1の工作機械1と同様である。工作機械1Aは、推定対象の加工装置であって、熱変位推定装置3Bに工作機械1Aの型番を少なくとも含む工作機械1Aの特徴を示す情報である特徴情報を出力する以外は実施の形態2の工作機械1Aと同様である。 The machine tool 1 is a processing device to be learned, and the embodiments are different from each other except that characteristic information, which is information indicating characteristics of the machine tool 1 including at least the model number of the machine tool 1, is output to the thermal displacement model learning device 2B. This is similar to machine tool 1 in No. 1. The machine tool 1A is a processing device to be estimated, and is similar to the second embodiment except that it outputs characteristic information, which is information indicating the characteristics of the machine tool 1A, including at least the model number of the machine tool 1A, to the thermal displacement estimating device 3B. This is the same as machine tool 1A.
 熱変位モデル学習装置2Bは、工作機械1から特徴情報を受け取る以外は実施の形態3の熱変位モデル学習装置2Bと同様であり、複数の工作機械1から受け取るデータに基づいて学習用データを生成する学習用データ取得部21Bと、複数の熱変位モデルのそれぞれを、学習用データの取得元である工作機械1の特徴情報と対応づけて記憶するモデル記憶部24Bとを有する。熱変位推定装置3Bは、熱変位推定装置3の熱変位モデル取得部32の代わりに熱変位モデル取得部32Bを有する。熱変位モデル取得部32Bは、モデル記憶部24Bに記憶された複数の熱変位モデルの中から、推論対象の工作機械1Aから受け取った特徴情報に基づいて、推論部33が使用する熱変位モデルを選択するモデル選択部321を有する。 The thermal displacement model learning device 2B is the same as the thermal displacement model learning device 2B of Embodiment 3 except that it receives feature information from the machine tools 1, and generates learning data based on data received from a plurality of machine tools 1. and a model storage unit 24B that stores each of a plurality of thermal displacement models in association with characteristic information of the machine tool 1 from which the learning data is acquired. The thermal displacement estimation device 3B has a thermal displacement model acquisition section 32B instead of the thermal displacement model acquisition section 32 of the thermal displacement estimation device 3. The thermal displacement model acquisition unit 32B selects a thermal displacement model to be used by the inference unit 33 from among the plurality of thermal displacement models stored in the model storage unit 24B, based on the characteristic information received from the inference target machine tool 1A. It has a model selection section 321 for selection.
 ここで、特徴情報は、型番を少なくとも含み、型番に加えて、工作機械1,1Aが設置された工場の環境、設置条件など、工作機械1,1Aの状態を示す情報を含むことができる。モデル選択部321は、推論対象の工作機械1Aと同じ型番の工作機械1であって、推論対象の工作機械1Aの状態と類似した工作機械1から取得したデータに基づいて生成された熱変位モデルを選択することができる。これにより、推論対象の工作機械1A自体のデータから生成した熱変位モデルがない場合であっても、工作機械1Aと同じ型番の工作機械1であって、使用される環境などが類似した工作機械1のデータから生成された熱変位モデルを用いて、熱変位量の推定値を得ることが可能になる。 Here, the characteristic information includes at least the model number, and in addition to the model number, can include information indicating the state of the machine tool 1, 1A, such as the environment of the factory where the machine tool 1, 1A is installed, installation conditions, etc. The model selection unit 321 is a thermal displacement model generated based on data obtained from a machine tool 1 having the same model number as the inference target machine tool 1A and having a state similar to the inference target machine tool 1A. can be selected. As a result, even if there is no thermal displacement model generated from the data of the machine tool 1A itself to be inferred, it is possible to use a machine tool 1 that has the same model number as the machine tool 1A and is used in a similar environment. Using the thermal displacement model generated from the data of No. 1, it becomes possible to obtain an estimated value of the amount of thermal displacement.
 なお、上記では、熱変位モデル取得部32Bがモデル選択部321を有する構成について説明したが、熱変位モデル取得部32Bが複数種類の熱変位モデルをモデル記憶部24Bから取得し、推論部33が、複数種類の熱変位モデルを用いて算出した複数の熱変位の推定値の中から、特徴情報に基づいて、出力する推定値を選択する構成としてもよい。 In addition, although the structure in which the thermal displacement model acquisition part 32B has the model selection part 321 was demonstrated above, the thermal displacement model acquisition part 32B acquires multiple types of thermal displacement models from the model storage part 24B, and the inference part 33 , a configuration may be adopted in which an estimated value to be output is selected from among a plurality of thermal displacement estimated values calculated using a plurality of types of thermal displacement models, based on the characteristic information.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configurations shown in the embodiments above are merely examples, and can be combined with other known techniques, or can be combined with other embodiments, within the scope of the gist. It is also possible to omit or change part of the configuration.
 例えば、熱変位モデル学習装置2および熱変位推定装置3の機能は、工作機械1に内蔵されていてもよい。また、実施の形態3および実施の形態4のように複数の工作機械1から取得するデータを用いて、熱変位モデルを学習する場合、熱変位モデル学習装置2Bは、同一のエリアで使用される複数の工作機械1から学習用データを取得してもよいし、異なるエリアで独立して動作する複数の工作機械1から収集される学習用データを利用して熱変位モデルを学習してもよい。また、学習用データを収集する工作機械1を途中で対象に追加したり、対象から除去することも可能である。さらに、ある工作機械1に関して熱変位モデルを学習した熱変位モデル学習装置2を、これとは別の工作機械1に適用して、当該別の工作機械1に関して熱変位モデルを再学習して更新するようにしてもよい。 For example, the functions of the thermal displacement model learning device 2 and the thermal displacement estimation device 3 may be built into the machine tool 1. Furthermore, when learning a thermal displacement model using data acquired from a plurality of machine tools 1 as in the third and fourth embodiments, the thermal displacement model learning device 2B is used in the same area. Learning data may be acquired from multiple machine tools 1, or the thermal displacement model may be learned using learning data collected from multiple machine tools 1 that operate independently in different areas. . Furthermore, it is also possible to add or remove the machine tool 1 from which learning data is to be collected midway through the process. Furthermore, the thermal displacement model learning device 2 that has learned the thermal displacement model for a certain machine tool 1 is applied to another machine tool 1 to relearn and update the thermal displacement model for the other machine tool 1. You may also do so.
 1,1A 工作機械、2,2A,2B 熱変位モデル学習装置、3,3B 熱変位推定装置、11 送り軸、12 送り軸モータ、13 主軸、14 主軸モータ、15,15A 制御装置、16 周辺機器、17 ベッド、18 コラム、19 送りねじ、21,21B 学習用データ取得部、22 データセット生成部、23 学習部、24,24B モデル記憶部、31 推論用データ取得部、32,32B 熱変位モデル取得部、33 推論部、100-1,100-2,100-3,100-4 加工システム、101 制御部、102 入力部、103 記憶部、104 表示部、105 通信部、106 出力部、321 モデル選択部、DS 変位センサ、T 工具、TA テーブル、TS 温度センサ、W ワーク。 1, 1A machine tool, 2, 2A, 2B thermal displacement model learning device, 3, 3B thermal displacement estimation device, 11 feed axis, 12 feed axis motor, 13 main axis, 14 main axis motor, 15, 15A control device, 16 peripheral equipment , 17 bed, 18 column, 19 feed screw, 21, 21B learning data acquisition section, 22 data set generation section, 23 learning section, 24, 24B model storage section, 31 inference data acquisition section, 32, 32B thermal displacement model Acquisition unit, 33 Inference unit, 100-1, 100-2, 100-3, 100-4 Processing system, 101 Control unit, 102 Input unit, 103 Storage unit, 104 Display unit, 105 Communication unit, 106 Output unit, 321 Model selection section, DS displacement sensor, T tool, TA table, TS temperature sensor, W work.

Claims (13)

  1.  工作機械の時系列の温度を表す温度データを少なくとも含む入力データと、前記工作機械の時系列の熱変位量を表す熱変位データとを時間で対応づけた学習用データを取得する学習用データ取得部と、
     前記学習用データから前記学習用データの一部を抽出したデータセットを生成するデータセット生成部と、
     前記データセットを用いて、工作機械の前記入力データから前記熱変位量を推定するための学習済の熱変位モデルを生成する学習部と、
     を備え、
     前記データセット生成部は、複数の前記データセットの中の少なくとも2つの前記データセットにおいて、互いに抽出した時間区間の時間長が異なるように、前記データセットを生成する
     ことを特徴とする熱変位モデル学習装置。
    Obtaining learning data that associates input data including at least temperature data representing a time-series temperature of a machine tool with thermal displacement data representing a time-series thermal displacement amount of the machine tool in terms of time. Department and
    a dataset generation unit that generates a dataset in which a part of the learning data is extracted from the learning data;
    a learning unit that uses the data set to generate a trained thermal displacement model for estimating the thermal displacement amount from the input data of the machine tool;
    Equipped with
    The thermal displacement model, wherein the data set generation unit generates the data sets such that time lengths of extracted time intervals are different from each other in at least two of the plurality of data sets. learning device.
  2.  前記入力データは、前記温度データに加え、前記工作機械の運転状態を表す機械状態データをさらに含む
     ことを特徴とする請求項1に記載の熱変位モデル学習装置。
    The thermal displacement model learning device according to claim 1, wherein the input data further includes machine state data representing an operating state of the machine tool in addition to the temperature data.
  3.  前記学習部は、前記データセットに含まれる前記入力データを入力した場合の熱変位モデルの出力である熱変位量の推定値と、前記熱変位モデルに入力した前記入力データに対応する前記熱変位データとの差を最小化するように前記熱変位モデルの内部パラメータを最適化することによって、学習済の前記熱変位モデルを生成する
     ことを特徴とする請求項1または2に記載の熱変位モデル学習装置。
    The learning unit calculates an estimated value of a thermal displacement amount that is an output of a thermal displacement model when the input data included in the data set is input, and the thermal displacement corresponding to the input data input to the thermal displacement model. The thermal displacement model according to claim 1 or 2, wherein the learned thermal displacement model is generated by optimizing internal parameters of the thermal displacement model so as to minimize a difference from data. learning device.
  4.  前記工作機械の時系列の温度を表す温度データを少なくとも含む推論用の入力データである推論用データを取得する推論用データ取得部と、
     前記熱変位モデルを用いて、前記推論用データ取得部から入力された前記推論用データから前記工作機械の前記熱変位量の推定値を出力する推論部と、
     をさらに備える
     ことを特徴とする請求項1から3のいずれか1項に記載の熱変位モデル学習装置。
    an inference data acquisition unit that obtains inference data that is inference input data that includes at least temperature data representing a time series temperature of the machine tool;
    an inference unit that uses the thermal displacement model to output an estimated value of the thermal displacement amount of the machine tool from the inference data input from the inference data acquisition unit;
    The thermal displacement model learning device according to any one of claims 1 to 3, further comprising the following.
  5.  前記推論用データは、前記温度データに加え、前記工作機械の運転状態を表す機械状態データをさらに含む
     ことを特徴とする請求項4に記載の熱変位モデル学習装置。
    The thermal displacement model learning device according to claim 4, wherein the inference data further includes machine state data representing an operating state of the machine tool in addition to the temperature data.
  6.  前記機械状態データは、前記工作機械の温度を調整する周辺機器の稼働状態と、前記工作機械に備わるアクチュエータの動作状態とを示す
     ことを特徴とする請求項2または5に記載の熱変位モデル学習装置。
    Thermal displacement model learning according to claim 2 or 5, wherein the machine state data indicates the operating state of peripheral equipment that adjusts the temperature of the machine tool and the operating state of an actuator provided in the machine tool. Device.
  7.  前記学習用データ取得部は、複数台の前記工作機械から前記学習用データを取得し、
     前記学習部は、前記工作機械毎に前記熱変位モデルを生成する
     ことを特徴とする請求項1から3のいずれか1項に記載の熱変位モデル学習装置。
    The learning data acquisition unit acquires the learning data from the plurality of machine tools,
    The thermal displacement model learning device according to any one of claims 1 to 3, wherein the learning unit generates the thermal displacement model for each machine tool.
  8.  前記学習用データ取得部は、複数台の前記工作機械から前記学習用データを取得し、
     前記学習部は、前記工作機械毎に前記熱変位モデルを生成し、生成した前記熱変位モデルと、前記熱変位モデルを生成するために使用した前記学習用データの取得元である前記工作機械の型番を少なくとも含む前記工作機械の特徴を示す情報である特徴情報とを対応づけて記憶する
     ことを特徴とする請求項1から3のいずれか1項に記載の熱変位モデル学習装置。
    The learning data acquisition unit acquires the learning data from the plurality of machine tools,
    The learning unit generates the thermal displacement model for each machine tool, and compares the generated thermal displacement model with the machine tool that is the acquisition source of the learning data used to generate the thermal displacement model. The thermal displacement model learning device according to any one of claims 1 to 3, wherein characteristic information that is information indicating characteristics of the machine tool including at least a model number is stored in association with the information.
  9.  推論対象の工作機械の時系列の温度を表す温度データを少なくとも含む推論用の入力データである推論用データを取得する推論用データ取得部と、
     複数の前記熱変位モデルのうち前記推論対象の工作機械と同じ型番の前記熱変位モデルを用いて、前記推論用データ取得部から入力された前記推論用データから前記推論対象の工作機械の前記熱変位量の推定値を出力する推論部と、
     をさらに備える
     ことを特徴とする請求項8に記載の熱変位モデル学習装置。
    an inference data acquisition unit that obtains inference data that is inference input data that includes at least temperature data representing a time series temperature of a machine tool that is an inference target;
    The thermal displacement model of the same model number as the inference target machine tool among the plurality of thermal displacement models is used to calculate the heat of the inference target machine tool from the inference data input from the inference data acquisition unit. an inference unit that outputs an estimated value of displacement;
    The thermal displacement model learning device according to claim 8, further comprising the following.
  10.  前記特徴情報は、前記型番に加えて、前記工作機械の動作条件を示す情報をさらに含み、
     前記推論部は、前記推論対象の工作機械と同じ型番の工作機械であって、前記動作条件が前記推論対象の工作機械と類似する工作機械から取得された前記学習用データに基づいて生成された前記熱変位モデルを用いて、前記推論対象の工作機械の前記熱変位量の推定値を出力する
     ことを特徴とする請求項9に記載の熱変位モデル学習装置。
    In addition to the model number, the characteristic information further includes information indicating operating conditions of the machine tool,
    The inference unit is generated based on the learning data obtained from a machine tool that has the same model number as the inference target machine tool and has operating conditions similar to the inference target machine tool. The thermal displacement model learning device according to claim 9, wherein the thermal displacement model is used to output an estimated value of the thermal displacement amount of the inference target machine tool.
  11.  請求項1に記載の熱変位モデル学習装置により学習済の前記熱変位モデルを取得する熱変位モデル取得部と、
     前記工作機械の時系列の温度を表す温度データを少なくとも含む推論用の入力データである推定用データを取得する推論用データ取得部と、
     前記熱変位モデル取得部により取得された前記熱変位モデルを用いて、前記推論用データ取得部から入力された前記入力データから前記熱変位量の推定値を出力する推論部と、
     を備えることを特徴とする熱変位推定装置。
    A thermal displacement model acquisition unit that acquires the thermal displacement model learned by the thermal displacement model learning device according to claim 1;
    an inference data acquisition unit that acquires estimation data that is input data for inference that includes at least temperature data representing a time series temperature of the machine tool;
    an inference unit that uses the thermal displacement model acquired by the thermal displacement model acquisition unit to output an estimated value of the thermal displacement amount from the input data input from the inference data acquisition unit;
    A thermal displacement estimation device comprising:
  12.  請求項1から10のいずれか1項に記載の熱変位モデル学習装置、または、請求項11に記載の熱変位推定装置と、
     前記工作機械と、
     を備え、
     前記工作機械は、
     工具と、
     前記工具または加工対象物を回転させる主軸と、
     前記工具と前記加工対象物との間の相対位置を変化させる送り軸と、
     を備え、
     前記工具によって前記加工対象物を除去加工する
     ことを特徴とする加工システム。
    The thermal displacement model learning device according to any one of claims 1 to 10, or the thermal displacement estimation device according to claim 11,
    The machine tool;
    Equipped with
    The machine tool is
    tools and
    a main shaft for rotating the tool or workpiece;
    a feed axis that changes the relative position between the tool and the workpiece;
    Equipped with
    A machining system characterized in that the tool removes the workpiece.
  13.  工具と、前記工具または加工対象物を回転させる主軸と、前記工具と前記加工対象物との間の相対位置を変化させる送り軸と、を備え、前記工具によって前記加工対象物を除去加工する工作機械を用いた加工方法において、
     前記工作機械の時系列の温度を表す温度データを少なくとも含む入力データと、前記工作機械の時系列の熱変位量を表す熱変位データとを時間で対応付けた学習用データを取得するステップと、
     前記学習用データから前記学習用データの一部を抽出したデータセットを生成するステップと、
     前記データセットを用いて、工作機械の前記入力データから前記熱変位量を推定するための学習済の熱変位モデルを生成するステップと、
     学習済の前記熱変位モデルを用いて、前記温度データを少なくとも含む推論用の入力データから前記熱変位量を推定するステップと、
     前記熱変位量の推定値を用いて、前記工作機械の前記主軸を駆動するアクチュエータおよび前記送り軸を駆動するアクチュエータの少なくとも一方の操作量を補正するステップと、
     補正後の前記操作量を用いて、前記除去加工を行うステップと、
     を含み、
     前記データセットを生成するステップでは、複数の前記データセットの中の少なくとも2つの前記データセットにおいて、互いに抽出した時間区間の時間長が異なるように、前記データセットを生成する
     ことを特徴とする加工方法。
    A workpiece that includes a tool, a main shaft that rotates the tool or the workpiece, and a feed shaft that changes the relative position between the tool and the workpiece, and that removes the workpiece with the tool. In processing methods using machines,
    obtaining learning data in which input data including at least temperature data representing a time-series temperature of the machine tool and thermal displacement data representing a time-series thermal displacement amount of the machine tool are associated in terms of time;
    generating a dataset in which a part of the learning data is extracted from the learning data;
    using the data set to generate a trained thermal displacement model for estimating the thermal displacement amount from the input data of the machine tool;
    estimating the amount of thermal displacement from input data for inference including at least the temperature data using the learned thermal displacement model;
    using the estimated value of the thermal displacement amount to correct the operation amount of at least one of an actuator that drives the main shaft of the machine tool and an actuator that drives the feed shaft;
    performing the removal process using the corrected operation amount;
    including;
    Processing characterized in that, in the step of generating the data set, the data set is generated such that the time lengths of extracted time intervals are different from each other in at least two of the plurality of data sets. Method.
PCT/JP2022/021128 2022-05-23 2022-05-23 Thermal displacement model training device, thermal displacement estimation device, processing system, and processing method WO2023228253A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/021128 WO2023228253A1 (en) 2022-05-23 2022-05-23 Thermal displacement model training device, thermal displacement estimation device, processing system, and processing method
JP2022554937A JP7221459B1 (en) 2022-05-23 2022-05-23 Thermal displacement model learning device, thermal displacement estimation device, machining system, and machining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/021128 WO2023228253A1 (en) 2022-05-23 2022-05-23 Thermal displacement model training device, thermal displacement estimation device, processing system, and processing method

Publications (1)

Publication Number Publication Date
WO2023228253A1 true WO2023228253A1 (en) 2023-11-30

Family

ID=85197947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021128 WO2023228253A1 (en) 2022-05-23 2022-05-23 Thermal displacement model training device, thermal displacement estimation device, processing system, and processing method

Country Status (2)

Country Link
JP (1) JP7221459B1 (en)
WO (1) WO2023228253A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7466801B1 (en) 2023-07-21 2024-04-12 三菱電機株式会社 CONTROL DEVICE, MACHINE TOOL SYSTEM, AND MACHINING METHOD

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6556413B1 (en) * 2018-10-31 2019-08-07 三菱電機株式会社 Numerical control device, learning device, and learning method
JP2019166603A (en) * 2018-03-23 2019-10-03 ファナック株式会社 Thermal displacement correction system and computer
JP2021030365A (en) * 2019-08-23 2021-03-01 ファナック株式会社 Machine learning device, control system, and machine learning method
JP2021135679A (en) * 2020-02-26 2021-09-13 コニカミノルタ株式会社 Process machine state estimation system, and process machine state estimation program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019166603A (en) * 2018-03-23 2019-10-03 ファナック株式会社 Thermal displacement correction system and computer
JP6556413B1 (en) * 2018-10-31 2019-08-07 三菱電機株式会社 Numerical control device, learning device, and learning method
JP2021030365A (en) * 2019-08-23 2021-03-01 ファナック株式会社 Machine learning device, control system, and machine learning method
JP2021135679A (en) * 2020-02-26 2021-09-13 コニカミノルタ株式会社 Process machine state estimation system, and process machine state estimation program

Also Published As

Publication number Publication date
JPWO2023228253A1 (en) 2023-11-30
JP7221459B1 (en) 2023-02-13

Similar Documents

Publication Publication Date Title
JP5803261B2 (en) Thermal displacement correction method and thermal displacement correction apparatus for machine tool
US10401829B2 (en) Machine learning device for machine tool and thermal displacement compensation device
US10908591B2 (en) Machine learning device and machining time prediction device
JP4469325B2 (en) Thermal displacement correction device
US10444733B2 (en) Adjustment device and adjustment method
CN105619424B (en) Control device and method, the control equipment of multi-axle motor of motor driving apparatus
JP7303065B2 (en) Machine learning device, control system and machine learning method
CN111857052B (en) Machine learning device, numerical control system, and machine learning method
WO2023228253A1 (en) Thermal displacement model training device, thermal displacement estimation device, processing system, and processing method
JP2017102617A (en) Correction device, control method of correction device, information processing program, and record medium
CN109613886B (en) Thermal displacement correction system
US20180284702A1 (en) Machine learning device, servo control device, servo control system and machine learning method
CN109613887B (en) Thermal displacement correction system
JP7405537B2 (en) Machine learning device, servo control device, servo control system and machine learning method
US20170017225A1 (en) Instruction value generation device
JP6806746B2 (en) Motor control device
JP6743238B1 (en) Variation amount estimating device and correction amount calculating device in machine tool
KR101983946B1 (en) Machining of workpieces with model-supported error compensation
JP2566345B2 (en) Processing machine
US20200368907A1 (en) Control apparatus and control method for robot
CN110888398B (en) Control device, CNC device and control method
JP6913453B2 (en) State estimation device, state estimation method and program
JP6556413B1 (en) Numerical control device, learning device, and learning method
WO2022162740A1 (en) Numerical control device
JP4372018B2 (en) Numerical controller

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022554937

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943659

Country of ref document: EP

Kind code of ref document: A1