WO2023228250A1 - 通信経路制御装置、通信経路制御方法及びプログラム - Google Patents

通信経路制御装置、通信経路制御方法及びプログラム Download PDF

Info

Publication number
WO2023228250A1
WO2023228250A1 PCT/JP2022/021124 JP2022021124W WO2023228250A1 WO 2023228250 A1 WO2023228250 A1 WO 2023228250A1 JP 2022021124 W JP2022021124 W JP 2022021124W WO 2023228250 A1 WO2023228250 A1 WO 2023228250A1
Authority
WO
WIPO (PCT)
Prior art keywords
target data
communication
address
transmission request
data
Prior art date
Application number
PCT/JP2022/021124
Other languages
English (en)
French (fr)
Inventor
一成 竹内
誠 大野
Original Assignee
楽天モバイル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 楽天モバイル株式会社 filed Critical 楽天モバイル株式会社
Priority to PCT/JP2022/021124 priority Critical patent/WO2023228250A1/ja
Publication of WO2023228250A1 publication Critical patent/WO2023228250A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/302Route determination based on requested QoS

Definitions

  • the present invention relates to a communication route control device, a communication route control method, and a program.
  • Patent Document 1 describes a terminal device that can access multiple network slices.
  • the inventor is considering switching the communication path through which the target data transmitted by the data providing device is transmitted, depending on the type of target data that the communication terminal requests the data providing device to transmit. For example, target data with low importance may be transmitted via a communication path with slow communication speed or high latency.
  • the present invention has been made in view of the above circumstances, and one of its objects is to accurately determine the communication path of target data transmitted from a data providing device to a communication terminal in response to a transmission request from a communication terminal.
  • An object of the present invention is to provide a controllable communication path control device, a communication path control method, and a program.
  • a communication path control device includes a transmission request relay unit that receives a transmission request for target data from a communication terminal and transmits the transmission request to a data providing device; determination means for determining the type of the communication terminal; communication route determination means for determining a communication route according to a result of the determination from among a plurality of communication routes set between the communication terminal; A target data relay unit that receives the target data transmitted from the received data providing device and transmits the target data to the communication terminal via the determined communication path.
  • encapsulation means adds a capsule header to the target data received from the data providing device, in which the IP address of the communication terminal associated with the determined communication route is set as a destination address.
  • the target data relay means transmits the target data to which the capsule header is added.
  • the encapsulation means further includes correspondence data storage means for storing correspondence data indicating the correspondence between the communication paths and the IP addresses for the plurality of communication paths, and the encapsulation means receives the correspondence data from the data providing device.
  • the target data may be provided with a capsule header in which the IP address associated with the determined communication route in the corresponding data is set as the destination address.
  • the communication terminal includes a plurality of communication units that perform communication via different communication paths, and the encapsulation means is configured to apply the target data received from the data providing device to the determined communication path.
  • a capsule header may be added in which the IP address of the associated communication unit is set as the destination address.
  • the transmission request relay means sends an IP header in which the virtual IP address of the communication terminal is set as the source address and the IP address of the data providing device is set as the destination address, and the IP address of the communication path control device. is set to the destination address, and a decapsulation unit receives the transmission request to which is attached and removes the capsule header from the transmission request to which the capsule header is attached,
  • the request relay means transmits the transmission request from which the capsule header has been removed to the data providing device, and the target data relay means sets the IP address of the data providing device as the source address and transmits the transmission request of the communication terminal.
  • the encapsulation means receives the target data to which an IP header with a virtual IP address set as the destination address is attached, and the encapsulation means sets the IP address of the data providing device as the source address and converts the virtual IP address of the communication terminal into a virtual IP address of the communication terminal. Even if a capsule header in which the real IP address of the communication terminal associated with the determined communication route is set in the destination address is added to the target data to which an IP header in which the address is set as the destination address is added. good.
  • the determining means determines the type of the target data based on the destination of the target data.
  • the determining means determines whether or not the target data is advertising content
  • the communication route determining means is configured to determine whether or not the target data is advertising content
  • the communication route determining means is configured to determine whether or not the target data is advertising content
  • the communication route determining means is configured to perform communication Among the routes, a communication route is determined depending on whether or not the target data is advertising content.
  • the communication route determining means determines a network slice according to the result of the determination from among a plurality of network slices set between the communication terminal and the communication terminal, and
  • the data relay means receives the target data transmitted from the data providing device that has received the transmission request, and transmits the target data to the communication terminal via the determined network slice.
  • the communication path control method includes the steps of: receiving a transmission request for target data from a communication terminal and transmitting the transmission request to a data providing device; determining the type of the target data; a step of determining a communication route according to the result of the determination from among a plurality of communication routes set with the communication terminal; and the target data transmitted from the data providing device that has received the transmission request. and transmitting the target data to the communication terminal via the determined communication path.
  • the program according to the present invention includes a procedure for receiving a transmission request for target data from a communication terminal and transmitting the transmission request to a data providing device, a procedure for determining the type of the target data, and a procedure for receiving a transmission request for target data from a communication terminal. a step of determining a communication path according to the result of the determination from among a plurality of communication paths set in the communication path; A computer is caused to execute a procedure for transmitting target data to the communication terminal via the determined communication path.
  • FIG. 1 is a diagram showing an example of a communication system according to an embodiment of the present invention.
  • FIG. 1 is a diagram showing an example of the configuration of an agent server according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of a configuration of a UE according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of a logical communication path set between a UE and an agent server. It is a diagram showing an example of a web page.
  • FIG. 3 is a diagram showing an example of communication path management data.
  • FIG. 2 is a diagram schematically showing an example of the correspondence between global IP addresses and private IP addresses.
  • FIG. 2 is a diagram schematically showing an example of an IP header of a packet requesting transmission of target data of video content.
  • FIG. 1 is a diagram showing an example of the configuration of an agent server according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of a configuration of a UE according
  • FIG. 2 is a diagram schematically showing an example of a capsule header and an IP header.
  • FIG. 2 is a diagram schematically showing an example of a capsule header and an IP header.
  • FIG. 3 is a diagram schematically showing an example of an IP header of a packet of target data of video content.
  • FIG. 2 is a diagram schematically showing an example of a capsule header and an IP header.
  • FIG. 2 is a diagram schematically showing an example of a capsule header and an IP header.
  • FIG. 3 is a diagram schematically showing an example of an IP header of a packet requesting transmission of target data of advertising content.
  • FIG. 2 is a diagram schematically showing an example of a capsule header and an IP header.
  • FIG. 2 is a diagram schematically showing an example of a capsule header and an IP header.
  • FIG. 2 is a diagram schematically showing an example of a capsule header and an IP header.
  • FIG. 3 is a diagram schematically showing an example of an IP header of a packet of target data of advertising content.
  • FIG. 2 is a diagram schematically showing an example of a capsule header and an IP header.
  • FIG. 2 is a diagram schematically showing an example of a capsule header and an IP header.
  • FIG. 2 is a functional block diagram illustrating an example of functions implemented in a UE and an agent server according to an embodiment of the present invention. It is a flow diagram showing an example of the flow of processing performed by the UE, the CGN server, and the agent server according to one embodiment of the present invention. It is a flow diagram showing an example of the flow of processing performed by the UE, the CGN server, and the agent server according to one embodiment of the present invention.
  • FIG. 1 is a diagram showing an example of a communication system 1 according to an embodiment of the present invention.
  • the communication system 1 includes an autonomous system (AS) 10a and an autonomous system 10b.
  • AS autonomous system
  • 10b autonomous system
  • the autonomous system 10a includes a radio access network (RAN) 20, a core network system 22, a carrier grade NAT (Network Address Translation) server (CGN server) 24, an agent server 26, and a gateway router 28.
  • RAN radio access network
  • CGN server Network Address Translation server
  • the autonomous system 10b includes a video content server 30, an advertising content server 32, and a gateway router 34.
  • the autonomous system 10a is connected to an Internet exchange (IX) 36 via a gateway router 28. Furthermore, the autonomous system 10b is connected to an Internet exchange 36 via a gateway router 34.
  • IX Internet exchange
  • the RAN 20 is an antenna that corresponds to an eNB (eNodeB) in a fourth generation mobile communication system (hereinafter referred to as 4G) or a gNB (NR base station) in a fifth generation mobile communication system (hereinafter referred to as 5G). It is a computer system equipped with The RAN 20 according to this embodiment may be implemented by a server group located in a data center or communication equipment equipped with an antenna.
  • eNB evolved NodeB
  • 4G fourth generation mobile communication system
  • gNB NR base station
  • 5G fifth generation mobile communication system
  • the core network system 22 is a system equivalent to EPC (Evolved Packet Core) in 4G and 5G core (5GC) in 5G.
  • EPC Evolved Packet Core
  • 5GC 5G core
  • the core network system 22 according to this embodiment may be implemented by a group of servers located in a data center.
  • a UE 38 which is a communication terminal, performs wireless communication with the RAN 20.
  • the core network system 22, RAN 20, and UE 38 cooperate with each other to realize a mobile communication network.
  • the RAN 20 and core network system 22 provide network services such as voice communication services and data communication services to users who use the UE 38.
  • the network services provided in this embodiment are not limited to voice communication services and data communication services.
  • the network service provided in this embodiment may be, for example, an IoT (Internet of Things) service.
  • IoT Internet of Things
  • a container-type virtualization application execution environment such as Docker (registered trademark) is installed on the servers on which the RAN 20 and the core network system 22 are installed, and containers are installed on these servers. You can now deploy and run it.
  • a cluster composed of one or more containers generated by such virtualization technology may be constructed.
  • a cluster Kerpannetes cluster
  • a container management tool such as Kubernetes (registered trademark)
  • processors on the constructed cluster may execute container-type applications.
  • the network service provided in this embodiment may be composed of one or more functional units (for example, a network function (NF)).
  • the functional unit is a type of VNF (Virtualized Network Function), and may be implemented by a CNF (Containerized Network Function) realized by container-type virtualization technology.
  • the functional unit according to this embodiment may correspond to a network node.
  • vDU virtual Distributed Unit
  • vCU virtual Central Unit
  • DU Distributed Unit
  • CU Central Unit
  • CU Central Unit
  • UPF User Plane Function
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • FIG. 2 is a diagram showing an example of the configuration of the agent server 26 according to the present embodiment.
  • the agent server 26 according to this embodiment is configured on a cloud infrastructure, for example, and includes a processor 26a, a storage section 26b, and a communication section 26c, as shown in FIG.
  • the processor 26a is a program-controlled device such as a microprocessor that operates according to a program installed in the agent server 26.
  • the storage unit 26b is, for example, a storage element such as ROM or RAM, a solid state drive (SSD), a hard disk drive (HDD), or the like.
  • the storage unit 26b stores programs and the like executed by the processor 26a.
  • the communication unit 26c is, for example, a communication interface such as a NIC (Network Interface Controller) or a wireless LAN (Local Area Network) module. Note that SDN (Software-Defined Networking) may be implemented in the communication unit 26c.
  • NIC Network Interface Controller
  • LAN Local Area Network
  • FIG. 3 is a diagram showing an example of the configuration of the UE 38 according to the present embodiment.
  • the UE 38 includes a processor 38a, a storage section 38b, a communication section 38c, a touch panel 38d, and the like.
  • the processor 38a is a program-controlled device such as a microprocessor that operates according to a program installed in the UE 38.
  • the storage unit 38b is, for example, a storage element such as a RAM or a flash memory.
  • the storage unit 38b stores programs and the like executed by the processor 38a.
  • the communication unit 38c is, for example, a communication interface such as an RF (Radio Frequency) chip or a baseband processor.
  • the touch panel 38d is, for example, a combination of a touch sensor and a display such as a liquid crystal display or an organic EL display.
  • the touch panel 38d displays a screen generated by the processor 38a.
  • the CGN server 24 is a server equipped with a carrier grade NAT (CGN) function, and performs conversion between a global IP address and a private IP address.
  • CGN carrier grade NAT
  • the gateway router 28 is a node between the autonomous system 10a and the Internet exchange 36.
  • Gateway router 34 is a node between autonomous system 10b and Internet exchange 36.
  • the video content server 30 is a server that provides video content data in response to a request from the UE 38, for example.
  • the advertising content server 32 is, for example, a server that provides advertising content data in response to a request from the UE 38.
  • the Internet exchange 36 is a group of devices that provides an interconnection environment between Internet service providers (ISPs).
  • ISPs Internet service providers
  • the Internet exchange 36 according to this embodiment provides full transit service to the autonomous system 10a and the autonomous system 10b.
  • FIG. 4 is a diagram showing an example of a logical communication path set between the UE 38 and the agent server 26. As shown in FIG. 4, in this embodiment, for example, a plurality of logical communication paths are constructed between the UE 38 and the agent server 26. In the example of FIG. 4, a communication path 40a and a communication path 40b are constructed between the UE 38 and the agent server 26.
  • Part or all of the communication path 40a may be a network slice. Further, part or all of the communication path 40b may be a network slice.
  • the value of the slice ID corresponding to the communication path 40a is "1" and the value of the slice ID corresponding to the communication path 40b is "2".
  • the slice ID according to this embodiment refers to network slice identification information (for example, S-NSSAI (Single-Network Slice Selection Assistance Information)).
  • FIG. 5 is a diagram showing an example of the web page 42 displayed on the touch panel 38d of the UE 38 according to the present embodiment.
  • Video content 44 and advertising content 46 are arranged on the web page 42 according to this embodiment.
  • data is transmitted from the data providing device to the UE 38 in response to a transmission request from the UE 38.
  • the video content server 30 and advertising content server 32 described above correspond to an example of a data providing device.
  • the data transmitted from the data providing device to the UE 38 will be referred to as target data.
  • the UE 38 acquires target data of the video content 44 from the video content server 30 and acquires target data of the advertising content 46 from the advertising content server 32. Then, the UE 38 generates a web page 42 on which video content 44 and advertising content 46 are arranged based on the acquired target data, and displays the web page 42 on the touch panel 38d.
  • the UE 38 can be set with a plurality of real IP addresses.
  • the UE 38 may include a plurality of communication units 38c, and a real IP address may be set to each communication unit 38c.
  • a plurality of virtual NICs may be installed in the UE 38, and a real IP address may be set for each of the plurality of virtual NICs.
  • IP address "b1.b1.b1.b1” and the IP address “b2.b2.b2.b2” are IP addresses used in communication performed via the communication path 40a. Further, it is assumed that the IP address "c1.c1.c1.c1" and the IP address "c2.c2.c2.c2" are IP addresses used in communication performed via the communication path 40b.
  • IP address of the video content server 30 is "d1.d1.d1.d1”
  • IP address of the advertising content server 32 is “e1.e1.e1.e1”
  • IP address of the agent server 26 is " f1.f1.f1.f1”. It is also assumed that these IP addresses are stored in the UE 38, and that the UE 38 already recognizes, for example, the IP addresses of the video content server 30, advertising content server 32, and agent server 26.
  • route information is exchanged in advance between the gateway router 28 and the gateway router 34 via the Internet exchange 36 using the BGP protocol.
  • a private AS number is assigned to the agent server 26, and route information is exchanged between the gateway router 28 and the agent server 26 using the BGP protocol using the private AS number.
  • FIG. 6 is a diagram showing an example of communication route management data according to the present embodiment.
  • the communication path management data shown in FIG. 6 is stored in the agent server 26, for example.
  • the communication path management data includes, for example, virtual IP address data indicating a virtual IP address, slice ID which is slice identification information (for example, S-NSSAI), and real IP address data indicating a real IP address.
  • the virtual IP address, slice ID, and real IP address are associated with each other.
  • one virtual IP address "a1.a1.a1.a1" is associated with multiple slices.
  • the virtual IP address is associated with a combination of slice ID "1" and real IP address "b1.b1.b1.b1”.
  • the virtual IP address is associated with the combination of slice ID "2" and real IP address "c1.c1.c1.c1".
  • the real IP address indicated in the communication path management data is a global IP address.
  • FIG. 7 is a diagram schematically showing an example of the correspondence between global IP addresses and private IP addresses.
  • the global IP address "b1.b1.b1.b1” is associated with the private IP address "b2.b2.b2.b2”.
  • the global IP address "c1.c1.c1.c1” is associated with the private IP address "c2.c2.c2.c2”.
  • the CGN server 24 performs address translation between the global IP address and private IP address that are associated with each other.
  • FIG. 8 is a diagram schematically showing an example of an IP header of a packet requesting transmission of target data of the video content 44.
  • the virtual IP address of the UE 38 is set as the source address
  • the IP address of the video content server 30 is set as the destination address.
  • the UE 38 adds a capsule header to the transmission request to which the IP header shown in FIG. 8 has been added.
  • the IP address "b2.b2.b2.b2" which is the private IP address of the UE 38 is set in the source address of the capsule header, and the IP address "f1.f1.f1" which is the IP address of the agent server 26 is set in the destination address. .f1" is set.
  • the UE 38 transmits the transmission request to which the capsule header is added as described above.
  • the transmission request is transmitted, for example, from the communication unit 38c or virtual NIC associated with the IP address "b2.b2.b2.b2".
  • the transmission request reaches the CGN server 24 via the communication path 40a.
  • the CGN server 24 changes the source address of the capsule header of the transmission request from the IP address "b2.b2.b2.b2", which is the private IP address of the UE 38, to the global IP address of the UE 38. Rewrite the address to the IP address "b1.b1.b1.b1".
  • the CGN server 24 transmits the transmission request. Then, the transmission request reaches the agent server 26 via the communication path 40a.
  • the agent server 26 removes the capsule header from the transmission request.
  • the agent server 26 determines the type of target data.
  • the agent server 26 may store a list of IP addresses of advertisement senders. Then, if the destination address of the IP header is included in the list, the agent server 26 may determine that the type of target data is an advertisement.
  • the agent server 26 may store a list of domain names of advertisement senders. If the list includes a domain name corresponding to the destination address of the IP header, the agent server 26 may determine that the type of target data is an advertisement. Note that by executing an inquiry to the DNS server, the agent server 26 can specify the domain name corresponding to the IP address based on the IP address, or specify the IP address corresponding to the domain name based on the domain name. It is possible to identify the
  • the agent server 26 may store a list of URLs of advertisement transmission sources. Then, if the URL of the destination of the transmission request is included in the list, the agent server 26 may determine that the type of target data is an advertisement.
  • the agent server 26 may store a list of IP addresses of video transmission sources. Then, if the destination address of the IP header is included in the list, the agent server 26 may determine that the type of target data is a moving image.
  • the agent server 26 may store a list of domain names of video senders. If the list includes a domain name corresponding to the destination address of the IP header, the agent server 26 may determine that the type of target data is a video.
  • the agent server 26 may store a list of URLs of video transmission sources. If the URL of the destination of the transmission request is included in the list, the agent server 26 may determine that the type of target data is a moving image.
  • the method for determining the type of target data is not limited to the above method.
  • the type of target data may be determined based on metadata such as URL options embedded in the web page 42.
  • the agent server 26 identifies the real IP address corresponding to the type of target data identified in this manner based on the communication route management data.
  • the correspondence between the type of target data and the slice ID may be determined in advance.
  • slice ID "1" may be associated with a video
  • slice ID "2" may be associated with an advertisement.
  • the communication path management data includes the IP address "a1.a1.a1.a1” set as the source address of the IP header and the slice ID "1".
  • "b1.b1.b1.b1” which is the value of the real IP address associated with the combination with "b1.b1.b1.b1” is specified.
  • the agent server 26 holds the value of the real IP address specified in this way.
  • the agent server 26 then transmits the transmission request with the capsule header removed. This transmission request reaches the video content server 30 via the gateway router 28, the Internet exchange 36, and the gateway router 34.
  • the video content server 30 transmits the target data of the video content 44 as a response to the transmission request.
  • FIG. 11 is a diagram schematically showing an example of an IP header of a packet of target data of this video content 44.
  • the IP address of the video content server 30 is set as the source address
  • the virtual IP address of the UE 38 is set as the destination address.
  • the target data of the video content 44 reaches the agent server 26 via the gateway router 34, the Internet exchange 36, and the gateway router 28.
  • the agent server 26 adds a capsule header to the target data of the video content 44 to which the IP header shown in FIG. 11 has been added.
  • the source address of the capsule header is set to "f1.f1.f1.f1", which is the IP address of the agent server 26, and the destination address is set to the held real IP address.
  • the agent server 26 sets the held real IP address value "b1.b1.b1.b1" to the destination address of the capsule header.
  • the agent server 26 transmits the target data of the video content 44 to which the capsule header has been added as described above.
  • the target data of the video content 44 reaches the CGN server 24, for example, via the communication path 40a associated with the global IP address "b1.b1.b1.b1".
  • the CGN server 24 changes the destination address of the capsule header of the transmission request from the IP address "b1.b1.b1.b1" which is the global IP address of the UE 38 to the private IP address of the UE 38.
  • the IP address is rewritten to "b2.b2.b2.b2".
  • the CGN server 24 transmits the target data of the video content 44. Then, the target data of the video content 44 reaches the UE 38 via the communication path 40a.
  • the UE 38 acquires the target data of the video content 44.
  • FIG. 14 is a diagram schematically showing an example of an IP header of a packet requesting transmission of target data of advertising content 46 generated by UE 38 according to the present embodiment.
  • the virtual IP address of the UE 38 is set as the source address
  • the IP address of the advertising content server 32 is set as the destination address.
  • the UE 38 adds a capsule header to the transmission request to which the IP header shown in FIG. 14 has been added.
  • a capsule header similar to the capsule header shown in FIG. 9 is added.
  • the UE 38 transmits the transmission request to which the capsule header is added as described above.
  • the transmission request is transmitted, for example, from the communication unit 38c or virtual NIC associated with the IP address "b2.b2.b2.b2".
  • the transmission request reaches the CGN server 24 via the communication path 40a.
  • the CGN server 24 changes the source address of the IP header of the transmission request from the IP address "b2.b2.b2.b2", which is the private IP address of the UE 38, to the global IP address of the UE 38. Rewrite the address to the IP address "b1.b1.b1.b1".
  • the CGN server 24 transmits the transmission request. Then, the transmission request reaches the agent server 26 via the communication path 40a.
  • the agent server 26 removes the capsule header from the transmission request.
  • the agent server 26 determines the type of target data.
  • the agent server 26 identifies the real IP address corresponding to the type of target data identified in this manner based on the communication path management data.
  • the IP address "a1.a1.a1.a1” set as the source address of the IP header and the slice ID "2" are set as the source address of the IP header.
  • "c1.c1.c1.c1” which is the value of the real IP address associated with the combination with "c1.c1.c1.c1” is specified.
  • the agent server 26 holds the value of the real IP address specified in this way.
  • the agent server 26 then transmits the transmission request with the capsule header removed. This transmission request reaches the advertisement content server 32 via the gateway router 28, the Internet exchange 36, and the gateway router 34.
  • the advertising content server 32 transmits the target data of the advertising content 46 as a response to the transmission request.
  • FIG. 17 is a diagram schematically showing an example of an IP header of a packet of target data of this advertising content 46.
  • the IP address of the advertising content server 32 is set as the source address
  • the virtual IP address of the UE 38 is set as the destination address.
  • the target data of the advertising content 46 reaches the agent server 26 via the gateway router 34, the Internet exchange 36, and the gateway router 28.
  • the agent server 26 adds a capsule header to the target data of the advertising content 46 to which the IP header shown in FIG. 17 has been added.
  • the source address of the capsule header is set to "f1.f1.f1.f1", which is the IP address of the agent server 26, and the destination address is set to the held real IP address.
  • the agent server 26 sets the held real IP address value "c1.c1.c1.c1" to the destination address of the capsule header.
  • the agent server 26 transmits the target data of the advertising content 46 to which the capsule header has been added as described above.
  • the target data of the advertising content 46 reaches the CGN server 24, for example, via the communication path 40b associated with the global IP address "c1.c1.c1.c1".
  • the CGN server 24 changes the destination address of the capsule header of the transmission request from the IP address "c1.c1.c1.c1" which is the global IP address of the UE 38 to the private IP address of the UE 38.
  • the IP address is rewritten to "c2.c2.c2.c2".
  • the CGN server 24 transmits the target data of the advertising content 46. Then, the target data of the advertising content 46 reaches the UE 38 via the communication path 40b.
  • the UE 38 obtains target data of the advertising content 46.
  • the communication path of the target data is controlled depending on the type of target data. In this way, according to the present embodiment, it is possible to accurately control the communication path of target data transmitted from the data providing device to the UE 38 in response to a transmission request from the UE 38.
  • target data with low importance can be transmitted via a communication path with a slow communication speed or a high latency.
  • operators such as telecommunications carriers may impose certain restrictions on high-quality communication routes (e.g., high-quality network slices) (e.g., on the amount of data that users can communicate under pay-as-you-go charges). It is assumed that there will be an upper limit, etc.). For example, in such a situation, according to the present embodiment, it is possible to transmit the advertising content 46 while avoiding the communication route with such restrictions.
  • high-quality communication routes e.g., high-quality network slices
  • c2.c2.c2.c2 may be set as the source address of the capsule header added to the transmission request instead of "b2.b2.b2.b2".
  • the transmission request will reach the agent server 26 via the communication path 40b.
  • the communication path 40a is a communication path with the above-mentioned restrictions, by doing so, it is possible to suppress the amount of communication on the communication path 40a.
  • FIG. 20 is a functional block diagram showing an example of functions implemented in the UE 38 and the agent server 26 according to the present embodiment. Note that the UE 38 and agent server 26 according to this embodiment do not need to implement all of the functions shown in FIG. 20, and functions other than those shown in FIG. 20 may be implemented.
  • the UE 38 functionally includes, for example, a transmission request generation section 50, a terminal encapsulation section 52, a transmission request transmission section 54, a target data reception section 56, and a display control section 58. , is included.
  • the transmission request generation unit 50 and the terminal encapsulation unit 52 are mainly implemented in the processor 38a.
  • the transmission request transmitting section 54 and the target data receiving section 56 are mainly implemented by the communication section 38c.
  • the display control unit 58 is mainly implemented with a processor 38a and a touch panel 38d.
  • the above functions may be implemented by having the UE 38, which is a computer, execute a program installed in the UE 38 that includes commands corresponding to the above functions. Further, this program may be supplied to the UE 38 via a computer-readable information storage medium such as an optical disk, a magnetic disk, a magnetic tape, or a magneto-optical disk, or via the Internet.
  • a computer-readable information storage medium such as an optical disk, a magnetic disk, a magnetic tape, or a magneto-optical disk, or via the Internet.
  • the agent server 26 functionally includes, for example, a corresponding data storage section 60, a transmission request relay section 62, a relay de-encapsulation section 64, a determination section 66, a communication A route determination section 68, a target data relay section 70, and a relay encapsulation section 72 are included.
  • the corresponding data storage section 60 is mainly implemented with the storage section 26b.
  • the transmission request relay section 62 and the target data relay section 70 are mainly implemented by the communication section 26c.
  • the relay decapsulation unit 64, the determination unit 66, and the relay encapsulation unit 72 are mainly implemented in the processor 26a.
  • the communication path determining section 68 is mainly implemented with the processor 26a and the storage section 26b.
  • the above functions may be implemented by having the agent server 26, which is a computer, execute a program that is installed on the agent server 26 and includes commands corresponding to the above functions. Further, this program may be supplied to the agent server 26 via a computer-readable information storage medium such as an optical disk, a magnetic disk, a magnetic tape, or a magneto-optical disk, or via the Internet.
  • a computer-readable information storage medium such as an optical disk, a magnetic disk, a magnetic tape, or a magneto-optical disk, or via the Internet.
  • the transmission request generation unit 50 transmits a request to the data providing device, which includes an IP header in which the virtual IP address of the UE 38 is set as the source address and the IP address of the data providing device is set as the destination address. Generate a request to send the requested target data.
  • the above-mentioned video content server 30 and advertising content server 32 correspond to an example of a data providing device.
  • the terminal encapsulation unit 52 adds, for example, to the transmission request generated by the transmission request generation unit 50, a capsule header in which the IP address of the relay device is set as the destination address.
  • the agent server 26 described above corresponds to an example of a relay device.
  • the transmission request transmitting unit 54 transmits, for example, a transmission request for target data to the relay device.
  • the correspondence data storage unit 60 stores, for example, correspondence data indicating the correspondence between a plurality of communication routes set between the relay device and the UE 38 and an IP address.
  • correspondence data indicating the correspondence between a plurality of communication routes set between the relay device and the UE 38 and an IP address.
  • the communication path management data shown in FIG. 6 corresponds to an example of the corresponding data.
  • the transmission request relay unit 62 receives, for example, a target data transmission request from the UE 38 and transmits the transmission request to the data providing device.
  • the relay decapsulation unit 64 removes the capsule header from the transmission request to which the capsule header is attached, for example.
  • the transmission request relay unit 62 receives an IP header in which the virtual IP address of the UE 38 is set as the source address, the IP address of the data providing device is set as the destination address, and the IP address of the relay device.
  • a transmission request with a capsule header set to the destination address may be received.
  • the relay decapsulation unit 64 may remove the capsule header from the transmission request, and the transmission request relay unit 62 may transmit the transmission request from which the capsule header has been removed to the data providing device.
  • the determination unit 66 determines, for example, the type of target data. As described above, the determination unit 66 may determine the type of target data based on the destination of the target data.
  • the determination unit 66 includes a list of IP addresses of video senders, a list of domain names of video senders, a list of URLs of video senders, a list of IP addresses of advertisement senders, and a list of IP addresses of video senders.
  • Reference data such as a list of domain names of senders of advertisements, a list of URLs of senders of advertisements, etc. may be stored in advance.
  • the determination unit 66 may determine the type of target data based on the reference data.
  • the communication route determination unit 68 determines a communication route according to the determination result by the determination unit 66 from among the plurality of communication routes set with the UE 38, for example.
  • the determination unit 66 may determine whether the target data is the advertising content 46. Then, the communication route determination unit 68 determines a communication route depending on whether the target data is the advertising content 46 from among the plurality of communication routes set between the UE 38 and the relay device. good.
  • the communication path determining unit 68 may determine the slice ID according to the result of the determination by the determining unit 66.
  • the communication route determination unit 68 may determine an IP address (for example, a real IP address) that is associated with the determined communication route in corresponding data such as communication route management data.
  • the communication route determining unit 68 may hold communication route information indicating the determined communication route.
  • the communication route determination unit 68 may hold the value of the IP address determined as described above as communication route information.
  • the target data relay unit 70 receives, for example, target data transmitted from a data providing device that has received a transmission request. Then, in this embodiment, the target data relay unit 70 transmits the target data to the UE 38 via the communication route determined by the communication route determination unit 68, for example.
  • the target data relay unit 70 may transmit the data to the UE 38 via the communication route indicated by the communication route information held by the communication route determination unit 68.
  • the relay encapsulation unit 72 adds a capsule to the target data received from the data providing device in which the IP address of the UE 38 associated with the communication route determined by the communication route determination unit 68 is set as the destination address. Add header.
  • the relay encapsulation unit 72 adds, to the target data received from the data providing device, a capsule header in which the IP address associated in the data corresponding to the communication route determined by the communication route determination unit 68 is set as the destination address. may be given.
  • the relay encapsulation unit 72 may add a capsule header in which the IP address held by the communication route determining unit 68 is set as the destination address to the target data received from the data providing device.
  • the target data relay unit 70 adds an IP header in which the IP address of the data providing device is set as the source address and the virtual IP address of the UE 38 is set as the destination address, as shown in FIGS. 11 and 17.
  • the target data may also be received.
  • the relay encapsulation unit 72 assigns the target data as shown in FIGS.
  • a capsule header in which the IP address is set as the destination address may be added.
  • the relay encapsulation unit 72 may add a capsule header in which the real IP address of the UE 38 indicated by the communication route information held by the communication route determination unit 68 is set as the destination address.
  • the target data relay section 70 receives the target data transmitted from the data providing device, and the relay encapsulation section 72 adds the above-mentioned capsule header to the target data, and the target data relay section 70 may transmit the target data to which the capsule header is attached.
  • the target data receiving unit 56 receives, for example, target data transmitted from the target data relay unit 70 via the communication route indicated by the above-mentioned communication route information.
  • the display control unit 58 causes the touch panel 38d to display the target data received by the target data receiving unit 56, for example.
  • the display control unit 58 generates a web page 42 in which video content 44 and advertising content 46 are arranged, and displays the generated web page 42 on the touch panel 38d.
  • each of the plurality of communication paths set between the UE 38 and the relay device may be a network slice.
  • the communication route determining unit 68 may determine a network slice according to the determination result by the determining unit 66 from among the plurality of network slices set between the communication route determining unit 68 and the relay device.
  • the transmission request transmitting unit 54 may transmit a target data transmission request associated with communication route information indicating the network slice determined by the communication route determining unit 68 to the relay device.
  • the target data relay unit 70 receives target data transmitted from the data providing device that has received the transmission request, and transmits the target data to the UE 38 via the network slice determined by the communication path determination unit 68. You may.
  • the target data receiving unit 56 may receive target data transmitted via the network slice determined by the communication path determining unit 68 from the target data relay unit 70.
  • the communication route determining unit 68 may hold a combination of the virtual IP address of the transmission source and the determined slice ID as communication route information instead of the value of the IP address. Then, the relay encapsulation unit 72 may identify the real IP address that is associated in the correspondence data with the combination of the held virtual IP address of the source and the determined slice ID. Then, the relay encapsulation unit 72 may add a capsule header in which the real IP address identified in this way is set as the destination address.
  • the determining unit 66 may identify the type of target data based on the source address of the target data.
  • the communication route determination unit 68 may then determine a communication route according to the type of target data determined in this manner. Then, the target data relay unit 70 may transmit the target data to the UE 38 via the communication path determined in this manner.
  • the UE 38 may include a plurality of communication units 38c that each perform communication via different communication paths.
  • the UE 38 may include two communication units 38c, one communication unit 38c may communicate via the communication path 40a, and the other communication unit 38c may communicate via the communication path 40b.
  • "b1.b1.b1.b1” may be set as a global IP address
  • "b2.b2.b2.b2” may be set as a private IP address
  • the other communication unit 38c may have "c1.c1.c1.c1" set as the global IP address and "c2.c2.c2.c2" set as the private IP address.
  • the relay encapsulation unit 72 sets the IP address (global address) of the communication unit 38c, which is associated with the communication route determined by the communication route determination unit 68, as the destination address in the target data received from the data providing device.
  • IP address global address
  • a capsule header may also be added.
  • FIGS. 21A and 21B are flowcharts illustrating an example of the flow of processing related to transmission of a target data transmission request performed by the UE 38, the CGN server 24, and the agent server 26 according to the present embodiment. I will explain while referring to it.
  • a process will be described in which a target data transmission request is transmitted from the UE 38 to the data providing device, and target data corresponding to the transmission request is transmitted from the data providing device to the UE 38.
  • the transmission request generation unit 50 of the UE 38 generates a transmission request for target data (S101).
  • the virtual IP address of the UE 38 is set in the source address of the transmission request generated in the process shown in S101, and the IP address of the data providing device requesting transmission of target data is set in the destination address.
  • the terminal encapsulation unit 52 of the UE 38 adds a capsule header to the transmission request generated in the process shown in S101 (S102).
  • the private IP address of the UE 38 is set to the source address of the capsule header added in the process shown in S102, and the IP address of the agent server 26 is set to the destination address.
  • the transmission request transmitting unit 54 of the UE transmits the transmission request to which the capsule header has been added in the process shown in S102 to the CGN server 24, and the CGN server 24 receives the transmission request (S103).
  • the CGN server 24 converts the source address of the capsule header of the transmission request received in the process shown in S103 (S104).
  • the source address of the capsule header of the transmission request is changed from the private IP address of the UE 38 to the global IP address associated with the private IP address.
  • the CGN server 24 transmits the transmission request with the source address of the capsule header converted in the process shown in S104 to the agent server 26, and the transmission request relay unit 62 of the agent server 26 receives the transmission request. (S105).
  • step S105 the relay decapsulation unit 64 of the agent server 26 The capsule header is removed from the transmission request received in the process shown in (S106).
  • the determination unit 66 of the agent server 26 determines the type of target data (S107).
  • the communication route determination unit 68 of the agent server 26 determines the communication route through which the target data passes based on the determination result in the process shown in S107 (S108).
  • the communication route determination unit 68 of the agent server 26 identifies the value of the real IP address associated with the communication route determined in the process shown in S108 (S109).
  • the communication route determining unit 68 of the agent server 26 holds the value of the real IP address specified in the process shown in S109 (S110).
  • the transmission request relay unit 62 of the agent server 26 then addresses the transmission request from which the capsule header has been removed in the process shown in S106 to the data providing device associated with the destination address set in the IP header of the transmission request. Send (S111).
  • the data providing device that has received the transmission request transmits the target data according to the transmission request, and the target data relay unit 70 of the agent server 26 receives the target data (S112).
  • the IP address of the data providing device is set in the source address of the target data, and the virtual IP address of the UE 38 is set in the destination address.
  • the relay encapsulation unit 72 of the agent server 26 adds a capsule header to the target data received in the process shown in S112 (S113).
  • the IP address of the agent server 26 is set in the source address of the capsule header added in the process shown in S113, and the real IP address held in the communication route determining unit 68 in the process shown in S110 is set in the destination address. Set.
  • the target data relay unit 70 of the agent server 26 transmits the target data to which the capsule header has been added in the process shown in S113 to the CGN server 24, and the CGN server 24 receives the target data (S114). .
  • the CGN server 24 converts the destination address of the capsule header of the target data received in the process shown in S114 (S115).
  • the destination address of the capsule header of the target data is changed from the global IP address of the UE 38 to the private IP address associated with the global IP address.
  • the CGN server 24 transmits the target data with the destination address of the capsule header converted in the process shown in S115 to the UE 38, and the target data receiving unit 56 of the UE 38 receives the target data (S116). Then, the processing shown in this processing example is ended.
  • the type of target data is not limited to videos and advertisements. For example, it may be determined whether the type of target data is email. Alternatively, it may be determined whether the type of target data is data related to a specific type of social media.
  • the functional unit according to this embodiment may be realized using hypervisor-type or host-type virtualization technology instead of container-type virtualization technology. Further, the functional unit according to this embodiment does not need to be implemented by software, and may be implemented by hardware such as an electronic circuit. Further, the functional unit according to this embodiment may be implemented by a combination of an electronic circuit and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

通信端末からの送信要求に応じてデータ提供装置から当該通信端末に送信されるターゲットデータの通信経路を的確に制御できる通信経路制御装置、通信経路制御方法及びプログラムを提供する。送信要求中継部(62)は、UE(38)からターゲットデータの送信要求を受信して、当該送信要求をデータ提供装置に送信する。判定部(66)は、ターゲットデータの種類を判定する。通信経路決定部(68)は、UE(38)との間に設定されている複数の通信経路のうちから、判定の結果に応じた通信経路を決定する。ターゲットデータ中継部(70)は、送信要求を受信したデータ提供装置から送信されるターゲットデータを受信して、当該ターゲットデータを通信経路決定部(68)により決定される通信経路経由でUE(38)に送信する。

Description

通信経路制御装置、通信経路制御方法及びプログラム
 本発明は、通信経路制御装置、通信経路制御方法及びプログラムに関する。
 特許文献1には、複数のネットワークスライスにアクセス可能な端末装置が記載されている。
特開2018-170748号公報
 発明者は、通信端末がデータ提供装置に対して送信を要求するターゲットデータの種類によって、データ提供装置が送信するターゲットデータが経由する通信経路を切り替えることを検討している。例えば、重要度が低いターゲットデータについては、通信速度が遅い、あるいは、レイテンシが大きい通信経路を経由して送信されるようにする、などのようにすることが考えられる。
 しかし、特許文献1に記載の技術では、ターゲットデータの種類によって経由する通信経路を切り替えることができなかった。
 本発明は上記実情に鑑みてなされたものであって、その目的の一つは、通信端末からの送信要求に応じてデータ提供装置から当該通信端末に送信されるターゲットデータの通信経路を的確に制御できる通信経路制御装置、通信経路制御方法及びプログラムを提供することにある。
 上記課題を解決するために、本発明に係る通信経路制御装置は、通信端末からターゲットデータの送信要求を受信して、当該送信要求をデータ提供装置に送信する送信要求中継手段と、前記ターゲットデータの種類を判定する判定手段と、前記通信端末との間に設定されている複数の通信経路のうちから、前記判定の結果に応じた通信経路を決定する通信経路決定手段と、前記送信要求を受信した前記データ提供装置から送信される前記ターゲットデータを受信して、当該ターゲットデータを決定される前記通信経路経由で前記通信端末に送信するターゲットデータ中継手段と、を含む。
 本発明の一態様では、前記データ提供装置から受信する前記ターゲットデータに、決定される前記通信経路に対応付けられる前記通信端末のIPアドレスが宛先アドレスに設定されたカプセルヘッダを付与するカプセル化手段、をさらに含み、前記ターゲットデータ中継手段は、前記カプセルヘッダが付与された前記ターゲットデータを送信する。
 この態様では、前記複数の通信経路についての当該通信経路とIPアドレスとの対応を示す対応データを記憶する対応データ記憶手段、をさらに含み、前記カプセル化手段は、前記データ提供装置から受信する前記ターゲットデータに、決定される前記通信経路に前記対応データにおいて対応付けられているIPアドレスが宛先アドレスに設定されたカプセルヘッダを付与してもよい。
 あるいは、前記通信端末は、互いに異なる通信経路を経由した通信をそれぞれ行う複数の通信部を含み、前記カプセル化手段は、前記データ提供装置から受信する前記ターゲットデータに、決定される前記通信経路に対応付けられる前記通信部のIPアドレスが宛先アドレスに設定されたカプセルヘッダを付与してもよい。
 あるいは、前記送信要求中継手段は、前記通信端末の仮想IPアドレスが送信元アドレスに設定され、前記データ提供装置のIPアドレスが宛先アドレスに設定されたIPヘッダと、前記通信経路制御装置のIPアドレスが宛先アドレスに設定されたカプセルヘッダと、が付与された前記送信要求を受信し、前記カプセルヘッダが付与された前記送信要求から前記カプセルヘッダを除去する非カプセル化手段、をさらに含み、前記送信要求中継手段は、前記カプセルヘッダが除去された前記送信要求を前記データ提供装置に送信し、前記ターゲットデータ中継手段は、前記データ提供装置のIPアドレスが送信元アドレスに設定され、前記通信端末の仮想IPアドレスが宛先アドレスに設定されたIPヘッダが付与された前記ターゲットデータを受信し、前記カプセル化手段は、前記データ提供装置のIPアドレスが送信元アドレスに設定され、前記通信端末の仮想IPアドレスが宛先アドレスに設定されたIPヘッダが付与された前記ターゲットデータに、決定される前記通信経路に対応付けられる前記通信端末の実IPアドレスが宛先アドレスに設定されたカプセルヘッダを付与してもよい。
 また、本発明の一態様では、前記判定手段は、前記ターゲットデータの宛先に基づいて、前記ターゲットデータの種類を判定する。
 また、本発明の一態様では、前記判定手段は、前記ターゲットデータが広告コンテンツであるか否かを判定し、前記通信経路決定手段は、前記通信端末との間に設定されている複数の通信経路のうちから、前記ターゲットデータが広告コンテンツであるか否かに応じた通信経路を決定する。
 また、本発明の一態様では、前記通信経路決定手段は、前記通信端末との間に設定されている複数のネットワークスライスのうちから、前記判定の結果に応じたネットワークスライスを決定し、前記ターゲットデータ中継手段は、前記送信要求を受信した前記データ提供装置から送信される前記ターゲットデータを受信して、当該ターゲットデータを決定される前記ネットワークスライス経由で前記通信端末に送信する。
 また、本発明に係る通信経路制御方法は、通信端末からターゲットデータの送信要求を受信して、当該送信要求をデータ提供装置に送信するステップと、前記ターゲットデータの種類を判定するステップと、前記通信端末との間に設定されている複数の通信経路のうちから、前記判定の結果に応じた通信経路を決定するステップと、前記送信要求を受信した前記データ提供装置から送信される前記ターゲットデータを受信して、当該ターゲットデータを決定される前記通信経路経由で前記通信端末に送信するステップと、を含む。
 また、本発明に係るプログラムは、通信端末からターゲットデータの送信要求を受信して、当該送信要求をデータ提供装置に送信する手順、前記ターゲットデータの種類を判定する手順、前記通信端末との間に設定されている複数の通信経路のうちから、前記判定の結果に応じた通信経路を決定する手順、前記送信要求を受信した前記データ提供装置から送信される前記ターゲットデータを受信して、当該ターゲットデータを決定される前記通信経路経由で前記通信端末に送信する手順、をコンピュータに実行させる。
本発明の一実施形態に係る通信システムの一例を示す図である。 本発明の一実施形態に係るエージェントサーバの構成の一例を示す図である。 本発明の一実施形態に係るUEの構成の一例を示す図である。 UEとエージェントサーバとの間に設定されている論理的な通信経路の一例を示す図である。 Webページの一例を示す図である。 通信経路管理データの一例を示す図である。 グローバルIPアドレスとプライベートIPアドレスとの対応の一例を模式的に示す図である。 動画コンテンツのターゲットデータの送信要求のパケットのIPヘッダの一例を模式的に示す図である。 カプセルヘッダとIPヘッダの一例を模式的に示す図である。 カプセルヘッダとIPヘッダの一例を模式的に示す図である。 動画コンテンツのターゲットデータのパケットのIPヘッダの一例を模式的に示す図である。 カプセルヘッダとIPヘッダの一例を模式的に示す図である。 カプセルヘッダとIPヘッダの一例を模式的に示す図である。 広告コンテンツのターゲットデータの送信要求のパケットのIPヘッダの一例を模式的に示す図である。 カプセルヘッダとIPヘッダの一例を模式的に示す図である。 カプセルヘッダとIPヘッダの一例を模式的に示す図である。 広告コンテンツのターゲットデータのパケットのIPヘッダの一例を模式的に示す図である。 カプセルヘッダとIPヘッダの一例を模式的に示す図である。 カプセルヘッダとIPヘッダの一例を模式的に示す図である。 本発明の一実施形態に係るUE、及び、エージェントサーバで実装される機能の一例を示す機能ブロック図である。 本発明の一実施形態に係るUE、CGNサーバ、及び、エージェントサーバで行われる処理の流れの一例を示すフロー図である。 本発明の一実施形態に係るUE、CGNサーバ、及び、エージェントサーバで行われる処理の流れの一例を示すフロー図である。
 以下、本発明の一実施形態について図面に基づき詳細に説明する。
 図1は、本発明の一実施形態に係る通信システム1の一例を示す図である。
 図1に示すように、本実施形態に係る通信システム1には、自律システム(AS(Autonomous System))10a、及び、自律システム10bが含まれる。
 自律システム10aには、無線アクセスネットワーク(RAN(Radio Access Network))20、コアネットワークシステム22、キャリアグレードNAT(Network Address Translation)サーバ(CGNサーバ)24、エージェントサーバ26、ゲートウェイルータ28が含まれる。
 自律システム10bには、動画コンテンツサーバ30、広告コンテンツサーバ32、ゲートウェイルータ34が含まれる。
 そして、自律システム10aは、ゲートウェイルータ28を介して、インターネットエクスチェンジ(IX)36に接続されている。また、自律システム10bは、ゲートウェイルータ34を介してインターネットエクスチェンジ36に接続されている。
 RAN20は、第4世代移動通信システム(以下、4Gと呼ぶ。)におけるeNB(eNodeB)や、第5世代移動通信システム(以下、5Gと呼ぶ。)におけるgNB(NR基地局)に相当する、アンテナを備えたコンピュータシステムである。本実施形態に係るRAN20は、データセンタに配置されているサーバ群や、アンテナを備えた通信設備によって実装されてもよい。
 コアネットワークシステム22は、4GにおけるEPC(Evolved Packet Core)や、5Gにおける5Gコア(5GC)に相当するシステムである。本実施形態に係るコアネットワークシステム22は、データセンタに配置されているサーバ群によって実装されてもよい。
 本実施形態では例えば、通信端末であるUE(User Equipment)38が、RAN20との間で無線通信を行う。そして、コアネットワークシステム22、RAN20、UE38は、互いに連携して、移動通信ネットワークを実現する。本実施形態に係るRAN20及びコアネットワークシステム22によって、音声通信サービスやデータ通信サービス等のネットワークサービスが、UE38を利用するユーザに提供される。
 なお、本実施形態において提供されるネットワークサービスは音声通信サービスやデータ通信サービスには限定されない。本実施形態において提供されるネットワークサービスは、例えば、IoT(Internet of Things)サービスであっても構わない。
 本実施形態では、RAN20やコアネットワークシステム22が実装されているサーバには、ドッカー(Docker(登録商標))などのコンテナ型の仮想化アプリケーション実行環境がインストールされており、これらのサーバにコンテナをデプロイして稼働させることができるようになっている。これらのサーバにおいて、このような仮想化技術によって生成された1以上のコンテナから構成されたクラスタが構築されてもよい。例えば、クバネテス(Kubernetes(登録商標))等のコンテナ管理ツールによって管理されるクラスタ(クバネテスクラスタ)が構築されていてもよい。そして、構築されたクラスタ上のプロセッサがコンテナ型のアプリケーションを実行してもよい。
 そして本実施形態において提供されるネットワークサービスは、1又は複数の機能ユニット(例えば、ネットワークファンクション(NF))から構成されてもよい。当該機能ユニットは、VNF(Virtualized Network Function)の一種であって、コンテナ型の仮想化技術によって実現されたCNF(Containerized Network Function)によって実装されてもよい。また、本実施形態に係る機能ユニットは、ネットワークノードに相当するものであってもよい。
 例えば、RAN20については、vDU(virtual Distributed Unit)、vCU(virtual Central Unit)、DU(Distributed Unit)、CU(Central Unit)などの要素がCNFによって実装されてもよい。
 また、コアネットワークシステム22については、UPF(User Plane Function)、AMF(Access and Mobility Management Function)、SMF(Session Management Function)などの要素がCNFによって実装されてもよい。
 図2は、本実施形態に係るエージェントサーバ26の構成の一例を示す図である。本実施形態に係るエージェントサーバ26は、例えば、クラウド基盤上に構成されており、図2に示すように、プロセッサ26a、記憶部26b、通信部26c、が含まれる。プロセッサ26aは、エージェントサーバ26にインストールされるプログラムに従って動作するマイクロプロセッサ等のプログラム制御デバイスである。記憶部26bは、例えばROMやRAM等の記憶素子や、ソリッドステートドライブ(SSD)、ハードディスクドライブ(HDD)などである。記憶部26bには、プロセッサ26aによって実行されるプログラムなどが記憶される。通信部26cは、例えば、NIC(Network Interface Controller)や無線LAN(Local Area Network)モジュールなどといった通信インタフェースである。なお、通信部26cにおいて、SDN(Software-Defined Networking)が実装されていてもよい。
 図3は、本実施形態に係るUE38の構成の一例を示す図である。図3に示すように、本実施形態に係るUE38には、プロセッサ38a、記憶部38b、通信部38c、タッチパネル38d、などが含まれる。プロセッサ38aは、UE38にインストールされるプログラムに従って動作するマイクロプロセッサ等のプログラム制御デバイスである。記憶部38bは、例えばRAMやフラッシュメモリなどの記憶素子である。記憶部38bには、プロセッサ38aによって実行されるプログラムなどが記憶される。通信部38cは、例えば、RF(Radio Frequency)チップやベースバンドプロセッサなどといった通信インタフェースである。タッチパネル38dは、例えばタッチセンサと液晶ディスプレイや有機ELディスプレイ等のディスプレイとが一体となったものである。タッチパネル38dは、プロセッサ38aが生成する画面などを表示させる。
 CGNサーバ24は、キャリアグレードNAT(CGN)の機能が実装されたサーバであり、グローバルIPアドレスとプライベートIPアドレスとの変換を実行する。
 ゲートウェイルータ28は、自律システム10aとインターネットエクスチェンジ36との結節点である。ゲートウェイルータ34は、自律システム10bとインターネットエクスチェンジ36との結節点である。
 動画コンテンツサーバ30は、本実施形態では例えば、UE38からの要求に応じて、動画コンテンツのデータを提供するサーバである。
 広告コンテンツサーバ32は、本実施形態では例えば、UE38からの要求に応じて、広告コンテンツのデータを提供するサーバである。
 インターネットエクスチェンジ36は、インターネットサービスプロバイダ(ISP)間の相互接続環境を提供する装置群である。本実施形態に係るインターネットエクスチェンジ36は、フルトランジットサービスを自律システム10a及び自律システム10bに提供する。
 図4は、UE38とエージェントサーバ26との間に設定されている論理的な通信経路の一例を示す図である。図4に示すように、本実施形態では例えば、UE38とエージェントサーバ26との間に複数の論理的な通信経路が構築されている。図4の例では、UE38とエージェントサーバ26との間に、通信経路40aと通信経路40bとが構築されている。
 通信経路40aの一部又は全部はネットワークスライスであってもよい。また、通信経路40bの一部又は全部はネットワークスライスであってもよい。以下、通信経路40aに対応するスライスIDの値は「1」であり、通信経路40bに対応するスライスIDの値は「2」であることとする。なお、本実施形態に係るスライスIDとは、ネットワークスライスの識別情報(例えば、S-NSSAI(Single-Network Slice Selection Assistance Information))を指すこととする。
 図5は、本実施形態に係るUE38のタッチパネル38dに表示されるWebページ42の一例を示す図である。本実施形態に係るWebページ42には、動画コンテンツ44と広告コンテンツ46とが配置されている。
 本実施形態では例えば、UE38からの送信要求に応じて、データ提供装置からUE38にデータが送信される。上述の動画コンテンツサーバ30、及び、広告コンテンツサーバ32は、データ提供装置の一例に相当する。以下、データ提供装置からUE38に送信されるデータをターゲットデータと呼ぶこととする。
 本実施形態に係るUE38は、動画コンテンツ44のターゲットデータを動画コンテンツサーバ30から取得し、広告コンテンツ46のターゲットデータを広告コンテンツサーバ32から取得する。そして、UE38は、取得したターゲットデータに基づいて、動画コンテンツ44と広告コンテンツ46とが配置されたWebページ42を生成して、当該Webページ42をタッチパネル38dに表示させる。
 以下、本実施形態に係る通信システム1で実行されるターゲットデータの取得に関する処理を説明する。
 以下の説明では、UE38に設定されている仮想IPアドレスは「a1.a1.a1.a1」であることとする。
 また、本実施形態に係るUE38には、複数の実IPアドレスを設定できるようになっている。例えば、UE38が複数の通信部38cを備えており、それぞれの通信部38cに実IPアドレスが設定されていてもよい。また、UE38に複数の仮想NICが実装されており、これら複数の仮想NICのそれぞれに実IPアドレスが設定されていてもよい。
 ここでは例えば、UE38の実IPアドレス(グローバルIPアドレス)として、「b1.b1.b1.b1」、及び、「c1.c1.c1.c1」が設定されていることとする。これらのグローバルIPアドレスは、例えば、自律システム10aに含まれるSMFによって付与される。
 また、UE38の実IPアドレス(プライベートIPアドレス)として、「b2.b2.b2.b2」、及び、「c2.c2.c2.c2」が設定されていることとする。「b2.b2.b2.b2」は、グローバルIPアドレス「b1.b1.b1.b1」に対応付けられるプライベートIPアドレスであることとする。また、「c2.c2.c2.c2」は、グローバルIPアドレス「c1.c1.c1.c1」に対応付けられるプライベートIPアドレスであることとする。
 そして、IPアドレス「b1.b1.b1.b1」とIPアドレス「b2.b2.b2.b2」は、通信経路40aを介して行われる通信で用いられるIPアドレスであることとする。また、IPアドレス「c1.c1.c1.c1」とIPアドレス「c2.c2.c2.c2」は、通信経路40bを介して行われる通信で用いられるIPアドレスであることとする。
 また、動画コンテンツサーバ30のIPアドレスが「d1.d1.d1.d1」であり、広告コンテンツサーバ32のIPアドレスが「e1.e1.e1.e1」であり、エージェントサーバ26のIPアドレスが「f1.f1.f1.f1」であることとする。また、これらのIPアドレスは、UE38に記憶されており、UE38は、例えば、動画コンテンツサーバ30、広告コンテンツサーバ32、及び、エージェントサーバ26のIPアドレスを既に認識していることとする。
 また、本実施形態では、予め、BGPプロトコルによって、インターネットエクスチェンジ36を介して、ゲートウェイルータ28とゲートウェイルータ34との間で経路情報の交換が行われている。また、エージェントサーバ26にプライベートAS番号が割り当てられており、当該プライベートAS番号を用いたBGPプロトコルによる経路情報の交換が、ゲートウェイルータ28とエージェントサーバ26との間で行われている。
 そして、上述の経路情報の交換によって、動画コンテンツサーバ30、あるいは、広告コンテンツサーバ32から送信される、「a1.a1.a1.a1」が宛先アドレスに設定されているパケットは、ゲートウェイルータ34、インターネットエクスチェンジ36、ゲートウェイルータ28を経由して、エージェントサーバ26に到達するようになっている。
 図6は、本実施形態に係る通信経路管理データの一例を示す図である。図6に示す通信経路管理データは、例えば、エージェントサーバ26に記憶されている。
 通信経路管理データには、例えば、仮想IPアドレスを示す仮想IPアドレスデータ、スライスの識別情報(例えば、S-NSSAI)であるスライスID、及び、実IPアドレスを示す実IPアドレスデータが含まれる。通信経路管理データにおいて、仮想IPアドレス、スライスID、実IPアドレスは、互いに関連付けられている。図6に示すように、本実施形態では1つの仮想IPアドレス「a1.a1.a1.a1」が、複数のスライスに対応付けられている。具体的には例えば、当該仮想IPアドレスが、スライスID「1」と実IPアドレス「b1.b1.b1.b1」の組合せに対応付けられている。また、当該仮想IPアドレスが、スライスID「2」と実IPアドレス「c1.c1.c1.c1」の組合せに対応付けられている。なお、本実施形態では、通信経路管理データに示されている実IPアドレスは、グローバルIPアドレスであることとする。
 図7は、グローバルIPアドレスとプライベートIPアドレスとの対応の一例を模式的に示す図である。上述のように、グローバルIPアドレス「b1.b1.b1.b1」は、プライベートIPアドレス「b2.b2.b2.b2」に対応付けられている。また、グローバルIPアドレス「c1.c1.c1.c1」は、プライベートIPアドレス「c2.c2.c2.c2」に対応付けられている。CGNサーバ24では、互いに対応付けられているグローバルIPアドレスとプライベートIPアドレスとの間でのアドレス変換が実行される。
 図8は、動画コンテンツ44のターゲットデータの送信要求のパケットのIPヘッダの一例を模式的に示す図である。図8に示すように、当該IPヘッダには、UE38の仮想IPアドレスが送信元アドレスに設定され、動画コンテンツサーバ30のIPアドレスが宛先アドレスに設定される。
 そして、図9に示すように、UE38は、図8に示すIPヘッダが付与されている送信要求に対してカプセルヘッダを付与する。カプセルヘッダの送信元アドレスには、UE38のプライベートIPアドレスであるIPアドレス「b2.b2.b2.b2」が設定され、宛先アドレスには、エージェントサーバ26のIPアドレスである「f1.f1.f1.f1」が設定される。
 そして、UE38は、上述のようにしてカプセルヘッダが付与された送信要求を送信する。当該送信要求は、例えば、IPアドレス「b2.b2.b2.b2」に対応付けられる通信部38cや仮想NICから送信される。
 そして、当該送信要求は、通信経路40aを経由してCGNサーバ24に到達する。
 すると、CGNサーバ24が、図10に示すように、当該送信要求のカプセルヘッダの送信元アドレスを、UE38のプライベートIPアドレスであるIPアドレス「b2.b2.b2.b2」から、UE38のグローバルIPアドレスであるIPアドレス「b1.b1.b1.b1」に書き換える。
 そして、CGNサーバ24が、当該送信要求を送信する。すると、当該送信要求は、通信経路40aを経由してエージェントサーバ26に到達する。
 そして、エージェントサーバ26は、当該送信要求から、カプセルヘッダを除去する。
 そして、エージェントサーバ26が、ターゲットデータの種類を判定する。
 例えば、エージェントサーバ26に、広告の送信元のIPアドレスのリストが記憶されていてもよい。そして、エージェントサーバ26は、IPヘッダの宛先アドレスが当該リストに含まれている場合は、ターゲットデータの種類が広告であると判定してもよい。
 あるいは、エージェントサーバ26に、広告の送信元のドメイン名のリストが記憶されていてもよい。そして、エージェントサーバ26は、IPヘッダの宛先アドレスに対応するドメイン名が当該リストに含まれている場合は、ターゲットデータの種類が広告であると判定してもよい。なお、エージェントサーバ26は、DNSサーバへの問い合わせを実行することで、IPアドレスに基づいて当該IPアドレスに対応するドメイン名を特定することや、ドメイン名に基づいて当該ドメイン名に対応するIPアドレスを特定することは可能である。
 あるいは、エージェントサーバ26に、広告の送信元のURLのリストが記憶されていてもよい。そして、エージェントサーバ26は、送信要求の送信先のURLが当該リストに含まれている場合は、ターゲットデータの種類が広告であると判定してもよい。
 また、例えば、エージェントサーバ26に、動画の送信元のIPアドレスのリストが記憶されていてもよい。そして、エージェントサーバ26は、IPヘッダの宛先アドレスが当該リストに含まれている場合は、ターゲットデータの種類が動画であると判定してもよい。
 あるいは、エージェントサーバ26に、動画の送信元のドメイン名のリストが記憶されていてもよい。そして、エージェントサーバ26は、IPヘッダの宛先アドレスに対応するドメイン名が当該リストに含まれている場合は、ターゲットデータの種類が動画であると判定してもよい。
 あるいは、エージェントサーバ26に、動画の送信元のURLのリストが記憶されていてもよい。そして、エージェントサーバ26は、送信要求の送信先のURLが当該リストに含まれている場合は、ターゲットデータの種類が動画であると判定してもよい。
 なお、ターゲットデータの種類の判定方法は上述のものには限定されない。例えば、Webページ42に埋め込まれているURLのオプション等のメタデータに基づいて、ターゲットデータの種類の判定が実行されてもよい。
 そして、エージェントサーバ26は、通信経路管理データに基づいて、このようにして特定されるターゲットデータの種類に対応する実IPアドレスを特定する。ここで例えば、ターゲットデータの種類とスライスIDとの対応が予め定められていてもよい。例えば、スライスID「1」が動画に対応付けられており、スライスID「2」が広告に対応付けられていてもよい。
 例えば、ターゲットデータの種類が動画であると判定された場合は、通信経路管理データにおいて、IPヘッダの送信元アドレスに設定されているIPアドレス「a1.a1.a1.a1」とスライスID「1」との組合せに対応付けられている実IPアドレスの値である「b1.b1.b1.b1」が特定される。
 そして、エージェントサーバ26は、このようにして特定される実IPアドレスの値を保持する。そして、エージェントサーバ26は、カプセルヘッダが除去された送信要求を送信する。この送信要求は、ゲートウェイルータ28、インターネットエクスチェンジ36、ゲートウェイルータ34、を経由して、動画コンテンツサーバ30に到達する。
 すると、動画コンテンツサーバ30は、当該送信要求に対するレスポンスである動画コンテンツ44のターゲットデータを送信する。
 図11は、この動画コンテンツ44のターゲットデータのパケットのIPヘッダの一例を模式的に示す図である。図11に示すように、当該IPヘッダには、動画コンテンツサーバ30のIPアドレスが送信元アドレスに設定され、UE38の仮想IPアドレスが宛先アドレスに設定される。
 動画コンテンツ44のターゲットデータは、ゲートウェイルータ34、インターネットエクスチェンジ36、ゲートウェイルータ28、を経由して、エージェントサーバ26に到達する。
 すると、エージェントサーバ26は、図12に示すように、図11に示すIPヘッダが付与されている動画コンテンツ44のターゲットデータに対してカプセルヘッダを付与する。カプセルヘッダの送信元アドレスには、エージェントサーバ26のIPアドレスである「f1.f1.f1.f1」が設定され、宛先アドレスには、保持されている実IPアドレスが設定される。
 ここでは例えば、エージェントサーバ26が、図12に示すように、保持されている実IPアドレスの値「b1.b1.b1.b1」を、カプセルヘッダの宛先アドレスに設定する。
 そして、エージェントサーバ26は、上述のようにしてカプセルヘッダが付与された動画コンテンツ44のターゲットデータを送信する。当該動画コンテンツ44のターゲットデータは、例えば、グローバルIPアドレス「b1.b1.b1.b1」に対応付けられる通信経路40aを経由してCGNサーバ24に到達する。
 すると、CGNサーバ24が、図13に示すように、当該送信要求のカプセルヘッダの宛先アドレスを、UE38のグローバルIPアドレスであるIPアドレス「b1.b1.b1.b1」から、UE38のプライベートIPアドレスであるIPアドレス「b2.b2.b2.b2」に書き換える。
 そして、CGNサーバ24が、当該動画コンテンツ44のターゲットデータを送信する。すると、当該動画コンテンツ44のターゲットデータは、通信経路40aを経由してUE38に到達する。
 このようにして、UE38は、動画コンテンツ44のターゲットデータを取得する。
 図14は、本実施形態に係るUE38が生成する広告コンテンツ46のターゲットデータの送信要求のパケットのIPヘッダの一例を模式的に示す図である。図14に示すように、当該IPヘッダには、UE38の仮想IPアドレスが送信元アドレスに設定され、広告コンテンツサーバ32のIPアドレスが宛先アドレスに設定される。
 そして、図15に示すように、UE38は、図14に示すIPヘッダが付与されている送信要求に対してカプセルヘッダを付与する。ここでは例えば、図9に示されているカプセルヘッダと同様のカプセルヘッダが付与される。
 そして、UE38は、上述のようにしてカプセルヘッダが付与された送信要求を送信する。当該送信要求は、例えば、IPアドレス「b2.b2.b2.b2」に対応付けられる通信部38cや仮想NICから送信される。
 そして、当該送信要求は、通信経路40aを経由してCGNサーバ24に到達する。
 すると、CGNサーバ24が、図16に示すように、当該送信要求のIPヘッダの送信元アドレスを、UE38のプライベートIPアドレスであるIPアドレス「b2.b2.b2.b2」から、UE38のグローバルIPアドレスであるIPアドレス「b1.b1.b1.b1」に書き換える。
 そして、CGNサーバ24が、当該送信要求を送信する。すると、当該送信要求は、通信経路40aを経由してエージェントサーバ26に到達する。
 そして、エージェントサーバ26は、当該送信要求から、カプセルヘッダを除去する。
 そして、エージェントサーバ26が、ターゲットデータの種類を判定する。
 そして、エージェントサーバ26は、通信経路管理データに基づいて、このようにして特定されるターゲットデータの種類に対応する実IPアドレスを特定する。
 例えば、ターゲットデータの種類が広告であると判定された場合は、通信経路管理データにおいて、IPヘッダの送信元アドレスに設定されているIPアドレス「a1.a1.a1.a1」とスライスID「2」との組合せに対応付けられている実IPアドレスの値である「c1.c1.c1.c1」が特定される。
 そして、エージェントサーバ26は、このようにして特定される実IPアドレスの値を保持する。そして、エージェントサーバ26は、カプセルヘッダが除去された送信要求を送信する。この送信要求は、ゲートウェイルータ28、インターネットエクスチェンジ36、ゲートウェイルータ34、を経由して、広告コンテンツサーバ32に到達する。
 すると、広告コンテンツサーバ32は、当該送信要求に対するレスポンスである広告コンテンツ46のターゲットデータを送信する。
 図17は、この広告コンテンツ46のターゲットデータのパケットのIPヘッダの一例を模式的に示す図である。図17に示すように、当該IPヘッダには、広告コンテンツサーバ32のIPアドレスが送信元アドレスに設定され、UE38の仮想IPアドレスが宛先アドレスに設定される。
 広告コンテンツ46のターゲットデータは、ゲートウェイルータ34、インターネットエクスチェンジ36、ゲートウェイルータ28、を経由して、エージェントサーバ26に到達する。
 すると、エージェントサーバ26は、図18に示すように、図17に示すIPヘッダが付与されている広告コンテンツ46のターゲットデータに対してカプセルヘッダを付与する。カプセルヘッダの送信元アドレスには、エージェントサーバ26のIPアドレスである「f1.f1.f1.f1」が設定され、宛先アドレスには、保持されている実IPアドレスが設定される。
 ここでは例えば、エージェントサーバ26が、図18に示すように、保持されている実IPアドレスの値「c1.c1.c1.c1」を、カプセルヘッダの宛先アドレスに設定する。
 そして、エージェントサーバ26は、上述のようにしてカプセルヘッダが付与された広告コンテンツ46のターゲットデータを送信する。当該広告コンテンツ46のターゲットデータは、例えば、グローバルIPアドレス「c1.c1.c1.c1」に対応付けられる通信経路40bを経由してCGNサーバ24に到達する。
 すると、CGNサーバ24が、図19に示すように、当該送信要求のカプセルヘッダの宛先アドレスを、UE38のグローバルIPアドレスであるIPアドレス「c1.c1.c1.c1」から、UE38のプライベートIPアドレスであるIPアドレス「c2.c2.c2.c2」に書き換える。
 そして、CGNサーバ24が、当該広告コンテンツ46のターゲットデータを送信する。すると、当該広告コンテンツ46のターゲットデータは、通信経路40bを経由してUE38に到達する。
 このようにして、UE38は、広告コンテンツ46のターゲットデータを取得する。
 本実施形態では、上述のように、ターゲットデータの種類に応じて、当該ターゲットデータの通信経路が制御される。このようにして、本実施形態によれば、UE38からの送信要求に応じてデータ提供装置からUE38に送信されるターゲットデータの通信経路を的確に制御できることとなる。
 例えば、重要度が低いターゲットデータについては、通信速度が遅い、あるいは、レイテンシが大きい通信経路を経由して送信されるようにする、などのようにすることが可能となる。
 また、例えば、通信事業者等の事業者が、高品質の通信経路(例えば、高品質のネットワークスライス)については、何らかの制約(例えば、従量課金の対象とする、ユーザが通信可能なデータ容量に上限がある、など)を設けることが想定される。例えば、このような状況において、本実施形態によれば、広告コンテンツ46については、このような制約が設けられた通信経路を回避して送信されるようにすることが可能となる。
 なお、本実施形態において、送信要求に付与されるカプセルヘッダの送信元アドレスに、「b2.b2.b2.b2」ではなく、「c2.c2.c2.c2」が設定されてもよい。この場合は、当該送信要求は、通信経路40bを経由してエージェントサーバ26に到達することとなる。例えば、通信経路40aが、上述のような制約が設けられた通信経路である場合には、このようにすることで、通信経路40aの通信量を抑えることが可能となる。
 以下、本実施形態に係るUE38、及び、エージェントサーバ26の機能、及び、本実施形態に係るUE38、CGNサーバ24、及び、エージェントサーバ26、で実行される処理について、さらに説明する。
 図20は、本実施形態に係るUE38、及び、エージェントサーバ26で実装される機能の一例を示す機能ブロック図である。なお、本実施形態に係るUE38、及び、エージェントサーバ26で、図20に示す機能のすべてが実装される必要はなく、また、図20に示す機能以外の機能が実装されていても構わない。
 図20に示すように、本実施形態に係るUE38には、機能的には例えば、送信要求生成部50、端末カプセル化部52、送信要求送信部54、ターゲットデータ受信部56、表示制御部58、が含まれる。送信要求生成部50、端末カプセル化部52は、プロセッサ38aを主として実装される。送信要求送信部54、ターゲットデータ受信部56は、通信部38cを主として実装される。表示制御部58は、プロセッサ38a、及び、タッチパネル38dを主として実装される。
 以上の機能は、コンピュータであるUE38にインストールされた、以上の機能に対応する指令を含むプログラムをUE38で実行することにより実装されてもよい。また、このプログラムは、例えば、光ディスク、磁気ディスク、磁気テープ、光磁気ディスク等のコンピュータ読み取り可能な情報記憶媒体を介して、あるいは、インターネットなどを介してUE38に供給されてもよい。
 また、図20に示すように、本実施形態に係るエージェントサーバ26には、機能的には例えば、対応データ記憶部60、送信要求中継部62、中継非カプセル化部64、判定部66、通信経路決定部68、ターゲットデータ中継部70、中継カプセル化部72、が含まれる。対応データ記憶部60は、記憶部26bを主として実装される。送信要求中継部62、ターゲットデータ中継部70は、通信部26cを主として実装される。中継非カプセル化部64、判定部66、中継カプセル化部72は、プロセッサ26aを主として実装される。通信経路決定部68は、プロセッサ26a、及び、記憶部26bを主として実装される。
 以上の機能は、コンピュータであるエージェントサーバ26にインストールされた、以上の機能に対応する指令を含むプログラムをエージェントサーバ26で実行することにより実装されてもよい。また、このプログラムは、例えば、光ディスク、磁気ディスク、磁気テープ、光磁気ディスク等のコンピュータ読み取り可能な情報記憶媒体を介して、あるいは、インターネットなどを介してエージェントサーバ26に供給されてもよい。
 送信要求生成部50は、本実施形態では例えば、UE38の仮想IPアドレスが送信元アドレスに設定され、データ提供装置のIPアドレスが宛先アドレスに設定されたIPヘッダを含む、データ提供装置に送信を要求するターゲットデータの送信要求を生成する。上述の動画コンテンツサーバ30や、広告コンテンツサーバ32が、データ提供装置の一例に相当する。
 端末カプセル化部52は、本実施形態では例えば、送信要求生成部50により生成される送信要求に、中継装置のIPアドレスが宛先アドレスに設定されたカプセルヘッダを付与する。上述のエージェントサーバ26が、中継装置の一例に相当する。
 送信要求送信部54は、本実施形態では例えば、ターゲットデータの送信要求を中継装置に送信する。
 対応データ記憶部60は、本実施形態では例えば、中継装置とUE38との間に設定されている複数の通信経路についての当該通信経路とIPアドレスとの対応を示す対応データを記憶する。例えば、図6に示す通信経路管理データが、対応データの一例に相当する。
 送信要求中継部62は、本実施形態では例えば、UE38からターゲットデータの送信要求を受信して、当該送信要求をデータ提供装置に送信する。
 中継非カプセル化部64は、本実施形態では例えば、カプセルヘッダが付与された送信要求からカプセルヘッダを除去する。
 ここで上述のように、送信要求中継部62は、UE38の仮想IPアドレスが送信元アドレスに設定され、データ提供装置のIPアドレスが宛先アドレスに設定されたIPヘッダと、中継装置のIPアドレスが宛先アドレスに設定されたカプセルヘッダと、が付与された送信要求を受信してもよい。そして、中継非カプセル化部64が当該送信要求からカプセルヘッダを除去して、送信要求中継部62が、カプセルヘッダが除去された送信要求をデータ提供装置に送信してもよい。
 判定部66は、本実施形態では例えば、ターゲットデータの種類を判定する。上述のように、判定部66は、ターゲットデータの宛先に基づいて、当該ターゲットデータの種類を判定してもよい。
 上述のように、判定部66に、動画の送信元のIPアドレスのリスト、動画の送信元のドメイン名のリスト、動画の送信元のURLのリスト、広告の送信元のIPアドレスのリスト、広告の送信元のドメイン名のリスト、広告の送信元のURLのリスト、などといった参照データが予め記憶されていてもよい。そして、判定部66は、参照データに基づいて、ターゲットデータの種類を判定してもよい。
 通信経路決定部68は、本実施形態では例えば、UE38との間に設定されている複数の通信経路のうちから、判定部66による判定の結果に応じた通信経路を決定する。
 また、判定部66が、ターゲットデータが広告コンテンツ46であるか否かを判定してもよい。そして、通信経路決定部68が、UE38と中継装置との間に設定されている複数の通信経路のうちから、ターゲットデータが広告コンテンツ46であるか否かに応じた通信経路を決定してもよい。
 また、通信経路決定部68は、判定部66による判定の結果に応じたスライスIDを決定してもよい。
 また、通信経路決定部68は、決定される通信経路に通信経路管理データ等の対応データにおいて対応付けられているIPアドレス(例えば、実IPアドレス)を決定してもよい。
 そして、通信経路決定部68は、決定される通信経路を示す通信経路情報を保持してもよい。例えば、通信経路決定部68は、上述のようにして決定されるIPアドレスの値を、通信経路情報として保持してもよい。
 ターゲットデータ中継部70は、本実施形態では例えば、送信要求を受信したデータ提供装置から送信されるターゲットデータを受信する。そして、ターゲットデータ中継部70は、本実施形態では例えば、当該ターゲットデータを、通信経路決定部68により決定される通信経路経由でUE38に送信する。ここで、ターゲットデータ中継部70は、通信経路決定部68が保持している通信経路情報が示す通信経路経由でUE38に送信してもよい。
 中継カプセル化部72は、本実施形態では例えば、データ提供装置から受信するターゲットデータに、通信経路決定部68により決定される通信経路に対応付けられるUE38のIPアドレスが宛先アドレスに設定されたカプセルヘッダを付与する。
 中継カプセル化部72は、例えば、データ提供装置から受信するターゲットデータに、通信経路決定部68により決定される通信経路に対応データにおいて対応付けられているIPアドレスが宛先アドレスに設定されたカプセルヘッダを付与してもよい。
 中継カプセル化部72は、データ提供装置から受信するターゲットデータに、通信経路決定部68が保持しているIPアドレスが宛先アドレスに設定されたカプセルヘッダを付与してもよい。
 例えば、ターゲットデータ中継部70が、図11及び図17に示すような、データ提供装置のIPアドレスが送信元アドレスに設定され、UE38の仮想IPアドレスが宛先アドレスに設定されたIPヘッダが付与されたターゲットデータを受信してもよい。
 そして、図12及び図18に示すように、中継カプセル化部72が、図11及び図17に示すようなターゲットデータに、通信経路決定部68により決定される通信経路に対応付けられるUE38の実IPアドレスが宛先アドレスに設定されたカプセルヘッダを付与してもよい。例えば、中継カプセル化部72が、通信経路決定部68が保持している通信経路情報が示すUE38の実IPアドレスが宛先アドレスに設定されたカプセルヘッダを付与してもよい。
 ここで上述のように、ターゲットデータ中継部70が、データ提供装置から送信されるターゲットデータを受信し、中継カプセル化部72が、当該ターゲットデータに上述のカプセルヘッダを付与し、ターゲットデータ中継部70が、当該カプセルヘッダが付与されたターゲットデータを送信してもよい。
 ターゲットデータ受信部56は、本実施形態では例えば、ターゲットデータ中継部70から上述の通信経路情報が示す通信経路経由で送信されるターゲットデータを受信する。
 表示制御部58は、本実施形態では例えば、ターゲットデータ受信部56が受信するターゲットデータをタッチパネル38dに表示させる。表示制御部58は、例えば、図5に示すように、動画コンテンツ44と広告コンテンツ46が配置されたWebページ42を生成して、生成されるWebページ42をタッチパネル38dに表示させる。
 また、本実施形態において、UE38と中継装置との間に設定されている複数の通信経路のそれぞれは、ネットワークスライスであってもよい。
 そして、通信経路決定部68は、中継装置との間に設定されている複数のネットワークスライスのうちから、判定部66による判定の結果に応じたネットワークスライスを決定してもよい。
 そして、送信要求送信部54は、通信経路決定部68により決定されるネットワークスライスを示す通信経路情報が関連付けられた、ターゲットデータの送信要求を中継装置に送信してもよい。
 そして、ターゲットデータ中継部70は、当該送信要求を受信したデータ提供装置から送信されるターゲットデータを受信して、当該ターゲットデータを、通信経路決定部68により決定されるネットワークスライス経由でUE38に送信してもよい。
 そして、ターゲットデータ受信部56が、ターゲットデータ中継部70から、通信経路決定部68により決定されるネットワークスライス経由で送信されるターゲットデータを受信してもよい。
 本実施形態において、通信経路決定部68が、IPアドレスの値の代わりに、送信元の仮想IPアドレスと決定されるスライスIDとの組合せを通信経路情報として保持してもよい。そして、中継カプセル化部72が、保持されている送信元の仮想IPアドレスと決定されるスライスIDとの組合せに対応データにおいて対応付けられている実IPアドレスを特定してもよい。そして、中継カプセル化部72が、このようにして特定される実IPアドレスが宛先アドレスに設定されたカプセルヘッダを付与してもよい。
 また、ターゲットデータ中継部70によるターゲットデータの受信に応じて、判定部66が、ターゲットデータの送信元アドレスに基づいて、ターゲットデータの種類を特定してもよい。そして、通信経路決定部68が、このようにして決定されるターゲットデータの種類に応じた通信経路を決定してもよい。そして、ターゲットデータ中継部70が、このようにして決定される通信経路経由でUE38にターゲットデータを送信してもよい。
 また、本実施形態において上述のように、UE38が、互いに異なる通信経路を経由した通信をそれぞれ行う複数の通信部38cを備えていてもよい。例えば、UE38が通信部38cを2つ備えており、一方の通信部38cが通信経路40aを介して通信を行い、他方の通信部38cが通信経路40bを介して通信を行ってもよい。そして、一方の通信部38cには、グローバルIPアドレスとして「b1.b1.b1.b1」が設定され、プライベートIPアドレスとして「b2.b2.b2.b2」が設定されていてもよい。そして、他方の通信部38cには、グローバルIPアドレスとして「c1.c1.c1.c1」が設定され、プライベートIPアドレスとして「c2.c2.c2.c2」が設定されていてもよい。
 そして、中継カプセル化部72は、データ提供装置から受信するターゲットデータに、通信経路決定部68により決定される通信経路に対応付けられる通信部38cのIPアドレス(グローバルアドレス)が宛先アドレスに設定されたカプセルヘッダを付与してもよい。
 ここで、本実施形態に係るUE38、CGNサーバ24、及び、エージェントサーバ26で行われる、ターゲットデータの送信要求の送信に係る処理の流れの一例を、図21A及び図21Bに例示するフロー図を参照しながら説明する。
 本処理例では、ターゲットデータの送信要求がUE38からデータ提供装置に送信され、当該送信要求に応じたターゲットデータがデータ提供装置からUE38に送信される処理について説明する。
 まず、UE38の送信要求生成部50が、ターゲットデータの送信要求を生成する(S101)。S101に示す処理で生成される送信要求の送信元アドレスには、UE38の仮想IPアドレスが設定され、宛先アドレスには、ターゲットデータの送信を要求するデータ提供装置のIPアドレスが設定される。
 そして、UE38の端末カプセル化部52が、S101に示す処理で生成された送信要求に、カプセルヘッダを付与する(S102)。S102に示す処理で付与されるカプセルヘッダの送信元アドレスには、UE38のプライベートIPアドレスが設定され、宛先アドレスには、エージェントサーバ26のIPアドレスが設定される。
 そして、UEの送信要求送信部54が、S102に示す処理でカプセルヘッダが付与された送信要求を、CGNサーバ24に送信して、CGNサーバ24が、当該送信要求を受信する(S103)。
 そして、CGNサーバ24が、S103に示す処理で受信した送信要求のカプセルヘッダの送信元アドレスを変換する(S104)。ここでは例えば、送信要求のカプセルヘッダの送信元アドレスが、UE38のプライベートIPアドレスから、当該プライベートIPアドレスに対応付けられるグローバルIPアドレスに変更される。
 そして、CGNサーバ24は、S104に示す処理でカプセルヘッダの送信元アドレスが変換された送信要求をエージェントサーバ26に送信して、エージェントサーバ26の送信要求中継部62は、当該送信要求を受信する(S105)。
 そして、エージェントサーバ26の中継非カプセル化部64は、S105
に示す処理で受信した送信要求からカプセルヘッダを除去する(S106)。
 そして、エージェントサーバ26の判定部66が、ターゲットデータの種類を判定する(S107)。
 そして、エージェントサーバ26の通信経路決定部68が、S107に示す処理での判定の結果に基づいて、ターゲットデータが経由する通信経路を決定する(S108)。
 そして、エージェントサーバ26の通信経路決定部68は、S108に示す処理で決定された通信経路に対応付けられる実IPアドレスの値を特定する(S109)。
 そして、エージェントサーバ26の通信経路決定部68は、S109に示す処理で特定された実IPアドレスの値を保持する(S110)。
 そして、エージェントサーバ26の送信要求中継部62は、S106に示す処理でカプセルヘッダが除去された送信要求を、当該送信要求のIPヘッダに設定された宛先アドレスに対応付けられるデータ提供装置に宛てて送信する(S111)。
 当該送信要求を受信したデータ提供装置は、当該送信要求に応じたターゲットデータを送信し、エージェントサーバ26のターゲットデータ中継部70は、当該ターゲットデータを受信する(S112)。当該ターゲットデータの送信元アドレスには、当該データ提供装置のIPアドレスが設定され、宛先アドレスには、UE38の仮想IPアドレスが設定されている。
 そして、エージェントサーバ26の中継カプセル化部72は、S112に示す処理で受信したターゲットデータに、カプセルヘッダを付与する(S113)。S113に示す処理で付与されるカプセルヘッダの送信元アドレスには、エージェントサーバ26のIPアドレスが設定され、宛先アドレスには、S110に示す処理で通信経路決定部68に保持された実IPアドレスが設定される。
 そして、エージェントサーバ26のターゲットデータ中継部70は、S113に示す処理でカプセルヘッダが付与されたターゲットデータを、CGNサーバ24に送信して、CGNサーバ24が、当該ターゲットデータを受信する(S114)。
 そして、CGNサーバ24が、S114に示す処理で受信したターゲットデータのカプセルヘッダの宛先アドレスを変換する(S115)。ここでは例えば、ターゲットデータのカプセルヘッダの宛先アドレスが、UE38のグローバルIPアドレスから、当該グローバルIPアドレスに対応付けられるプライベートIPアドレスに変更される。
 そして、CGNサーバ24は、S115に示す処理でカプセルヘッダの宛先アドレスが変換されたターゲットデータをUE38に送信して、UE38のターゲットデータ受信部56は、当該ターゲットデータを受信する(S116)。そして、本処理例に示す処理は終了される。
 なお、本発明は上述の実施形態に限定されるものではない。
 例えば、ターゲットデータの種類は動画や広告には限定されない。例えば、ターゲットデータの種類がメールであるか否かが判定されてもよい。あるいは、ターゲットデータの種類が特定種類のソーシャルメディアに係るデータであるか否かが判定されてもよい。
 また、本実施形態に係る機能ユニットが、コンテナ型の仮想化技術でなく、ハイパーバイザ型やホスト型の仮想化技術を用いて実現されてもよい。また、本実施形態に係る機能ユニットがソフトウェアによって実装されている必要はなく、電子回路等のハードウェアによって実装されていてもよい。また、本実施形態に係る機能ユニットが、電子回路とソフトウェアとの組合せによって実装されていてもよい。

Claims (10)

  1.  通信端末からターゲットデータの送信要求を受信して、当該送信要求をデータ提供装置に送信する送信要求中継手段と、
     前記ターゲットデータの種類を判定する判定手段と、
     前記通信端末との間に設定されている複数の通信経路のうちから、前記判定の結果に応じた通信経路を決定する通信経路決定手段と、
     前記送信要求を受信した前記データ提供装置から送信される前記ターゲットデータを受信して、当該ターゲットデータを決定される前記通信経路経由で前記通信端末に送信するターゲットデータ中継手段と、
     を含むことを特徴とする通信経路制御装置。
  2.  前記データ提供装置から受信する前記ターゲットデータに、決定される前記通信経路に対応付けられる前記通信端末のIPアドレスが宛先アドレスに設定されたカプセルヘッダを付与するカプセル化手段、をさらに含み、
     前記ターゲットデータ中継手段は、前記カプセルヘッダが付与された前記ターゲットデータを送信する、
     ことを特徴とする請求項1に記載の通信経路制御装置。
  3.  前記複数の通信経路についての当該通信経路とIPアドレスとの対応を示す対応データを記憶する対応データ記憶手段、をさらに含み、
     前記カプセル化手段は、前記データ提供装置から受信する前記ターゲットデータに、決定される前記通信経路に前記対応データにおいて対応付けられているIPアドレスが宛先アドレスに設定されたカプセルヘッダを付与する、
     ことを特徴とする請求項2に記載の通信経路制御装置。
  4.  前記通信端末は、互いに異なる通信経路を経由した通信をそれぞれ行う複数の通信部を含み、
     前記カプセル化手段は、前記データ提供装置から受信する前記ターゲットデータに、決定される前記通信経路に対応付けられる前記通信部のIPアドレスが宛先アドレスに設定されたカプセルヘッダを付与する、
     ことを特徴とする請求項2に記載の通信経路制御装置。
  5.  前記送信要求中継手段は、前記通信端末の仮想IPアドレスが送信元アドレスに設定され、前記データ提供装置のIPアドレスが宛先アドレスに設定されたIPヘッダと、前記通信経路制御装置のIPアドレスが宛先アドレスに設定されたカプセルヘッダと、が付与された前記送信要求を受信し、
     前記カプセルヘッダが付与された前記送信要求から前記カプセルヘッダを除去する非カプセル化手段、をさらに含み、
     前記送信要求中継手段は、前記カプセルヘッダが除去された前記送信要求を前記データ提供装置に送信し、
     前記ターゲットデータ中継手段は、前記データ提供装置のIPアドレスが送信元アドレスに設定され、前記通信端末の仮想IPアドレスが宛先アドレスに設定されたIPヘッダが付与された前記ターゲットデータを受信し、
     前記カプセル化手段は、前記データ提供装置のIPアドレスが送信元アドレスに設定され、前記通信端末の仮想IPアドレスが宛先アドレスに設定されたIPヘッダが付与された前記ターゲットデータに、決定される前記通信経路に対応付けられる前記通信端末の実IPアドレスが宛先アドレスに設定されたカプセルヘッダを付与する、
     ことを特徴とする請求項2に記載の通信経路制御装置。
  6.  前記判定手段は、前記ターゲットデータの宛先に基づいて、前記ターゲットデータの種類を判定する、
     ことを特徴とする請求項1に記載の通信経路制御装置。
  7.  前記判定手段は、前記ターゲットデータが広告コンテンツであるか否かを判定し、
     前記通信経路決定手段は、前記通信端末との間に設定されている複数の通信経路のうちから、前記ターゲットデータが広告コンテンツであるか否かに応じた通信経路を決定する、
     ことを特徴とする請求項1に記載の通信経路制御装置。
  8.  前記通信経路決定手段は、前記通信端末との間に設定されている複数のネットワークスライスのうちから、前記判定の結果に応じたネットワークスライスを決定し、
     前記ターゲットデータ中継手段は、前記送信要求を受信した前記データ提供装置から送信される前記ターゲットデータを受信して、当該ターゲットデータを決定される前記ネットワークスライス経由で前記通信端末に送信する、
     ことを特徴とする請求項1に記載の通信経路制御装置。
  9.  通信端末からターゲットデータの送信要求を受信して、当該送信要求をデータ提供装置に送信するステップと、
     前記ターゲットデータの種類を判定するステップと、
     前記通信端末との間に設定されている複数の通信経路のうちから、前記判定の結果に応じた通信経路を決定するステップと、
     前記送信要求を受信した前記データ提供装置から送信される前記ターゲットデータを受信して、当該ターゲットデータを決定される前記通信経路経由で前記通信端末に送信するステップと、
     を含むことを特徴とする通信経路制御方法。
  10.  通信端末からターゲットデータの送信要求を受信して、当該送信要求をデータ提供装置に送信する手順、
     前記ターゲットデータの種類を判定する手順、
     前記通信端末との間に設定されている複数の通信経路のうちから、前記判定の結果に応じた通信経路を決定する手順、
     前記送信要求を受信した前記データ提供装置から送信される前記ターゲットデータを受信して、当該ターゲットデータを決定される前記通信経路経由で前記通信端末に送信する手順、
     をコンピュータに実行させることを特徴とするプログラム。
PCT/JP2022/021124 2022-05-23 2022-05-23 通信経路制御装置、通信経路制御方法及びプログラム WO2023228250A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/021124 WO2023228250A1 (ja) 2022-05-23 2022-05-23 通信経路制御装置、通信経路制御方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/021124 WO2023228250A1 (ja) 2022-05-23 2022-05-23 通信経路制御装置、通信経路制御方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2023228250A1 true WO2023228250A1 (ja) 2023-11-30

Family

ID=88918668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021124 WO2023228250A1 (ja) 2022-05-23 2022-05-23 通信経路制御装置、通信経路制御方法及びプログラム

Country Status (1)

Country Link
WO (1) WO2023228250A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261809A (ja) * 2001-03-05 2002-09-13 Nippon Telegr & Teleph Corp <Ntt> データ通信処理装置
JP2008263559A (ja) * 2007-04-13 2008-10-30 Intec Netcore Inc アプリケーション端末装置及び経路選択方法
JP2011029786A (ja) * 2009-07-22 2011-02-10 Oki Networks Co Ltd 情報配信システム及び情報配信方法
JP2016063296A (ja) * 2014-09-16 2016-04-25 Necプラットフォームズ株式会社 通信経路切替装置、システム、方法およびプログラム
JP2016184853A (ja) * 2015-03-26 2016-10-20 株式会社Nttドコモ 制御システム及び制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261809A (ja) * 2001-03-05 2002-09-13 Nippon Telegr & Teleph Corp <Ntt> データ通信処理装置
JP2008263559A (ja) * 2007-04-13 2008-10-30 Intec Netcore Inc アプリケーション端末装置及び経路選択方法
JP2011029786A (ja) * 2009-07-22 2011-02-10 Oki Networks Co Ltd 情報配信システム及び情報配信方法
JP2016063296A (ja) * 2014-09-16 2016-04-25 Necプラットフォームズ株式会社 通信経路切替装置、システム、方法およびプログラム
JP2016184853A (ja) * 2015-03-26 2016-10-20 株式会社Nttドコモ 制御システム及び制御方法

Similar Documents

Publication Publication Date Title
KR102514250B1 (ko) 모바일 에지 컴퓨팅 노드를 선택하기 위한 방법, 장치 및 시스템
EP3968610A1 (en) Method, device, and system for selecting mobile edge computing node
CN112153098B (zh) 一种应用迁移方法及装置
CN105264493B (zh) 信息中心网络上的动态虚拟机迁移
CN105830395B (zh) 用于促进分析的基于会话的分组路由
CN105164990B (zh) 在网络节点中操作的网络节点功能的方法,客户端设备
EP2909981B1 (en) Method and system of packet based identifier locator network protocol (ilnp) load balancing and routing
US9419940B2 (en) IPv4 data center support for IPv4 and IPv6 visitors
EP2723026A1 (en) Method and system of frame based identifier locator network protocol (ILNP) load balancing and routing
KR20140057553A (ko) 가상화된 네트워크와 비-가상화된 네트워크 간 가상화 게이트웨이
CN102238226A (zh) 在以内容为中心的网络上的会话迁移
US20200228618A1 (en) Content delivery method, device, and system
Taleb et al. Follow-me cloud: An OpenFlow-based implementation
CN112566164A (zh) 一种通信系统及服务质量控制方法
JP2021510974A (ja) アンカーレス・バックホールのサポートのためのgtpトンネル
US9705794B2 (en) Discovery of network address allocations and translations in wireless communication systems
CN102480476A (zh) 一种基于dhcp协议扩展的多业务访问方法
WO2023228250A1 (ja) 通信経路制御装置、通信経路制御方法及びプログラム
WO2023228249A1 (ja) 通信経路制御システム、通信端末、中継装置、通信経路制御方法及びプログラム
US11743180B2 (en) System and method for routing traffic onto an MPLS network
WO2023228252A1 (ja) 通信経路制御装置、通信経路制御方法及びプログラム
WO2023228251A1 (ja) 通信経路制御システム、中継装置、通信端末、通信経路制御方法及びプログラム
JP2022542713A (ja) メッセージ送受信方法および装置ならびに通信システム
KR20170079430A (ko) 이동통신 네트워크에서의 정보 중심 라우팅 방법 및 장치
EP4161207A1 (en) Base station device and method for operating base station device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943656

Country of ref document: EP

Kind code of ref document: A1