WO2023228034A1 - Catalyst and process for obtaining bhet from pet - Google Patents

Catalyst and process for obtaining bhet from pet Download PDF

Info

Publication number
WO2023228034A1
WO2023228034A1 PCT/IB2023/055212 IB2023055212W WO2023228034A1 WO 2023228034 A1 WO2023228034 A1 WO 2023228034A1 IB 2023055212 W IB2023055212 W IB 2023055212W WO 2023228034 A1 WO2023228034 A1 WO 2023228034A1
Authority
WO
WIPO (PCT)
Prior art keywords
bhet
pet
catalyst
activated carbon
ethylene glycol
Prior art date
Application number
PCT/IB2023/055212
Other languages
Spanish (es)
French (fr)
Inventor
Gabriel Jaime Cano Ospina
Original Assignee
Ingbiocomb Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ingbiocomb Sas filed Critical Ingbiocomb Sas
Publication of WO2023228034A1 publication Critical patent/WO2023228034A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/03Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/28Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/297Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/56Separation; Purification; Stabilisation; Use of additives by solid-liquid treatment; by chemisorption
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • C07C69/80Phthalic acid esters
    • C07C69/82Terephthalic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/88Post-polymerisation treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/16Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with inorganic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • C08J11/24Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds containing hydroxyl groups

Definitions

  • the present invention is related to the field of plastic recycling, more particularly with the recycling of Polyethylene Terephthalate, and with catalysts developed expressly for this purpose.
  • PET also known as polyethylene terephthalate
  • PET was first produced in 1941 and was patented as a polymer for the production of fibers by British scientists J. R. Whinfield and J. T. Dickson in that same year. This arises as a pressing need to look for substitutes for the cotton that came from Egypt due to the global situation such as the Second World War.
  • polyester fiber began in 1955 and it is from 1976 when PET began to be used for the manufacture of light, transparent and resistant containers mainly for beverages, such as for bottling mineral water and soft drinks. carbonated and already, by the year 2000 it began to be used for packaging beer [1].
  • PET has diversified into multiple sectors, replacing traditionally implemented materials or proposing new packaging alternatives that were unthinkable until now. This important diversification has meant that PET has experienced great growth in its consumption and continues to be the packaging material that currently has the highest growth expectations worldwide.
  • PET is a plastic polymer that is obtained through a polymerization process of Terephthalic acid and Ethylene Glycol. It is a linear polymer, with a high degree of crystallinity and thermoplastic in its behavior, which makes it suitable for being transformed through extrusion, injection, injection-blowing and thermoforming processes.
  • PET is a resin that belongs to the polyester family, whose name is attributed to the fact that it contains the ester chemical group in various positions. Its chemical production or synthesis is carried out through two stages:
  • BHET Bis (2) Hydroxyethylene Terephthalate
  • DMT Dimethyl Terephthalate
  • EG Ethylene Glycol
  • TPA terephthalic acid
  • EG Ethylene Glycol
  • the second stage of PET production the polycondensation reaction of the bis (2) Hydroxyethylene Terephthalate (BHET) monomer, is carried out in two stages: 1.
  • Molten polycondensation (MPP) during which an increase in the length of the polymer chain or the degree of polymerization takes place.
  • the reaction is carried out at high temperatures, in a range between 260 and 290°C.
  • catalysts is essential for polymerization to take place; to obtain acceptable molecular weights, antimony catalysts are generally used; The most common is antimony trioxide (Sb2Ü3) or antimony triacetate, which allows obtaining a degree of esterification of 90%.
  • the BHET monomer obtained from the estehficator system is pumped to the polymerization reactors, where a polymer is obtained with a viscosity range between 0.45 and 0.65 deciliter/grams, with a content between 30 and 150 ppm of acetaldehyde.
  • a polymer is obtained with a viscosity range between 0.45 and 0.65 deciliter/grams, with a content between 30 and 150 ppm of acetaldehyde.
  • the polymer in the molten state becomes solid particles and is crystallized through a previous pelletizing system, which has an important effect on the size, shape, density, water content, degree of crystallinity and fines in the polyester pellet [3 ].
  • SSP Solid State Polycondensation
  • MMP molten phase polycondensation
  • Plastic has characteristics that make it attractive from the point of view of use and manufacturing. Being lightweight, it is easy to transport over long distances, resistant to breakage, and most microorganisms have not evolved to use plastic as a source of food, which attributes microbiological healthiness to the contents stored there [4],
  • Plastic pollution has recently been found in freshwater lakes, inland seas, rivers, wetlands and organisms from plankton to whales [4]. Human beings, being at the top of the trophic pyramid, are not exempt. of the dangers posed by this serious contamination.
  • plastic fragments are ingested by animals, contaminating the food chain on which we depend, especially due to the toxic additives in plastic, such as the powerful endocrine disruptor Bisphenol.
  • Glycolysis without the presence of a catalyst is an extremely slow process; many researches have focused on increasing the speed of the reaction of metal salts.
  • a salt is used in a liquid state that has a melting point below 100 °C, an example of this is NaCL.
  • Heterogeneous catalyzed glycolysis the research point of our project, consists of supporting a metal by means of some technique such as impregnation, precipitation, co-precipitation or ultrasound, on a porous solid with a large surface area.
  • Shukla et al report the addition of a catalyst in the form of zeolites, zeolites are catalysts that have good catalytic activity due to their large area.
  • Imran et al studied the glycolysis of post-consumer PET in the presence of metal oxides impregnated on different silica supports, silica nanoparticles (SNPs) 304, ZnO/SNPs having a high monomer production > 90%), this It is due to the high surface area, the porous and amorphous structure and the existence of numerous sites.
  • Imran et al. have also studied this reaction mechanism with a catalyst in the form of spinels of metal oxides (C03O4 and Mn3Ü4) and mixed metal oxides (ZnMn2Ü4, CoMn204 and ZnCo204) prepared by precipitation and co-precipitation methods. The results revealed that the catalyst that had the highest BHET production (92.2 mol %) was under conditions 2C).
  • the purified BHET monomer is polymerized into polyethylene terephthalate that meets food contact specifications, using known polymerization processes.
  • the present invention is a process for recycling colored polyester thereby producing purified white polyester suitable for food grade uses.
  • the present invention is a method for removing dyes from polyester for recycling that comprises: a) depolyming polyester by adding glycol to said polyester to produce a glycolized monomer; b) optionally filtering contaminants from said glycolized monomer; c) put in contact said monomer glycolized with activated carbon to remove some colorant; d) extracting the remaining dye by adding water, methanol or glycol to said glycolized monomer; and e) separating said glycolized monomer from said water, methanol or glycol with said remaining colorant thereby producing white glycolized monomer.
  • Japanese patent No. JP6964101 entitled “Method of depolymerization of polyester containing opaque polyethylene terephthalate", which is incorporated herein in its entirety by way of reference, teaches a method for depolymerizing a material polyester raw material containing opaque PET, wherein the raw material comprises 0.1% to 10% by weight of pigment, and the method comprises at least the following steps: a) The step of adjusting the polyester raw material to which can be heated and pressurized according to the operating conditions of the subsequent depolymerization step b). The polyester raw material is heated to a temperature of 225 to 275 ° C.
  • Step a) includes an extrusion section, which is used to extrude; b) A step of supplying a diol to the effluent of step a) and depolyming by glycolysis by the contribution of this diol to obtain a monomer and an oligomer, which is carried out at a temperature of 200 to 400°C and The polyester . 1 to 20 mol of diol per mol of diester in the raw material, the residence time of polyester is 0.1 to 5 hours, PET is converted into BHET monomer and BHET oligomer; c) A step of total or partial separation of the diol from the effluent of step b), carried out at a temperature of 100-250°C.
  • step b) A step of separating a liquid effluent rich in monomers from step c) into an effluent of heavy impurities and a pre-pumped monomer effluent, at a temperature less than 250°C and less than 0.001 MPa.
  • the liquid residence time is less than 10 minutes; and e) the discoloration of the pre-puffed monomer effluent, at a temperature of 100-250°C and 0.1 -1.
  • a method comprising a step of being performed at a pressure of 0.0 MPa in the presence of an adsorbent to produce a purified monomer effluent.
  • Chinese patent application No. CN105367425 entitled “Purification system by chemical method for preparing BHET monomer from waste PAT material", which is incorporated herein in its entirety by way of reference, teaches a purification system for a chemical method to prepare a BHET monomer from a waste PET (polyethylene terephthalate) material.
  • a BHET quantitative feed system is connected to an inlet of a hydrolysis and filtration system through of a pipe; an outlet of the hydrolysis and filtration system is connected to an inlet of an activated carbon filtration system through a pipe; an outlet of the activated carbon filtration system is connected to an inlet of a crystallization system of hydrolysis liquid cooling through a pipe; an outlet of the hydrolysis liquid cooling crystallization system is connected to an inlet of a BHET and water separation circulation system through a pipe; an outlet of the BHET and water separation circulation system is connected to an outlet of a BHET packaging and drying system through a pipe;
  • the hydrolysis and filtration system comprises two parts, a hydrolysis upper part in a reaction kettle structure and a filter lower part in a net-type structure; activated carbon filtration system is adsorption tower structure; and the hydrolysis liquid cooling crystallization system has a crystal tower structure.
  • the system can purify the degraded BHET from PET material and effectively increase the cleanliness factor of the finished product,
  • An outlet of a degradation and filtration system is connected to an inlet of a degradation liquid cooling crystallization system through a pipe; an outlet of the degradation liquid cooling crystallization system is connected to an inlet of an ethylene glycol and BHET separation circulatory system through a pipe; an outlet of the ethylene glycol and BHET separation circulation system is connected to an inlet of a BHET quantitative feeding system through a pipe; an outlet of the BHET quantitative feed system is connected to an inlet of a hydrolysis system and filtration through a pipe; the outlet of the hydrolysis and filtration system is connected to an inlet of an activated carbon filtration system through a pipe; the outlet of the activated carbon filtration system is connected to an inlet of a hydrolysis liquid cooling crystallization system by a pipe; an outlet of the hydrolysis liquid cooling crystallization system is connected to an inlet of the BHET-water separation circulatory system through a pipe; and the outlet of the BHET-water separation circulatory system is connected to a BHET drying and packaging system through
  • the present invention is related to a heterogeneous catalyst, and a manufacturing process of said heterogeneous catalyst, which consists of an impregnation process of the active metal on activated carbon, which is supported inside the reactor by means of a mesh, at its Once, with this catalyst, a chemical process has been carried out to obtain the BHET monomer through the use of rPET and ethylene glycol, as raw materials, which consists of two main stages, a first stage, where the chemical reaction process is carried out , and a second stage, which consists of the purification stage where the BHET product is obtained at a purity of 99%.
  • Figure 1 corresponds to a flow diagram of a process according to one embodiment of the present invention.
  • Figure 2 corresponds to a table of related equipment in the flow diagram of a process according to one embodiment of the present invention.
  • Figure 3 Shows an image of the FTIR Spectrum of the BHET with a purity of 99% obtained after the second crystallization process.
  • Figure 4 Shows an image of the TGA/DSC Spectrum of the BHET with a purity of 99% obtained after the second crystallization process.
  • FIG. 5 Shows the Images and the concentration of elements on the surface of the heterogeneous catalyst by Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS).
  • SEM Scanning Electron Microscopy
  • EDS Energy Dispersive X-ray Spectroscopy
  • the present application relates to a process for obtaining a heterogeneous catalyst for the production of BHET monomer from recycled PET.
  • the heterogeneous catalyst comprises an activated carbon core that is impregnated with active metal.
  • the activated carbon core is produced using bituminous coal as raw material, which is subjected to a demineralization process to reduce the ash content, which consists of introducing 50 g of carbon in 100 ml of a 12 N HCl solution for 48 hours. After this time, it is ground and sieved until a particle size of 100 - 200
  • This carbon is chemically activated with KOH as an activating agent in a 4:1 ratio using the physical mixing method.
  • This mixture, activating agent - carbon is carbonized in an oven at a temperature of 750° C under a nitrogen atmosphere and at a heating rate of 5° C /min for a period of time of 2 hours. Then, the activated carbon is washed repeatedly with a 0.1 M HCL solution until a neutral pH is reached in the filtered water. Subsequently, it is washed with distilled water in a Soxlet equipment for 24 hours and then dried in an oven that is maintained at 1 10 °C for 24 hours.
  • the catalyst is placed inside a mesh container and introduced into a reactor where there is a mixture of rPET with ethylene glycol in a ratio of between 1 and 16 parts of PET to one of ethylene glycol, and a ratio of between 3.5 and 10 parts of PET for 1 part of catalyst.
  • the reaction is carried out at a temperature of 180°C for 120 minutes, after which the reaction medium is pumped to a filter that retains unreacted PET, PET dyes and other impurities.
  • the BHET monomer diluted in ethylene glycol present in the filtrate is sent to the crystallization stage.
  • the filtrate obtained from the filtration step is sent to a cooling tank, where the temperature is reduced to 4°C to promote the crystallization of the BHET. From the cooling tank the solution is pumped to a filter where the BHET is separated from the unreacted ethylene glycol, which is recirculated to the reactor.
  • the crystallized BHET is washed with water, and the mixture of washing water and ethylene glycol is purified to recover the ethylene glycol and recirculate it to the reactor.
  • the BHET is subjected to a drying process in a dryer at a temperature between 80°C and 120°C for a period of between 2 and 4 hours, after which a BHET with 99% purity is obtained.

Abstract

The present invention relates to a heterogenous catalyst and to a process for producing the heterogenous catalyst, which consists in impregnating an active metal onto activated carbon, the catalyst being supported inside a reactor by a mesh. The catalyst is used to carry out a chemical process to obtain the monomer BHET using rPET and ethylene glycol as raw materials, which consists of two main steps: a first step, in which a chemical reaction process is carried out; and a second step of purification, in which a 99% pure BHET product is obtained.

Description

CATALIZADOR Y PROCESO PARA LA OBTENCIÓN DE BHET A PARTIR DE PET RESIDUAL CATALYST AND PROCESS FOR OBTAINING BHET FROM WASTE PET
CAMPO DE LA INVENCIÓN FIELD OF THE INVENTION
[0001 ] La presente invención se relaciona con el campo del reciclaje de plásticos, más particularmente con el reciclaje de Polietilentereftalato, y con catalizadores desarrollados expresamente para tal fin. [0001] The present invention is related to the field of plastic recycling, more particularly with the recycling of Polyethylene Terephthalate, and with catalysts developed expressly for this purpose.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
[0002] El PET, también conocido como tereftalato de polietileno, fue producido por primera vez en 1941 y fue patentado como un polímero para la producción de fibras por los científicos británicos J. R. Whinfield y J. T. Dickson en ese mismo año. Este surge como una necesidad apremiante de buscar sustitutos para el algodón que provenía de Egipto debido a la situación mundial como fue la segunda guerra mundial. [0002] PET, also known as polyethylene terephthalate, was first produced in 1941 and was patented as a polymer for the production of fibers by British scientists J. R. Whinfield and J. T. Dickson in that same year. This arises as a pressing need to look for substitutes for the cotton that came from Egypt due to the global situation such as the Second World War.
[0003] La producción comercial de fibra de poliéster comenzó en 1955 y es a partir de 1976 cuando se comenzó a usar el PET para la fabricación de envases ligeros, transparentes y resistentes principalmente para bebidas como por ejemplo para el embotellamiento de agua mineral y refrescos carbonatados y ya, para el año 2000 se comienza a utilizar para el envasado de cervezas [1 ]. A lo largo de los 20 años que lleva en el mercado, el PET se ha diversificado en múltiples sectores sustituyendo a materiales tradicionalmente implantados o planteando nuevas alternativas de envasado impensables hasta el momento. Esta diversificación tan importante ha originado que el PET haya experimentado un gran crecimiento en su consumo y que siga siendo el material de embalaje que actualmente presenta las mayores expectativas de crecimiento a nivel mundial. [0003] The commercial production of polyester fiber began in 1955 and it is from 1976 when PET began to be used for the manufacture of light, transparent and resistant containers mainly for beverages, such as for bottling mineral water and soft drinks. carbonated and already, by the year 2000 it began to be used for packaging beer [1]. Throughout the 20 years it has been on the market, PET has diversified into multiple sectors, replacing traditionally implemented materials or proposing new packaging alternatives that were unthinkable until now. This important diversification has meant that PET has experienced great growth in its consumption and continues to be the packaging material that currently has the highest growth expectations worldwide.
[0004] A nivel general, el PET es un polímero plástico que se obtiene mediante un proceso de polimerización del ácido Tereftálico y Etilenglicol. Es un polímero lineal, con un alto grado de cristalinidad y termoplástico en su comportamiento, lo cual lo hace apto para ser transformado mediante procesos de extrusión, inyección, inyección-soplado y termo formado. [0005] El PET es una resina que pertenece a la familia de los poliésteres, cuyo nombre se atribuye a que contiene el grupo químico éster en vahas posiciones. Su producción química o síntesis se realiza mediante dos etapas: [0004] At a general level, PET is a plastic polymer that is obtained through a polymerization process of Terephthalic acid and Ethylene Glycol. It is a linear polymer, with a high degree of crystallinity and thermoplastic in its behavior, which makes it suitable for being transformed through extrusion, injection, injection-blowing and thermoforming processes. [0005] PET is a resin that belongs to the polyester family, whose name is attributed to the fact that it contains the ester chemical group in various positions. Its chemical production or synthesis is carried out through two stages:
1 . la síntesis del monómero de poliéster Tereftalato Bis (2) hidroxietileno (BHET); y1 . the synthesis of the polyester monomer Bis(2)hydroxyethylene Terephthalate (BHET); and
2. la reacción de Policondensación del monómero previamente obtenido. 2. the Polycondensation reaction of the previously obtained monomer.
[0006] En cuanto a la primera etapa, la síntesis del monómero Tereftalato Bis (2) Hidroxietileno (BHET), esta se puede llevar a cabo mediante dos métodos: a. Un primer método que comprende la reacción de Trans-esterificación entre el Dimetil Tereftalato (DMT) y el Etilénglicol (EG). Este es el proceso más antiguo y menos utilizado en la actualidad, ya que se obtiene metanol como subproducto, el cuál puede generar más cantidad de emisiones de compuestos orgánicos volátiles (VOC's), lo que causa un mayor impacto ambiental; y b. otro método de mayor importancia comercial y más utilizado actualmente, que consiste en la reacción de esterificación directa del ácido tereftálico (TPA) con el Etilénglicol (EG), donde se obtiene agua como subproducto de eliminación. [0006] Regarding the first stage, the synthesis of the Bis (2) Hydroxyethylene Terephthalate (BHET) monomer, this can be carried out by two methods: a. A first method that includes the Trans-esterification reaction between Dimethyl Terephthalate (DMT) and Ethylene Glycol (EG). This is the oldest and least used process today, since methanol is obtained as a by-product, which can generate more emissions of volatile organic compounds (VOC's), causing a greater environmental impact; and b. Another method of greater commercial importance and currently most used, which consists of the direct esterification reaction of terephthalic acid (TPA) with Ethylene Glycol (EG), where water is obtained as an elimination by-product.
[0007] El proceso con TPA ofrece ventajas frente al que se realiza con DMT, que han motivado que en la actualidad las plantas procesadores lo utilicen principalmente por menor costo del ácido Tereftálico y menor tiempo de reacción para lograr el peso molecular requerido. [0007] The process with TPA offers advantages over that carried out with DMT, which have motivated processing plants to currently use it mainly due to the lower cost of Terephthalic acid and the shorter reaction time to achieve the required molecular weight.
[0008] Aunque la esterificación directa se puede llevar a cabo en ausencia de algún catalizador, ya que la reacción se basa en un equilibrio químico regulado por las condiciones de reacción y de la remoción del agua residual formada durante el proceso, que al ser retirada por medio de destilación se logra la reacción completa, industhalmente se utilizan compuestos de antimonio y titanio como catalizadores, con el fin de acelerar y hacer más eficiente la reacción de obtención del monómero intermedio, el Tereftalato bis (2) Hidroxietileno (BHET). [0008] Although direct esterification can be carried out in the absence of any catalyst, since the reaction is based on a chemical balance regulated by the reaction conditions and the removal of the residual water formed during the process, which when removed By means of distillation, the complete reaction is achieved. Industrially, antimony and titanium compounds are used as catalysts, in order to accelerate and make more efficient the reaction to obtain the intermediate monomer, bis (2) Hydroxyethylene Terephthalate (BHET).
[0009] La segunda etapa de producción del PET, la reacción de policondensación del monómero Tereftalato bis (2) Hidroxietileno (BHET) se realizar en dos etapas: 1. Policondensación en estado Fundido (MPP): durante la cual tiene lugar un incremento en la longitud de la cadena del polímero o del grado de polimerización. La reacción se lleva a cabo a altas temperaturas, en un rango entre 260 y 290°C. El uso de catalizadores es esencial para que se lleve a cabo la polimerización, para la obtención de pesos moleculares aceptables, generalmente se utilizan catalizadores de antimonio; el más común es el trióxido de antimonio (Sb2Ü3) o triacetate de antimonio, que permite obtener un grado de esterificación del 90%. El monómero BHET obtenido del sistema estehficador se bombea a los reactores de polimerización, donde se obtiene un polímero con un rango de viscosidad entre 0.45 y 0.65 decilitro/gramos, con un contenido entre 30 y 150 ppm de acetaldehído. Enseguida el polímero en estado fundido se convierte en partículas sólidas y es cristalizado mediante un sistema previo de peletizado, que tiene un efecto importante en el tamaño, forma, densidad, contenido de agua, grado de cñstalinidad y finos en el pellet de poliéster [3]. [0009] The second stage of PET production, the polycondensation reaction of the bis (2) Hydroxyethylene Terephthalate (BHET) monomer, is carried out in two stages: 1. Molten polycondensation (MPP): during which an increase in the length of the polymer chain or the degree of polymerization takes place. The reaction is carried out at high temperatures, in a range between 260 and 290°C. The use of catalysts is essential for polymerization to take place; to obtain acceptable molecular weights, antimony catalysts are generally used; The most common is antimony trioxide (Sb2Ü3) or antimony triacetate, which allows obtaining a degree of esterification of 90%. The BHET monomer obtained from the estehficator system is pumped to the polymerization reactors, where a polymer is obtained with a viscosity range between 0.45 and 0.65 deciliter/grams, with a content between 30 and 150 ppm of acetaldehyde. Immediately the polymer in the molten state becomes solid particles and is crystallized through a previous pelletizing system, which has an important effect on the size, shape, density, water content, degree of crystallinity and fines in the polyester pellet [3 ].
2. Policondensación en Estado Sólido (SSP) que es la continuación a la policondensación fase fundida ( MMP), llevada a cabo a una temperatura menor que en la fase de polimerización anterior. La finalidad principal de la etapa de SSP es cristalizar la resina poliéster, aumentar la viscosidad a un rango de 0.75 a 0.85% y reducir el contenido de acetaldehído a menos de 1 ppm [3]. 2. Solid State Polycondensation (SSP) which is the continuation of the molten phase polycondensation (MMP), carried out at a lower temperature than in the previous polymerization phase. The main purpose of the SSP stage is to crystallize the polyester resin, increase the viscosity to a range of 0.75 to 0.85% and reduce the acetaldehyde content to less than 1 ppm [3].
[0010] Desde el punto medioambiental, al instante de su descubrimiento, por tratarse de un material de bajo costo y por ser tan versátil y compatible con diferentes usos, se convirtió en una opción ampliamente utilizada sobre todo por la industria alimentaria y química. El plástico posee unas características que lo hacen atractivo desde el punto de vista de utilización y de fabricación, al ser liviano es de fácil transporte a largas distancias, resistente a rupturas y la mayoría de los microorganismos no han evolucionado para utilizar el plástico como fuente de alimento, lo que les atribuye salubridad microbiológica a los contenidos que allí se almacenan [4], [0010] From an environmental point of view, upon its discovery, because it is a low-cost material and because it is so versatile and compatible with different uses, it became a widely used option, especially by the food and chemical industries. Plastic has characteristics that make it attractive from the point of view of use and manufacturing. Being lightweight, it is easy to transport over long distances, resistant to breakage, and most microorganisms have not evolved to use plastic as a source of food, which attributes microbiological healthiness to the contents stored there [4],
[001 1 ] Hoy en día, con las preocupaciones medioambientales y la necesidad globalizada de reducir la producción de residuos, sobre todo del plástico. El sector plástico está representado globalmente como una industria de producción en masa, su producción ha experimentado un crecimiento exponencial desde su entrada en la etapa de consumo, pasando de un millón de toneladas en 1945 a más de 380 millones de toneladas en 2015 [4], Con el aumento en la fabricación de plásticos, ha habido un aumento asociado a la contaminación plástica del medio ambiente. Los primeros informes relatan que esta preocupación se remonta a principios de la década de 1970. [001 1 ] Nowadays, with environmental concerns and the globalized need to reduce waste production, especially plastic. The plastic sector is represented globally as a mass production industry, its production has experienced exponential growth since its entry into the consumption stage, going from one million tons in 1945 to more than 380 million tons in 2015 [4] , With the increase in plastic manufacturing, there has been an associated increase in plastic pollution of the environment. Early reports relate that this concern dates back to the early 1970s.
[0012] Actualmente, se producen cada año 500 mil millones de botellas de plástico, solo por fabricantes de bebidas, Asia es la región con mayor producción del mundo, siendo responsable de la mitad de la producción mundial (51 % del total), siendo China el principal productor de plásticos (con un 30% del total en 2018), seguido por América del Norte con un 18% y Europa con un 17% del total en 2018. Como la mayor parte de los plásticos se emplean en la fabricación de envases de un solo uso (como las botellas), el impacto ambiental es muy significativo. Sobre todo, cuando no se garantiza el reciclaje después de su utilización. Estas botellas son fabricadas con materiales que pueden tardar cientos de años en descomponerse, y lo cierto es que no siempre se reciclan. Son miles las toneladas de plástico de diversos tamaños lo que contaminan los océanos y que tienen un efecto devastador sobre las aves y la fauna marina. [0012] Currently, 500 billion plastic bottles are produced every year, only by beverage manufacturers, Asia is the region with the highest production in the world, being responsible for half of the world's production (51% of the total), being China is the main producer of plastics (with 30% of the total in 2018), followed by North America with 18% and Europe with 17% of the total in 2018. As most plastics are used in the manufacture of single-use containers (such as bottles), the environmental impact is very significant. Above all, when recycling after use is not guaranteed. These bottles are made with materials that can take hundreds of years to decompose, and the truth is that they are not always recycled. Thousands of tons of plastic of various sizes pollute the oceans and have a devastating effect on birds and marine fauna.
[0013] Recientemente se ha encontrado contaminación plástica dentro de lagos de agua dulce, mares interiores, ríos, humedales y organismos desde el plancton hasta las ballenas [4], El ser humano al estar en la cúspide de la pirámide trófica, no está exento de los peligros que conforma esta grave contaminación. [0013] Plastic pollution has recently been found in freshwater lakes, inland seas, rivers, wetlands and organisms from plankton to whales [4]. Human beings, being at the top of the trophic pyramid, are not exempt. of the dangers posed by this serious contamination.
[0014] Dado que los fragmentos de plástico son ingeridos por animales, contaminando la cadena alimentaria de la que dependemos, sobre todo debido a los aditivos tóxicos del plástico, como el potente disruptor endocrino Bisfenol. [0014] Since plastic fragments are ingested by animals, contaminating the food chain on which we depend, especially due to the toxic additives in plastic, such as the powerful endocrine disruptor Bisphenol.
[0015] El impacto ambiental de las botellas de plástico se reporta también en su creación por la enorme cantidad de energía, que se necesita para fabricar una sola botella. Así como el petróleo y el agua necesarios para producir el plástico, los desperdicios y agua sucia que genera todo el proceso productivo. Hay también que considerar el impacto ambiental asociado a la logística, empezando en el proceso de distribución hasta que llega al consumo final (fabrica - almacenistas/mayoristas - tiendas - viviendas) y todos los procesos paralelos necesarios a su comercialización, como, por ejemplo, las acciones de marketing y publicidad que, por si, también implican en consumo de recursos naturales [0016] En la actualidad, hay vahas tecnologías para el tratamiento de desperdicios de PET que garantizan la recuperación de la resina para fabricar nuevas botellas para bebidas. Años atrás, las botellas pos-consumo de PET se reciclaban para producir principalmente textiles, carpetas y láminas extruidas. Se reconoció desde entonces que estos mercados no son lo suficientemente grandes como para absorber los volúmenes generados por los mercados de bebidas empacadas en botellas de PET. [0015] The environmental impact of plastic bottles is also reported in their creation due to the enormous amount of energy needed to manufacture a single bottle. As well as the oil and water necessary to produce plastic, the waste and dirty water generated by the entire production process. We must also consider the environmental impact associated with logistics, starting in the distribution process until it reaches final consumption (factory - warehouses/wholesalers - stores - homes) and all the parallel processes necessary for its commercialization, such as, for example, marketing and advertising actions that, in themselves, also imply the consumption of natural resources [0016] Currently, there are several technologies for the treatment of PET waste that guarantee the recovery of the resin to manufacture new beverage bottles. Years ago, post-consumer PET bottles were recycled to mainly produce textiles, folders and extruded sheets. It has since been recognized that these markets are not large enough to absorb the volumes generated by the beverage markets packaged in PET bottles.
[0017] Por ejemplo, de acuerdo con fuentes de Amcor PET Recycling de Francia, el mercado de fibras era en el año 2016 solamente el 25% del total del uso del PET, y en vista de un crecimiento anual del 30% en la generación de desperdicios de la resina, los mercados de consumo mencionados no pueden ni podrán resolver el problema de disposición de residuos [5]. Resulta lógico pensar que la única salida al problema de la utilización efectiva de los desperdicios de PET es su utilización en la fabricación de nuevas botellas para bebidas. Para reforzar esta ¡dea, la legislación europea también promueve esta aplicación ofreciendo incentivos como el que existe en Bélgica, en este país, un impuesto denominado Eco-Tax. sobre las botellas de PET será condonado si las botellas nuevas fabricadas contienen al menos un 50% de material reciclado [5]. [0017] For example, according to sources from Amcor PET Recycling of France, the fiber market was only 25% of total PET use in 2016, and in view of an annual growth of 30% in generation of resin waste, the aforementioned consumer markets cannot and will not be able to solve the waste disposal problem [5]. It is logical to think that the only solution to the problem of effective use of PET waste is its use in the manufacture of new beverage bottles. To reinforce this idea, European legislation also promotes this application by offering incentives such as the one that exists in Belgium, in this country, a tax called Eco-Tax. on PET bottles will be waived if the new bottles manufactured contain at least 50% recycled material [5].
[0018] La utilización de este material reciclado en el soplado de nuevas botellas sólo es posible si se cumplen ciertas demandas mínimas con respecto a la calidad y el desempeño. El material reciclado debe ser mejorado en varios aspectos antes de poder ser empleado en la fabricación de botellas [5]. Una de ellas, es que durante la vida útil de las botellas de PET, las características del material cambian debido a las exposiciones térmicas a las que son sometidas, que provocan la reducción de la viscosidad intrínseca desde valores de cerca de IV= 0,82 dl/g a valores de aproximadamente IV = 0,76 dl/g, debido a que la viscosidad intrínseca es una medida del peso molecular de la resina, se puede afirmar que la integridad del material es afectada negativamente, provocando una disminución de la estabilidad y de la resistencia a la presión de la botella. [0018] The use of this recycled material in the blowing of new bottles is only possible if certain minimum demands regarding quality and performance are met. The recycled material must be improved in several aspects before it can be used in the manufacture of bottles [5]. One of them is that during the useful life of PET bottles, the characteristics of the material change due to the thermal exposures to which they are subjected, which cause the reduction of the intrinsic viscosity from values close to IV = 0.82. dl/g at values of approximately IV = 0.76 dl/g, because the intrinsic viscosity is a measure of the molecular weight of the resin, it can be stated that the integrity of the material is negatively affected, causing a decrease in stability and of the pressure resistance of the bottle.
[0019] Por otro lado, la contaminación de la pared de la botella, debido a la difusión de los mismos componentes del producto llenado en ella, representa un reto adicional en el manejo del material reciclado. Esto es especialmente cierto en los casos en que la botella ha estado expuesta a sustancias tan agresivas como ácidos, fertilizantes y detergentes para el hogar [5]. [0020] El objetivo de un proceso de reciclaje de PET debe ser el de convertir nuevamente el material en una resina apta para la producción de botellas. Esto implica en primer término que la viscosidad intrínseca debe volver a ser IV > 0,82 dl/g. Por otro lado, no deben existir sustancias contaminantes, como aromáticos, y otros químicos como el acetaldehído y el etilenglicol en las paredes del PET reciclado en cantidades no recomendadas. Aquí cabe aclarar que esto implica que no deben usarse aditivos que actúen como contaminantes del material. Los análisis de cromatografía de gases deben indicar que las características sensoriales del reciclado deben ser mejores que aquellas del producto virgen, en lo posible [5]. [0019] On the other hand, contamination of the bottle wall, due to the diffusion of the same components of the product filled in it, represents an additional challenge in the management of recycled material. This is especially true in cases where the bottle has been exposed to such aggressive substances as acids, fertilizers and household detergents [5]. [0020] The objective of a PET recycling process should be to convert the material back into a resin suitable for the production of bottles. This implies first of all that the intrinsic viscosity must once again be IV > 0.82 dl/g. On the other hand, there should be no contaminating substances, such as aromatics, and other chemicals such as acetaldehyde and ethylene glycol in the walls of recycled PET in non-recommended quantities. Here it is worth clarifying that this implies that additives that act as contaminants of the material should not be used. Gas chromatography analyzes should indicate that the sensory characteristics of the recycled product should be better than those of the virgin product, if possible [5].
[0021 ] Según la Amcor PET Recycling, existen 4 distintas clasificaciones del reciclaje del material PET post-consumo los cuales son: [0021] According to Amcor PET Recycling, there are 4 different classifications of post-consumer PET material recycling which are:
1 . Reciclaje Primario 1 . Primary Recycling
2. Reciclaje Secundario 2. Secondary Recycling
3. Reciclaje Terciario ó Reciclaje Químico 3. Tertiary Recycling or Chemical Recycling
4. Reciclaje Cuaternario 4. Quaternary Recycling
Y dentro del Reciclaje Terciario ó Químico se tiene: And within Tertiary or Chemical Recycling we have:
1 . Glicolisis asistida por solvente; 1 . solvent-assisted glycolysis;
2. Glicolisis supercrítica; 2. Supercritical glycolysis;
3. Glicolisis asistida por microondas; y 3. Microwave assisted glycolysis; and
4. Glicolisis catalizada heterogénea, sobre la cual nos basaremos en nuestro estudio. 4. Heterogeneous catalyzed glycolysis, on which we will base our study.
[0022] La glicolisis sin la presencia de un catalizador es un proceso extremadamente lento, muchas investigaciones se han enfocado en incrementar la velocidad de la reacción de las sales metálicas. En la glicolisis catalizada por líquidos iónicos, se emplea una sal en estado líquido que tiene un punto de fusión por debajo de los 100 °C, un ejemplo de esta es el NaCL. [0022] Glycolysis without the presence of a catalyst is an extremely slow process; many researches have focused on increasing the speed of the reaction of metal salts. In glycolysis catalyzed by ionic liquids, a salt is used in a liquid state that has a melting point below 100 °C, an example of this is NaCL.
[0023] La glicolisis catalizada heterogénea, punto de investigación de nuestro proyecto, consiste en soportar un metal por medio de alguna técnica como la impregnación, precipitación, co-precipitación o ultrasonido, sobre un sólido poroso de gran área superficial. Shukla et al, reporta la adición de un catalizador en forma de zeolitas, las zeolitas son catalizadores que tienen buena actividad catalítica debido a su gran área superficial en Imran et al, estudió la glicolisis del PET post-consumo en la presencia de óxidos metálicos impregnados sobre diferentes soportes de silica, nanoparticulas de silica (SNPs) 304, ZnO/SNPs teniendo una alta producción del monómero > 90%), esto es debido a la alta área superficial, la estructura porosa y amorfa y a la existencia de numerosos sitios. Imran et al, ha estudiado también este mecanismo de reacción con un catalizador en forma espinelas de óxidos metálicos (C03O4 y Mn3Ü4) y óxidos metálicos mezclados (ZnMn2Ü4, CoMn204 y ZnCo204) preparados por métodos de precipitación y co-precipitacion. Los resultados revelaron que el catalizador que tuvo una mayor producción de BHET (92.2 % mol) fue bajo las condiciones 2C ). [0023] Heterogeneous catalyzed glycolysis, the research point of our project, consists of supporting a metal by means of some technique such as impregnation, precipitation, co-precipitation or ultrasound, on a porous solid with a large surface area. Shukla et al, report the addition of a catalyst in the form of zeolites, zeolites are catalysts that have good catalytic activity due to their large area. superficial in Imran et al, studied the glycolysis of post-consumer PET in the presence of metal oxides impregnated on different silica supports, silica nanoparticles (SNPs) 304, ZnO/SNPs having a high monomer production > 90%), this It is due to the high surface area, the porous and amorphous structure and the existence of numerous sites. Imran et al. have also studied this reaction mechanism with a catalyst in the form of spinels of metal oxides (C03O4 and Mn3Ü4) and mixed metal oxides (ZnMn2Ü4, CoMn204 and ZnCo204) prepared by precipitation and co-precipitation methods. The results revealed that the catalyst that had the highest BHET production (92.2 mol %) was under conditions 2C).
[0024] Park et al, investigó la glicolisis del PET post-consumo usando un oxido de grafeno (GO) - nano partículas de óxido de manganeso (GO-Mn3O4) sintetizado por el método de ultrasonido, la reacción fue llevada a un autoclave de acero inoxidable tipo batch operado a 300°C y 1 .1 MPa por 80 minutos de reacción, la Chen et al, estudio la despolimehzación del PET por el Etileng licol (EG) en la presencia de hidrotalcitas Mg-AI y su correspondiente mezclas de óxido como base sólida. [0024] Park et al, investigated the glycolysis of post-consumer PET using a graphene oxide (GO) - manganese oxide nanoparticles (GO-Mn3O4) synthesized by the ultrasound method, the reaction was carried out in an autoclave of stainless steel batch type operated at 300°C and 1.1 MPa for 80 minutes of reaction, Chen et al. studied the depolymehzation of PET by Ethylene glycol (EG) in the presence of Mg-AI hydrotalcites and its corresponding mixtures of oxide as a solid base.
[0025] El estado del arte enseña diferentes métodos para el reciclaje de polímeros. Es así como la patente de Estados Unidos US7192988, titulada “proceso para el reciclaje de materiales de poliéster”, la cual se incorpora acá en su totalidad a modo de referencia, enseña un proceso para reciclar poliéster coloreado. Más específicamente, el poliéster coloreado para reciclar se despolimeriza mediante la adición de glicol para formar el monómero BHET. El BHET se pone en contacto con carbón activado para eliminar algo de colorante. El colorante restante se extrae con agua, alcohol o glicol para producir BHET blanco y purificado. El BHET blanco y purificado se separa del disolvente de extracción (agua, alcohol o glicol) mediante filtración, decantación o centrifugación, por ejemplo. El monómero BHET purificado se polimeriza en tereftalato de polietileno que cumple con las especificaciones de contacto con alimentos, utilizando procesos de polimerización conocidos. En el sentido más amplio, la presente invención es un proceso para reciclar poliéster coloreado produciendo así poliéster blanco purificado adecuado para usos de calidad alimentaria. En el sentido más amplio, la presente invención es un método para eliminar colorantes del poliéster para su reciclaje que comprende: a) despolimeñzar poliéster añadiendo glicol a dicho poliéster para producir un monómero glicolizado; b) opcionalmente filtrar contaminantes de dicho monómero glicolizado; c) poner en contacto dicho monómero glicolizado con carbón activado para eliminar algo de colorante; d) extraer el colorante restante añadiendo agua, metanol o glicol a dicho monómero glicolizado; y e) separar dicho monómero glicolizado de dicha agua, metanol o glicol con dicho colorante restante produciendo así monómero glicolizado blanco. [0025] The state of the art teaches different methods for recycling polymers. Thus, United States Patent US7192988, entitled “Process for Recycling Polyester Materials,” which is incorporated herein in its entirety by reference, teaches a process for recycling colored polyester. More specifically, colored polyester for recycling is depolymerized by the addition of glycol to form the BHET monomer. The BHET is brought into contact with activated carbon to remove some of the dye. The remaining dye is extracted with water, alcohol or glycol to produce white, purified BHET. The white, purified BHET is separated from the extraction solvent (water, alcohol or glycol) by filtration, decantation or centrifugation, for example. The purified BHET monomer is polymerized into polyethylene terephthalate that meets food contact specifications, using known polymerization processes. In the broadest sense, the present invention is a process for recycling colored polyester thereby producing purified white polyester suitable for food grade uses. In the broadest sense, the present invention is a method for removing dyes from polyester for recycling that comprises: a) depolyming polyester by adding glycol to said polyester to produce a glycolized monomer; b) optionally filtering contaminants from said glycolized monomer; c) put in contact said monomer glycolized with activated carbon to remove some colorant; d) extracting the remaining dye by adding water, methanol or glycol to said glycolized monomer; and e) separating said glycolized monomer from said water, methanol or glycol with said remaining colorant thereby producing white glycolized monomer.
[0026] Por su parte, la patente de Japón No. JP6964101 , titulada “Método de depolimerización de poliéster que contiene tereftalato de polietileno opaco", la cual se incorpora acá en su totalidad a modo de referencia, enseña un método para despolimeñzar una materia prima de poliéster que contiene PET opaco, en el que la materia prima comprende del 0,1 % al 10 % en peso de pigmento, y el método comprende al menos los siguientes pasos: a) El paso de ajustar la materia prima de poliéster para que pueda calentarse y presuñzarse de acuerdo con las condiciones operativas del paso de despolimerización subsiguiente b). La materia prima de poliéster se calienta a una temperatura de 225 a 275 ° C. y El paso a) incluye una sección de extrusión, que se utiliza para extruir; b) Una etapa de suministrar un diol al efluente de la etapa a) y despolimeñzar por g lucólisis por el aporte de este diol para obtener un monómero y un oligómero, que se realiza a una temperatura de 200 a 400°C y el poliéster . 1 a 20 mol de diol por mol de diéster en la materia prima, el tiempo de residencia del poliéster es de 0,1 a 5 horas, el PET se convierte en monómero BHET y oligómero BHET; c) Una etapa de separación total o parcial del diol del efluente del paso b), realizada a una temperatura de 100-250°C. a una presión inferior a la presión del paso b), con el efluente diol y el monómero. El efluente líquido es abundante y se lleva a cabo en sucesivas 1 -5 secciones de separación aire/líquido, el efluente líquido de la sección anterior se alimenta a la sección siguiente y todo el efluente gaseoso se licúa para formar un efluente de diol, el efluente líquido de la sección final de separación gas/líquido constituye una etapa de efluente líquido rico en monómeros; d) Un paso de separar un efluente líquido rico en monómeros del paso c) en un efluente de impurezas pesadas y un efluente monoméñco prepuñficado, a una temperatura inferior a 250°C y menor a 0,001 MPa. El tiempo de permanencia del líquido es inferior a 10 minutos; ye) la decoloración del efluente monómero prepuñficado, a una temperatura de 100-250°C y 0,1 -1. Un método que comprende un paso de realizarse a una presión de 0,0 MPa en presencia de un adsorbente para producir un efluente de monómero purificado. [0027] Por otro lado, la solicitud de patente de la China No. CN105367425, titulada “Sistema de purificación por método químico para preparar monómero BHET a partir de material PAT de desecho", la cual se incorpora acá en su totalidad a modo de referencia, enseña un sistema de purificación para un método químico para preparar un monómero BHET a partir de un material PET (tereftalato de polietileno) de desecho. Un sistema de alimentación cuantitativa BHET está conectado a una entrada de un sistema de hidrólisis y filtración a través de una tubería; una salida del sistema de hidrólisis y filtración está conectada a una entrada de un sistema de filtración de carbón activado a través de una tubería; una salida del sistema de filtración de carbón activado está conectada a una entrada de un sistema de cristalización de refrigeración por líquido de hidrólisis mediante una tubería; una salida del sistema de cristalización de refrigeración por líquido de hidrólisis está conectada con una entrada de un sistema de circulación de separación de agua y BHET a través de una tubería; una salida del sistema de circulación de separación de agua y BHET está conectada a una salida de un sistema de envasado y secado de BHET a través de una tubería; el sistema de hidrólisis y filtración comprende dos partes, una parte superior de hidrólisis en una estructura de caldera de reacción y una parte inferior de filtro en una estructura tipo red; el sistema de filtración de carbón activado es una estructura de torre de adsorción; y el sistema de cristalización de enfriamiento por líquido de hidrólisis tiene una estructura de torre de cristal. El sistema puede purificar el BHET degradado del material PET y aumentar efectivamente el factor de limpieza del producto terminado, mejorando así la calidad integral del producto procesado. [0026] For its part, Japanese patent No. JP6964101, entitled "Method of depolymerization of polyester containing opaque polyethylene terephthalate", which is incorporated herein in its entirety by way of reference, teaches a method for depolymerizing a material polyester raw material containing opaque PET, wherein the raw material comprises 0.1% to 10% by weight of pigment, and the method comprises at least the following steps: a) The step of adjusting the polyester raw material to which can be heated and pressurized according to the operating conditions of the subsequent depolymerization step b). The polyester raw material is heated to a temperature of 225 to 275 ° C. and Step a) includes an extrusion section, which is used to extrude; b) A step of supplying a diol to the effluent of step a) and depolyming by glycolysis by the contribution of this diol to obtain a monomer and an oligomer, which is carried out at a temperature of 200 to 400°C and The polyester . 1 to 20 mol of diol per mol of diester in the raw material, the residence time of polyester is 0.1 to 5 hours, PET is converted into BHET monomer and BHET oligomer; c) A step of total or partial separation of the diol from the effluent of step b), carried out at a temperature of 100-250°C. at a pressure lower than the pressure of step b), with the diol effluent and the monomer. The liquid effluent is abundant and is carried out in successive 1 -5 air/liquid separation sections, the liquid effluent from the previous section is fed to the next section and all the gaseous effluent is liquefied to form a diol effluent, the liquid effluent from the final gas/liquid separation section constitutes a liquid effluent stage rich in monomers; d) A step of separating a liquid effluent rich in monomers from step c) into an effluent of heavy impurities and a pre-pumped monomer effluent, at a temperature less than 250°C and less than 0.001 MPa. The liquid residence time is less than 10 minutes; and e) the discoloration of the pre-puffed monomer effluent, at a temperature of 100-250°C and 0.1 -1. A method comprising a step of being performed at a pressure of 0.0 MPa in the presence of an adsorbent to produce a purified monomer effluent. [0027] On the other hand, Chinese patent application No. CN105367425, entitled "Purification system by chemical method for preparing BHET monomer from waste PAT material", which is incorporated herein in its entirety by way of reference, teaches a purification system for a chemical method to prepare a BHET monomer from a waste PET (polyethylene terephthalate) material. A BHET quantitative feed system is connected to an inlet of a hydrolysis and filtration system through of a pipe; an outlet of the hydrolysis and filtration system is connected to an inlet of an activated carbon filtration system through a pipe; an outlet of the activated carbon filtration system is connected to an inlet of a crystallization system of hydrolysis liquid cooling through a pipe; an outlet of the hydrolysis liquid cooling crystallization system is connected to an inlet of a BHET and water separation circulation system through a pipe; an outlet of the BHET and water separation circulation system is connected to an outlet of a BHET packaging and drying system through a pipe; The hydrolysis and filtration system comprises two parts, a hydrolysis upper part in a reaction kettle structure and a filter lower part in a net-type structure; activated carbon filtration system is adsorption tower structure; and the hydrolysis liquid cooling crystallization system has a crystal tower structure. The system can purify the degraded BHET from PET material and effectively increase the cleanliness factor of the finished product, thereby improving the comprehensive quality of the processed product.
[0028] Por último, la solicitud de patente de la China No. CN105367415, titulada “Sistema de reciclaje y método para el reciclaje químico de residuos de materiales PET’, la cual se incorpora acá en su totalidad a modo de referencia, enseña un sistema de reciclaje para el método de reciclaje químico de materiales de desecho de PET (tereftalato de polietileno). Una salida de un sistema de degradación y filtración está conectada a una entrada de un sistema de cristalización de enfriamiento de líquido de degradación a través de una tubería; una salida del sistema de cristalización de enfriamiento del líquido de degradación está conectada a una entrada de un sistema circulatorio de separación de etilenglicol y BHET a través de una tubería; una salida del sistema de circulación de separación de etilenglicol y BHET está conectada a una entrada de un sistema de alimentación cuantitativa de BHET a través de una tubería; una salida del sistema de alimentación cuantitativa BHET está conectada a una entrada de un sistema de hidrólisis y filtración a través de una tubería; la salida del sistema de hidrólisis y filtración está conectada a una entrada de un sistema de filtración de carbón activado a través de una tubería; la salida del sistema de filtración de carbón activado está conectada a una entrada de un sistema de cristalización de refrigeración por líquido de hidrólisis mediante una tubería; una salida del sistema de cristalización de enfriamiento por líquido de hidrólisis está conectada con una entrada del sistema circulatorio de separación de agua y BHET a través de una tubería; y la salida del sistema circulatorio de separación de agua y BHET está conectada a un sistema de secado y envasado de BHET a través de una tubería. El sistema puede aumentar efectivamente la limpieza del producto terminado, mejorando así la calidad integral del producto procesado. [0028] Finally, Chinese patent application No. CN105367415, titled “Recycling system and method for chemical recycling of waste PET materials”, which is incorporated herein in its entirety by reference, teaches a recycling system for chemical recycling method of PET (polyethylene terephthalate) waste materials. An outlet of a degradation and filtration system is connected to an inlet of a degradation liquid cooling crystallization system through a pipe; an outlet of the degradation liquid cooling crystallization system is connected to an inlet of an ethylene glycol and BHET separation circulatory system through a pipe; an outlet of the ethylene glycol and BHET separation circulation system is connected to an inlet of a BHET quantitative feeding system through a pipe; an outlet of the BHET quantitative feed system is connected to an inlet of a hydrolysis system and filtration through a pipe; the outlet of the hydrolysis and filtration system is connected to an inlet of an activated carbon filtration system through a pipe; the outlet of the activated carbon filtration system is connected to an inlet of a hydrolysis liquid cooling crystallization system by a pipe; an outlet of the hydrolysis liquid cooling crystallization system is connected to an inlet of the BHET-water separation circulatory system through a pipe; and the outlet of the BHET-water separation circulatory system is connected to a BHET drying and packaging system through a pipeline. The system can effectively increase the cleanliness of the finished product, thereby improving the comprehensive quality of the processed product.
[0029] A pesar de lo anterior, aún persiste la necesidad en el estado del arte de nuevos procesos para el reciclaje de PET, que mejoren la recuperación y la eficiencia. Por lo tanto, es un objeto de la presente solicitud proporcionar un método para la fabricación de un nuevo catalizador para el tratamiento de residuos de PET para obtener el monómero BHET, y de un método para obtener el catalizador de acuerdo con la presente invención. [0029] Despite the above, there is still a need in the state of the art for new processes for PET recycling, which improve recovery and efficiency. Therefore, it is an object of the present application to provide a method for manufacturing a new catalyst for the treatment of PET waste to obtain the BHET monomer, and a method for obtaining the catalyst according to the present invention.
RESUMEN DE LA INVENCIÓN SUMMARY OF THE INVENTION
[0030] La presente invención se relaciona con un catalizador heterogéneo, y un proceso de fabricación de dicho catalizador heterogéneo, el cual consiste en un proceso de impregnación del metal activo sobre carbón activado, este es soportado dentro del reactor mediante una malla, a su vez, con este catalizador, se ha realizado un proceso químico de obtención del monómero BHET mediante el uso del rPET y el etilenglicol, como materias primas, el cual consiste de dos etapas principales, una primera etapa, donde se realiza el proceso de reacción química, y una segunda etapa, la cual consiste en la etapa de purificación donde se obtiene el producto BHET en una pureza del 99%. [0030] The present invention is related to a heterogeneous catalyst, and a manufacturing process of said heterogeneous catalyst, which consists of an impregnation process of the active metal on activated carbon, which is supported inside the reactor by means of a mesh, at its Once, with this catalyst, a chemical process has been carried out to obtain the BHET monomer through the use of rPET and ethylene glycol, as raw materials, which consists of two main stages, a first stage, where the chemical reaction process is carried out , and a second stage, which consists of the purification stage where the BHET product is obtained at a purity of 99%.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Figura 1 , corresponde a un diagrama de flujo de un proceso de acuerdo con una modalidad de la presente invención. Figure 1 corresponds to a flow diagram of a process according to one embodiment of the present invention.
Figura 2, corresponde a una tabla de equipos relacionados en el diagrama de flujo de un proceso de acuerdo con una modalidad de la presente invención. Figura 3. Muestra una imagen del Espectro FTIR del BHET con una pureza del 99% obtenido después del segundo proceso de cristalización. Figure 2 corresponds to a table of related equipment in the flow diagram of a process according to one embodiment of the present invention. Figure 3. Shows an image of the FTIR Spectrum of the BHET with a purity of 99% obtained after the second crystallization process.
Figura 4. Muestra una imagen del Espectro TGA/DSC del BHET con una pureza del 99% obtenido después del segundo proceso de cristalización. Figure 4. Shows an image of the TGA/DSC Spectrum of the BHET with a purity of 99% obtained after the second crystallization process.
Figura 5. Muestra las Imágenes y la concentración de elementos en la superficie del catalizador heterogéneo por microscopía electrónica de Barrido (SEM) y espectroscopia de energía dispersiva de rayos X (EDS) Figure 5. Shows the Images and the concentration of elements on the surface of the heterogeneous catalyst by Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS).
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
[0031 ] La presente solicitud se relaciona con un proceso para la obtención de un catalizador heterogéneo para la producción de monómero BHET a partir de PET reciclado. [0031] The present application relates to a process for obtaining a heterogeneous catalyst for the production of BHET monomer from recycled PET.
[0032] De acuerdo con una modalidad preferida de la presente invención, el catalizador heterogéneo comprende un núcleo de carbón activado que es impregnado con metal activo. El núcleo de carbón activado se produce utilizando como materia prima un carbón bituminoso, el cual es sometido a un proceso de desmineralización para reducir el contenido de cenizas que consiste en introducir 50 g de carbón en 100 mi de una disolución 12 N de HCI durante 48 horas. Pasado este tiempo, se muele y se tamiza hasta lograr un tamaño de partícula de 100 - 200 |im. Este carbón es activado químicamente con KOH como agente activante en una proporción 4:1 empleando el método de mezcla física. [0032] According to a preferred embodiment of the present invention, the heterogeneous catalyst comprises an activated carbon core that is impregnated with active metal. The activated carbon core is produced using bituminous coal as raw material, which is subjected to a demineralization process to reduce the ash content, which consists of introducing 50 g of carbon in 100 ml of a 12 N HCl solution for 48 hours. After this time, it is ground and sieved until a particle size of 100 - 200 |im is achieved. This carbon is chemically activated with KOH as an activating agent in a 4:1 ratio using the physical mixing method.
[0033] Esta mezcla, agente activante - carbón, se carboniza en un horno a una temperatura de 750° C bajo atmosfera de nitrógeno y a una velocidad de calentamiento de 5 °C /min por un período de tiempo de 2 horas. Luego, el carbón activado, es lavado repetidas veces con una solución de HCL 0.1 M hasta alcanzar un pH neutro en el agua de filtrado, posteriormente, se procede al lavado con agua destilada en un equipo Soxlet por 24 horas y luego, es secado en un horno que es mantenido en 1 10 °C por 24 horas. [0033] This mixture, activating agent - carbon, is carbonized in an oven at a temperature of 750° C under a nitrogen atmosphere and at a heating rate of 5° C /min for a period of time of 2 hours. Then, the activated carbon is washed repeatedly with a 0.1 M HCL solution until a neutral pH is reached in the filtered water. Subsequently, it is washed with distilled water in a Soxlet equipment for 24 hours and then dried in an oven that is maintained at 1 10 °C for 24 hours.
[0034] Aparte, se pesa una unidad de masa de Sulfato de Hierro hepta hidratado (FeSC .7H2O) (6.327 g) que se disuelven en 500 mi de agua desionizada. Posteriormente, se agrega hidróxido de amonio al 25% de forma lenta y bajo intensa agitación a la solución concentrada hasta que el pH de la solución alcance el valor de 7.2, donde se logra obtener un sólido marrón, que tiene la siguiente formula química: [0034] Separately, a unit of mass of hydrated Iron Sulfate hepta (FeSC .7H2O) (6.327 g) is weighed and dissolved in 500 ml of deionized water. Subsequently, 25% ammonium hydroxide is added slowly and under intense stirring to the solution. concentrated until the pH of the solution reaches the value of 7.2, where a brown solid is obtained, which has the following chemical formula:
FeSCF . O + N OH Fe(OH FeSCF . O + N OH Fe(OH
[0035] Una vez alcanzado el pH, se adicionan de 10 a 15 g de carbón activado y bajo agitación lenta se deja por 24 horas, una vez terminado este tiempo, se realiza el proceso de filtración, donde el filtrado se puede utilizar para una nueva preparación y el metal activo se encuentra sobre el carbón activado, el cual es utilizado en el proceso de reacción. [0035] Once the pH is reached, 10 to 15 g of activated carbon are added and under slow stirring it is left for 24 hours. Once this time is over, the filtration process is carried out, where the filtrate can be used for a new preparation and the active metal is found on the activated carbon, which is used in the reaction process.
[0036] El catalizador se coloca dentro de un contenedor de malla y se introduce en un reactor en donde se encuentra una mezcla de rPET con etilenglicol en una relación de entre 1 y 16 partes de PET por una de etilenglicol, y una relación de entre 3.5 y 10 partes de PET por 1 parte de catalizador. La reacción se lleva a cabo a una temperatura de 180°C por 120 minutos, tras lo cual el medio de reacción es bombeado a un filtro que retiene el PET sin reaccionar, los colorantes del PET y otras impurezas. El monómero de BHET diluido en etilenglicol presente en el filtrado es enviado a la etapa de cristalización. [0036] The catalyst is placed inside a mesh container and introduced into a reactor where there is a mixture of rPET with ethylene glycol in a ratio of between 1 and 16 parts of PET to one of ethylene glycol, and a ratio of between 3.5 and 10 parts of PET for 1 part of catalyst. The reaction is carried out at a temperature of 180°C for 120 minutes, after which the reaction medium is pumped to a filter that retains unreacted PET, PET dyes and other impurities. The BHET monomer diluted in ethylene glycol present in the filtrate is sent to the crystallization stage.
[0037] En la etapa de cristalización, el filtrado obtenido del paso de filtración es enviado a un tanque de enfriamiento, en donde se reduce la temperatura hasta 4°C para propiciar la cristalización del BHET. Del tanque de enfriamiento la solución se bombea a un filtro en donde se separa el BHET del etilenglicol sin reaccionar, el cual es recirculado al reactor. [0037] In the crystallization stage, the filtrate obtained from the filtration step is sent to a cooling tank, where the temperature is reduced to 4°C to promote the crystallization of the BHET. From the cooling tank the solution is pumped to a filter where the BHET is separated from the unreacted ethylene glycol, which is recirculated to the reactor.
[0038] El BHET cristalizado se lava con agua, y la mezcla de agua de lavado y etilenglicol se purifica para recuperar el etilenglicol y recircularlo al reactor. El BHET se somete a un proceso de secado en un secador a una temperatura de entre 80°C y 120°C por un periodo de entre 2 y 4 horas, tras lo cual se obtiene un BHET con un 99% de pureza. [0038] The crystallized BHET is washed with water, and the mixture of washing water and ethylene glycol is purified to recover the ethylene glycol and recirculate it to the reactor. The BHET is subjected to a drying process in a dryer at a temperature between 80°C and 120°C for a period of between 2 and 4 hours, after which a BHET with 99% purity is obtained.
[0039] Si bien hasta ahora se ha hecho una descripción de una modalidad preferida de la invención, la misma no es de carácter limitante y el técnico medio en la materia podrá apreciar que es posible realizar modificaciones y variaciones al objeto de la invención que se describe sin alejarse del espíritu o el alcance de la misma, el cual quedará debidamente definido y delimitado en el capítulo reivindicatorío que se adjunta. [0039] Although up to now a description of a preferred embodiment of the invention has been made, it is not of a limiting nature and the average person skilled in the art will be able to appreciate that it is possible to make modifications and variations to the object of the invention that is described. describes without departing from the spirit or scope of the same, which will be duly defined and delimited in the vindicatory chapter that is attached.

Claims

REIVINDICACIONES Un método para la fabricación de un catalizador para la obtención del BHET a partir de PET reciclado, caracterizado porque comprende las etapas de: i. Desarrollar el soporte de carbón activado; e CLAIMS A method for manufacturing a catalyst for obtaining BHET from recycled PET, characterized in that it comprises the steps of: i. Develop activated carbon support; and
¡i. Impregnar el carbón activado con el metal reactivo. Un método de acuerdo con la reivindicación 1 , caracterizado porque la etapa de desarrollar el soporte de carbón comprende los pasos de: i. mezclar 50 g de carbón bituminoso en 100 mi de una disolución 12 N de HCI durante 48 horas Yo. Impregnate the activated carbon with the reactive metal. A method according to claim 1, characterized in that the step of developing the carbon support comprises the steps of: i. mix 50 g of bituminous coal in 100 ml of a 12 N HCl solution for 48 hours
¡i. moler y tamizar el producto resultante hasta lograr un tamaño de partícula de 100 - 200 |im; ill. activar químicamente el carbón del paso anterior con KOH como agente activante en una proporción 4:1 empleando el método de mezcla física; iv. carbonizar la mezcla de agente activante - carbón en un horno a una temperatura de 750° C bajo atmosfera de nitrógeno y a una velocidad de calentamiento de 5 °C /min por un período de tiempo de 2 horas; v. lavar el carbón activado repetidas veces con una solución de HCL 0.1 M hasta alcanzar un pH neutro en el agua de filtrado; vi. proceder al lavado con agua destilada en un equipo Soxlet por 24 horas; y vii. secar en una horno que es mantenido en 110 °C por 24 horas. Un método de acuerdo con la reivindicación 1 , caracterizado porque el paso de impregnar al carbón activado con el metal reactivo comprende los pasos de: i. pesar 6.327 g de Sulfato de Hierro Septa hidratado (FeSC .7H2O); Yo. grind and sieve the resulting product until achieving a particle size of 100 - 200 |im; ill. chemically activate the carbon from the previous step with KOH as an activating agent in a 4:1 ratio using the physical mixing method; iv. carbonizing the activating agent-carbon mixture in an oven at a temperature of 750° C under a nitrogen atmosphere and at a heating rate of 5° C/min for a period of 2 hours; v. wash the activated carbon repeatedly with a 0.1 M HCL solution until a neutral pH is reached in the filter water; saw. proceed to washing with distilled water in a Soxlet equipment for 24 hours; and vii. dry in an oven that is kept at 110 °C for 24 hours. A method according to claim 1, characterized in that the step of impregnating the activated carbon with the reactive metal comprises the steps of: i. weigh 6.327 g of hydrated Septa Iron Sulfate (FeSC .7H2O);
¡i. disolverlos en agua en 500 mi de agua desionizada; ill. agregar hidróxido de amonio al 25% de forma lenta y bajo intensa agitación hasta que el pH de la solución alcance el valor de 7.2; iv. adicionar de 10 a 15 g de carbón activado a la solución; v. dejar reaccionar por 24 horas bajo agitación lenta; vi. filtrar la solución del paso anterior, donde el filtrado se puede utilizar para una nueva preparación y el metal activo se encuentra sobre el carbón activado. Un método para producir BHET a partir de PET reciclado, caracterizado porque comprende los pasos de: i. Hacer reaccionar una mezcla del catalizador de cualquiera de las reivindicaciones 1 a 3 con PET, en una relación másica de entre 3.5 y 10 partes de PET por una parte de catalizador, en un medio de etilenglicol, con una relación de entre 1 y 16 partes de PET por una parte de etilenglicol, para producir BHET; Yo. dissolve them in water in 500 ml of deionized water; ill. add 25% ammonium hydroxide slowly and under intense stirring until the pH of the solution reaches the value of 7.2; iv. add 10 to 15 g of activated carbon to the solution; v. let react for 24 hours under slow stirring; saw. filter the solution from the previous step, where the filtrate can be used for a new preparation and the active metal is on the activated carbon. A method for producing BHET from recycled PET, characterized in that it comprises the steps of: i. React a mixture of the catalyst of any of claims 1 to 3 with PET, in a mass ratio of between 3.5 and 10 parts of PET to one part of catalyst, in an ethylene glycol medium, with a ratio of between 1 and 16 parts of PET with one part ethylene glycol, to produce BHET;
¡i. Filtrar la solución resultante de la etapa anterior, para producir un filtrado que comprende BHET y etilenglicol; iii. Cristalizar el BHET; iv. Filtrar la solución del paso anterior para separar los cristales de BHET y el etilenglicol; v. Lavar el BHET obtenido en el paso anterior; y vi. Secar el BHET. Un método de acuerdo con la reivindicación 4, caracterizado porque la reacción entre el PET y el catalizador se lleva a cabo a una temperatura de 180°C por un tiempo de 120 minutos en un reactor agitado. Un método de acuerdo con la reivindicación 4, caracterizado porque el paso de cristalizar el BHET se realiza bombeando la solución a un enfriador y reduciendo la temperatura hasta 4°C. Un método de acuerdo con la reivindicación 4, caracterizado porque el etilenglicol recuperado es reciclado al reactor. Yo. Filter the solution resulting from the previous step, to produce a filtrate comprising BHET and ethylene glycol; iii. Crystallize the BHET; iv. Filter the solution from the previous step to separate the BHET crystals and ethylene glycol; v. Wash the BHET obtained in the previous step; and I saw. Dry the BHET. A method according to claim 4, characterized in that the reaction between the PET and the catalyst is carried out at a temperature of 180°C for a time of 120 minutes in a stirred reactor. A method according to claim 4, characterized in that the step of crystallizing the BHET is carried out by pumping the solution to a cooler and reducing the temperature to 4°C. A method according to claim 4, characterized in that the recovered ethylene glycol is recycled to the reactor.
PCT/IB2023/055212 2022-05-23 2023-05-20 Catalyst and process for obtaining bhet from pet WO2023228034A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CONC2022/0006786 2022-05-23
CONC2022/0006786A CO2022006786A1 (en) 2022-05-23 2022-05-23 Catalyst and process for obtaining bhet (bis 2 ethylene terephthalate) from residual pet (poly ethylene terephthalate)

Publications (1)

Publication Number Publication Date
WO2023228034A1 true WO2023228034A1 (en) 2023-11-30

Family

ID=83398616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2023/055212 WO2023228034A1 (en) 2022-05-23 2023-05-20 Catalyst and process for obtaining bhet from pet

Country Status (2)

Country Link
CO (1) CO2022006786A1 (en)
WO (1) WO2023228034A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143798A1 (en) * 2017-01-31 2018-08-09 Ioniqa Technologies B.V. Decomposition of condensation polymers
CN109574835A (en) * 2018-11-20 2019-04-05 江南大学 A kind of method of ion modification activity carbon decoloring polyesterols solution product BHET
WO2021032821A1 (en) * 2019-08-21 2021-02-25 Ioniqa Technologies B.V. Method and reactor system for depolymerising a terephthalate-polymer into reusable raw material
US20220041836A1 (en) * 2018-09-12 2022-02-10 Petróleo Brasileiro S.A. - Petrobras Catalysts and method for producing recycled polyester

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143798A1 (en) * 2017-01-31 2018-08-09 Ioniqa Technologies B.V. Decomposition of condensation polymers
US20220041836A1 (en) * 2018-09-12 2022-02-10 Petróleo Brasileiro S.A. - Petrobras Catalysts and method for producing recycled polyester
CN109574835A (en) * 2018-11-20 2019-04-05 江南大学 A kind of method of ion modification activity carbon decoloring polyesterols solution product BHET
WO2021032821A1 (en) * 2019-08-21 2021-02-25 Ioniqa Technologies B.V. Method and reactor system for depolymerising a terephthalate-polymer into reusable raw material

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AO WENYA, FU JIE, MAO XIAO, KANG QINHAO, RAN CHUNMEI, LIU YANG, ZHANG HEDONG, GAO ZUOPENG, LI JING, LIU GUANGQING, DAI JIANJUN: "Microwave assisted preparation of activated carbon from biomass: A review", RENEWABLE AND SUSTAINABLE ENERGY REVIEWS, ELSEVIERS SCIENCE, NEW YORK, NY., US, vol. 92, 1 September 2018 (2018-09-01), US , pages 958 - 979, XP093115080, ISSN: 1364-0321, DOI: 10.1016/j.rser.2018.04.051 *
LALDINPUII ZATHANG, LALHMANGAIHZUALA SAMSON, PACHUAU ZODINPUIA, VANLALDINPUIA KHIANGTE: "Depolymerization of poly(ethylene terephthalate) waste with biomass-waste derived recyclable heterogeneous catalyst", WASTE MANAGEMENT., ELSEVIER, NEW YORK, NY., US, vol. 126, 1 May 2021 (2021-05-01), US , pages 1 - 10, XP093115081, ISSN: 0956-053X, DOI: 10.1016/j.wasman.2021.02.056 *
YANG MINHO, KIM DONG SEOK, SIM JAE-WOOK, JEONG JAE-MIN, KIM DO HYUN, CHOI JAE HYUNG, KIM JINSOO, KIM SEUNG-SOO, CHOI BONG GILL: "Synthesis of vertical MnO 2 wire arrays on hemp-derived carbon for efficient and robust green catalysts", APPLIED SURFACE SCIENCE, ELSEVIER, AMSTERDAM , NL, vol. 407, 1 June 2017 (2017-06-01), Amsterdam , NL , pages 540 - 545, XP093115079, ISSN: 0169-4332, DOI: 10.1016/j.apsusc.2017.02.219 *
YOSI KRATISH; JIAQI LI; SHANFU LIU; YANSHAN GAO; TOBIN J. MARKS: "Polyethylene Terephthalate Deconstruction Catalyzed by a Carbon‐Supported Single‐Site Molybdenum‐Dioxo Complex", ANGEWANDTE CHEMIE, WILEY - V C H VERLAG GMBH & CO. KGAA, DE, vol. 132, no. 45, 15 September 2020 (2020-09-15), DE , pages 20029 - 20033, XP071384352, ISSN: 0044-8249, DOI: 10.1002/ange.202007423 *

Also Published As

Publication number Publication date
CO2022006786A1 (en) 2022-09-30

Similar Documents

Publication Publication Date Title
Park et al. Poly (ethylene terephthalate) recycling for high value added textiles
Damayanti et al. Strategic possibility routes of recycled PET
Bartolome et al. Recent developments in the chemical recycling of PET
ES2221743T3 (en) IMPROVED CONVERSION OF POLYETHYLLENE CONTAMINATED TEREFTALATE TO DECONTAMINATED TEREFTALATE POLYBUTTON
US6706843B1 (en) Method for separating and recovering dimethyl terephthalate and ethylene glycol from polyester waste
JP5189266B2 (en) Method for producing bis- (2-hydroxyethyl) terephthalate and method for producing polyethylene terephthalate
CN111138641A (en) Method for preparing bottle-grade slices by recycling waste polyester bottles
TW448204B (en) A method for catalytic depolymerization of polyethylene terephthalate
CN102584594B (en) Method for catalyzing alcoholysis performed on polyethylene glycol terephthalate (PET) by using CoCl42-/NiCl42-type ionic liquid
CN102341432A (en) Bio-based polyethylene terephthalate packaging and method of making thereof
EP1437377A4 (en) Method for recycling pet bottle
US20050187306A1 (en) Process for controlled polymerization of a mixed polymer
CN101249456A (en) Catalyst for alcoholysis polyethylene glycol terephthalate
KR20210122805A (en) Method for producing terephthalate polyester with integrated depolymerization process
CN112851502B (en) Method for catalyzing waste PET polyester to carry out methanol alcoholysis by using choline and terephthalic acid non-metallic ionic liquid
JP2009209145A (en) Method of producing biomaterial-originated glycol and method of producing polyester produced from the glycol
TW564251B (en) Polyester resin and production method thereof
WO2023228034A1 (en) Catalyst and process for obtaining bhet from pet
JP2023541162A (en) Depolymerization catalyst for polymers containing ester functional groups and depolymerization method using the same
Brivio et al. PET recycling: Review of the current available technologies and industrial perspectives
US20220135735A1 (en) Process for the production of a terephthalate polyester from a monomer mixture comprising a diester
RU2745217C2 (en) Method for producing bio-petf resin
CN1250514C (en) Method of deionizing solution yielded by polyester decomposition with ethylene glycol
CN104327256A (en) Preparation method of novel heat-shrinkable PET modified copolyester
Almutalabi et al. Two stages thermal and catalytic cracking of polyethylene terephthalate to fuel production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811261

Country of ref document: EP

Kind code of ref document: A1