WO2023227140A1 - 一种低碳高效的大体积水样现场快速富集分离装置及方法 - Google Patents

一种低碳高效的大体积水样现场快速富集分离装置及方法 Download PDF

Info

Publication number
WO2023227140A1
WO2023227140A1 PCT/CN2023/106271 CN2023106271W WO2023227140A1 WO 2023227140 A1 WO2023227140 A1 WO 2023227140A1 CN 2023106271 W CN2023106271 W CN 2023106271W WO 2023227140 A1 WO2023227140 A1 WO 2023227140A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact reaction
rotating shaft
separation
device body
volume water
Prior art date
Application number
PCT/CN2023/106271
Other languages
English (en)
French (fr)
Inventor
周庆
王星煜
张锐翔
张淳丰
徐俞茜
何歆逸
章礼斌
Original Assignee
南京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京大学 filed Critical 南京大学
Publication of WO2023227140A1 publication Critical patent/WO2023227140A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/405Concentrating samples by adsorption or absorption

Definitions

  • the invention belongs to the field of water sample pretreatment devices, and more specifically, relates to a low-carbon and high-efficiency on-site rapid enrichment and separation device and method for large-volume water samples.
  • Magnetic solid-phase extraction technology is an emerging pre-processing technology for environmental sample analysis. It has the advantages of large water processing capacity, short enrichment time, easy separation and recovery, and has broad application prospects in the field of environmental monitoring.
  • existing technology often focuses on the preparation of magnetic solid-phase extraction packing, and the extraction process of related materials is usually carried out in the laboratory, which greatly limits its application and promotion.
  • the development of an efficient and fast on-site pre-processing device with magnetic solid phase extraction materials as the core can reduce the manpower and material consumption of water sample collection, storage and transportation from the site as well as the analytical distortion that may occur in the process, thereby greatly improving detection efficiency and accuracy and cost savings.
  • the research and design of magnetic solid-phase extraction devices are still in the early stages of exploration.
  • the application number 201810694530.9 discloses a magnetic nano-solid-phase extraction device based on electromagnetic separation and
  • the device adopts a stirring mixing extraction-magnetic field sedimentation collection method, and an electromagnet is selected.
  • the degree of automation and operability have been improved, the shortcomings of the electromagnet's large size and weak magnetism have resulted in the magnetic extraction agent being too far away from the magnet to weaken the magnetic force during the collection process through static sedimentation after enrichment and separation. It takes a long time, is difficult to achieve effective extraction agent collection effect, and is not conducive to on-site operation.
  • the patent also uses a stirring paddle for mixing, which reduces the sealing of the device and easily leads to the loss of water samples and magnetic materials, thereby affecting the final extraction efficiency.
  • the Chinese invention patent application with application number 201610782755.0 discloses a portable high-efficiency magnetic solid-phase extraction device and its extraction method.
  • the device uses hydraulic stirring to avoid introducing into the enrichment system. Additional power components, but the pipeline of the device is complex, there are water samples and magnetic materials remaining in the pipelines, and the circulation pump will heat the water samples, causing interference. Therefore, it is particularly important to develop a new on-site enrichment and separation device.
  • the present invention provides a low-carbon and efficient on-site rapid enrichment and separation device and method for large-volume water samples.
  • the present invention avoids the static settling process, solves the problem of slow settling and easy loss of magnetic materials, and improves the enrichment and separation efficiency of magnetic materials.
  • the present invention provides a large-volume water sample on-site rapid enrichment and separation device, which includes a contact reaction unit, a collection unit and a transmission unit.
  • the contact reaction unit includes a contact reaction device body, an upper cover and a drainage head.
  • the upper cover is located in the contact reaction device.
  • On the top of the body, a drainage head is located at the bottom of the contact reaction device body.
  • a flow regulating valve is provided on the drainage head.
  • a fixed steel ring is provided at the middle position of the contact reaction device body;
  • the collection unit includes a collection trough and a magnet, the magnet is located below the collection trough, and the collection trough is located below the drainage head; and the transmission unit includes a main rotating shaft, a transmission gear set, a secondary rotating shaft and a rotating handle, The main rotating shaft is connected to the fixed steel ring, the transmission gear set is connected to the main rotating shaft and the auxiliary rotating shaft, and the rotating handle is connected to the auxiliary rotating shaft.
  • a clamping ring is provided on the body of the contact reaction device, and the clamping ring is connected to the fixed steel ring.
  • the fixed steel ring is arranged at a height of 10 cm in contact with the reaction device body.
  • the drainage head is arranged to tilt downward, with an inclination angle ⁇ of 10° to 20°.
  • the collection tank is in the shape of a downward convex dish and is set to tilt downward, with an inclination angle ⁇ of 5° to 10°.
  • the collection tank is located 1 cm below the drainage head.
  • the transmission gear set includes a small gear and a large gear.
  • the diameter ratio of the large gear to the small gear is 5:1, and the small gear is connected to the main rotating shaft, and the large gear is connected to the auxiliary rotating shaft. .
  • the upper part of the magnet is in the shape of a downward convex dish, and is arranged to fit the shape of the collection tank.
  • the invention's on-site rapid enrichment and separation device for large-volume water samples also includes an L-shaped base, and the main rotating shaft, transmission gear set and auxiliary rotating shaft are arranged on the side of the L-shaped base.
  • the magnet is arranged in a magnet tray, and the magnet tray is connected to the bottom surface of the L-shaped base through staples.
  • the body of the contact reaction device is provided with a circular ring, and the circular ring is embedded inside the fixed steel ring.
  • a tachometer is provided on the side of the L-shaped base, and the tachometer is connected to the main rotating shaft.
  • a storage room is provided in the bottom surface of the L-shaped base.
  • the upper cover is threadedly connected to the contact reaction device body.
  • the clamping ring is threadedly connected to the fixed steel ring.
  • the magnet tray is provided with an annular slot.
  • the rotating handle is detachably connected to the auxiliary rotating shaft.
  • a method for on-site rapid enrichment and separation of large-volume water samples of the present invention uses the above-mentioned device for processing.
  • the specific processing steps include:
  • the specific method of intermittent rotation is to rotate the handle at a speed of one revolution every 10 seconds, and the interval between each revolution is 30 seconds, and the rotation time is 20 minutes.
  • a large-volume water sample on-site rapid enrichment and separation device of the present invention adopts a fully enclosed rotating and overturning mixing method to achieve sufficient mixing without introducing a stirring paddle, ensuring the efficiency of the enrichment system.
  • the sealing property prevents the power transmission components from interfering with water samples and magnetic materials, and the contact reaction device body is independently designed without the need for complicated pipelines to ensure the recovery rate of magnetic materials;
  • a device for rapid on-site enrichment and separation of large-volume water samples of the present invention uses dynamic collection of magnetic materials to avoid the static settling process, and optimizes the shape of the collection tank and magnet to shorten the distance between the magnet and the water sample. Enhance the attraction effect of magnets to magnetic materials in water samples, and improve the recovery rate and collection efficiency of magnetic materials;
  • a method of rapid on-site enrichment and separation of large volume water samples of the present invention through a detachable rotating handle, realizes a low-carbon and energy-free operation mode, effectively reduces carbon emissions, and cooperates with the intermittent operation mode to minimize operating intensity , this low-carbon and energy-free operation mode has important application prospects in the field sampling process, especially in long-distance remote areas.
  • Figure 1 is a schematic structural diagram of a large-volume water sample on-site rapid enrichment and separation device of the present invention
  • Figure 2 is a top view of the magnet, magnet tray and staples of the present invention.
  • a large-volume water sample on-site rapid enrichment and separation device of the present invention includes a contact reaction unit 100, a collection unit 200, a transmission unit 300 and an L-shaped base 400.
  • the contact reaction unit 100 includes a contact reaction unit.
  • the device body 110, the upper cover 120 and the drainage head 130 are arranged.
  • the upper cover 120 is located on the top of the contact reaction device body 110. It is preferred that the upper cover 120 is connected to the contact
  • the contact reaction device body 110 is threaded; the drain head 130 is located at the bottom of the contact reaction device body 110.
  • the drain head 130 is set to tilt downward with an inclination angle ⁇ of 10° to 20°, and a flow regulating valve 131 is provided on the drain head 130.
  • a fixed steel ring 140, a clamp ring 150 and a ring 160 are provided in the middle of the contact reaction device body 110. It is preferred that the fixed steel ring 140 is provided in the contact reaction device body At a height of 10cm of 110, the clamping ring 150 is connected to the fixed steel ring 140. Preferably, the clamping ring 150 is threadedly connected to the fixed steel ring 140, and the ring 160 can be embedded inside the fixed steel ring 140.
  • the transmission unit 300 includes a main rotating shaft 310, a transmission gear set 320, an auxiliary rotating shaft 330 and a rotating handle 340.
  • the main rotating shaft 310 is connected to the fixed steel ring 140, and the transmission gear set 320 is connected to the main rotating shaft 310 and the auxiliary rotating shaft 330.
  • the handle 340 is connected to the auxiliary shaft 330 (detachable connection); specifically, the transmission gear set 320 includes a pinion gear 321 and a large gear 322.
  • the pinion gear 321 is connected to the main rotating shaft 310, and the large gear 322 is connected to the main rotating shaft 310.
  • the auxiliary rotating shaft 330 is connected, and preferably the diameter ratio of the large gear to the small gear is 5:1; the main rotating shaft 310, the transmission gear set 320 and the auxiliary rotating shaft 330 are all arranged on the side of the L-shaped base 400, within the side of the L-shaped base A tachometer 350 is also provided, and the tachometer 350 is connected to the main rotating shaft 310 .
  • the collection unit 200 includes a collection tank 210 and a magnet 220.
  • the collection tank 210 is located 1 cm below the drain head 120.
  • the collection tank 210 is in the shape of a downward convex dish and is set to tilt downward, with an inclination angle ⁇ of 5° to 10°;
  • the magnet 220 is located below the collection trough 210, and the upper part of the magnet 220 is in the shape of a downward convex dish, and is arranged to closely fit the shape of the collection trough 210.
  • the magnet 220 is arranged in a magnet tray 230.
  • the magnet tray 230 is connected to the bottom surface of the L-shaped base 400 through a staple 240.
  • An annular slot is provided in the magnet tray; the L-shaped
  • the bottom surface of the base is also provided with a storage room for storing the rotating handle.
  • the above device is used for rapid on-site enrichment and separation of large volume water samples.
  • the specific processing methods include:
  • the transmission unit 300 is driven by the rotating handle 340 to rotate the contact reaction device body 110 intermittently. After the rotation is completed, the contact reaction device body 110 is placed vertically with the drain head 130 downward.
  • the specific method of intermittent rotation is every 10 seconds. Rotate the handle 340 at the speed of one revolution, and the interval between each revolution is 30 seconds, and the rotation time is 20 minutes;
  • the fixed steel ring is set at a height of 10cm in contact with the reaction device body, and the drainage head is set downward Incline, the inclination angle ⁇ is 15°, the collection trough is a downward convex dish, set to slope downward, the inclination angle ⁇ is 7.5°, and the collection trough is located 1cm below the drainage head.
  • the on-site rapid enrichment and separation method for large-volume water samples in this embodiment is simple and easy to use. After magnetic materials extract contaminants in the water sample, the material recovery rate can reach 97.37 ⁇ 0.94%.
  • the basic content of this embodiment is the same as that of Embodiment 1.
  • the fixed steel ring is set at a height of 10cm contacting the reaction device body, and the drainage head is set to tilt downward, with an inclination angle ⁇ of 10°.
  • the collection trough is a downward convex dish, set to tilt downward, the inclination angle ⁇ is 5°, and the collection trough is located 1cm below the drainage head.
  • Distilled water was used as the matrix to verify the spike recovery rate.
  • the amount of magnetic material added was 200mg/L, the water sample volume was 2L, and three parallel experiments were conducted. The experimental results are as follows.
  • the recovery rate of magnetic materials reaches 98.27 ⁇ 0.66%, which has a high recovery rate of enriched materials.
  • the basic content of this embodiment is the same as that of Embodiment 1.
  • the fixed steel ring is set at a height of 10cm in contact with the reaction device body, the drainage head is set to tilt downward, and the tilt angle ⁇ is 20°.
  • the collection tank is a downward convex dish, set to tilt downward, the inclination angle ⁇ is 10°, and the collection tank is located 1cm below the drainage head.
  • Distilled water was used as the matrix to verify the spike recovery rate.
  • the amount of magnetic material added was 200mg/L, the water sample volume was 2L, and three parallel experiments were conducted. The experimental results are as follows. The recovery rate of magnetic materials reaches 95.60 ⁇ 1.40%, which has a high recovery rate of enriched materials.
  • the low-carbon and high-efficiency on-site rapid enrichment and separation device for large-volume water samples provided by the present invention is feasible for application in the field of enrichment of water body pollutants.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

本发明公开了一种低碳高效的大体积水样现场快速富集分离装置及方法,属于水样预处理装置领域。本发明通过优化装置的形状结构,并结合采用磁性材料的动态收集,避开静置沉降过程,解决磁性材料沉降慢、易损失的问题,提高磁性材料的富集分离效率,并且这种低碳无能耗的运行模式,在野外尤其是长途边远地区采样过程中,具有重要的应用前景。

Description

一种低碳高效的大体积水样现场快速富集分离装置及方法 技术领域
本发明属于水样预处理装置领域,更具体地说,涉及一种低碳高效的大体积水样现场快速富集分离装置及方法。
背景技术
磁性固相萃取技术是一种新兴的环境样品分析前处理技术,具有处理水量大、富集时间短、易分离回收等优点,在环境监测领域有着广泛的应用前景。然而,现有技术往往集中于磁性固相萃取填料的制备,相关材料的萃取过程通常都在实验室开展,这就大大限制了其应用推广。为此,开发以磁性固相萃取材料为核心的高效快速现场前处理装置,可减少水样从现场采集、贮存以及转运的人力物力消耗以及该过程可能产生的分析失真,进而大大提高检测效率与准确率,并节约成本。
目前,磁性固相萃取装置研究与设计还处于探索初期,经检索发现申请号201810694530.9,申请日2018年6月29日的中国发明专利申请公开了一种基于电磁分离的磁性纳米固相萃取装置及萃取方法,该装置采用了搅拌混合萃取-磁场沉降收集的方式,选用了电磁铁。尽管提高了自动化程度与可操作性,但电磁铁体积大、磁性弱的缺点导致了磁性萃取剂在完成富集分离后,通过静置沉降的收集过程会因为离磁铁过远磁力偏弱而造成耗时较长,难以达到有效的萃取剂收集效果,不利于实现现场操作。同时,该专利还采用了搅拌桨进行混合,降低了装置的封闭性,容易导致水样以及磁性材料的流失,进而影响最终萃取效率。
又例如,申请号201610782755.0,申请日2016年8月29日的中国发明专利申请公开了一种便携式高效磁性固相萃取装置及其萃取方法,该装置采用水力搅拌,避免了向富集系统中引入额外动力部件,但该装置管路复杂,管道中有水样及磁性材料残留,且循环泵会加热水样,造成干扰。因此,开发出一种新型现场富集分离装置显得尤为重要。
发明内容
1.要解决的问题
针对现有技术中磁性固相萃取装置现场萃取效果差、磁性材料流失高等问题,本发明提供一种低碳高效的大体积水样现场快速富集分离装置及方法。本发明通过优化装置的形状结构,并结合采用磁性材料的动态收集,避开静置沉降过程,解决磁性材料沉降慢、易损失的问题,提高磁性材料的富集分离效率。
2.技术方案
为了解决上述问题,本发明所采用的技术方案如下:
本发明的一种大体积水样现场快速富集分离装置,包括接触反应单元、收集单元和传动单元,所述接触反应单元包括接触反应装置本体、上盖和排水头,上盖位于接触反应装置本体顶部,排水头位于接触反应装置本体底部,所述排水头上设置有流量调节阀,所述接触反应装置本体中部位置处设置有固定钢圈;
所述收集单元包括收集槽和磁铁,所述磁铁位于所述收集槽下方,所述收集槽位于所述排水头下方;并且所述传动单元包括主转轴、传动齿轮组、副转轴和转柄,所述主转轴与所述固定钢圈相连接,所述传动齿轮组与所述主转轴和副转轴相连接,所述转柄与副转轴连接。
优选地,所述接触反应装置本体上设置有卡圈,所述卡圈与固定钢圈相连接。
优选地,所述固定钢圈设置在接触反应装置本体的10cm高度处。
优选地,所述排水头被设置为向下倾斜,倾斜角度α为10°~20°。
优选地,所述收集槽为下凸碟形,并且被设置为向下倾斜,倾斜角度β为5°~10°。
优选地,所述收集槽位于所述排水头下方的1cm处。
优选地,所述传动齿轮组包括小齿轮和大齿轮,所述大齿轮与小齿轮的直径比为5:1,并且所述小齿轮与主转轴相连接,所述大齿轮与副转轴相连接。
优选地,所述磁铁上部为下凸碟形,与所述收集槽的形状贴合设置。
优选地,本发明的一种大体积水样现场快速富集分离装置,还包括L形底座,所述主转轴、传动齿轮组和副转轴设置在L形底座的侧面。
优选地,所述磁铁设置在磁铁托盘中,所述磁铁托盘通过卡钉与L形底座的底面连接。
优选地,所述接触反应装置本体上设置有圆环,所述圆环嵌于固定钢圈内部。
优选地,所述L形底座的侧面内设置有转速表,所述转速表与主转轴相连接。
优选地,所述L形底座的底面内设置有储存间。
优选地,所述上盖与所述接触反应装置本体螺纹连接。
优选地,所述卡圈与固定钢圈螺纹连接。
优选地,所述磁铁托盘内设置有圆环形卡槽。
优选地,所述转柄与副转轴可拆卸连接。
本发明的一种大体积水样现场快速富集分离方法,采用上述装置进行处理,具体处理步骤包括:
S10、打开上盖,通入水样,并且向接触反应装置本体中加入磁性固相萃取材料,关闭上盖,而后通过转柄驱动传动单元,对接触反应装置本体进行间歇旋转,旋转完毕后将接触反应装置本体竖直放置,排水头向下;
S20、安装磁铁,并且放置收集槽,而后开启排水头上设置的流量调节阀进行排水,在收 集槽中收集所述磁性固相萃取材料,排水完毕后使用清水冲洗接触反应装置本体。
优选地,所述间歇旋转的具体方式为以每10秒一圈的速度旋转转柄,并且每转1圈间隔30秒,旋转时间为20分钟。
3.有益效果
相比于现有技术,本发明的有益效果为:
(1)本发明的一种大体积水样现场快速富集分离装置,通过采用全封闭的旋转翻覆式混匀方法,在达到充分混匀的同时,无需引入搅拌桨,保证了富集系统的封闭性,避免动力传输部件对水样、磁性材料产生干扰,并且接触反应装置本体独立设计,无需复杂的管路,保证磁性材料的回收率;
(2)本发明的一种大体积水样现场快速富集分离装置,通过采用磁性材料的动态收集,避开静置沉降过程,并且优化收集槽及磁铁形状,缩短磁铁与水样的距离,增强磁铁对水样中磁性材料的吸引效果,提高磁性材料的回收率和收集效率;
(3)本发明的一种大体积水样现场快速富集分离方法,通过可拆卸转柄,实现低碳无能耗的运行方式,有效减少碳排放,配合间歇式运行模式,最大程度降低操作强度,这种低碳无能耗的运行模式,在野外尤其是长途边远地区采样过程中,具有重要的应用前景。
附图说明
图1为本发明的一种大体积水样现场快速富集分离装置的结构示意图;
图2为本发明的磁铁、磁铁托盘及卡钉的俯视图;
图中:
100、接触反应单元;110、接触反应装置本体;120、上盖;130、排水头;
131、流量调节阀;140、固定钢圈;150、卡圈;160、圆环;
200、收集单元;210、收集槽;220、磁铁;230、磁铁托盘;
240、卡钉;300、传动单元;310、主转轴;320、传动齿轮组;
321、小齿轮;322、大齿轮;330、副转轴;340、转柄;
350、转速表;400、L形底座;410、储存间。
具体实施方式
下面结合具体实施例对本发明进一步进行描述。
实施例1
如图1所示,本发明的一种大体积水样现场快速富集分离装置,包括接触反应单元100、收集单元200、传动单元300和L形底座400,所述接触反应单元100包括接触反应装置本体110、上盖120和排水头130,上盖120位于接触反应装置本体110顶部,优选上盖120与接 触反应装置本体110螺纹连接;排水头130位于接触反应装置本体110底部,排水头130被设置为向下倾斜,倾斜角度α为10°~20°,并且排水头130上设置有流量调节阀131,用于控制排水速度,缓慢排水以避免磁性材料冲走;接触反应装置本体110中部位置处设置有固定钢圈140、卡圈150和圆环160,优选固定钢圈140设置在接触反应装置本体110的10cm高度处,卡圈150与固定钢圈140相连接,优选卡圈150与固定钢圈140螺纹连接,并且圆环160可嵌于固定钢圈140内部。
所述传动单元300包括主转轴310、传动齿轮组320、副转轴330和转柄340,主转轴310与固定钢圈140相连接,传动齿轮组320与主转轴310和副转轴330相连接,转柄340与副转轴330连接(可拆卸连接);具体地说,所述传动齿轮组320包括小齿轮321和大齿轮322,所述小齿轮321与主转轴310相连接,所述大齿轮322与副转轴330相连接,优选所述大齿轮与小齿轮的直径比为5:1;主转轴310、传动齿轮组320和副转轴330均设置在L形底座400的侧面,L形底座的侧面内还设置有转速表350,所述转速表350与主转轴310相连接。
所述收集单元200包括收集槽210和磁铁220,所述收集槽210位于所述排水头120下方的1cm处,收集槽210为下凸碟形,并且被设置为向下倾斜,倾斜角度β为5°~10°;所述磁铁220位于所述收集槽210下方,磁铁220上部为下凸碟形,与收集槽210的形状紧密贴合设置。
如图2所示,所述磁铁220设置在磁铁托盘230中,所述磁铁托盘230通过卡钉240与L形底座400的底面连接,磁铁托盘内设置有圆环形卡槽;所述L形底座的底面还内设置有储存间,用于存放转柄。
采用上述装置进行大体积水样现场快速富集分离,具体处理方法包括:
S10、打开上盖120,通入水样至接触反应装置本体110,并且向其中加入磁性固相萃取材料,关闭上盖120,拧紧;
而后通过转柄340驱动传动单元300,对接触反应装置本体110进行间歇旋转,旋转完毕后将接触反应装置本体110竖直放置,排水头130向下,其中间歇旋转的具体方式为以每10秒一圈的速度旋转转柄340,并且每转1圈间隔30秒,旋转时间为20分钟;
S20、安装磁铁220及磁铁托盘230,并且放置收集槽210,而后开启排水头130上设置的流量调节阀131,控制排水速度,进行排水操作,在收集槽210中收集所述磁性固相萃取材料,排水完毕后使用清水冲洗接触反应装置本体110。
取下收集槽210和所收集的磁性固相萃取材料,放入保存盒。当转柄340与副转轴330可拆卸连接时,可取下转柄340,放入储存间410中。
本实施例中,固定钢圈设置在接触反应装置本体的10cm高度处,排水头被设置为向下 倾斜,倾斜角度α为15°,收集槽为下凸碟形,被设置为向下倾斜,倾斜角度β为7.5°,并且收集槽位于排水头下方的1cm处。
本实施例的大体积水样现场快速富集分离方法,操作简单、易上手,磁性材料对水样中的污染物进行萃取后,材料的回收率可达到97.37±0.94%。
实施例2
本实施例的基本内容同实施例1,不同之处在于:本实施例中,固定钢圈设置在接触反应装置本体的10cm高度处,排水头被设置为向下倾斜,倾斜角度α为10°,收集槽为下凸碟形,被设置为向下倾斜,倾斜角度β为5°,并且收集槽位于排水头下方的1cm处。
以蒸馏水为基质,进行加标回收率验证。磁性材料加入量为200mg/L,水样体积为2L,进行三次平行实验,实验结果如下。
磁性材料的回收率达到98.27±0.66%,具有较高的富集材料回收率。
实施例3
本实施例的基本内容同实施例1,不同之处在于:本实施例中,固定钢圈设置在接触反应装置本体的10cm高度处,排水头被设置为向下倾斜,倾斜角度α为20°,收集槽为下凸碟形,被设置为向下倾斜,倾斜角度β为10°,并且收集槽位于排水头下方的1cm处。
以蒸馏水为基质,进行加标回收率验证。磁性材料加入量为200mg/L,水样体积为2L,进行三次平行实验,实验结果如下。磁性材料的回收率达到95.60±1.40%,具有较高的富集材料回收率。
本发明提供的一种低碳高效的大体积水样现场快速富集分离装置在水体污染物的富集领域上的应用是可行的。
需要说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的范围,其均应涵盖在本发明的权利要求范围中。

Claims (10)

  1. 一种大体积水样现场快速富集分离装置,其特征在于:包括接触反应单元(100)、收集单元(200)和传动单元(300),所述接触反应单元(100)包括接触反应装置本体(110)、上盖(120)和排水头(130),上盖(120)位于接触反应装置本体(110)顶部,排水头(130)位于接触反应装置本体(110)底部,所述排水头(130)上设置有流量调节阀(131),所述接触反应装置本体(110)中部位置处设置有固定钢圈(140);
    所述收集单元(200)包括收集槽(210)和磁铁(220),所述磁铁(220)位于所述收集槽(210)下方,所述收集槽(210)位于所述排水头(120)下方;并且所述传动单元(300)包括主转轴(310)、传动齿轮组(320)、副转轴(330)和转柄(340),所述主转轴(310)与所述固定钢圈(140)相连接,所述传动齿轮组(320)与所述主转轴(310)和副转轴(330)相连接,所述转柄(340)与副转轴(330)连接。
  2. 根据权利要求1所述的一种大体积水样现场快速富集分离装置,其特征在于:所述接触反应装置本体(110)上设置有卡圈(150),所述卡圈(150)与固定钢圈(140)相连接。
  3. 根据权利要求1所述的一种大体积水样现场快速富集分离装置,其特征在于:所述固定钢圈(140)设置在接触反应装置本体(110)的10cm高度处;
    或者,所述收集槽(210)位于所述排水头(120)下方的1cm处。
  4. 根据权利要求1所述的一种大体积水样现场快速富集分离装置,其特征在于:所述排水头(130)被设置为向下倾斜,倾斜角度α为10°~20°;
    或者,所述收集槽(210)为下凸碟形,并且被设置为向下倾斜,倾斜角度β为5°~10°。
  5. 根据权利要求1所述的一种大体积水样现场快速富集分离装置,其特征在于:所述传动齿轮组(320)包括小齿轮(321)和大齿轮(322),所述大齿轮(322)与小齿轮(321)的直径比为5:1,并且所述小齿轮(321)与主转轴(310)相连接,所述大齿轮(322)与副转轴(330)相连接。
  6. 根据权利要求4所述的一种大体积水样现场快速富集分离装置,其特征在于:所述磁铁(220)上部为下凸碟形,与所述收集槽(210)的形状贴合设置。
  7. 根据权利要求1-6中任一项所述的一种大体积水样现场快速富集分离装置,其特征在于:还包括L形底座(400),所述主转轴(310)、传动齿轮组(320)和副转轴(330)设置在L形底座(400)的侧面。
  8. 根据权利要求7所述的一种大体积水样现场快速富集分离装置,其特征在于:所述磁铁(220)设置在磁铁托盘(230)中,所述磁铁托盘(230)通过卡钉(240)与L形底座(400)的底面连接。
  9. 一种大体积水样现场快速富集分离方法,其特征在于:采用权利要求1-8中任一项所 述的装置进行处理,具体步骤包括:
    S10、打开上盖(120),通入水样,并且向接触反应装置本体(110)中加入磁性固相萃取材料,关闭上盖(120),而后通过转柄(340)驱动传动单元(300),对接触反应装置本体(110)进行间歇旋转,旋转完毕后将接触反应装置本体(110)竖直放置,排水头(130)向下;
    S20、安装磁铁(220),并且放置收集槽(210),而后开启排水头(130)上设置的流量调节阀(131)进行排水,在收集槽(210)中收集所述磁性固相萃取材料,排水完毕后使用清水冲洗接触反应装置本体(110)。
  10. 根据权利要求9所述的一种大体积水样现场快速富集分离方法,其特征在于:所述间歇旋转的具体方式为以每10秒一圈的速度旋转转柄(340),并且每转1圈间隔30秒,旋转时间为20分钟。
PCT/CN2023/106271 2022-05-25 2023-07-07 一种低碳高效的大体积水样现场快速富集分离装置及方法 WO2023227140A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210572664.X 2022-05-25
CN202210572664.XA CN114935484B (zh) 2022-05-25 2022-05-25 一种低碳高效的大体积水样现场快速富集分离装置及方法

Publications (1)

Publication Number Publication Date
WO2023227140A1 true WO2023227140A1 (zh) 2023-11-30

Family

ID=82865330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/106271 WO2023227140A1 (zh) 2022-05-25 2023-07-07 一种低碳高效的大体积水样现场快速富集分离装置及方法

Country Status (2)

Country Link
CN (1) CN114935484B (zh)
WO (1) WO2023227140A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114935484B (zh) * 2022-05-25 2023-04-21 南京大学 一种低碳高效的大体积水样现场快速富集分离装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160114972A (ko) * 2015-03-25 2016-10-06 김천섭 자성을 이용한 하이브리드 집진장치
CN106310711A (zh) * 2016-08-29 2017-01-11 南京大学 一种便携式高效磁性固相萃取装置及其萃取方法
CN109158209A (zh) * 2018-08-09 2019-01-08 中国原子能科学研究院 颗粒混合物中磁性颗粒的干式永磁分离方法
CN215352117U (zh) * 2021-03-03 2021-12-31 中国食品药品检定研究院 一种磁固相萃取用支架装置
CN114935484A (zh) * 2022-05-25 2022-08-23 南京大学 一种低碳高效的大体积水样现场快速富集分离装置及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103674668B (zh) * 2013-12-11 2016-08-17 南昌航空大学 一种大体积水样中污染物在线预分离富集装置
CN105547786A (zh) * 2016-01-25 2016-05-04 清华大学 一种大体积水样现场富集装置
CN109022252A (zh) * 2018-08-01 2018-12-18 杭州富集生物科技有限公司 一种高效率大体积底部磁力富集装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160114972A (ko) * 2015-03-25 2016-10-06 김천섭 자성을 이용한 하이브리드 집진장치
CN106310711A (zh) * 2016-08-29 2017-01-11 南京大学 一种便携式高效磁性固相萃取装置及其萃取方法
CN109158209A (zh) * 2018-08-09 2019-01-08 中国原子能科学研究院 颗粒混合物中磁性颗粒的干式永磁分离方法
CN215352117U (zh) * 2021-03-03 2021-12-31 中国食品药品检定研究院 一种磁固相萃取用支架装置
CN114935484A (zh) * 2022-05-25 2022-08-23 南京大学 一种低碳高效的大体积水样现场快速富集分离装置及方法

Also Published As

Publication number Publication date
CN114935484B (zh) 2023-04-21
CN114935484A (zh) 2022-08-23

Similar Documents

Publication Publication Date Title
WO2023227140A1 (zh) 一种低碳高效的大体积水样现场快速富集分离装置及方法
CN207689189U (zh) 一种移动式工业废水取样装置
CN108854157B (zh) 一种基于电磁分离的磁性纳米固相萃取装置及萃取方法
CN104928166A (zh) 参数可调的自动质粒提取装置
CN102062711A (zh) 一种用于大体积水样前处理的有机污染物富集装置及方法
CN113189307A (zh) 便携式土壤重金属含量检测装置
CN215865907U (zh) 一种用于国土空间整治土壤的检测装置
CN208672376U (zh) 一种地下水体环境检测用水质取样设备
CN201255707Y (zh) 一种细胞制片染色装置
CN201862288U (zh) 便携式搅拌棒吸附萃取装置
CN110243812A (zh) 一种基于自动探测技术的土壤元素含量检测设备
CN215327445U (zh) 一种垃圾渗滤液预处理设备
CN206177691U (zh) 基于震荡消解法的重金属消解装置
WO2020083373A1 (zh) 一种大规模磁力纯化系统
CN214235307U (zh) 一种环保型移动式中药药材清洗装置
CN213600691U (zh) 一种用于化工检测的污水取样装置
CN210037318U (zh) 一种高效取样检测装置
CN211004881U (zh) 一种废水净化回用设备
CN209802732U (zh) 一种污水治理用取样器
CN105158117A (zh) 绝缘子盐密度取样装置
CN202034075U (zh) 液态放射性废物的进给装置
CN211347659U (zh) 一种用于磁性固相萃取材料的萃取装置
CN206960172U (zh) 一种数码印花处理后的废液取样装置
CN205620178U (zh) 一种全自动连续水质监测取样装置
CN217878560U (zh) 一种金属腐蚀试片除锈处理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811210

Country of ref document: EP

Kind code of ref document: A1