WO2023226681A1 - 一种光电放大电路和信号处理方法 - Google Patents

一种光电放大电路和信号处理方法 Download PDF

Info

Publication number
WO2023226681A1
WO2023226681A1 PCT/CN2023/091372 CN2023091372W WO2023226681A1 WO 2023226681 A1 WO2023226681 A1 WO 2023226681A1 CN 2023091372 W CN2023091372 W CN 2023091372W WO 2023226681 A1 WO2023226681 A1 WO 2023226681A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
power
signal
input
radio frequency
Prior art date
Application number
PCT/CN2023/091372
Other languages
English (en)
French (fr)
Inventor
姬春晖
韩冬
王天祥
李旭
张伟伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023226681A1 publication Critical patent/WO2023226681A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters

Definitions

  • the present application relates to the field of communication technology, and in particular to a photoelectric amplification circuit and a signal processing method.
  • the RF photonic base station architecture can include a new RF photonic front-end composed of high-power photodiode (PD) and optical amplifier, which can amplify RF signals in the optical domain and replace the power amplifier (power amplifier) with ultra-large bandwidth high-power PD. PA) directly meets the requirements of the back-end antenna to radiate microwave signals.
  • PD photodiode
  • PA power amplifier
  • OFDM orthogonal frequency division multiplexing
  • the photoelectric amplification circuit adopts a Doherty circuit structure based on high-power PD, which can improve the power efficiency of the high-power PD in the fallback state, take into account ultra-wideband characteristics, and is beneficial to the overall performance of the base station. Flexible deployment of all services in the frequency band reduces costs.
  • this application provides a photoelectric amplifier circuit.
  • the photoelectric amplifier circuit includes a first photodiode, a second photodiode and an impedance modulation unit.
  • the first photodiode includes a first input terminal and a first output terminal, the first input terminal is used for receiving the first optical signal, and the first output terminal is used for outputting the first radio frequency signal.
  • the second photodiode includes a second input terminal and a second output terminal, the second input terminal is used for receiving the second optical signal, and the second output terminal is used for outputting the second radio frequency signal.
  • the first optical signal and the second optical signal are two optical signals obtained after processing the input radio frequency signal.
  • the impedance modulation unit is connected to the first photodiode and connected to the second photodiode.
  • the impedance modulation unit is used to modulate the impedance of the first output end to the first based on the power of the first optical signal and the second optical signal.
  • impedance and modulates the impedance of the second output terminal to a first impedance, which is an impedance corresponding to when the output power of the first photodiode and the second photodiode is maximum.
  • the first photodiode and the second photodiode are connected in parallel, and the Doherty circuit structure can be used to improve the power efficiency of the photodiode in the fallback state. and uses an impedance modulation unit to achieve fallback from The dynamic load conversion from point to maximum output point is conducive to achieving high output efficiency of the first photodiode and the second photodiode within the interval between the maximum power point and the fallback point.
  • the preset fallback point power is the power of the input radio frequency signal when the first radio frequency signal and the second radio frequency signal output by the first photodiode and the second photodiode meet the preset signal quality;
  • the preset backoff point power is determined based on the saturation power and power backoff value.
  • the saturation power is the power of the input radio frequency signal when the output power of the first photodiode and the second photodiode is maximum.
  • the power backoff value is determined based on the peak-to-average ratio of the input RF signal and the preset signal quality.
  • the preset backoff point power is also determined based on the modulation mode of the input radio frequency signal, and the modulation mode of the input radio frequency signal includes quadrature amplitude modulation and/or phase shift keying modulation.
  • the impedance modulation unit when the power of the radio frequency signal modulated to the first optical signal is less than or equal to the preset backoff point power, the impedance modulation unit is used to modulate the impedance of the first output end based on the power of the first optical signal. is the second impedance, and the second impedance is greater than or equal to the first impedance.
  • the first photodiode when the power of the radio frequency signal modulated to the first optical signal is low, by adjusting the impedance of the photodiode at the output end, the first photodiode can be made to work in a non-saturated state and present a higher impedance at the output end. At this time, the first photodiode can also achieve higher working efficiency.
  • the photoelectric amplification circuit further includes an electro-optical conversion unit, and the electro-optical conversion unit is connected to the first input terminal and connected to the second input terminal.
  • the electro-optical conversion unit is used to process the input radio frequency signal to obtain a first optical signal and a second optical signal.
  • the input radio frequency signal is subjected to electro-optical conversion, amplification and other processing, so that the radio frequency signal is converted into an amplified optical signal.
  • the electro-optical conversion unit when the power of the radio frequency signal modulated to the first optical signal is less than or equal to the preset backoff point power, the electro-optical conversion unit is also used to control the power of the second optical signal to be 0.
  • the power of the second optical signal when the power of the radio frequency signal modulated to the first optical signal is low, the power of the second optical signal can also be controlled so that the second photodiode does not work and the first photodiode works in a non-saturated state. As a result, the first photodiode and the second photodiode operate in different states.
  • the electro-optical conversion unit when the power of the radio frequency signal modulated to the first optical signal is greater than or equal to the preset backoff point power, the electro-optical conversion unit is also used to increase the power of the second optical signal.
  • the power of the radio frequency signal modulated to the first optical signal when the power of the radio frequency signal modulated to the first optical signal is relatively high, the power of the second optical signal can be increased, so that the second photodiode can also achieve higher operating efficiency.
  • the electro-optical conversion unit includes an electrical power splitter, a first laser, a second laser, a first optical amplifier and a second optical amplifier.
  • the electric power splitter is connected to the first laser and to the second laser; the electric power splitter is used to divide the input radio frequency signal into the first input radio frequency signal and the second input radio frequency signal according to a preset ratio; the third A laser is used to receive a first input radio frequency signal and convert the first input radio frequency signal into a first input optical signal; a second laser is used to receive a second input radio frequency signal and convert the second input radio frequency signal into a second input light signal.
  • the first laser is connected to the first optical amplifier, the first optical amplifier is connected to the first input terminal, the second laser is connected to the second optical amplifier, the second optical amplifier is connected to the second input terminal;
  • the first optical amplifier It is used to amplify the first input optical signal, obtain the first optical signal, and output the first optical signal;
  • the second optical amplifier is used to amplify the second input optical signal, obtain the second optical signal, and output the second optical signal.
  • the input radio frequency signal can be divided into two radio frequency signals through an electric power splitter, and then converted into two optical signals through two lasers. Finally, the two optical signals are amplified through two optical amplifiers, thereby Converting radio frequency signals into amplified optical signals is achieved.
  • the electro-optical conversion unit includes an electrical power splitter, a first laser, a second laser, an optical multiplexer, an optical amplifier and an optical demultiplexer.
  • the electric power splitter is connected to the first laser and to the second laser; the electric power splitter is used to divide the input radio frequency signal into the first input radio frequency signal and the second input radio frequency signal according to a preset ratio; the first laser used to receive the first input radio frequency signal and convert the first input radio frequency signal into the first input optical signal; the second laser is used to receive the second input radio frequency signal and convert the second input radio frequency signal into the second input optical signal .
  • the optical multiplexer is connected to the first laser and the second laser; the optical multiplexer is used to multiplex the first input optical signal and the second input optical signal to the same channel; the optical multiplexer is connected to the optical amplifier, The optical amplifier is connected to the optical demultiplexer; the optical amplifier is used to amplify the first input optical signal and the second input optical signal to obtain the first optical signal and the second optical signal; the optical demultiplexer is used to combine the same channel The first optical signal and the second optical signal are demultiplexed into two different channels, and the optical demultiplexer is connected to the first input terminal and connected to the second input terminal.
  • the input radio frequency signal can be divided into two radio frequency signals through an electrical power splitter, and then converted into two optical signals through two lasers, and finally through an optical amplifier, optical multiplexer and optical demultiplexer , two amplified optical signals are obtained, thereby realizing the conversion of radio frequency signals into amplified optical signals.
  • an optical amplifier reduces the usage of active components, which is beneficial to reducing the power consumption of the photoelectric amplification circuit.
  • the first laser and the second laser are directly modulated electro-optical modulators.
  • the first laser and the second laser are externally modulated electro-optical modulators.
  • the electro-optical conversion unit also includes a first laser source and a second laser source.
  • the first laser source is connected to the first laser and is used to provide laser light to the first laser so that the first laser converts the first input radio frequency signal into a first input optical signal;
  • the second laser source is connected to the second laser, Used to provide laser light to the second laser, so that the second laser converts the second input radio frequency signal into a second input optical signal.
  • the photoelectric amplifier circuit since the externally modulated electro-optical modulator requires an external laser source to operate normally, the photoelectric amplifier circuit also includes two laser sources, which are respectively connected to the two externally modulated electro-optical modulators, so that the externally modulated electro-optical modulator Modulators convert radio frequency signals into optical signals.
  • the electro-optical conversion unit further includes a laser source and an optical power splitter; the laser source is connected to the optical power splitter, and the optical power splitter is connected to the first laser and to the second laser.
  • the laser source and the optical power splitter are used to provide the laser source for the first laser and the second laser, so that the first laser converts the first input radio frequency signal into the first input optical signal, so that the second laser converts the second input radio frequency signal. is the second input optical signal.
  • the photoelectric amplifier circuit since the externally modulated electro-optical modulator requires an external laser source to work properly, the photoelectric amplifier circuit also includes a laser source and an optical power splitter, which can provide two externally modulated electro-optical modulators.
  • a laser source so that an externally modulated electro-optical modulator can convert radio frequency signals into optical signals.
  • the electro-optical conversion unit includes a laser, an optical splitter, an optical power controller, a first optical amplifier and a second optical amplifier.
  • the laser is connected to an optical splitter.
  • the laser is used to receive an input radio frequency signal and convert the input radio frequency signal into an optical signal.
  • the optical splitter is used to divide the optical signal into a first input optical signal and a second input optical signal.
  • the optical splitter is connected to the first optical amplifier, and the first optical amplifier is connected to the first input terminal; the first optical amplifier is used to amplify the first input optical signal, obtain the first optical signal, and output the first optical signal.
  • the optical splitter is connected to the optical power controller, the optical power controller is connected to the second optical amplifier, and the second optical amplifier is connected to the second input terminal; the optical power controller is used to control the second input optical signal so that The power of the second input optical signal is different from the power of the first input optical signal; the second optical amplifier is used to amplify the second input optical signal, obtain the second optical signal, and output the second optical signal.
  • the average optical power of the two optical signals output by the optical splitter can be made different through the optical power controller, so that the first optical signal and the second optical signal output by the first optical amplifier and the second optical amplifier can be made different.
  • the average optical power of the signal is different, so that the first photodiode and the second photodiode operate in different states.
  • the electro-optical conversion unit includes a laser, an optical splitter, an optical power controller, an optical multiplexer, an optical amplifier and an optical demultiplexer.
  • the laser is connected to an optical splitter.
  • the laser is used to receive an input radio frequency signal and convert the input radio frequency signal into an optical signal.
  • the optical splitter is used to divide the optical signal into a first input optical signal and a second input optical signal.
  • the optical splitter is connected to the optical power controller and to the optical multiplexer; the optical power controller is connected to the optical multiplexer, and the optical power controller is used to control the second input optical signal so that the second input optical signal The power is different from the power of the first input optical signal; the optical multiplexer is used to multiplex the first input optical signal and the second input optical signal to the same channel.
  • the optical multiplexer is connected to the optical amplifier, and the optical amplifier is connected to the optical demultiplexer.
  • the optical amplifier is used to amplify the first input optical signal and the second input optical signal to obtain the first optical signal and the second optical signal; optical decomposition
  • the multiplexer is used to demultiplex the first optical signal and the second optical signal in the same channel into two different channels.
  • the optical demultiplexer is connected to the first input end and is connected to the second input end. .
  • the laser is a directly modulated laser, or the laser is an externally modulated electro-optical modulator.
  • the electro-optical conversion unit also includes a laser source, which is connected to the laser and used to provide a laser source for the laser so that the laser can convert the input radio frequency signal into an optical signal.
  • the electro-optical conversion unit further includes a first optical delayer and a second optical delayer.
  • the first optical amplifier is connected to the first optical delayer, and the second optical amplifier is connected to the second optical delayer; or the optical demultiplexer is connected to the first optical delayer, and is connected to the second optical delayer. Delays are connected; the first optical delayer is connected with the first input terminal, the second optical delayer is connected with the second input terminal, the first optical delayer and the second optical delayer are used to The phases of the first optical signal and the second optical signal are aligned.
  • the photoelectric conversion circuit may also include an optical delay, so that the phases of the first optical signal and the second optical signal are aligned, which is beneficial to the phase of the output signals of the first photodiode and the second photodiode at the combining point. be consistent.
  • the photoelectric amplification circuit further includes a first matching network and a second matching network.
  • the first matching network is connected to the first output end and is used to achieve impedance matching between the first output end and the circuit;
  • the second matching network is connected to the second output terminal and is used to achieve impedance matching between the second output terminal and the circuit.
  • the photoelectric conversion circuit may further include a matching network, so that the output ports of the first photodiode and the second photodiode can match the impedance of the subsequent circuit.
  • the photoelectric amplification circuit further includes a first electrical phase compensation line and a second electrical phase compensation line.
  • the first electrical phase compensation line is connected to the impedance modulation unit and is used to adjust the phase of the first radio frequency signal.
  • the second electrical phase compensation line is connected to the impedance modulation unit for adjusting the phase of the second radio frequency signal; the phase of the first radio frequency signal is the same as the phase of the second radio frequency signal.
  • the photoelectric conversion circuit may also include an electrical phase compensation line, which is beneficial to keeping the phases of the output signals of the first photodiode and the second photodiode consistent at the combining point.
  • this application provides a signal processing method.
  • the signal processing method can be performed by a radio frequency signal amplification device.
  • the radio frequency signal amplification device can obtain the power of the first optical signal and the second optical signal.
  • the first optical signal and the second optical signal are two optical signals obtained after processing the input radio frequency signal.
  • the impedance of the first output end of the first photodiode is modulated to the first impedance, and modulates the impedance of the second output terminal of the second photodiode to the first impedance;
  • the first impedance is the impedance corresponding to when the output power of the first photodiode and the second photodiode is maximum.
  • the preset fallback point power is when the first photodiode and the second photodiode output When the first radio frequency signal and the second radio frequency signal meet the preset signal quality, the power of the radio frequency signal is input; the preset backoff point power is determined based on the saturation power and power backoff value.
  • the saturation power is the power of the input radio frequency signal when the output power of the first photodiode and the second photodiode is maximum.
  • the power backoff value is determined based on the peak-to-average ratio of the input RF signal and the preset signal quality.
  • the preset backoff point power is also determined based on the modulation mode of the input radio frequency signal, and the modulation mode of the input radio frequency signal includes quadrature amplitude modulation and/or phase shift keying modulation.
  • the impedance of the first output end is modulated to the second impedance based on the power of the first optical signal,
  • the second impedance is greater than or equal to the first impedance.
  • the power of the second optical signal is controlled to be 0, or
  • the power of the radio frequency signal modulated to the first optical signal is greater than or equal to the preset backoff point power, the power of the second optical signal is increased.
  • the present application provides a device, which may include the photoelectric amplification circuit described in the first aspect.
  • the device may include a module that performs one-to-one correspondence with the methods/operations/steps/actions described in the second aspect and its possible implementations.
  • the module may be a hardware circuit, or may be a Software can also be implemented by combining hardware circuits with software.
  • the device may include a transceiver unit and a processing unit.
  • the present application provides a device, including: a processor, the processor is coupled to a memory, and the memory is used to store instructions.
  • the device implements the above second aspect and its possibilities.
  • the embodiments of the present application further provide a computer-readable storage medium.
  • the computer-readable storage medium stores instructions. When the instructions are run on a computer, the computer is caused to execute the second aspect and possible solutions thereof. Methods in the Embodiments.
  • inventions of the present application provide a chip system.
  • the chip system includes a processor and may also include a memory to implement the functions in the above-mentioned second aspect and its possible implementations.
  • the chip system can be composed of chips or include chips and other discrete devices.
  • embodiments of the present application further provide a computer program product, which includes instructions that, when the instructions are run on a computer, cause the computer to execute the method in the second aspect and its possible implementations.
  • Figure 1 is a schematic diagram of a radio frequency signal amplification device in a base station system provided by this application;
  • Figure 2 is a schematic diagram of the relationship between the power of an input radio frequency signal and the output efficiency provided by this application;
  • FIG. 3 is a schematic diagram of a photoelectric amplifier circuit provided by this application.
  • Figure 4 is a schematic diagram of a photoelectric amplification circuit including an electro-optical conversion unit provided by the present application
  • Figure 5 is a schematic diagram of a first photoelectric amplification circuit including an electro-optical conversion unit provided by this application;
  • FIG. 6 is a schematic diagram of a second photoelectric amplification circuit including an electro-optical conversion unit provided by this application;
  • FIG. 7 is a schematic diagram of a third photoelectric amplification circuit including an electro-optical conversion unit provided by this application;
  • Figure 8 is a schematic diagram of a fourth photoelectric amplification circuit including an electro-optical conversion unit provided by this application;
  • Figure 9a is a schematic diagram of the fifth photoelectric amplification circuit including an electro-optical conversion unit provided by this application;
  • Figure 9b is a schematic diagram of a sixth photoelectric amplification circuit including an electro-optical conversion unit provided by this application;
  • Figure 10a is a schematic diagram of a seventh photoelectric amplifier circuit including an electro-optical conversion unit provided by this application;
  • Figure 10b is a schematic diagram of an eighth photoelectric amplification circuit including an electro-optical conversion unit provided by this application;
  • Figure 11a is a schematic diagram of a ninth photoelectric amplifier circuit including an electro-optical conversion unit provided by this application;
  • Figure 11b is a schematic diagram of a tenth photoelectric amplification circuit including an electro-optical conversion unit provided by this application;
  • Figure 12a is a schematic diagram of an eleventh photoelectric amplification circuit including an electro-optical conversion unit provided by the present application;
  • Figure 12b is a schematic diagram of a twelfth photoelectric amplifier circuit including an electro-optical conversion unit provided by this application;
  • Figure 13 is a schematic diagram of an optoelectronic amplifier circuit including an electro-optical conversion unit and a matching network provided by this application;
  • Figure 14 is a schematic diagram of a photoelectric amplification circuit including an electro-optical conversion unit and an electrical phase compensation line provided by this application;
  • Figure 15 is a schematic diagram of an optoelectronic amplifier circuit including an electro-optical conversion unit, a matching network and an electrical phase compensation line provided by this application;
  • Figure 16 is a schematic flow chart of a signal processing method provided by this application.
  • Figure 17 is a schematic diagram of a device provided by this application.
  • Figure 18 is a schematic diagram of a device provided by this application.
  • the photoelectric amplifier circuit provided by the embodiment of the present application can be applied to base station systems, satellite communication systems, radar systems, optical sensing systems, etc.
  • the photoelectric amplification circuit may be a part of the circuit structure in the radio frequency signal amplification device of the base station, and is used to amplify the signal of the base station.
  • the photoelectric amplification circuit can be part of the circuit structure of the satellite's signal amplification device, and can be used to amplify satellite signals, and can also amplify communication signals between satellites.
  • the photoelectric amplification circuit when used in a radar system, can be a part of the circuit structure in a laser radar signal amplification device, used to amplify the laser radar signal.
  • the specific application scenarios are not limited in this application.
  • Figure 1 is a schematic diagram of a radio frequency signal amplification device in a base station system.
  • the input end of the radio frequency signal amplifying device receives the input radio frequency signal (the power of the input radio frequency signal is relatively small), and the output end outputs the amplified radio frequency signal.
  • embodiments of the present application provide multiple photoelectric amplifier circuits and a signal processing method.
  • the multiple photoelectric amplification circuits provided by this application can be modules (or chips) in radio frequency signal amplification devices, using a Doherty circuit structure based on high-power photodiodes (photodiodes, PDs) to improve the performance of high-power PDs in the fallback state.
  • Excellent power efficiency taking into account ultra-wideband characteristics, is conducive to flexible deployment of base stations in all frequency bands and full services, and reduces costs.
  • This signal processing method can realize the dynamic load transformation of high-power PD from the back-off point to the maximum output point, so that the high-power PD maintains high back-off efficiency within a large back-off range.
  • Base station system :
  • the base station system mentioned in this application includes network equipment, and the network equipment may be equipment capable of communicating with terminal equipment.
  • Network devices can be base stations, relay stations, or access points.
  • the base station can be a base transceiver station (BTS) in a global system for mobile communication (GSM) system or a code division multiple access (CDMA) network, or it can be a broadband code
  • BTS base transceiver station
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • the 3G base station NodeB in a wideband code division multiple access (WCDMA) system may also be an evolutionary NodeB (referred to as eNB or eNodeB) in a long term evolution (LTE) system.
  • the network device may also be a satellite in a satellite communications system.
  • the network device may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the network device may also be a network device in a 5G network or a network device (eg, gNodeB) in a future evolved public land mobile network (public land mobile network, PLMN) network.
  • Network devices can also be wearable devices, drones, or devices in the Internet of Vehicles (such as vehicle to everything (V2X)), or communication devices in device-to-device (D2D) communication. Or network equipment used in future communication systems.
  • Photodiode includes an input terminal and an output terminal.
  • the input terminal is used to receive optical signals
  • the output terminal is used to output radio frequency signals. That is, the photodiode is used to convert an optical signal into a radio frequency signal and output the radio frequency signal.
  • Impedance modulation unit used to adjust the impedance load presented by the high-power PD at the output end based on the input signal power of the high-power PD, so that the high-power PD maintains a high backoff within a large backoff range. efficiency.
  • the impedance modulation unit may be, for example, a quarter-wavelength impedance converter or the like.
  • the high-power PD when the input optical power of the high-power PD is low, the high-power PD presents a high-impedance load at the output end through the impedance modulation unit (for example, greater than the load impedance of the high-power PD at the maximum input power); when the high-power PD When the input optical power is high, the high-power PD presents an optimal impedance load at the output end through the impedance modulation unit.
  • the size of the radio frequency signal input to the photoelectric amplifier circuit needs to reach at least the preset fallback point power.
  • wireless communication systems usually use orthogonal frequency division multiplexing (OFDM) technology as the standard solution for signal modulation.
  • OFDM orthogonal frequency division multiplexing
  • the peak-to-average ratio of the OFDM signal changes within a certain linear dynamic range. When the peak-to-average ratio of the OFDM signal When the linear dynamic range is exceeded, nonlinear distortion of the signal will occur, thereby affecting the transmission performance of the OFMD signal.
  • the preset fallback point power is determined, which is beneficial to the realization of the first photodiode and the second photodiode.
  • the photodiode maintains high output efficiency within the range of saturation power and preset fallback point power.
  • the preset backoff point power is the power of the input radio frequency signal when the first radio frequency signal and the second radio frequency signal output by the first photodiode and the second photodiode meet the preset signal quality.
  • the input radio frequency signal refers to the radio frequency signal input to the photoelectric amplifier circuit.
  • the preset backoff point power is determined based on the saturation power and the power backoff value.
  • the saturation power is the power of the input radio frequency signal when the output power of the first photodiode and the second photodiode is maximum.
  • the power backoff value is determined based on the peak-to-average ratio of the input RF signal and the preset signal quality. For example, when the peak-to-average ratio of the input RF signal increases, the power backoff value also increases.
  • FIG. 2 is a schematic diagram of the relationship between the power of the input radio frequency signal and the output efficiency provided by this application.
  • FIG. 2 shows the output efficiency curve of the first photodiode, the output efficiency curve of the second photodiode, and the output efficiency curve of the photoelectric amplifier circuit.
  • Figure 2 also shows a possible preset back-off point power and saturation power. Among them, when the power of the input radio frequency signal is low, this application assumes that the first photodiode works and the second photodiode does not work. When the power of the input radio frequency signal gradually increases from 0, the power of the input optical signal of the first photodiode also gradually increases, and the output efficiency of the first photodiode also gradually increases, as shown in Figure 2 .
  • the output efficiency of the first photodiode When the output efficiency of the first photodiode reaches its maximum value (that is, When the output power of the first photodiode is maximum), the corresponding power of the input radio frequency signal can be regarded as a possible preset fallback point power. Note that in the figure, when the power of the input optical signal of the first photodiode is less than the preset fallback point power (that is, when the first photodiode is working and the second photodiode is not working), the output efficiency of the first photodiode The curve coincides with the output efficiency of the photoelectric amplifier circuit. That is, when the power of the input radio frequency signal is equal to the preset backoff point power, the first photodiode operates in a saturated state.
  • the second photodiode When the power of the input RF signal further increases, the second photodiode also starts to work.
  • the power of the input optical signal of the second photodiode also increases as the power of the input radio frequency signal increases, and the output efficiency of the second photodiode also gradually increases, as shown in FIG. 2 .
  • the output efficiency of the second photodiode reaches the maximum value (that is, when the output power of the second photodiode is maximum)
  • the corresponding power of the input radio frequency signal can be regarded as saturated power. That is, when the power of the input radio frequency signal is equal to the saturation power, both the first photodiode and the second photodiode operate in the saturation state.
  • the power of the input radio frequency signal may be less than or equal to the preset backoff point power.
  • the output efficiency of the photoelectric amplifier circuit may be equal to the maximum value of the output efficiency of the first photodiode, as shown in Figure 2 .
  • the power of the input RF signal is less than the preset fallback point power
  • the output efficiency of the photoelectric amplifier circuit is less than the maximum output efficiency of the first photodiode, but the linearity of the output RF signal is compared with the input RF signal.
  • the power will be increased when it is equal to the power of the preset fallback point. That is, when the power of the input radio frequency signal is less than the preset backoff point power, the output efficiency of the photoelectric amplifier circuit is reduced, but the linearity of the output radio frequency signal is improved.
  • the preset backoff point power is also determined based on the modulation method of the input radio frequency signal.
  • the modulation method of the input radio frequency signal includes quadrature amplitude modulation (QAM), phase shift keying (phase shift keying). -shift keying, PSK) modulation (such as QPSK, 8PSK, etc.) and other modulation methods.
  • the preset fallback point power can be set to 12dB; assuming that the 16QAM modulation method is used, the preset fallback point power can be set to 9dB; assuming that the QPSK modulation method is used, the preset fallback point power
  • the power can be set to 4dB, and this embodiment does not limit the specific value set.
  • Electro-optical conversion unit used to receive the input RF signal, convert the input RF signal into an optical signal, and amplify the optical signal, thereby amplifying the RF signal in the optical domain, which is conducive to meeting the requirements of the back-end antenna to radiate microwave signals.
  • the electro-optical conversion unit in the embodiment of the present application may include but is not limited to the following modules: electrical power splitter, laser, optical amplifier, laser source, optical power splitter, optical splitter, optical power controller, etc.
  • electrical power splitter laser
  • optical amplifier laser source
  • optical power splitter optical splitter
  • optical power controller optical power controller
  • FIG 3 is a schematic diagram of a photoelectric amplifier circuit provided by this application.
  • the photoelectric amplifier circuit can be applied to the radio frequency signal amplification device in the base station system as shown in Figure 1.
  • the photoelectric amplification circuit may be the final stage of a radio frequency transmission link based on radio frequency photonic architecture.
  • the photoelectric amplifier circuit includes a first photodiode 101 (hereinafter referred to as the first PD), a second photodiode 102 (hereinafter referred to as the second PD) and an impedance modulation unit 103.
  • the photoelectric amplification circuit also includes a load, where the load may include, for example, a resistor, a capacitor, an inductor, an antenna unit, etc., and may also include a ground part.
  • the first PD includes a first input terminal and a first output terminal, the first input terminal is used for receiving the first optical signal, and the first output terminal is used for outputting the first radio frequency signal.
  • the second PD includes a second input terminal and a second output terminal, the second input terminal is used for receiving the second optical signal, and the second output terminal is used for outputting the second radio frequency signal.
  • the first PD and the second PD are in a parallel relationship and are respectively located on two parallel circuits, as shown in Figure 3.
  • the first optical signal and the second optical signal are two optical signals obtained after processing the input radio frequency signal.
  • the input radio frequency signal undergoes branching, electro-optical conversion, and amplification to obtain a first optical signal and a second optical signal.
  • the electro-optical conversion unit for specific processing methods, please refer to the detailed description of the electro-optical conversion unit in the embodiments below.
  • the first PD is a carrier high-power PD
  • the second PD is a peak high-power PD.
  • Class AB means that the current output interval of the PD device is between half the cycle of the sine wave and the cycle of the entire sine wave.
  • Class B means that the current output interval of the PD device is only half the period of the sine wave.
  • Category C means that the current output interval of the PD device is less than half the period of the sine wave.
  • the first PD works (that is, the first PD outputs the first radio frequency signal), and the second PD is cut off and does not work (that is, the first PD outputs the first radio frequency signal). That is, the second PD does not output the second radio frequency signal).
  • the first PD works (that is, the first PD outputs the first radio frequency signal), and the second PD also works (that is, the first PD outputs the first radio frequency signal). That is, the second PD outputs the second radio frequency signal), and the first radio frequency signal and the second radio frequency signal are synthesized into the final output signal.
  • the impedance modulation unit is connected to the first PD and to the second PD.
  • the phase connection described in this application can be a direct connection.
  • the first PD and the impedance modulation unit shown in Figure 3 are directly connected through a circuit; the connected circuit can also include other components. , for example, there may be an inductor or a resistor or a matching network between the first PD and the impedance modulation unit, which is not limited in this application.
  • the impedance modulation unit is used to adjust the impedance load presented by the first PD and/or the second PD at the output end based on the input signal power of the first PD and/or the second PD.
  • the impedance modulation unit when the power of the radio frequency signal modulated to the first optical signal is greater than or equal to the preset backoff point power, the impedance modulation unit is configured to change the first output to the first optical signal based on the first optical signal and the second optical signal.
  • the impedance of the second output terminal is modulated to the first impedance, and the impedance of the second output terminal is modulated to the first impedance.
  • the first impedance is the impedance corresponding to when the output power of the first photodiode and the second photodiode is maximum. For example, when the power of the input radio frequency signal is high (for example, greater than or equal to the preset backoff point power), the first PD works and the second PD also works.
  • the impedance modulation unit uses the active load modulation of the second PD to modulate the impedance of the first output terminal of the first PD to the corresponding impedance when the output power of the first PD is maximum; and, the second PD The impedance of the second output terminal is modulated to the corresponding impedance when the output power of the second PD is maximum.
  • the first PD and the second PD are in a parallel relationship.
  • the first PD When the output powers of the first PD and the second PD are the same, and the first PD and the second PD reach the maximum output power, then the first PD The corresponding impedance is also the same as when the output power of the second PD is maximum, that is, the impedance of the first output terminal of the first PD is the same as the impedance of the second output terminal of the second PD, which is the first impedance.
  • the impedance modulation unit when the power of the radio frequency signal modulated to the first optical signal is less than or equal to the preset backoff point power, the impedance modulation unit is used to modulate the impedance of the first output end based on the power of the first optical signal. is the second impedance.
  • the second impedance is greater than or equal to the first impedance.
  • the second impedance needs to meet the requirement that when the power of the input radio frequency signal is less than or equal to the preset fallback point power, the efficiency of the first PD can be greater than or equal to the first impedance. .
  • the first PD works and the second PD is cut off and does not work.
  • the circuit in which the second PD is located can be regarded as an open circuit (for example, the impedance of the second output terminal of the second PD appears to be infinite). Then the input radio frequency signal is all modulated to the first optical signal, so that the output power of the first PD gradually increases, and the impedance of the first output end of the first PD also gradually increases to the second impedance.
  • the impedance modulation unit can use any embodiment to modulate the impedance of the first output end, This application is not limited.
  • FIG. 4 is a schematic diagram of an optoelectronic amplifier circuit including an electro-optical conversion unit provided by this application.
  • this photoelectric amplifier circuit adds an electro-optical conversion unit 104 .
  • the electro-optical conversion unit is connected to the first input terminal of the first PD and connected to the second input terminal of the second PD.
  • the electro-optical conversion unit is used to process the input radio frequency signal. Process to obtain the first optical signal and the second optical signal.
  • the electro-optical conversion unit can perform branching, electro-optical conversion and amplification on the input radio frequency signal, thereby obtaining two optical signals (that is, obtaining a first optical signal and a second optical signal).
  • the electro-optical conversion unit when the power of the radio frequency signal modulated to the first optical signal is less than or equal to the preset backoff point power, the electro-optical conversion unit is also used to control the power of the second optical signal to be 0.
  • the first PD works and the second PD is cut off and does not work. Then, by controlling the power of the second optical signal to 0 through the electro-optical conversion unit, the second PD can be turned off and disabled.
  • the electro-optical conversion unit when the power of the radio frequency signal modulated to the first optical signal is greater than or equal to the preset backoff point power, the electro-optical conversion unit is also used to increase the power of the second optical signal.
  • the first PD when the power of the radio frequency signal modulated to the first optical signal is greater than or equal to the preset backoff point power, the first PD works and the second PD also works. Then, by increasing the power of the second optical signal through the electro-optical conversion unit, the second PD can start to work.
  • the electro-optical conversion unit in this application can have multiple specific implementation modes, which will be introduced in detail below.
  • the electro-optical conversion unit includes an electrical power splitter 104a, a first laser 104b, a second laser 104c, a first optical amplifier 104d and a second optical amplifier 104e.
  • the connection relationship between various components in Embodiment 1 includes: the electric power splitter is connected to the first laser and connected to the second laser; the first laser is connected to the first optical amplifier, and the second laser Connected to the second optical amplifier, as shown in Figure 5.
  • the first optical amplifier and the second optical amplifier may be located at the output end of the electro-optical conversion unit.
  • the first optical amplifier is connected to the first input end of the first PD
  • the second optical amplifier is connected to the first input end of the second PD.
  • the second input terminal is connected.
  • the electrical power splitter is used to divide the input radio frequency signal into a first input radio frequency signal and a second input radio frequency signal according to a preset ratio.
  • the preset proportion ⁇ is determined based on the maximum efficiency rollback amount ⁇ , and ⁇ satisfies
  • the preset ratio is 1:3, that is, the power of the first input radio frequency signal is 1/3 of the power of the second input radio frequency signal. It can be seen that through the electric power splitter, one input RF signal can be divided into two parallel input RF signals, which is beneficial to subsequent components to process the two signals respectively.
  • the first laser and the second laser are connected in parallel, and both are used to convert radio frequency signals into optical signals.
  • the first laser is used to convert a first input radio frequency signal into a first input optical signal
  • the second laser is used to convert a second input radio frequency signal into a second input optical signal.
  • the first laser and the second laser may be directly modulated electro-optical modulators or externally modulated electro-optical modulators. The specific implementation method will be described in detail later.
  • the first optical amplifier and the second optical amplifier are connected in parallel, and both are used to amplify optical signals, which facilitates the conversion of the amplified optical signals into amplified radio frequency signals to meet the requirements of the back-end antenna for radiating microwave signals.
  • the first optical amplifier is used to amplify the first input optical signal, obtain the first optical signal, and output the first optical signal.
  • the second optical amplifier is used to amplify the second input optical signal, obtain the second optical signal, and output the second optical signal.
  • the first laser, the first optical amplifier and the first PD are connected in series and can form a radio frequency photon amplification link; the second laser, the second optical amplifier and the second PD are connected in series. relationship, another radio frequency photon amplification link can be formed.
  • the laser, optical amplifier and PD can be connected through optical fibers, which can be extended to the kilometer level; they can also be connected through circuits, which is not limited in this application.
  • the electro-optical conversion unit includes an electrical power splitter 104a, a first laser 104b, a second laser 104c, an optical amplifier 104d, an optical multiplexer 104f and an optical demultiplexer 104g.
  • the connection relationship between various components in Embodiment 2 includes: the electric power splitter is connected to the first laser and connected to the second laser; the first laser is connected to the optical multiplexer, and the second laser is connected to the optical multiplexer.
  • the optical multiplexer is connected; the optical multiplexer is connected to the optical amplifier, and the optical amplifier is connected to the optical demultiplexer, as shown in Figure 6.
  • the optical demultiplexer can be located at the output end of the electro-optical conversion unit.
  • the optical demultiplexer is connected to the first input end of the first PD and connected to the second input end of the second PD. .
  • Optical multiplexers are used to multiplex multiple optical signals into the same channel.
  • the optical multiplexer is used to multiplex the first input optical signal and the second input optical signal to the same channel.
  • Optical demultiplexers are used to demultiplex different optical signals within the same channel into multiple different channels.
  • an optical demultiplexer is used to demultiplex a first optical signal and a second optical signal within the same channel into two different channels. It can be understood that, unlike Embodiment 1, which uses two optical amplifiers to amplify two optical signals respectively, Embodiment 2 only uses one optical amplifier, which reduces the usage of active components and is conducive to reducing the power of the circuit. consumption; an optical multiplexer and an optical demultiplexer are added, so that the amplification of two optical signals can be achieved.
  • the laser, optical multiplexer, optical amplifier and optical demultiplexer can be connected through optical fibers, which can be extended to the kilometer level; they can also be connected through circuits, which is not limited in this application.
  • the electro-optical conversion unit includes a laser 104b, an optical splitter 104h, an optical power controller 104i, a first optical amplifier 104d and a second optical amplifier 104e.
  • connection relationship between each component in Embodiment 3 includes: the laser is connected to the optical splitter; the optical splitter is connected to the first optical amplifier; the optical splitter is connected to the optical power controller, The optical power controller is connected to the second optical amplifier, as shown in Figure 7.
  • An optical splitter is used to split one optical signal into multiple optical signals.
  • the optical splitter 104h can divide one optical signal output by the laser 104b into two optical signals, which are a first input optical signal and a second input optical signal respectively. Since the power of the first input optical signal and the second input optical signal may be the same, a new optical power controller (for example, a light saturable absorber) is added to the photoelectric amplifier circuit shown in Figure 7 so that the first input optical signal and the second input optical signal The average optical power of the two input optical signals is different. For example, assuming that the average optical power of the first input optical signal and the second input optical signal output by the optical splitter 104h in FIG.
  • the optical power controller 104i and the second optical amplifier 104e are in a series relationship, then the first input optical signal can be adjusted.
  • the power of the second input optical signal is such that the adjusted average optical power of the second input optical signal and the first input optical signal are different.
  • the laser and the optical amplifier can be connected through optical fibers, which can be extended to the kilometer level; they can also be connected through circuits, which is not limited in this application.
  • the electro-optical conversion unit includes a laser 104b, an optical splitter 104h, an optical power controller 104i, an optical amplifier 104d, an optical multiplexer 104f and an optical demultiplexer 104g.
  • connection relationship between various components in Embodiment 4 includes: the laser is connected to the optical splitter; the optical splitter is connected to the optical power controller; the optical multiplexer is connected to the optical splitter, and It is connected to the optical power controller; the optical multiplexer is connected to the optical amplifier; the optical amplifier is connected to the optical demultiplexer, as shown in Figure 8.
  • lasers, optical splitters, optical power controller, optical amplifier, optical multiplexer, and optical demultiplexers can be connected through optical fibers, which can be extended to the kilometer level; they can also be connected through circuits, This application is not limited.
  • Embodiment 1 to Embodiment 4 When any of the lasers in Embodiment 1 to Embodiment 4 is a directly modulated electro-optical modulator, the electro-optical conversion unit
  • the structure of the element and the corresponding photoelectric amplification circuit can be shown in Figures 5 to 8, and will not be described again here.
  • the electro-optical conversion unit also includes a laser source.
  • the laser source is connected to the laser, and the laser source is used to provide laser light to the laser, so that the laser converts the input radio frequency signal into an input optical signal.
  • the electro-optical conversion unit and the corresponding photoelectric amplification circuit are as shown in Figure 9a.
  • the electro-optical conversion unit shown in Figure 9a also includes a first laser source 104j and a second laser source 104k, so that the externally modulated electro-optical modulator can convert radio frequency signals into optical signals.
  • the first laser source is connected to the first laser, and is used to provide laser light to the first laser, so that the first laser converts the first input radio frequency signal into a first input optical signal.
  • the second laser source is connected to the second laser and is used to provide laser light to the second laser so that the second laser converts the second input radio frequency signal into a second input optical signal.
  • the electro-optical conversion unit and the corresponding photoelectric amplification circuit are as shown in Figure 9b.
  • the electro-optical conversion unit shown in Figure 9b also includes a laser source 104j and an optical power splitter 104m.
  • the electro-optical conversion unit shown in Figure 9b has only one laser source, which reduces the use of active devices and helps reduce the power consumption of the circuit; the laser is split through an optical power splitter, and we get The two lasers are transmitted to the first laser and the second laser respectively, so that the externally modulated electro-optical modulator can convert the radio frequency signal into an optical signal.
  • the electro-optical conversion unit and the corresponding photoelectric amplification circuit are as shown in Figure 10a.
  • the electro-optical conversion unit shown in Figure 10a also includes a first laser source 104j and a second laser source 104k, so that the externally modulated electro-optical modulator can convert radio frequency signals into optical signals.
  • the connection relationship and functions of the first laser source, the second laser source and the first laser, the second laser can be referred to the description in the first possible implementation manner, and will not be described again here.
  • the electro-optical conversion unit and the corresponding photoelectric amplification circuit are as shown in Figure 10b.
  • the electro-optical conversion unit shown in Figure 10b also includes a laser source 104j and an optical power splitter 104m.
  • the electro-optical conversion unit shown in Figure 10b has only one laser source, which reduces the use of active devices and helps reduce the power consumption of the circuit; the laser is split through an optical power splitter, and we get The two lasers are transmitted to the first laser and the second laser respectively, so that the externally modulated electro-optical modulator can convert the radio frequency signal into an optical signal.
  • the electro-optical conversion unit and the corresponding photoelectric amplification circuit are as shown in Figure 11a.
  • the electro-optical conversion unit shown in Figure 11a also includes a laser source 104j, so that the externally modulated electro-optical modulator can convert radio frequency signals into optical signals.
  • the laser source is connected to the laser and is used to provide laser light to the laser so that the laser converts the input radio frequency signal into an optical signal.
  • the electro-optical conversion unit and the corresponding photoelectric amplification circuit are as shown in Figure 11b.
  • the electro-optical conversion unit shown in Figure 11b also includes a laser source 104j, so that the externally modulated electro-optical modulator can convert radio frequency signals into optical signals.
  • the laser source is connected to the laser and is used to provide laser light to the laser so that the laser converts the input radio frequency signal into an optical signal.
  • the electro-optical conversion unit may further include a first optical delayer and a second optical delayer.
  • the first optical delayer and the second optical delayer are used to align the phases of the first optical signal and the second optical signal.
  • the electro-optical conversion unit when the electro-optical conversion unit includes a first optical amplifier and a second optical amplifier, the first optical amplifier is connected to the first optical delayer, and the first optical delayer is connected to the first optical delay of the first PD.
  • One input terminal is connected; the second optical amplification
  • the second optical delay device is connected to the second optical delay device, and the second optical delay device is connected to the second input end of the second PD. That is to say, the first optical delay device and the second optical delay device are in a parallel relationship. For example, taking the electro-optical conversion unit shown in FIG.
  • the electro-optical conversion unit includes a first optical delayer 104p and a second optical delayer 104q
  • the first optical delayer and the second optical delayer are The connection relationship of other components is shown in Figure 12a. It can be seen that when the phases of the optical signal output by the first optical amplifier and the optical signal output by the second optical amplifier are not aligned, the first optical signal and the second optical signal can be combined by the first optical delayer and the second optical delayer. The phases of the signals are aligned so that the transmission paths of the first optical signal and the second optical signal are consistent.
  • the electro-optical conversion unit when the electro-optical conversion unit includes an optical multiplexer, an optical amplifier and an optical demultiplexer, the optical demultiplexer is connected to the first optical delayer and is connected to the second optical delayer. connected.
  • the first optical delayer is connected to the first input terminal of the first PD
  • the second optical delayer is connected to the second input terminal of the second PD. That is to say, the first optical delay device and the second optical delay device are in a parallel relationship.
  • the electro-optical conversion unit shown in FIG. 6 when the electro-optical conversion unit includes a first optical delayer and a second optical delayer, the first optical delayer and the second optical delayer are combined with other elements.
  • the connection relationship of the devices is shown in Figure 12b.
  • electro-optical conversion unit in Figures 6 to 11b may also include a first optical delayer and a second optical delayer.
  • first optical delayer and a second optical delayer.
  • second optical delayer For specific implementation, reference may be made to the embodiments in Figures 12a and 12b, which are not discussed here. Again.
  • the photoelectric amplifier circuit shown in Figures 3 to 12b mainly describes the photoelectric conversion unit, the first PD, the second PD and the impedance modulation unit.
  • a matching network and/or an electrical phase compensation line may also be included between the first PD, the second PD and the impedance modulation unit.
  • Embodiment 1 The photoelectric amplifier circuit includes a matching network.
  • FIG. 13 is a schematic diagram of an optoelectronic amplifier circuit including an electro-optical conversion unit and a matching network provided by this application.
  • this photoelectric amplifier circuit adds a first matching network 105a and a second matching network 105b.
  • the first output end of the first PD is connected to the first matching network, and the first matching network is connected to the impedance modulation unit; the first matching network is used to achieve impedance matching between the first output end and the circuit.
  • the second output terminal of the second PD is connected to the second matching network, the second matching network is connected to the impedance modulation unit, and the second matching network is used to achieve impedance matching between the second output terminal and the circuit.
  • Embodiment 2 The photoelectric amplifier circuit includes an electrical phase compensation line.
  • FIG. 14 is a schematic diagram of an optoelectronic amplifier circuit including an electro-optical conversion unit and an electrical phase compensation line provided by this application.
  • this photoelectric amplifier circuit adds a first electrical phase compensation line 106a and a second electrical phase compensation line 106b.
  • the first output end of the first PD is connected to the first electrical phase compensation line, and the first electrical phase compensation line is connected to the impedance modulation unit; the first electrical phase compensation line is used to adjust the phase of the first radio frequency signal.
  • the second output end of the second PD is connected to a second electrical phase compensation line, the second electrical phase compensation line is connected to the impedance modulation unit, and the second electrical phase compensation line is used to adjust the phase of the second radio frequency signal.
  • Embodiment 3 The photoelectric amplification circuit includes a matching network and an electrical phase compensation line.
  • FIG. 15 is a schematic diagram of an optoelectronic amplifier circuit including an electro-optical conversion unit, a matching network and an electrical phase compensation line provided by this application.
  • this photoelectric amplifier circuit adds a first matching network 105a, a second matching network 105b, a first electrical phase compensation line 106a and a second electrical phase compensation line 106b.
  • the connection relationship of each device is shown in Figure 15, which can realize the functions described in Embodiment Mode 1 and Embodiment Mode 2, and will not be described again here.
  • Figure 3 Figure 5 to Figure 12b described in the previous embodiments can also include a matching network and an electrical phase compensation line.
  • FIG. 16 is a schematic flowchart of a signal processing method provided by this application.
  • the signal processing method can be performed by the radio frequency signal amplification device as shown in Figure 1, and includes the following steps:
  • the first optical signal and the second optical signal are two optical signals obtained after processing the input radio frequency signal.
  • the radio frequency signal amplifying device includes an electro-optical conversion unit as shown in any one of Figures 4 to 15, the radio frequency signal amplifying device can perform branching, electro-optical conversion and amplification of the input radio frequency signal through the electro-optical conversion unit.
  • the first optical signal and the second optical signal are obtained.
  • the first impedance is the impedance corresponding to when the output power of the first photodiode and the second photodiode is maximum.
  • the radio frequency signal amplifying device includes an impedance modulation unit as shown in any one of Figures 3 to 15, if the radio frequency signal power modulated to the first optical signal is greater than or equal to the preset backoff point power, the radio frequency signal is amplified
  • the device may modulate the impedance of the first output terminal of the first PD and the impedance of the second output terminal of the second PD to the same first impedance through the impedance modulation unit.
  • the impedance modulation unit please refer to the description of the function of the impedance modulation unit in Part 2, which will not be described again here.
  • the impedance of the first output terminal is modulated to a second impedance based on the power of the first optical signal.
  • the second impedance is greater than or equal to the second impedance. an impedance.
  • the radio frequency signal amplification device includes an impedance modulation unit as shown in any one of Figures 3 to 15, if the power of the radio frequency signal modulated to the first optical signal is less than or equal to the preset backoff point power, the radio frequency signal is amplified
  • the device may modulate the impedance of the first output terminal of the first PD to the second impedance through the impedance modulation unit.
  • the impedance of the second output terminal of the second PD appears to be infinite.
  • the radio frequency signal amplification device can also perform the following steps:
  • the power of the radio frequency signal modulated to the first optical signal is less than or equal to the preset backoff point power
  • the power of the second optical signal is controlled to be 0, or
  • the power of the radio frequency signal modulated to the first optical signal is greater than or equal to the preset backoff point power, the power of the second optical signal is increased.
  • the radio frequency signal amplification device includes an electro-optical conversion unit as shown in any one of Figures 4 to 15, if the power of the radio frequency signal modulated to the first optical signal is less than or equal to the preset backoff point power, the radio frequency signal is amplified
  • the device can control the power of the second optical signal to be 0 through the electro-optical conversion unit.
  • the radio frequency signal amplification device can increase the power of the second optical signal through the electro-optical conversion unit.
  • the signal processing method provided by this application realizes dynamic load transformation from the fallback point to the maximum output point by adjusting the impedance of the first photodiode and the second photodiode, thereby facilitating the realization of the first photodiode and the second photodiode. High output efficiency is maintained within the range of the maximum power point and the setback point.
  • the device or equipment provided by this application may include a hardware structure and/or a software module to realize the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Which of the above functions is executed in the form of hardware structure, software module, or hardware structure plus software module? Depends on the specific application and design constraints of the technical solution.
  • the division of modules in this application is schematic and is only a logical function division. In actual implementation, there may be other division methods.
  • each functional module in various embodiments of the present application can be integrated into a processor, or can exist physically alone, or two or more modules can be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or software function modules.
  • Figure 17 shows a device 1700 provided by this application.
  • the device may include modules that perform one-to-one correspondence with the methods/operations/steps/actions described in the method embodiment corresponding to Figure 16.
  • the module may be a hardware circuit, may be software, or may be implemented by a combination of hardware circuit and software. .
  • the device includes a communication unit 1701 and a processing unit 1702. It is used to implement the method performed by the radio frequency signal amplification device in the previous embodiment.
  • the communication unit 1701 is used to obtain the power of the first optical signal and the second optical signal.
  • the processing unit 1702 is configured to, when the power of the radio frequency signal modulated to the first optical signal is greater than or equal to the preset backoff point power, based on the power of the first optical signal and the second optical signal, convert the first output end of the first photodiode to The impedance is modulated to a first impedance, and the impedance of the second output terminal of the second photodiode is modulated to the first impedance.
  • the signal processing method implemented by the device realizes dynamic load transformation from the fallback point to the maximum output point by adjusting the impedance of the first photodiode and the second photodiode, thereby facilitating the realization of the first photodiode and the second photodiode. High output efficiency is maintained within the range of the maximum power point and the setback point.
  • the processing unit 1702 is configured to modulate the impedance of the first output end to the second impedance based on the power of the first optical signal when the power of the radio frequency signal modulated to the first optical signal is less than or equal to the preset backoff point power, The second impedance is greater than or equal to the first impedance.
  • control the power of the second optical signal when the power of the radio frequency signal modulated to the first optical signal is less than or equal to the preset backoff point power, control the power of the second optical signal to 0, or,
  • the power of the radio frequency signal modulated to the first optical signal is greater than or equal to the preset backoff point power, the power of the second optical signal is increased.
  • FIG. 17 A device including a plurality of functional units shown in FIG. 17 will be described below.
  • the device described in this application includes multiple functional units as shown in Figure 17, and may also include photoelectric amplification circuits as shown in Figures 3 to 15.
  • Figure 18 shows a device 1800 provided by this application for implementing the signal processing method in the above method embodiment.
  • the device 1800 may also be a system on a chip.
  • Device 1800 includes a communication interface 1801 and a processor 1802.
  • the communication interface 1801 may be, for example, a transceiver, an interface, a bus, a circuit, or a device capable of implementing transceiver functions. Among them, the communication interface 1801 is used to communicate with other devices through a transmission medium, so that the device 1800 can communicate with other devices.
  • the processor 1802 and the communication interface 1801 are used to implement the method in the embodiment corresponding to Figure 16.
  • the communication interface 1801 and the processor 1802 are used to implement the signal processing method in the foregoing embodiments.
  • the communication interface 1801 is used to obtain the power of the first optical signal and the second optical signal.
  • the processor 1802 is configured to, when the power of the radio frequency signal modulated to the first optical signal is greater than or equal to the preset backoff point power, based on the power of the first optical signal and the second optical signal, change the first output end of the first photodiode to The impedance is modulated to a first impedance, and the impedance of the second output terminal of the second photodiode is modulated to the first impedance.
  • the signal processing method implemented by the device realizes dynamic load transformation from the fallback point to the maximum output point by adjusting the impedance of the first photodiode and the second photodiode, thereby facilitating the realization of the first photodiode and the second photodiode in High output efficiency is maintained within the range of the maximum power point and the setback point.
  • the device may also include at least one memory 1803 for storing program instructions and/or data.
  • the memory and processor are coupled. Coupling in this application is an indirect coupling or communication connection between devices, units or modules, which may be electrical, mechanical or other forms, and is used for information interaction between devices, units or modules.
  • the processor may operate in conjunction with the memory.
  • the processor may execute program instructions stored in memory.
  • the at least one memory and processor are integrated together.
  • connection medium between the above communication interface, processor and memory.
  • the memory, processor and communication interface are connected through a bus.
  • the bus is represented by a thick line in Figure 18.
  • the connection methods between other components are only schematically illustrated and are not limiting.
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in Figure 18, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component that can implement or execute the present application.
  • a general-purpose processor may be a microprocessor or any conventional processor, etc. The steps of the method disclosed in this application can be directly implemented by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or it may be a volatile memory (volatile memory), such as a random access memory.
  • Get memory random-access memory, RAM.
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in this application can also be a circuit or any other device capable of realizing a storage function, used to store program instructions and/or data.
  • This application provides a computer-readable storage medium.
  • the computer-readable storage medium stores programs or instructions. When the program or instructions are run on the computer, the computer is caused to execute the signal processing method in the embodiment corresponding to Figure 16.
  • the computer program product includes instructions. When the instructions are run on the computer, the computer is caused to execute the signal processing method in the embodiment corresponding to Figure 16.
  • the present application provides a chip or chip system.
  • the chip or chip system includes at least one processor and an interface.
  • the interface and the at least one processor are interconnected through lines.
  • the at least one processor is used to run computer programs or instructions to execute as shown in Figure 16 The signal processing method in the embodiment.
  • the interface in the chip can be an input/output interface, a pin or a circuit, etc.
  • the above-mentioned chip system can be a system on chip (SOC), or a baseband chip, etc., where the baseband chip can include a processor, a channel encoder, a digital signal processor, a modem, an interface module, etc.
  • SOC system on chip
  • baseband chip can include a processor, a channel encoder, a digital signal processor, a modem, an interface module, etc.
  • the chip or chip system described above in this application further includes at least one memory, and instructions are stored in the at least one memory.
  • the memory can be a storage unit inside the chip, such as a register, a cache, etc., or it can be a storage unit of the chip (such as a read-only memory, a random access memory, etc.).
  • the technical solutions provided in this application can be implemented in whole or in part through software, hardware, firmware, or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in this application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, a network device, a terminal device, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage such as a server or data center integrated with one or more available media. storage equipment.
  • the available media may be magnetic media (eg, floppy disk, hard disk, tape), optical media (eg, digital video disc (DVD)), or semiconductor media, etc.
  • the embodiments may refer to each other, for example, the methods and/or terms between the method embodiments may refer to each other, for example, the functions and/or terms between the device embodiments may refer to each other. References may be made to each other, for example functions and/or terms between apparatus embodiments and method embodiments may be referenced to each other.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)

Abstract

本申请提供了一种光电放大电路和信号处理方法,其中,该光电放大电路包括两个并联的第一光电二极管和第二光电二极管,采用Doherty电路结构,可以提升光电二极管在回退状态下的电源效率。并且采用阻抗调制单元,实现从回退点到最大输出点的动态负载变换,从而有利于实现第一光电二极管和第二光电二极管在最大功率点和回退点的区间之内均维持较高的输出效率。

Description

一种光电放大电路和信号处理方法
本申请要求于2022年5月25日提交中国国家知识产权局、申请号为202210577560.8、申请名称为“一种光电放大电路和信号处理方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种光电放大电路和信号处理方法。
背景技术
射频光子基站是利用光电融合技术解决纯电系统的性能瓶颈,从而实现超宽带、小型化和低功耗的无线通信系统。例如,射频光子基站架构可以包括高功率光电二极管(photodiode,PD)和光放大组成的新型射频光子前端,可以实现在光域上放大射频信号,利用超大带宽的高功率PD替换功率放大器(power amplifier,PA)直接满足后端天线辐射微波信号的要求。为了最大限度地提升频谱效率和增加系统容量,目前的通信系统(例如第四代(the 4th generation,4G)通信系统和第五代(the 5th generation,5G)通信系统)中普遍采用的是正交频分复用技术(orthogonal frequency division multiplexing,OFDM),作为下行通信信号调制的标准方案。OFDM中各个子载波在时域相互正交,频谱相互重叠,因而具有较高的频谱利用率,在对抗多径衰落、低实现复杂度等方面有较大优点。但是,OFDM的主要缺点在于具有较高的峰均比,因此对于射频发射通路的线性动态范围有着更严苛的要求。因此,由高功率PD和光放大组成的新型射频光子前端如何在满足线性动态范围的情况下提高回退效率成为待解决的问题。
发明内容
本申请提供一种光电放大电路和信号处理方法,该光电放大电路采用基于高功率PD的Doherty电路结构,可以提升高功率PD在回退状态下的电源效率,兼顾超宽带特性,有利于基站全频段全业务灵活部署,降低成本。
第一方面,本申请提供一种光电放大电路。该光电放大电路包括第一光电二极管、第二光电二极管和阻抗调制单元。其中,第一光电二极管包括第一输入端和第一输出端,第一输入端用于接收第一光信号,第一输出端用于输出第一射频信号。第二光电二极管包括第二输入端和第二输出端,第二输入端用于接收第二光信号,第二输出端用于输出第二射频信号。第一光信号和第二光信号是输入射频信号经过处理后得到的两路光信号。阻抗调制单元与第一光电二极管相连接,并且与第二光电二极管相连接。当调制到第一光信号的射频信号功率大于或等于预设回退点功率时,阻抗调制单元用于基于第一光信号和第二光信号的功率,将第一输出端的阻抗调制为第一阻抗,并且将第二输出端的阻抗调制为第一阻抗,第一阻抗为第一光电二极管和第二光电二极管的输出功率最大时对应的阻抗。
该光电放大电路中,第一光电二极管和第二光电二极管为并联关系,采用Doherty电路结构,可以提升光电二极管在回退状态下的电源效率。并且采用阻抗调制单元,实现从回退 点到最大输出点的动态负载变换,从而有利于实现第一光电二极管和第二光电二极管在最大功率点和回退点的区间之内均维持较高的输出效率。
在一种可能的实施方式中,预设回退点功率为当第一光电二极管和第二光电二极管输出的第一射频信号和第二射频信号满足预设信号质量时,输入射频信号的功率;预设回退点功率是根据饱和功率和功率回退值确定的。
在一种可能的实施方式中,饱和功率为当第一光电二极管和第二光电二极管的输出功率最大时,输入射频信号的功率。功率回退值是根据输入射频信号的峰均比和预设信号质量确定的。
在一种可能的实施方式中,预设回退点功率还根据输入射频信号的调制方式确定,输入射频信号的调制方式包括正交幅度调制和/或相移键控调制。
在一种可能的实施方式中,当调制到第一光信号的射频信号功率小于或等于预设回退点功率时,阻抗调制单元用于基于第一光信号的功率将第一输出端的阻抗调制为第二阻抗,第二阻抗大于或等于第一阻抗。
该光电放大电路中,当调制到第一光信号的射频信号功率较低时,通过调整光电二极管在输出端的阻抗,可以使第一光电二极管工作非饱和状态,在输出端呈现较高的阻抗,此时第一光电二极管也可以达到较高的工作效率。
在一种可能的实施方式中,光电放大电路还包括电光转换单元,电光转换单元与第一输入端相连接,并且与第二输入端相连接。电光转换单元用于对输入射频信号进行处理,得到第一光信号和第二光信号。例如,对输入射频信号进行电光转换、放大等处理,从而使射频信号转换为放大后的光信号。
在一种可能的实施方式中,当调制到第一光信号的射频信号功率小于或等于预设回退点功率时,电光转换单元还用于控制第二光信号的功率为0。
该光电放大电路中,当调制到第一光信号的射频信号功率较低时,还可以通过控制第二光信号的功率,使第二光电二极管不工作,第一光电二极管工作在非饱和状态,从而使得第一光电二极管和第二光电二极管工作在不同状态。
在一种可能的实施方式中,当调制到第一光信号的射频信号功率大于或等于预设回退点功率时,电光转换单元还用于增加第二光信号的功率。
该光电放大电路中,当调制到第一光信号的射频信号功率较高时,可以增加第二光信号的功率,使第二光电二极管也可以达到较高的工作效率。
在一种可能的实施方式中,电光转换单元包括电功分器、第一激光器、第二激光器、第一光放大器和第二光放大器。其中,电功分器与第一激光器相连接,并且与第二激光器相连接;电功分器用于将输入射频信号按照预设的比例分为第一输入射频信号和第二输入射频信号;第一激光器用于接收第一输入射频信号,并将第一输入射频信号转换为第一输入光信号;第二激光器用于接收第二输入射频信号,并将第二输入射频信号转换为第二输入光信号。第一激光器与第一光放大器相连接,第一光放大器与第一输入端相连接,第二激光器与第二光放大器相连接,第二光放大器与第二输入端相连接;第一光放大器用于放大第一输入光信号,得到第一光信号,并输出第一光信号;第二光放大器用于放大第二输入光信号,得到第二光信号,并输出第二光信号。
该光电放大电路中,可以通过电功分器将输入射频信号划分为两路射频信号,再通过两个激光器分别转换为两路光信号,最后通过两个光放大器分别放大两路光信号,从而实现了将射频信号转换为放大后的光信号。
在一种可能的实施方式中,电光转换单元包括电功分器、第一激光器、第二激光器、光复用器、光放大器和光解复用器。电功分器与第一激光器相连接,并且与第二激光器相连接;电功分器用于将输入射频信号按照预设的比例分为第一输入射频信号和第二输入射频信号;第一激光器用于接收第一输入射频信号,并将第一输入射频信号转换为第一输入光信号;第二激光器用于接收第二输入射频信号,并将第二输入射频信号转换为第二输入光信号。光复用器与第一激光器相连接,并且与第二激光器相连接;光复用器用于将第一输入光信号和第二输入光信号复用至同一个通道;光复用器与光放大器相连接,光放大器与光解复用器相连接;光放大器用于放大第一输入光信号和第二输入光信号,得到第一光信号和第二光信号;光解复用器用于将同一个通道内的第一光信号和第二光信号解复用到两个不同的通道,光解复用器与第一输入端相连接,并且与第二输入端相连接。
该光电放大电路中,可以通过电功分器将输入射频信号划分为两路射频信号,再通过两个激光器分别转换为两路光信号,最后通过一个光放大器以及光复用器和光解复用器,得到放大后的两路光信号,从而实现了将射频信号转换为放大后的光信号。并且采用一个光放大器,降低了有源器件的使用量,有利于降低光电放大电路的功耗。
在一种可能的实施方式中,第一激光器和第二激光器为直调式电光调制器。
在一种可能的实施方式中,第一激光器和第二激光器为外调式电光调制器。电光转换单元还包括第一激光源和第二激光源。第一激光源与第一激光器相连接,用于为第一激光器提供激光,以使第一激光器将第一输入射频信号转换为第一输入光信号;第二激光源与第二激光器相连接,用于为第二激光器提供激光,以使第二激光器将第二输入射频信号转换为第二输入光信号。
该光电放大电路中,由于外调式电光调制器需要外接的激光源才能正常工作,则该光电放大电路还包括两个激光源,分别与两个外调式电光调制器相连接,以使外调式电光调制器可以将射频信号转换为光信号。
在一种可能的实施方式中,电光转换单元还包括激光源和光功分器;激光源与光功分器相连接,光功分器与第一激光器相连接,并且与第二激光器相连接。激光源和光功分器用于为第一激光器和第二激光器提供激光源,以使第一激光器将第一输入射频信号转换为第一输入光信号,以使第二激光器将第二输入射频信号转换为第二输入光信号。
该光电放大电路中,由于外调式电光调制器需要外接的激光源才能正常工作,则该光电放大电路还包括一个激光源和一个光功分器,从而可以向两个外调式电光调制器分别提供激光源,以使外调式电光调制器可以将射频信号转换为光信号。
在一种可能的实施方式中,电光转换单元包括激光器、光分路器、光功率控制器、第一光放大器和第二光放大器。激光器与光分路器相连接,激光器用于接收输入射频信号,并将输入射频信号转换为光信号;光分路器用于将光信号划分为第一输入光信号和第二输入光信号。光分路器与第一光放大器相连接,第一光放大器与第一输入端相连接;第一光放大器用于放大第一输入光信号,得到第一光信号,并输出第一光信号。光分路器与光功率控制器相连接,光功率控制器与第二光放大器相连接,第二光放大器与第二输入端相连接;光功率控制器用于控制第二输入光信号,以使第二输入光信号的功率与第一输入光信号的功率不相同;第二光放大器用于放大第二输入光信号,得到第二光信号,并输出第二光信号。
该光电放大电路中,可以通过光功率控制器使得光分路器输出的两路光信号的平均光功率不同,从而使第一光放大器和第二光放大器输出的第一光信号和第二光信号的平均光功率不同,以使第一光电二极管和第二光电二极管工作在不同状态。
在一种可能的实施方式中,电光转换单元包括激光器、光分路器、光功率控制器、光复用器、光放大器和光解复用器。激光器与光分路器相连接,激光器用于接收输入射频信号,并将输入射频信号转换为光信号,光分路器用于将光信号划分为第一输入光信号和第二输入光信号。光分路器与光功率控制器相连接,并且与光复用器相连接;光功率控制器与光复用器相连接,光功率控制器用于控制第二输入光信号,以使第二输入光信号的功率与第一输入光信号的功率不相同;光复用器用于将第一输入光信号和第二输入光信号复用至同一个通道。光复用器与光放大器相连接,光放大器与光解复用器相连接,光放大器用于放大第一输入光信号和第二输入光信号,得到第一光信号和第二光信号;光解复用器用于将同一个通道内的第一光信号和第二光信号解复用到两个不同的通道,光解复用器与第一输入端相连接,并且与第二输入端相连接。
在一种可能的实施方式中,激光器为直调激光器,或者,激光器为外调式电光调制器。在激光器为外调式电光调制器的情况下,电光转换单元还包括激光源,激光源与激光器相连接,用于为激光器提供激光源,以使激光器实现将输入射频信号转换为光信号。
在一种可能的实施方式中,电光转换单元还包括第一光延时器和第二光延时器。第一光放大器与第一光延时器相连接,第二光放大器与第二光延时器相连接;或者,光解复用器与第一光延时器相连接,并且与第二光延时器相连接;第一光延时器与第一输入端相连接,第二光延时器与第二输入端相连接,第一光延时器和第二光延时器用于将第一光信号和第二光信号的相位对齐。
该光电转换电路中,还可以包括光延时器,从而使得第一光信号和第二光信号的相位对齐,有利于使得第一光电二极管和第二光电二极管的输出信号在合路点的相位保持一致。
在一种可能的实施方式中,光电放大电路还包括第一匹配网络和第二匹配网络,第一匹配网络与第一输出端相连接,用于实现第一输出端与电路的阻抗匹配;第二匹配网络与第二输出端相连接,用于实现第二输出端与电路的阻抗匹配。
该光电转换电路中,还可以包括匹配网络,从而使得第一光电二极管和第二光电二极管的输出端口可以与后续电路的阻抗匹配。
在一种可能的实施方式中,光电放大电路还包括第一电相位补偿线和第二电相位补偿线,第一电相位补偿线与阻抗调制单元相连接,用于调整第一射频信号的相位;第二电相位补偿线与阻抗调制单元相连接,用于调整第二射频信号的相位;第一射频信号的相位与第二射频信号的相位相同。
该光电转换电路中,还可以包括电相位补偿线,有利于使得第一光电二极管和第二光电二极管的输出信号在合路点的相位保持一致。
第二方面,本申请提供一种信号处理方法。该信号处理方法可以由射频信号放大装置所执行。其中,射频信号放大装置可以获取第一光信号和第二光信号的功率,第一光信号和第二光信号是输入射频信号经过处理后得到的两路光信号。当调制到第一光信号的射频信号功率大于或等于预设回退点功率时,基于第一光信号和第二光信号的功率,将第一光电二极管的第一输出端的阻抗调制为第一阻抗,并且将第二光电二极管的第二输出端的阻抗调制为第一阻抗;第一阻抗为第一光电二极管和第二光电二极管的输出功率最大时对应的阻抗。
该方法中,通过调整第一光电二极管和第二光电二极管的阻抗,实现从回退点到最大输出点的动态负载变换,从而有利于实现第一光电二极管和第二光电二极管在最大功率点和回退点的区间之内均维持较高的输出效率。
在一种可能的实施方式中,预设回退点功率为当第一光电二极管和第二光电二极管输出 的第一射频信号和第二射频信号满足预设信号质量时,输入射频信号的功率;预设回退点功率是根据饱和功率和功率回退值确定的。
在一种可能的实施方式中,饱和功率为当第一光电二极管和第二光电二极管的输出功率最大时,输入射频信号的功率。功率回退值是根据输入射频信号的峰均比和预设信号质量确定的。
在一种可能的实施方式中,预设回退点功率还根据输入射频信号的调制方式确定,输入射频信号的调制方式包括正交幅度调制和/或相移键控调制。
在一种可能的实施方式中,当调制到第一光信号的射频信号功率小于或等于预设回退点功率时,基于第一光信号的功率将第一输出端的阻抗调制为第二阻抗,第二阻抗大于或等于第一阻抗。
在一种可能的实施方式中,当调制到第一光信号的射频信号功率小于或等于预设回退点功率时,控制第二光信号的功率为0,或者,
当调制到第一光信号的射频信号功率大于或等于预设回退点功率时,增加第二光信号的功率。
第三方面,本申请提供一种装置,该装置可以包括如第一方面所描述的光电放大电路。一种可能的实施方式中,该装置可以包括执行如第二方面及其可能的实施方式中描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可以是软件,也可以是硬件电路结合软件实现。一种可能的实施方式中,该装置可以包括收发单元和处理单元。
其中,对该装置执行的方法/操作/步骤/动作的具体描述可以参考上述第二方面及其可能的实施方式中对应的描述,此处不再赘述。可以理解的是,该装置也可以实现如第二方面中可以实现的效果。
第四方面,本申请提供一种设备,包括:处理器,该处理器与存储器耦合,该存储器用于存储指令,当指令被处理器执行时,使得该装置实现上述第二方面及其可能的实施方式中的方法。
第五方面,本申请实施例中还提供一种计算机可读存储介质,所述计算机可读存储介质上存储指令,当所述指令在计算机上运行时,使得计算机执行第二方面及其可能的实施方式中的方法。
第六方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第二方面及其可能的实施方式中的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第七方面,本申请实施例中还提供一种计算机程序产品,包括指令,当所述指令在计算机上运行时,使得计算机执行第二方面及其可能的实施方式中的方法。
附图说明
图1为本申请提供的一种基站系统中的射频信号放大装置示意图;
图2为本申请提供的一种输入射频信号的功率和输出效率的关系示意图;
图3为本申请提供的一种光电放大电路的示意图;
图4为本申请提供的包括电光转换单元的光电放大电路的示意图;
图5为本申请提供的包括电光转换单元的第一种光电放大电路的示意图;
图6为本申请提供的包括电光转换单元的第二种光电放大电路的示意图;
图7为本申请提供的包括电光转换单元的第三种光电放大电路的示意图;
图8为本申请提供的包括电光转换单元的第四种光电放大电路的示意图;
图9a为本申请提供的包括电光转换单元的第五种光电放大电路的示意图;
图9b为本申请提供的包括电光转换单元的第六种光电放大电路的示意图;
图10a为本申请提供的包括电光转换单元的第七种光电放大电路的示意图;
图10b为本申请提供的包括电光转换单元的第八种光电放大电路的示意图;
图11a为本申请提供的包括电光转换单元的第九种光电放大电路的示意图;
图11b为本申请提供的包括电光转换单元的第十种光电放大电路的示意图;
图12a为本申请提供的包括电光转换单元的第十一种光电放大电路的示意图;
图12b为本申请提供的包括电光转换单元的第十二种光电放大电路的示意图;
图13为本申请提供的包括电光转换单元和匹配网络的光电放大电路的示意图;
图14为本申请提供的包括电光转换单元和电相位补偿线的光电放大电路的示意图;
图15为本申请提供的包括电光转换单元、匹配网络和电相位补偿线的光电放大电路的示意图;
图16为本申请提供的一种信号处理方法的流程示意图;
图17为本申请提供的一种装置的示意图;
图18为本申请提供的一种设备的示意图。
具体实施方式
下面将结合本申请中的附图,对本申请中的技术方案进行描述。
本申请实施例提供的光电放大电路可以应用于基站系统、卫星通信系统、雷达系统、光传感系统等。例如,当光电放大电路应用于基站系统时,该光电放大电路可以是基站的射频信号放大装置中的部分电路结构,用于放大基站的信号。又例如,当光电放大电路应用于卫星通信系统时,该光电放大电路可以是卫星的信号放大装置中的部分电路结构,可以用于放大卫星的信号,也可以实现卫星之间通信信号的放大。还例如,当光电放大电路应用于雷达系统时,该光电放大电路可以是激光雷达的信号放大装置中的部分电路结构,用于放大激光雷达的信号,具体的应用场景本申请不作限定。
下面以基站系统中射频信号放大装置为应用场景为例进行说明。射频信号放大装置作为无线通信系统的核心构成,其性能直接影响到信号的传输距离和传输质量,因此必须兼顾线性度和电流效率等指标,才能满足基站系统的应用需求。例如,图1为基站系统中的射频信号放大装置示意图。其中,该射频信号放大装置的输入端接收输入射频信号(该输入射频信号的功率较小),输出端输出放大后的射频信号。基于此,本申请实施例提供了多个光电放大电路和一种信号处理方法。其中,本申请提供的多个光电放大电路可以是射频信号放大装置中的模块(或者芯片),采用基于高功率光电二极管(photodiode,PD)的Doherty电路结构,提升高功率PD在回退状态下的电源效率,兼顾超宽带特性,有利于基站全频段全业务灵活部署,降低成本。该信号处理方法可以实现高功率PD从回退点到最大输出点的动态负载变换,从而使得高功率PD在较大的回退范围内保持较高的回退效率。
一、本申请的相关概念
1、基站系统:
本申请提及的基站系统包括网络设备,网络设备可以是能和终端设备进行通信的设备。 网络设备可以是基站、中继站或接入点。其中,基站可以是全球移动通信(global system for mobile communication,GSM)系统或码分多址(code division multiple access,CDMA)网络中的基站收发台(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的3G基站NodeB,还可以是长期演进(long term evolution,LTE)系统中的evolutional NodeB(简称为eNB或eNodeB)。网络设备还可以是卫星通信系统中的卫星。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。网络设备还可以是5G网络中的网络设备或者未来演进的共用陆地移动网(public land mobile network,PLMN)网络中的网络设备(例如gNodeB)。网络设备还可以是可穿戴设备、无人机,或者车联网中的设备(例如车联万物设备(vehicle to everything,V2X)),或者设备间(device to device,D2D)通信中的通信设备,或者应用于未来的通信系统中的网络设备。
2、光电二极管(photodiode,PD):包括输入端和输出端,输入端用于接收光信号,输出端用于输出射频信号。也即是,光电二极管用于将光信号转换为射频信号,并输出射频信号。
3、阻抗调制单元:用于基于高功率PD的输入信号功率,对高功率PD在输出端呈现的阻抗负载进行调整,以使高功率PD在较大的回退范围内保持较高的回退效率。其中,阻抗调制单元例如可以是1/4波长阻抗变换器等。例如,当高功率PD的输入光功率较低时,高功率PD通过阻抗调制单元在输出端呈现高阻抗负载(例如大于该高功率PD在最大输入功率下的负载阻抗);当高功率PD的输入光功率较高时,高功率PD通过阻抗调制单元在输出端呈现最佳阻抗负载。
4、预设回退点功率、饱和功率和功率回退值:
为了保证光电放大电路的输出射频信号可以满足无线通信系统所需的信号质量,输入到光电放大电路的射频信号大小需要至少达到预设回退点功率。目前无线通信系统通常采用正交频分复用(orthogonal frequency division multiplexing,OFDM)技术作为信号调制的标准方案,OFDM信号的峰均比在一定的线性动态范围内变化,当OFDM信号的峰均比超过该线性动态范围时,会导致信号的非线性失真,从而影响OFMD信号的传输性能。本申请中,为了避免射频信号的非线性失真,并且使得第一光电二极管和第二光电二极管的输出效率较高,确定了预设回退点功率,从而有利于实现第一光电二极管和第二光电二极管在饱和功率和预设回退点功率的区间之内均维持较高的输出效率。
预设回退点功率为当第一光电二极管和第二光电二极管输出的第一射频信号和第二射频信号满足预设信号质量时,输入射频信号的功率。其中,输入射频信号是指输入光电放大电路的射频信号。具体来说,预设回退点功率是根据饱和功率和功率回退值确定的。饱和功率为当第一光电二极管和第二光电二极管的输出功率最大时,输入射频信号的功率。功率回退值是根据输入射频信号的峰均比和预设信号质量确定的。例如,当输入射频信号的峰均比增大时,功率回退值也增大。
例如,图2为本申请提供的输入射频信号的功率和输出效率的关系示意图。图2示出了第一光电二极管的输出效率曲线,第二光电二极管的输出效率曲线,光电放大电路的输出效率曲线。图2还示出了一种可能的预设回退点功率和饱和功率。其中,当输入射频信号的功率较低时,本申请假设第一光电二极管工作,第二光电二极管不工作。当输入射频信号的功率从0开始逐渐增大时,第一光电二极管的输入光信号的功率也逐渐增大,第一光电二极管的输出效率也逐渐增大,如图2所示。当第一光电二极管的输出效率达到最大值时(也即是 第一光电二极管的输出功率最大时),对应的输入射频信号的功率可以视为一种可能的预设回退点功率。注意在图中,第一光电二极管的输入光信号的功率小于预设回退点功率的时候(也即是第一光电二极管工作,第二光电二极管不工作时),第一光电二极管的输出效率曲线是和光电放大电路的输出效率是重合的。也即是,当输入射频信号的功率等于预设回退点功率时,第一光电二极管工作在饱和状态。当输入射频信号的功率进一步增大时,第二光电二极管也开始工作。第二光电二极管的输入光信号的功率也随着输入射频信号的功率的增大而增大,则第二光电二极管的输出效率也逐渐增大,如图2所示。当第二光电二极管的输出效率达到最大值时(也即是第二光电二极管的输出功率最大时),对应的输入射频信号的功率可以视为饱和功率。也即是,当输入射频信号的功率等于饱和功率时,第一光电二极管和第二光电二极管都工作在饱和状态。
一种可能的实施方式中,输入射频信号的功率可以小于或者等于预设回退点功率。例如,当输入射频信号的功率等于预设回退点功率时,此时光电放大电路的输出效率可以等于第一光电二极管的输出效率的最大值,如图2所示。当输入射频信号的功率小于预设回退点功率时,此时光电放大电路的输出效率小于第一光电二极管的输出效率的最大值,但是此时输出射频信号的线性度相较于输入射频信号的功率等于预设回退点功率时会提高。也即是,当输入射频信号的功率小于预设回退点功率时,降低了光电放大电路的输出效率,但是提高了输出射频信号的线性度。
另一种可能的实施方式中,预设回退点功率还根据输入射频信号的调制方式确定,输入射频信号的调制方式包括正交幅度调制(quadrature amplitude modulation,QAM)、相移键控(phase-shift keying,PSK)调制(例如QPSK、8PSK等)等调制方式。例如,假设采用64QAM调制方式时,预设回退点功率可以设置为12dB;假设采用16QAM调制方式时,预设回退点功率可以设置为9dB;假设采用QPSK调制方式时,预设回退点功率可以设置为4dB,本实施例并不限定所设置的具体值。
5、电光转换单元:用于接收输入射频信号,并将输入射频信号转换为光信号,并放大光信号,从而实现在光域上放大射频信号,有利于满足后端天线辐射微波信号的要求。其中,本申请实施例中的电光转换单元可以包括但不限于以下模块:电功分器、激光器、光放大器、激光源、光功分器、光分路器、光功率控制器等。具体的实现方式参考后文实施例中的描述。
二、本申请提供的一种光电放大电路
图3为本申请提供的一种光电放大电路的示意图。该光电放大电路可以应用于如图1所示的基站系统中的射频信号放大装置。例如,该光电放大电路可以是基于射频光子架构的射频发射链路末级。其中,该光电放大电路包括第一光电二极管101(下文简称为第一PD)、第二光电二极管102(下文简称为第二PD)和阻抗调制单元103。可以理解的是,该光电放大电路还包括负载,其中负载例如可以包括电阻或电容或电感或者天线单元等,还可以包括接地部分。
第一PD包括第一输入端和第一输出端,第一输入端用于接收第一光信号,第一输出端用于输出第一射频信号。第二PD包括第二输入端和第二输出端,第二输入端用于接收第二光信号,第二输出端用于输出第二射频信号。可以理解的是,第一PD和第二PD为并联关系,分别位于并联的两条电路上,如图3所示。其中,第一光信号和第二光信号是输入射频信号经过处理后得到的两路光信号。例如,输入射频信号经过分路、电光转换和放大等处理,可以得到第一光信号和第二光信号,具体的处理方式可以参考后文实施例中电光转换单元的详细描述。
一种可能的实施方式中,第一PD为载波高功率PD,第二PD为峰值高功率PD。本申请假设载波高功率PD偏置在AB/B类,峰值高功率PD偏置在C类,也即是,第一PD和第二PD工作在不同状态。其中,AB类是指PD器件有电流输出的区间为半个正弦波的周期和整个正弦波的周期之间。B类是指PD器件有电流输出的区间仅为半个正弦波的周期。C类是指PD器件有电流输出的区间小于半个正弦波的周期。例如,当输入射频信号的功率较低时(例如小于或等于预设回退点功率),第一PD工作(也即是第一PD输出第一射频信号),第二PD截止不工作(也即是第二PD未输出第二射频信号)。又例如,当输入射频信号的功率较高时(例如大于或等于预设回退点功率),第一PD工作(也即是第一PD输出第一射频信号),第二PD也工作(也即是第二PD输出第二射频信号),第一射频信号和第二射频信号合成为最终的输出信号。
阻抗调制单元与第一PD相连接,并且与第二PD相连接。需要注意的是,本申请中所描述的相连接可以是直接连接,例如图3所示的第一PD与阻抗调制单元通过电路直接相连接;也可以是相连接的电路上还包括其他元器件,例如第一PD和阻抗调制单元之间可能还包括电感或电阻或匹配网络等,本申请不作限定。阻抗调制单元用于基于第一PD和/或第二PD的输入信号功率,对第一PD和/或第二PD在输出端呈现的阻抗负载进行调整。
一种可能的实施方式中,当调制到第一光信号的射频信号功率大于或等于预设回退点功率时,阻抗调制单元用于基于第一光信号和第二光信号,将第一输出端的阻抗调制为第一阻抗,并且将第二输出端的阻抗调制为第一阻抗。其中,第一阻抗为第一光电二极管和第二光电二极管的输出功率最大时对应的阻抗。例如,当输入射频信号的功率较高时(例如大于或等于预设回退点功率),第一PD工作,第二PD也工作。在这种情况下,阻抗调制单元通过第二PD的有源负载调制作用,将第一PD的第一输出端的阻抗调制到第一PD的输出功率最大时对应的阻抗;并且,将第二PD的第二输出端的阻抗调制到第二PD的输出功率最大时对应的阻抗。可以理解的是,本申请中第一PD和第二PD为并联关系,则当第一PD和第二PD的输出功率相同时,第一PD和第二PD达到最大输出功率,则第一PD和第二PD的输出功率最大时对应的阻抗也相同,也即是,第一PD的第一输出端的阻抗和第二PD的第二输出端的阻抗相同,为第一阻抗。
另一种可能的实施方式中,当调制到第一光信号的射频信号功率小于或等于预设回退点功率时,阻抗调制单元用于基于第一光信号的功率将第一输出端的阻抗调制为第二阻抗,第二阻抗大于或等于第一阻抗,同时第二阻抗需要满足当输入射频信号的功率小于或等于预设回退点功率时可以使第一PD的效率大于或者等于第一阻抗。例如,当输入射频信号的功率较低时(例如小于或等于预设回退点功率),第一PD工作,第二PD截止不工作。在这种情况下,第二PD所在的电路可以视为断路(例如第二PD的第二输出端的阻抗呈现为无穷大)。则输入射频信号全部调制到第一光信号,使得第一PD的输出功率逐渐增大,第一PD的第一输出端的阻抗也逐渐增大至第二阻抗。
可以理解的是,上述两种实施方式中当调制到第一光信号的射频信号功率等于预设回退点功率时,阻抗调制单元可以采用任意一种实施方式对第一输出端的阻抗进行调制,本申请不作限定。
三、在第二部分描述的一种光电放大电路的基础上新增电光转换单元
图4为本申请提供的包括电光转换单元的光电放大电路的示意图。相较于图3所示的光电放大电路,该光电放大电路新增了电光转换单元104。电光转换单元与第一PD的第一输入端相连接,并且与第二PD的第二输入端相连接。电光转换单元用于对输入射频信号进行处 理,得到第一光信号和第二光信号。例如,电光转换单元可以对输入射频信号进行分路、电光转换和放大等处理,从而得到两路光信号(也即是得到第一光信号和第二光信号)。
一种可能的实施方式中,当调制到第一光信号的射频信号功率小于或等于预设回退点功率时,电光转换单元还用于控制第二光信号的功率为0。例如,根据前文第二部分中的描述,当调制到第一光信号的射频信号功率小于或等于预设回退点功率时,第一PD工作,第二PD截止不工作。那么通过电光转换单元控制第二光信号的功率为0,可以使得第二PD截止不工作。
另一种可能的实施方式中,当调制到第一光信号的射频信号功率大于或等于预设回退点功率时,电光转换单元还用于增加第二光信号的功率。例如,根据前文第二部分中的描述,当调制到第一光信号的射频信号功率大于或等于预设回退点功率时,第一PD工作,第二PD也工作。那么通过电光转换单元增加第二光信号的功率,可以使得第二PD开始工作。
本申请中的电光转换单元可以有多种具体实施方式,下面进行详细的介绍。
实施方式1:电光转换单元包括电功分器104a、第一激光器104b、第二激光器104c、第一光放大器104d和第二光放大器104e。
其中,实施方式1中的各个元器件之间的连接关系包括:电功分器与第一激光器相连接,并且与第二激光器相连接;第一激光器与第一光放大器相连接,第二激光器与第二光放大器相连接,如图5所示。可以理解的是,第一光放大器和第二光放大器可以位于电光转换单元的输出端,例如,第一光放大器与第一PD的第一输入端相连接,第二光放大器与第二PD的第二输入端相连接。
电功分器用于将输入射频信号按照预设的比例分为第一输入射频信号和第二输入射频信号。具体来说,预设的比例β是根据最大效率回退量α确定的,β满足α的单位是dB。例如,当α=6dB时,预设的比例为1:1,也即是,第一输入射频信号和第二输入射频信号的功率相同。又例如,当α=9dB时,预设的比例为1:2,也即是,第一输入射频信号的功率为第二输入射频信号的功率的一半。再例如,当α=12dB时,预设的比例为1:3,也即是,第一输入射频信号的功率为第二输入射频信号的功率的1/3。可见,通过电功分器,可以将一路输入射频信号分为并联的两路输入射频信号,有利于后面的元器件分别对这两路信号进行处理。
第一激光器和第二激光器为并联关系,都是用于将射频信号转换为光信号。例如,第一激光器用于将第一输入射频信号转换为第一输入光信号,第二激光器用于将第二输入射频信号转换为第二输入光信号。具体来说,第一激光器和第二激光器可以是直调式电光调制器,也可以是外调式电光调制器,具体实现方式将在后文详细描述。
第一光放大器和第二光放大器为并联关系,都是用于放大光信号,从而有利于使放大后的光信号可以转换到放大的射频信号,满足后端天线辐射微波信号的要求。例如,第一光放大器用于放大第一输入光信号,得到第一光信号,并输出第一光信号。第二光放大器用于放大第二输入光信号,得到第二光信号,并输出第二光信号。
可以理解的是,在实施方式1中,第一激光器、第一光放大器和第一PD为串联关系,可以构成一路射频光子放大链路;第二激光器、第二光放大器和第二PD为串联关系,可以构成另一路射频光子放大链路。其中,激光器、光放大器和PD之间可以通过光纤相连接,可以拉远到公里级;也可以通过电路相连接,本申请不作限定。
实施方式2:电光转换单元包括电功分器104a、第一激光器104b、第二激光器104c、光放大器104d、光复用器104f和光解复用器104g。
其中,实施方式2中的各个元器件之间的连接关系包括:电功分器与第一激光器相连接,并且与第二激光器相连接;第一激光器与光复用器相连接,第二激光器与光复用器相连接;光复用器与光放大器相连接,光放大器与光解复用器相连接,如图6所示。可以理解的是,光解复用器可以位于电光转换单元的输出端,例如,光解复用器与第一PD的第一输入端相连接,并且与第二PD的第二输入端相连接。
光复用器用于将多路光信号复用至同一个通道。例如,光复用器用于将第一输入光信号和第二输入光信号复用至同一个通道。光解复用器用于将同一个通道内的不同光信号解复用至多个不同的通道。例如,光解复用器用于将同一个通道内的第一光信号和第二光信号解复用到两个不同的通道。可以理解的是,不同于实施方式1中采用两个光放大器对两路光信号分别进行放大,实施方式2中仅采用一个光放大器,降低了有源器件的使用量,有利于降低电路的功耗;增加了光复用器和光解复用器,从而可以实现对两路光信号的放大。
对电功分器、激光器和光放大器的功能描述可以参考实施方式1中对应的描述,此处不再赘述。可以理解的是,激光器、光复用器、光放大器和光解复用器之间可以通过光纤相连接,可以拉远到公里级;也可以通过电路相连接,本申请不作限定。
实施方式3:电光转换单元包括激光器104b、光分路器104h、光功率控制器104i、第一光放大器104d和第二光放大器104e。
其中,实施方式3中的各个元器件之间的连接关系包括:激光器与光分路器相连接;光分路器与第一光放大器相连接;光分路器与光功率控制器相连接,光功率控制器与第二光放大器相连接,如图7所示。
光分路器用于将一路光信号分成多路光信号。例如,光分路器104h可以将激光器104b输出的一路光信号分为两路光信号,分别为第一输入光信号和第二输入光信号。由于第一输入光信号和第二输入光信号的功率可能相同,图7所示的光电放大电路新增光功率控制器(例如可以是光饱和吸收体),以使第一输入光信号和第二输入光信号的平均光功率不同。例如,假设图7中的光分路器104h输出的第一输入光信号和第二输入光信号的平均光功率相同,光功率控制器104i与第二光放大器104e为串联关系,则可以调整第二输入光信号的功率,以使调整后的第二输入光信号和第一输入光信号的平均光功率不同。
对激光器和光放大器的功能描述可以参考实施方式1中对应的描述,此处不再赘述。可以理解的是,激光器、光分路器、光功率控制器和光放大器之间可以通过光纤相连接,可以拉远到公里级;也可以通过电路相连接,本申请不作限定。
实施方式4:电光转换单元包括激光器104b、光分路器104h、光功率控制器104i、光放大器104d、光复用器104f和光解复用器104g。
其中,实施方式4中的各个元器件之间的连接关系包括:激光器与光分路器相连接;光分路器与光功率控制器相连接;光复用器与光分路器相连接,并且与光功率控制器相连接;光复用器与光放大器相连接;光放大器与光解复用器相连接,如图8所示。
其中,对激光器、光分路器、光功率控制器、光放大器、光复用器和光解复用器的功能描述可以参考实施方式1至3中对应的描述,此处不再赘述。可以理解的是,激光器、光分路器、光功率控制器、光放大器、光复用器和光解复用器之间可以通过光纤相连接,可以拉远到公里级;也可以通过电路相连接,本申请不作限定。
需要注意的是,当采用上述实施方式1至实施方式4中的任意一种电光转换单元时,若采用不同类型的激光器,电光转换单元的结构可以不相同。
1、当实施方式1至实施方式4中的任意一种激光器为直调式电光调制器时,电光转换单 元的结构和对应的光电放大电路可以如图5至图8所示,此处不再赘述。
2、当实施方式1至实施方式4中的任意一种激光器为外调式电光调制器时,由于外调式电光调制器需要激光的输入才能将射频信号转换为光信号,则电光转换单元还包括激光源。激光源与激光器相连接,激光源用于为激光器提供激光,以使激光器将输入射频信号转换为输入光信号。
第一种可能的实施方式中,当实施方式1中的第一激光器和第二激光器为外调式电光调制器时,电光转换单元和对应的光电放大电路如图9a所示。与图5相比,图9a所示的电光转换单元还包括第一激光源104j和第二激光源104k,从而使外调式电光调制器可以将射频信号转换为光信号。其中,第一激光源与第一激光器相连接,用于为第一激光器提供激光,以使第一激光器将第一输入射频信号转换为第一输入光信号。第二激光源与第二激光器相连接,用于为第二激光器提供激光,以使第二激光器将第二输入射频信号转换为第二输入光信号。
第二种可能的实施方式中,当实施方式1中的第一激光器和第二激光器为外调式电光调制器时,电光转换单元和对应的光电放大电路如图9b所示。与图5相比,图9b所示的电光转换单元还包括一个激光源104j和一个光功分器104m。与图9a相比,图9b所示的电光转换单元仅有一个激光源,降低了有源器件的使用量,有利于降低电路的功耗;通过一个光功分器实现激光的分路,得到两路激光分别传输至第一激光器和第二激光器,从而使外调式电光调制器可以将射频信号转换为光信号。
第三种可能的实施方式中,当实施方式2中的第一激光器和第二激光器为外调式电光调制器时,电光转换单元和对应的光电放大电路如图10a所示。与图6相比,图10a所示的电光转换单元还包括第一激光源104j和第二激光源104k,从而使外调式电光调制器可以将射频信号转换为光信号。其中,第一激光源、第二激光源与第一激光器、第二激光器的连接关系以及功能可以参考第一种可能的实施方式中的描述,此处不再赘述。
第四种可能的实施方式中,当实施方式2中的第一激光器和第二激光器为外调式电光调制器时,电光转换单元和对应的光电放大电路如图10b所示。与图6相比,图10b所示的电光转换单元还包括一个激光源104j和一个光功分器104m。与图10a相比,图10b所示的电光转换单元仅有一个激光源,降低了有源器件的使用量,有利于降低电路的功耗;通过一个光功分器实现激光的分路,得到两路激光分别传输至第一激光器和第二激光器,从而使外调式电光调制器可以将射频信号转换为光信号。
第五种可能的实施方式中,当实施方式3中的激光器为外调式电光调制器时,电光转换单元和对应的光电放大电路如图11a所示。与图7相比,图11a所示的电光转换单元还包括一个激光源104j,从而使外调式电光调制器可以将射频信号转换为光信号。其中,激光源与激光器相连接,用于为激光器提供激光,以使激光器将输入射频信号转换为一路光信号。
第六种可能的实施方式中,当实施方式4中的激光器为外调式电光调制器时,电光转换单元和对应的光电放大电路如图11b所示。与图8相比,图11b所示的电光转换单元还包括一个激光源104j,从而使外调式电光调制器可以将射频信号转换为光信号。其中,激光源与激光器相连接,用于为激光器提供激光,以使激光器将输入射频信号转换为一路光信号。
可选的,在如图5至图11b所描述的包括电光转换单元的光电放大电路中,电光转换单元还可以包括第一光延时器和第二光延时器。第一光延时器和第二光延时器用于将第一光信号和第二光信号的相位对齐。
一种可能的实施方式中,当电光转换单元包括第一光放大器和第二光放大器时,第一光放大器与第一光延时器相连接,第一光延时器与第一PD的第一输入端相连接;第二光放大 器与第二光延时器相连接,第二光延时器与第二PD的第二输入端相连接。也即是,第一光延时器与第二光延时器为并联关系。例如,以图5所示的电光转换单元为例,当电光转换单元包括第一光延时器104p和第二光延时器104q时,第一光延时器和第二光延时器与其他元器件的连接关系如图12a所示。可见,当第一光放大器输出的光信号与第二光放大器输出的光信号的相位未对齐时,通过第一光延时器和第二光延时器可以将第一光信号和第二光信号的相位对齐,从而使第一光信号和第二光信号的传输路径一致。
另一种可能的实施方式中,当电光转换单元包括光复用器、光放大器和光解复用器时,光解复用器与第一光延时器相连接,并且与第二光延时器相连接。第一光延时器与第一PD的第一输入端相连接,第二光延时器与第二PD的第二输入端相连接。也即是,第一光延时器与第二光延时器为并联关系。例如,以图6所示的电光转换单元为例,当电光转换单元包括第一光延时器和第二光延时器时,第一光延时器和第二光延时器与其他元器件的连接关系如图12b所示。
可以理解的是,图6至图11b中的电光转换单元也可以包括第一光延时器和第二光延时器,具体实现方式可以参考图12a和图12b中的实施方式,此处不再赘述。
四、在第二部分和第三部分描述的光电放大电路的基础上新增匹配网络和/或电相位补偿线
图3至图12b所示的光电放大电路主要描述了光电转换单元、第一PD、第二PD和阻抗调制单元。可选的,在第一PD、第二PD与阻抗调制单元之间,还可以包括匹配网络和/或电相位补偿线。
实施方式1:光电放大电路包括匹配网络。
匹配网络用于实现第一PD和第二PD的输出端与后续电路的阻抗匹配。例如,图13为本申请提供的包括电光转换单元和匹配网络的光电放大电路的示意图。相较于图4所示的光电放大电路,该光电放大电路新增了第一匹配网络105a和第二匹配网络105b。其中,第一PD的第一输出端与第一匹配网络相连接,第一匹配网络与阻抗调制单元相连接;第一匹配网络用于实现第一输出端与电路的阻抗匹配。第二PD的第二输出端与第二匹配网络相连接,第二匹配网络与阻抗调制单元相连接,第二匹配网络用于实现第二输出端与电路的阻抗匹配。
实施方式2:光电放大电路包括电相位补偿线。
电相位补偿线用于调整第一PD和第二PD输出的射频信号的相位。例如,图14为本申请提供的包括电光转换单元和电相位补偿线的光电放大电路的示意图。相较于图4所示的光电放大电路,该光电放大电路新增了第一电相位补偿线106a和第二电相位补偿线106b。其中,第一PD的第一输出端与第一电相位补偿线相连接,第一电相位补偿线与阻抗调制单元相连接;第一电相位补偿线用于调整第一射频信号的相位。第二PD的第二输出端与第二电相位补偿线相连接,第二电相位补偿线与阻抗调制单元相连接,第二电相位补偿线用于调整第二射频信号的相位。
实施方式3:光电放大电路包括匹配网络和电相位补偿线。
例如,图15为本申请提供的包括电光转换单元、匹配网络和电相位补偿线的光电放大电路的示意图。相较于图4所示的光电放大电路,该光电放大电路新增了第一匹配网络105a、第二匹配网络105b、第一电相位补偿线106a和第二电相位补偿线106b。各个器件的连接关系如图15所示,可以实现如实施方式1和实施方式2中描述的功能,此处不再赘述。
可以理解的是,前文实施例中描述的图3、图5至图12b也可以包括匹配网络和电相位补偿线,具体实现方式可以参考图13至图15中对应的描述,此处不再赘述。
五、本申请提供的一种信号处理方法
例如,图16为本申请提供的一种信号处理方法的流程示意图。该信号处理方法可以由如图1所示的射频信号放大装置所执行,包括以下步骤:
S101,获取第一光信号和第二光信号的功率。
其中,第一光信号和第二光信号是输入射频信号经过处理后得到的两路光信号。例如,当射频信号放大装置包括如图4至图15任意一种所示的电光转换单元时,该射频信号放大装置可以通过电光转换单元对输入射频信号进行分路、电光转换和放大等处理,从而得到第一光信号和第二光信号。具体实施方式可以参考图4至图15对应的实施例中的描述,此处不再赘述。
S102a,当调制到第一光信号的射频信号功率大于或等于预设回退点功率时,基于第一光信号和第二光信号的功率,将第一光电二极管的第一输出端的阻抗调制为第一阻抗,并且将第二光电二极管的第二输出端的阻抗调制为第一阻抗。
其中,第一阻抗为第一光电二极管和第二光电二极管的输出功率最大时对应的阻抗。例如,当射频信号放大装置包括如图3至图15任意一种所示的阻抗调制单元时,若调制到第一光信号的射频信号功率大于或等于预设回退点功率,该射频信号放大装置可以通过阻抗调制单元将第一PD的第一输出端的阻抗和第二PD的第二输出端的阻抗调制为相同的第一阻抗。具体实施方式可以参考第二部分中对阻抗调制单元的功能的描述,此处不再赘述。
S102b,当调制到第一光信号的射频信号功率小于或等于预设回退点功率时,基于第一光信号的功率将第一输出端的阻抗调制为第二阻抗,第二阻抗大于或等于第一阻抗。
例如,当射频信号放大装置包括如图3至图15任意一种所示的阻抗调制单元时,若调制到第一光信号的射频信号功率小于或等于预设回退点功率,该射频信号放大装置可以通过阻抗调制单元将第一PD的第一输出端的阻抗调制第二阻抗。并且,此时第二PD的第二输出端的阻抗呈现为无穷大。具体实施方式可以参考第二部分中对阻抗调制单元的功能的描述,此处不再赘述。
一种可能的实施方式中,射频信号放大装置还可以执行以下步骤:
当调制到第一光信号的射频信号功率小于或等于预设回退点功率时,控制第二光信号的功率为0,或者,
当调制到第一光信号的射频信号功率大于或等于预设回退点功率时,增加第二光信号的功率。
例如,当射频信号放大装置包括如图4至图15任意一种所示的电光转换单元时,若调制到第一光信号的射频信号功率小于或等于预设回退点功率,该射频信号放大装置可以通过电光转换单元控制第二光信号的功率为0。或者,若调制到第一光信号的射频信号功率大于或等于预设回退点功率,该射频信号放大装置可以通过电光转换单元增加第二光信号的功率。具体实施方式可以参考第三部分中对电光转换单元的功能的描述,此处不再赘述。
本申请提供的信号处理方法,通过调整第一光电二极管和第二光电二极管的阻抗,实现从回退点到最大输出点的动态负载变换,从而有利于实现第一光电二极管和第二光电二极管在最大功率点和回退点的区间之内均维持较高的输出效率。
为了实现本申请提供的方法中的各功能,本申请提供的装置或设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取 决于技术方案的特定应用和设计约束条件。本申请中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
图17为本申请提供的一种装置1700。该装置可以包括执行图16对应的方法实施例中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可以是软件,也可以是硬件电路结合软件实现。
一种可能的实施方式中,该装置包括通信单元1701和处理单元1702。用于实现前述实施例中射频信号放大装置所执行的方法。其中,通信单元1701用于获取第一光信号和第二光信号的功率。处理单元1702用于当调制到第一光信号的射频信号功率大于或等于预设回退点功率时,基于第一光信号和第二光信号的功率,将第一光电二极管的第一输出端的阻抗调制为第一阻抗,并且将第二光电二极管的第二输出端的阻抗调制为第一阻抗。该示例中通信单元1701和处理单元1702的具体执行流程参考前述实施例中对信号处理方法的详细描述,此处不再赘述。该装置所实现的信号处理方法通过调整第一光电二极管和第二光电二极管的阻抗,实现从回退点到最大输出点的动态负载变换,从而有利于实现第一光电二极管和第二光电二极管在最大功率点和回退点的区间之内均维持较高的输出效率。
可选的,处理单元1702用于当调制到第一光信号的射频信号功率小于或等于预设回退点功率时,基于第一光信号的功率将第一输出端的阻抗调制为第二阻抗,第二阻抗大于或等于第一阻抗。
可选的,当调制到第一光信号的射频信号功率小于或等于预设回退点功率时,控制第二光信号的功率为0,或者,
当调制到第一光信号的射频信号功率大于或等于预设回退点功率时,增加第二光信号的功率。
下面对包括图17所示的多个功能单元的设备进行描述。本申请所述的设备包括图17所示的多个功能单元,也可以包括如图3至图15所示的光电放大电路。例如,图18为本申请提供的一种设备1800,用于实现上述方法实施例中的信号处理方法。该设备1800也可以是芯片系统。设备1800包括通信接口1801和处理器1802。其中,通信接口1801例如可以是收发器、接口、总线、电路或者能够实现收发功能的装置。其中,通信接口1801用于通过传输介质和其它设备进行通信,从而用于设备1800可以和其它设备进行通信。处理器1802和通信接口1801用于实现图16对应的实施例中的方法。
示例性地,通信接口1801和处理器1802用于实现前述实施例中的信号处理方法。其中,其中,通信接口1801用于获取第一光信号和第二光信号的功率。处理器1802用于当调制到第一光信号的射频信号功率大于或等于预设回退点功率时,基于第一光信号和第二光信号的功率,将第一光电二极管的第一输出端的阻抗调制为第一阻抗,并且将第二光电二极管的第二输出端的阻抗调制为第一阻抗。该示例中通信接口1801和处理器1802的具体执行流程参考前述实施例中对信号处理方法的详细描述,此处不再赘述。该设备所实现的信号处理方法通过调整第一光电二极管和第二光电二极管的阻抗,实现从回退点到最大输出点的动态负载变换,从而有利于实现第一光电二极管和第二光电二极管在最大功率点和回退点的区间之内均维持较高的输出效率。
可选的,该设备还可以包括至少一个存储器1803,用于存储程序指令和/或数据。一种实 施方式中,存储器和处理器耦合。本申请中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器可能和存储器协同操作。处理器可能执行存储器中存储的程序指令。所述至少一个存储器和处理器集成在一起。
本申请中不限定上述通信接口、处理器以及存储器之间的具体连接介质。例如,存储器、处理器以及通信接口之间通过总线连接,总线在图18中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图18中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请提供一种计算机可读存储介质。该计算机可读存储介质存储有程序或指令。当所述程序或指令在计算机上运行时,使得计算机执行如图16对应的实施例中的信号处理方法。
本申请中提供一种计算机程序产品。该计算机程序产品包括指令。当所述指令在计算机上运行时,使得计算机执行如图16对应的实施例中的信号处理方法。
本申请提供一种芯片或者芯片系统,该芯片或者芯片系统包括至少一个处理器和接口,接口和至少一个处理器通过线路互联,至少一个处理器用于运行计算机程序或指令,以执行如图16对应的实施例中的信号处理方法。
其中,芯片中的接口可以为输入/输出接口、管脚或电路等。
上述芯片系统可以是片上系统(system on chip,SOC),也可以是基带芯片等,其中基带芯片可以包括处理器、信道编码器、数字信号处理器、调制解调器和接口模块等。
在一种实现方式中,本申请中上述描述的芯片或者芯片系统还包括至少一个存储器,该至少一个存储器中存储有指令。该存储器可以为芯片内部的存储单元,例如,寄存器、缓存等,也可以是该芯片的存储单元(例如,只读存储器、随机存取存储器等)。
本申请提供的技术方案可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、终端设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存 储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质等。
在本申请中,在无逻辑矛盾的前提下,各实施例之间可以相互引用,例如方法实施例之间的方法和/或术语可以相互引用,例如装置实施例之间的功能和/或术语可以相互引用,例如装置实施例和方法实施例之间的功能和/或术语可以相互引用。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (28)

  1. 一种光电放大电路,其特征在于,所述光电放大电路包括第一光电二极管、第二光电二极管和阻抗调制单元;
    所述第一光电二极管包括第一输入端和第一输出端,所述第一输入端用于接收第一光信号,所述第一输出端用于输出第一射频信号,
    所述第二光电二极管包括第二输入端和第二输出端,所述第二输入端用于接收第二光信号,所述第二输出端用于输出第二射频信号,
    所述第一光信号和所述第二光信号是输入射频信号经过处理后得到的两路光信号;
    所述阻抗调制单元与所述第一光电二极管相连接,并且与所述第二光电二极管相连接,
    当调制到所述第一光信号的射频信号功率大于或等于预设回退点功率时,所述阻抗调制单元用于基于所述第一光信号和所述第二光信号的功率,将所述第一输出端的阻抗调制为第一阻抗,并且将所述第二输出端的阻抗调制为所述第一阻抗,
    所述第一阻抗为所述第一光电二极管和所述第二光电二极管的输出功率最大时对应的阻抗。
  2. 根据权利要求1所述的电路,其特征在于,所述预设回退点功率为当所述第一光电二极管和所述第二光电二极管输出的第一射频信号和第二射频信号满足预设信号质量时,所述输入射频信号的功率,
    所述预设回退点功率是根据饱和功率和功率回退值确定的。
  3. 根据权利要求2所述的电路,其特征在于,所述饱和功率为当所述第一光电二极管和所述第二光电二极管的输出功率最大时,所述输入射频信号的功率,
    所述功率回退值是根据所述输入射频信号的峰均比和所述预设信号质量确定的。
  4. 根据权利要求2或3所述的电路,其特征在于,所述预设回退点功率还根据所述输入射频信号的调制方式确定,
    所述输入射频信号的调制方式包括正交幅度调制和/或相移键控调制。
  5. 根据权利要求1至4任一项所述的电路,其特征在于,
    当调制到所述第一光信号的射频信号功率小于或等于所述预设回退点功率时,所述阻抗调制单元用于基于所述第一光信号的功率将所述第一输出端的阻抗调制为第二阻抗,所述第二阻抗大于或等于所述第一阻抗。
  6. 根据权利要求1至4任一项所述的电路,其特征在于,所述光电放大电路还包括电光转换单元,
    所述电光转换单元与所述第一输入端相连接,并且与所述第二输入端相连接;
    所述电光转换单元用于对所述输入射频信号进行处理,得到所述第一光信号和所述第二光信号;
    当调制到所述第一光信号的射频信号功率小于或等于所述预设回退点功率时,所述电光转换单元还用于控制所述第二光信号的功率为0,或者,
    当调制到所述第一光信号的射频信号功率大于或等于所述预设回退点功率时,所述电光转换单元还用于增加所述第二光信号的功率。
  7. 根据权利要求6所述的电路,其特征在于,所述电光转换单元包括电功分器、第一激光器、第二激光器、第一光放大器和第二光放大器;
    所述电功分器与所述第一激光器相连接,并且与所述第二激光器相连接,
    所述电功分器用于将所述输入射频信号按照预设的比例分为第一输入射频信号和第二输入射频信号,
    所述第一激光器用于接收所述第一输入射频信号,并将所述第一输入射频信号转换为第一输入光信号,
    所述第二激光器用于接收所述第二输入射频信号,并将所述第二输入射频信号转换为第二输入光信号,
    所述第一激光器与所述第一光放大器相连接,所述第一光放大器与所述第一输入端相连接,
    所述第二激光器与所述第二光放大器相连接,所述第二光放大器与所述第二输入端相连接,
    所述第一光放大器用于放大所述第一输入光信号,得到所述第一光信号,并输出所述第一光信号,
    所述第二光放大器用于放大所述第二输入光信号,得到所述第二光信号,并输出所述第二光信号。
  8. 根据权利要求6所述的电路,其特征在于,所述电光转换单元包括电功分器、第一激光器、第二激光器、光复用器、光放大器和光解复用器;
    所述电功分器与所述第一激光器相连接,并且与所述第二激光器相连接,
    所述电功分器用于将所述输入射频信号按照预设的比例分为第一输入射频信号和第二输入射频信号,
    所述第一激光器用于接收所述第一输入射频信号,并将所述第一输入射频信号转换为第一输入光信号,
    所述第二激光器用于接收所述第二输入射频信号,并将所述第二输入射频信号转换为第二输入光信号,
    所述光复用器与所述第一激光器相连接,并且与所述第二激光器相连接,
    所述光复用器用于将所述第一输入光信号和所述第二输入光信号复用至同一个通道,
    所述光复用器与所述光放大器相连接,所述光放大器与所述光解复用器相连接,
    所述光放大器用于放大所述第一输入光信号和所述第二输入光信号,得到所述第一光信号和所述第二光信号,
    所述光解复用器用于将同一个通道内的所述第一光信号和所述第二光信号解复用到两个不同的通道,
    所述光解复用器与所述第一输入端相连接,并且与所述第二输入端相连接。
  9. 根据权利要求7或8所述的电路,其特征在于,所述第一激光器和所述第二激光器为直调式电光调制器。
  10. 根据权利要求7或8所述的电路,其特征在于,所述第一激光器和所述第二激光器为外调式电光调制器,
    所述电光转换单元还包括第一激光源和第二激光源,
    所述第一激光源与所述第一激光器相连接,用于为所述第一激光器提供激光,以使所述第一激光器将所述第一输入射频信号转换为所述第一输入光信号,
    所述第二激光源与所述第二激光器相连接,用于为所述第二激光器提供激光,以使所述第二激光器将所述第二输入射频信号转换为所述第二输入光信号;
    或者,
    所述电光转换单元还包括激光源和光功分器,
    所述激光源与所述光功分器相连接,所述光功分器与所述第一激光器相连接,并且与所述第二激光器相连接,
    所述激光源和所述光功分器用于为所述第一激光器和所述第二激光器提供激光源,以使所述第一激光器将所述第一输入射频信号转换为所述第一输入光信号,以使所述第二激光器将所述第二输入射频信号转换为所述第二输入光信号。
  11. 根据权利要求6所述的电路,其特征在于,所述电光转换单元包括激光器、光分路器、光功率控制器、第一光放大器和第二光放大器;
    所述激光器与所述光分路器相连接,
    所述激光器用于接收所述输入射频信号,并将所述输入射频信号转换为光信号,
    所述光分路器用于将所述光信号划分为第一输入光信号和第二输入光信号,
    所述光分路器与所述第一光放大器相连接,所述第一光放大器与所述第一输入端相连接,
    所述第一光放大器用于放大所述第一输入光信号,得到所述第一光信号,并输出所述第一光信号,
    所述光分路器与所述光功率控制器相连接,所述光功率控制器与所述第二光放大器相连接,所述第二光放大器与所述第二输入端相连接,
    所述光功率控制器用于控制所述第二输入光信号,以使所述第二输入光信号的功率与所述第一输入光信号的功率不相同,
    所述第二光放大器用于放大所述第二输入光信号,得到所述第二光信号,并输出所述第二光信号。
  12. 根据权利要求6所述的电路,其特征在于,所述电光转换单元包括激光器、光分路器、光功率控制器、光复用器、光放大器和光解复用器;
    所述激光器与所述光分路器相连接,
    所述激光器用于接收所述输入射频信号,并将所述输入射频信号转换为光信号,
    所述光分路器用于将所述光信号划分为第一输入光信号和第二输入光信号,
    所述光分路器与所述光功率控制器相连接,并且与所述光复用器相连接,
    所述光功率控制器与所述光复用器相连接,
    所述光功率控制器用于控制所述第二输入光信号,以使所述第二输入光信号的功率与所述第一输入光信号的功率不相同,
    所述光复用器用于将所述第一输入光信号和所述第二输入光信号复用至同一个通道,
    所述光复用器与所述光放大器相连接,所述光放大器与所述光解复用器相连接,
    所述光放大器用于放大所述第一输入光信号和所述第二输入光信号,得到所述第一光信号和所述第二光信号,
    所述光解复用器用于将同一个通道内的所述第一光信号和所述第二光信号解复用到两个不同的通道,
    所述光解复用器与所述第一输入端相连接,并且与所述第二输入端相连接。
  13. 根据权利要求11或12所述的电路,其特征在于,所述激光器为直调激光器,或者,所述激光器为外调式电光调制器;
    在所述激光器为外调式电光调制器的情况下,所述电光转换单元还包括激光源,
    所述激光源与所述激光器相连接,用于为所述激光器提供激光源,以使所述激光器实现将所述输入射频信号转换为光信号。
  14. 根据权利要求6至13任一项所述的电路,其特征在于,所述电光转换单元还包括第一光延时器和第二光延时器,
    所述第一光放大器与所述第一光延时器相连接,所述第二光放大器与所述第二光延时器相连接;或者,所述光解复用器与所述第一光延时器相连接,并且与所述第二光延时器相连接;
    所述第一光延时器与所述第一输入端相连接,
    所述第二光延时器与所述第二输入端相连接,
    所述第一光延时器和所述第二光延时器用于将所述第一光信号和所述第二光信号的相位对齐。
  15. 根据权利要求1至14任一项所述的电路,其特征在于,所述光电放大电路还包括第一匹配网络和第二匹配网络,
    所述第一匹配网络与所述第一输出端相连接,用于实现所述第一输出端与电路的阻抗匹配,
    所述第二匹配网络与所述第二输出端相连接,用于实现所述第二输出端与电路的阻抗匹配。
  16. 根据权利要求1至15任一项所述的电路,其特征在于,所述光电放大电路还包括第一电相位补偿线和第二电相位补偿线,
    所述第一电相位补偿线与所述阻抗调制单元相连接,用于调整所述第一射频信号的相位;
    所述第二电相位补偿线与所述阻抗调制单元相连接,用于调整所述第二射频信号的相位;
    所述第一射频信号的相位与所述第二射频信号的相位相同。
  17. 一种信号处理方法,其特征在于,所述方法包括:
    获取第一光信号和第二光信号的功率,所述第一光信号和所述第二光信号是输入射频信号经过处理后得到的两路光信号;
    当调制到所述第一光信号的射频信号功率大于或等于预设回退点功率时,基于所述第一光信号和所述第二光信号的功率,将所述第一光电二极管的第一输出端的阻抗调制为第一阻抗,并且将所述第二光电二极管的第二输出端的阻抗调制为所述第一阻抗;
    所述第一阻抗为所述第一光电二极管和所述第二光电二极管的输出功率最大时对应的阻抗。
  18. 根据权利要求17所述的方法,其特征在于,所述预设回退点功率为当所述第一光电二极管和所述第二光电二极管输出的第一射频信号和第二射频信号满足预设信号质量时,所述输入射频信号的功率,
    所述预设回退点功率是根据饱和功率和功率回退值确定的。
  19. 根据权利要求18所述的方法,其特征在于,所述饱和功率为当所述第一光电二极管和所述第二光电二极管的输出功率最大时,所述输入射频信号的功率,
    所述功率回退值是根据所述输入射频信号的峰均比和所述预设信号质量确定的。
  20. 根据权利要求18或19所述的方法,其特征在于,所述预设回退点功率还根据所述输入射频信号的调制方式确定,
    所述输入射频信号的调制方式包括正交幅度调制和/或相移键控调制。
  21. 根据权利要求17至20任一项所述的方法,其特征在于,所述方法还包括:
    当调制到所述第一光信号的射频信号功率小于或等于所述预设回退点功率时,基于所述第一光信号的功率将所述第一输出端的阻抗调制为第二阻抗,所述第二阻抗大于或等于所述 第一阻抗。
  22. 根据权利要求17至20所述的方法,其特征在于,所述方法还包括:
    当调制到所述第一光信号的射频信号功率小于或等于所述预设回退点功率时,控制所述第二光信号的功率为0,或者,
    当调制到所述第一光信号的射频信号功率大于或等于所述预设回退点功率时,增加所述第二光信号的功率。
  23. 一种装置,其特征在于,包括用于执行如权利要求17至22中任一项所述的方法所采用的单元或模块。
  24. 一种设备,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行权利要求17至22中任一项所述的方法。
  25. 一种计算机可读存储介质,用于存储指令,当所述指令在计算机上运行时,使得计算机执行权利要求17至22中任一项所述的方法。
  26. 一种计算机程序产品,其特征在于,包括指令,当所述指令在计算机上运行时,使得计算机执行权利要求17至22中任一项所述的方法。
  27. 一种装置,其特征在于,包括如权利要求1至16中任一项所述的光电放大电路。
  28. 一种芯片系统,其特征在于,包括处理器,所述处理器用于执行权利要求17至22中任一项所述的方法。
PCT/CN2023/091372 2022-05-25 2023-04-27 一种光电放大电路和信号处理方法 WO2023226681A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210577560.8A CN117176256A (zh) 2022-05-25 2022-05-25 一种光电放大电路和信号处理方法
CN202210577560.8 2022-05-25

Publications (1)

Publication Number Publication Date
WO2023226681A1 true WO2023226681A1 (zh) 2023-11-30

Family

ID=88918446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/091372 WO2023226681A1 (zh) 2022-05-25 2023-04-27 一种光电放大电路和信号处理方法

Country Status (2)

Country Link
CN (1) CN117176256A (zh)
WO (1) WO2023226681A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100284703A1 (en) * 2007-11-30 2010-11-11 Yasuyuki Suzuki Light receiving circuit and signal processing method
US20210014801A1 (en) * 2018-03-30 2021-01-14 Vivo Mobile Communication Co.,Ltd. Radio frequency system based on millimeter wave communication, method for adjusting transmit power, and terminal
CN112448677A (zh) * 2019-08-30 2021-03-05 天津大学青岛海洋技术研究院 一种大带宽紧凑型的Doherty 功率放大器结构
WO2022041286A1 (zh) * 2020-08-31 2022-03-03 华为技术有限公司 一种Doherty功率放大器、印刷电路板及基站

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100284703A1 (en) * 2007-11-30 2010-11-11 Yasuyuki Suzuki Light receiving circuit and signal processing method
US20210014801A1 (en) * 2018-03-30 2021-01-14 Vivo Mobile Communication Co.,Ltd. Radio frequency system based on millimeter wave communication, method for adjusting transmit power, and terminal
CN112448677A (zh) * 2019-08-30 2021-03-05 天津大学青岛海洋技术研究院 一种大带宽紧凑型的Doherty 功率放大器结构
WO2022041286A1 (zh) * 2020-08-31 2022-03-03 华为技术有限公司 一种Doherty功率放大器、印刷电路板及基站

Also Published As

Publication number Publication date
CN117176256A (zh) 2023-12-05

Similar Documents

Publication Publication Date Title
JP6501322B2 (ja) 電力増幅器、リモート無線ユニット、及び基地局
US9948332B2 (en) High efficiency, remotely reconfigurable remote radio head unit system and method for wireless communications
KR102330688B1 (ko) 조절가능한 출력 전력 백-오프를 가진 시퀀셜 브로드밴드 도허티 전력 증폭기
US9107167B2 (en) Envelope tracking signal bandwidth control
JP2005117315A (ja) 送信装置、送信出力制御方法、および無線通信装置
KR102075813B1 (ko) 증폭기 어셈블리
US20210399697A1 (en) Power amplification apparatus, beamforming system, transmitter, and base station
Nakatani et al. A highly integrated RF frontend module including Doherty PA, LNA and switch for high SHF wide-band massive MIMO in 5G
US11411540B2 (en) Power amplifier and radio frequency device comprising the same
US20220045649A1 (en) Signal processing method, apparatus, and system
CN115913124A (zh) 一种分部调制的功率放大器
EP1714393B1 (en) Radio transmitter with reduced power consumption
JP2006166141A (ja) ドハティ増幅器
WO2023226681A1 (zh) 一种光电放大电路和信号处理方法
CN102065042B (zh) 一种数字预失真装置及方法
KR20110037033A (ko) 2단 연결 바이어스 혼합 전력 증폭 장치
EP4156510A1 (en) Signal processing method and apparatus
WO2023087219A1 (zh) 功率放大装置和无线通信装置
US9479119B2 (en) Amplifier circuit and operation method thereof
WO2024026629A1 (zh) 一种功率放大装置、射频拉远单元、基站以及通信系统
US11411587B2 (en) Signal processing method and system
EP4311106A1 (en) Digital power amplifier and communication system
CN117277978A (zh) 基于正交复用和回退效率增强的功率放大器
KR20210003454A (ko) Rf입력 아웃페이징-도허티 전력 증폭 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23810754

Country of ref document: EP

Kind code of ref document: A1