WO2023226451A1 - 3d打印随形支撑生成方法、装置及随形支撑结构 - Google Patents

3d打印随形支撑生成方法、装置及随形支撑结构 Download PDF

Info

Publication number
WO2023226451A1
WO2023226451A1 PCT/CN2023/071377 CN2023071377W WO2023226451A1 WO 2023226451 A1 WO2023226451 A1 WO 2023226451A1 CN 2023071377 W CN2023071377 W CN 2023071377W WO 2023226451 A1 WO2023226451 A1 WO 2023226451A1
Authority
WO
WIPO (PCT)
Prior art keywords
support
conformal
printing
model
triangle
Prior art date
Application number
PCT/CN2023/071377
Other languages
English (en)
French (fr)
Inventor
沈震
王栋
王卫兴
熊刚
李彦鹏
高行
董西松
陆宽
王庆
万力
Original Assignee
东莞中科云计算研究院
十维(广东)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞中科云计算研究院, 十维(广东)科技有限公司 filed Critical 东莞中科云计算研究院
Publication of WO2023226451A1 publication Critical patent/WO2023226451A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present application relates to the field of 3D printing technology, and in particular to a 3D printing conformal support generation method, device and conformal support structure.
  • the main process of 3D printing is divided into three steps: the first step is modeling, the second step is adding supports and slicing, and the third step is printing by a 3D printer. Adding supports is an important part to ensure that the model can be successfully printed.
  • the support is mainly composed of multiple support rods.
  • the scraper mechanism will reciprocate between the 3D model to be printed and the top of the support, affecting the model. Or support force is applied.
  • Ordinary supports cannot meet the demand in terms of strength. Especially when the support rod is too long, it will cause the support rod to be unstable and the support rod to break easily, thus affecting the printing quality and even leading to printing failure.
  • the main purpose of this application is to provide a 3D printing conformal support generation method, device and conformal support structure, aiming to solve the technical problems in the prior art that the support strength is low and the length of the support rod is too long, resulting in poor support stability. .
  • the first aspect of this application provides a method for generating conformal supports for 3D printing, including:
  • the bottom profile of the 3D model to be printed is such that the surface normal vector of the 3D model to be printed on the preset axis is less than 0 and the projection height to the bottom surface is the lowest.
  • the surface part; the bottom contour information includes the suspension line, suspension point, suspension surface, gentle plane and bottom contour point set of the bottom contour.
  • generating the first 3D model information of the conformal support surface based on the bottom contour information includes:
  • the base includes a plurality of ribs, and based on the conformal support surface, a second base for supporting the conformal support surface is generated.
  • 3D model information includes:
  • generating the third 3D model information of the top support rod based on the 3D model to be printed and the conformal support surface includes:
  • third 3D model information of the top support rod is generated.
  • the second aspect of this application provides a 3D printing conformal support generation device, including:
  • the acquisition module is used to obtain the bottom contour information of the 3D model to be printed
  • a first generation module configured to generate first 3D model information of the conformal support surface based on the bottom contour information
  • a second generation module configured to generate second 3D model information of the base supporting the conformal support surface based on the conformal support surface
  • a third generation module configured to generate third 3D model information of the top support rod based on the 3D model to be printed and the conformal support surface;
  • a printing module configured to perform 3D printing based on the first 3D model information, the second 3D model information and the third 3D model information, to obtain a conformal support structure when printing the 3D model.
  • the bottom profile of the 3D model to be printed is such that the surface normal vector of the 3D model to be printed on the preset axis is less than 0 and the projection height to the bottom surface is the lowest The surface part; the bottom contour information includes the suspension line, suspension point, suspension surface, gentle plane and bottom contour point set of the bottom contour.
  • the first generation module includes:
  • a construction unit used to construct a quadrilateral, divide the quadrilateral into two super triangles, and add the vertices of the two super triangles to the preset triangle linked list;
  • Selection unit is used to select a scatter point from the bottom contour point set and use the scatter point as a vertex of the triangle to be added;
  • a judgment unit for sequentially judging whether the scattered points are within the circumscribed circle of each triangle
  • Delete unit used for if the scatter point is within the circumscribed circle of each triangle, then record the triangle whose scatter point is within the circumscribed circle of the triangle as the target triangle, and delete the common side of each target triangle and delete the common side.
  • the vertex of the reduced triangle corresponding to the edge is deleted from the triangle linked list;
  • An update unit configured to respectively connect the scatter points with the vertices of the triangles deleted from the triangle linked list to form new triangles, and update the vertices of the new triangles into the triangle linked list;
  • a loop execution unit is used to repeatedly execute the selection unit, the judgment unit, the deletion unit, and the update unit until the bottom contour points are empty, the conformal support surface is obtained, and all the scattered points are empty.
  • the conformable supporting surface is stretched downward to obtain the first 3D model information of the conforming supporting surface.
  • the base includes a plurality of ribs
  • the second generation module is specifically used for:
  • the third generation module is specifically used to:
  • third 3D model information of the top support rod is generated.
  • the third aspect of this application provides a conformable support structure, including:
  • a conformable support surface, the first surface of the conformable support surface is connected to the base;
  • a top support rod, one end of the top support rod is connected to the second surface of the conformable support surface, and the other end is connected to the 3D model to be printed;
  • the shape of the second surface of the conformable supporting surface corresponds to the shape of the contact surface between the 3D model to be printed and the base, and the shape of the first surface is consistent with that of the second surface.
  • the top support rod includes a plurality of support members, the support members include a first prism, a second prism and a support column, and the third The upper bottom surface of a prism is connected to the 3D model to be printed, the lower bottom surface of the first prism is set on one end of the support column, and the other end of the support column is set on the second prism. On the lower bottom surface, the upper bottom surface of the second prism is disposed on the second surface.
  • the support further includes a first sphere and a second sphere, the first sphere is disposed on the first prism and the support column. , the second sphere is disposed between the second prism and the support column.
  • the base includes a plurality of ribs, and the plurality of ribs are arranged vertically on the first surface.
  • the ribs are arranged at equal intervals.
  • the base further includes a plurality of connecting pieces, and the connecting pieces are fitted and fixed between two adjacent ribs.
  • the connecting member is a prism.
  • the support column is a prism.
  • the longest diagonal length of the cross section of the support column is 1 mm-10 mm.
  • the printing raw material of the conformal support structure is ceramic slurry.
  • the bottom contour information of the 3D model to be printed is obtained; based on the bottom contour information, the first 3D model information of the conformal support surface is generated; based on the conformal support surface, the first 3D model information supporting the conformal support surface is generated
  • the second 3D model information of the base based on the 3D model to be printed and the conformal support surface, generate the third 3D model information of the top support rod; perform 3D modeling based on the first 3D model information, the second 3D model information and the third 3D model information.
  • the 3D printing conformal support generation method of this application can automatically generate conformal support structures based on different 3D models.
  • the generated conformal support structure has strong stability and high support strength, thereby ensuring printing stability and printing quality.
  • Figure 1 is a schematic diagram of an embodiment of a 3D printing conformal support generation method in the embodiment of the present application
  • Figure 2 is a schematic diagram of another embodiment of the 3D printing conformal support generation method in the embodiment of the present application.
  • Figure 3 is a schematic diagram of an embodiment of the 3D printing conformal support generation device in the embodiment of the present application.
  • Figure 4 is a schematic structural diagram of a conformal support structure with a 3D model to be printed in an embodiment of the present application
  • Figure 5 is a schematic structural diagram of the conformal support structure in the embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a support member in an embodiment of the present application.
  • Embodiments of the present application provide a 3D printing conformal support generation method, device and conformal support.
  • the method can automatically generate a conformal support structure based on different 3D models.
  • the generated conformal support structure has strong stability and high support strength. , thus ensuring printing stability and printing quality.
  • connection should be understood in a broad sense.
  • it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection. , or it can be an electrical connection; it can be a direct connection, an indirect connection through an intermediate medium, or an internal connection between two components.
  • All technical and scientific terms used in this specification have the same meanings as commonly understood by those skilled in the technical field belonging to the present invention.
  • the terms used in the description of the present invention are only for the purpose of describing specific embodiments and are not used to limit the present invention.
  • the term “and/or” includes any and all combinations of one or more of the associated listed items.
  • An embodiment of the 3D printing conformal support generation method in the embodiment of the present application includes:
  • the execution subject of this application can be a 3D printing conformal support generation device, or a terminal or a server, and there is no specific limitation here.
  • the embodiments of this application are explained by taking the server as the execution subject as an example.
  • the 3D model to be printed is stored in STL format, that is, the 3D model to be printed is composed of the definitions of multiple triangle patches.
  • the definition of each triangle patch includes the three-dimensional coordinates of each fixed point of the triangle and the normal vector of the triangle patch. .
  • the method of generating the 3D model to be printed is not limited, and the 3D printing model to be printed can be generated through graphic modeling software (such as SolidWorks, UG, etc.) or a three-dimensional scanner.
  • graphic modeling software such as SolidWorks, UG, etc.
  • the bottom contour of the 3D model to be printed is the surface part of the 3D model to be printed whose surface normal vector on the preset axis is less than 0 and has the lowest projection height to the bottom;
  • the bottom contour information includes the bottom The set of suspension lines, suspension points, suspension surfaces, gentle planes and bottom contour points of the contour.
  • the normal vector of the plane represents the orientation of the plane.
  • the positive or negative value of the normal vector in the Z-axis direction represents whether the plane is facing upward or downward.
  • the normal vector in the Z-axis direction is less than 0, which means that the plane is facing downward.
  • In The normal vector in the Z-axis direction is greater than 0, which means that the plane is facing upward.
  • the surface whose normal vector in the Z-axis direction is less than 0, that is, all downward-facing surfaces in the 3D model to be printed, is selected as the bottom contour candidate set.
  • the part with the lowest projection height to the bottom surface is selected as the part to be printed. Print the bottom outline of the 3D model.
  • all surfaces in the bottom contour candidate set are projected to the bottom surface, and the surface portion with no overlapping projection and the surface with the lowest height among the projected overlapping surfaces are selected as the bottom contour.
  • the surface of the 3D model to be printed is composed of several triangular patches, each triangular patch has three vertices, and the vertices of the triangular patches in the bottom outline form a bottom outline point set.
  • the conformal support surface is constructed using the Delaunay triangulation algorithm based on the bottom contour point set of the 3D model to be printed.
  • the specific type of Delaunay triangulation algorithm used is not limited, including but not limited to Lawson algorithm, Bowyer algorithm. -Watson algorithm, basic triangulation network growth algorithm, radial scan algorithm.
  • Delaunay triangulation needs to satisfy the following two criteria:
  • the Delaunay triangulation is the closest to the regularized triangulation. Among the triangulations that may be formed by the scatter point set, the triangle formed by the Delaunay triangulation has the largest minimum angle, that is, two If the diagonals of a convex quadrilateral formed by adjacent triangles are exchanged, the smallest angle of the six interior angles will no longer increase.
  • the conformable support surface is similar in shape to the bottom contour of the 3D model to be printed, has no holes on the surface, and covers the entire bottom contour of the 3D printed model.
  • the fit of the conformable support surface is adjustable.
  • the fit 100%, the conformable support surface is completely consistent with the shape of the bottom of the 3D model to be printed.
  • the fit is 0%, the conformable support surface is completely consistent with the bottom shape of the 3D model to be printed.
  • the support surface is a flat surface and has nothing to do with the bottom contour of the 3D model to be printed.
  • the degree of fit is achieved by sampling the bottom contour point set.
  • 80% fit means sampling the bottom contour point set at a ratio of 80%, and using the new bottom contour points after sampling. The set generates a conformal support surface.
  • the fit is adjusted by adjusting the collection density of the bottom contour point set. For example, assuming that the distance between two points is s, the bottom contour point set is changed by adjusting the size of s. collection density.
  • the smoothness of the conformal supporting surface is adjustable. The higher the smoothness, the smoother the conforming supporting surface. The lower the smoothness, the rougher the conforming supporting surface.
  • a Laplacian smoothing algorithm is used to perform smoothing processing on the generated conformal support surface with different iterations to adjust the smoothness of the conformal support surface.
  • the maximum inclination angle of the support plane can be obtained, and a conformal support surface is generated based on this parameter.
  • the maximum inclination angle of the support plane is the maximum inclination angle of the conformal support surface.
  • the collected contour point set when the maximum inclination angle is set to 50°, when generating a conformable support, the collected contour point set will not include points on the model plane whose inclination angle exceeds 50°.
  • an integral bottom module is generated based on the conformal support surface, and the integral bottom module is cut to obtain a plurality of ribs perpendicular to the conformal support surface.
  • the top shape of the overall bottom module is consistent with the conformal support surface and is seamlessly connected to the conformal support surface, and the bottom is flat.
  • the top support rod is located between the 3D model to be printed and the conformal support surface.
  • the top support rod includes a plurality of support members. Each support member is composed of a first prism, a second prism and a support column. The upper bottom surface of a prism is connected to the 3D model to be printed. The lower bottom surface of the first prism is set on one end of the support column. The other end of the support column is set on the lower bottom surface of the second prism. The upper end of the second prism is The bottom surface is arranged on the conformable support surface.
  • the first 3D model information, the second 3D model information and the third 3D model information together form a conformally supported 3D model, and the 3D model is printed to obtain a conformable support for the 3D model to be printed, that is, Conforming support structure.
  • the conformal support structure is formed by photo-curing ceramic slurry.
  • the conformal support is printed together with the 3D model to be printed, and after the printing is completed, the conformable support structure is removed to obtain the 3D model.
  • the bottom contour information of the 3D model to be printed is obtained; based on the bottom contour information, the first 3D model information of the conformal support surface is generated; based on the conformal support surface, the base that supports the conformal support surface is generated the second 3D model information; based on the 3D model to be printed and the conformal support surface, generate the third 3D model information of the top support rod; perform 3D printing based on the first 3D model information, the second 3D model information and the third 3D model information, Get conformable support when printing 3D models.
  • the 3D printing conformal support generation method of this application can automatically generate conformal support structures based on different 3D models.
  • the generated conformal support structure has strong stability and high support strength, thereby ensuring printing stability and printing quality.
  • Another embodiment of the 3D printing conformal support generation method in the embodiment of the present application includes:
  • the construction method of the quadrilateral is not limited.
  • the four corners of the printing format are selected as the four corners of the quadrilateral.
  • the four corners of the quadrilateral do not necessarily belong to the bottom contour point set, and all points in the bottom contour point set are included inside the quadrilateral.
  • adding a triangle to the triangle linked list means storing the three vertices of the triangle in the triangle linked list in the form of triples.
  • QT is used as the development tool
  • the data structure of QVector3D is used
  • QVector3D is used for a single point
  • the data structure of QVector ⁇ QVector3D> is used to implement the function of the linked list in the aforementioned algorithm.
  • scatter points are points that have not been added to the triangle linked list.
  • scattered points are added to the triangle linked list in sequence according to distance.
  • a triangle has and has only one circumscribed circle, and it is sequentially determined whether the scattered points to be added are within the circumscribed circle of each triangle in the triangle linked list.
  • the common edges between the target triangles are deleted, and the triangles corresponding to the common edges are deleted from the triangle linked list.
  • the scattered points are connected to each vertex of the deleted triangle to form several new triangles, and the several new triangles are added to the triangle linked list respectively.
  • the local new triangle is optimized according to the preset optimization criteria and then the newly formed triangle is added to the triangle linked list.
  • the optimization criterion is as follows:
  • the minimum angle of the triangle formed is the largest. That is, if the diagonals of the convex quadrilateral formed by two adjacent triangles are exchanged, the six internal angles The minimum angle will not increase.
  • each scatter point is added to the triangle linked list in sequence until there are no scatter points.
  • the conformable support surface is a conformable surface, and the conformable surface is stretched into a 3D model with a certain thickness according to a preset thickness parameter.
  • the base includes a plurality of ribs, and the above step 208 includes:
  • the target width is the thickness of one rib
  • the target quantity is the number of ribs
  • the target arrangement direction is the arrangement direction of the ribs, such as along the X-axis or along the Y-axis.
  • each of the ribs is arranged equidistantly in sequence, and multiple ribs are obtained by cutting the entire bottom module, thereby reducing consumables for bottom support and lowering manufacturing costs.
  • ribs in order to enhance the stability of the ribs, several evenly distributed connectors are added between the ribs to connect and strengthen the two adjacent ribs, so that the ribs remain stable even when the ribs are too high. sex.
  • the connecting member is a prism that is approximately a cylinder, which reduces the amount of point calculation and printing time.
  • the radius, arrangement density and height of the connectors are obtained, and the connectors between the ribs are generated based on these parameters.
  • the radius is the distance from the center of the cross section of the connector to a vertex of the cross section.
  • the borders of the ribs are sewn to avoid errors.
  • the boundary points of the upper surface and the lower surface of the rib are obtained, and the boundary points of the upper surface and the lower surface are connected in triangles to perform boundary stitching.
  • the above step 209 includes:
  • third 3D model information of the top support rod is generated.
  • the top support rod is located between the 3D model to be printed and the conformal support surface.
  • the top support rod includes a plurality of support members. Each support member is composed of a first prism, a second prism and a support column. The upper bottom surface of a prism is connected to the 3D model to be printed. The lower bottom surface of the first prism is set on one end of the support column. The other end of the support column is set on the lower bottom surface of the second prism. The upper end of the second prism is The bottom surface is arranged on the conformable support surface.
  • the support column is a polygonal column that is approximately a cylinder.
  • the radius is the length from the center of the polygonal prism to one edge
  • the height is the height of the polygonal prism
  • the support depth is the depth at which the first prism and the second prism are embedded in the model
  • the contact radius between the first prism and the second prism is The radius of the contact surface of the 3D model to be printed and the radius of the contact surface of the second prism and the conformal support surface are the same.
  • the bottom contour information of the 3D model to be printed is obtained, a quadrilateral is constructed, and divided into two super triangles.
  • the vertices of the two super triangles are added to the preset triangle linked list, and a scattered point among the bottom contour points is selected.
  • the point is used as a vertex of the triangle to be added, and it is judged in turn whether the scattered point is within the circumscribed circle of each triangle.
  • the triangle with the scattered point within the circumscribed circle of the triangle is recorded as the target triangle, and the common sides of the target triangle are deleted and The vertices of the corresponding reduced triangles are deleted from the triangle linked list, the scattered points are connected to the vertices of the deleted triangles respectively to form new triangles, and the vertices of the new triangles are updated into the triangle linked list, based on conformal support Surface, generate second 3D model information of the base supporting the conformal support surface, based on the 3D model to be printed and the conformal support surface, generate third 3D model information of the top support rod, based on the first 3D model information, the second The 3D model information and the third 3D model information are 3D printed to obtain conformable support when printing the 3D model.
  • This application utilizes the principle of triangulation algorithm to automatically generate conformal support structures based on different 3D models.
  • the shape of the support surface fits the bottom contour of the 3D model to be printed, solving the problem of support strength during the upright light-curing 3D printing process. If it is not enough, it is prone to deformation or breakage. It can significantly improve the support stability and ensure the quality of 3D printing.
  • the above is a description of the 3D printing conformal support generation method in the embodiment of the present application.
  • the following is a description of the 3D printing conformal support generation device in the embodiment of the present application. Please refer to Figure 3.
  • One example includes:
  • the acquisition module 301 is used to obtain the bottom contour information of the 3D model to be printed;
  • the first generation module 302 is configured to generate first 3D model information of the conformal support surface based on the bottom contour information
  • the second generation module 303 is configured to generate second 3D model information of the base supporting the conformal support surface based on the conformal support surface;
  • the third generation module 304 is used to generate the third 3D model information of the top support rod based on the 3D model to be printed and the conformal support surface;
  • the printing module 305 is configured to perform 3D printing based on the first 3D model information, the second 3D model information and the third 3D model information to obtain conformal support when printing the 3D model.
  • the bottom profile of the 3D model to be printed is the surface portion of the 3D model to be printed whose surface normal vector on the preset axis is less than 0 and has the lowest projection height to the bottom surface; the bottom profile
  • the information includes the suspension lines, suspension points, suspension surfaces, gentle planes and bottom contour point sets of the bottom profile.
  • the first generation module 302 includes:
  • a construction unit used to construct a quadrilateral, divide the quadrilateral into two super triangles, and add the vertices of the two super triangles to the preset triangle linked list;
  • Selection unit is used to select a scatter point from the bottom contour point set and use the scatter point as a vertex of the triangle to be added;
  • a judgment unit for sequentially judging whether the scattered points are within the circumscribed circle of each triangle
  • Delete unit used for if the scatter point is within the circumscribed circle of each triangle, then record the triangle whose scatter point is within the circumscribed circle of the triangle as the target triangle, and delete the common side of each target triangle and delete the common side.
  • the vertex of the reduced triangle corresponding to the edge is deleted from the triangle linked list;
  • An update unit configured to connect the scatter points with the vertices of the triangles deleted from the triangle linked list to form a new triangle, and update the vertices of the new triangle into the triangle linked list;
  • a loop execution unit is used to repeatedly execute the selection unit, the judgment unit, the deletion unit, and the update unit until the bottom contour points are empty, the conformal support surface is obtained, and all the scattered points are empty.
  • the conformable supporting surface is stretched downward to obtain the first 3D model information of the conforming supporting surface.
  • the base includes a plurality of ribs
  • the second generation module 303 is specifically used to:
  • the third generation module 304 is specifically used to:
  • third 3D model information of the top support rod is generated.
  • the bottom contour information of the 3D model to be printed is obtained; based on the bottom contour information, the first 3D model information of the conformal support surface is generated; based on the conformal support surface, the base that supports the conformal support surface is generated the second 3D model information; based on the 3D model to be printed and the conformal support surface, generate the third 3D model information of the top support rod; perform 3D printing based on the first 3D model information, the second 3D model information and the third 3D model information, Get conformable support when printing 3D models.
  • the 3D printing conformal support generation method of this application can automatically generate conformal support structures based on different 3D models.
  • the generated conformal support structure has strong stability and high support strength, thereby ensuring printing stability and printing quality.
  • the embodiment of the present application discloses a conformable support structure 40.
  • the conformable support structure 40 includes a base 41, a conformable support surface 42 and a plurality of supports 43.
  • the conformable support The first surface 421 of the surface 42 is connected to the base 41; one end of the support member 43 is connected to the second surface 422 of the conformable support surface 42, and the other end is connected to the 3D model to be printed 44;
  • the shape of the second surface 422 of the conformable support surface 42 corresponds to the shape of the contact surface between the 3D model to be printed 44 and the conformable support structure 40 , and the plurality of supports 43 constitute a top support rod.
  • first surface 421 and the second surface 422 are opposite surfaces; before printing the 3D 3D model 44 to be printed, a conformal support structure 40 is formed, and the 3D 3D model 44 to be printed is printed on the conformable support structure 40 . Print 3D models 44.
  • the material of the conformable support structure 40 can be the material used to print the 3D model 44 to be printed, and the material used to print the 3D model 44 can be ceramic slurry, which is a mixture of ceramic powder and resin; multiple supports 43 When the cross-section size is the same and the length is basically the same, when the length of the support member 43 is longer, the strength of the support is lower; when the length of the support member 43 is shorter, the strength of the support is stronger; When the cross-sectional sizes of the multiple support members 43 are the same, but when the lengths of the multiple support members 43 are not uniform or have large length differences, their support strength will be lower.
  • the shape of the second surface 422 of the conformable support surface 42 corresponds to the shape of the contact surface 441 where the to-be-printed 3D model 44 contacts the conformable support structure 40 , that is, when When the second surface 422 of the conformable support surface 42 is in a concave state, the contact surface 441 between the 3D model to be printed 44 and the conformable support structure 40 is also in a concave state.
  • the conformable support surface When the second surface 422 of the 42 is in a planar state, the contact surface 441 between the 3D model to be printed 44 and the conformable support structure 40 is also in a planar state.
  • the contact surface 441 between the 3D model to be printed 44 and the conformable support structure 40 is also in a convex state. Therefore, the contact surface 441 between the 3D model to be printed 44 and the conformable support structure is in a convex state.
  • the lengths of the plurality of supporting members 43 between the surfaces 42 are basically the same, and the lengths of the supporting members 43 are basically the same. Therefore, the length of the supporting members 43 can be set to be shorter, thereby improving the support.
  • the support strength of the support member 43 and the stability of the entire conformable support structure 40 are reduced.
  • the risk of the support member 43 being too long to be broken due to factors such as a scraper during the printing process is reduced, thereby improving the stability of printing. and print quality.
  • the support member 43 includes a first prism 431, a second prism 432 and a support column 433.
  • the upper bottom surface of the first prism 431 is connected to the 3D model to be printed 44, and the The lower bottom surface of the first prism 431 is disposed on one end of the support column 433 , the other end of the support column 433 is disposed on the lower bottom surface of the second prism 432 , and the upper end of the second prism 432
  • the bottom surface is provided on the second surface 422; wherein, the support column 433 is a prism, and the longest diagonal length of the cross section of the support column 433 is 1 mm-10 mm.
  • the bottom surface of the prism with the shortest bottom perimeter is the upper bottom surface
  • the bottom surface of the prism with the longest bottom perimeter is the lower bottom surface
  • the first prism 431, the second prism 432 and the support column 433 specifically includes the following three arrangements but is not limited to the following three arrangements: the first prism 431 and the second prism 432 are respectively vertically arranged at both ends of the support column 433; or the The first prism 431 and the second prism 432 are respectively disposed obliquely at both ends of the support column 433; or the first prism 431 is vertically disposed at one end of the support column 433, and the second prism 431 is disposed vertically at one end of the support column 433.
  • the platform 432 is disposed at an angle at the other end of the support column 433 .
  • the longest diagonal length of the cross section of the support column 433 is 10 mm, and the prism is a ten-prism, so that the prism is close to the prism of a cylinder.
  • the support column 433 is set as a prism that is approximately a cylinder, and the first prism 431 and the second prism 432 are set as a prism that is approximately a circular cone, which can reduce the number of 3D printing equipment.
  • the computer in the computer calculates the point position of the support column 433, thereby reducing the time for the computer to generate the conformal support structure 40.
  • the longest diagonal length of the cross section of the support column 433 is approximately a cylinder. The diameter of the prism.
  • the support strength of the conformable support structure 40 can also be enhanced.
  • the area of the upper bottom surface of 431 is the smallest, thereby reducing the contact area between the support member 43 and the 3D model to be printed 44, and facilitating the subsequent printing of the 3D model to be printed 44 from the conformal support structure 40 and the printing raw material of the conformal support structure 40 is ceramic slurry.
  • the ceramic slurry has enough hardness to support the printed 3D model 44 to be printed. At the same time, the ceramic slurry has softness. It is convenient to remove the printed 3D model 44 to be printed from the conformable support structure 40 .
  • the support member 43 further includes a first sphere 434 and a second sphere 435.
  • the first sphere 434 is disposed between the first prism 431 and the support column 433.
  • Two spheres 435 are disposed between the second prism 432 and the support column 433 .
  • the first sphere and the second sphere include but are not limited to spherical spheres.
  • the first sphere and the second sphere can also be configured as polyhedral spheres, and the polyhedral spheres are tangential spheres.
  • a transitional geometry between a sphere and a sphere The greater the number of sections, the closer it is to a sphere.
  • the polyhedral sphere is composed of multiple isosceles trapezoidal sections, which is close to a sphere.
  • the polyhedral sphere can reduce the number of 3D printing equipment.
  • the computer in the computer calculates the point position of the support column 433, thereby reducing the time for the computer to generate the conformal support structure 40.
  • the first sphere 434 is disposed between the first prism 431 and the support column 433 , and the first sphere 434 makes the first prism 431 and the support column 433 is connected more firmly; by disposing the second sphere 435 between the second prism 432 and the support column 433, on the one hand, the second prism 432 and the support column 433 can be connected It is stronger. On the other hand, it can also prevent the second prism 432 from breaking due to an excessive inclination angle when the second prism 432 and the support column 433 are inclined.
  • the base 41 includes a plurality of equally spaced ribs 411 and a plurality of connectors 412.
  • the plurality of ribs 411 are all vertically arranged on the first surface 421.
  • the connectors 412 is fitted and fixed between two adjacent ribs 411 , wherein the connecting member 412 is a prism.
  • the connecting member 412 is a prism that is approximately a cylinder, which reduces the amount of point calculation of the connecting member 412 by the computer in the 3D printing device, thereby reducing the printing time for the computer to generate the conformal support structure 40 .
  • the base 41 is configured as a plurality of equally spaced ribs 411 to save support materials and reduce costs.
  • multiple connectors 412 are used to dispose two adjacent ribs 411 between the two ribs 411, so that the conformable support structure 40 not only saves support materials, but also strengthens the support strength and stability of the conformable support structure 40, thereby improving Print stability and quality.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .

Abstract

本申请涉及3D打印技术领域,公开了一种3D打印随形支撑生成方法、装置及随形支撑结构。3D打印随形支撑生成方法包括:获取待打印3D模型的底部轮廓信息;基于所述底部轮廓信息,生成随形支撑面的第一3D模型信息;基于所述随形支撑面,生成支撑所述随形支撑面的底座的第二3D模型信息;基于所述待打印3D模型与所述随形支撑面,生成顶部支撑杆的第三3D模型信息;基于所述第一3D模型信息、所述第二3D模型信息和所述第三3D模型信息进行3D打印,得到打印所述3D模型时的随形支撑结构。本申请的3D打印随形支撑生成方法可根据不同的3D模型自动生成随形支撑结构,生成的随形支撑结构稳定性强、支撑强度高,从而保证了打印的稳定性和打印质量。

Description

3D打印随形支撑生成方法、装置及随形支撑结构
本申请要求于2022年5月23日提交中国专利局、申请号为2022105652862、发明名称为“3D打印随形支撑生成方法、装置及随形支撑结构”的中国专利申请的优先权,其全部内容通过引用结合在申请中。
技术领域
本申请涉及3D打印技术领域,尤其涉及一种3D打印随形支撑生成方法、装置及随形支撑结构。
背景技术
3D打印的主要流程分为三步:第一步是建模,第二步是添加支撑和切片,第三步是交由3D打印机打印,其中添加支撑是保证模型能够成功打印的重要一环。
在现有的技术中,支撑主要由多个支撑杆组成,但在某些特殊打印场景下,如正置式光固化3D打印,刮刀机构会在待打印3D模型和支撑顶部做往复运动,对模型或支撑施力,普通支撑在强度方面无法满足需求,尤其当支撑杆过长时,会导致支撑杆不稳定,支撑杆容易折断,从而影响打印质量,甚至导致打印失败。
发明内容
本申请的主要目的在于提供一种3D打印随形支撑生成方法、装置及随形支撑结构,旨在解决现有技术中支撑的支撑强度低及支撑杆长度过长而导致支撑稳定性差的技术问题。
本申请第一方面提供了一种3D打印随形支撑生成方法,包括:
获取待打印3D模型的底部轮廓信息;
基于所述底部轮廓信息,生成随形支撑面的第一3D模型信息;
基于所述随形支撑面,生成支撑所述随形支撑面的底座的第二3D模型信息;
基于所述待打印3D模型与所述随形支撑面,生成顶部支撑杆的第三3D模型信息;
基于所述第一3D模型信息、所述第二3D模型信息和所述第三3D模型 信息进行3D打印,得到打印所述3D模型时的随形支撑结构。
可选地,在本申请第一方面的第一种实现方式中,所述待打印3D模型的底部轮廓为所述待打印3D模型在预置轴的表面法向量小于0且向底面投影高度最低的表面部分;所述底部轮廓信息包括所述底部轮廓的悬吊线、悬吊点、悬吊面、缓平面和底部轮廓点集。
可选地,在本申请第一方面的第二种实现方式中,所述基于所述底部轮廓信息,生成随形支撑面的第一3D模型信息包括:
S1、构造一个四边形,并将所述四边形划分为两个超级三角形,将两个所述超级三角形的顶点加入预置三角形链表中;
S2、选取所述底部轮廓点集中的一个散点,并将该散点作为待新增三角形的一个顶点;
S3、依次判断所述散点是否在各三角形的外接圆内;
S4、若是,则记所述散点在三角形的外接圆内的三角形为目标三角形,并删除各目标三角形的公共边以及将删除所述公共边后对应减少的三角形的顶点从所述三角形链表中删除;
S5、分别将所述散点与从所述三角形链表中删除的三角形的顶点连接,形成新三角形,并将所述新三角形的顶点更新到所述三角形链表中;
S6、重复执行上述步骤S2-S5,直至所述底部轮廓点集中散点为空,得到所述随形支撑面,将所述随形支撑面向下拉伸,得到所述随形支撑面的第一3D模型信息。
可选地,在本申请第一方面的第三种实现方式中,所述底座包括多个肋板,所述基于所述随形支撑面,生成支撑所述随形支撑面的底座的第二3D模型信息包括:
基于所述随形支撑面生成整体底部模块;
获取所述多个肋板的目标宽度、目标数量与目标排列方向;
基于所述目标宽度、所述目标数量与所述目标排列方向对所述整体底部模块进行切割,得到支撑所述随形支撑面的底座的第二3D模型信息。
可选地,在本申请第一方面的第四种实现方式中,所述基于所述待打印3D模型与所述随形支撑面,生成顶部支撑杆的第三3D模型信息包括:
获取所述顶部支撑杆的半径、高度、支撑深度与接触半径;
基于所述半径、所述高度、所述支撑深度、所述接触半径、所述待打印3D模型与所述随形支撑面,生成所述顶部支撑杆的第三3D模型信息。
本申请第二方面提供了一种3D打印随形支撑生成装置,包括:
获取模块,用于获取待打印3D模型的底部轮廓信息;
第一生成模块,用于基于所述底部轮廓信息,生成随形支撑面的第一3D模型信息;
第二生成模块,用于基于所述随形支撑面,生成支撑所述随形支撑面的底座的第二3D模型信息;
第三生成模块,用于基于所述待打印3D模型与所述随形支撑面,生成顶部支撑杆的第三3D模型信息;
打印模块,用于基于所述第一3D模型信息、所述第二3D模型信息和所述第三3D模型信息进行3D打印,得到打印所述3D模型时的随形支撑结构。
可选地,在本申请第二方面的第一种实现方式中,所述待打印3D模型的底部轮廓为所述待打印3D模型在预置轴的表面法向量小于0且向底面投影高度最低的表面部分;所述底部轮廓信息包括所述底部轮廓的悬吊线、悬吊点、悬吊面、缓平面和底部轮廓点集。
可选地,在本申请第二方面的第二种实现方式中,所述第一生成模块包括:
构造单元,用于构造一个四边形,并将所述四边形划分为两个超级三角形,将两个所述超级三角形的顶点加入预置三角形链表中;
选取单元,用于选取底部轮廓点集中的一个散点,并将该散点作为待新增三角形的一个顶点;
判断单元,用于依次判断所述散点是否在各三角形的外接圆内;
删除单元,用于若所述散点在各三角形的外接圆内,则记所述散点在三角形的外接圆内的三角形为目标三角形,并删除各目标三角形的公共边以及将删除所述公共边后对应减少的三角形的顶点从所述三角形链表中删除;
更新单元,用于分别将所述散点与从所述三角形链表中删除的三角形的顶点连接,形成新三角形,并将所述新三角形的顶点更新到所述三角形链表中;
循环执行单元,用于重复执行所述选取单元、所述判断单元、所述删除单元、所述更新单元,直至所述底部轮廓点集中散点为空,得到所述随形支撑面,将所述随形支撑面向下拉伸,得到所述随形支撑面的第一3D模型信息。
可选地,在本申请第二方面的第三种实现方式中,所述底座包括多个肋板,所述第二生成模块具体用于:
基于所述随形支撑面生成整体底部模块;
获取所述多个肋板的目标宽度、目标数量与目标排列方向;
基于所述目标宽度、所述目标数量与所述目标排列方向对所述整体底部模块进行切割,得到支撑所述随形支撑面的底座的第二3D模型信息。
可选地,在本申请第二方面的第四种实现方式中,所述第三生成模块具体用于:
获取所述顶部支撑杆的半径、高度、支撑深度与接触半径;
基于所述半径、所述高度、所述支撑深度、所述接触半径、所述待打印3D模型与所述随形支撑面,生成所述顶部支撑杆的第三3D模型信息。
本申请第三方面提供了一种随形支撑结构,包括:
底座;
随形支撑面,所述随形支撑面的第一表面与所述底座连接;
顶部支撑杆,所述顶部支撑杆的一端与所述随形支撑面的第二表面连接,另一端与待打印3D模型连接;
所述随形支撑面的第二表面的形状和所述待打印3D模型与所述底座接触的接触面的形状相对应,所述第一表面与所述第二表面形状一致。
可选地,在本申请第三方面的第一种实现方式中,所述顶部支撑杆包括多个支撑件,所述支撑件包括第一棱台、第二棱台和支撑柱,所述第一棱台的上底面与所述待打印3D模型连接,所述第一棱台的下底面设置于所述支撑柱的一端上,所述支撑柱的另一端设置于所述第二棱台的下底面上,所述第二棱台的上底面设置于所述第二表面上。
可选地,在本申请第三方面的第二种实现方式中,所述支撑件还包括第一球体和第二球体,所述第一球体设置于所述第一棱台和所述支撑柱之间,所述第二球体设置于所述第二棱台和所述支撑柱之间。
可选地,在本申请第三方面的第三种实现方式中,所述底座包括多个肋板,多个所述肋板均垂直设置于所述第一表面上。
可选地,在本申请第三方面的第四种实现方式中,所述肋板等间距设置。
可选地,在本申请第三方面的第五种实现方式中,所述底座还包括多个连接件,所述连接件贴合固定于两个相邻的所述肋板之间。
可选地,在本申请第三方面的第六种实现方式中,所述连接件为棱柱。
可选地,在本申请第三方面的第七种实现方式中,所述支撑柱为棱柱。
可选地,在本申请第三方面的第八种实现方式中,所述支撑柱的横截面的最长对角线长度为1mm-10mm。
可选地,在本申请第三方面的第九种实现方式中,所述随形支撑结构的打印原料为陶瓷浆料。
本申请提供的技术方案中,获取待打印3D模型的底部轮廓信息;基于底部轮廓信息,生成随形支撑面的第一3D模型信息;基于随形支撑面,生成支撑所述随形支撑面的底座的第二3D模型信息;基于待打印3D模型与随形支撑面,生成顶部支撑杆的第三3D模型信息;基于第一3D模型信息、第二3D模型信息和第三3D模型信息进行3D打印,得到打印3D模型时的随形支撑结构。本申请的3D打印随形支撑生成方法可根据不同的3D模型自动生成随形支撑结构,生成的随形支撑结构稳定性强、支撑强度高,从而保证了打印的稳定性和打印质量。
附图说明
图1为本申请实施例中3D打印随形支撑生成方法的一个实施例示意图;
图2为本申请实施例中3D打印随形支撑生成方法的另一个实施例示意图;
图3为本申请实施例中3D打印随形支撑生成装置的一个实施例示意图;
图4为本申请实施例中带有待打印3D模型的随形支撑结构的结构示意图;
图5为本申请实施例中随形支撑结构的结构示意图;
图6为本申请实施例中支撑件的结构示意图;
附图标记:40、随形支撑结构;41、底座;411、肋板;412、连接件;42、随形支撑面;421、第一表面;422、第二表面;43、支撑件;431、第一棱台;432、第二棱台;433、支撑柱;434、第一球体;435、第二球体;44、 待打印3D模型;441、待打印3D模型与随形支撑接触的接触面。
具体实施方式
本申请实施例提供了一种3D打印随形支撑生成方法、装置及随形支撑,该方法可根据不同的3D模型自动生成随形支撑结构,生成的随形支撑结构稳定性强、支撑强度高,从而保证了打印的稳定性和打印质量。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”或“具有”及其任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
此外,本申请结构中,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”、“内”、“外”以及类似的表述只是为了说明的目的。在本实用新型的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示相对重要性,或者隐含指明所指示的技术特征的数量。由此,除非另有说明,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征;“多个”的含义是两个或两个以上。术语“包括”及其任何变形,意为不排他的包含,可能存在或添加一个或更多其他特征、整数、步骤、操作、单元、组件和/或其组合。
此外,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,或是两个元件内部的连通。本说明书所使用的所有的技术和科学术语与属于本实用新型的技术领域的技术人员通常理解的含义相同。在本实用新型的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用 于限制本实用新型。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
为便于理解,下面对本申请实施例的具体流程进行描述,请参阅图1,本申请实施例中3D打印随形支撑生成方法的一个实施例包括:
101、获取待打印3D模型的底部轮廓信息;
可以理解的是,本申请的执行主体可以为3D打印随形支撑生成装置,还可以是终端或者服务器,具体此处不做限定。本申请实施例以服务器为执行主体为例进行说明。
本实施例中,待打印3D模型以STL格式存储,即待打印3D模型由多个三角形面片的定义组成,每个三角形面片的定义包括三角形各个定点的三维坐标及三角形面片的法矢量。
本实施例中,待打印3D模型的生成方法不限,可以通过图形建模软件(如SolidWorks、UG等)或者三维扫描仪来生成待打印3D打印模型。
本实施例中,所述待打印3D模型的底部轮廓为所述待打印3D模型在预置轴的表面法向量小于0且向底面投影高度最低的表面部分;所述底部轮廓信息包括所述底部轮廓的悬吊线、悬吊点、悬吊面、缓平面和底部轮廓点集。
本实施例中,平面的法向量代表平面的朝向,在Z轴方向法向量的正负代表了平面是朝上还是朝下,在Z轴方向法向量小于0代表该平面是朝下的,在Z轴方向法向量大于0代表该平面是朝上的。
本实施例中,选择在Z轴方向法向量小于0的表面,即待打印3D模型中所有朝下的表面,作为底部轮廓候选集,在底部轮廓候选集中选择向底面投影高度最低的部分作为待打印3D模型的底部轮廓。
本实施例中,将底部轮廓候选集中的所有表面向底面投影,选择投影无重叠的表面部分以及投影重叠的表面中高度最低的表面作为底部轮廓。
本实施例中,待打印3D模型表面是由若干个三角面片组成,每个三角面片都有三个顶点,底部轮廓中三角面片的顶点组成底部轮廓点集。
102、基于所述底部轮廓信息,生成随形支撑面的第一3D模型信息;
本实施例中,随形支撑面基于待打印3D模型的底部轮廓点集,利用Delaunay三角剖分算法构建,其中,具体使用的Delaunay三角剖分算法类型不限,包括但不限于Lawson算法、Bowyer-Watson算法、基础三角网增长算 法、径向扫描算法。
本实施例中,Delaunay三角剖分需满足如下两个准则:
(1)空圆特性:Delaunay三角网是唯一的(任意四点不能共圆),在Delaunay三角形网中任一个三角形的外接圆范围内不会有其它点存在。
(2)最大化最小角特性:Delaunay三角网是最接近于规则化的三角网,在散点集可能形成的三角剖分中,Delaunay三角剖分所形成的三角形的最小角最大,即两个相邻的三角形构成的凸四边形的对角线若进行调换,六个内角的最小角不再增大。
本实施例中,随形支撑面与待打印3D模型的底部轮廓形状贴合相似,表面无孔洞,且覆盖3D打印模型的整个底部轮廓。
本实施例中,随形支撑面的贴合度可调,当贴合度为100%时,随形支撑面与待打印3D模型底部形状完全一致,当贴合度为0%时,随形支撑面是平面,与待打印3D模型底部轮廓无关。
本实施例中,贴合度通过对底部轮廓点集的采样程度实现,如:80%贴合度,表示以80%的比例对底部轮廓点集进行采样,并利用采样后新的底部轮廓点集生成随形支撑面。
可选地,在一实施例中,通过调节底部轮廓点集的采集密度实现贴合度的调节,如:假设两个点之间的距离为s,通过对s大小的调节改变底部轮廓点集的采集密度。
本实施例中,随形支撑面的平滑度可调,平滑度越高,随形支撑面越平滑,平滑度越低,随形支撑面越粗糙。
可选地,在一实施例中,采用拉普拉斯平滑算法对生成的随形支撑面进行不同迭代次数的平滑处理来调节随形支撑面的平滑度。
本实施例中,可获取支撑平面最大倾角,基于该参数生成随形支撑面,支撑平面最大倾角是随形支撑面的最大倾角。
可选地,在一实施例中,最大倾角设置为50°时,在生成随型支撑时,采集的轮廓点集将不会包括模型上倾斜角超过50°的平面的点。
103、基于所述随形支撑面,生成支撑所述随形支撑面的底座的第二3D模型信息;
本实施例中,基于随形支撑面生成整体底部模块,对整体底部模块进行 切割得到多个垂直于随形支撑面的肋板。
本实施例中,整体底部模块的顶部形状与随形支撑面一致,并与随形支撑面无缝连接,底部为平面。
104、基于所述待打印3D模型与所述随形支撑面,生成顶部支撑杆的第三3D模型信息;
本实施例中,顶部支撑杆位于待打印3D模型与随形支撑面之间,顶部支撑杆包括多个支撑件,每个支撑件由第一棱台、第二棱台和支撑柱组成,第一棱台的上底面与待打印3D模型连接,第一棱台的下底面设置于支撑柱的一端上,支撑柱的另一端设置于第二棱台的下底面上,第二棱台的上底面设置于随形支撑面上。
105、基于所述第一3D模型信息、所述第二3D模型信息和所述第三3D模型信息进行3D打印,得到打印所述3D模型时的随形支撑。
本实施例中,第一3D模型信息、第二3D模型信息和第三3D模型信息共同组成随形支撑的3D模型,对该3D模型进行打印,得到待打印3D模型的随形支撑,也即随形支撑结构。
本实施例中,随形支撑结构由陶瓷浆料光固化形成。
可选地,在一实施例中,随形支撑与待打印3D模型一起打印,打印完成后去除随形支撑结构从而得到3D模型。
本申请实施例中,获取待打印3D模型的底部轮廓信息;基于底部轮廓信息,生成随形支撑面的第一3D模型信息;基于随形支撑面,生成支撑所述随形支撑面的底座的第二3D模型信息;基于待打印3D模型与随形支撑面,生成顶部支撑杆的第三3D模型信息;基于第一3D模型信息、第二3D模型信息和第三3D模型信息进行3D打印,得到打印3D模型时的随形支撑。本申请的3D打印随形支撑生成方法可根据不同的3D模型自动生成随形支撑结构,生成的随形支撑结构稳定性强、支撑强度高,从而保证了打印的稳定性和打印质量。
请参阅图2,本申请实施例中3D打印随形支撑生成方法的另一个实施例包括:
201、获取待打印3D模型的底部轮廓信息;
202、构造一个四边形,并将所述四边形划分为两个超级三角形,将两个所述超级三角形的顶点加入预置三角形链表中;
本实施例中,四边形的构造方法不限,可选地,在一实施例中,选取打印幅面的四个角作为四边形的四个角。
本实施例中,四边形的四个角不一定属于底部轮廓点集,底部轮廓点集中所有的点包含在四边形内部。
本实施例中,将一个三角形加入三角形链表中表示将该三角形的三个顶点以三元组的形式存储在三角形链表中。
可选地,在一实施例中,采用QT作为开发工具,采用QVector3D的数据结构,单个点用QVector3D,用QVector<QVector3D>的数据结构实现前述算法中链表的功能。
203、选取所述底部轮廓点集中的一个散点,并将该散点作为待新增三角形的一个顶点;
本实施例中,散点是未被加入到三角形链表中的点。
本实施例中,按距离将散点依次加入三角形链表中。
204、依次判断所述散点是否在各三角形的外接圆内;
本实施例中,一个三角形有且仅有一个外接圆,依次判断待加入散点是否在三角形链表中各三角形的外接圆内。
205、若是,则记所述散点在三角形的外接圆内的三角形为目标三角形,并删除各目标三角形的公共边以及将删除所述公共边后对应减少的三角形的顶点从所述三角形链表中删除;
本实施例中,删除目标三角形之间的公共边,并将公共边对应的三角形从三角形链表中删除。
206、分别将所述散点与从所述三角形链表中删除的三角形的顶点连接,形成新三角形,并将所述新三角形的顶点更新到所述三角形链表中;
本实施例中,将散点分别与删除的三角形的各个顶点连接,形成若干个新三角形,将若干个新三角形分别加入到三角形链表中。
可选地,在一实施例中,根据预置优化准则对局部新三角形进行优化后再将新形成的三角形加入到三角形链表中。
可选地,在一实施例中,所述优化准则如下:
(1)空圆特性:任一个三角形的外接圆内不包含其它点;
(2)最大化最小角特性:在散点集可能形成的三角形中,所形成的三角形的最小角最大,即两个相邻三角形构成的凸四边形的对角线若进行调换,六个内角的最小角不会增大。
207、重复执行上述步骤203-206,直至所述底部轮廓点集中散点为空,得到所述随形支撑面,将所述随形支撑面向下拉伸,得到所述随形支撑面的第一3D模型信息;
本实施例中,按照上述步骤203-206,依次将各散点加入三角形链表中,直至没有散点。
本实施例中,随形支撑面是一个随形面,将随形面按预置厚度参数拉伸成有一定厚度的3D模型。
208、基于所述随形支撑面,生成支撑所述随形支撑面的底座的第二3D模型信息;
可选地,在一实施例中,所述底座包括多个肋板,上述步骤208包括:
基于所述随形支撑面生成整体底部模块;
获取所述多个肋板的目标宽度、目标数量与目标排列方向;
基于所述目标宽度、所述目标数量与所述目标排列方向对所述整体底部模块进行切割,得到支撑所述随形支撑面的底座的第二3D模型信息。
本实施例中,目标宽度是一个肋板的厚度,目标数量是肋板的数量,目标排列方向是肋板的排列方向,如:沿X轴排列或沿Y轴排列。
本实施例中,各个肋板等距依次排列,对整体底部模块进行切割得到多个肋板,减少了底部支撑的耗材、降低制造成本。
可选地,在一实施例中,为增强肋板的稳定性,在肋板间添加若干个均匀分布的连接件将两个相邻的肋板连接加固,在肋板过高时依旧保定稳定性。
本实施例中,连接件为近似圆柱体的棱柱,减少点位计算量及打印时间。
本实施例中,获取连接件的半径、排列密度及高度,并基于这些参数生成肋板间的连接件。
本实施例中,半径即连接件截面中心至该截面一个顶点的距离。
可选地,在一实施例中,将肋板的边界缝合,避免错误。
本实施例中,获取肋板上表面与下表面的边界点,将上表面的边界点与 下表面的边界点以三角形连接,进行边界缝合。
209、基于所述待打印3D模型与所述随形支撑面,生成顶部支撑杆的第三3D模型信息;
可选地,在一实施例中,上述步骤209包括:
获取所述顶部支撑杆的半径、高度、支撑深度与接触半径;
基于所述半径、所述高度、所述支撑深度、所述接触半径、所述待打印3D模型与所述随形支撑面,生成所述顶部支撑杆的第三3D模型信息。
本实施例中,顶部支撑杆位于待打印3D模型与随形支撑面之间,顶部支撑杆包括多个支撑件,每个支撑件由第一棱台、第二棱台和支撑柱组成,第一棱台的上底面与待打印3D模型连接,第一棱台的下底面设置于支撑柱的一端上,支撑柱的另一端设置于第二棱台的下底面上,第二棱台的上底面设置于随形支撑面上。
本实施例中,支撑柱是近似圆柱体的多棱柱。
本实施例中,半径是多棱柱的中心到一条棱的长度,高度是多棱柱的高度,支撑深度是第一棱台与第二棱台嵌入到模型内的深度,接触半径第一棱台与待打印3D模型的接触面的半径,及第二棱台与随形支撑面的接触面的半径,两个接触半径相同。
210、基于所述第一3D模型信息、所述第二3D模型信息和所述第三3D模型信息进行3D打印,得到打印所述3D模型时的随形支撑。
本申请实施例中,获取待打印3D模型的底部轮廓信息,构造一个四边形,并划分为两个超级三角形,将两个超级三角形的顶点加入预置三角形链表中,选取底部轮廓点集中的一个散点作为待新增三角形的一个顶点,依次判断散点是否在各三角形的外接圆内,若是,则记散点在三角形的外接圆内的三角形为目标三角形,并删除目标三角形的公共边以及将对应减少的三角形的顶点从所述三角形链表中删除,分别将散点与删除的三角形的顶点连接,形成新三角形,并将所述新三角形的顶点更新到所述三角形链表中,基于随形支撑面,生成支撑所述随形支撑面的底座的第二3D模型信息,基于待打印3D模型与随形支撑面,生成顶部支撑杆的第三3D模型信息,基于第一3D模型信息、第二3D模型信息和第三3D模型信息进行3D打印,得到打印所述3D模型时的随形支撑。本申请利用了三角剖分算法的原理,可根据不同的3D模 型自动生成随形支撑结构,支撑面的形状贴合待打印3D模型的底部轮廓,解决了正置式光固化3D打印过程中支撑强度不够、容易发生形变或断折的问题,显著提高支撑稳定性,保证3D打印质量。
上面对本申请实施例中3D打印随形支撑生成方法进行了描述,下面对本申请实施例中3D打印随形支撑生成装置进行描述,请参阅图3,本申请实施例中3D打印随形支撑生成装置一个实施例包括:
获取模块301,用于获取待打印3D模型的底部轮廓信息;
第一生成模块302,用于基于所述底部轮廓信息,生成随形支撑面的第一3D模型信息;
第二生成模块303,用于基于所述随形支撑面,生成支撑所述随形支撑面的底座的第二3D模型信息;
第三生成模块304,用于基于所述待打印3D模型与所述随形支撑面,生成顶部支撑杆的第三3D模型信息;
打印模块305,用于基于所述第一3D模型信息、所述第二3D模型信息和所述第三3D模型信息进行3D打印,得到打印所述3D模型时的随形支撑。
可选地,在一实施例中,所述待打印3D模型的底部轮廓为所述待打印3D模型在预置轴的表面法向量小于0且向底面投影高度最低的表面部分;所述底部轮廓信息包括所述底部轮廓的悬吊线、悬吊点、悬吊面、缓平面和底部轮廓点集。
可选地,在一实施例中,所述第一生成模块302包括:
构造单元,用于构造一个四边形,并将所述四边形划分为两个超级三角形,将两个所述超级三角形的顶点加入预置三角形链表中;
选取单元,用于选取底部轮廓点集中的一个散点,并将该散点作为待新增三角形的一个顶点;
判断单元,用于依次判断所述散点是否在各三角形的外接圆内;
删除单元,用于若所述散点在各三角形的外接圆内,则记所述散点在三角形的外接圆内的三角形为目标三角形,并删除各目标三角形的公共边以及将删除所述公共边后对应减少的三角形的顶点从所述三角形链表中删除;
更新单元,用于分别将所述散点与从所述三角形链表中删除的三角形的 顶点连接,形成新三角形,并将所述新三角形的顶点更新到所述三角形链表中;
循环执行单元,用于重复执行所述选取单元、所述判断单元、所述删除单元、所述更新单元,直至所述底部轮廓点集中散点为空,得到所述随形支撑面,将所述随形支撑面向下拉伸,得到所述随形支撑面的第一3D模型信息。
可选地,在一实施例中,所述底座包括多个肋板,所述第二生成模块303具体用于:
基于所述随形支撑面生成整体底部模块;
获取所述多个肋板的目标宽度、目标数量与目标排列方向;
基于所述目标宽度、所述目标数量与所述目标排列方向对所述整体底部模块进行切割,得到支撑所述随形支撑面的底座的第二3D模型信息。
可选地,在一实施例中,所述第三生成模块304具体用于:
获取所述顶部支撑杆的半径、高度、支撑深度与接触半径;
基于所述半径、所述高度、所述支撑深度、所述接触半径、所述待打印3D模型与所述随形支撑面,生成所述顶部支撑杆的第三3D模型信息。
本申请实施例中,获取待打印3D模型的底部轮廓信息;基于底部轮廓信息,生成随形支撑面的第一3D模型信息;基于随形支撑面,生成支撑所述随形支撑面的底座的第二3D模型信息;基于待打印3D模型与随形支撑面,生成顶部支撑杆的第三3D模型信息;基于第一3D模型信息、第二3D模型信息和第三3D模型信息进行3D打印,得到打印3D模型时的随形支撑。本申请的3D打印随形支撑生成方法可根据不同的3D模型自动生成随形支撑结构,生成的随形支撑结构稳定性强、支撑强度高,从而保证了打印的稳定性和打印质量。
请参阅图4-图6,本申请实施例公开了一种随形支撑结构40,所述随形支撑结构40包括底座41、随形支撑面42和多个支撑件43,所述随形支撑面42的第一表面421与所述底座41连接;所述支撑件43的一端与所述随形支撑面42的第二表面422连接,另一端与所述待打印3D模型44连接;所述随形支撑面42的第二表面422的形状和所述待打印3D模型44与所述随形支撑结构40接触的接触面的形状相对应,所述多个支撑件43组成顶部支撑杆。 具体的,所述第一表面421和所述第二表面422为相对面;在打印3D的待打印3D模型44之前先形成随形支撑结构40,在随形支撑结构40上打印出3D的待打印3D模型44。所述随形支撑结构40的材料可以为打印待打印3D模型44的材料,而打印待打印3D模型44的材料可以为陶瓷浆料,陶瓷浆料是陶瓷粉和树脂的混合物;多个支撑件43在横截面大小相同和长度基本一致的情况下,当支撑件43的长度越长时,其支撑的强度就越低;当支撑件43的长度越短时,其支撑的强度就越强;多个支撑件43在横截面大小相同情况下,而当多个支撑件43的长度不统一或者长度差异大时,其支撑的强度就越低。
在本实施例中,所述随形支撑面42的第二表面422的形状和所述待打印3D模型44与所述随形支撑结构40接触的接触面441的形状相对应,即是,当所述随形支撑面42的第二表面422为凹陷状态时,所述待打印3D模型44与所述随形支撑结构40接触的接触面441也相应为凹陷状态,当所述随形支撑面42的第二表面422为平面状态时,所述待打印3D模型44与所述随形支撑结构40接触的接触面441也相应为平面状态,当所述随形支撑面42的第二表面422为凸起状态时,所述待打印3D模型44与所述随形支撑结构40接触的接触面441也相应为凸起状态,因此,使位于所述待打印3D模型44和所述随形支撑面42之间的多个所述支撑件43的长度基本一致,而所述支撑件43的长度基本一致,因此,可以将所述支撑件43的长度设置为更短,从而提高了所述支撑件43的支撑强度和整个所述随形支撑结构40的稳定性,同时,减少所述支撑件43因长度过长而在打印过程中由于刮刀等因素折断的风险,从而提高了打印的稳定性和打印质量。通过将所述随形支撑面42设置于所述底座41和所述支撑件43之间,将所述待打印3D模型44连接于所述支撑件43上,进而使所述随形支撑结构40支撑所述待打印3D模型44。
在一实施方式中,所述支撑件43包括第一棱台431、第二棱台432和支撑柱433,所述第一棱台431的上底面与所述待打印3D模型44连接,所述第一棱台431的下底面设置于所述支撑柱433的一端上,所述支撑柱433的另一端设置于所述第二棱台432的下底面上,所述第二棱台432的上底面设置于所述第二表面422上;其中,所述支撑柱433为棱柱,所述支撑柱433的横截面的最长对角线长度为1mm-10mm。具体的,棱台的底周长最短的底面为上底面,棱台的底周长最长的底面为下底面;所述第一棱台431、所述第 二棱台432和所述支撑柱433具体包括如下三种设置方式但不仅仅限制于如下三种设置方式,所述第一棱台431和所述第二棱台432分别垂直设置于所述支撑柱433的两端;或所述第一棱台431和所述第二棱台432分别倾斜设置于所述支撑柱433的两端;或所述第一棱台431垂直设置于所述支撑柱433的一端,所述第二棱台432倾斜设置于所述支撑柱433的另一端。
在本实施例中,可以优选所述支撑柱433的横截面的最长对角线长度为10mm,所述棱柱为十棱柱,从而使所述棱柱接近圆柱体的棱柱。
在本实施例中,将所述支撑柱433设置为近似圆柱体的棱柱,以及将所述第一棱台431和所述第二棱台432设置为近似圆台的棱台,可以减少3D打印设备中的计算机对所述支撑柱433的点位计算量,从而减少计算机生成所述随形支撑结构40的时间,同时,所述支撑柱433的横截面的最长对角线长度为近似圆柱体的棱柱的直径。通过将所述支撑件43设置为三部分,不仅减少所述待打印3D模型44与所述支撑柱433的接触面积,从而方便后续打印好的所述待打印3D模型44从所述随形支撑结构40上移除,还可以增强所述随形支撑结构40的支撑强度。将所述第一棱台431的上底面与所述待打印3D模型44连接,而所述第一棱台431的上底面为因其底周长为最短的,因此,所述第一棱台431的上底面的面积为最小的,从而减少了所述支撑件43与所述待打印3D模型44的接触面积,方便后续打印好的所述待打印3D模型44从所述随形支撑结构40上移除;且所述随形支撑结构40的打印原料为陶瓷浆料,陶瓷浆料具有足够的硬度可以支撑起打印好的所述待打印3D模型44,同时,陶瓷浆料具有柔软性,方便将打印好的所述待打印3D模型44从所述随形支撑结构40上移除。
在一实施方式中,所述支撑件43还包括第一球体434和第二球体435,所述第一球体434设置于所述第一棱台431和所述支撑柱433之间,所述第二球体435设置于所述第二棱台432和所述支撑柱433之间。具体的,所述第一球体和所述第二球体包括但不仅仅限制于为圆球体,还可以将所述第一球体和所述第二球体均设置为多面球体,而多面球体是切面球体与圆球体之间的一个过渡几何体,当切面的数量越多便于越接近圆球体,所述多面球体是由多个等腰梯形的切面所组成,接近圆球体,且多面球体可以减少3D打印设备中的计算机对所述支撑柱433的点位计算量,从而减少计算机生成所述 随形支撑结构40的时间。
在本实施例中,将所述第一球体434设置于所述第一棱台431和所述支撑柱433之间,所述第一球体434使所述第一棱台431和所述支撑柱433连接得更牢固;将所述第二球体435设置于所述第二棱台432和所述支撑柱433之间,一方面可以使所述第二棱台432与所述支撑柱433连接得更牢固,另一方面,还可以防止所述第二棱台432与所述支撑柱433倾斜设置时的倾斜角度过大而导致所述第二棱台432断裂。
在一实施方式中,所述底座41包括多个等间距设置的肋板411和多个连接件412,多个所述肋板411均垂直设置于所述第一表面421上,所述连接件412贴合固定于两个相邻的所述肋板411之间,其中,所述连接件412为棱柱。具体的,所述连接件412为近似圆柱体的棱柱,减少3D打印设备中的计算机对所述连接件412的的点位计算量,从而减少计算机生成所述随形支撑结构40的打印时间。
在本实施例中,将所述底座41设置为多个等间距分布的肋板411,节省支撑材料,降低成本,同时,用多个连接件412设置于两个相邻的所述肋板411之间,加强两个所述肋板411之间的稳定性,从而使所述随形支撑结构40不仅节省支撑材料,还可以加强所述随形支撑结构40的支撑强度和稳定性,从而提高打印的稳定性和质量。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等 各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (19)

  1. 一种3D打印随形支撑生成方法,所述3D打印随形支撑生成方法包括:
    获取待打印3D模型的底部轮廓信息;
    基于所述底部轮廓信息,生成随形支撑面的第一3D模型信息;
    基于所述随形支撑面,生成支撑所述随形支撑面的底座的第二3D模型信息;
    基于所述待打印3D模型与所述随形支撑面,生成顶部支撑杆的第三3D模型信息;
    基于所述第一3D模型信息、所述第二3D模型信息和所述第三3D模型信息进行3D打印,得到打印所述3D模型时的随形支撑结构。
  2. 根据权利要求1所述的3D打印随形支撑生成方法,所述待打印3D模型的底部轮廓为所述待打印3D模型在预置轴的表面法向量小于0且向底面投影高度最低的表面部分;所述底部轮廓信息包括所述底部轮廓的悬吊线、悬吊点、悬吊面、缓平面和底部轮廓点集。
  3. 根据权利要求2所述的3D打印随形支撑生成方法,所述基于所述底部轮廓信息,生成随形支撑面的第一3D模型信息包括:
    S1、构造一个四边形,并将所述四边形划分为两个超级三角形,将两个所述超级三角形的顶点加入预置三角形链表中;
    S2、选取所述底部轮廓点集中的一个散点,并将该散点作为待新增三角形的一个顶点;
    S3、依次判断所述散点是否在各三角形的外接圆内;
    S4、若是,则记所述散点在三角形的外接圆内的三角形为目标三角形,并删除各目标三角形的公共边以及将删除所述公共边后对应减少的三角形的顶点从所述三角形链表中删除;
    S5、分别将所述散点与当前三角形链表中的顶点连接,形成新三角形,并将所述新三角形的顶点更新到所述三角形链表中;
    S6、重复执行上述步骤S2-S5,直至所述底部轮廓点集中散点为空,得到所述随形支撑面,将所述随形支撑面向下拉伸,得到所述随形支撑面的第一3D模型信息。
  4. 根据权利要求1所述的3D打印随形支撑生成方法,所述底座包括多个肋板,所述基于所述随形支撑面,生成支撑所述随形支撑面的底座的第二3D模型信息包括:
    基于所述随形支撑面生成整体底部模块;
    获取所述多个肋板的目标宽度、目标数量与目标排列方向;
    基于所述目标宽度、所述目标数量与所述目标排列方向对所述整体底部模块进行切割,得到支撑所述随形支撑面的底座的第二3D模型信息。
  5. 根据权利要求1所述的3D打印随形支撑生成方法,所述基于所述待打印3D模型与所述随形支撑面,生成顶部支撑杆的第三3D模型信息包括:
    获取所述顶部支撑杆的半径、高度、支撑深度与接触半径;
    基于所述半径、所述高度、所述支撑深度、所述接触半径、所述待打印3D模型与所述随形支撑面,生成所述顶部支撑杆的第三3D模型信息。
  6. 一种3D打印随形支撑生成装置,所述3D打印随形支撑生成装置包括:
    获取模块,用于获取待打印3D模型的底部轮廓信息;
    第一生成模块,用于基于所述底部轮廓信息,生成随形支撑面的第一3D模型信息;
    第二生成模块,用于基于所述随形支撑面,生成支撑所述随形支撑面的底座的第二3D模型信息;
    第三生成模块,用于基于所述待打印3D模型与所述随形支撑面,生成顶部支撑杆的第三3D模型信息;
    打印模块,用于基于所述第一3D模型信息、所述第二3D模型信息和所述第三3D模型信息进行3D打印,得到打印所述3D模型时的随形支撑结构。
  7. 根据权利要求6所述的3D打印随形支撑生成装置,所述第一生成模块包括:
    构造单元,用于构造一个四边形,并将所述四边形划分为两个超级三角形,将两个所述超级三角形的顶点加入预置三角形链表中;
    选取单元,用于选取底部轮廓点集中的一个散点,并将该散点作为待新增三角形的一个顶点;
    判断单元,用于依次判断所述散点是否在各三角形的外接圆内;
    删除单元,用于若所述散点在各三角形的外接圆内,则记所述散点在三角形的外接圆内的三角形为目标三角形,并删除各目标三角形的公共边以及将删除所述公共边后对应减少的三角形的顶点从所述三角形链表中删除;
    更新单元,用于分别将所述散点与从所述三角形链表中删除的三角形的顶点连接,形成新三角形,并将所述新三角形的顶点更新到所述三角形链表中;
    循环执行单元,用于重复执行所述选取单元、所述判断单元、所述删除单元、所述更新单元,直至所述底部轮廓点集中散点为空,得到所述随形支撑面,将所述随形支撑面向下拉伸,得到所述随形支撑面的第一3D模型信息。
  8. 根据权利要求6所述的3D打印随形支撑生成装置,所述底座包括多个肋板,所述第二生成模块具体用于:
    基于所述随形支撑面生成整体底部模块;
    获取所述多个肋板的目标宽度、目标数量与目标排列方向;
    基于所述目标宽度、所述目标数量与所述目标排列方向对所述整体底部模块进行切割,得到支撑所述随形支撑面的底座的第二3D模型信息。
  9. 根据权利要求6所述的3D打印随形支撑生成装置,所述第三生成模块具体用于:
    获取所述顶部支撑杆的半径、高度、支撑深度与接触半径;
    基于所述半径、所述高度、所述支撑深度、所述接触半径、所述待打印3D模型与所述随形支撑面,生成所述顶部支撑杆的第三3D模型信息。
  10. 一种采用权利要求1-5中任一项所述的3D打印随形支撑生成方法生成的随形支撑结构,所述随形支撑结构包括:
    底座;
    随形支撑面,所述随形支撑面的第一表面与所述底座连接;
    顶部支撑杆,所述顶部支撑杆的一端与所述随形支撑面的第二表面连接,另一端与待打印3D模型连接;
    所述随形支撑面的第二表面的形状和所述待打印3D模型与所述底座接触的接触面的形状相对应,所述第一表面与所述第二表面形状一致。
  11. 根据权利要求10所述的3D打印随形支撑生成方法生成的随形支撑结构,所述顶部支撑杆包括多个支撑件,所述支撑件包括第一棱台、第二棱台和支撑柱,所述第一棱台的上底面与所述待打印3D模型连接,所述第一棱台的下底面设置于所述支撑柱的一端上,所述支撑柱的另一端设置于所述第二棱台的下底面上,所述第二棱台的上底面设置于所述第二表面上。
  12. 根据权利要求11所述的3D打印随形支撑生成方法生成的随形支撑结构,所述支撑件还包括第一球体和第二球体,所述第一球体设置于所述第一棱台和所述支撑柱之间,所述第二球体设置于所述第二棱台和所述支撑柱之间。
  13. 根据权利要求10所述的3D打印随形支撑生成方法生成的随形支撑结构,所述底座包括多个肋板,多个所述肋板均垂直设置于所述第一表面上。
  14. 根据权利要求13所述的3D打印随形支撑生成方法生成的随形支撑结构,所述肋板等间距设置。
  15. 根据权利要求13所述的3D打印随形支撑生成方法生成的随形支撑结构,所述底座还包括多个连接件,所述连接件贴合固定于两个相邻的所述肋板之间。
  16. 根据权利要求15所述的3D打印随形支撑生成方法生成的随形支撑结构,所述连接件为棱柱。
  17. 根据权利要求11所述的3D打印随形支撑生成方法生成的随形支撑结构,所述支撑柱为棱柱。
  18. 根据权利要求11所述的3D打印随形支撑生成方法生成的随形支撑结构,所述支撑柱的横截面的最长对角线长度为1mm-10mm。
  19. 根据权利要求10所述的3D打印随形支撑生成方法生成的随形支撑结构,所述随形支撑结构的打印原料为陶瓷浆料。
PCT/CN2023/071377 2022-05-23 2023-01-09 3d打印随形支撑生成方法、装置及随形支撑结构 WO2023226451A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210565286.2 2022-05-23
CN202210565286.2A CN114986650B (zh) 2022-05-23 2022-05-23 3d打印随形支撑生成方法、装置及随形支撑结构

Publications (1)

Publication Number Publication Date
WO2023226451A1 true WO2023226451A1 (zh) 2023-11-30

Family

ID=83027655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071377 WO2023226451A1 (zh) 2022-05-23 2023-01-09 3d打印随形支撑生成方法、装置及随形支撑结构

Country Status (2)

Country Link
CN (1) CN114986650B (zh)
WO (1) WO2023226451A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114986650B (zh) * 2022-05-23 2023-10-13 东莞中科云计算研究院 3d打印随形支撑生成方法、装置及随形支撑结构
CN116373306B (zh) * 2023-02-13 2023-10-20 首都博物馆 一种馆藏文物防震随形卡固件的3d打印设计方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104772905A (zh) * 2015-03-25 2015-07-15 北京工业大学 一种距离引导下的自适应混合支撑结构生成方法
US20170113413A1 (en) * 2015-10-22 2017-04-27 Roland Dg Corporation Three-dimensional printing data generation device, and three-dimensional printing system including the same
CN108312548A (zh) * 2018-02-13 2018-07-24 上海大学 基于模型表面特征混合自适应切片的五轴联动3d打印方法
CN111859488A (zh) * 2020-07-27 2020-10-30 深圳市纵维立方科技有限公司 支撑结构生成方法、装置、电子设备以及存储介质
CN112936870A (zh) * 2021-02-01 2021-06-11 深圳市创想三维科技有限公司 3d打印方法及支撑结构、装置、设备和存储介质
CN114083800A (zh) * 2021-10-27 2022-02-25 深圳市诺瓦机器人技术有限公司 模型支撑面的3d打印数据生成方法、装置及存储介质
CN114986650A (zh) * 2022-05-23 2022-09-02 东莞中科云计算研究院 3d打印随形支撑生成方法、装置及随形支撑结构

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105303617A (zh) * 2015-11-27 2016-02-03 中山大学 一种面向四边形割分下递归曲面生成方法及其装置
CN105643943B (zh) * 2016-03-31 2019-01-04 周宏志 一种增材制造用支撑的生成方法及其系统
JP2018036771A (ja) * 2016-08-30 2018-03-08 ローランドディー.ジー.株式会社 立体データ処理装置、および立体データ処理プログラム
CN208263373U (zh) * 2018-05-24 2018-12-21 佛山市顺德区美的电热电器制造有限公司 3d打印注塑模具
CN110097626A (zh) * 2019-05-06 2019-08-06 浙江理工大学 一种基于rgb单目图像的浅浮雕物体识别处理方法
CN112590198A (zh) * 2020-12-31 2021-04-02 杭州电子科技大学 一种基于stl文件的3d打印支撑结构设计方法
CN112686945A (zh) * 2021-01-11 2021-04-20 阿坝州自然资源与科技信息研究所 一种基于Web的三维地形表面积测量方法
CN113591300B (zh) * 2021-07-29 2024-03-15 深圳市创想三维科技股份有限公司 3d打印文件的生成方法、装置、计算机设备和存储介质
CN113580577B (zh) * 2021-07-29 2024-03-15 深圳市创想三维科技股份有限公司 3d打印文件生成方法、装置、计算机设备和存储介质
CN114013045B (zh) * 2021-10-28 2023-12-05 深圳市创想三维科技股份有限公司 3d打印文件的生成方法、装置、计算机设备及存储介质
CN114161711B (zh) * 2021-12-07 2023-11-28 深圳市创想三维科技股份有限公司 3d打印文件的生成方法、装置、计算机设备及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104772905A (zh) * 2015-03-25 2015-07-15 北京工业大学 一种距离引导下的自适应混合支撑结构生成方法
US20170113413A1 (en) * 2015-10-22 2017-04-27 Roland Dg Corporation Three-dimensional printing data generation device, and three-dimensional printing system including the same
CN108312548A (zh) * 2018-02-13 2018-07-24 上海大学 基于模型表面特征混合自适应切片的五轴联动3d打印方法
CN111859488A (zh) * 2020-07-27 2020-10-30 深圳市纵维立方科技有限公司 支撑结构生成方法、装置、电子设备以及存储介质
CN112936870A (zh) * 2021-02-01 2021-06-11 深圳市创想三维科技有限公司 3d打印方法及支撑结构、装置、设备和存储介质
CN114083800A (zh) * 2021-10-27 2022-02-25 深圳市诺瓦机器人技术有限公司 模型支撑面的3d打印数据生成方法、装置及存储介质
CN114986650A (zh) * 2022-05-23 2022-09-02 东莞中科云计算研究院 3d打印随形支撑生成方法、装置及随形支撑结构

Also Published As

Publication number Publication date
CN114986650B (zh) 2023-10-13
CN114986650A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
WO2023226451A1 (zh) 3d打印随形支撑生成方法、装置及随形支撑结构
CN107610230B (zh) 一种3d打印数字模型剖切及接口设计方法及应用
TWI328177B (en) Method of evolutionary optimization algorithm for structure design
Tarini et al. Practical quad mesh simplification
CN105643943B (zh) 一种增材制造用支撑的生成方法及其系统
CN112590198A (zh) 一种基于stl文件的3d打印支撑结构设计方法
CN104626585B (zh) 一种用于sla3d打印机的平面分割方法及装置
CN104890238A (zh) 三维打印方法及系统
US20130300734A1 (en) Adaptively zippering meshes
WO2021204026A1 (zh) 基于分布式系统的海量dem金字塔切片并行构建方法
CN109685080A (zh) 基于霍夫变换与区域生长的多尺度平面提取方法
CN111859489B (zh) 支撑结构生成方法、装置、电子设备以及存储介质
CN111859488B (zh) 支撑结构生成方法、装置、电子设备以及存储介质
CN1885349A (zh) 三维扫描的点云孔洞填补方法
CN108198194B (zh) 基于侧向多平面切割的倾斜摄影单体对象提取方法
CN109118588B (zh) 一种基于块分解的彩色lod模型自动生成方法
Panozzo et al. Automatic construction of quad-based subdivision surfaces using fitmaps
CN1866299A (zh) 基于视觉特征度量的三维模型简化方法
CN1945626A (zh) 基于b样条曲面的三维扫描的点云孔洞填补方法
CN116580048B (zh) 一种提取房屋倾斜模型上直角房屋的轮廓线的方法及系统
CN114494649A (zh) 有限元网格划分几何清理方法、设备和存储介质
Liu et al. Generating sparse self-supporting wireframe models for 3D printing using mesh simplification
CN101510228A (zh) 产品stl模型非均匀精简方法
CN109411056B (zh) 图像存储方法及系统
Yang et al. A nesting optimization method based on digital contour similarity matching for additive manufacturing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23810528

Country of ref document: EP

Kind code of ref document: A1