WO2023226396A1 - 覆岩破坏高度确定方法、装置、电子设备及存储介质 - Google Patents

覆岩破坏高度确定方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2023226396A1
WO2023226396A1 PCT/CN2022/140470 CN2022140470W WO2023226396A1 WO 2023226396 A1 WO2023226396 A1 WO 2023226396A1 CN 2022140470 W CN2022140470 W CN 2022140470W WO 2023226396 A1 WO2023226396 A1 WO 2023226396A1
Authority
WO
WIPO (PCT)
Prior art keywords
target range
microseismic
height
overlying rock
determining
Prior art date
Application number
PCT/CN2022/140470
Other languages
English (en)
French (fr)
Inventor
尹希文
张风达
张玉军
李磊
宋业杰
李岩
Original Assignee
中煤科工开采研究院有限公司
天地科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中煤科工开采研究院有限公司, 天地科技股份有限公司 filed Critical 中煤科工开采研究院有限公司
Publication of WO2023226396A1 publication Critical patent/WO2023226396A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • E21F17/18Special adaptations of signalling or alarm devices
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere

Definitions

  • the present application relates to the technical field of geological exploration, and in particular to a method, device, electronic equipment and storage medium for determining the overlying rock damage height.
  • the method of determining the overlying rock damage height based on microseismic events is still in its infancy.
  • the overlying rock damage height is mostly judged based on the probability of occurrence of microseismic events within a certain range, for example, based on the proportion of microseismic events occurring at different layers. Make judgments.
  • the overlying rock damage caused by mining has a certain degree of continuity. The crack zones formed by the overlying rock damage often penetrate each other, and the microseismic events generated are related to each other, resulting in low accuracy in predicting the current overlying rock damage height.
  • this application provides a method, device, electronic equipment and storage medium for determining the overlying rock damage height.
  • this application provides a method for determining the overlying rock damage height, including:
  • each microseismic event in the first target range According to the ratio of the energy value of each microseismic event in the first target range to the set value, convert each microseismic event in the first target range into a basic microseismic event according to the corresponding ratio;
  • search is performed according to the set direction and the tracking radius, and the core point of the microseismic event is determined based on the number of the basic microseismic events within the tracking radius.
  • the coordinates determine the overlying rock failure height.
  • the first target range is determined based on the expected development height of the water-conducting fracture zone on the working face, the movement angle of the rock formation, and the location of the mining tunnel, including:
  • the first target range is determined based on the location of the mining tunnel and the extended range.
  • the setting value is determined based on the following steps:
  • microseismic events within the first target range are sorted according to the energy value, the energy value that meets the set condition is taken as the set value, and the microseismic event corresponding to the set value is used as the basic microseismic event.
  • determining the tracking radius based on the limit span of the top plate within the second target range includes:
  • the maximum value of the limit span is determined to be the tracking radius.
  • the determination of the limit span of the roof within the second target range satisfies the following calculation formula:
  • L represents the ultimate span
  • h represents the rock layer thickness
  • R T represents the uniaxial tensile strength
  • represents the bulk density
  • H represents the burial depth.
  • determining the microseismic event core point based on the number of basic microseismic events within the tracking radius includes:
  • the set direction includes a working surface advancement direction and/or a working surface tilt direction.
  • this application also provides a device for determining overlying rock damage height, including:
  • the acquisition module is used to obtain the positioning and energy values of microseismic events through multiple microseismic monitoring stations arranged underground and on the surface;
  • the first determination module is used to determine the first target range based on the expected development height of the water-conducting fracture zone on the working face, the movement angle of the rock formation, and the location of the mining tunnel;
  • a conversion module configured to convert each microseismic event in the first target range into a basic microseismic event according to the corresponding proportion according to the ratio of the energy value of each microseismic event in the first target range and the set value;
  • a second determination module configured to select a second target range according to the expected development height, and determine the tracking radius according to the limit span of the roof within the second target range;
  • the third determination module is used to search within the first target range according to the set direction and the tracking radius, and determine the core point of the microseismic event according to the number of the basic microseismic events within the tracking radius.
  • the coordinates of the highest point among the above core points determine the overlying rock failure height.
  • the present application also provides an electronic device, including a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • the processor executes the program, it implements the method described in the first aspect. Method for determining overlying rock failure height.
  • the present application also provides a non-transitory computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the overlying rock damage height determination method as described in the first aspect is implemented.
  • the present application also provides a computer program product, including a computer program that, when executed by a processor, implements the method for determining overlying rock damage height as described in the first aspect.
  • the method, device, electronic equipment and storage medium for determining the overlying rock damage height obtained the location and energy of microseismic events through multiple microseismic monitoring stations arranged underground and on the surface, and based on the expected development of the water-conducting fracture zone on the working face
  • the height and rock layer movement angle expand the range of possible microseismic events outward from the mining tunnel to determine the first target range.
  • Figure 1 is one of the schematic flow diagrams of the method for determining the overlying rock damage height provided by the embodiment of the present application;
  • Figure 2 is a schematic distribution diagram of microseismic monitoring stations above and below the well provided by the embodiment of the present application;
  • Figure 3 is a schematic distribution diagram of the plane range of microseismic events provided by the embodiment of the present application.
  • Figure 4 is a schematic diagram for determining the core point of a microseismic event provided by the embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a device for determining overlying rock damage height provided by an embodiment of the present application
  • FIG. 6 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the monitoring of overlying rock damage height is mainly based on local monitoring. Monitoring data are only data during the observation period. When no observation is carried out, it is difficult to obtain effective data. Especially the observation of borehole fluid loss can only observe the development degree of formation fissures during the drilling construction process. It is difficult to obtain effective data before and after the drilling construction. Effectively monitor crack development.
  • the current method of predicting overlying rock damage height based on microseismic events is mainly based on the proportion of microseismic events occurring at different layers, thereby avoiding the impact of some discrete microseismic events on the prediction results.
  • the crack zones formed by overlying rock damage are often interpenetrating cracks, and interpenetrating cracks generally produce associated microseismic events.
  • the existing methods of predicting overlying rock damage height based on microseismic events do not essentially consider the overlying rock damage height. Regarding the relationship between microseismic events and overlying rock damage, the prediction accuracy of overlying rock damage height is not high.
  • microseismic monitoring can monitor the overlying rock damage height in the entire area and throughout the process, and has gradually become an important means of monitoring the overlying rock damage height in coal mines.
  • embodiments of this application propose a method, device, electronic equipment and storage medium for determining the overlying rock damage height.
  • the density, energy size and microseismicity of microseismic events are comprehensively considered.
  • microseismic event tracking technology is used, based on the density of microseismic events that occur in a small local area, or after converting local large energy events into energy density, the overlying rock damage height is obtained, and the overlying rock damage height is scientifically determined Research and judge.
  • Figure 1 is a schematic flow chart of a method for determining overlying rock damage height provided by an embodiment of the present application. As shown in Figure 1, the method at least includes the following steps:
  • Step 101 Obtain the positioning and energy values of microseismic events through multiple microseismic monitoring stations arranged underground and on the surface.
  • rock strata at different distances from the coal seam roof will deform to varying degrees, and areas with severe deformation may move, deform, or even break and rotate.
  • the internal accumulation ability of cracks during generation, expansion, and friction is released by the movement of gravitational waves, resulting in microseismic events.
  • the overlying rock damage due to mining is a periodic fracture phenomenon in the roof as the coal seam is mined, and it has a certain degree of continuity.
  • microseismic monitoring stations By arranging multiple microseismic monitoring stations underground and on the surface to build a joint microseismic monitoring network both above and below the well, microseismic events can be monitored and acquired in a timely manner. Microseismic events can be located and the energy value obtained based on the waveform of the microseismic event.
  • the number of microseismic monitoring stations can be set according to the size of the working surface, for example, 4-6 stations are arranged underground and 2-3 stations are arranged on the surface.
  • Figure 2 is a schematic diagram of the distribution of microseismic monitoring stations above and below the well provided by the embodiment of the present application.
  • four microseismic monitoring stations are arranged underground and two microseismic monitoring stations are arranged on the ground.
  • a spatial rectangular coordinate system is constructed. O-xyz, the advancing direction of the working face is the x-axis, the tilt direction of the working face is the y-axis, and the vertical direction of the coal seam overlay is the z-axis.
  • the coordinates and energy of the microseismic event can be located.
  • Step 102 Determine the first target range based on the expected development height of the water-conducting fracture zone on the working face, the movement angle of the rock formation, and the location of the mining tunnel.
  • microseismic event data if all microseismic events are counted and calculated, the complexity of the calculation will increase; if only the range between mining tunnels is used as the statistical range of microseismic events, a lot of microseismic event data will be lost, which will affect the damage height of the overlying rock. Prediction accuracy. Therefore, it is necessary to filter the collected microseismic event data.
  • microseismic events also occur near the mining tunnel.
  • the range of microseismic event statistics that need to be collected in the outward expansion area of the mining tunnel can be determined. . Combining this range and the location of the mining tunnel, the first target range for microseismic event statistics is determined, and the microseismic events within the first target range are regarded as effective microseismic events.
  • Step 103 Convert each microseismic event in the first target range into a basic microseismic event according to the corresponding ratio according to the ratio of the energy value of each microseismic event in the first target range to the set value.
  • each microseismic event can be converted into a basic microseismic event according to the corresponding ratio.
  • the size of the set value, or the energy value of the basic microseismic event can be predefined, or it can be selected according to certain rules from the energy value of each microseismic event in the actual monitoring process.
  • Step 104 Select a second target range according to the expected growth height, and determine the tracking radius according to the limit span of the roof within the second target range.
  • the expected development height of the water-conducting fracture zone on the working surface is used to select the second target range. Since the expected development height of the water-conducting fracture zone in the working face is not very accurate, it can be expanded outside the range of the expected development height to select rock formations in the second target range.
  • the tracking radius is then determined based on the maximum value of the limit span of the top plate within the second target range.
  • Step 105 Within the first target range, search according to the set direction and the tracking radius, determine the core point of the microseismic event according to the number of the basic microseismic events within the tracking radius, and determine the core point of the microseismic event according to the number of the basic microseismic events within the tracking radius. The coordinates of the highest point determine the overlying rock failure height.
  • the first target range and tracking radius for counting microseismic events after determining the first target range and tracking radius for counting microseismic events, search within the first target range according to the set direction and tracking radius, and determine the core point of the microseismic event based on the number of basic microseismic events within the tracking radius.
  • the coordinates of the highest point among the core points are taken as the overlying rock failure height.
  • the method for determining the overlying rock damage height obtains the location and energy of microseismic events through multiple microseismic monitoring stations arranged underground and on the ground, and determines the mining roadway based on the expected development height of the water-conducting fracture zone on the working face and the movement angle of the rock layer. Expand the range where microseismic events may occur to determine the first target range. Consider the energy of microseismic events within the first target range to convert all microseismic events into basic microseismic events. At the same time, consider rock formation breakage to determine the tracking radius.
  • the third target range Search within a target range according to the tracking radius and set direction, consider the density of basic microseismic events to determine the core point, and then determine the overlying rock damage height. From the perspective of microseismic event tracking, comprehensively consider the density and energy of microseismic events. and the continuity of microseismic events, which improves the accuracy of judging the damage height of the overlying rock.
  • the first target range is determined based on the expected development height of the water-conducting fracture zone on the working face, the movement angle of the rock formation, and the location of the mining tunnel, including:
  • the first target range is determined based on the location of the mining tunnel and the extended range.
  • the expected development height of the water-conducting fracture zone in the working face is determined based on the mechanical parameters of the overlying rock strata, and the movement angle of the rock formation is determined based on the type of the overlying rock strata.
  • the expansion range of the mining tunnel is determined based on the expected development height of the water-conducting fracture zone at a set multiple and the cotangent value of the rock formation movement angle. Then, based on the location of the mining tunnel and the corresponding expansion range, the first target range for counting microseismic events is determined. Among them, the setting multiple can be selected as needed.
  • FIG. 3 is a schematic distribution diagram of the plane range of microseismic events provided by the embodiment of the present application.
  • the two mining tunnels include a transport tunnel and a track tunnel, and the location of the mining tunnel is determined.
  • the development height of the water-conducting fracture zone in the working face is expected to be H li , and the value of the multiple n is set to 1.5.
  • the rock stratum movement angle ⁇ is determined, and the expansion range l of the mining tunnel is obtained:
  • the first target range for counting microseismic events is determined from the perspective of rock layer movement.
  • the method for determining the overlying rock damage height screens the monitored microseismic events, determines the expansion range near the mining tunnel based on the development height of the water-conducting fracture zone on the working face and the movement angle of the rock layer, and expands the mining tunnel outward. Statistics of some of the microseismic events are carried out to improve the accuracy of judging the damage height of the overlying rock.
  • the setting value is determined based on the following steps:
  • microseismic events within the first target range are sorted according to the energy value, the energy value that meets the set condition is taken as the set value, and the microseismic event corresponding to the set value is used as the basic microseismic event.
  • the microseismic events within the first target range are sorted in ascending or descending order according to the energy value, and the energy value that satisfies the set condition is taken as the set value. For example, after sorting in ascending order from small to large, take the microseismic event ranked at 20% in the energy level sequence as the basic microseismic event, and the corresponding energy value U 0 is the set value.
  • the energy level sequence ⁇ U 1 , U 2 ,..., U i ⁇ is replaced by the equivalent number of basic microseismic events ⁇ Data 1 , Data 2 ,..., Data i ⁇ .
  • the method for determining the overlying rock damage height converts the statistical microseismic events within the first target range into basic microseismic events, considers the impact of the energy of the microseismic events on the overlying rock damage height, and improves the overlying rock damage height. Prediction accuracy.
  • selecting a second target range based on the expected development height, and determining the tracking radius based on the limit span of the roof within the second target range includes:
  • the maximum value of the limit span is determined to be the tracking radius.
  • the mechanical parameters within the second target range are obtained to determine the ultimate span of the roof, and further select the tracking radius.
  • the expected development height of the water-conducting fracture zone on the working face can be determined based on the mechanical parameters of the overlying rock strata. Since the expected development height of the water-conducting fracture zone is difficult to accurately predict in actual production, the expansion of the rock layer needs to be carried out on the basis of prediction. For example, the rock formations extending 50% upward and 50% downward in the predicted water-conducting fracture zone are used as the second target range. The lithology, uniaxial tensile strength, rock layer thickness, burial depth and other data of the roof within the second target range are further collected to determine the ultimate span of each point near the roof.
  • the determination of the limit span of the roof within the second target range satisfies the following calculation formula:
  • L represents the ultimate span
  • h represents the rock layer thickness
  • R T represents the uniaxial tensile strength
  • represents the bulk density
  • H represents the burial depth.
  • Rock layer thickness refers to the vertical distance between the upper and lower layers of the rock layer.
  • Uniaxial tensile strength refers to the maximum tensile stress that rock can withstand under uniaxial tensile load.
  • Bulk density refers to the weight per unit volume of rock. Burial depth represents the vertical distance from the vertex to the surface layer.
  • the maximum value L max of the limit span near the top plate of the water-conducting fracture zone is taken as the tracking radius.
  • the method for determining the overlying rock failure height selects a second target range based on the expected development height of the water-conducting fracture zone, counts the limit spans of each vertex within the second target range, and uses the maximum value of the limit span as The tracking radius of microseismic events improves the prediction accuracy of overlying rock damage height.
  • determining the microseismic event core point based on the number of basic microseismic events within the tracking radius includes:
  • the importance needs to be further distinguished based on the density and energy of the microseismic events, as well as the continuity of the microseismic events.
  • the microseismic events on the working face are projected according to the set direction.
  • the set direction includes a working surface advancement direction and/or a working surface tilt direction.
  • the basic microseismic events within the tracking radius are considered to be effective points, and the area where the tracking radius is located is the effective area, or in other words, the area composed of effective points is Valid area.
  • the microseismic events within the first target range are divided into boundary points and effective points. Further, core points are determined among the valid points. If a certain valid point is within the preset range and is always in the valid area, then the valid point is determined to be the core point. This application determines the core point from the perspective of regional density based on the energy size of microseismic events.
  • Figure 4 is a schematic diagram for determining the core point of a microseismic event provided by the embodiment of the present application.
  • the triangle represents the boundary point
  • the hollow circle represents the effective point
  • the solid circle represents the core point
  • the area where the dotted circle is located is the tracking radius.
  • the effective area within which the basic microseismic event is greater than the preset threshold D.
  • the value of the preset threshold D is 4, and the basic microseismic events located in at least two effective areas (dashed circles) are the core points.
  • the method for determining the overlying rock damage height comprehensively considers the density, energy and continuity of microseismic events, timely tracks the propagation path of microseismic events during the movement of the overlying rock, and dynamically obtains the overlying rock damage height. , ensuring the timeliness and accuracy of determining the overlying rock damage, providing important support for analyzing the degree and scope of water damage threats during the mining process of the working face, and improving the level of mine safety production.
  • the overlying rock damage height determination device provided by the present application is described below.
  • the overlying rock damage height determination device described below and the overlying rock damage height determination method described above can be mutually referenced.
  • Figure 5 is a schematic structural diagram of a device for determining overlying rock damage height provided by an embodiment of the present application. As shown in Figure 5, the device at least includes:
  • the acquisition module 501 is used to acquire the positioning and energy values of microseismic events through multiple microseismic monitoring stations arranged underground and on the surface;
  • the first determination module 502 is used to determine the first target range based on the expected development height of the water-conducting fracture zone on the working face, the movement angle of the rock formation, and the location of the mining tunnel;
  • the conversion module 503 is configured to convert each microseismic event in the first target range into a basic microseismic event according to the corresponding ratio according to the ratio of the energy value of each microseismic event in the first target range to the set value. ;
  • the second determination module 504 is used to select a second target range according to the expected development height, and determine the tracking radius according to the limit span of the roof within the second target range;
  • the third determination module 505 is used to search within the first target range according to the set direction and the tracking radius, and determine the core point of the microseismic event according to the number of the basic microseismic events within the tracking radius. The coordinates of the highest point among the core points determine the overlying rock failure height.
  • the first determination module is also used to:
  • the first target range is determined based on the location of the mining tunnel and the extended range.
  • the setting value is determined based on the following steps:
  • microseismic events within the first target range are sorted according to the energy value, the energy value that satisfies the set condition is taken as the set value, and the microseismic event corresponding to the set value is used as the basic microseismic event.
  • the second determination module is also used to:
  • the maximum value of the limit span is determined to be the tracking radius.
  • the determination of the limit span of the roof within the second target range satisfies the following calculation formula:
  • L represents the ultimate span
  • h represents the rock layer thickness
  • R T represents the uniaxial tensile strength
  • represents the bulk density
  • H represents the burial depth.
  • the third determination module is also used to:
  • the set direction includes a working surface advancement direction and/or a working surface tilt direction.
  • FIG. 6 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the electronic device may include: a processor (processor) 601, a communications interface (Communications Interface) 602, a memory (memory) 603 and a communication bus. 604, in which the processor 601, the communication interface 602, and the memory 603 complete communication with each other through the communication bus 604.
  • the processor 601 can call the logic instructions in the memory 603 to execute the overburden damage height determination method, which method includes:
  • each microseismic event in the first target range According to the ratio between the energy value of each microseismic event in the first target range and the set value, convert each microseismic event in the first target range into a basic microseismic event according to the corresponding ratio;
  • search is performed according to the set direction and the tracking radius, and the core point of the microseismic event is determined based on the number of the basic microseismic events within the tracking radius.
  • the coordinates determine the overlying rock failure height.
  • the first target range is determined based on the expected development height of the water-conducting fracture zone on the working face, the movement angle of the rock formation, and the location of the mining tunnel, including:
  • the first target range is determined based on the location of the mining tunnel and the extended range.
  • the setting value is determined based on the following steps:
  • microseismic events within the first target range are sorted according to the energy value, the energy value that meets the set condition is taken as the set value, and the microseismic event corresponding to the set value is used as the basic microseismic event.
  • determining the tracking radius based on the limit span of the top plate within the second target range includes:
  • the maximum value of the limit span is determined to be the tracking radius.
  • the determination of the limit span of the roof within the second target range satisfies the following calculation formula:
  • L represents the ultimate span
  • h represents the rock layer thickness
  • R T represents the uniaxial tensile strength
  • represents the bulk density
  • H represents the burial depth.
  • determining the microseismic event core point based on the number of basic microseismic events within the tracking radius includes:
  • the set direction includes a working surface advancement direction and/or a working surface tilt direction.
  • the above-mentioned logical instructions in the memory 603 can be implemented in the form of software functional units and can be stored in a computer-readable storage medium when sold or used as an independent product.
  • the technical solution of the present application is essentially or contributes to the relevant technology or part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes several The instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code. .
  • the present application also provides a computer program product.
  • the computer program product includes a computer program.
  • the computer program can be stored on a non-transitory computer-readable storage medium.
  • the computer program is executed by a processor, the computer can The methods for determining the overlying rock damage height provided by executing the above methods include:
  • each microseismic event in the first target range According to the ratio between the energy value of each microseismic event in the first target range and the set value, convert each microseismic event in the first target range into a basic microseismic event according to the corresponding ratio;
  • search is performed according to the set direction and the tracking radius, and the core point of the microseismic event is determined based on the number of the basic microseismic events within the tracking radius.
  • the coordinates determine the overlying rock failure height.
  • the first target range is determined based on the expected development height of the water-conducting fracture zone on the working face, the movement angle of the rock formation, and the location of the mining tunnel, including:
  • the first target range is determined based on the location of the mining tunnel and the extended range.
  • the setting value is determined based on the following steps:
  • microseismic events within the first target range are sorted according to the energy value, the energy value that meets the set condition is taken as the set value, and the microseismic event corresponding to the set value is used as the basic microseismic event.
  • determining the tracking radius based on the limit span of the top plate within the second target range includes:
  • the maximum value of the limit span is determined to be the tracking radius.
  • the determination of the limit span of the roof within the second target range satisfies the following calculation formula:
  • L represents the ultimate span
  • h represents the rock layer thickness
  • R T represents the uniaxial tensile strength
  • represents the bulk density
  • H represents the burial depth.
  • determining the microseismic event core point based on the number of basic microseismic events within the tracking radius includes:
  • the set direction includes a working surface advancement direction and/or a working surface tilt direction.
  • the present application also provides a non-transitory computer-readable storage medium on which a computer program is stored.
  • the computer program is implemented when executed by the processor to perform the method for determining the overlying rock damage height provided by each of the above methods.
  • Methods include:
  • each microseismic event in the first target range According to the ratio between the energy value of each microseismic event in the first target range and the set value, convert each microseismic event in the first target range into a basic microseismic event according to the corresponding ratio;
  • search is performed according to the set direction and the tracking radius, and the core point of the microseismic event is determined based on the number of the basic microseismic events within the tracking radius.
  • the coordinates determine the overlying rock failure height.
  • the first target range is determined based on the expected development height of the water-conducting fracture zone on the working face, the movement angle of the rock formation, and the location of the mining tunnel, including:
  • the first target range is determined based on the location of the mining tunnel and the extended range.
  • the setting value is determined based on the following steps:
  • microseismic events within the first target range are sorted according to the energy value, the energy value that meets the set condition is taken as the set value, and the microseismic event corresponding to the set value is used as the basic microseismic event.
  • determining the tracking radius based on the limit span of the top plate within the second target range includes:
  • the maximum value of the limit span is determined to be the tracking radius.
  • the determination of the limit span of the roof within the second target range satisfies the following calculation formula:
  • L represents the ultimate span
  • h represents the rock layer thickness
  • R T represents the uniaxial tensile strength
  • represents the bulk density
  • H represents the burial depth.
  • determining the microseismic event core point based on the number of basic microseismic events within the tracking radius includes:
  • the set direction includes a working surface advancement direction and/or a working surface tilt direction.
  • the device embodiments described above are only illustrative.
  • the units described as separate components may or may not be physically separated.
  • the components shown as units may or may not be physical units, that is, they may be located in One location, or it can be distributed across multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. Persons of ordinary skill in the art can understand and implement the method without any creative effort.
  • each embodiment can be implemented by software plus a necessary general hardware platform, and of course, it can also be implemented by hardware.
  • the computer software products can be stored in computer-readable storage media, such as ROM/RAM, disks. , optical disk, etc., including a number of instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute the methods described in various embodiments or certain parts of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

本申请提供一种覆岩破坏高度确定方法、装置、电子设备及存储介质,其中方法包括:通过井下和地面布置的多个微震监测台站获取微震事件的定位和能量值;根据工作面导水裂缝带的预计发育高度、岩层移动角和回采巷道的位置,确定第一目标范围;根据第一目标范围内每个微震事件的能量值和设定值的比例,将第一目标范围内的每个微震事件按照对应的比例转换为基础微震事件;根据预计发育高度选择第二目标范围,并根据第二目标范围内顶板的极限跨距确定追踪半径;在第一目标范围内,按照设定方向和追踪半径进行搜索,根据追踪半径内基础微震事件的数量确定微震事件的核心点,根据核心点中最高点的坐标确定覆岩破坏高度。

Description

覆岩破坏高度确定方法、装置、电子设备及存储介质
相关申请的交叉引用
本申请要求于2022年05月25日提交的申请号为202210583375.X,发明名称为“覆岩破坏高度确定方法、装置、电子设备及存储介质”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及地质勘探技术领域,尤其涉及一种覆岩破坏高度确定方法、装置、电子设备及存储介质。
背景技术
煤层开采后,距煤层顶板不同距离的岩层将发生不同程度的变形,同时伴随大量的采动裂隙产生。煤岩体在发生破坏时,伴有微震事件的发生,可以采用拾震器对微震事件进行捕捉。
目前,基于微震事件进行覆岩破坏高度确定的方案仍处于起步阶段,多以某一范围内微震事件的发生概率为依据判断覆岩破坏高度,例如以微震事件在不同层位发生的比例为依据进行判断。然而,采动覆岩破坏具有一定连续性,覆岩破坏形成的裂缝带往往相互贯穿,产生的微震事件之间相互关联,导致当前覆岩破坏高度的预测精度不高。
发明内容
针对相关技术存在的上述问题,本申请提供一种覆岩破坏高度确定方法、装置、电子设备及存储介质。
第一方面,本申请提供一种覆岩破坏高度确定方法,包括:
通过井下和地面布置的多个微震监测台站获取微震事件的定位和能量值;
根据工作面导水裂缝带的预计发育高度、岩层移动角和回采巷道的位置,确定第一目标范围;
根据所述第一目标范围内每个微震事件的能量值和设定值的比例,将 所述第一目标范围内的每个微震事件按照对应的比例转换为基础微震事件;
根据所述预计发育高度选择第二目标范围,并根据所述第二目标范围内顶板的极限跨距确定追踪半径;
在所述第一目标范围内,按照设定方向和所述追踪半径进行搜索,根据所述追踪半径内所述基础微震事件的数量确定微震事件的核心点,根据所述核心点中最高点的坐标确定覆岩破坏高度。
可选地,所述根据工作面导水裂缝带的预计发育高度、岩层移动角和回采巷道的位置,确定第一目标范围,包括:
根据上覆岩层力学参数,确定所述工作面导水裂缝带的预计发育高度;
根据上覆岩层类型,确定所述岩层移动角;
根据设定倍数的所述预计发育高度和所述岩层移动角的余切值,确定所述回采巷道的扩展范围;
根据所述回采巷道的位置和所述扩展范围,确定所述第一目标范围。
可选地,所述设定值,基于以下步骤确定:
将所述第一目标范围内的微震事件按照能量值大小进行排序,取满足设定条件的能量值作为所述设定值,所述设定值对应的微震事件作为所述基础微震事件。
可选地,所述根据所述第二目标范围内顶板的极限跨距确定追踪半径,包括:
根据所述第二目标范围内顶板的岩性、单轴抗拉强度、岩层厚度、埋深、容重,确定所述第二目标范围内顶板的极限跨距;
确定所述极限跨距的最大值为所述追踪半径。
可选地,所述确定所述第二目标范围内顶板的极限跨距,满足如下计算公式:
L=4hR T/3γH
其中,L表示极限跨距,h表示岩层厚度,R T表示单轴抗拉强度,γ表示容重,H表示埋深。
可选地,所述根据所述追踪半径内所述基础微震事件的数量确定微震事件核心点,包括:
当追踪半径内的所述基础微震事件的数量大于预设阈值时,确定有效 区域和有效点;
确定预设范围内始终处于有效区域内的有效点为核心点。
可选地,所述设定方向包括工作面推进方向和/或工作面倾斜方向。
第二方面,本申请还提供一种覆岩破坏高度确定装置,包括:
获取模块,用于通过井下和地面布置的多个微震监测台站获取微震事件的定位和能量值;
第一确定模块,用于根据工作面导水裂缝带的预计发育高度、岩层移动角和回采巷道的位置,确定第一目标范围;
转换模块,用于根据所述第一目标范围内每个微震事件的能量值和设定值的比例,将所述第一目标范围内的每个微震事件按照对应的比例转换为基础微震事件;
第二确定模块,用于根据所述预计发育高度选择第二目标范围,并根据所述第二目标范围内顶板的极限跨距确定追踪半径;
第三确定模块,用于在所述第一目标范围内,按照设定方向和所述追踪半径进行搜索,根据所述追踪半径内所述基础微震事件的数量确定微震事件的核心点,根据所述核心点中最高点的坐标确定覆岩破坏高度。
第三方面,本申请还提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如第一方面所述覆岩破坏高度确定方法。
第四方面,本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如第一方面所述覆岩破坏高度确定方法。
第五方面,本申请还提供一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现如上第一方面所述覆岩破坏高度确定方法。
本申请提供的覆岩破坏高度确定方法、装置、电子设备及存储介质,通过井下和地面布置的多个微震监测台站获取微震事件的定位和能量大小,根据工作面导水裂缝带的预计发育高度和岩层移动角对回采巷道向外可能发生微震事件的范围进行扩展确定第一目标范围,在第一目标范围内考虑微震事件的能量大小将所有的微震事件转换为基础微震事件,同时考虑岩 层破断来确定追踪半径,在第一目标范围内按照追踪半径和设定方向进行搜索,考虑基础微震事件的密度来确定核心点,进而确定覆岩破坏高度,从微震事件追踪的角度出发,综合考虑微震事件发生的密度、能量大小和微震事件的连续性,提升了覆岩破坏高度的判断精度。
附图说明
为了更清楚地说明本申请或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的覆岩破坏高度确定方法的流程示意图之一;
图2是本申请实施例提供的井上下微震监测台站的分布示意图;
图3是本申请实施例提供的微震事件平面范围的分布示意图;
图4是本申请实施例提供的确定微震事件核心点的示意图;
图5是本申请实施例提供的覆岩破坏高度确定装置的结构示意图;
图6是本申请实施例提供的电子设备的结构示意图。
具体实施方式
为了更好地对本申请实施例中的技术方案进行描述,下面对相关知识进行介绍。
煤炭资源的开采打破了原有地层的稳定性和完整性,造成上覆岩层或煤层底板岩层的非连续或连续变形,同时伴随着不同程度的裂缝产生。当裂缝导通含水层或有毒有害气体时,可能会进入采动活动空间,增加了矿井生产的安全风险。覆岩破坏是诱发煤矿灾害的诱因之一,覆岩破坏高度是判断煤矿顶板水害灾害发生与否的关键核心参数。
目前,煤矿覆岩破坏高度的确定主要采用钻孔漏失量、光纤探测、类比法等方法进行,该类方法存在以下缺点:
(1)以点式监测为主
目前覆岩破坏高度的监测以局部监测为主。监测数据仅为观测期间的数据,在未开展观测时,难以获取有效数据,尤其是钻孔漏失液观测,仅能观测钻孔施工过程中的地层裂隙发育程度,在钻孔施工前后,均难以有 效监测裂隙发育情况。
(2)未考虑各微震事件之间的关联性
目前基于微震事件预测覆岩破坏高度的方法主要是以微震事件在不同层位发生的比例为依据进行预测,从而避免部分离散的微震事件对预测结果的影响。实际生产过程中,覆岩破坏形成的裂缝带往往是相互贯穿的裂缝,而相互贯穿的裂缝一般都会产生相关联的微震事件,现有基于微震事件预测覆岩破坏高度的方法没有从本质上考虑微震事件与覆岩破坏的关系,覆岩破坏高度的预测精度不高。
随着微震监测技术的发展,目前的微震监测能够实现覆岩破坏高度全域、全过程地监测,逐步成为煤矿覆岩破坏高度监测的重要手段。
针对相关技术存在的上述问题,本申请实施例提出一种覆岩破坏高度确定方法、装置、电子设备及存储介质,从微震事件追踪的角度出发,综合考虑微震事件发生的密度、能量大小以及微震事件的连续性,采用微震事件追踪技术,以局部小范围内出现的微震事件的密度为基准,或者将局部大能量事件转换为能量密度后,获取覆岩破坏高度,实现覆岩破坏高度的科学研判。
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1是本申请实施例提供的覆岩破坏高度确定方法的流程示意图,如图1所示,该方法至少包括以下步骤:
步骤101、通过井下和地面布置的多个微震监测台站获取微震事件的定位和能量值。
具体地,煤层开采后,距煤层顶板不同距离的岩层会发生不同程度的变形,其中变形严重的区域可能发生移动变形,甚至破断回转。煤岩体在变形和破坏过程中,裂纹产生、扩展、摩擦时内部集聚的能力以引力波的行驶释放,产生微震事件。
采动覆岩破坏是随着煤层回采,顶板出现的周期性破断现象,具有一 定的连续性。通过在井下和地面分别布置多个微震监测台站,构建井上下微震联合监测网络,可以及时监测并获取微震事件,根据微震事件波形,实现对微震事件的定位以及能量值大小的获取。微震监测台站的数量可以根据工作面范围大小设定,例如井下布置4-6台,地面布置2-3台。
图2是本申请实施例提供的井上下微震监测台站的分布示意图,如图2所示,在井下布置4台微震监测台站,地面布置2台微震监测台站,同时构建空间直角坐标系O-xyz,以工作面推进方向为x轴,工作面倾斜方向为y轴,煤层覆存垂直方向为z轴。结合微震事件的波形,即可定位微震事件的坐标以及能量。
步骤102、根据工作面导水裂缝带的预计发育高度、岩层移动角和回采巷道的位置,确定第一目标范围。
具体地,如果对全部微震事件进行统计和计算,会增加计算的复杂度;如果仅以回采巷道之间的范围作为微震事件的统计范围,会丢失很多微震事件的数据,影响覆岩破坏高度的预测精度。因此,需要对统计到的微震事件数据进行筛选。
在实际生产过程中,在回采巷道附近的位置,也有许多微震事件发生,参考岩层移动角和工作面导水裂缝带的预计发育高度,可以确定回采巷道向外扩展区域需要进行微震事件统计的范围。结合这一范围,以及回采巷道的位置,确定出进行微震事件统计的第一目标范围,第一目标范围内的微震事件作为有效微震事件。
步骤103、根据所述第一目标范围内每个微震事件的能量值和设定值的比例,将所述第一目标范围内的每个微震事件按照对应的比例转换为基础微震事件。
具体地,确定第一目标范围之后,在第一目标范围内,不同的微震事件的能量大小不同,微震事件的能量越大,覆岩破坏能力越高,不同能量大小的微震事件对覆岩破坏高度的确定的贡献度应该进行区分。可以根据不同微震事件的能量值和设定值之间的比例,将每个微震事件按照对应的比例转换为基础微震事件。设定值的大小,或者说基础微震事件的能量值,可以预先定义,也可以从实际监测过程中各微震事件的能量值大小中按照一定规则进行选取。
步骤104、根据所述预计发育高度选择第二目标范围,并根据所述第二目标范围内顶板的极限跨距确定追踪半径。
具体地,还需要进一步确定微震事件的追踪半径,本申请实施例中利用工作面导水裂缝带的预计发育高度来选择第二目标范围。由于工作面导水裂缝带的预计发育高度并不十分精确,因此可以在预计发育高度的范围外进行扩展,选择出第二目标范围的岩层。
然后根据第二目标范围内顶板的极限跨距的最大值来确定追踪半径。
步骤105、在所述第一目标范围内,按照设定方向和所述追踪半径进行搜索,根据所述追踪半径内所述基础微震事件的数量确定微震事件的核心点,根据所述核心点中最高点的坐标确定覆岩破坏高度。
具体地,确定统计微震事件的第一目标范围以及追踪半径后,在第一目标范围内,按照设定方向和追踪半径进行搜索,根据追踪半径内基础微震事件的数量确定微震事件的核心点,将核心点中最高点的坐标作为覆岩破坏高度。
本申请提供的覆岩破坏高度确定方法,通过井下和地面布置的多个微震监测台站获取微震事件的定位和能量大小,根据工作面导水裂缝带的预计发育高度和岩层移动角对回采巷道向外可能发生微震事件的范围进行扩展确定第一目标范围,在第一目标范围内考虑微震事件的能量大小将所有的微震事件转换为基础微震事件,同时考虑岩层破断来确定追踪半径,在第一目标范围内按照追踪半径和设定方向进行搜索,考虑基础微震事件的密度来确定核心点,进而确定覆岩破坏高度,从微震事件追踪的角度出发,综合考虑微震事件发生的密度、能量大小和微震事件的连续性,提升了覆岩破坏高度的判断精度。
可选地,所述根据工作面导水裂缝带的预计发育高度、岩层移动角和回采巷道的位置,确定第一目标范围,包括:
根据上覆岩层力学参数,确定所述工作面导水裂缝带的预计发育高度;
根据上覆岩层类型,确定所述岩层移动角;
根据设定倍数的所述预计发育高度和所述岩层移动角的余切值,确定所述回采巷道的扩展范围;
根据所述回采巷道的位置和所述扩展范围,确定所述第一目标范围。
具体地,工作面导水裂缝带的预计发育高度根据上覆岩层力学参数确定,岩层移动角根据上覆岩层类型确定。回采巷道的扩展范围根据设定倍数的导水裂缝带的预计发育高度和岩层移动角的余切值确定。然后进一步根据回采巷道的位置和对应的扩展范围,确定出统计微震事件的第一目标范围。其中,设定倍数可以根据需要选择。
图3是本申请实施例提供的微震事件平面范围的分布示意图,如图3所示,两个回采巷道包括运输平巷和轨道平巷道,回采巷道的位置确定。预计工作面导水裂缝带发育高度为H li,设定倍数n取值为1.5。根据煤层上覆岩层类型,确定岩层移动角β,得到回采巷道的扩展范围l为:
l=nH licotβ
结合两条回采巷道之间的距离(工作面宽度),以及回采巷道的扩展范围,从岩层移动的角度确定出统计微震事件的第一目标范围。
本申请实施例提供的覆岩破坏高度确定方法,对监测到的微震事件进行筛选,根据工作面导水裂缝带发育高度和岩层移动角,确定回采巷道附近的扩展范围,对回采巷道向外扩展的部分微震事件进行统计,提升覆岩破坏高度的判断精度。
可选地,所述设定值,基于以下步骤确定:
将所述第一目标范围内的微震事件按照能量值大小进行排序,取满足设定条件的能量值作为所述设定值,所述设定值对应的微震事件作为所述基础微震事件。
具体地,对于第一目标范围内的微震事件,按照能量值大小进行升序或者降序排序,取满足设定条件的能量值作为设定值。例如,按照从小到大升序排序后,取能量等级数列中排序为20%的位置的微震事件作为基础微震事件,对应的能量值U 0为设定值。
确定能量等级数列中第i个微震事件的能量大小U i与设定值U 0之间的比例Data i,按照该比例将第i个微震事件转换为Data i个基础微震事件。具体满足如下计算公式:
Data i=U i/U 0
此时,能量等级数列{U 1,U 2,…,U i}被基础微震事件等效数量{Data 1,Data 2,…,Data i}替代。
本申请实施例提供的覆岩破坏高度确定方法,将统计的第一目标范围内的微震事件转换为基础微震事件,考虑微震事件的能量大小对覆岩破坏高度的影响,提升覆岩破坏高度的预测精度。
可选地,所述根据所述预计发育高度选择第二目标范围,并根据所述第二目标范围内顶板的极限跨距确定追踪半径,包括:
根据工作面导水裂缝带的所述预计发育高度选择第二目标范围;
根据所述第二目标范围内顶板的岩性、单轴抗拉强度、岩层厚度、埋深、容重,确定顶板的极限跨距;
确定所述极限跨距的最大值为所述追踪半径。
具体地,根据工作面导水裂缝带的预计发育高度选择第二目标范围后,获取第二目标范围内的力学参数,来确定顶板的极限跨距,进一步选取追踪半径。
工作面导水裂缝带的预计发育高度可以根据上覆岩层力学参数确定,由于导水裂缝带的预计发育高度在实际生产中是难以精准预测的,因此需要在预测的基础上进行岩层的扩展,例如在预测的导水裂缝带向上和向下各扩展50%的岩层,作为第二目标范围。进一步统计第二目标范围内顶板的岩性、单轴抗拉强度、岩层厚度、埋深等数据,来确定顶板附近各点的极限跨距。
可选地,所述确定所述第二目标范围内顶板的极限跨距,满足如下计算公式:
L=4hR T/3γH
其中,L表示极限跨距,h表示岩层厚度,R T表示单轴抗拉强度,γ表示容重,H表示埋深。
岩层厚度是指岩层上下层面之间的垂直距离。单轴抗拉强度是指岩石在单轴拉伸荷载作用下所能承受的最大拉应力。容重是指单位体积岩石所具有的重量。埋深表示顶点到地表层的垂直距离。
从岩层破断的角度出发,取导水裂缝带顶板附近的极限跨距的最大值L max作为追踪半径。
本申请实施例提供的覆岩破坏高度确定方法,通过导水裂缝带的预计发育高度选取第二目标范围,在第二目标范围内统计各顶点的极限跨距, 以极限跨距的最大值作为微震事件的追踪半径,提升了覆岩破坏高度的预测精度。
可选地,所述根据所述追踪半径内所述基础微震事件的数量确定微震事件核心点,包括:
当追踪半径内的所述基础微震事件的数量大于预设阈值时,确定有效区域和有效点;
确定预设范围内始终处于有效区域内的有效点为核心点。
具体地,对于第一目标范围的微震事件,需要进一步根据微震事件发生的密度和能量大小,以及微震事件的连续性进行重要性区分。
为分析沿工作面走向的覆岩破坏特征,将工作面的微震事件按照设定方向进行投影。可选地,设定方向包括工作面推进方向和/或工作面倾斜方向。
以设定方向为工作面推进方向(x轴)为例,将工作面开切眼的煤层顶板坐标记为(x 0,z 0),自工作面开切眼方向,沿煤层顶板向z轴(煤层覆存垂直方向)正方向不断递增,以第二目标范围内极限跨距的最大值L max为追踪半径,按照滑动窗口的方式进行逐步搜索。
当追踪半径内的基础微震事件的数量大于预设阈值D时,则认为该追踪半径内的基础微震事件为有效点,该追踪半径所在的区域为有效区域,或者说,有效点构成的区域为有效区域。
若z轴正方向未找到新的搜索点时,则按照x轴正方向不断递增,以L max为追踪半径,按照滑动窗口的方式进行逐步搜索,进一步搜索有效点。
至此,将第一目标范围内的微震事件区分为边界点和有效点。进一步地,在有效点中确定核心点。如果某个有效点在预设范围内,始终处于有效区域,则确定该有效点为核心点。本申请从微震事件能量大小的基础之上,从区域密度的角度来确定核心点。
图4是本申请实施例提供的确定微震事件核心点的示意图,如图4所示,三角形表示边界点,空心圆点表示有效点,实心圆点表示核心点,虚线圆所在的区域为追踪半径内基础微震事件大于预设阈值D的有效区域。预设阈值D的取值为4,位于至少两个有效区域(虚线圆)内的基础微震事件为核心点。
最后,统计核心点的最高点的坐标,作为覆岩破坏高度。
本申请实施例提供的覆岩破坏高度确定方法,综合考虑微震事件发生的密度、能量大小和微震事件的连续性,及时追踪覆岩移动过程中微震事件的传播路径,动态地获取覆岩破坏高度,保证覆岩破坏高度确定的时效性和精确度,为分析工作面回采过程中水害威胁程度与范围提供重要支撑,提升了矿井安全生产水平。
下面对本申请提供的覆岩破坏高度确定装置进行描述,下文描述的覆岩破坏高度确定装置与上文描述的覆岩破坏高度确定方法可相互对应参照。
图5是本申请实施例提供的覆岩破坏高度确定装置的结构示意图,如图5所示,该装置至少包括:
获取模块501,用于通过井下和地面布置的多个微震监测台站获取微震事件的定位和能量值;
第一确定模块502,用于根据工作面导水裂缝带的预计发育高度、岩层移动角和回采巷道的位置,确定第一目标范围;
转换模块503,用于根据所述第一目标范围内每个微震事件的能量值和设定值的比例,将所述第一目标范围内的每个微震事件按照对应的比例转换为基础微震事件;
第二确定模块504,用于根据所述预计发育高度选择第二目标范围,并根据所述第二目标范围内顶板的极限跨距确定追踪半径;
第三确定模块505,用于在所述第一目标范围内,按照设定方向和所述追踪半径进行搜索,根据所述追踪半径内所述基础微震事件的数量确定微震事件的核心点,根据所述核心点中最高点的坐标确定覆岩破坏高度。
可选地,所述第一确定模块还用于:
根据上覆岩层力学参数,确定所述工作面导水裂缝带的预计发育高度;
根据上覆岩层类型,确定所述岩层移动角;
根据设定倍数的所述预计发育高度和所述岩层移动角的余切值,确定所述回采巷道的扩展范围;
根据所述回采巷道的位置和所述扩展范围,确定所述第一目标范围。
可选地,所述设定值,基于以下步骤确定:
将所述第一目标范围内的微震事件按照能量值大小进行排序,取满足 设定条件的能量值作为所述设定值,所述设定值对应的微震事件作为所述基础微震事件。
可选地,所述第二确定模块还用于:
根据所述第二目标范围内顶板的岩性、单轴抗拉强度、岩层厚度、埋深、容重,确定所述第二目标范围内顶板的极限跨距;
确定所述极限跨距的最大值为所述追踪半径。
可选地,所述确定所述第二目标范围内顶板的极限跨距,满足如下计算公式:
L=4hR T/3γH
其中,L表示极限跨距,h表示岩层厚度,R T表示单轴抗拉强度,γ表示容重,H表示埋深。
可选地,所述第三确定模块还用于:
当追踪半径内的所述基础微震事件的数量大于预设阈值时,确定有效区域和有效点;
确定预设范围内始终处于有效区域内的有效点为核心点。
可选地,所述设定方向包括工作面推进方向和/或工作面倾斜方向。
图6是本申请实施例提供的电子设备的结构示意图,如图6所示,该电子设备可以包括:处理器(processor)601、通信接口(Communications Interface)602、存储器(memory)603和通信总线604,其中,处理器601,通信接口602,存储器603通过通信总线604完成相互间的通信。处理器601可以调用存储器603中的逻辑指令,以执行覆岩破坏高度确定方法,该方法包括:
通过井下和地面布置的多个微震监测台站获取微震事件的定位和能量值;
根据工作面导水裂缝带的预计发育高度、岩层移动角和回采巷道的位置,确定第一目标范围;
根据所述第一目标范围内每个微震事件的能量值和设定值的比例,将所述第一目标范围内的每个微震事件按照对应的比例转换为基础微震事件;
根据所述预计发育高度选择第二目标范围,并根据所述第二目标范围内顶板的极限跨距确定追踪半径;
在所述第一目标范围内,按照设定方向和所述追踪半径进行搜索,根据所述追踪半径内所述基础微震事件的数量确定微震事件的核心点,根据所述核心点中最高点的坐标确定覆岩破坏高度。
可选地,所述根据工作面导水裂缝带的预计发育高度、岩层移动角和回采巷道的位置,确定第一目标范围,包括:
根据上覆岩层力学参数,确定所述工作面导水裂缝带的预计发育高度;
根据上覆岩层类型,确定所述岩层移动角;
根据设定倍数的所述预计发育高度和所述岩层移动角的余切值,确定所述回采巷道的扩展范围;
根据所述回采巷道的位置和所述扩展范围,确定所述第一目标范围。
可选地,所述设定值,基于以下步骤确定:
将所述第一目标范围内的微震事件按照能量值大小进行排序,取满足设定条件的能量值作为所述设定值,所述设定值对应的微震事件作为所述基础微震事件。
可选地,所述根据所述第二目标范围内顶板的极限跨距确定追踪半径,包括:
根据所述第二目标范围内顶板的岩性、单轴抗拉强度、岩层厚度、埋深、容重,确定所述第二目标范围内顶板的极限跨距;
确定所述极限跨距的最大值为所述追踪半径。
可选地,所述确定所述第二目标范围内顶板的极限跨距,满足如下计算公式:
L=4hR T/3γH
其中,L表示极限跨距,h表示岩层厚度,R T表示单轴抗拉强度,γ表示容重,H表示埋深。
可选地,所述根据所述追踪半径内所述基础微震事件的数量确定微震事件核心点,包括:
当追踪半径内的所述基础微震事件的数量大于预设阈值时,确定有效区域和有效点;
确定预设范围内始终处于有效区域内的有效点为核心点。
可选地,所述设定方向包括工作面推进方向和/或工作面倾斜方向。
此外,上述的存储器603中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
另一方面,本申请还提供一种计算机程序产品,所述计算机程序产品包括计算机程序,计算机程序可存储在非暂态计算机可读存储介质上,所述计算机程序被处理器执行时,计算机能够执行上述各方法所提供的覆岩破坏高度确定方法,包括:
通过井下和地面布置的多个微震监测台站获取微震事件的定位和能量值;
根据工作面导水裂缝带的预计发育高度、岩层移动角和回采巷道的位置,确定第一目标范围;
根据所述第一目标范围内每个微震事件的能量值和设定值的比例,将所述第一目标范围内的每个微震事件按照对应的比例转换为基础微震事件;
根据所述预计发育高度选择第二目标范围,并根据所述第二目标范围内顶板的极限跨距确定追踪半径;
在所述第一目标范围内,按照设定方向和所述追踪半径进行搜索,根据所述追踪半径内所述基础微震事件的数量确定微震事件的核心点,根据所述核心点中最高点的坐标确定覆岩破坏高度。
可选地,所述根据工作面导水裂缝带的预计发育高度、岩层移动角和回采巷道的位置,确定第一目标范围,包括:
根据上覆岩层力学参数,确定所述工作面导水裂缝带的预计发育高度;
根据上覆岩层类型,确定所述岩层移动角;
根据设定倍数的所述预计发育高度和所述岩层移动角的余切值,确定所述回采巷道的扩展范围;
根据所述回采巷道的位置和所述扩展范围,确定所述第一目标范围。
可选地,所述设定值,基于以下步骤确定:
将所述第一目标范围内的微震事件按照能量值大小进行排序,取满足设定条件的能量值作为所述设定值,所述设定值对应的微震事件作为所述基础微震事件。
可选地,所述根据所述第二目标范围内顶板的极限跨距确定追踪半径,包括:
根据所述第二目标范围内顶板的岩性、单轴抗拉强度、岩层厚度、埋深、容重,确定所述第二目标范围内顶板的极限跨距;
确定所述极限跨距的最大值为所述追踪半径。
可选地,所述确定所述第二目标范围内顶板的极限跨距,满足如下计算公式:
L=4hR T/3γH
其中,L表示极限跨距,h表示岩层厚度,R T表示单轴抗拉强度,γ表示容重,H表示埋深。
可选地,所述根据所述追踪半径内所述基础微震事件的数量确定微震事件核心点,包括:
当追踪半径内的所述基础微震事件的数量大于预设阈值时,确定有效区域和有效点;
确定预设范围内始终处于有效区域内的有效点为核心点。
可选地,所述设定方向包括工作面推进方向和/或工作面倾斜方向。
又一方面,本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各方法提供的覆岩破坏高度确定方法,该方法包括:
通过井下和地面布置的多个微震监测台站获取微震事件的定位和能量值;
根据工作面导水裂缝带的预计发育高度、岩层移动角和回采巷道的位置,确定第一目标范围;
根据所述第一目标范围内每个微震事件的能量值和设定值的比例,将所述第一目标范围内的每个微震事件按照对应的比例转换为基础微震事件;
根据所述预计发育高度选择第二目标范围,并根据所述第二目标范围内顶板的极限跨距确定追踪半径;
在所述第一目标范围内,按照设定方向和所述追踪半径进行搜索,根据所述追踪半径内所述基础微震事件的数量确定微震事件的核心点,根据所述核心点中最高点的坐标确定覆岩破坏高度。
可选地,所述根据工作面导水裂缝带的预计发育高度、岩层移动角和回采巷道的位置,确定第一目标范围,包括:
根据上覆岩层力学参数,确定所述工作面导水裂缝带的预计发育高度;
根据上覆岩层类型,确定所述岩层移动角;
根据设定倍数的所述预计发育高度和所述岩层移动角的余切值,确定所述回采巷道的扩展范围;
根据所述回采巷道的位置和所述扩展范围,确定所述第一目标范围。
可选地,所述设定值,基于以下步骤确定:
将所述第一目标范围内的微震事件按照能量值大小进行排序,取满足设定条件的能量值作为所述设定值,所述设定值对应的微震事件作为所述基础微震事件。
可选地,所述根据所述第二目标范围内顶板的极限跨距确定追踪半径,包括:
根据所述第二目标范围内顶板的岩性、单轴抗拉强度、岩层厚度、埋深、容重,确定所述第二目标范围内顶板的极限跨距;
确定所述极限跨距的最大值为所述追踪半径。
可选地,所述确定所述第二目标范围内顶板的极限跨距,满足如下计算公式:
L=4hR T/3γH
其中,L表示极限跨距,h表示岩层厚度,R T表示单轴抗拉强度,γ表示容重,H表示埋深。
可选地,所述根据所述追踪半径内所述基础微震事件的数量确定微震事件核心点,包括:
当追踪半径内的所述基础微震事件的数量大于预设阈值时,确定有效区域和有效点;
确定预设范围内始终处于有效区域内的有效点为核心点。
可选地,所述设定方向包括工作面推进方向和/或工作面倾斜方向。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种覆岩破坏高度确定方法,包括:
    通过井下和地面布置的多个微震监测台站获取微震事件的定位和能量值;
    根据工作面导水裂缝带的预计发育高度、岩层移动角和回采巷道的位置,确定第一目标范围;
    根据所述第一目标范围内每个微震事件的能量值和设定值的比例,将所述第一目标范围内的每个微震事件按照对应的比例转换为基础微震事件;
    根据所述预计发育高度选择第二目标范围,并根据所述第二目标范围内顶板的极限跨距确定追踪半径;
    在所述第一目标范围内,按照设定方向和所述追踪半径进行搜索,根据所述追踪半径内所述基础微震事件的数量确定微震事件的核心点,根据所述核心点中最高点的坐标确定覆岩破坏高度。
  2. 根据权利要求1所述的覆岩破坏高度确定方法,其中,所述根据工作面导水裂缝带的预计发育高度、岩层移动角和回采巷道的位置,确定第一目标范围,包括:
    根据上覆岩层力学参数,确定所述工作面导水裂缝带的预计发育高度;
    根据上覆岩层类型,确定所述岩层移动角;
    根据设定倍数的所述预计发育高度和所述岩层移动角的余切值,确定所述回采巷道的扩展范围;
    根据所述回采巷道的位置和所述扩展范围,确定所述第一目标范围。
  3. 根据权利要求1所述的覆岩破坏高度确定方法,其中,所述设定值,基于以下步骤确定:
    将所述第一目标范围内的微震事件按照能量值大小进行排序,取满足设定条件的能量值作为所述设定值,所述设定值对应的微震事件作为所述基础微震事件。
  4. 根据权利要求1所述的覆岩破坏高度确定方法,其中,所述根据所述第二目标范围内顶板的极限跨距确定追踪半径,包括:
    根据所述第二目标范围内顶板的岩性、单轴抗拉强度、岩层厚度、埋深、容重,确定所述第二目标范围内顶板的极限跨距;
    确定所述极限跨距的最大值为所述追踪半径。
  5. 根据权利要求4所述的覆岩破坏高度确定方法,其中,所述确定所述第二目标范围内顶板的极限跨距,满足如下计算公式:
    L=4hR T/3γH
    其中,L表示极限跨距,h表示岩层厚度,R T表示单轴抗拉强度,γ表示容重,H表示埋深。
  6. 根据权利要求1所述的覆岩破坏高度确定方法,其中,所述根据所述追踪半径内所述基础微震事件的数量确定微震事件核心点,包括:
    当追踪半径内的所述基础微震事件的数量大于预设阈值时,确定有效区域和有效点;
    确定预设范围内始终处于有效区域内的有效点为核心点。
  7. 根据权利要求1或6所述的覆岩破坏高度确定方法,其中,所述设定方向包括工作面推进方向和/或工作面倾斜方向。
  8. 一种覆岩破坏高度确定装置,包括:
    获取模块,用于通过井下和地面布置的多个微震监测台站获取微震事件的定位和能量值;
    第一确定模块,用于根据工作面导水裂缝带的预计发育高度、岩层移动角和回采巷道的位置,确定第一目标范围;
    转换模块,用于根据所述第一目标范围内每个微震事件的能量值和设定值的比例,将所述第一目标范围内的每个微震事件按照对应的比例转换为基础微震事件;
    第二确定模块,用于根据所述预计发育高度选择第二目标范围,并根据所述第二目标范围内顶板的极限跨距确定追踪半径;
    第三确定模块,用于在所述第一目标范围内,按照设定方向和所述追踪半径进行搜索,根据所述追踪半径内所述基础微震事件的数量确定微震事件的核心点,根据所述核心点中最高点的坐标确定覆岩破坏高度。
  9. 一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述处理器执行所述程序时实 现如权利要求1至7任一项所述覆岩破坏高度确定方法。
  10. 一种非暂态计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1至7任一项所述覆岩破坏高度确定方法。
PCT/CN2022/140470 2022-05-25 2022-12-20 覆岩破坏高度确定方法、装置、电子设备及存储介质 WO2023226396A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210583375.X 2022-05-25
CN202210583375.XA CN115263427A (zh) 2022-05-25 2022-05-25 覆岩破坏高度确定方法、装置、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023226396A1 true WO2023226396A1 (zh) 2023-11-30

Family

ID=83759996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140470 WO2023226396A1 (zh) 2022-05-25 2022-12-20 覆岩破坏高度确定方法、装置、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN115263427A (zh)
WO (1) WO2023226396A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115263427A (zh) * 2022-05-25 2022-11-01 中煤科工开采研究院有限公司 覆岩破坏高度确定方法、装置、电子设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090299637A1 (en) * 2005-11-03 2009-12-03 Dasgupta Shivaji N Continuous Reservoir Monitoring for Fluid Pathways Using Microseismic Data
CN102455176A (zh) * 2010-10-20 2012-05-16 山西潞安环保能源开发股份有限公司 一种采场上覆岩层破坏高度的监测方法
CN105807312A (zh) * 2016-03-15 2016-07-27 大连理工大学 基于微震监测的煤矿顶板岩体垂直分带确定方法
US20180245442A1 (en) * 2015-10-06 2018-08-30 Halliburton Energy Services, Inc. Systems and methods deriving hydraulic fracture growth from microseismicity analysis
CN112879011A (zh) * 2021-01-26 2021-06-01 中煤科工开采研究院有限公司 一种含水层下坚硬覆岩预裂弱化控制导水裂缝带高度方法
CN113050159A (zh) * 2021-03-23 2021-06-29 中国矿业大学 一种煤岩水力压裂裂缝微震定位及扩展机理监测方法
CN115263427A (zh) * 2022-05-25 2022-11-01 中煤科工开采研究院有限公司 覆岩破坏高度确定方法、装置、电子设备及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090299637A1 (en) * 2005-11-03 2009-12-03 Dasgupta Shivaji N Continuous Reservoir Monitoring for Fluid Pathways Using Microseismic Data
CN102455176A (zh) * 2010-10-20 2012-05-16 山西潞安环保能源开发股份有限公司 一种采场上覆岩层破坏高度的监测方法
US20180245442A1 (en) * 2015-10-06 2018-08-30 Halliburton Energy Services, Inc. Systems and methods deriving hydraulic fracture growth from microseismicity analysis
CN105807312A (zh) * 2016-03-15 2016-07-27 大连理工大学 基于微震监测的煤矿顶板岩体垂直分带确定方法
CN112879011A (zh) * 2021-01-26 2021-06-01 中煤科工开采研究院有限公司 一种含水层下坚硬覆岩预裂弱化控制导水裂缝带高度方法
CN113050159A (zh) * 2021-03-23 2021-06-29 中国矿业大学 一种煤岩水力压裂裂缝微震定位及扩展机理监测方法
CN115263427A (zh) * 2022-05-25 2022-11-01 中煤科工开采研究院有限公司 覆岩破坏高度确定方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN115263427A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
Askaripour et al. Rockburst in underground excavations: A review of mechanism, classification, and prediction methods
Xiao et al. Mechanism of evolution of stress–structure controlled collapse of surrounding rock in caverns: a case study from the Baihetan hydropower station in China
Ma et al. Microseismic and precursor analysis of high-stress hazards in tunnels: A case comparison of rockburst and fall of ground
CN109798149B (zh) 一种坚硬顶板厚煤层采场来压强度分级预测方法
WO2023226396A1 (zh) 覆岩破坏高度确定方法、装置、电子设备及存储介质
Leake et al. Microseismic monitoring and analysis of induced seismicity source mechanisms in a retreating room and pillar coal mine in the Eastern United States
CN112324506B (zh) 一种基于微震的煤矿防治冲击地压动态预警方法
CN102852524B (zh) 利用液压支柱提高铝土矿回采率的方法
He et al. Analysis of strata behavior process characteristics of gob‐side entry retaining with roof cutting and pressure releasing based on composite roof structure
CN111810239B (zh) 煤矿突水危险预警方法及岩体单一裂隙发育范围计算方法
CN110761841B (zh) 一种基于微震监测的矿井群工作面开采互扰范围计算方法
Tan et al. A New Mining Scheme for Hanging‐Wall Ore‐Body during the Transition from Open Pit to Underground Mining: A Numerical Study
Zhang et al. Mechanism and prevention and control of mine earthquake in thick and hard rock strata considering the horizontal stress evolution of stope
CN114519257A (zh) 一种地表沉陷类别预计方法
Wu et al. Spatial and temporal microseismic evolution before rock burst in steeply dipping thick coal seams under alternating mining of adjacent coal seams
Wang et al. Numerical investigation into evolution of crack and stress in residual coal pillars under the influence of longwall mining of the adjacent underlying coal seam
Hosseini et al. Induced microseismic monitoring in salt caverns
Lyu et al. [Retracted] Mining Stress Distribution in Stope and Overlying Rock Fracture Characteristics and Its Disaster‐Pregnant Mechanism of Coal Mine Earthquake
Wang et al. Breaking and Instability Movement Characteristics of High‐Position Double‐Layer Hard Thick Strata due to Longwall Mining
Cao et al. Construction and Application of “Active Prediction-Passive Warning” Joint Impact Ground Pressure Resilience Prevention System: Take the Kuan Gou Coal Mine as an Example
CN116910886B (zh) 一种岩溶地区的冲击能量预警方法及系统
Wang Seismic data correction and dynamic impact evaluation for assessing coal burst risks in underground mines
Tsusaka et al. A Challenge for Making a Risk Map of Lost Circulation Based on Geomechanical Evaluation in a Complex Carbonate Reservoir in Offshore Abu Dhabi
Chikande et al. Evaluation of tendon support in anisotropic jointed rockmass
Ding et al. Monitoring analysis and environmental assessment of mine subsidence based on surface displacement monitoring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943583

Country of ref document: EP

Kind code of ref document: A1