WO2023226394A1 - 一种高温气冷堆堆芯等温温度系数测量方法 - Google Patents

一种高温气冷堆堆芯等温温度系数测量方法 Download PDF

Info

Publication number
WO2023226394A1
WO2023226394A1 PCT/CN2022/140296 CN2022140296W WO2023226394A1 WO 2023226394 A1 WO2023226394 A1 WO 2023226394A1 CN 2022140296 W CN2022140296 W CN 2022140296W WO 2023226394 A1 WO2023226394 A1 WO 2023226394A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
reactivity
isothermal
cooled reactor
reactor core
Prior art date
Application number
PCT/CN2022/140296
Other languages
English (en)
French (fr)
Inventor
姚尧
张瑞祥
韩传高
王彤
余俨
梁舒婷
康祯
祁沛垚
常重喜
叶林
赵峰
马喜强
黄鹏
赵敬锴
张建刚
Original Assignee
西安热工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安热工研究院有限公司 filed Critical 西安热工研究院有限公司
Publication of WO2023226394A1 publication Critical patent/WO2023226394A1/zh

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/10Structural combination of fuel element, control rod, reactor core, or moderator structure with sensitive instruments, e.g. for measuring radioactivity, strain
    • G21C17/104Measuring reactivity
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/10Structural combination of fuel element, control rod, reactor core, or moderator structure with sensitive instruments, e.g. for measuring radioactivity, strain
    • G21C17/112Measuring temperature

Definitions

  • the present disclosure belongs to the field of nuclear reactor core physical testing, and relates to a method for measuring the isothermal temperature coefficient of a high-temperature gas-cooled reactor core.
  • the high-temperature gas-cooled reactor nuclear power unit is an advanced reactor type with the characteristics of fourth-generation nuclear power technology. It is one of the main reactor types in the development of nuclear power today. Its most important characteristics are that it has a very large heat capacity and good core negative temperature reactivity. Coefficient is a characteristic of the inherent safety of high-temperature gas-cooled reactors.
  • the temperature of the primary circuit of the pressurized water reactor nuclear power unit is adjusted at T ref ⁇ 1°C, and the linear segment is selected for processing to obtain the isothermal temperature coefficient.
  • the published patent CN201611052690.0 uses a correction method to compensate for the control rod position and critical boron concentration, and can obtain relatively satisfactory results.
  • High-temperature gas-cooled reactors use graphite as the moderator and helium as the coolant.
  • the coolant does not contain boron, a soluble poison, and the heat capacity of the high-temperature gas-cooled reactor is larger.
  • the coolant helium and heat transfer rate are higher than those of pressurized water reactors or pressurized water reactors.
  • Liquid metal-cooled fast reactors are much slower, so the isothermal temperature coefficient measurement method used in pressurized water reactors or liquid metal-cooled fast reactors is not suitable for high-temperature gas-cooled reactors, and will produce large measurement errors.
  • the purpose of this disclosure is to overcome the above-mentioned shortcomings of the prior art and provide a method for measuring the isothermal temperature coefficient of a high-temperature gas-cooled reactor core, which can accurately measure the isothermal temperature coefficient of a high-temperature gas-cooled reactor core.
  • the method for measuring the isothermal temperature coefficient of the high-temperature gas-cooled reactor core disclosed in the present disclosure includes the following steps:
  • the main helium blower operates at reduced frequency to gradually cool down the primary circuit
  • ⁇ T 1 ⁇ 2°C.
  • step 11 The specific process of step 11) is:
  • step 17 put in a water-cooled wall or take the waste heat out of the system to gradually cool down the primary loop.
  • the default value is 2pcm/°C.
  • the high-temperature gas-cooled reactor isothermal temperature coefficient ⁇ (T) rises and the high-temperature gas-cooled reactor isothermal temperature coefficient ⁇ (T) decreases to calculate the high-temperature gas at B°C.
  • the isothermal temperature coefficient of the cold reactor core avoids the measurement error caused by the large thermal capacity buffer of the high-temperature gas-cooled reactor, thereby obtaining a more accurate isothermal temperature coefficient.
  • the disclosed method for measuring the isothermal temperature coefficient of the high-temperature gas-cooled reactor core includes the following steps:
  • the main helium blower is operated at a reduced frequency, and a water-cooled wall is put in or the waste heat is exported into the system to gradually cool down the primary circuit;
  • ⁇ T 1 ⁇ 2°C
  • This disclosure aims at the problems of large heat capacity and large thermal inertia of the high-temperature gas-cooled reactor core. It heats up the primary circuit in a large range, and measures the reactivity corresponding to each temperature step to obtain the temperature-reactivity within a certain temperature range. Fit the curve, and according to the slope of the fitting curve at the determined temperature, obtain the isothermal temperature coefficient corresponding to the rising edge of this temperature. The same cooling operation is performed to obtain the isothermal temperature coefficient of the falling edge of this temperature. The above operations are performed cyclically until the difference between the two isothermal temperature coefficients is ⁇ 2pcm/°C; the final isothermal temperature coefficient is the average of the rising and falling edge isothermal temperature coefficients.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

本公开提出一种高温气冷堆堆芯等温温度系数测量方法,包括以下步骤:1)绘制一回路温度上升段范围内的温度-反应性拟合曲线,将B℃处温度-反应性拟合曲线的斜率作为高温气冷堆等温温度系数α(T) 上升;2)绘制一回路温度下降段范围内的温度-反应性拟合曲线,将B℃处温度-反应性拟合曲线的斜率作为高温气冷堆等温温度系数α(T) 下降;3)计算B℃处高温气冷堆堆芯的等温温度系数α(T)=[α(T) 上 升+α(T) 下降]/2,该方法能够准确测量高温气冷堆堆芯的等温温度系数。

Description

一种高温气冷堆堆芯等温温度系数测量方法 技术领域
本公开属于核反应堆堆芯物理试验领域,涉及一种高温气冷堆堆芯等温温度系数测量方法。
背景技术
高温气冷堆核电机组是具有第四代核电技术特征的先进堆型,是当今核电发展的主力堆型之一,其最主要的特点是具有非常大的热容量和良好的堆芯负温度反应性系数,是高温气冷堆固有安全性的特点。
已公开的专利CN201811602298.8中,压水堆核电机组一回路温度在T ref±1℃进行调整,选取线性段进行处理得到等温温度系数。已公开的专利CN201611052690.0采用修正方法对控制棒棒位和临界硼浓度进行补偿修正,可以得到较为满意的结果。
高温气冷堆由于采用石墨作为慢化剂、氦气作为冷却剂,冷却剂中不含可溶毒物硼,且高温气冷堆热容量较大,冷却剂氦气和传热速率比压水堆或者液态金属冷却快堆都慢的多,因此压水堆或者液态金属冷却快堆所采用的等温温度系数测量方法不适用于高温气冷堆,会产生很大的测量误差。
发明内容
本公开的目的在于克服上述现有技术的缺点,提供了一种高温气冷堆堆芯等温温度系数测量方法,该方法能够准确测量高温气冷堆堆芯的等温温度系数。
为达到上述目的,本公开的高温气冷堆堆芯等温温度系数测量方法包括以下步骤:
1)绘制一回路温度上升段范围内的温度-反应性拟合曲线,将B℃处温度-反应性拟合曲线的斜率作为高温气冷堆等温温度系数α(T) 上升
2)绘制一回路温度下降段范围内的温度-反应性拟合曲线,将B℃处温度-反应性拟合曲线的斜率作为高温气冷堆等温温度系数α(T) 下降
3)计算B℃处高温气冷堆堆芯的等温温度系数α(T)=[α(T) 上升+α(T) ]/2。
具体包括以下步骤:
11)进行前期准备工作;
12)将一回路加热温度至A℃,停止一回路加热,在该温度下主氦风机的全速稳定运行超过Nmin后,记录该温度下的反应性;
13)重新投入一回路加热,待一回路温度升高ΔT℃后,停止一回路加热,再保持一回路的温度稳定;
14)等待超过Nmin后,记录当前温度下的反应性;
15)重复步骤13)至步骤14),直至一回路温度达到C℃为止;
16)绘制一回路温度上升段范围内的温度-反应性拟合曲线,将B℃处温度-反应性拟合曲线的斜率作为高温气冷堆等温温度系数α(T) 上升,其中,A<B<C;
17)主氦风机降频运行,对一回路进行逐步降温;
18)待一回路温度降低ΔT℃后,切除水冷壁,保持一回路温度稳定;
19)在该温度下保持稳定超过Nmin后,记录当前温度下的反应性;
110)重复步骤17)至步骤19),直至一回路温度降低至A℃为止;
111)绘制一回路温度下降段范围内的温度-反应性拟合曲线,将B℃处温度-反应性拟合曲线的斜率作为高温气冷堆等温温度系数α(T) 下降
112)计算差值Δα=α(T) 上升-α(T) 下降
113)重复步骤11)至步骤112),直至∣Δα∣≤预设值为止;
116)计算B℃处高温气冷堆堆芯的等温温度系数α(T)=[α(T) 上升+α(T) 下降]/2。
B=250;C=260;A=240。
ΔT的取值范围在1~2℃。
步骤11)的具体过程为:
11a)将吸收球全部至于反应堆顶部;
11b)将控制棒至于临界棒位处;
11c)反应堆功率维持在核加热点以下;
11d)反应性仪已经投入监测反应性;
11e)主氦风机全速稳定运行,一回路加热投入。
步骤17)中,投入水冷壁或者将余热导出系统对一回路进行逐步降温。
N=30。
预设值为2pcm/℃。
本公开具有以下有益效果:
本公开的高温气冷堆堆芯等温温度系数测量方法在具体操作时,高温气冷堆等温温度系数α(T) 上升及高温气冷堆等温温度系数α(T) 下降计算 B℃处高温气冷堆堆芯的等温温度系数,避免高温气冷堆较大热容量缓冲带来的测量误差,从而获得较为准确的等温温度系数。
具体实施方式
为了使本技术领域的人员更好地理解本公开方案,下面将结合本公开实施例,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分的实施例,不是全部的实施例,而并非要限制本公开公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要的混淆本公开公开的概念。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本公开保护的范围。
本公开的高温气冷堆堆芯等温温度系数测量方法包括以下步骤:
1)将吸收球全部至于反应堆顶部;
2)将控制棒至于临界棒位处;
3)反应堆功率维持在核加热点(POAH点)以下;
4)反应性仪已经投入监测反应性;
5)主氦风机全速稳定运行,一回路加热投入;
6)将一回路加热温度至240℃,停止一回路加热,在该温度下主氦风机的全速稳定运行超过30min后,记录该温度下的反应性;
7)重新投入一回路加热,待一回路温度升高ΔT℃后,停止一回路加热,再保持一回路的温度稳定;
8)等待超过30min后,记录当前温度下的反应性;
9)重复步骤7)至步骤8),直至一回路温度达到260℃为止;
10)绘制一回路温度上升段范围内的温度-反应性拟合曲线,将250℃处温度-反应性拟合曲线的斜率作为高温气冷堆等温温度系数α(T) 上升
11)主氦风机降频运行,投入水冷壁或者将余热导出系统对一回路进行逐步降温;
12)待一回路温度降低ΔT℃后,切除水冷壁,保持一回路温度稳定;
13)在该温度下保持稳定超过30min后,记录当前温度下的反应性;
14)重复步骤11)至步骤13),直至一回路温度降低至240℃为止;
15)绘制一回路温度下降段范围内的温度-反应性拟合曲线,将250℃处温度-反应性拟合曲线的斜率作为高温气冷堆等温温度系数α(T) 下降
16)计算差值Δα=α(T) 上升-α(T) 下降
17)重复步骤5)至步骤16),直至∣Δα∣≤2pcm/℃为止;
18)计算250℃处的等温温度系数α(T),其中,250℃处的等温温度系数为250℃处温度上升段和下降段等温温度系数的平均值,即α(T)=[α(T) 上升+α(T) 下降]/2。
其中,ΔT的取值范围在1~2℃;
需要说明的是,高温气冷堆其他温度下的等温温度系数获取方法类似。
本公开针对高温气冷堆堆芯热容量大、热惯性大的问题,在较大范围内对一回路进行升温,并测量每个温度台阶对应的反应性,获取一定温度范围内的温度—反应性拟合曲线,根据拟合曲线在确定温度处的斜率,得到此温度对应上升沿的等温温度系数。同样进行降温操作,得到此温度下降沿的等温温度系数。循环进行上述操作,直到两者等温温度 系数差值≤2pcm/℃;最终的等温温度系数取上升沿和下降沿等温温度系数的平均值。

Claims (8)

  1. 一种高温气冷堆堆芯等温温度系数测量方法,其特征在于,包括以下步骤:
    1)绘制一回路温度上升段范围内的温度-反应性拟合曲线,将B℃处温度-反应性拟合曲线的斜率作为高温气冷堆等温温度系数α(T) 上升
    2)绘制一回路温度下降段范围内的温度-反应性拟合曲线,将B℃处温度-反应性拟合曲线的斜率作为高温气冷堆等温温度系数α(T) 下降
    3)计算B℃处高温气冷堆堆芯的等温温度系数α(T)=[α(T) 上升+α(T) ]/2。
  2. 根据权利要求1所述的高温气冷堆堆芯等温温度系数测量方法,其特征在于,具体包括以下步骤:
    11)进行前期准备工作;
    12)将一回路加热温度至A℃,停止一回路加热,在该温度下主氦风机的全速稳定运行超过Nmin后,记录该温度下的反应性;
    13)重新投入一回路加热,待一回路温度升高ΔT℃后,停止一回路加热,再保持一回路的温度稳定;
    14)等待超过Nmin后,记录当前温度下的反应性;
    15)重复步骤13)至步骤14),直至一回路温度达到C℃为止;
    16)绘制一回路温度上升段范围内的温度-反应性拟合曲线,将B℃处温度-反应性拟合曲线的斜率作为高温气冷堆等温温度系数α(T) 上升,其中,A<B<C;
    17)主氦风机降频运行,对一回路进行逐步降温;
    18)待一回路温度降低ΔT℃后,切除水冷壁,保持一回路温度稳定;
    19)在该温度下保持稳定超过Nmin后,记录当前温度下的反应性;
    110)重复步骤17)至步骤19),直至一回路温度降低至A℃为止;
    111)绘制一回路温度下降段范围内的温度-反应性拟合曲线,将B℃处温度-反应性拟合曲线的斜率作为高温气冷堆等温温度系数α(T) 下降
    112)计算差值Δα=α(T) 上升-α(T) 下降
    113)重复步骤11)至步骤112),直至∣Δα∣≤预设值为止;
    116)计算B℃处高温气冷堆堆芯的等温温度系数α(T)=[α(T) 上升+α(T) 下降]/2。
  3. 根据权利要求2所述的高温气冷堆堆芯等温温度系数测量方法,其特征在于,B=250;C=260;A=240。
  4. 根据权利要求2所述的高温气冷堆堆芯等温温度系数测量方法,其特征在于,ΔT的取值范围在1~2℃。
  5. 根据权利要求2所述的高温气冷堆堆芯等温温度系数测量方法,其特征在于,步骤11)的具体过程为:
    11a)将吸收球全部至于反应堆顶部;
    11b)将控制棒至于临界棒位处;
    11c)反应堆功率维持在核加热点以下;
    11d)反应性仪已经投入监测反应性;
    11e)主氦风机全速稳定运行,一回路加热投入。
  6. 根据权利要求2所述的高温气冷堆堆芯等温温度系数测量方法,其特征在于,步骤17)中,投入水冷壁或者将余热导出系统对一回路进行逐步降温。
  7. 根据权利要求2所述的高温气冷堆堆芯等温温度系数测量方法,其特征在于,N=30。
  8. 根据权利要求2所述的高温气冷堆堆芯等温温度系数测量方法,其特征在于,预设值为2pcm/℃。
PCT/CN2022/140296 2022-05-25 2022-12-20 一种高温气冷堆堆芯等温温度系数测量方法 WO2023226394A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210577096.2A CN114822888A (zh) 2022-05-25 2022-05-25 一种高温气冷堆堆芯等温温度系数测量方法
CN202210577096.2 2022-05-25

Publications (1)

Publication Number Publication Date
WO2023226394A1 true WO2023226394A1 (zh) 2023-11-30

Family

ID=82517580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140296 WO2023226394A1 (zh) 2022-05-25 2022-12-20 一种高温气冷堆堆芯等温温度系数测量方法

Country Status (2)

Country Link
CN (1) CN114822888A (zh)
WO (1) WO2023226394A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114822888A (zh) * 2022-05-25 2022-07-29 西安热工研究院有限公司 一种高温气冷堆堆芯等温温度系数测量方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163803A (ja) * 2013-02-25 2014-09-08 Mitsubishi Heavy Ind Ltd 反応度温度係数推定装置及び方法
CN106782709A (zh) * 2016-11-25 2017-05-31 福建福清核电有限公司 一种零功率物理试验等温温度系数测量值修正方法
CN109741840A (zh) * 2018-12-26 2019-05-10 福建福清核电有限公司 一种等温温度系数测量的优化方法
CN114822888A (zh) * 2022-05-25 2022-07-29 西安热工研究院有限公司 一种高温气冷堆堆芯等温温度系数测量方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163803A (ja) * 2013-02-25 2014-09-08 Mitsubishi Heavy Ind Ltd 反応度温度係数推定装置及び方法
CN106782709A (zh) * 2016-11-25 2017-05-31 福建福清核电有限公司 一种零功率物理试验等温温度系数测量值修正方法
CN109741840A (zh) * 2018-12-26 2019-05-10 福建福清核电有限公司 一种等温温度系数测量的优化方法
CN114822888A (zh) * 2022-05-25 2022-07-29 西安热工研究院有限公司 一种高温气冷堆堆芯等温温度系数测量方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHOU-YIN HU, WANG RUI-PIAN, JING XING-QING, LIANG XI-HUA: "Measurement and Evaluation of Temperature Coefficient of 10 MW High Temperature Gas-Cooled Reactor-Test Module", NUCLEAR POWER ENGINEERING, vol. 25, no. 4, 28 August 2004 (2004-08-28), pages 301 - 304, XP093111775 *

Also Published As

Publication number Publication date
CN114822888A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
Araki et al. Measurement of thermophysical properties of molten salts: mixtures of alkaline carbonate salts
WO2023226394A1 (zh) 一种高温气冷堆堆芯等温温度系数测量方法
CN101105986A (zh) 反应堆反应性测量方法
CN110849761B (zh) 一种高温热管传热性能测试装置及其测试方法
CN102810338A (zh) 一种钠冷快堆钠空泡反应性的测量方法及钠空泡实验组件
CN106782709B (zh) 一种零功率物理试验等温温度系数测量值修正方法
Saito et al. Measurement and evaluation on pulsing characteristics and experimental capability of NSRR
CN106221678B (zh) 一种低熔点高传热性能的硝酸熔盐及其应用
Greene et al. Experimental study of a solid-deuterium source of ultracold neutrons
Stone et al. Transient behavior of TRIGA, a Zirconium-Hydride, water-moderated reactor
CN102982853A (zh) 一种反应堆堆芯水位探测器及其水位测量方法
CN217008661U (zh) 一种全自然循环一体化反应堆进出口温度测量装置
CN107389740B (zh) 一种受热面烟气侧磨损量及腐蚀量的在线监测系统
CN205102955U (zh) 一种真空绝热热量计
CN114420330A (zh) 一种全自然循环一体化反应堆进出口温度测量装置
Tucker et al. High-fluence irradiation growth of zirconium alloys at 644 to 725 K
CN109741840A (zh) 一种等温温度系数测量的优化方法
CN113851238A (zh) 一种高温气冷堆吸收球反应性价值测定的方法
JPS6211317B2 (zh)
CN108877968B (zh) 一种适用于反应堆内材料释热率的测量装置
CN115855745B (zh) 一种测定7系铝合金材料在熔炼过程中熔速的方法
Nakamura et al. Thermal conductivity change in high burnup MOX fuel pellet
CN215856448U (zh) 一种直拉法单晶炉中监测并控制氩气温度的装置及单晶炉
CN117854772A (zh) 一种测量慢化剂温度系数的方法
CN220437147U (zh) 一种新的工艺石英管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943581

Country of ref document: EP

Kind code of ref document: A1