WO2023226026A1 - 一种室内施工机器人及其控制方法 - Google Patents

一种室内施工机器人及其控制方法 Download PDF

Info

Publication number
WO2023226026A1
WO2023226026A1 PCT/CN2022/095724 CN2022095724W WO2023226026A1 WO 2023226026 A1 WO2023226026 A1 WO 2023226026A1 CN 2022095724 W CN2022095724 W CN 2022095724W WO 2023226026 A1 WO2023226026 A1 WO 2023226026A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
indoor construction
construction robot
wall
execution part
Prior art date
Application number
PCT/CN2022/095724
Other languages
English (en)
French (fr)
Inventor
陈海伦
崔家旭
周伟
何凯
柳冠伊
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Priority to PCT/CN2022/095724 priority Critical patent/WO2023226026A1/zh
Publication of WO2023226026A1 publication Critical patent/WO2023226026A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for

Definitions

  • the present invention belongs to the field of robotic equipment, and more specifically, relates to an indoor construction robot and a control method thereof.
  • Interior decoration generally includes processes such as puttying, sanding, roller coating, and tiling.
  • the decoration process is complex, labor-intensive, and requires high professionalism.
  • the industry's automation level is not high and its efficiency is low. Low, especially the dust and noise generated during grinding and decoration processes will harm the health of workers.
  • the decoration industry has encountered difficulties in recruiting workers and high labor costs. Therefore, the research and development of intelligent decoration robots is an inevitable trend in the interior decoration industry. In roller coating, spraying and polishing operations, there are some robots that can replace manual labor to complete part of the work.
  • the current mainstream decoration robots have the following shortcomings: (1) The work flatness is not high. Indoor decoration has high requirements on the flatness of working walls, and existing decoration robots still have a lot of room for improvement in terms of flatness. (2) Safety issues. Existing decoration robots mostly use 2D lidar to avoid obstacles. The moving plane of the robot is the scanning blind spot of the radar, which poses a great safety hazard. (3) It is bulky and has limited lifting space. Existing decoration robots are long in length, heavy in weight, and have limited lifting height. They are prone to blind spots in decoration in narrow rooms such as kitchens and bathrooms.
  • the purpose of the present invention is to provide an indoor construction robot and a control method thereof, aiming to solve the problems of existing decoration robots with low work flatness and large blind spots for obstacle avoidance.
  • One aspect of the present invention provides an indoor construction robot, including: a mobile base, an execution unit, a sensing unit and a control unit; wherein the execution unit includes a robotic arm and a job execution part connected to one end of the robotic arm;
  • the execution unit, sensing unit and control unit are all carried on the mobile base;
  • the sensing unit includes a laser radar provided on the mobile base and a displacement sensor provided on the operation execution part;
  • the mobile base, execution unit and sensing unit are all connected to the control unit.
  • a depth camera is provided at the front and rear of the mobile base.
  • the lifting unit is located on the moving base, and one end of the mechanical arm is connected to the top of the lifting unit.
  • the lifting unit includes a column-type lifting body and a column-type lifting motor.
  • job execution part is a spraying fixture
  • the spraying fixture includes a spraying fixture body, a nozzle and a displacement sensor.
  • the job execution part is a grinding fixture
  • the grinding fixture includes a displacement sensor, a grinding fixture body, a grinder and a constant force compensation element.
  • the operation execution part is a clamp for the male and female corner strips.
  • a depth camera with a pan/tilt is installed on the top of the control unit.
  • Another aspect of the present invention also provides a control method based on the above-mentioned indoor construction robot, including the following steps:
  • step S2 includes:
  • the angle is converted into quaternions and transmitted to the robotic arm;
  • the robotic arm adjusts its posture through the received quaternion so that the job execution part is parallel to the wall.
  • the indoor construction robot of the present invention uses a high-precision positioning mobile base to cooperate with the displacement sensor on the work execution part to calculate the angle between the work execution part and the wall and compensate for it, effectively ensuring that the robot wall working surface is flat degree, improving the work efficiency of the decoration robot;
  • the indoor construction robot of the present invention is equipped with 2D lidar and depth cameras at the front and rear of the mobile base, which can realize autonomous positioning and navigation of the indoor construction robot, and use the rich sensing information of the depth camera to compensate for the obstacle avoidance blind spots of the lidar such as low front and rear It can avoid objects and obstacles, thereby achieving 360° all-round obstacle avoidance, which greatly reduces potential safety hazards during the operation of the decoration robot;
  • the lifting unit in the indoor construction robot of the present invention can lift the execution unit to the required height, which is conducive to flexibly completing decoration operations at different heights while keeping the robot itself small.
  • Figure 1 The overall structure of the indoor construction robot according to the embodiment of the present invention.
  • Figure 2 is the front structure of the chassis of the indoor construction robot according to the embodiment of the present invention.
  • Figure 3 is the structure behind the chassis of the indoor construction robot according to the embodiment of the present invention.
  • Figure 4 is the mechanical arm structure of the indoor construction robot according to the embodiment of the present invention.
  • Figure 5 shows the spraying fixture of the indoor construction robot according to the embodiment of the present invention
  • Figure 6 is a schematic diagram of the error compensation principle in the embodiment of the present invention.
  • Figure 7 shows the grinding fixture of the indoor construction robot according to the embodiment of the present invention.
  • Figure 8a is the structure of the indoor construction robot when the column-type lifting is at its lowest attitude according to the embodiment of the present invention
  • Figure 8b is the structure when the column-type lifting and lowering of the indoor construction robot is at the highest posture according to the embodiment of the present invention
  • Figure 9a is the control cabinet of the indoor construction robot according to the embodiment of the present invention
  • Figure 9b is the front and left side structure of the control cabinet of the indoor construction robot according to the embodiment of the present invention
  • Figure 9c is the control cabinet of the indoor construction robot according to the embodiment of the present invention.
  • the right side structure of the indoor construction robot is the rear structure of the control cabinet of the indoor construction robot according to the embodiment of the present invention.
  • 100-Job execution department 200-Control unit, 300-Robotic arm, 400-Lifting unit, 500-Mobile base, 101-Spraying fixture body, 102-Nozzle, 103-Displacement sensor, 104-Grinding fixture body, 105-Grinding device, 106-constant force compensation component (ACF), 201-air compressor, 202-data acquisition card, 203-solenoid valve, 204-wiring board, 205-PLC, 206-depth camera, 207-column lift motor driver , 208-robotic arm control cabinet, 209-industrial computer, 210-constant force compensation component control cabinet, 401-column lifting body, 402-column lifting motor, 501-chassis body, 502-chassis front camera, 503- Chassis rear camera.
  • ACF constant force compensation component
  • an embodiment of the present invention proposes an indoor construction robot, including an execution unit, a control unit 200, a lifting unit 400, a mobile base 500 and a sensing unit (not shown in Figure 1); wherein,
  • the execution unit includes a robot arm 300 and a job execution part 100. One end of the robot arm 300 is connected to the lifting unit 400, and the other end is connected to the job execution part 100.
  • the job execution part 100, the control unit 200, the robotic arm 300, the sensing unit and the lifting unit 400 are all carried on the mobile base 500.
  • the lifting unit 400 stands on the mobile base, and the mobile base 500 is mainly used as a carrying platform.
  • the mobile base is a mobile chassis.
  • the mobile base 500 includes a mobile chassis body 501, which is equipped with two laser radars (not shown in the figure), which can realize 360° mapping, navigation and obstacle avoidance. Before starting the formal work, first map the working environment. After the mapping is completed, set the work target point. The mobile base 500 will independently plan the work path according to the set work target point, and cooperate with other modules to complete the wall work requirements.
  • a depth camera is installed at the front and rear of the mobile chassis body 501, namely a chassis front camera 502 and a chassis rear camera 503, as shown in Figure 2-3. Since lidar can only scan a plane with a fixed height, there is a large scanning blind area. Therefore, the present invention installs a depth camera at the front and rear of the mobile base. The wide viewing angle range of the depth camera can be used to see low obstacles on the ground.
  • the obstacle feature points detected by the depth camera are projected onto the scanning plane of the two-dimensional lidar, and are displayed on the obstacle map layer together with the obstacles detected by the lidar as an avoidance method during the robot's navigation. Obstacle basis.
  • the rich perception information of the depth camera is used to make up for the obstacle avoidance blind area of the lidar, which greatly reduces the safety hazards caused by low obstacles during the movement of the robot, and can achieve high-precision autonomous positioning and navigation.
  • the robotic arm 300 adopts a six-degree-of-freedom robotic arm. As shown in Figure 4, there are a first joint, a second joint, a third joint, a fourth joint, a fifth joint and a sixth joint. These six joints are The rotating joints are connected in sequence, the first joint is installed on the top of the lifting unit 400 , and the sixth joint is connected to the job execution part 100 .
  • the work execution part 100 includes fixtures, and the types of fixtures are selected according to different decoration processes.
  • the decorations that can be realized by the present invention include but are not limited to spraying, roller coating, grinding and attaching Yin and Yang corner strips, etc.
  • the corresponding fixtures can be spraying fixtures, grinding fixtures, Yin and Yang corner strip fixtures, etc.
  • the spraying fixture includes a spraying fixture body 101, a nozzle 102 and a displacement sensor 103.
  • the displacement sensor 103 is used to realize the horizontal secondary adjustment of the clamp during decoration operations. Due to the error in the movement of the mobile chassis body 501, the chassis cannot be parallel to the wall. There is an angle between the two, which makes it impossible to make the clamp on the robotic arm parallel to the wall, making it impossible to meet the work requirements when working on the wall. .
  • Two displacement sensors 103 are provided on the clamp for adjusting the angle ⁇ between the clamp and the wall. The compensation process will be introduced in detail below in conjunction with Figure 6.
  • the line segment AC in the figure represents the wall.
  • the displacement sensors are placed at both ends of the fixture, represented by points B and D respectively.
  • the distance between the two sensors is a constant value L
  • the angle between the fixture and the wall is represented by ⁇ .
  • the two displacement sensors measure the distances AB and CD from the wall respectively, and satisfy the following geometric relationships with L and ⁇ :
  • the angle between the clamp and the wall can be calculated based on the measurement value of the displacement sensor 103 .
  • the spraying fixture, the robotic arm 300, the air compressor 201, the solenoid valve 203 and the PLC 205 (the latter three are located in the control unit 200, Figure 9b) together form a spraying system.
  • the working principle of the spraying system is: after the robot arm adjusts its attitude so that the spraying fixture is parallel to the wall, the robot arm starts working according to the planned path.
  • the air compressor and PLC respectively ventilate and power the solenoid valve to connect the solenoid valve channels. And output high-pressure gas to the nozzle, the nozzle turns on the switch under the action of high-pressure gas, and sprays putty to spray the wall surface.
  • the grinding fixture When the indoor construction robot performs grinding work, a grinding fixture needs to be used. As shown in Figure 7, the grinding fixture includes a displacement sensor 103, a grinding fixture body 104, a grinder 105 and a constant force compensation element (ACF) 106. It can be understood that the function of the displacement sensor 103 is the same as its function in the spraying fixture, which is to adjust the fixture to be parallel to the wall surface, thereby ensuring the smoothness of the work.
  • ACF constant force compensation element
  • the grinding system consists of a grinding fixture, a robotic arm 200, an air compressor and a constant force compensation element control cabinet 210 (located in the control unit 200, Figure 9d).
  • the working principle of the grinding system is as follows: after the robot arm adjusts its posture so that the grinding fixture is parallel to the wall, the robot arm starts working according to the planned path.
  • the air compressor supplies a certain pressure of gas to the constant force compensation component.
  • the constant force compensation element outputs a constant force, so that the force between the grinder and the wall remains constant. This completes the grinding work.
  • a depth camera 206 with a pan/tilt is installed on the top of the control unit (Fig. 9b) to assist in completing the function of attaching the Yin and Yang corner strips.
  • the Yin and Yang corner strip clamp at the end of the robotic arm clamps the Yin and Yang corner strips to be mounted. After clamping, the robotic arm will keep the Yin and Yang corner strips in a vertical state.
  • the relative positions of the Yin and Yang corner bar clamps, the robotic arm and the depth camera are known, and the depth camera can detect and identify the corner lines of the Yin and Yang corner bars.
  • the industrial computer calculates the relative position and attitude of the clamped yin-yang angle strip and the target yin-yang angle, controls the robot arm to move toward the target yin-yang angle in real time and maintains the clamped yin-yang angle strip and the target yin-yang angle. Keep the corner lines parallel until the two straight lines overlap to complete the placement of the Yin and Yang corner strips.
  • the lifting unit 400 is located on the mobile base 500, as shown in Figures 1, 8a and 8b.
  • the lifting unit 400 includes a column lifting body 401 and a column lifting motor 402, which are driven and controlled by a column lifting motor driver and an industrial computer (located in the control unit 200).
  • the industrial computer sends a rising command to the column lift motor driver.
  • the column lift motor driver drives the column lift motor to work.
  • the column lift motor drives the column lift body to rise, thus Raise the height of the robotic arm to complete work on higher parts of the wall.
  • the robot is often designed to be longer in length, bulky, and has limited lifting space.
  • the lifting unit in this embodiment is conducive to keeping the robot itself small in size. , flexibly complete decoration operations at different heights. It can be understood that for single working height application scenarios, the lifting unit is not necessary, and it can be optionally set according to different industrial application scenarios.
  • the sensing unit is used to collect information about the robot body and the surrounding environment, including but not limited to the displacement sensor 103 provided on the job execution part, the laser radar and depth camera located on the mobile base 500, etc.
  • control unit 200 includes a control cabinet (Fig. 9a) installed on top of the mobile base. There is a display screen on the outside of the control cabinet, which is used to display the real-time operating status of the system and control the indoor construction robot. As shown in Figures 9b, 9c, and 9d, the air compressor 201, data acquisition card 202, solenoid valve 203, wiring board 204, PLC205, column lift motor driver 207, robot arm control cabinet 208, and industrial computer are placed inside the control cabinet. 209.
  • Constant force compensation component control cabinet 210 and power management system, etc. and a certain counterweight space is reserved to adjust the overall balance of the robot.
  • the industrial computer 209 serves as the main control component and communicates with functional modules such as the mobile base 500, the lifting unit 400, the robotic arm 300, the displacement sensor, the depth camera, the PLC 205, the power management system, and the display screen.
  • This embodiment also provides a control method based on the above-mentioned indoor construction robot, including the following steps:
  • the specific working process and working principle are: after the indoor construction robot enters the room, it performs path planning through the laser radar on the chassis. When the path planning is completed, the indoor construction robot moves to the starting point of the path;
  • the industrial computer will process the distance data AB and CD according to the received data and the operation.
  • the length data L of the execution part is used to calculate the angle between the fixture and the wall, and based on the conversion relationship between Euler angles and quaternions, the angle is converted into quaternions and transmitted to the robotic arm.
  • the robotic arm receives the The quaternion adjusts the posture to compensate for the angle between the fixture and the wall, making the fixture parallel to the wall;
  • the indoor construction robot begins formal work on the wall. After the indoor construction robot completes the work on the lower wall, the lifting unit of the indoor construction robot works so that the higher wall is within the working range of the machine, thereby completing the work on the higher wall.

Abstract

本发明公开了一种室内施工机器人,属于机器人设备领域。所述室内施工机器人包括:移动基部、执行单元、传感单元和控制单元;其中,所述执行单元包括机械臂和连接于机械臂一端的作业执行部;所述执行单元、传感单元和控制单元均运载于所述移动基部之上;所述传感单元包括设于所述移动基部上的激光雷达,以及设于所述作业执行部上的位移传感器;所述移动基部、执行单元和传感单元均与所述控制单元连接。本发明通过高精度定位的移动基部配合作业执行部上的位移传感器,有效保证了机器人墙面作业平面平整度,提高了装修机器人的工作效率。

Description

一种室内施工机器人及其控制方法 技术领域
本发明属于机器人设备领域,更具体地,涉及一种室内施工机器人及其控制方法。
背景技术
目前,室内装修行业还属于劳动密集型产业,室内装修一般包括刮腻子、打磨、滚涂、贴瓷砖等工序,装修工序复杂,劳动强度大,专业性要求高,行业的自动化水平不高,效率低下,尤其是打磨作业、装修过程中产生的粉尘和噪音会损害工人的身体健康。
而且,随着劳动工人文化水平的不断提高,装修行业出现了招工困难,人力成本高的现象,所以智能装修机器人的研发是室内装修行业的必然趋势。在滚涂、喷涂以及打磨作业中,出现了个别能代替人工完成部分作业内容的机器人。然而,目前主流的装修机器人存在以下缺点:(1)作业平整度不高。室内装修对作业墙面的平整度具有很高的要求,现有的装修机器人在平整度方面仍有很大的改善空间。(2)安全问题。现存的装修机器人多采用2D激光雷达避障,机器人的移动平面是雷达的扫描盲区,具有较大的安全隐患。(3)体积庞大,升降空间有限。现存的装修机器人长度较长,重量大,升降高度有限,在厨房、卫生间等狭窄的室内易产生装修盲区。
发明内容
针对相关技术的缺陷,本发明的目的在于提供一种室内施工机器人及其控制方法,旨在解决现有装修机器人作业平整度不高、避障盲区较大的问题。
本发明的一个方面提供了一种室内施工机器人,包括:移动基部、执行单元、传感单元和控制单元;其中,所述执行单元包括机械臂和连接于机械臂一端的作业执行部;
所述执行单元、传感单元和控制单元均运载于所述移动基部之上;
所述传感单元包括设于所述移动基部上的激光雷达,以及设于所述作业执行部上的位移传感器;
所述移动基部、执行单元和传感单元均与所述控制单元连接。
进一步地,所述移动基部前后各设有一个深度相机。
进一步地,还包括升降单元;
所述升降单元位于所述移动基部上,所述机械臂的一端与所述升降单元的顶部连接。
进一步地,所述升降单元包括立柱式升降主体和立柱式升降电机。
进一步地,所述作业执行部为喷涂夹具;
所述喷涂夹具包括喷涂夹具主体、喷头和位移传感器。
进一步地,所述作业执行部为打磨夹具;
所述打磨夹具包括位移传感器、打磨夹具主体、打磨器和恒力补偿元件。
进一步地,所述作业执行部为阴阳角条夹具。
进一步地,所述控制单元的顶部装有带云台的深度相机。
本发明的另一方面还提供了一种基于上述室内施工机器人的控制方法,包括以下步骤:
S1、进行路径规划,控制所述机器人运动到路径的起始点;
S2、检测位移传感器与墙面之间的距离数据,利用所述距离数据获取所述作业执行部与墙面的夹角进行误差补偿;
S3、对墙面进行正式作业。
进一步地,,所述步骤S2包括:
检测两个位移传感器与墙面之间的距离数据,包括第一距离AB和第二距离CD;
根据所述第一距离AB、第二距离CD和所述作业执行部的长度数据,计算出所述作业执行部与墙面的夹角;
根据欧拉角与四元数之间的转换关系,将夹角转化为四元数,并传输给所述机械臂;
所述机械臂通过接收的四元数调整姿态,使得所述作业执行部与墙面平行。
通过本发明所构思的以上技术方案,与现有技术相比,能够取得以下有益效果:
(1)本发明室内施工机器人通过高精度定位的移动基部配合作业执行部上的位移传感器,计算出作业执行部与墙面之间的夹角并进行补偿,有效保证了机器人墙面作业平面平整度,提高了装修机器人的工作效率;
(2)本发明的室内施工机器人移动基部前后各装有2D激光雷达和深度相机,可以实现室内施工机器人的自主定位导航,利用深度相机的丰富感知信息弥补激光雷达的避障盲区如前后低矮物避障,从而实现360°全方位避障,极大降低了装修机器人运行过程中的安全隐患问题;
(3)本发明室内施工机器人中的升降单元,可将执行单元托举到所需的高度,有利于在保持机器人本身体积较小的前提下,灵活地完成位于不同高度的装修作业。
附图说明
图1本发明实施例的室内施工机器人的整体结构;
图2为本发明实施例的室内施工机器人的底盘正面结构;
图3为本发明实施例的室内施工机器人的底盘后面结构;
图4为本发明实施例的室内施工机器人的机械臂结构;
图5为本发明实施例的室内施工机器人的喷涂夹具;
图6为本发明实施例中误差补偿原理示意图;
图7为本发明实施例的室内施工机器人的打磨夹具;
图8a为本发明实施例的室内施工机器人的立柱式升降最低姿态时的结构;图8b为本发明实施例的室内施工机器人的立柱式升降最高姿态时的结构;
图9a为本发明实施例的室内施工机器人的控制柜;图9b为本发明实施例的室内施工机器人的控制柜正面与左侧面结构;图9c为本发明实施例的室内施工机器人的控制柜的右侧面结构;图9d为本发明实施例的室内施工机器人的控制柜的后面结构。
其中,图中各附图标记:
100-作业执行部、200-控制单元、300-机械臂、400-升降单元、500-移动基部、101-喷涂夹具主体、102-喷头、103-位移传感器、104-打磨夹具主体、105-打磨器、106-恒力补偿元件(ACF)、201-空气压缩机、202-数据采集卡、203-电磁阀、204-接线板、205-PLC、206-深度相机、207-立柱式升降电机驱动器、208-机械臂控制柜、209-工控机、210-恒力补偿元件控制柜、401-立柱式升降主体、402-立柱式升降电机、501-底盘主体、502-底盘前置相机、503-底盘后置相机。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
如图1所示,本发明实施例提出了一种室内施工机器人,包括执行单元、控制单元200、升降单元400、移动基部500和传感单元(图1中未标示出);其中,所述执行单元包括机械臂300和作业执行部100,机械臂 300的一端与升降单元400连接,另一端与作业执行部100相连。
作业执行部100、控制单元200、机械臂300、传感单元和升降单元400均运载于移动基部500之上。升降单元400立于移动基部上,移动基部500主要作为搭载平台,在一个实施例中,移动基部为移动底盘。
如图2,移动基部500包括一个移动底盘主体501,其上搭载有两个激光雷达(未在图中示出),可实现360°的建图、导航和避障。开始正式工作之前,先对工作的环境进行建图,建图完成后设置工作目标点,移动基部500将根据设置的工作目标点自主的规划工作路径,协同其他模块完成墙面作业要求。
优选地,在移动底盘主体501的前后各装有一个深度相机,即底盘前置相机502和底盘后置相机503,如图2-3所示。由于激光雷达只能扫描固定高度的平面,存在很大的扫描盲区,因此,本发明在移动基部前后各装一个深度相机,利用深度相机广阔的视角范围能看到地面上的低矮障碍物。机器人在自主导航过程中,将深度相机检测到的障碍物特征点投影到二维激光雷达的扫描平面上,与激光雷达探测到的障碍物一同表示在障碍地图层,作为机器人的导航时的避障依据。利用深度相机的丰富感知信息弥补激光雷达的避障盲区,极大减少了机器人移动过程中由于低矮障碍物带来的安全隐患,并能实现高精度的自主定位导航。
可选地,机械臂300采用六自由度机械臂,如图4所示,共设有第一关节、第二关节、第三关节、第四关节、第五关节和第六关节,这六个旋转关节顺次连接,第一关节安装于升降单元400的顶部,第六关节与作业执行部100连接。
作业执行部100包括夹具,而夹具种类则根据不同的装修工序进行选择。本发明可实现的装修包括但不限于喷涂、滚涂、打磨和贴阴阳角条等,对应的夹具可以是喷涂夹具、打磨夹具、阴阳角条夹具等等。
当室内施工机器人进行喷腻子的工作时需要用到喷涂夹具,如图5所 示,喷涂夹具包括喷涂夹具主体101、喷头102和位移传感器103。
位移传感器103用于实现装修作业时夹具的水平二次调整。由于移动底盘主体501在运动时存在误差,底盘无法与墙面平行,二者之间存在一个夹角,无法使机械臂上的夹具与墙面平行,使得对墙面进行作业时无法满足工作要求。夹具上设置两个位移传感器103,用于调整夹具与墙面之间的夹角ω。下面结合图6具体介绍补偿过程。
图中线段AC表示墙面,位移传感器置于夹具的两端,分别用B点和D点表示,两个传感器之间的距离为恒定值L,夹具与墙面之间的夹角用ω表示。两个位移传感器分别测得与墙面之间的距离AB和CD,与L、ω之间满足以下几何关系:
Figure PCTCN2022095724-appb-000001
因此,根据位移传感器103的测量值可计算出夹具与墙面的夹角。同时,已知欧拉角(ψ θ φ)与四元数表示的旋转矩阵R q之间存在转化关系:
Figure PCTCN2022095724-appb-000002
将ψ=0,θ=ω,
Figure PCTCN2022095724-appb-000003
带入上式,从而,根据夹角ω可得夹具相对于机械臂第六关节的补偿四元数q 1
Figure PCTCN2022095724-appb-000004
获取机械臂300当前的四元数q 2,通过q 1、q 2的数据,得出需要偏转的目标四元数q 3=q 1q 2。将q 3的数据传回机械臂,机械臂便会偏转至相应的角度,从而对角度误差进行补偿。
喷涂夹具、机械臂300、空气压缩机201、电磁阀203和PLC205(后三者位于控制单元200中,图9b)共同组成喷涂系统。喷涂系统的工作原理为:在机械臂调整姿态使得喷涂夹具与墙面平行后,机械臂按照规划的路径开始工作,同时空气压缩机和PLC分别给电磁阀通气和给电,使得电磁阀通道连通并输出高压气体给喷头,喷头在高压气体的的作用下打开开关,喷出腻子对墙面进行喷涂作业。
当室内施工机器人进行打磨工作时需要用到打磨夹具,如图7所示,打磨夹具包括位移传感器103、打磨夹具主体104、打磨器105和恒力补偿元件(ACF)106。可以理解的是,位移传感器103的作用与其在喷涂夹具中的作用相同,都是为了调整夹具与墙面平行,从而保证作业的平整度。
由打磨夹具、机械臂200、空气压缩机与恒力补偿元件控制柜210(位于控制单元200中,图9d)组成打磨系统。打磨系统的工作原理为:在机械臂调整姿态使得打磨夹具与墙面平行后,机械臂按照规划的路径开始工作,空气压缩机给恒力补偿元件通入一定压力的气体,在恒力补偿元件控制柜的控制下使得恒力补偿元件输出一个恒定的力,使得打磨器与墙面之间的作用力始终保持恒定。从而完成打磨工作。
在室内施工机器人进行贴阴阳角条时需要用到阴阳角条夹具,此时,控制单元顶部装有带云台的深度相机206(图9b),辅助完成贴装阴阳角条的功能。工作时,机械臂末端的阴阳角条夹具夹持住待贴装的阴阳角条,夹持后机械臂会使阴阳角条保持竖直的状态。阴阳角条夹具、机械臂以及深度相机的相对位置已知,深度相机可检测识别阴阳角条的角线。通过深度相机反馈的角线位置,工控机解算出夹持的阴阳角条与目标阴阳角的相对位置和姿态,实时控制机械臂向目标阴阳角移动并保持夹持的阴阳角条与目标阴阳角的角线保持平行,直到两直线重合,完成阴阳角条的贴装。
升降单元400位于移动基部500上,如图1、图8a和图8b所示。本发明的一个实施例中,升降单元400包括立柱式升降主体401和立柱式升降 电机402,由立柱式升降电机驱动器和工控机(位于控制单元200内)驱动控制。在室内施工机器人完成墙面较低处的作业后,工控机给立柱式升降电机驱动器发送上升指令,立柱式升降电机驱动器驱动立柱式升降电机工作,立柱式升降电机带动立柱式升降主体上升,从而提升机械臂的高度,从而完成墙面较高处的作业。现有技术中为了满足不同高度的作业需求,往往将机器人的长度设计得较长,体积庞大,升降空间有限,通过本实施例中的升降单元,有利于在保持机器人本身体积较小的前提下,灵活地完成位于不同高度的装修作业。可以理解的是,对于单一作业高度的应用场景来说,升降单元并不是必需的,其可根据不同的工业应用场景可选择地设置。
传感单元用于对机器人本体和周围环境的信息进行采集,包括但不限于设置在作业执行部上的位移传感器103、位于移动基部500上的激光雷达和深度相机等。
移动基部500、机械臂300、作业执行部100、升降单元400和传感单元均与所述控制单元200连接。在一个实施例中,控制单元200包括控制柜(图9a),安装在移动基部上部。控制柜的外部设置有显示屏,用于显示系统的实时运行状态以及对室内施工机器人进行操纵。如图9b、9c、9d所示,控制柜的内部放置空气压缩机201、数据采集卡202、电磁阀203、接线板204、PLC205、立柱式升降电机驱动器207、机械臂控制柜208、工控机209、恒力补偿元件控制柜210和电源管理系统等,并预留有一定的配重空间,以调整机器人的整体平衡。其中,工控机209作为主控部件,与移动基部500、升降单元400、机械臂300、位移传感器、深度相机、PLC205、电源管理系统、显示屏等功能模块均进行通讯连接。
本实施例还提供了一种基于上述室内施工机器人的控制方法,包括以下步骤:
S1、进行路径规划,控制所述机器人运动到路径的起始点;
S2、检测位移传感器与墙面之间的距离,利用所述距离获取所述作业执行部与墙面的夹角进行误差补偿;
S3、对墙面进行正式作业。
具体工作过程和工作原理为:室内施工机器人进入室内后,通过底盘上的激光雷达进行路径规划,当路径规划完成后,室内施工机器人运动到路径的起始点;
检测位移传感器与墙面之间的距离,将测得的距离数据AB和CD传输给数据采集卡,经过数据采集卡处理后传输给工控机,工控机根据接收的数据AB、CD和所述作业执行部的长度数据L,计算出夹具与墙面的夹角,并根据欧拉角与四元数之间的转换关系,将夹角转化为四元数传输给机械臂,机械臂通过接收的四元数调整姿态补偿夹具与墙面之间的夹角,使得夹具与墙面平行;
在误差补偿工作完成后室内施工机器人对墙面进行正式作业。在室内施工机器人完成较低处的墙面工作后,室内施工机器人的升降单元工作,使得较高处的墙面处于机械的工作范围内,从而完成较高墙面的作业。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种室内施工机器人,其特征在于,包括:移动基部、执行单元、传感单元和控制单元;其中,所述执行单元包括机械臂和连接于机械臂一端的作业执行部;
    所述执行单元、传感单元和控制单元均运载于所述移动基部之上;
    所述传感单元包括设于所述移动基部上的激光雷达,以及设于所述作业执行部上的位移传感器;
    所述移动基部、执行单元和传感单元均与所述控制单元连接。
  2. 如权利要求1所述的室内施工机器人,其特征在于,所述移动基部前后各设有一个深度相机。
  3. 如权利要求1所述的室内施工机器人,其特征在于,还包括升降单元;
    所述升降单元位于所述移动基部上,所述机械臂的一端与所述升降单元的顶部连接。
  4. 如权利要求3所述的室内施工机器人,其特征在于,所述升降单元包括立柱式升降主体和立柱式升降电机。
  5. 如权利要求1-4任一项所述的室内施工机器人,其特征在于,所述作业执行部为喷涂夹具;
    所述喷涂夹具包括喷涂夹具主体、喷头和位移传感器。
  6. 如权利要求1-4任一项所述的室内施工机器人,其特征在于,所述作业执行部为打磨夹具;
    所述打磨夹具包括位移传感器、打磨夹具主体、打磨器和恒力补偿元件。
  7. 如权利要求1-4任一项所述的室内施工机器人,其特征在于,所述作业执行部为阴阳角条夹具。
  8. 如权利要求7所述的室内施工机器人,其特征在于,所述控制单元的顶部装有带云台的深度相机。
  9. 一种基于权利要求1所述室内施工机器人的控制方法,其特征在于,包括以下步骤:
    S1、进行路径规划,控制所述机器人运动到路径的起始点;
    S2、检测位移传感器与墙面之间的距离数据,利用所述距离数据获取所述作业执行部与墙面的夹角进行误差补偿;
    S3、对墙面进行正式作业。
  10. 如权利要求9所述的控制方法,其特征在于,所述步骤S2包括:
    检测两个位移传感器与墙面之间的距离数据,包括第一距离AB和第二距离CD;
    根据所述第一距离AB、第二距离CD和所述作业执行部的长度数据,计算出所述作业执行部与墙面的夹角;
    根据欧拉角与四元数之间的转换关系,将夹角转化为四元数,并传输给所述机械臂;
    所述机械臂通过接收的四元数调整姿态,使得所述作业执行部与墙面平行。
PCT/CN2022/095724 2022-05-27 2022-05-27 一种室内施工机器人及其控制方法 WO2023226026A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/095724 WO2023226026A1 (zh) 2022-05-27 2022-05-27 一种室内施工机器人及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/095724 WO2023226026A1 (zh) 2022-05-27 2022-05-27 一种室内施工机器人及其控制方法

Publications (1)

Publication Number Publication Date
WO2023226026A1 true WO2023226026A1 (zh) 2023-11-30

Family

ID=88918200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095724 WO2023226026A1 (zh) 2022-05-27 2022-05-27 一种室内施工机器人及其控制方法

Country Status (1)

Country Link
WO (1) WO2023226026A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109702764A (zh) * 2019-01-30 2019-05-03 西安交通大学 一种室内墙体打磨与喷涂多功能移动式操作机器人
CN109914756A (zh) * 2019-03-19 2019-06-21 珠海心怡科技有限公司 基于室内施工智能机器人的室内墙体3d腻子打印平整处理方法
CN111054553A (zh) * 2020-01-02 2020-04-24 辽宁石油化工大学 多功能分体式全自主室内喷涂机器人
CN111360818A (zh) * 2020-01-15 2020-07-03 上海锵玫人工智能科技有限公司 一种通过视觉定位的机械臂控制系统
CN111872946A (zh) * 2020-07-02 2020-11-03 深圳先进技术研究院 一种室内装修机器人
WO2021191662A1 (en) * 2020-03-26 2021-09-30 Tavakolian Amirhossein Smart robot for preparation and painting buildings walls
US20210308710A1 (en) * 2018-10-19 2021-10-07 Transforma Robotics Pte Ltd Surface-coating robot operating system and method thereof
CN114508218A (zh) * 2022-04-19 2022-05-17 安徽同湃特机器人科技有限公司 一种室内喷涂机器人

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210308710A1 (en) * 2018-10-19 2021-10-07 Transforma Robotics Pte Ltd Surface-coating robot operating system and method thereof
CN109702764A (zh) * 2019-01-30 2019-05-03 西安交通大学 一种室内墙体打磨与喷涂多功能移动式操作机器人
CN109914756A (zh) * 2019-03-19 2019-06-21 珠海心怡科技有限公司 基于室内施工智能机器人的室内墙体3d腻子打印平整处理方法
CN111054553A (zh) * 2020-01-02 2020-04-24 辽宁石油化工大学 多功能分体式全自主室内喷涂机器人
CN111360818A (zh) * 2020-01-15 2020-07-03 上海锵玫人工智能科技有限公司 一种通过视觉定位的机械臂控制系统
WO2021191662A1 (en) * 2020-03-26 2021-09-30 Tavakolian Amirhossein Smart robot for preparation and painting buildings walls
CN111872946A (zh) * 2020-07-02 2020-11-03 深圳先进技术研究院 一种室内装修机器人
CN114508218A (zh) * 2022-04-19 2022-05-17 安徽同湃特机器人科技有限公司 一种室内喷涂机器人

Similar Documents

Publication Publication Date Title
US10718119B2 (en) Automated drywall sanding system and method
US11739542B2 (en) System for placing objects on a surface and method thereof
CN109914756B (zh) 基于室内施工智能机器人的室内墙体3d腻子打印平整处理方法
CN102985232B (zh) 用于位于可移动平台上的机器人的校准的方法
JP4716175B2 (ja) 施工支援方法及び施工支援システム
US11230016B1 (en) Multi-resolution localization system
WO2020077662A1 (zh) 一种工业建筑高墙表面涂装系统与方法
US20210040757A1 (en) Device and method for use in cleaning a facade
CN213174670U (zh) 多功能墙面处理智能机器人
CN111894247B (zh) 一种装饰面材铺贴方法、装置、系统及存储介质
EP3908431A1 (en) Surface finish quality evaluation system and method
CN110977962A (zh) 一种基于3d视觉的机器人打磨路径自动纠偏方法
WO2022012262A1 (zh) 一种自动定位钻孔及锚栓固定机器人
CN112207944A (zh) 建筑3d打印机器人设备及其控制方法和系统
JP2020165266A (ja) ボード貼付け方法、ボード貼付け装置、及びコンピュータプログラム
CN208379839U (zh) 一种大空间机器人模块隔断吊顶装修设备
WO2023226026A1 (zh) 一种室内施工机器人及其控制方法
JP7215056B2 (ja) 建築作業装置および建築作業方法
JP7332015B2 (ja) 建築作業装置および建築作業方法
CN114952885A (zh) 一种室内施工机器人及其控制方法
CN109895138A (zh) 建筑室内工程智能机器人的水平自稳平台及机器人
CN113845064B (zh) 一种具有圆形支脚的物料承载装置的定位方法及系统
CN108789424A (zh) 一种天花吊顶装修施工机器人
WO2022190240A1 (ja) 作業情報投影システム及び相対情報較正方法
CN117139000A (zh) 一种作业面的自适应喷涂方法、喷涂系统及喷涂机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943224

Country of ref document: EP

Kind code of ref document: A1