WO2023225879A1 - 超表面覆层、天线罩组件以及阵列天线 - Google Patents

超表面覆层、天线罩组件以及阵列天线 Download PDF

Info

Publication number
WO2023225879A1
WO2023225879A1 PCT/CN2022/094807 CN2022094807W WO2023225879A1 WO 2023225879 A1 WO2023225879 A1 WO 2023225879A1 CN 2022094807 W CN2022094807 W CN 2022094807W WO 2023225879 A1 WO2023225879 A1 WO 2023225879A1
Authority
WO
WIPO (PCT)
Prior art keywords
metasurface
array antenna
substrate
coating
array
Prior art date
Application number
PCT/CN2022/094807
Other languages
English (en)
French (fr)
Inventor
邹克利
陈特彦
李金凯
蔡元铭
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/094807 priority Critical patent/WO2023225879A1/zh
Publication of WO2023225879A1 publication Critical patent/WO2023225879A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems

Definitions

  • This application relates to the field of terminal technology.
  • it relates to a metasurface coating, a radome assembly, and an array antenna.
  • the antenna unit is a device used to radiate and receive radio waves and can complete the conversion between high-frequency current or guided waves and radio waves of the same frequency. It is a basic component of the radio system. For some application scenarios that have special requirements for antenna directivity and gain, a single antenna unit can no longer meet the performance requirements of wireless communication systems.
  • Array antennas are widely used in communications due to their high gain, narrow beam, low side lobes, and beam scanning or control.
  • an array antenna refers to an antenna system in which at least two antenna units are arranged according to a certain rule and obtain predetermined radiation characteristics through appropriate excitation.
  • a single antenna unit in the array antenna is the radiating unit. Side lobes refer to other radiation beams on the antenna pattern except the maximum radiation beam (that is, the main lobe).
  • Spatial division multiplexing technology can effectively alleviate the problem of scarcity of spectrum resources and site resources by allowing the same frequency band to be reused in different spaces to form different radiation beams in different user directions.
  • it is necessary to further reduce the side lobe level of the array antenna.
  • low side-lobe array antennas are increasingly used in the field of communication technology, and the research on low side-lobes of array antennas has become a research topic that more and more experts and scholars are paying increasing attention to. Therefore, how to further reduce the electromagnetic radiation in the area outside the main lobe and improve the performance of the array antenna has become an urgent technical problem to be solved in the field of wireless communication technology.
  • the array antenna includes a radiation array and a metasurface coating.
  • the radiation array includes at least two radiation array elements.
  • the metasurface coating includes a substrate and a resonant unit provided on the substrate. The metasurface coating covers the radiation end of the radiation array element, and the surface of the substrate intersects with the radiation direction of the radiation array.
  • the above-mentioned array antenna first uses a metasurface coating to offset and suppress the side lobe level of the original array antenna, and adjusts the pattern of the array antenna through the electromagnetic properties of the substrate and the resonance unit to achieve low side lobe processing of the array antenna.
  • the installation difficulty of the added metasurface coating in the array antenna is relatively low and can be directly applied to the existing array antenna that has been built.
  • the array antenna has high integration and compact structure.
  • a first aspect of the present application provides an array antenna, wherein the array antenna includes a radiation array and a metasurface coating.
  • the radiation array includes at least two radiation array elements.
  • the metasurface coating includes a substrate and a resonant unit provided on the substrate. The metasurface coating covers the radiation end of the radiation array element, and the surface of the substrate intersects with the radiation direction of the radiation array.
  • the substrate can be considered as a two-dimensional structure, and the surfaces of the substrate are the two larger planes on the substrate.
  • Metasurface cladding is a metamaterial.
  • Metasurface cladding is a layer of artificial layered material with a thickness smaller than the wavelength.
  • Metamaterials refer to structures with resonant units (subwavelength structures), and these processes change the dielectric constant and conductive properties of the material. Based on this, metasurface coatings can flexibly and effectively regulate electromagnetic wave polarization, amplitude, phase, polarization mode, propagation mode and other characteristics.
  • the metamaterial is a structure with periodically distributed resonant units.
  • the periodic distribution may be arranged in rows, columns, or rows and columns, and the distance between adjacent resonant units is a preset distance.
  • the periodically distributed resonant units on the metamaterial can also be distributed in other forms, which is not specifically limited in this application.
  • the metamaterial is a structure with non-periodically distributed resonant units. It can be understood that the non-periodic distribution can be arranged in rows, columns, or rows and columns, and the distances between adjacent resonant units are not the same.
  • the non-periodic distribution can also be that the resonant units do not follow a predetermined manner and are scattered randomly. Distributed in structure, this application does not specifically limit this.
  • a hollow resonant unit may be provided on the substrate, that is, the resonant unit penetrates both plate surfaces of the substrate.
  • a protruding resonant unit may be provided on the substrate, that is, the resonant unit is provided on the board surface.
  • protruding resonant units are provided on both surfaces of the substrate.
  • a protruding resonant unit is provided on one of the surfaces of the substrate.
  • a recessed resonant unit may be provided on the substrate, that is, one of the surfaces of the substrate through which the resonant unit penetrates.
  • the metasurface coating includes a substrate and a resonant unit provided on the substrate.
  • the metasurface coating is covered on the radiation end of the radiation array element, and the radiation direction of the radiation array passes through the surface of the substrate.
  • the above-mentioned array antenna first uses a metasurface coating to offset and suppress the side lobe level of the original array antenna, and adjusts the pattern of the array antenna through the electromagnetic properties of the substrate and the resonance unit to achieve low side lobe processing of the array antenna. Secondly, the installation difficulty of the added metasurface coating in the array antenna is relatively low and can be directly applied to the existing array antenna that has been built. Finally, the array antenna has high integration and compact structure.
  • the substrate is used to adjust the transmittance of the electromagnetic waves radiated by the radiation array
  • the resonant unit is used to adjust the transmission phase of the electromagnetic waves radiated by the radiation array
  • the outline of the resonant unit includes "H” type, "U” type, “C” type, “O” type, "mouth” type, " At least one of X” type, "Y” type, “Z” type, "T” type, and "L” type.
  • the substrate in the above-mentioned array antenna, in the metasurface coating, the substrate specifically includes at least two substrates, and the at least two substrates are overlapped along the radiation direction.
  • the distance between two adjacent substrates ranges from 3 mm to 7.5 mm, where the distance between two adjacent substrates is Minimum distance between substrates.
  • the minimum distance between two substrates may be the minimum value of the distance between any point on one substrate and any point on the other substrate.
  • the distance between two adjacent substrates is 5 mm.
  • the metasurface coating further includes a wave absorbing component, and the orthographic projection of the wave absorbing component on the substrate is at least partially located within the orthographic projection of the resonant unit on the substrate.
  • the wave-absorbing component may be a resistive component
  • the resistive component may be a chip resistor.
  • the wave absorbing component includes at least one of a photoresistor, a varistor, and a graphene material.
  • the above-mentioned array antenna further includes a ground plate (which can also be a reflective plate).
  • the ground plate has a first surface made of conductive material, and the radiation array is disposed on a third surface of the ground plate. On the surface.
  • the above-mentioned array antenna also includes a radome, the radome and the ground plate jointly form an accommodation cavity, the radiating array element is located in the accommodation cavity, and the metasurface coating is relative to the radome.
  • the layout position includes at least one of the following: the metasurface coating is located inside the accommodation cavity; or the metasurface coating is located outside the accommodation cavity; or an installation cavity is formed in the radome, and the installation cavity is located on the side of the radiation array element facing away from the ground plate, The metasurface coating is located in the installation cavity.
  • a second aspect of the present application provides a metasurface coating.
  • the metasurface coating includes a substrate and a resonance unit provided on the substrate.
  • a third aspect of the present application provides a radome assembly.
  • the radome assembly includes a radome and a metasurface coating, wherein the metasurface coating includes a substrate and a resonant unit opened on the substrate.
  • Figure 1(a) shows one of the application scenarios of array antenna 1a and array antenna 1b in some embodiments of the present application
  • Figure 1(b) shows another application scenario of array antenna 1c and array antenna 1d in some embodiments of the present application
  • Figure 2 shows a schematic diagram of the excitation system of the array antenna 1 in some embodiments of the present application
  • FIG. 3 shows a schematic diagram of the T/R component of the array antenna 1 connected to the array antenna in some embodiments of the present application;
  • Figure 4(a) shows a perspective view of the array antenna 1 in some embodiments of the present application
  • Figure 4(b) shows an exploded view of the array antenna 1 in some embodiments of the present application
  • Figure 4(c) shows a cross-sectional view of the array antenna 1 along the A-A section in Figure 4(a) in some embodiments of the present application;
  • Figure 4(d) shows a top view of the metasurface coating 30 in the array antenna 1 in some embodiments of the present application
  • Figure 5 shows a simulation diagram of the directional pattern of the array antenna 1 in some embodiments of the present application
  • Figure 6(a) shows a cross-sectional view of the array antenna 1 along the A-A section in Figure 4(a) in some embodiments of the present application, in which the direction diagram of the array antenna 1 is also shown;
  • Figure 6(b) shows a schematic diagram of the pattern of the array antenna 1 in some embodiments of the present application
  • Figure 6(c) shows a perspective view of the array antenna 1' in some embodiments of the present application
  • Figure 6(d) shows a cross-sectional view of the array antenna 1' along the A-A section in Figure 4(a) in some embodiments of the present application;
  • Figure 6(e) shows a cross-sectional view of the array antenna 1' along the A-A section in Figure 4(a) in some embodiments of the present application, in which the direction diagram of the array antenna 1 is also shown;
  • Figure 7(a) shows a cross-sectional view of the array antenna 1 along the A-A section in Figure 4(a) in some embodiments of the present application;
  • Figure 7(b) shows a cross-sectional view of the array antenna 1 along the A-A section in Figure 4(a) in some embodiments of the present application, in which the metasurface coating 30 is not shown;
  • Figure 7(c) shows a cross-sectional view of the array antenna 1 corresponding to Figure 7(b) along the A-A section in Figure 4(a) in some embodiments of the present application;
  • Figure 8(a) shows a schematic outline view of the resonant unit 2001 on the substrate 100 in the metasurface coating 30 in some embodiments of the present application;
  • Figure 8(b) shows a schematic outline view of the resonant unit 2002 on the substrate 100 in the metasurface coating 30 in some embodiments of the present application;
  • Figure 8(c) shows a schematic outline view of the resonant unit 2003 on the substrate 100 in the metasurface coating 30 in some embodiments of the present application;
  • Figure 8(d) shows a schematic outline view of the resonant unit 2004 on the substrate 100 in the metasurface coating 30 in some embodiments of the present application;
  • Figure 8(e) shows a schematic outline view of the resonant unit 2005 on the substrate 100 in the metasurface coating 30 in some embodiments of the present application;
  • Figure 8(f) shows a schematic outline view of the resonant unit 2006 on the substrate 100 in the metasurface coating 30 in some embodiments of the present application;
  • Figure 9(a) shows a top view of the substrate 100a in the metasurface coating 30 in some embodiments of the present application
  • Figure 9(b) shows a cross-sectional view of the substrate 100a in the metasurface coating 30 along the B-B section in Figure 9(a) in some embodiments of the present application;
  • Figure 9(c) shows a cross-sectional view of the substrate 100b in the metasurface coating 30 along the B-B section in Figure 9(a) in some embodiments of the present application;
  • Figure 9(d) shows a cross-sectional view of the substrate 100c in the metasurface coating 30 along the B-B section in Figure 9(a) in some embodiments of the present application;
  • Figure 10(a) shows a top view of the substrate 100d in the metasurface coating 30 in some embodiments of the present application
  • Figure 10(b) shows a cross-sectional view of the substrate 100e in the metasurface coating 30 along the B-B section in Figure 9(a) in some embodiments of the present application;
  • Figure 10(c) shows a cross-sectional view of the substrate 100f in the metasurface coating 30 along the B-B section in Figure 9(a) in some embodiments of the present application;
  • Figure 11(a) shows a perspective view of the array antenna 1 in some embodiments of the present application
  • Figure 11(b) shows an exploded view of the array antenna 1 in some embodiments of the present application
  • Figure 12(a) shows a cross-sectional view of the array antenna 1 along the C-C section in Figure 11(a) in some embodiments of the present application;
  • Figure 12(b) shows a partial enlarged view of the S 2 region in Figure 12(a);
  • Figure 13(a) shows a schematic tiling diagram of the combination of the substrate 100a and the base plate 100a in the metasurface coating 30 in some embodiments of the present application;
  • Figure 13(b) shows a cross-sectional view along the C-C section in Figure 11(a) of the combination of the substrate 100a and the base plate 100a in the metasurface coating 30 in some embodiments of the present application;
  • Figure 14(a) shows a schematic tiling diagram of the combination of the substrate 100a and the substrate 100a' in the metasurface coating 30 in some embodiments of the present application;
  • Figure 14(b) shows a tiling schematic diagram of the combination scheme of the substrate 100a and the substrate 100a" in the metasurface coating 30 in some embodiments of the present application;
  • Figure 15(a) shows the design scheme of the metasurface coating 30 in the array antenna 1 in some embodiments of the present application
  • Figure 15(b) shows the simulated pattern of the array antenna 1 in some embodiments of the present application
  • Figure 16 shows the simulated pattern of the array antenna 1 in some embodiments of the present application.
  • Space Division Multiplexing Space Division Multiplexing technology refers to a technical solution that allows the same frequency band to be reused in different spaces to form different radiation beams in different user directions.
  • Directional pattern refers to the pattern of the radiated electromagnetic field of the antenna distributed along the angular coordinates at a fixed distance.
  • Main lobe refers to the largest radiation beam located in the antenna pattern.
  • Side lobes refer to radiation beams other than the maximum radiation beam located on the antenna pattern.
  • a power splitter also known as a power divider, is a device that divides one input signal energy into two or more channels, and then outputs equal energy or unequal energy.
  • FIG. 1(a) shows one of the application scenarios applicable to the antenna system S 1 in some embodiments of the present application.
  • the antenna system S1 may include an array antenna 1a and an array antenna 1b.
  • the array antenna 1a corresponds to the first user direction
  • the array antenna 1b corresponds to the second user direction to achieve frequency reuse, thereby enabling Effectively alleviate the problem of increasingly scarce spectrum resources and site resources.
  • the antenna system S 1 may also include other array antennas.
  • the antenna system S 1 includes an array antenna.
  • the following will continue to take the antenna system S 1 including an array antenna 1a and an array antenna 1b as an example.
  • the array antenna 1a corresponds to the first user direction, and the main lobe in the first user direction corresponds to the first user U 1 .
  • the pattern of the array antenna 1a includes the main lobe ML 1 and the side lobe SL 11 and the side lobe SL 12 ;
  • the array antenna 1b corresponds to the second user direction, the main lobe in the second user direction corresponds to the second user U 2 , and the pattern of the array antenna 1b includes the main lobe ML 2 , the side lobe SL 21 and the side lobe SL 22 .
  • the antenna system S 1 shown in FIG. 1(a) is one of the implementation methods.
  • the antenna system S 1 includes an array antenna that can form two beams with different main lobe directions (equivalent to the beam formed by the array antenna 1a and the beam formed by the array antenna 1b), which will not be used here. Expand description.
  • the array antenna 1 needs to adjust the array pattern accordingly according to the surrounding environment or when the surrounding environment changes, so that in addition to ensuring normal radiation in the main lobe area, its side lobe area needs to be suppressed.
  • Figure 1(b) shows another application scenario of antenna system S2 and antenna system S3 in some embodiments of the present application.
  • the antenna system S2 may include an array antenna 1c, the array antenna 1c corresponds to the third user direction, the main lobe of the third user direction corresponds to the third user U3 , and the pattern of the array antenna 1c Including main lobe ML 3 , side lobe SL 31 and side lobe SL 32 .
  • the antenna system S 3 may include an array antenna 1d.
  • the array antenna 1d corresponds to the fourth user direction.
  • the main lobe of the fourth user direction corresponds to the fourth user U 4 .
  • the pattern of the array antenna 1d includes a main lobe ML 4 and a side lobe SL. 41 and side lobe SL 42 .
  • the side lobe SL 41 of the array antenna 1d may interfere with the communication of the third user U3 .
  • FIG. 2 shows a schematic diagram of the excitation system of the antenna system S in some embodiments of the present application.
  • the antenna system S includes an array antenna 1 and a passive power splitter 2.
  • the array antenna 1 uses a feed system in the form of a passive power splitter 2 as an excitation system.
  • the array antenna 1 can feed the total port energy into each port according to a certain proportion, where the total port energy includes parameters such as amplitude and phase.
  • the passive power splitter 2 may be a microstrip power splitter, a substrate integrated waveguide (Substrate Integrated Waveguide, SIW) power splitter, etc., which is not specifically limited in this application.
  • a substrate integrated waveguide Substrate Integrated Waveguide, SIW
  • the above-mentioned antenna system S can achieve side-lobe suppression of the array antenna through multiple iterative designs of the array antenna 1 and the passive power splitter 2, it requires a long design time.
  • the passive power divider 2 usually causes power division errors due to array coupling, unit mismatch and other reasons, resulting in side lobe rise.
  • the amplitude and phase of the excitation of each radiation element in the array antenna 1 are often different. Therefore, it is necessary to design multiple wireless antennas with unequal amplitudes and different phases.
  • Source power splitter 2 to effectively excite each antenna port.
  • the passive power splitter 2 since the passive power splitter 2 is generally integrated below the array antenna 1, the passive power splitter 2 will inevitably cause a certain coupling interference to the array antenna 1, causing the performance of the array antenna 1 to deteriorate. Finally, the passive power splitter 2 is a static feed system and cannot be adjusted. It does not support array pattern beam scanning, that is, it cannot phase scan.
  • FIG. 3 shows a schematic diagram of the T/R component of the array antenna 1 connected to the array antenna in some embodiments of the present application.
  • the T/R component can be connected to the array antenna (not shown in Figure 3) through a digital control circuit to achieve signal amplitude and phase adjustment, thereby achieving beamforming and scanning of the antenna in the airspace.
  • the main components of the digital control circuit include attenuators, phase shifters, power amplifiers and other related devices.
  • the output amplitude and phase of each T/R component can be directly controlled through the digital control circuit to complete the feeding of the array antenna.
  • T/R components can achieve a phase step of about 5°, and its control accuracy is in line with general engineering applications.
  • the current method to achieve low side lobes is to use T/R components or power dividers to separately excite each radiation array element, and then superimpose the radiation array element patterns in the spatial area to achieve a low side lobe effect. If you use separate networks to implement it, it will often differ greatly from the ideal value and the working bandwidth will be narrow.
  • high-position phase shifters are expensive and difficult to integrate. Although ultra-low side-lobes requirements can be achieved, the cost is too high.
  • sub-array cancellation technology can be used to achieve side-lobe suppression of the array antenna. Specifically, a relative number of auxiliary antennas are added to the main antenna pointing in the signal receiving direction to cancel the side lobe level in the designated airspace, thereby achieving side lobe suppression of the array antenna.
  • the above-mentioned antenna system S adds a number of additional auxiliary antennas around the target antenna to suppress and offset the side lobe levels in the side lobe area based on the wave path difference and excitation difference between the auxiliary antenna and the target antenna, thereby achieving Low sidelobe processing for array antennas.
  • this solution requires adding several additional auxiliary antennas around the target antenna, that is, adding several additional radiation array elements around the target array, so the design is complex and the cost becomes high.
  • cancellation technology requires precise placement of each radiation array element, which requires high installation and processing requirements.
  • the number of side-lobes to be canceled is related to the number of added radiation array elements. It is usually only applicable to side-lobe suppression at a small number of specific angles, and the applicable range is narrow.
  • this application provides an array antenna that adds a metasurface coating on the original array antenna that is tailored to the amplitude and phase distribution characteristics of the low-side-lobe array antenna.
  • the metasurface coating includes a substrate and a resonance unit provided on the substrate, wherein the substrate is a layered structure of artificial electromagnetic structure material.
  • the metasurface coating covers the radiation ends of the radiation array elements in the radiation array of the original array antenna, and the surface of the substrate intersects with the radiation direction of the radiation array.
  • the substrate is used to adjust the transmittance of the electromagnetic waves radiated by the radiation array, and the resonance unit is used to adjust the transmission phase of the electromagnetic waves radiated by the radiation array.
  • the metasurface coating is a metamaterial
  • the metasurface coating is a layer of artificial layered material with a thickness smaller than the wavelength.
  • Metamaterials refer to structures with resonant units (subwavelength structures), and these processes change the dielectric constant and conductive properties of the material. Based on this, metasurface coatings can flexibly and effectively regulate electromagnetic wave polarization, amplitude, phase, polarization mode, propagation mode and other characteristics.
  • the metamaterial is a structure with periodically distributed resonant units.
  • the periodic distribution may be arranged in rows, columns, or rows and columns, and the distance between adjacent resonant units is a preset distance.
  • the periodically distributed resonant units on the metamaterial can also be distributed in other forms, which is not specifically limited in this application.
  • the metamaterial is a structure with non-periodically distributed resonant units. It can be understood that the non-periodic distribution can be arranged in rows, columns, or rows and columns, and the distances between adjacent resonant units are not the same. The non-periodic distribution can also be that the resonant units do not follow a predetermined manner and are scattered randomly. Distributed in structure, this application does not specifically limit this.
  • a hollow resonant unit may be provided on the substrate, that is, the resonant unit penetrates both plate surfaces of the substrate.
  • a protruding resonant unit may be provided on the substrate, that is, the resonant unit is provided on the board surface.
  • protruding resonant units are provided on both surfaces of the substrate.
  • a protruding resonant unit is provided on one of the surfaces of the substrate.
  • a recessed resonant unit may be provided on the substrate, that is, one of the surfaces of the substrate through which the resonant unit penetrates.
  • the following description will take an example in which the hollow-shaped resonant unit is provided with a periodic distribution on the substrate. That is, the resonant unit 200 will be described in the following as an example in which the resonant unit 200 is a slot structure provided in the substrate.
  • This application provides a metasurface coating design suitable for array antennas.
  • the metasurface coating can achieve low side-lobe characteristics of the array antenna without changing the original array.
  • lower side lobes can improve the signal-to-noise ratio, reduce the impact of clutter signals outside the main beam, and effectively improve the anti-interference capability of the entire system.
  • the above-mentioned array antenna first uses a metasurface coating to offset and suppress the side lobe level of the original array antenna, and adjusts the pattern of the array antenna through the electromagnetic properties of the substrate and the resonance unit to achieve low side lobe processing of the array antenna.
  • the installation difficulty of the added metasurface coating in the array antenna is relatively low and can be directly applied to the existing array antenna that has been built.
  • the array antenna has high integration and compact structure.
  • the transmittance and transmission phase of the artificial electromagnetic structural material are adjusted, so that the electromagnetic waves radiated by each radiation array element pass through the metasurface. Different transmittance amplitudes and phase differences are produced.
  • the above-mentioned array antenna is equivalent to regulating the excitation amplitude and phase of each radiation array element, and then regulating the pattern of each radiation array element, thereby achieving the low side-lobe effect of the array antenna.
  • the structural dimensions of the metasurface coating may include the thickness of the substrate, the outline shape of the resonant unit, the outline size of the resonant unit, etc., which are not specifically limited in this application.
  • metasurface coatings can also be applied to array antennas loaded with power dividers to correct sidelobe level rises caused by errors introduced by the power dividers.
  • the array antenna in this application has the advantages of simple structure, short development cycle, and low cost.
  • Figure 4(a) shows a perspective view of the array antenna 1 in some embodiments of the present application.
  • Figure 4(b) shows an exploded view of the array antenna 1 in some embodiments of the present application.
  • Figure 4(c) shows a cross-sectional view of the array antenna 1 along the A-A section in Figure 4(a) in some embodiments of the present application.
  • the present application provides an array antenna 1.
  • the array antenna 1 may include a ground plate 10, a radiation array 20, a metasurface coating 30 and Radome 40.
  • the radiation array 20 includes at least two radiation array elements, and the ground plate 10 and the radome 40 together form a receiving cavity 50 .
  • the radiation array 20 is located in the accommodation cavity 50 , and the radiation array 20 is distributed on the ground plate 10 .
  • the radiation array 20 is arrayed on the surface of the ground plate 10 .
  • the metasurface coating 30 is located on the side of the radiation array 20 facing away from the ground plate 10 .
  • Figure 4(d) shows a top view of the metasurface coating 30 in the array antenna 1 in some embodiments of the present application.
  • the metasurface coating 30 includes a substrate 100 and a hollow resonant unit 200 opened on the substrate 100 .
  • the resonant unit 200 has a slot structure.
  • the ground plate 10 may be a component that can realize the grounding function, such as a mounting bracket in an antenna system, which is not specifically limited in this application.
  • the various directions of the array antenna 1 are defined in conjunction with Figure 4(a) to Figure 4(c): the surface of the ground plate 10 is defined as the XOY plane, where a pair of sides of the ground plate 10 The extension direction is defined as the X-axis, the extension direction of the other pair of sides is defined as the Y-axis, and the overlapping direction of the radiation array 20 and the ground plate 10 defines the Z-axis.
  • the metasurface coating 30 is introduced above the radiation array 20 in the original array antenna, so that the beam forming characteristics can be directly realized without changing the antenna feed structure.
  • the array antenna 1 in this application has the characteristics of low cost, less engineering complexity, and simpler implementation than designing a power division feed network or T/R component.
  • the design scheme in this application is also applicable to other forms of array antennas.
  • the metasurface coating 30 is covered on the radiation end of the radiation array element in the radiation array, and the surface of the substrate 100 in the metasurface coating 30 intersects with the radiation direction of the radiation array.
  • the relative position of the metasurface coating 30 relative to the accommodation cavity 50 is not specifically limited in this application. Any metasurface coating 30 located on the side of the radiation array 20 facing away from the ground plate 10 is within the scope of protection of this application. .
  • the relative position of the metasurface coating 30 relative to the accommodation cavity 50 will be described in detail below and will not be described again here.
  • the radome 40 is a semi-enclosed shell structure.
  • the radome 40 is covered on the ground plate 10.
  • the ground plate 10 and the radome 40 jointly form a Accommodating cavity 50.
  • the radome 40 is a closed shell structure, the radome 40 includes a first cover body and a second cover body, and the first cover body and the second cover body together form a sealed
  • the ground plate 10 is located in the cavity and is installed on the second cover.
  • the ground plate 10 , the first cover body and the second cover body jointly form the accommodation cavity 50 .
  • the number of substrates 100 in the metasurface coating 30 may be 1, 2, 3, or 4, etc., which is not specifically limited in this application.
  • the plurality of substrates 100 can be stacked in layers or arranged side by side in sequence, which is not specifically limited.
  • Figure 5 shows a simulation diagram of the directional pattern of the array antenna 1 in some embodiments of the present application.
  • u represents the horizontal angle in the space angle.
  • u is the ratio of the horizontal angle in the space angle to 180°.
  • v represents the pitch angle in the space angle.
  • v is the ratio of the horizontal angle in the space angle.
  • the ratio of the pitch angle to 180°; the vertical axis is the relative amplitude of the radiation beam, in dB.
  • the directional pattern of the array antenna 1 includes a main lobe ML (for example, the black radiation beam in Figure 5) and a side lobe SL (for example, the gray radiation beam in Figure 5).
  • the difference between the relative amplitude of the main lobe ML and the relative amplitude of the side lobe SL is relatively large, about 10 dB, which means that the low side lobe processing of the array antenna 1 is achieved.
  • Figure 6(a) shows a cross-sectional view of the array antenna 1 along the A-A section in Figure 4(a) in some embodiments of the present application, in which the direction diagram of the array antenna 1 is also shown.
  • Figure 6(b) shows a schematic diagram of the pattern of the array antenna 1 in some embodiments of the present application.
  • adjusting the size of the slots of the resonant unit 200 can change the transmission phase.
  • the specific optimized value of the slot is determined by the required side lobe level. According to the characteristics of the side lobe level, the actual phase value of each radiation array element fed through the array analysis and synthesis method is obtained, and then the 200 slots passing through the resonant unit are calculated. The phase difference that the slot needs to satisfy is finally deduced from the size of the slot slot of the resonant unit 200 corresponding to the corresponding radiation array element.
  • the metasurface coating 30 can regulate the directional pattern of each radiation array element (for example, P 2 in Figure 6(b) ). Its effect is equivalent to changing the amplitude and phase distribution of the array antenna 1, and ultimately achieves the optimal performance of the array antenna 1. Low side-lobe effect (such as P 1 in Figure 6(a) and Figure 6(b) ).
  • Figure 6(c) shows an exploded view of the array antenna 1' in some embodiments of the present application.
  • Figure 6(d) shows a cross-sectional view of the array antenna 1' along the A-A section in Figure 4(a) in some embodiments of the present application.
  • the array antenna 1' may include a ground plate 10, a radiation array 20 and a radome 40.
  • the ground plate 10 and the radome 40 together form a receiving cavity 50 .
  • the radiation array 20 is located in the accommodation cavity 50.
  • the radiation array 20 is distributed on the ground plate 10.
  • the radiation array 20 includes at least two radiation array elements. It can be understood that the ground plate 10, the radiation array 20 and the radome 40 in the array antenna 1' are the same as the ground plate 10, the radiation array 20 and the radome 40 in the aforementioned array antenna 1, and will not be described again here.
  • Figure 6(e) shows a cross-sectional view of the array antenna 1' along the AA section in Figure 4(a) in some embodiments of the present application, which also shows the direction diagram of the array antenna 1' (for example, P 1 '),
  • the size of the radiation beam (such as the main lobe ML' and the side lobe SL' in Figure 6(e)) represents the relative amplitude of the radiation beam.
  • a set of radiation beams is formed on each radiation element in the array antenna 1', and these sets of radiation beams are formed after interaction outside the radome 40
  • the relative amplitude of some radiation beams (such as the main lobe ML' in Figure 6(e)) is large, and the relative amplitude of the remaining radiation beams (such as the side lobe SL' in Figure 6(e)) is small.
  • the relative amplitude of the main lobe ML' of the array antenna 1' is similar to the relative amplitude of the side lobe SL', that is, the side lobe level of the array antenna 1' is higher.
  • the metasurface coating 30 is located in the accommodation cavity 50 and is installed on the radome. 40 on.
  • the metasurface coating 30 is protected from external interference, the stability of the metasurface coating 30 is improved, and the service life of the array antenna 1 is extended.
  • the metasurface coating 30 can be installed on the radome 40 through pasting, welding, threading, etc., and the metasurface coating 30 can also be installed on the radome 40 through other methods. In this regard No specific limitation is made.
  • the array antenna 1 further includes a mounting bracket (not shown), and the metasurface coating 30 is installed on the radome 40 through the mounting bracket.
  • Figure 7(a) shows a cross-sectional view of the array antenna 1 along the A-A section in Figure 4(a) in some other embodiments of the present application.
  • the metasurface coating 30 is located outside the accommodation cavity 50 .
  • the above-mentioned array antenna 1 has low installation difficulty by installing the metasurface coating 30 outside the accommodation cavity 50, making it easy to update the existing array antenna to the array antenna in this application.
  • Figure 7(b) shows a cross-sectional view of the array antenna 1 along the A-A section in Figure 4(a) in some embodiments of the present application, in which the metasurface coating 30 is not shown.
  • Figure 7(c) shows a cross-sectional view of the array antenna 1 corresponding to Figure 7(b) along the A-A section in Figure 4(a) in some embodiments of the present application.
  • an installation cavity 60 is formed in the radome 40 , and the installation cavity 60 is located on the side of the radiation array 20 facing away from the ground plate 10 .
  • the metasurface coating 30 is disposed in the installation cavity 60 to ensure that the metasurface coating 30 is located on the side of the radiation array 20 facing away from the ground plate 10 .
  • the layout position of the metasurface coating 30 relative to the radome 40 may be at least one of the above implementations.
  • the number of metasurface coatings 30 in the array antenna 1 may be at least two, and the layout of the at least two metasurface coatings 30 relative to the radome 40 may be the same or different. That is, at least two metasurface coatings 30 may adopt at least one of the above layout positions.
  • the layout position of the metasurface coating 30 relative to the radome 40 is not specifically limited in this application, and any layout position of the metasurface coating 30 relative to the radome 40 is within the protection scope of this application.
  • the outline of the resonant unit 200 refers to the outline of the resonant unit 200 projected on the surface of the ground plate 100 .
  • Figure 8(a) shows a schematic outline view of the resonant unit 200 (resonant unit 2001) on the substrate 100 in the metasurface coating 30 in some embodiments of the present application.
  • the outline of the resonant unit 2001 on the substrate 100 may be "H" shaped.
  • the size d 11 , the size d 12 , the size d 13 , the size d 14 and the size d 15 are the structural dimensions of the “H” type resonant unit 2001 .
  • FIG. 8(a) only shows part of the structural dimensions of the "H”-shaped resonant unit 2001.
  • the structural dimensions of the "H"-shaped resonant unit 2001 can also be other dimensions, such as the thickness of the resonant unit 2001 (Z axis direction), this application does not specifically limit this.
  • Figure 8(b) shows a schematic outline view of the resonant unit 200 (resonant unit 2002) on the substrate 100 in the metasurface coating 30 in some embodiments of the present application.
  • the outline of the resonant unit 2002 on the substrate 100 may be "U" shaped.
  • size d 21 , size d 22 , size d 23 , size d 24 and size d 25 are the structural dimensions of the “U”-shaped resonant unit 2002 .
  • FIG. 8(b) only shows part of the structural dimensions of the “U”-shaped resonant unit 2002, and will not be described again here. It can be understood that in other embodiments of the present application, the outline of the resonant unit 2002 on the substrate 100 may also be "C" shaped.
  • Figure 8(c) shows a schematic outline view of the resonant unit 200 (resonant unit 2003) on the substrate 100 in the metasurface coating 30 in some embodiments of the present application.
  • the outline of the resonant unit 2003 on the substrate 100 may be “O” shaped.
  • the dimension d 31 , the dimension d 32 and the dimension d 33 are the structural dimensions of the “O” type resonant unit 2003 .
  • the metasurface coating 30 can also be provided with a connecting component (not shown) to connect the inner and outer parts of the "O" shape through the connecting component. catch.
  • FIG. 8(c) only shows part of the structural dimensions of the “O”-shaped resonant unit 2003, and will not be described again here. It can be understood that in some other embodiments of the present application, the outline of the resonant unit 2003 on the substrate 100 may also be in a "mouth" shape.
  • Figure 8(d) shows a schematic outline view of the resonant unit 200 (resonant unit 2004) on the substrate 100 in the metasurface coating 30 in some embodiments of the present application.
  • the outline of the resonant unit 2004 on the substrate 100 may be “+” shaped.
  • size d 41 , size d 42 , size d 43 , size d 44 , size d 45 and size d 46 are the structural dimensions of the “+” type resonant unit 2004 .
  • FIG. 8(d) only shows part of the structural dimensions of the “+” type resonant unit 2003, and will not be described again here.
  • the outline of the resonant unit 2004 on the substrate 100 can also be any one of a "-" shape, a "
  • FIG. 8(e) shows a schematic outline view of the resonant unit 200 (resonant unit 2005) on the substrate 100 in the metasurface coating 30 in some embodiments of the present application.
  • the outline of the resonant unit 2005 on the substrate 100 may be in an "X" shape.
  • Figure 8(f) shows a schematic outline view of the resonant unit 200 (resonant unit 2006) on the substrate 100 in the metasurface coating 30 in some embodiments of the present application.
  • the outline of the resonant unit 2004 on the substrate 100 may be “Y” shaped.
  • the outline of the resonant unit 2006 on the substrate 100 may also be any one of a “Z” shape, a “T” shape, and an “L” shape.
  • the contours of at least two resonant units 200 on a single substrate 100 may be the same or different, which is not specifically limited in this application.
  • the different contours of the two resonant units 200 refer to the thickness of the substrate 100 and the structural dimensions of the resonant unit 200 (for example, the respective dimensions shown in Figure 8(a), Figure 8(b) and Figure 8(c), which will not be described in detail here. ) are different in at least one size.
  • multiple resonant units are provided on the substrate, and the multiple resonant units are the same.
  • the plurality of resonant units being the same means that all structural dimensions of the plurality of resonant units are correspondingly the same.
  • all structural dimensions of the multiple resonant units specifically include the respective sizes shown in FIGS. 8(a), 8(b), 8(c) and 8(d), and the multiple resonant units are arranged on the substrate 100. Dimensions in thickness direction.
  • Figure 9(a) shows a top view of the substrate 100a in the metasurface coating 30 in some embodiments of the present application.
  • Figure 9(b) shows a cross-sectional view of the substrate 100a in the metasurface coating 30 along the B-B section in Figure 9(a) in some embodiments of the present application.
  • a plurality of resonant units 2001 with the same projection profile are provided on the substrate 100a, that is, the dimensions of the projection profiles of the multiple resonant units 2001 are all the same.
  • the dimensions of the plurality of resonant units 2001 in the Z-axis direction are all d 71 .
  • multiple resonant units 2001 can be arrayed on the substrate 100a in a certain arrangement.
  • the multiple resonant units 2001 are arranged sequentially in a linear pattern, or, for another example, the multiple resonant units 2001 are arranged in a plurality of arrays. Rows and columns are arranged sequentially, or, for another example, multiple resonant units 2001 are arranged randomly, which is not specifically limited in this application.
  • the above-mentioned resonant unit of the same contour type can not only be the resonant unit 2001, but also can be any of the other resonant units in this application, which is not specifically limited in this application.
  • the thickness of the substrate 100a in the Z-axis direction is the same, that is, the thickness of any place on the surface of the substrate 100a in the Z-axis direction is a constant value.
  • the thickness of any place on the board surface of the substrate 100a in the Z-axis direction is d 71 .
  • the resonant unit 2001 extends along the direction parallel to the Z-axis direction on the substrate 100a. That is, the resonance unit 2001 penetrates both plate surfaces of the substrate 100a along the Z-axis direction.
  • Figure 9(c) shows a cross-sectional view of the substrate 100a in the metasurface coating 30 along the B-B section in Figure 9(a) in some embodiments of the present application.
  • the resonant unit 2001' extends along the direction intersecting the Z-axis direction. That is, the resonance unit 2001 penetrates both plate surfaces of the substrate 100a in a direction inclined with respect to the Z-axis direction.
  • the substrate 100a extends along the same XOY plane.
  • Figure 9(d) shows a cross-sectional view of the substrate 100a in the metasurface coating 30 along the B-B section in Figure 9(a) in some embodiments of the present application.
  • the substrate 100c is distributed in at least two XOY planes.
  • the substrate 100c includes a first part, a second part, a third part, a fourth part and a fifth part, where the first part, the third part and the fifth part are distributed in an XOY plane, and the The second part and the fourth part are distributed in another XOY plane.
  • one XOY plane is parallel to another XOY plane.
  • the first part, the third part and the fifth part are distributed on one curved surface
  • the second part and the fourth part are distributed on another curved surface, which is not specifically limited in this application.
  • connection position between two adjacent parts is located between the resonance unit 2001 and the body of the substrate 100c, and the two adjacent parts can be connected in a staggered manner. .
  • the connecting position between two adjacent parts is located on the substrate body, and the substrate body at the connecting position can be connected in a staggered position or in a smooth transition. This application There is no specific limit on this.
  • multiple resonant units are provided on the substrate, and at least two of the multiple resonant units are different.
  • at least two resonant units are different means that at least one structural dimension among all structural dimensions of at least two resonant units is different.
  • the types of projected profiles of at least two resonant units are different.
  • Figure 10(a) shows a top view of the substrate 100d in the metasurface coating 30 in some embodiments of the present application.
  • a plurality of resonant units provided on the substrate 100d include a resonant unit 2001 and a resonant unit 2002.
  • the resonant units 2001 and 2002 are arranged in various ways on the substrate 100d.
  • the resonant units 2001 and the resonant units 2002 are arranged in a staggered sequence, or, for another example, resonant units
  • the units 2001 are assembled and arranged, and then the resonant units 2002 are assembled and arranged, which is not specifically limited in this application.
  • the resonant unit of at least two profile types may not only be the resonant unit 2001 and the resonant unit 2002, but may also be any other combination of at least two resonant units, which is not specifically limited in this application.
  • the projected profiles of at least two resonant units are of the same type, but at least one structural dimension of the projected profiles of at least two resonant units is different.
  • At least two resonant units have different thicknesses.
  • Figure 10(b) shows a cross-sectional view of the substrate 100e in the metasurface coating 30 along the BB section in Figure 9(a) in some embodiments of the present application.
  • the substrate 100e includes a first part, a second part and a third part having different thickness sizes.
  • the thickness dimension of the first part and the third part in the substrate 100e in the Z-axis direction is d 71
  • the thickness dimension of the second part in the substrate 100a in the Z-axis direction is d 72 . Therefore, the size of the resonant unit 2001 on the first and third parts in the Z-axis direction is d 71
  • the size of the resonant unit 2001′′ on the second part in the Z-axis direction is d 72 .
  • Figure 10(c) shows a cross-sectional view of the substrate 100f in the metasurface coating 30 along the B-B section in Figure 9(a) in some embodiments of the present application.
  • a resonant unit 2001"'-1 is provided on the substrate 100f, and the size of the resonant unit 2001"'-1 in the Z-axis direction is uneven.
  • the resonant unit 2001"'-1 is located at the connecting position of two adjacent parts that are offset.
  • At least two resonant units have different cross-sectional shapes.
  • the resonant unit 2001"'-2 is provided on the substrate 100f, and the cross-sectional shape of the resonant unit 2001"'-2 is a parallelogram.
  • the substrate 100 specifically includes at least two substrates 100, and the at least two substrates 100 are stacked along a first direction, where the first direction is between the radiation array 20 and the interface.
  • Figure 11(a) shows a perspective view of the array antenna 1 in some embodiments of the present application.
  • Figure 11(b) shows an exploded view of the array antenna 1 in some embodiments of the present application.
  • Figure 12(a) shows a cross-sectional view of the array antenna 1 along the CC section in Figure 11(a) in some embodiments of the present application.
  • Figure 12(b) shows a partial enlarged view of the S2 region in Figure 12(a).
  • the substrate 100 specifically includes a first substrate 100' and a second substrate 100", wherein the A hollow-shaped first resonant unit 200' is provided on a substrate 100', and a hollow-shaped second resonant unit 200" is provided on a second substrate 100".
  • the first substrate 100' and the second substrate 100" are provided along the first Direction overlap.
  • the metasurface coating 30 in the array antenna 1 will be further described below by taking the array antenna 1 in FIG. 11(b) and FIG. 12(a) as an example.
  • the outlines of the first resonant unit 200' and the second resonant unit 200" can be “H”-shaped, "U”-shaped, “C”-shaped, “O”-shaped, "mouth”-shaped, or "X”-shaped At least one of "Y” type, “Z” type, "T” type, and "L” type.
  • the number of the first resonance units 200' is at least two, and the number of the second resonance units 200" is at least two.
  • Each of the at least two first resonance units 200' has a first resonance
  • the outline of the unit 200' may be "H"-shaped, "U”-shaped, “C”-shaped, “O”-shaped, "mouth”-shaped, "X”-shaped, “Y”-shaped, “Z”-shaped, "T”-shaped Any one of "H” shape, "U” shape, and “C” shape in the at least two second resonance units 200". , any one of "O” type, "mouth” type, "X” type, "Y” type, “Z” type, "T” type, and “L” type, which is not specifically limited in this application.
  • the first substrate 100' and the second substrate 100" in the metasurface coating 30 are completely identical.
  • the structural dimensions of the first substrate 100' and the second substrate 100" are respectively the same, and the first resonant unit 200' on the first substrate 100' and the second resonant unit 200" on the second substrate 100"
  • the number and position of the resonant units 200′′ are the same, and the first resonant unit 200′ and the second resonant unit 200′′ at the same relative position of the first substrate 100′ and the second substrate 100′′ have the same outline and the same size.
  • the number of substrates 100 in the metasurface coating 30 is at least two, and at least two substrates 100 are stacked in layers. At least two substrates 100 are identical. As shown in Figures 13(a) and 13(b), the metasurface coating 30 includes two substrates 100a.
  • the first substrate 100' and the second substrate 100" in the metasurface coating 30 have different structures.
  • At least one structural dimension of the first substrate 100' and the second substrate 100" is different.
  • the thicknesses of the first substrate 100' and the second substrate 100" are different.
  • first substrate 100' and the second substrate 100" have different lengths.
  • first substrate 100' and the second substrate 100" have different widths.
  • the number and/or position of the first resonant unit 200' on the first substrate 100' and the second resonant unit 200" on the second substrate 100" are different.
  • the first resonant unit 200' and the second resonant unit 200" at corresponding relative positions of the first substrate 100' and the second substrate 100" have different contours and/or different sizes.
  • At least two substrates 100 have different structural dimensions.
  • At least two substrates 100 have different sizes in the thickness direction, and/or at least two substrates 100 have different sizes in the length direction, and/or at least two substrates 100 have different sizes in the width direction.
  • the sizes on are different.
  • the metasurface coating 30 includes any one of the substrate 100a and the substrate 100b, the substrate 100a and the substrate 100c, the substrate 100a and the substrate 100d, the substrate 100a and the substrate 100e, and the substrate 100a and the substrate 100f. This will not be described further.
  • the layout positions of the resonant units on at least two substrates 100 are different.
  • the metasurface coating 30 includes a substrate 100a and a substrate 100a', and the layout position of the resonance unit 2001 on the substrate 100a on the substrate 100a is the same as the layout position of the resonance unit 2001 on the substrate 100a" on the substrate 100a".
  • the layout positions on are different.
  • the number of resonant units on at least two substrates 100 is different.
  • the metasurface coating 30 includes a substrate 100a and a substrate 100a′′, and the number of resonant units 2001 on the substrate 100a is 12, and the number of resonant units 2001 on the substrate 100a′′ is 13.
  • the distance between two adjacent substrates 100 ranges from 3mm to 7.5mm, where the distance between two adjacent substrates 100 is the minimum distance between two adjacent substrates 100, For example, d shown in Figure 12(b). Specifically, in some embodiments of the present application, the distance between two adjacent substrates 100 is 5 mm.
  • the metasurface coating 30 also includes a wave absorbing Part 300.
  • the orthographic projection of the absorbing component 300 on the ground plate 10 is at least partially located within the orthographic projection of the resonant unit 200 on the ground plate 10 .
  • the wave absorbing component 300 may be a chip resistor.
  • dimension d 16 in FIG. 8(a) is the structural dimension of the wave absorbing component 300 . It can be understood that the size of the relative position of the wave absorbing component 300 relative to the resonant unit 200 can also be marked in the figure. Since the wave absorbing component 300 is arranged at the right position in the middle of the "H" shape, the wave absorbing component will not be described in detail here. Dimensions relative to the relative position of component 300 relative to resonant unit 2001.
  • dimension d 26 in FIG. 8(b) is the structural dimension of the wave absorbing component 300 .
  • Dimension d 27 is the relative position of the wave absorbing component 300 relative to the resonant unit 200 .
  • the above-mentioned array antenna 1 can achieve beam reconfiguration and adjust the pattern of the array antenna by adding absorbing materials on the metasurface coating 30 .
  • the metasurface coating 30 can also be applied to an array antenna loaded with a passive power splitter to correct the phenomenon that the side lobe level of the array antenna 1 is raised due to errors introduced by the passive power splitter.
  • the metasurface coating 30 adjusts the performance of the artificial electromagnetic material by optimizing the structural size of the material unit and the loss of the lossy components (for example, the resistance of the chip resistor or the absorption rate of the absorbing material).
  • the transmittance and transmission phase are used to equivalently control the excitation amplitude and phase of each radiation array element, thereby achieving low side-lobe processing of the array antenna 1.
  • the metasurface coating 30 can also be applied to an array antenna loaded with a power divider to correct the side-lobe level rise caused by errors introduced by the power divider. Compared with the traditional power divider design, the array antenna in this application has a simple structure, a short research and development cycle, and low cost.
  • the array antenna 1 has a specific structure as shown in Figures 11(a) to 12(b).
  • the metasurface coating 30 in the array antenna 1 includes at least two substrates 100 , and H-shaped slots are periodically etched on each substrate 100 . By optimizing the structural size of each H-shaped slot, the electromagnetic waves emitted by each radiation array 20 in the array antenna 1 have different transmittances and transmission phases after passing through the respective slots, and then each radiation array element in the far field area The direction pattern achieves the purpose of reducing the antenna side lobe level through vector superposition.
  • the array antenna 1 has a specific structure as shown in Figures 11(a) to 12(b).
  • the metasurface coating 30 in the array antenna 1 includes at least two substrates 100 , each substrate 100 is periodically etched with H-shaped slots, and in the middle of the H-shaped slots of the lower substrate 100 Add the wave absorbing component 300.
  • the electromagnetic waves emitted by each radiation array 20 in the array antenna 1 have different transmittances and transmission phases after passing through the respective slots. , and then achieve the purpose of reducing the side lobe level of the array antenna through vector superposition of the radiation pattern elements in the far field area.
  • the design scheme of the metasurface coating 30 in the array antenna 1 is related to the method of synthesizing the pattern of the array antenna.
  • Figure 15(a) shows the design solution of the metasurface coating 30 in the array antenna 1 in some embodiments of the present application. The design solution of the metasurface coating 30 in the array antenna 1 will be described below with reference to Figure 15(a).
  • the design scheme of the metasurface coating 30 in the array antenna 1 specifically includes the following steps:
  • Block S1501 According to the required pattern characteristics, obtain the amplitude and phase distribution of each radiation array 20 through pattern synthesis or algorithm optimization.
  • Block S1502 Calculate the transmission coefficient and transmission phase distribution of the metasurface coating 30 according to the amplitude and phase distribution of each radiation array 20. Among them, the transmission coefficient is equal to the unit amplitude, and the transmission phase is equal to the radiation array element phase.
  • Block S1503 Adjust the physical size and loading resistance size of the metasurface coating 30 through simulation optimization. It can be understood that the transmission coefficient and phase required by the array antenna are obtained through the physical size and loading resistance of the metasurface coating 30 .
  • the physical dimensions of the metasurface coating 30 include various structural dimensions of the substrate 100 and the resonance unit 200 .
  • the size of the loading resistance is determined by the wave absorbing component 300.
  • the amplitude and phase distribution of the excitation is linearly converted into the amplitude ratio of the transmittance of the outgoing electromagnetic wave and the phase difference of the outgoing electromagnetic wave, and then the various structural dimensions and resistance values of the metasurface coating 30 are deduced.
  • the optimized metasurface coating is placed directly above a simplified symmetrical array, and is simulated through (Ansoft High Frequency Structure Simulator, AHFSS ) simulation software performs simulation calculations on the direction pattern.
  • AHFSS Automatic High Frequency Structure Simulator
  • Figure 15(b) shows the simulated pattern of the array antenna 1 in some embodiments of the present application.
  • the horizontal axis represents the phase of the array antenna 1, in degrees
  • the vertical axis represents the amplitude of the array antenna 1, in units. is dB.
  • the simulation pattern is obtained by simulating and calculating the pattern using AHFSS simulation software.
  • the metasurface coating 30 includes at least two substrates 100 , and H-shaped slots are periodically etched on each substrate 100 .
  • the distance between two adjacent substrates 100 in the metasurface coating 30 is 5 mm.
  • the curve L1 represents the pattern of the array antenna 1 in this application
  • the curve L2 represents the pattern of the original array antenna 1.
  • the metasurface coating 30 can also be combined with reconfigurable materials to achieve beam reconfiguration or beam phase scanning functions. That is, the wave absorbing component 300 can be a component with an adjustable resistance value. When the resistance value of the wave absorbing component 300 changes, the pattern waveform of the array antenna 1 will change.
  • the wave absorbing component 300 includes at least one of a photoresistor, a varistor, and a graphene material. It can be understood that the wave absorbing component 300 can also be made of other materials, which is not specifically limited in this application.
  • the absorbing component 300 is a photoresistor, and the resistance of the absorbing component 300 is adjusted by changing the intensity of light.
  • the wave absorbing component 300 is made of graphene material, and the resistance of the wave absorbing component 300 is changed by the magnitude of the applied voltage.
  • the actual feed amplitude and phase values of each radiation array element are obtained through array analysis and synthesis methods, and through optimizing the gap structure and adjustable lossy materials (photoresistor, varistor or graphene material, etc.) ) to achieve a fixed beam shape at a certain scanning angle.
  • Changing the external environment (such as light intensity, applied voltage, etc.) of each resonant unit 200 on the metasurface coating 30 will also change the impedance value where it is located, and then the radiation field of each radiation array 20 will pass through the metasurface coating.
  • the transmission coefficient changes at 30 hours, so the beam shape of the array pattern can be dynamically adjusted.
  • the array antenna 1 has a specific structure as shown in Figures 11(a) to 12(b).
  • the metasurface coating 30 in the array antenna 1 includes at least two substrates 100 , and H-shaped slots are periodically etched on each substrate 100 .
  • a wave-absorbing component 300 is added in the middle of the H-shaped slot of the lower substrate 100, where the wave-absorbing component 300 may be an adjustable lossy material.
  • Figure 16 shows the simulated pattern of the array antenna 1 in some embodiments of the present application.
  • the horizontal axis represents the phase of the array antenna 1, in degrees, and the vertical axis represents the amplitude of the array antenna 1, in dB.
  • Figure 16 shows the effect diagram of the array pattern reconfigurable technology under the dynamic control of the resistance of each resonant unit of the metasurface coating by the adjustable lossy material.
  • the L3 curve is the pattern of the dipole array when the resistance value of each resonant unit 200 is adjusted to state 1 after adding the metasurface coating 30. At this time, a side lobe level of -28dB and below within -20° to -75° can be achieved. .
  • Curve L 4 is the pattern of the dipole array when the resistance value of each resonant unit 200 is adjusted to state two after adding a metasurface coating. At this time, the pattern of side lobe nulling within -20° to -50° can be achieved. Among them, the side lobe null is to maximize the amplification of the useful signal and suppress the interference signal. The most intuitive way is to align the main lobe with the incident direction of the useful signal and set the lowest gain point in the pattern (that is, the null).
  • the specific resistance value of each resonant unit 200 in each state needs to be individually designed and optimized according to the required pattern effect, which is not specifically limited in this application.
  • the above-mentioned array antenna 1 introduces adjustable lossy materials into the metasurface coating 30, so that the pattern of the array antenna 1 can realize the low side lobe function and have beam reconfiguration characteristics.
  • the above-mentioned array antenna 1 has a simple structure and a large degree of design freedom.
  • the metasurface coating 30 includes a substrate 100 and a resonance unit 200 opened on the substrate 100.
  • the present application also provides a radome assembly (not labeled).
  • the radome assembly includes a radome 40 and a metasurface coating 30 .
  • the metasurface coating 30 includes a substrate 100 and a resonant unit 200 provided on the substrate 100 .
  • the technical solution in this application has a high degree of integration and greater design freedom. It can realize the shaping of arbitrary beams and can be combined with the popular reconfigurable technology to achieve low-latency switching between multiple beams.
  • the terms “setting”, “installation”, “connection” and “fitting” should be understood in a broad sense.
  • it can be a fixed connection, It can also be a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • the specific meanings of the above terms in this application can be understood on a case-by-case basis.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请涉及终端技术领域,公开了一种超表面覆层、天线罩组件以及阵列天线。其中,阵列天线包括辐射阵列和超表面覆层。其中,辐射阵列包括至少两个辐射阵元。超表面覆层包括基板和开设于基板上的谐振单元,超表面覆层覆设于辐射阵元的辐射端,且基板的板面与辐射阵列的辐射方向相交。上述阵列天线,通过超表面覆层来对消抑制原有的阵列天线的副瓣电平,通过基板的电磁性和谐振单元调整阵列天线的方向图,实现阵列天线的低副瓣处理。阵列天线中增设的超表面覆层的安装难度较低,可直接应用于现有的已经搭建完成的阵列天线上。阵列天线的集成度高,结构紧凑。

Description

超表面覆层、天线罩组件以及阵列天线 技术领域
本申请涉及终端技术领域。尤其涉及一种超表面覆层、天线罩组件以及阵列天线。
背景技术
在无线电技术设备中,天线单元是用来辐射和接收无线电波并能完成高频电流或导波与同频率无线电波之间转换的装置,是无线电系统的基本组成部分。对于一些对天线方向性和增益有特殊要求的应用场景,单一天线单元已无法满足无线通信系统性能的要求。阵列天线由于具有高增益、窄波束、低副瓣以及波束扫描或控制而广泛应用于通信领域。其中,阵列天线是指至少两个天线单元按一定规律排列组成,并通过适当激励获得预定辐射特性的天线系统,阵列天线中的单一天线单元即为辐射单元。副瓣是指天线方向图上除最大辐射波束(也即主瓣)之外的其他辐射波束。
随着无线通信技术的迅猛发展,频谱资源和站点资源越来越稀缺。空分复用技术通过让同一个频段在不同的空间内得到重复利用,以在不同的用户方向上形成不同的辐射波束,进而能够有效缓解频谱资源和站点资源稀缺的问题。为了提高阵列天线不同的辐射波束之间的抗干扰性能,需要进一步降低阵列天线的副瓣电平。
基于此,低副瓣阵列天线在通信技术领域的应用越来越广泛,阵列天线的低副瓣研究也已成为越来越多专家学者日益关注的研究课题。因此,如何进一步降低主瓣之外区域的电磁辐射,提高阵列天线的性能成为无线通信技术领域亟待解决的技术问题。
发明内容
有鉴于此,本申请实施例提供了一种超表面覆层、天线罩组件以及阵列天线。其中,阵列天线包括辐射阵列和超表面覆层。其中,辐射阵列包括至少两个辐射阵元。超表面覆层包括基板和开设于基板上的谐振单元,超表面覆层覆设于辐射阵元的辐射端,且基板的板面与辐射阵列的辐射方向相交。上述阵列天线,首先,通过超表面覆层来对消抑制原有的阵列天线的副瓣电平,通过基板的电磁性和谐振单元调整阵列天线的方向图,实现阵列天线的低副瓣处理。其次,阵列天线中增设的超表面覆层的安装难度较低,可直接应用于现有的已经搭建完成的阵列天线上。最后,阵列天线的集成度高,结构紧凑。
本申请的第一方面提供一种阵列天线,其中,阵列天线包括辐射阵列和超表面覆层。其中,辐射阵列包括至少两个辐射阵元。超表面覆层包括基板和开设于基板上的谐振单元,超表面覆层覆设于辐射阵元的辐射端,且基板的板面与辐射阵列的辐射方向相交。其中,基板可以认为是二维结构,基板的板面即为基板上较大的两个平面。
其中,辐射方向是辐射阵列向外辐射信号的方向,辐射方向是至少两个辐射阵元综合后向外辐射信号的方向。超表面覆层为超材料,超表面覆层是一层厚度小于波长的人工层状材料。超材料是指开设有谐振单元的结构(亚波长结构),通过这些处理改变材料的介电常数和导电性能。基于此,超表面覆层可实现对电磁波偏振、振幅、相位、极化方式、传播模式等特性的灵活及有效地调控。
在本申请一些实现方式中,超材料为开设有周期性分布的谐振单元的结构。例如,周期性分布可以是成行、成列、或者成行成列排布,且相邻谐振单元之间的距离为预设距离。超材料上周期性分布的谐振单元还可以按照其他形式分布,本申请对此不作具体限定。在本申请可替换的其他一些实现方式中,超材料 为开设有非周期性分布的谐振单元的结构。可以理解,非周期性分布可以是成行、成列、或者成行成列排布,且相邻谐振单元之间的距离不尽相同,非周期性分布也可以是谐振单元不按预定方式,散乱地分布于结构上,本申请对此不作具体限定。
在本申请一些实现方式中,基板上可以开设有镂空状的谐振单元,也即谐振单元贯穿的基板的两个板面。在本申请可替换的其他一些实现方式中,基板上可以设有凸起状的谐振单元,也即谐振单元设于的板面上。例如,基板的两个板面上均设有凸起状的谐振单元。再例如,基板的其中一个板面上设有凸起状的谐振单元。在本申请可替换的其他一些实现方式中,基板上可以设有内凹状的谐振单元,即谐振单元贯穿的基板的其中一个板面。
即在本申请的实现方式中,超表面覆层包括基板和开设于基板上的谐振单元,超表面覆层覆设于辐射阵元的辐射端,辐射阵列的辐射方向穿过基板的板面。
上述阵列天线,首先,通过超表面覆层来对消抑制原有的阵列天线的副瓣电平,通过基板的电磁性和谐振单元调整阵列天线的方向图,实现阵列天线的低副瓣处理。其次,阵列天线中增设的超表面覆层的安装难度较低,可直接应用于现有的已经搭建完成的阵列天线上。最后,阵列天线的集成度高,结构紧凑。
在本申请的第一方面一些可能的实现方式中,上述阵列天线中,基板用于调整辐射阵列辐射出的电磁波的透射率,谐振单元用于调整辐射阵列辐射出的电磁波的传输相位。
在本申请的第一方面一些可能的实现方式中,上述阵列天线中,谐振单元的轮廓包括“H”型、“U”型、“C”型、“O”型、“口”型、“X”型、“Y”型、“Z”型、“T”型、和“L”型中的至少一种。
在本申请的第一方面一些可能的实现方式中,上述阵列天线中,超表面覆层中,基板具体包括至少两个基板,至少两个基板沿着辐射方向叠合。
在本申请的第一方面一些可能的实现方式中,上述阵列天线中,相邻两个基板之间的距离范围为3mm~7.5mm,其中,相邻两个基板之间的距离为相邻两个基板之间的最小距离。其中,两个基板之间的最小距离可以是一基板上的任意一点到另一基板上的任意一点之间距离的最小值。
在本申请的第一方面一些可能的实现方式中,上述阵列天线中,相邻两个基板之间的距离为5mm。
在本申请的第一方面一些可能的实现方式中,上述阵列天线中,超表面覆层还包括吸波部件,吸波部件在基板上的正投影至少部分位于谐振单元在基板上的正投影内。例如,吸波部件可以是电阻部件,电阻部件可以是贴片电阻。
在本申请的第一方面一些可能的实现方式中,上述阵列天线中,吸波部件包括光敏电阻、压敏电阻和石墨烯材料中的至少一种。
在本申请的第一方面一些可能的实现方式中,上述阵列天线还包括接地板(也可为反射板),接地板具有由导电材料制成的第一表面,辐射阵列设置于接地板的第一表面上。
在本申请的第一方面一些可能的实现方式中,上述阵列天线还包括天线罩,天线罩和接地板共同形成有容纳腔,辐射阵元位于容纳腔内,超表面覆层相对于天线罩的布局位置包括以下至少一种:超表面覆层位于容纳腔内;或超表面覆层位于容纳腔外;或天线罩内形成有安装腔,安装腔位于辐射阵元背向接地板的一侧,超表面覆层设于安装腔内。
本申请的第二方面提供一种一种超表面覆层,超表面覆层包括基板和开设于基板上的谐振单元。
本申请的第三方面提供一种天线罩组件,天线罩组件包括天线罩和超表面覆层,其中,超表面覆层包括基板和开设于基板上的谐振单元。
附图说明
图1(a)示出了本申请一些实施例中阵列天线1a和阵列天线1b的其中一种应用场景;
图1(b)示出了本申请一些实施例中阵列天线1c和阵列天线1d的另外一种应用场景;
图2示出了本申请一些实施例中阵列天线1的激励系统的示意图;
图3示出了本申请一些实施例中阵列天线1的T/R组件连接阵列天线示意图;
图4(a)示出了本申请一些实施例中阵列天线1的立体图;
图4(b)示出了本申请一些实施例中阵列天线1的爆炸图;
图4(c)示出了本申请一些实施例中阵列天线1沿着图4(a)中A-A剖面的剖视图;
图4(d)示出了本申请一些实施例中阵列天线1中超表面覆层30的俯视图;
图5示出了本申请一些实施例中阵列天线1的方向图的仿真图;
图6(a)示出了本申请一些实施例中阵列天线1沿着图4(a)中A-A剖面的剖视图,其中还示出了阵列天线1的方向图;
图6(b)示出了本申请一些实施例中阵列天线1的方向图的原理图;
图6(c)示出了本申请一些实施例中阵列天线1'的立体图;
图6(d)示出了本申请一些实施例中阵列天线1'沿着图4(a)中A-A剖面的剖视图;
图6(e)示出了本申请一些实施例中阵列天线1'沿着图4(a)中A-A剖面的剖视图,其中还示出了阵列天线1的方向图;
图7(a)示出了本申请一些实施例中阵列天线1沿着图4(a)中A-A剖面的剖视图;
图7(b)示出了本申请一些实施例中阵列天线1沿着图4(a)中A-A剖面的剖视图,其中未示出超表面覆层30;
图7(c)示出了本申请一些实施例中图7(b)对应的阵列天线1沿着图4(a)中A-A剖面的剖视图;
图8(a)示出了本申请一些实施例中超表面覆层30中基板100上的谐振单元2001的轮廓示意图;
图8(b)示出了本申请一些实施例中超表面覆层30中基板100上的谐振单元2002的轮廓示意图;
图8(c)示出了本申请一些实施例中超表面覆层30中基板100上的谐振单元2003的轮廓示意图;
图8(d)示出了本申请一些实施例中超表面覆层30中基板100上的谐振单元2004的轮廓示意图;
图8(e)示出了本申请一些实施例中超表面覆层30中基板100上的谐振单元2005的轮廓示意图;
图8(f)示出了本申请一些实施例中超表面覆层30中基板100上的谐振单元2006的轮廓示意图;
图9(a)示出了本申请一些实施例中超表面覆层30中基板100a的俯视图;
图9(b)示出了本申请一些实施例中超表面覆层30中基板100a沿着图9(a)中B-B剖面的剖视图;
图9(c)示出了本申请一些实施例中超表面覆层30中基板100b沿着图9(a)中B-B剖面的剖视图;
图9(d)示出了本申请一些实施例中超表面覆层30中基板100c沿着图9(a)中B-B剖面的剖视图;
图10(a)示出了本申请一些实施例中超表面覆层30中基板100d的俯视图;
图10(b)示出了本申请一些实施例中超表面覆层30中基板100e沿着图9(a)中B-B剖面的剖视图;
图10(c)示出了本申请一些实施例中超表面覆层30中基板100f沿着图9(a)中B-B剖面的剖视图;
图11(a)示出了本申请一些实施例中阵列天线1的立体图;
图11(b)示出了本申请一些实施例中阵列天线1的爆炸图;
图12(a)示出了本申请一些实施例中阵列天线1沿着图11(a)中C-C剖面的剖视图;
图12(b)示出了图12(a)中S 2区域的局部放大图;
图13(a)示出了本申请一些实施例中超表面覆层30中基板100a和基板100a的组合方案的平铺示意图;
图13(b)示出了本申请一些实施例中超表面覆层30中基板100a和基板100a的组合方案沿着图11(a)中C-C剖面的剖视图;
图14(a)示出了本申请一些实施例中超表面覆层30中基板100a和基板100a'的组合方案的平铺示意图;
图14(b)示出了本申请一些实施例中超表面覆层30中基板100a和基板100a”的组合方案的平铺示意图;
图15(a)示出了本申请一些实施例中阵列天线1中超表面覆层30的设计方案;
图15(b)示出了本申请一些实施例中阵列天线1的仿真方向图;
图16示出了本申请一些实施例中阵列天线1的仿真方向图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请的实施方式作进一步地详细描述。
空分复用(Space Division Multiplexing,SDM):空分复用技术是指能够让同一个频段在不同的空间内得到重复利用,以在不同的用户方向上形成不同的辐射波束的技术方案。
方向图:方向图是指天线的辐射电磁场在固定距离上随角坐标分布的图形。
主瓣:主瓣是指位于天线方向图上的最大辐射波束。
副瓣:副瓣是指位于天线方向图上的除了最大辐射波束以外的其他辐射波束。
功分器:功分器也即功率分配器,是一种将一路输入信号能量分成两路或多路,进而输出相等能量或不相等能量的器件。
为了解决前述频谱资源和站点资源越来越稀缺的问题,本申请一些技术方案中的阵列天线可以适用于空分复用技术,下面将结合附图详细描述。图1(a)示出了本申请一些实施例中天线系统S 1所适用的其中一种应用场景。如图1(a)所示,天线系统S 1可以包括阵列天线1a和阵列天线1b,阵列天线1a对应于第一用户方向,阵列天线1b对应于第二用户方向,实现频率复用,进而能够有效缓解频谱资源和站点资源越来越稀缺的问题。可以理解,天线系统S 1还可以包括其他阵列天线,例如天线系统S 1包括一阵列天线。为了便于描述,下面将继续以天线系统S 1包括阵列天线1a和阵列天线1b为例进行说明。
如图1(a)所示,阵列天线1a对应于第一用户方向,第一用户方向的主瓣对应于第一用户U 1,阵列天线1a的方向图包括主瓣ML 1、副瓣SL 11和副瓣SL 12;阵列天线1b对应于第二用户方向,第二用户方向的主瓣对应于第二用户U 2,阵列天线1b的方向图包括主瓣ML 2、副瓣SL 21和副瓣SL 22。由图1(a)不难发现,主瓣ML 1与副瓣SL 21方向重合,副瓣SL 21会干扰主瓣ML 1;主瓣ML 2与副瓣SL 12方向重合,副瓣SL 12会干扰主瓣ML 2。除此之外,副瓣SL 11和副瓣SL 21相互干扰,副瓣SL 12和副瓣SL 22相互干扰。基于此,需要对阵列天线1a和阵列天线1b作低副瓣处理,以严格约束各自在空间内的分布,进而保证两者共同工作时互不干扰。
可以理解,上述图1(a)中示出的天线系统S 1为其中一种实现方式。其他一些应用场景中,天线系统S 1包括一个阵列天线,该阵列天线能够形成两个主瓣方向不同的波束(相当于阵列天线1a形成的波束和阵列天线1b形成的波束),在此将不展开描述。
在一些应用场景时,阵列天线1需要根据周边环境或者周边环境发生变化时,相应调增阵列方向图,以在保证主瓣区域的正常辐射外,其副瓣区域需要作以抑制。图1(b)示出了本申请一些实施例中天线系统S 2和天线系统S 3的另外一种应用场景。如图1(b)所示,天线系统S 2可以包括阵列天线1c,阵列天线1c对应于第三用户方向,第三用户方向的主瓣对应于第三用户U 3,阵列天线1c的方向图包括主瓣ML 3、副瓣SL 31和副瓣SL 32
然而,阵列天线1c周边环境发生改变,例如,阵列天线1c周边增加了第四用户U 4(例如阵列天线1c周围的建有新的居民楼或者商场)。阵列天线1c的副瓣SL 32会干扰到第四用户U 4的通信。基于此,需要对阵列天线1c在目标区域内作低副瓣处理,以阵列天线的方向图作相应调整,进而保证阵列天线1c不会影响第四用户U 4正常的通信。天线系统S 3可以包括阵列天线1d,阵列天线1d对应于第四用户方向, 第四用户方向的主瓣对应于第四用户U 4,阵列天线1d的方向图包括主瓣ML 4、副瓣SL 41和副瓣SL 42。阵列天线1d的副瓣SL 41会干扰到第三用户U 3的通信。
目前,主要通过调整阵列天线中各个天线单元的激励幅度相位或者调整阵列中各个天线单元的间距,进而实现阵列天线的副瓣抑制。
在本申请一些实现方式中,可以通过特殊设计的功分器,以对功率进行精确配比,进而实现阵列天线中各个天线单元的激励幅度相位调整。图2示出了本申请一些实施例中天线系统S的激励系统的示意图。如图2所示,在本申请一些实施例中,天线系统S包括阵列天线1和无源功分器2。阵列天线1采用无源功分器2形式的馈电系统作为激励系统。阵列天线1通过设计无源功分器2的具体尺寸与枝节参数可使总端口能量按照一定的比例馈入各个端口,其中,总端口能量包括幅度和相位等参数。
在一些实现方式中,无源功分器2可以是微带功分器,基片集成波导(Substrate Integrated Waveguide,SIW)功分器等,本申请对此不作具体限定。
上述天线系统S,虽然通过阵列天线1和无源功分器2多次迭代设计可以实现阵列天线的副瓣抑制,但需要较长的设计时间。而无源功分器2通常会由于阵列耦合、单元失配等原因导致功分误差,产生副瓣抬升。除此之外,对一些需求不对称方向图的阵列天线1而言,阵列天线1中的各个辐射阵元激励的幅度相位往往各不相同,因此,需要设计多路不等幅不同相的无源功分器2,以对各个天线端口进行有效激励。
首先,对于一个多端口不等幅不同相的无源功分器2,其设计难度比较大,难以达到各个端口输出的幅度和相位趋近于设计值。其次,由于无源功分器2相互之间的耦合,输出端口结构不可控等自身的原理限制,各个输出端口与天线的匹配往往较差,致使各个辐射阵元实际输入的能量的幅度和相位与理想值偏差较大,进而致使最终方向图的效果与理想情况相差较大。然后,由于无源功分器2一般集成于阵列天线1下方,故无源功分器2会不可避免的对阵列天线1产生一定的耦合干扰,致使阵列天线1性能变差。最后,无源功分器2为静态馈电系统,没有办法调整,不支持阵列方向图波束扫描,即无法相扫。
在本申请其他一些技术方案中,可以采用高精度收发T/R组件,实现阵列天线中各个天线单元的激励幅度和相位调整。图3示出了本申请一些实施例中阵列天线1的T/R组件连接阵列天线示意图。如图3所示,T/R组件通过数字控制电路的方式可以与阵列天线(图3中未图示)相连接,实现信号幅度和相位调整,从而实现天线在空域内波束赋形和扫描。其中,数字控制电路主要组成器件包括:衰减器、移相器、功放等相关器件。通过数字控制电路可以直接控制每个T/R组件的输出幅度和相位进而完成阵列天线的馈电。
目前,高精度的T/R组件可以实现5°左右的相位步进,其调控精度在符合一般工程应用。基于此,现阶段实现低副瓣的手段主要以采用T/R组件或者功分器的形式对各个辐射阵元单独激励,进而在空间区域内辐射阵元方向图相叠加实现低副瓣效果。若用功分网络去实现,往往与理想值相差较大且工作带宽较窄。但是现阶段T/R组件中,高位移相器价格昂贵且不易集成,虽然可以实现超低副瓣要求但是代价太大。对于一些已经搭建好的阵列天线,若由于周边环境发生了变化需要对部分区域实现副瓣抑制,就需要对其进行拆装并且重新设计安装功分网络,这在工程上代价太高,实现过程较难。
然而在实际应用中,高精度T/R组件由于成型难度导致价格昂贵,且高精度T/R组件插损太大,工程实现上代价较大。除此之外,高比特对器件的材料设计要求较高,控制系统较为复杂。
在本申请另外一些技术方案中,可以采用子阵对消技术,实现阵列天线的副瓣抑制。具体地,在指向信号接收方向的主天线基础上添加相对数目的辅助天线来对消指定空域内的副瓣电平,进而实现阵列天线的副瓣抑制。
上述天线系统S,通过在目标天线周边添加若干额外的辅助天线,根据辅助天线与目标天线之间的波程差及激励差,来对副瓣区域内的副瓣电平进行抑制抵消,进而实现阵列天线的低副瓣处理。然而,首先,该方案需要在目标天线周边额外增添若干辅助天线,也即在目标阵列周边额外增添若干辐射阵元,故设计 复杂且成本变高。其次,对消技术需要精确各个辐射阵元的摆放位置,对于安装和加工要求高。再者,对消副瓣个数与添加的辐射阵元数目相关,通常仅适用于少量特定角度的副瓣抑制,适用范围较窄。
为了实现阵列天线的低副瓣处理,本申请提供了一种阵列天线,该阵列天线在原有的阵列天线上增设针对低副瓣阵列天线振幅、相位分布的特点的超表面覆层。超表面覆层包括基板和开设于基板上的谐振单元,其中,基板是人工电磁结构材料的层式结构。该超表面覆层覆设于原有的阵列天线中辐射阵列中的辐射阵元的辐射端,且基板的板面与辐射阵列的辐射方向相交。基板用于调整辐射阵列辐射出的电磁波的透射率,谐振单元用于调整辐射阵列辐射出的电磁波的传输相位。
在本申请一些实施例中,超表面覆层为超材料,超表面覆层是一层厚度小于波长的人工层状材料。超材料是指开设有谐振单元的结构(亚波长结构),通过这些处理改变材料的介电常数和导电性能。基于此,超表面覆层可实现对电磁波偏振、振幅、相位、极化方式、传播模式等特性的灵活及有效地调控。
在本申请一些实现方式中,超材料为开设有周期性分布的谐振单元的结构。例如,周期性分布可以是成行、成列、或者成行成列排布,且相邻谐振单元之间的距离为预设距离。超材料上周期性分布的谐振单元还可以按照其他形式分布,本申请对此不作具体限定。
在本申请可替换的其他一些实现方式中,超材料为开设有非周期性分布的谐振单元的结构。可以理解,非周期性分布可以是成行、成列、或者成行成列排布,且相邻谐振单元之间的距离不尽相同,非周期性分布也可以是谐振单元不按预定方式,散乱地分布于结构上,本申请对此不作具体限定。
可以理解,上述几种实现方式仅为基板上谐振单元分布方式的部分实现方式,本申请中可以根据实际需求对上述实现方式进行重新组合及适应性调整,变形后的实现方式也均在本申请的保护范围之内,本申请对此不作具体限定。
在本申请一些实现方式中,基板上可以开设有镂空状的谐振单元,也即谐振单元贯穿的基板的两个板面。
在本申请可替换的其他一些实现方式中,基板上可以设有凸起状的谐振单元,也即谐振单元设于的板面上。例如,基板的两个板面上均设有凸起状的谐振单元。再例如,基板的其中一个板面上设有凸起状的谐振单元。
在本申请可替换的其他一些实现方式中,基板上可以设有内凹状的谐振单元,即谐振单元贯穿的基板的其中一个板面。
可以理解,上述几种实现方式仅为基板上谐振单元形态的部分实现方式,本申请中可以根据实际需求对上述实现方式进行重新组合及适应性调整,变形后的实现方式也均在本申请的保护范围之内,本申请对此不作具体限定。
为便于描述,下文将以基板上开设有周期性分布的镂空状谐振单元为例进行说明,也即下文中将以谐振单元200为开设于基板的缝隙槽结构为例进行说明。
本申请提供了一种适用于阵列天线的超表面覆层设计,该超表面覆层可以在不改变原阵列的基础上实现阵列天线的低副瓣特性。在阵列天线中,较低的副瓣可以提高信噪比,降低主波束外杂波信号的影响,可以有效提高整个系统的抗干扰能力。上述阵列天线,首先,通过超表面覆层来对消抑制原有的阵列天线的副瓣电平,通过基板的电磁性和谐振单元调整阵列天线的方向图,实现阵列天线的低副瓣处理。其次,阵列天线中增设的超表面覆层的安装难度较低,可直接应用于现有的已经搭建完成的阵列天线上。最后,阵列天线的集成度高,结构紧凑。
在本申请一些实施例中,超表面覆层中,通过优化超表面覆层的结构尺寸,调整人工电磁结构材料的透射率和透射相位,使各辐射阵元辐射出的电磁波在经过超表面时产生不同的透过率振幅和相位差。上述阵列天线等效于调控各个辐射阵元的激励幅度和相位,进而对各辐射阵元的方向图进行调控,从而实现阵列天线低副瓣效果。
在本申请一些实现方式中,超表面覆层的结构尺寸可以包括基板的厚度、谐振单元的轮廓形状、谐振单元的轮廓尺寸等,本申请对此不作具体限定。
在本申请一些实施例中,超表面覆层也可以应用于已有功分器加载的阵列天线,修正因功分器引入的误差而导致的副瓣电平抬升现象。相比传统的功分器设计,本申请中的阵列天线具有结构简单,研发周期短,成本低等优点。
下面将结合具体的结构详细描述本申请的技术方案。
图4(a)示出了本申请一些实施例中阵列天线1的立体图。图4(b)示出了本申请一些实施例中阵列天线1的爆炸图。图4(c)示出了本申请一些实施例中阵列天线1沿着图4(a)中A-A剖面的剖视图。结合图4(a)至图4(c)可知,本申请提供一种阵列天线1,在本申请一些实施例中,阵列天线1可以包括接地板10、辐射阵列20、超表面覆层30和天线罩40。其中,辐射阵列20包括至少两个辐射阵元,接地板10和天线罩40共同形成有容纳腔50。辐射阵列20位于容纳腔50内,辐射阵列20分布于接地板10上,例如,辐射阵列20阵列于接地板10的板面上。超表面覆层30位于辐射阵列20背向接地板10的一侧。图4(d)示出了本申请一些实施例中阵列天线1中超表面覆层30的俯视图。如图4(d)所示,超表面覆层30包括基板100和开设于基板100上的镂空状的谐振单元200。其中,谐振单元200为缝隙槽结构。其中,接地板10可以是能够实现接地功能的部件,例如天线系统中的安装架等,本申请对此不作具体限定。
除此之外,结合图4(a)至图4(c)对阵列天线1的各个方向进行定义:接地板10的板面定义为XOY平面,其中接地板10的板面的一对边的延伸方向定义为X轴,另一对边的延伸方向定义为Y轴,辐射阵列20和接地板10的叠合方向定义Z轴。
上述阵列天线1,将超表面覆层30引入至原有阵列天线中辐射阵列20的上方,可以在不改变天线馈电结构的基础上直接实现波束赋形特性。基于此,本申请中的阵列天线1相对于设计功分馈电网络或T/R组件,具有成本低,工程复杂度较小,实现较为简单等特性。
可以理解,本申请中的设计方案还适用于其他形式的阵列天线。对于其他形式的阵列天线,超表面覆层30覆设于辐射阵列中辐射阵元的辐射端,且超表面覆层30中基板100的板面与辐射阵列的辐射方向相交。
可以理解,超表面覆层30相对于容纳腔50的相对位置本申请不作具体限定,任何位于辐射阵列20背向接地板10的一侧的超表面覆层30均在本申请的保护范围之内。超表面覆层30相对于容纳腔50的相对位置将在下文详细描述,在此将不作赘述。
在本申请一些实现方式中,如图4(c)所示,天线罩40为半封闭式的壳体结构,天线罩40罩设于接地板10上,接地板10和天线罩40共同形成有容纳腔50。
在本申请可替换的其他一些实现方式中,天线罩40为封闭式的壳体结构,天线罩40包括第一罩体和第二罩体,且第一罩体和第二罩体共同形成密闭腔体,接地板10位于密闭腔体内,并安装于第二罩体上。接地板10、第一罩体和第二罩体共同形成容纳腔50。
在本申请一些实施例中,超表面覆层30中的基板100的数量可以是1个、2个、3个或者4个等等,本申请不作具体限定。除此之外,当基板100的数量为多个时,多个基板100可以层式叠合,也可以依次并列布置,对此不作具体限定。
图5示出了本申请一些实施例中阵列天线1的方向图的仿真图。其中,水平方向上:u表征的是空间角度中的水平角,例如u是空间角度中的水平角与180°的比值,v表征的是空间角度中的俯仰角,例如v是空间角度中的俯仰角与180°的比值;纵轴方向为辐射波束的相对幅度,单位为dB。如图5所示,阵列天线1的方向图包括主瓣ML(例如图5中的黑色辐射波束)和副瓣SL(例如图5中的灰色辐射波束)。其中,主瓣ML的相对幅度和副瓣SL的相对幅度之间的差值相差较大,约为10dB,也即实现了阵列天线 1的低副瓣处理。
图6(a)示出了本申请一些实施例中阵列天线1沿着图4(a)中A-A剖面的剖视图,其中还示出了阵列天线1的方向图。图6(b)示出了本申请一些实施例中阵列天线1的方向图的原理图。
下面将结合图6(a)和图6(b)详细描述本申请中的阵列天线1的原理。在超表面覆层30中,调整谐振单元200缝隙槽的大小可以改变传输相位。缝隙槽具体优化值大小由所需副瓣电平大小确定,根据副瓣电平的特征,通过阵列分析和综合方法得到各个辐射阵元实际馈电的相位数值,然后推算出经过谐振单元200缝隙槽所需满足的相位差,最后反推出相应辐射阵元所对应的谐振单元200缝隙槽的尺寸。超表面覆层30可以对各辐射阵元的方向图进行调控(例如图6(b)中的P 2),其效果等价于改变阵列天线1的振幅和相位分布,最终实现阵列天线1的低副瓣效果(例如图6(a)和图6(b)中的P 1)。
图6(c)示出了本申请一些实施例中阵列天线1'的爆炸图。图6(d)示出了本申请一些实施例中阵列天线1'沿着图4(a)中A-A剖面的剖视图。如图6(c)和图6(d)所示,在本申请一些实施例中,阵列天线1'可以包括接地板10、辐射阵列20和天线罩40。其中,接地板10和天线罩40共同形成有容纳腔50。辐射阵列20位于容纳腔50内,辐射阵列20分布于接地板10上,辐射阵列20包括至少两个辐射阵元。可以理解,阵列天线1'中的接地板10、辐射阵列20和天线罩40与前述阵列天线1中的接地板10、辐射阵列20和天线罩40相同,在此将不作赘述。
图6(e)示出了本申请一些实施例中阵列天线1'沿着图4(a)中A-A剖面的剖视图,其中还示出了阵列天线1'的方向图(例如P 1'),其中辐射波束(例如图6(e)中的主瓣ML'和副瓣SL')的大小表征辐射波束的相对幅度。如图6(e)所示,在本申请一些实施例中,阵列天线1'中的每个辐射阵元上形成一组辐射波束,且这些组辐射波束在天线罩40的外部相互作用后形成的方向图中,部分辐射波束的相对幅度(例如图6(e)中的主瓣ML')较大,其余辐射波束的相对幅度(例如图6(e)中的副瓣SL')较小。不难发现,阵列天线1'的主瓣ML'的相对幅度和副瓣SL'的相对幅度相差不多,也即阵列天线1'的副瓣电平较高。
下面结合附图进一步详细描述超表面覆层30在阵列天线1中的布局位置。
继续参阅图6(a)可知,在本申请一些实施例中,如图6(a)所示,在本申请一些实施例中,超表面覆层30位于容纳腔50内,并安装于天线罩40上。上述阵列天线1,通过将超表面覆层30安装于容纳腔50内,避免超表面覆层30受到外部侵扰,提高超表面覆层30的稳定性,进而延长阵列天线1的使用寿命。
在本申请一些实现方式中,超表面覆层30可通过粘贴、焊接连接、螺纹连接等方式安装于天线罩40上,超表面覆层30还可通过其他方式安装于天线罩40上,对此不作具体限定。
在本申请可替换的其他一些实现方式中,阵列天线1还包括安装架(未图示),超表面覆层30通过安装架安装于天线罩40上。
图7(a)示出了本申请其他一些实施例中阵列天线1沿着图4(a)中A-A剖面的剖视图。如图7(a)所示,在本申请一些实施例中,超表面覆层30位于容纳腔50外。上述阵列天线1,通过将超表面覆层30安装于容纳腔50外,安装难度较低,便于将现有的阵列天线更新为本申请中的阵列天线。
图7(b)示出了本申请一些实施例中阵列天线1沿着图4(a)中A-A剖面的剖视图,其中未示出超表面覆层30。图7(c)示出了本申请一些实施例中图7(b)对应的阵列天线1沿着图4(a)中A-A剖面的剖视图。
在本申请一些实施例中,如图7(b)所示,天线罩40内形成有安装腔60,安装腔60位于辐射阵列20背向接地板10的一侧。如图7(c)所示,超表面覆层30设于安装腔60内,以保证超表面覆层30位于辐射阵列20背向接地板10的一侧。
可以理解,超表面覆层30相对于天线罩40的布局位置可以是以上实现方式中的至少一种。例如,阵列天线1中的超表面覆层30的数量可以为至少两个,且至少两个超表面覆层30相对于天线罩40的布局 方式可以相同也可以不同。也即,至少两个超表面覆层30可以采用上述布局位置中的至少一种。
基于此,超表面覆层30相对于天线罩40的布局位置本申请不作具体限定,任何超表面覆层30相对于天线罩40的布局位置均在本申请的保护范围之内。
在描述完阵列天线1的整体结构之后,下面将详细描述几种开设于基板100上的镂空状的谐振单元200。其中,谐振单元200的轮廓是指谐振单元200在接地板100板面上投影的轮廓。
图8(a)示出了本申请一些实施例中超表面覆层30中基板100上的谐振单元200(谐振单元2001)的轮廓示意图。在本申请一些实施例中,如图8(a)所示,基板100上谐振单元2001的轮廓可以为“H”型。其中,尺寸d 11、尺寸d 12、尺寸d 13、尺寸d 14和尺寸d 15为“H”型谐振单元2001的结构尺寸。可以理解,图8(a)中仅是示出了“H”型谐振单元2001的部分结构尺寸,“H”型谐振单元2001的结构尺寸还可以是其他尺寸,例如谐振单元2001的厚度(Z轴方向的尺寸),本申请对此不作具体限定。
图8(b)示出了本申请一些实施例中超表面覆层30中基板100上的谐振单元200(谐振单元2002)的轮廓示意图。在本申请一些实施例中,如图8(b)所示,基板100上谐振单元2002的轮廓可以为“U”型。其中,尺寸d 21、尺寸d 22、尺寸d 23、尺寸d 24和尺寸d 25为“U”型谐振单元2002的结构尺寸。同理,图8(b)中仅是示出了“U”型谐振单元2002的部分结构尺寸,在此不作赘述。可以理解,在本申请其他一些实施例中,基板100上谐振单元2002的轮廓还可以为“C”型。
图8(c)示出了本申请一些实施例中超表面覆层30中基板100上的谐振单元200(谐振单元2003)的轮廓示意图。在本申请一些实施例中,如图8(c)所示,基板100上谐振单元2003的轮廓可以为“O”型。其中,尺寸d 31、尺寸d 32和尺寸d 33为“O”型谐振单元2003的结构尺寸。基板100上谐振单元2003的轮廓可以为“O”型时,还可以超表面覆层30中还可以设有连接部件(未图示),以通过连接部件将“O”型的内外两部分相接。同理,图8(c)中仅是示出了“O”型谐振单元2003的部分结构尺寸,在此不作赘述。可以理解,在本申请其他一些实施例中,基板100上谐振单元2003的轮廓还可以为“口”型。
图8(d)示出了本申请一些实施例中超表面覆层30中基板100上的谐振单元200(谐振单元2004)的轮廓示意图。在本申请一些实施例中,如图8(d)所示,基板100上谐振单元2004的轮廓可以为“+”型。其中,尺寸d 41、尺寸d 42、尺寸d 43、尺寸d 44、尺寸d 45和尺寸d 46为“+”型谐振单元2004的结构尺寸。同理,图8(d)中仅是示出了“+”型谐振单元2003的部分结构尺寸,在此不作赘述。可以理解,在本申请其他一些实施例中,基板100上谐振单元2004的轮廓还可以为“-”型、“|”型、“\”型和“/”型中的任意一种。
图8(e)示出了本申请一些实施例中超表面覆层30中基板100上的谐振单元200(谐振单元2005)的轮廓示意图。在本申请一些实施例中,如图8(e)所示,基板100上谐振单元2005的轮廓可以为“X”型。
图8(f)示出了本申请一些实施例中超表面覆层30中基板100上的谐振单元200(谐振单元2006)的轮廓示意图。在本申请一些实施例中,如图8(f)所示,基板100上谐振单元2004的轮廓可以为“Y”型。在本申请一些实施例中,基板100上谐振单元2006的轮廓还可以为“Z”型、“T”型和“L”型中的任意一种。
可以理解,上述基板100上谐振单元200的轮廓不同的实现方式仅为部分示例,其他谐振单元200的轮廓的实现方式也在本申请的保护范围之内,本申请对此不作具体限定。
在介绍完超表面覆层30中基板100上的谐振单元200的具体结构之后,下面结合附图进一步详细描述超表面覆层30中的单个基板100。
其中,单个基板100上至少两个谐振单元200的轮廓可以相同也可以不同,本申请对此不作具体限定。两个谐振单元200的轮廓不同是指基板100的厚度以及谐振单元200的结构尺寸(例如图8(a)、图8(b)和图8(c)示出的各个尺寸,在此不作赘述)中的至少一个尺寸不同。
在本申请一些实施例中,基板上开设有多个谐振单元,且多个谐振单元相同。其中,多个谐振单元相同是指多个谐振单元的所有结构尺寸均对应相同。例如,多个谐振单元的所有结构尺寸具体包括图8(a)、图8(b)、图8(c)和图8(d)示出的各个尺寸,以及多个谐振单元在基板100在厚度方向上的尺寸。
图9(a)示出了本申请一些实施例中超表面覆层30中基板100a的俯视图。图9(b)示出了本申请一些实施例中超表面覆层30中基板100a沿着图9(a)中B-B剖面的剖视图。
在本申请一些实施例中,如图9(a)所示,基板100a上开设有多个投影轮廓相同的谐振单元2001,也即多个谐振单元2001投影轮廓的尺寸均相同。如图9(b)所示,多个谐振单元2001在Z轴方向上的尺寸均为d 71
在本申请一些实现方式中,多个谐振单元2001可以按照一定的排列方式阵列于基板100a上,例如,多个谐振单元2001按照线型依次排列,或者,再例如,多个谐振单元2001按照多行多列依次排列,或者,再例如,多个谐振单元2001随机排列,本申请对此不作具体限定。
可以理解,上述相同轮廓类型的谐振单元不仅仅可以是谐振单元2001,还可以是本申请中其他谐振单元中的任意一种谐振单元,本申请对此不作具体限定。
在本申请一些实施例中,如图9(b)所示,基板100a在Z轴方向上的等厚,也即基板100a上板面上任意一处在Z轴方向上的厚度为定值。例如,基板100a上板面上任意一处在Z轴方向上的厚度均为d 71
继续参阅图9(b)可知,在本申请一些实施例中,基板100a上,谐振单元2001沿着与Z轴方向平行的方向延伸。也即,谐振单元2001沿着与Z轴方向贯穿基板100a的两个板面。
图9(c)示出了本申请一些实施例中超表面覆层30中基板100a沿着图9(a)中B-B剖面的剖视图。在本申请一些实施例中,如图9(c)所示,基板100b上,谐振单元2001'沿着与Z轴方向相交的方向延伸。也即,谐振单元2001沿着相对于Z轴方向倾斜的方向贯穿基板100a的两个板面。
继续参阅图9(b)可知,在本申请一些实施例中,基板100a沿着同一XOY平面延伸。
图9(d)示出了本申请一些实施例中超表面覆层30中基板100a沿着图9(a)中B-B剖面的剖视图。在本申请一些实施例中,基板100c分布于至少两个XOY平面内。如图9(d)所示,基板100c包括第一部分、第二部分、第三部分、第四部分和第五部分,其中第一部分、第三部分和第五部分分布于一XOY平面内,第二部分和第四部分分布于另一XOY平面内。在一些实现方式中,一XOY平面和另一XOY平面相平行。在其他一些实现方式中,第一部分、第三部分和第五部分分布于一曲面,第二部分和第四部分分布于另一曲面,本申请对此不作具体限定。
继续参阅图9(d)可知,在本申请一些实现方式中,相邻两部分之间的相接的位置处位于谐振单元2001和基板100c本体之间,相邻两部分之间可以错位相接。
在本申请可替换的其他一些实现方式中,相邻两部分之间的相接的位置处位于基板本体上,且相接的位置处的基板本体可以错位相接或者圆滑过渡相接,本申请对此不作具体限定。
在本申请一些实施例中,基板上开设有多个谐振单元,且多个谐振单元中的至少两个谐振单元不同。其中,至少两个谐振单元不同是指至少两个谐振单元的所有结构尺寸中的至少一个结构尺寸不同。
在本申请一些实施例中,至少两个谐振单元的投影轮廓的类型不同。
图10(a)示出了本申请一些实施例中超表面覆层30中基板100d的俯视图。如图10(a)所示,基板100d上开设的多个谐振单元包括谐振单元2001和谐振单元2002。
其中,基板100d上的多个谐振单元中,谐振单元2001和谐振单元2002在基板100d上的排列方式多种多样,例如,谐振单元2001和谐振单元2002依次交错排布,或者,再例如,谐振单元2001聚集排布,随后谐振单元2002聚集排布,本申请对此不作具体限定。
可以理解,至少两种轮廓类型的谐振单元不仅仅可以是谐振单元2001和谐振单元2002,还可以是包括至少两种的、其他任意组合的谐振单元,本申请对此不作具体限定。
在本申请一些实施例中,至少两个谐振单元的投影轮廓的类型相同,但至少两个谐振单元的投影轮廓的至少一个结构尺寸不同。
在本申请一些实施例中,至少两个谐振单元的厚度不同。
图10(b)示出了本申请一些实施例中超表面覆层30中基板100e沿着图9(a)中B-B剖面的剖视图。如图10(b)所示,基板100e包括厚度尺寸不同的第一部分、第二部分和第三部分。其中,基板100e中的第一部分和第三部分在Z轴方向上的厚度尺寸为d 71,基板100a中的第二部分在Z轴方向上的尺寸为d 72。因此,第一部分和第三部分上的谐振单元2001在Z轴方向上的尺寸为d 71,第二部分上的谐振单元2001”在Z轴方向上的尺寸为d 72
图10(c)示出了本申请一些实施例中超表面覆层30中基板100f沿着图9(a)中B-B剖面的剖视图。如图10(c)所示,基板100f上开设有谐振单元2001”'-1,且谐振单元2001”'-1在Z轴方向上的尺寸不均匀。例如,谐振单元2001”'-1开设于错位相接的相邻两部分的相接位置处。
在本申请一些实施例中,至少两个谐振单元的剖面形状不同。继续参阅图10(c)可知,基板100f上开设有谐振单元2001”'-2,且谐振单元2001”'-2的剖面形状为平行四边形。
在本申请一些实施例中,在超表面覆层30中,基板100具体包括至少两个基板100,至少两个基板100沿着第一方向叠合,其中,第一方向为辐射阵列20与接地板10的叠合方向。
图11(a)示出了本申请一些实施例中阵列天线1的立体图。图11(b)示出了本申请一些实施例中阵列天线1的爆炸图。图12(a)示出了本申请一些实施例中阵列天线1沿着图11(a)中C-C剖面的剖视图。图12(b)示出了图12(a)中S 2区域的局部放大图。
如图11(b)和图12(a)所示,在本申请一些实施例中,在超表面覆层30中,基板100具体包括第一基板100'和第二基板100”,其中,第一基板100'上开设有镂空状的第一谐振单元200',第二基板100”上开设有镂空状的第二谐振单元200”。第一基板100'和第二基板100”沿着第一方向叠合。下面将以图11(b)和图12(a)中的阵列天线1为例,进一步描述阵列天线1中的超表面覆层30。
可以理解,第一谐振单元200'的轮廓和第二谐振单元200”的轮廓可以是“H”型、“U”型、“C”型、“O”型、“口”型、“X”型、“Y”型、“Z”型、“T”型、和“L”型中的至少一种。
在本申请一些实施例中,第一谐振单元200'的数量为至少两个,第二谐振单元200”的数量为至少两个。至少两个第一谐振单元200'中的每个第一谐振单元200'的轮廓可以是“H”型、“U”型、“C”型、“O”型、“口”型、“X”型、“Y”型、“Z”型、“T”型、和“L”型中的任意一种,至少两个第二谐振单元200”中的每个第二谐振单元200”的轮廓可以是“H”型、“U”型、“C”型、“O”型、“口”型、“X”型、“Y”型、“Z”型、“T”型、和“L”型中的任意一种,本申请对此不作具体限定。
在本申请一些实施例中,超表面覆层30中的第一基板100'和第二基板100”完全相同。
在本申请一些实现方式中,第一基板100'和第二基板100”各个结构尺寸分别对应相同,且第一基板100'上的第一谐振单元200'和第二基板100”上的第二谐振单元200”的数量相同以及位置相同,且第一基板100'和第二基板100”同一相对位置处的第一谐振单元200'和第二谐振单元200”轮廓相同以及尺寸相同。
在本申请一些实施例中,超表面覆层30中基板100的数量为至少两个,且至少两个基板100层式叠合。至少两个基板100完全相同。如图13(a)和图13(b)所示,超表面覆层30包括两个基板100a。
在本申请其他一些实施例中,超表面覆层30中的第一基板100'和第二基板100”结构不同。
在本申请一些实现方式中,第一基板100'和第二基板100”的至少一个结构尺寸不同。例如,第一基板100'和第二基板100”的厚度不同。
再例如,第一基板100'和第二基板100”的长度不同。还例如,第一基板100'和第二基板100”的宽度不同。
在本申请其他一些实现方式中,第一基板100'上的第一谐振单元200'和第二基板100”上的第二谐振单 元200”的数量不同和/或位置不同。
在本申请另外一些实现方式中,第一基板100'和第二基板100”对应的相对位置处的第一谐振单元200'和第二谐振单元200”轮廓不同和/或尺寸不同。
在本申请其他一些实施例中,至少两个基板100结构尺寸不同。
在本申请一些实现方式中,至少两个基板100在厚度方向上的尺寸不同,和/或者,至少两个基板100在长度方向上的尺寸不同,和/或者,至少两个基板100在宽度方向上的尺寸不同。
在本申请一些实现方式中,至少两个基板为不同类型的基板。例如,结合前述附图,超表面覆层30包括基板100a和基板100b、基板100a和基板100c、基板100a和基板100d、基板100a和基板100e、以及基板100a和基板100f中的任意一种,在此将不展开描述。
在本申请其他一些实施例中,至少两个基板100上谐振单元的布局位置不同。如图14(a)所示,超表面覆层30包括基板100a和基板100a',且基板100a上的谐振单元2001在基板100a上的布局位置与基板100a”上的谐振单元2001在基板100a”上的布局位置不同。
在本申请其他一些实施例中,至少两个基板100上谐振单元的数量不同。如图14(b)所示,超表面覆层30包括基板100a和基板100a”,且基板100a上的谐振单元2001的数量为12个,基板100a”上的谐振单元2001的数量为13个。
可以理解,上述第一基板100'和第二基板100”结构不同的实现方式仅为部分示例,其他能够实现第一基板100'和第二基板100”结构不同的实现方式也在本申请的保护范围之内,本申请对此不作具体限定。
在本申请一些实施例中,相邻两个基板100之间的距离范围为3mm~7.5mm,其中,相邻两个基板100之间的距离为相邻两个基板100之间的最小距离,例如图12(b)中示出的d。具体地,在本申请一些实施例中,相邻两个基板100之间的距离为5mm。
为了进一步实现阵列天线1的低副瓣处理,继续参阅图4(d)、图8(a)至图8(f)可知,在本申请一些实施例中,超表面覆层30还包括吸波部件300。其中,吸波部件300在接地板10上的正投影至少部分位于谐振单元200在接地板10上的正投影内。例如,吸波部件300可以是贴片电阻。
可以理解,在图8(a)中尺寸d 16为吸波部件300的结构尺寸。可以理解,图中还可标注出吸波部件300相对于谐振单元200的相对位置的尺寸,由于吸波部件300布局于“H”型中间靠右的位置处,在此将不详细描述吸波部件300相对于谐振单元2001的相对位置的相关尺寸。
可以理解,在图8(b)中尺寸d 26为吸波部件300的结构尺寸。尺寸d 27为吸波部件300相对于谐振单元200的相对位置。
可以理解,在图8(c)中可以理解,图中还可标注出吸波部件300相对于谐振单元200的相对位置的尺寸,由于吸波部件300布局于“O”型中间靠右的位置处,在此将不详细描述吸波部件300相对于谐振单元200的相对位置的相关尺寸。
上述阵列天线1通过在超表面覆层30上加设吸波材料可以实现波束可重构,调整阵列天线的方向图。此外该超表面覆层30也可以应用于已有无源功分器加载的阵列天线,修正因无源功分器引入的误差而导致阵列天线1副瓣电平抬升的现象。
在本申请一些实施例中,超表面覆层30通过优化材料单元结构尺寸和有耗元器件的损耗(例如,贴片电阻的电阻大小或者吸波材料的吸波率),调整人工电磁材料的透射率和透射相位,并用以等效调控各辐射阵元的激励幅度和相位,从而实现阵列天线1的低副瓣处理。该超表面覆层30也可以应用于已有功分器加载的阵列天线,修正因功分器引入的误差而导致的副瓣电平抬升现象。相比传统的功分器设计,本申请中的阵列天线结构简单,研发周期短,成本低等特点。
在本申请一些实施例中,阵列天线1为如图11(a)至图12(b)所示的具体结构。在本申请一些实现方式中,阵列天线1中的超表面覆层30包括至少两个基板100,每个基板100上周期性蚀刻有H型缝隙槽。通 过优化各H型缝隙槽的结构尺寸,使得由阵列天线1中的各辐射阵列20发射的电磁波通过各自的缝隙槽作用后具有不同的透射率和透射相位,进而在远场区各辐射阵元方向图经过矢量叠加实现降低天线副瓣电平的目的。
在本申请一些实施例中,阵列天线1为如图11(a)至图12(b)所示的具体结构。在本申请一些实现方式中,阵列天线1中的超表面覆层30包括至少两个基板100,每个基板100上周期性蚀刻有H型缝隙槽,在下层基板100的H型缝隙槽的中间处加入吸波部件300。通过合理选择吸波部件300的电阻值和优化各H型缝隙槽的结构尺寸,使得由阵列天线1中的各辐射阵列20发射的电磁波通过各自的缝隙槽作用后具有不同的透射率和透射相位,进而在远场区各辐射阵元方向图经过矢量叠加实现降低阵列天线副瓣电平的目的。
在本申请一些实施例中,阵列天线1中超表面覆层30的设计方案和对阵列天线方向图综合方法相关。图15(a)示出了本申请一些实施例中阵列天线1中超表面覆层30的设计方案,下面将结合图15(a)描述阵列天线1中超表面覆层30的设计方案。
如图15(a)所示,本申请提供的阵列天线1中超表面覆层30的设计方案具体包括以下步骤:
框S1501:根据所需要方向图特征,通过方向图综合或者算法优化得到各个辐射阵列20的幅度和相位分布。
例如,为验证所设计超表面覆层具有低副瓣效果,按照空间角20°至90°区间内完成-26dB副瓣电平的抑制要求,通过算法优化给出一组12个辐射阵列20激励的振幅和相位分布如表1所示:
表1
辐射阵元序号 1 2 3 4 5 6 7 8 9 10 11 12
振幅 0.7 0.7 0.8 1 1 1 1 1 1 0.7 1 0.7
相位 -50 0 0 0 0 0 0 0 0 0 0 50
框S1502:根据各个辐射阵列20幅度和相位分布计算超表面覆层30的透射系数和透射相位分布。其中,透射系数等于单元幅度,透射相位等于辐射阵元相位。
框S1503:通过仿真优化调整超表面覆层30的物理尺寸和加载电阻大小。可以理解,通过超表面覆层30的物理尺寸和加载电阻大小获取阵列天线所需的传输系数和相位。
其中,超表面覆层30的物理尺寸包括基板100和谐振单元200的各个结构尺寸。加载电阻大小由吸波部件300所决定。
在本申请一些实施例中,将激励的幅相分布线性转换为出射电磁波透过率的振幅比和出射电磁波的相位差,然后反推出超表面覆层30的各个结构尺寸及电阻阻值。
为了检验本申请的阵列天线1的低副瓣处理效果,在本申请一些实施例中,将优化后的超表面覆层置于一简化对称阵子阵列正上方,通过(Ansoft High Frequency Structure Simulator,AHFSS)仿真软件对方向图进行模拟计算。
图15(b)示出了本申请一些实施例中阵列天线1的仿真方向图,其中横轴表征的是阵列天线1的相位,单位为°,纵轴表征的是阵列天线1的振幅,单位为dB。其中,仿真方向图通过AHFSS仿真软件对方向图进行模拟计算得到的。超表面覆层30包括至少两个基板100,且每个基板100上周期性蚀刻有H型缝隙槽,超表面覆层30中的相邻两个基板100之间的距离为5mm。图15(b)中,曲线L 1表征的是本申请中的阵列天线1的方向图,曲线L 2表征的是原有的阵列天线1的方向图。如图15(b)所示,通过对比曲线L 1和曲线L 2可知,本申请中增设了超表面覆层30的阵列天线1具备低副瓣效果,并与现有均匀直线阵进行对比,其在指定区域,本申请中的阵列天线副瓣抑制效果更优。
为了实现阵列天线1方向图的可调性,在其他一些应用场景,该超表面覆层30也可以搭配可重构材料进而实现波束可重构或波束相扫功能。也即,吸波部件300可以是载阻值可调的部件,当吸波部件300的阻值发生变化时,阵列天线1的方向图波形会发生改变。
在本申请一些实施例中,吸波部件300包括光敏电阻、压敏电阻和石墨烯材料中的至少一种。可以理解,吸波部件300还可以是其他材质,本申请对此不作具体限定。
在本申请一些实现方式中,吸波部件300为光敏电阻,通过改变光的强弱调节吸波部件300的阻值。在本申请其他一些实现方式中,吸波部件300为石墨烯材料,通过外加电压大小改变吸波部件300的阻值。
在本申请一些实施例中,通过阵列分析和综合方法得到各个辐射阵元实际馈电的幅度和相位数值,通过优化缝隙结构及可调有耗材料(光敏电阻、压敏电阻或者石墨烯材料等)的初始状态进而实现在某个扫描角下的固定波束形状。改变超表面覆层30上各个谐振单元200的外界环境(如光照强度、外加电压等),进而使其所在处的阻抗值也会发生改变,进而各辐射阵列20的辐射场经过超表面覆层30时透射系数发生了改变,故阵列方向图的波束形状可以发生动态调控。
在本申请一些实施例中,阵列天线1为如图11(a)至图12(b)所示的具体结构。在本申请一些实现方式中,阵列天线1中的超表面覆层30包括至少两个基板100,每个基板100上周期性蚀刻有H型缝隙槽。在下层基板100的H型缝隙槽的中间处加入吸波部件300,其中,吸波部件300可以是可调有耗材料。通过合理的选择各电阻的大小并优化各H型缝隙槽的结构尺寸,使得由阵列天线1中的各辐射阵列20发射的电磁波通过各自的缝隙槽和贴片电阻的作用后具有不同的透射率和透射相位,进而在远场区各辐射阵元方向图经过矢量叠加实现降低天线副瓣电平的目的。
图16示出了本申请一些实施例中阵列天线1的仿真方向图,其中横轴表征的是阵列天线1的相位,单位为°,纵轴表征的是阵列天线1的振幅,单位为dB。图16展示了在可调有耗材料对超表面覆层各谐振单元阻值的动态调控下实现阵列方向图可重构技术的效果图。L 3曲线为添加超表面覆层30后调整各谐振单元200阻值为状态一时偶极子阵列的方向图,此时可以实现-20°~-75°内-28dB及以下的副瓣电平。L 4曲线为添加超表面覆层后调整各谐振单元200阻值为状态二时偶极子阵列的方向图,此时可以实现-20°~-50°内副瓣零陷的方向图。其中,副瓣零陷为了最大限度地放大有用信号、抑制干扰信号,最直观的是将主瓣对准有用信号的入射方向,而将方向图中的最低增益点(也即零陷)。
在本申请一些实施例中,各个状态下每个谐振单元200的具体阻值需根据所需要的方向图效果单独设计并优化,本申请对此不作具体限定。
上述阵列天线1,将可调的有耗材料引入至超表面覆层30,使阵列天线1方向图在实现低副瓣功能的同时具备波束可重构特性。上述阵列天线1结构简单,设计自由度大。
本申请还提供一种超表面覆层30,超表面覆层30包括基板100和开设于基板100上的谐振单元200。
本申请还提供一种天线罩组件(未标示),天线罩组件包括天线罩40和超表面覆层30。其中,超表面覆层30包括基板100和开设于基板100上的谐振单元200。
除此之外,本申请中的技术方案集成度高,设计自由化较大,可以实现任意波束的赋形可以结合当然热门的可重构技术,实现多波束之间低延时切换。
需要说明的是,在本说明书中,相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
以上由特定的具体实施例说明本申请的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本申请的其他优点及功效。虽然本申请的描述将结合一些实施例一起介绍,但这并不代表此申请的特征仅限于该实施方式。恰恰相反,结合实施方式作申请介绍的目的是为了覆盖基于本申请的权利要求而有可能延伸出的其它选择或改造。为了提供对本申请的深度了解,以下描述中将包含许多具体的细节。本申请也可以不使用这些细节实施。此外,为了避免混乱或模糊本申请的重点,有些具体细节将在描述中被省略。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“外侧”、“内侧”、“周向”、“径向”、“轴向”等指示的方位或位置关系为基于附图所 示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“设置”、“安装”、“连接”、“贴合”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (12)

  1. 一种阵列天线(1),其特征在于,所述阵列天线(1)包括:
    辐射阵列(20),所述辐射阵列(20)包括至少两个辐射阵元;
    超表面覆层(30),所述超表面覆层(30)包括基板(100)和开设于所述基板(100)上的谐振单元(200),所述超表面覆层(30)覆设于所述辐射阵元的辐射端,且所述基板(100)的板面与所述辐射阵列(20)的辐射方向相交。
  2. 根据权利要求1所述的阵列天线(1),其特征在于,所述基板(100)用于调整所述辐射阵列(20)辐射出的电磁波的透射率,所述谐振单元(200)用于调整所述辐射阵列(20)辐射出的电磁波的传输相位。
  3. 根据权利要求1或2所述的阵列天线(1),其特征在于,所述谐振单元(200)的轮廓包括“H”型、“U”型、“C”型、“O”型、“口”型、“X”型、“Y”型、“Z”型、“T”型、和“L”型中的至少一种。
  4. 根据权利要求1至3中任一项所述的阵列天线(1),其特征在于,所述超表面覆层(30)中,所述基板(100)具体包括至少两个所述基板(100),至少两个所述基板(100)沿着所述辐射方向叠合。
  5. 根据权利要求4所述的阵列天线(1),其特征在于,相邻两个所述基板(100)之间的距离范围为3mm~7.5mm,其中,相邻两个所述基板(100)之间的距离为相邻两个所述基板(100)之间的最小距离。
  6. 根据权利要求5所述的阵列天线(1),其特征在于,相邻两个所述基板(100)之间的距离为5mm。
  7. 根据权利要求1至6中任一项所述的阵列天线(1),其特征在于,所述超表面覆层(30)还包括:
    吸波部件(300),所述吸波部件(300)在所述基板(100)上的正投影至少部分位于所述谐振单元(200)在所述基板(100)上的正投影内。
  8. 根据权利要求7所述的阵列天线(1),其特征在于,所述吸波部件(300)包括光敏电阻、压敏电阻和石墨烯材料中的至少一种。
  9. 根据权利要求1至8中任一项所述的阵列天线(1),其特征在于,所述阵列天线(1)还包括:
    接地板(10),所述接地板(10)具有由导电材料制成的第一表面,所述辐射阵列(20)设置于所述接地板(10)的第一表面上。
  10. 根据权利要求9所述的阵列天线(1),其特征在于,所述天线(1)还包括天线罩(40),所述天线罩(40)和所述接地板(10)共同形成有容纳腔(50),所述辐射阵列(20)位于所述容纳腔(50)内,所述超表面覆层(30)相对于所述天线罩(40)的布局位置包括以下至少一种:
    所述超表面覆层(30)位于所述容纳腔(50)内;或
    所述超表面覆层(30)位于所述容纳腔(50)外;或
    所述天线罩(40)内形成有安装腔(60),所述安装腔(60)位于所述辐射阵列(20)背向所述接地板(10)的一侧,所述超表面覆层(30)设于所述安装腔(60)内。
  11. 一种超表面覆层(30),其特征在于,所述超表面覆层(30)包括基板(100)和开设于所述基板(100)上的谐振单元(200)。
  12. 一种天线罩组件,其特征在于,所述天线罩组件包括:
    天线罩(40);
    超表面覆层(30),所述超表面覆层(30)包括基板(100)和开设于所述基板(100)上的谐振单元(200)。
PCT/CN2022/094807 2022-05-24 2022-05-24 超表面覆层、天线罩组件以及阵列天线 WO2023225879A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/094807 WO2023225879A1 (zh) 2022-05-24 2022-05-24 超表面覆层、天线罩组件以及阵列天线

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/094807 WO2023225879A1 (zh) 2022-05-24 2022-05-24 超表面覆层、天线罩组件以及阵列天线

Publications (1)

Publication Number Publication Date
WO2023225879A1 true WO2023225879A1 (zh) 2023-11-30

Family

ID=88918277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094807 WO2023225879A1 (zh) 2022-05-24 2022-05-24 超表面覆层、天线罩组件以及阵列天线

Country Status (1)

Country Link
WO (1) WO2023225879A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527394A (zh) * 2009-03-30 2009-09-09 杭州师范大学 基于开槽的交叉金属条人工介质结构的高指向天线
CN102629707A (zh) * 2012-04-12 2012-08-08 中国科学院光电技术研究所 一种利用人工结构材料降低副瓣电平的天线罩
JP2016116124A (ja) * 2014-12-16 2016-06-23 日本電信電話株式会社 分散アレーアンテナ装置およびサイドローブ抑圧方法
CN106876982A (zh) * 2017-02-22 2017-06-20 西安电子科技大学 改善多天线系统性能的超表面及采用超表面的多天线系统
US20180269576A1 (en) * 2017-03-17 2018-09-20 Isotropic Systems Ltd. Lens antenna system
CN111740211A (zh) * 2019-03-25 2020-10-02 华为技术有限公司 一种天线罩及基站天线
US20210184365A1 (en) * 2018-08-13 2021-06-17 Samsung Electronics Co., Ltd. Antenna device including planar lens
CN113036421A (zh) * 2019-12-09 2021-06-25 康普技术有限责任公司 用于基站天线的天线罩及基站天线

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527394A (zh) * 2009-03-30 2009-09-09 杭州师范大学 基于开槽的交叉金属条人工介质结构的高指向天线
CN102629707A (zh) * 2012-04-12 2012-08-08 中国科学院光电技术研究所 一种利用人工结构材料降低副瓣电平的天线罩
JP2016116124A (ja) * 2014-12-16 2016-06-23 日本電信電話株式会社 分散アレーアンテナ装置およびサイドローブ抑圧方法
CN106876982A (zh) * 2017-02-22 2017-06-20 西安电子科技大学 改善多天线系统性能的超表面及采用超表面的多天线系统
US20180269576A1 (en) * 2017-03-17 2018-09-20 Isotropic Systems Ltd. Lens antenna system
US20210184365A1 (en) * 2018-08-13 2021-06-17 Samsung Electronics Co., Ltd. Antenna device including planar lens
CN111740211A (zh) * 2019-03-25 2020-10-02 华为技术有限公司 一种天线罩及基站天线
CN113036421A (zh) * 2019-12-09 2021-06-25 康普技术有限责任公司 用于基站天线的天线罩及基站天线

Similar Documents

Publication Publication Date Title
EP3352299B1 (en) Wideband beam broadening for phased array antenna systems
US6011520A (en) Geodesic slotted cylindrical antenna
CN105789877B (zh) 基于超表面的四波束微带透射阵天线及其设计方法
WO2019161104A1 (en) Self-multiplexing antennas
US20210351516A1 (en) Lens-enhanced communication device
US11848496B2 (en) Lens-enhanced communication device
WO2011046398A2 (ko) 복사 소자를 둘러싼 초크 부재가 반사판으로부터 이격되어 배열되는 안테나
CN113013638A (zh) 一种宽带折叠式平面反射阵列天线
KR101937820B1 (ko) 다중 빔 배열 안테나 장치
Juneja et al. Design considerations for implementation of planar antennas for millimeter wave (mmW) 5G network: a review
Quan et al. A double-layer multibeam antenna with 45° linear polarization based on gap waveguide technology
WO2023225879A1 (zh) 超表面覆层、天线罩组件以及阵列天线
Ivashina et al. A 1-D steerable beam slotted waveguide antenna employing non-conventional aperiodic array architecture for mm-wave line-of-sight MIMO
Clemente et al. Characterization of a low-profile quad-feed based transmitarray antenna at V-band
CN214898875U (zh) 一种增加空气层的宽带微带平面反射单元及阵列天线
KR20240022532A (ko) 감소된 사이드로브를 갖는 어드밴스드 안테나 시스템
RU2562756C1 (ru) Сканирующая антенная решетка, базовая станция, сеть беспроводной связи и способ формирования диаграммы направленности
KR20110123715A (ko) 복사 소자를 둘러싼 초크 부재가 반사판으로부터 이격되어 배열되는 안테나
US11699852B2 (en) Phased array antenna systems
Maximidis et al. Reactively loaded dielectric-based antenna arrays with enhanced bandwidth and flat-top radiation pattern characteristics
WO2023273600A1 (zh) 透镜单元、透镜阵列以及阵列天线
CN113016108B (zh) 天线模块和搭载有天线模块的通信装置
RU2806243C1 (ru) Антенна, способ ее применения и базовая станция связи
CN213071365U (zh) 一种宽带全息反射阵列天线
CN113036449B (zh) 一种宽带微带平面反射单元及阵列天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943085

Country of ref document: EP

Kind code of ref document: A1