WO2023224409A1 - 프로젝션 렌즈 광학계, 이를 채용한 프로젝션 장치 및 웨어러블 디바이스 - Google Patents

프로젝션 렌즈 광학계, 이를 채용한 프로젝션 장치 및 웨어러블 디바이스 Download PDF

Info

Publication number
WO2023224409A1
WO2023224409A1 PCT/KR2023/006784 KR2023006784W WO2023224409A1 WO 2023224409 A1 WO2023224409 A1 WO 2023224409A1 KR 2023006784 W KR2023006784 W KR 2023006784W WO 2023224409 A1 WO2023224409 A1 WO 2023224409A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
lens optical
lenses
projection lens
projection
Prior art date
Application number
PCT/KR2023/006784
Other languages
English (en)
French (fr)
Inventor
정영모
최명조
최종철
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220067696A external-priority patent/KR20230161850A/ko
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to US18/202,589 priority Critical patent/US20230375836A1/en
Publication of WO2023224409A1 publication Critical patent/WO2023224409A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/16Optical objectives specially designed for the purposes specified below for use in conjunction with image converters or intensifiers, or for use with projectors, e.g. objectives for projection TV
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]

Definitions

  • the present disclosure relates to a projection lens optical system, a projection device employing the same, and a wearable device.
  • Projection devices can be applied to wearable devices that provide virtual reality (VR), augmented reality (AR), and mixed reality (MR). Since wearable devices such as augmented reality glasses require small size and lightness, attempts have been made to remove the prism for the light source so that the projection device used in the wearable device can be implemented in a much smaller volume than the existing projection device. .
  • VR virtual reality
  • AR augmented reality
  • MR mixed reality
  • LCoS Liquid Crystal on Silicon
  • DMD Digital Micromirror Device
  • a polarizing beam splitter PBS
  • a beam combiner such as a prism
  • an illumination optical system so there is a limit to reducing the total volume. Because of these issues, there is a need for a projection lens optical system suitable for wearable devices that require small and lightweight components.
  • the problem to be solved is to provide a projection lens optical system with a small form factor suitable for wearable devices and a projection device employing the same.
  • the problem to be solved is to provide a projection lens optical system that can respond to self-luminous display panels such as micro LED and OLED, as well as projection devices and wearable devices using the same.
  • the projection lens optical system is used in a projection device of a wearable device, and includes a first lens, a second lens, a third lens, a fourth lens, and a fifth lens arranged sequentially from the point where light is emitted to the image plane. and a sixth lens (hereinafter referred to as first to sixth lenses).
  • the first to sixth lenses sequentially have positive, negative, positive, negative, negative, and positive refractive powers, and can satisfy the conditional expression L B /f ⁇ 0.5.
  • L B refers to the distance between the incident surface of the sixth lens and the image plane
  • f refers to the focal length of the projection lens optical system.
  • the first, second, third and fourth lenses may be aspherical lenses, and the fifth and sixth lenses may be spherical.
  • a projection lens optical system is used in a projection device of a wearable device, and includes first to sixth lenses sequentially arranged from the point where light is emitted to the image plane, and the first to sixth lenses are sequentially disposed It has a refractive index of positive, negative, negative, positive, negative, positive, and can satisfy the conditional expression L B /f ⁇ 0.5.
  • L B refers to the distance between the incident surface of the sixth lens and the image plane
  • f refers to the focal length of the projection lens optical system.
  • the first, second, and fifth lenses may be aspherical lenses, and the third, fourth, and sixth lenses may be spherical.
  • the projection lens optical system may additionally satisfy the condition L T /f ⁇ 1.5.
  • L T refers to the total length from the exit surface of the first lens to the image plane
  • f refers to the focal length of the projection lens optical system.
  • means the viewing angle of the projection lens optical system.
  • the projection lens optical system may additionally satisfy the conditional expression ⁇ ⁇ 30 degrees (deg).
  • CRA refers to the chief ray angle that the chief ray makes with the optical axis on the image plane.
  • the projection lens optical system may additionally satisfy the conditional expression CRA ⁇ 15 degrees (deg.).
  • the third and fourth lenses may be double bonded lenses.
  • any lens included in the first to sixth lenses may be formed of a glass material.
  • a projection device is used in a wearable device, including a self-luminous display panel in which pixels are composed of self-luminous elements; A projection lens optical system that projects image light formed on the image plane of the self-luminous display panel, wherein the projection lens optical system includes first to sixth lenses sequentially arranged from the point where light is emitted to the image plane, The first to sixth lenses sequentially have positive, negative, positive, negative, negative, and positive refractive powers, and can satisfy the conditional expression L B /f ⁇ 0.5.
  • L B refers to the distance between the incident surface of the sixth lens and the image plane
  • f refers to the focal length of the projection lens optical system.
  • a projection device is used in a wearable device, including a self-luminous display panel in which pixels are composed of self-luminous elements; A projection lens optical system that projects image light formed on the image plane of the self-luminous display panel, wherein the projection lens optical system includes first to sixth lenses sequentially arranged from the point where light is emitted to the image plane, The first to sixth lenses have sequentially positive, negative, negative, positive, negative, and positive refractive indices, and can satisfy the conditional expression L B /f ⁇ 0.5.
  • L B refers to the distance between the incident surface of the sixth lens and the image plane
  • f refers to the focal length of the projection lens optical system.
  • the self-luminous display panel may be a micro LED panel or an OLED panel.
  • a wearable device includes a projection device that outputs light of an image; and an image combiner that guides the light output from the projection device to the user's eye motion box, wherein the projection device includes: a self-luminous display panel whose pixels are composed of self-luminous elements; A projection lens optical system that projects image light formed on the image plane of the self-luminous display panel, wherein the projection lens optical system includes first to sixth lenses sequentially arranged from the point where light is emitted to the image plane, The first to sixth lenses sequentially have positive, negative, positive, negative, negative, and positive refractive powers, and can satisfy the conditional expression L B /f ⁇ 0.5.
  • L B refers to the distance between the incident surface of the sixth lens and the image plane
  • f refers to the focal length of the projection lens optical system.
  • a wearable device includes a projection device that outputs light of an image; and an image combiner that guides the light output from the projection device to the user's eye motion box, wherein the projection device includes: a self-luminous display panel whose pixels are composed of self-luminous elements; A projection lens optical system that projects image light formed on the image plane of the self-luminous display panel, wherein the projection lens optical system includes first to sixth lenses sequentially arranged from the point where light is emitted to the image plane, The first to sixth lenses have sequentially positive, negative, negative, positive, negative, and positive refractive indices, and can satisfy the conditional expression L B /f ⁇ 0.5. At this time, L B refers to the distance between the incident surface of the sixth lens and the image plane, and f refers to the focal length of the projection lens optical system.
  • the wearable device may be augmented reality glasses or a head-mounted display device.
  • the image combiner includes a waveguide, an input-coupling element provided in the waveguide, and an output-coupling element provided in the waveguide, and inputs input into the waveguide through the input-coupling element.
  • the light may be output through an output-coupling element.
  • the disclosed projection lens optical system can maintain telecentricity while having a short back focal length (BFL).
  • the disclosed projection lens optical system has a short rear focal length, it is possible to design a lens with a smaller F-value at the same diameter, and to achieve miniaturization and weight reduction of the projection device.
  • the projection device using the disclosed projection lens optical system has a smaller form factor than a conventional projection device, so it may be suitable for wearable devices such as AR/MR.
  • FIG. 1 schematically shows a projection device according to an embodiment of the present disclosure.
  • Figure 2 schematically shows a projection lens optical system according to a first embodiment of the present disclosure.
  • FIG. 3 is a graph showing astigmatism of the projection lens optical system of FIG. 2.
  • FIG. 4 is a graph showing the distortion aberration of the projection lens optical system of FIG. 2.
  • FIG. 5 is a graph showing the through focus MTF of the projection lens optical system of FIG. 2.
  • Figure 6 schematically shows a projection lens optical system according to a second embodiment of the present disclosure.
  • FIG. 7 is a graph showing astigmatism of the projection lens optical system of FIG. 6.
  • FIG. 8 is a graph showing the distortion aberration of the projection lens optical system of FIG. 6.
  • FIG. 9 is a graph showing the through focus MTF of the projection lens optical system of FIG. 6.
  • Figure 10 schematically shows a projection lens optical system according to an embodiment of the present disclosure.
  • Figure 11 schematically shows a wearable device employing a projection device according to an embodiment of the present disclosure.
  • FIG. 12 shows the arrangement of a projection device in the wearable device of FIG. 11.
  • image plane may refer to the plane on which an image is formed in the display panel
  • image plane side may represent the direction in which the image plane is located.
  • the side opposite to the image side based on the projection lens optical system is the direction in which light is emitted, for example, it may be the side facing the image combiner (wave guide) of the wearable device.
  • Figure 1 schematically shows a projection device 100 according to an embodiment of the present disclosure.
  • the projection device 100 includes a display panel 110 and a projection lens optical system 130.
  • the display panel 110 may be a self-luminous display panel in which pixels are composed of self-luminous elements.
  • the display panel 110 may be a flat panel device.
  • the display panel 110 may be a high-brightness self-luminous display panel with a brightness of 5,000 nits (nit) or more.
  • These high-brightness self-luminous display panels can be implemented with micro LED (micro light emitting diode) or OLED (organic light emitting diode).
  • the projection lens optical system 130 includes six lenses, namely, the first lens 131, the second lens 132, the third lens 133, the fourth lens 134, the fifth lens 135, and the third lens 133. Includes 6 lenses 136.
  • the first to sixth lenses 131, 132, 133, 134, 135, and 136 are sequentially arranged from where light is emitted to the display panel 110 (i.e., image plane).
  • the first to sixth lenses 131, 132, 133, 134, 135, and 136 may be composed of a combination of spherical lenses and aspherical lenses.
  • the first to sixth lenses 131, 132, 133, 134, 135, and 136 may sequentially have positive, negative, positive, negative, negative, and positive refractive powers, respectively.
  • the first, second, third, and fourth lenses 131, 132, 133, and 134 may be aspherical lenses, and the fifth and sixth lenses 135 and 136 may each be spherical.
  • the first to sixth lenses 131, 132, 133, 134, 135, and 136 may sequentially have positive, negative, negative, positive, negative, and positive refractive powers, respectively.
  • the first, second, and fifth lenses 131, 132, and 135 may be aspherical lenses, and the third, fourth, and sixth lenses 133, 134, and 136 may each be spherical.
  • the third and fourth lenses 133 and 134 may be bonded to form a doublet lens.
  • the third and fourth lenses 133 and 134 are composed of double bonded lenses, chromatic aberration can be suppressed more effectively.
  • the projection lens optical system 130 may satisfy conditional equation 1 below.
  • L B is the back focal length and means the distance from the incident surface of the sixth lens 136 to the image surface of the display panel 110.
  • conditional equation 1 relates to the rear focal length of the projection lens optical system 130 relative to the total focal length, meaning that the projection lens optical system 130 has a short rear focal distance compared to the total focal length.
  • Conditional expression 1 corresponds to the fact that the display panel 110 is a self-luminous device.
  • additional space for illuminating light on the non-emissive display panel e.g., a space where prisms, etc. will be placed
  • the projection lens optical system It was needed between the and non-emissive display panel.
  • the projection device 100 of this embodiment does not require a space for illuminating light between the projection lens optical system 130 and the display panel 110 because the display panel 110 is a self-luminous element, and therefore the projection lens
  • the optical system 130 has a short rear focal length as shown in Conditional Equation 1 and can be placed right in front of the display panel 110.
  • the projection lens optical system 130 may additionally satisfy conditional equation 2 below.
  • L T represents the distance from the exit surface of the first lens 131 to the image surface of the display panel 110
  • f represents the total focal length of the projection lens optical system 130.
  • Conditional expression 2 above defines the ratio of the length of the projection lens optical system 130 to the total focal length, and shows that the projection lens optical system 130 has a short length compared to the total focal length. If the projection lens optical system 130 exceeds the upper limit of condition 2, a smaller F-value and better telecentricity can be achieved, but the length of the projection lens optical system 130 becomes longer.
  • the projection lens optical system 130 may additionally satisfy conditional equation 3 below.
  • means the field of view of the projection lens optical system 130.
  • Conditional expression 3 shows that the projection lens optical system 130 has a wide viewing angle, and the projection device 100 employing the projection lens optical system 130 can provide a wide viewing angle to the wearable device.
  • the projection lens optical system 130 may additionally satisfy conditional equation 4 below.
  • CRA refers to the chief ray angle formed by the chief ray with the optical axis on the image plane of the display panel 110.
  • the chief ray is a ray that passes through the center of the exit pupil of the projection lens optical system 130 among the rays output from each pixel of the display panel 110 and constituting a field.
  • Conditional expression 4 is for the projection lens optical system 130 to maintain telecentricity, and means that the angle of the chief ray from each pixel of the display panel 110 toward the projection lens optical system 130 must be designed to be within a maximum of 15 degrees. .
  • the projection lens optical system 130 satisfies Condition Equation 4, it is possible to have high luminous efficiency when the projection lens optical system 130 receives light emitted from the display panel 110 and can have a uniform illuminance distribution.
  • the first to sixth lenses 131, 132, 133, 134, 135, and 136 may be made of a glass material that has little thermal change. As the projection lens optical system 130 is disposed adjacent to the display panel 110, the heat generated by the display panel 110, which is a self-luminous element, is increased by the first to sixth lenses 131, 132, 133, 134, 135, and 136. can affect. As the first to sixth lenses 131, 132, 133, 134, 135, and 136 are made of glass, the heat generation effect of the display panel 110 can be suppressed.
  • the lens surfaces of the first to sixth lenses 131, 132, 133, 134, 135, and 136 may be designed to have no inflection points.
  • the first, second, third, and fourth lenses (131, 132, 133, and 134) may be aspherical lenses, but the first, second, third, and fourth lenses (131, 132, and 133) may be aspherical lenses. , 134), the lens surface can be designed so that there is no inflection point.
  • the first, second, and fifth lenses (131, 132, and 135) may be aspherical lenses, but the lens surfaces of the first, second, and fifth lenses (131, 132, and 135) have no inflection points. can be designed.
  • the lens surface is designed to have no inflection point in this way, even if the first to sixth lenses 131, 132, 133, 134, 135, and 136 are made of glass, the first to sixth lenses 131, 132, 133, 134, 135, 136) can improve manufacturability.
  • An optical filter 120 may be disposed between the sixth lens 136 and the display panel 110.
  • the optical filter 120 may be, for example, a protection filter or a polarizing filter.
  • the combination of the projection lens optical system 130 and the display panel 110 which is a self-luminous element, can realize an ultra-small projection device 100 and can be used in wearable devices such as augmented reality glasses or mixed reality equipment. .
  • the MTF (modulation transfer function) of 100lp per millimeter can be achieved at least 20% or more, at the level of 100lp (line pairs)/mm.
  • the video can be transmitted.
  • the lens surface numbers (1, 2, 3, ..., n; n is a natural number) are listed sequentially from the emission side to the image surface side, and in the drawing, the lens surfaces are denoted by symbols S1, S2, S3, ... shows.
  • Y represents the radius of curvature
  • T represents the thickness of the lens or the air gap between the lenses.
  • the definition of the aspherical surface used in the projection lens optical system according to an embodiment of the present invention is as follows.
  • the aspheric shape can be expressed as follows, with the optical axis direction being the x-axis and the direction perpendicular to the optical axis being the y-axis, with the direction of light travel being positive.
  • x is the distance from the vertex of the lens in the direction of the optical axis
  • y is the distance in the direction perpendicular to the optical axis
  • K is the conic constant
  • A, B, C, D,... represents the aspherical coefficient
  • c represents the reciprocal of the radius of curvature at the vertex of the lens (1/R).
  • Figure 2 schematically shows the projection lens optical system 200 according to the first embodiment of the present disclosure
  • Table 1 below shows design data of the first embodiment. This embodiment is merely illustrative and does not limit the disclosure.
  • the projection lens optical system 200 includes first to sixth lenses 210, 220, 230, 240, 250, and 260.
  • S3 refers to the aperture (stop)
  • S14 and S15 refer to the exit and incident surfaces of the optical filter 209
  • S16 refers to the image plane of the display panel.
  • the F number (Fno) of the projection lens optical system 200 is 2.0, the focal length (f) is about 9 mm, and the angle of view (2 ⁇ ) is 50°.
  • the length of the image plane (S16) is based on 4.40 mm in the diagonal direction.
  • Table 2 below shows the aspherical coefficients of the first example.
  • FIG. 3 is a graph showing the astigmatism of the projection lens optical system 200 of FIG. 2
  • FIG. 4 is a graph showing the distortion aberration of the projection lens optical system 200 of FIG. 2.
  • the vertical axis represents image height (IMG HT), and the unit is mm.
  • FIG. 5 is a graph showing the through focus MTF of the projection lens optical system 200 of FIG. 2.
  • the horizontal axis represents the defocus position of the projection lens optical system 200
  • the vertical axis represents the modulation size, and are indicated by different curves depending on the height of the image plane.
  • FIG. 5 it can be seen that the peaks of modulation of the projection lens optical system 200 are well clustered around defocus 0.
  • 3 to 5 show that the projection lens optical system 200 of FIG. 2 has sufficient optical performance to be used in a projection device for a wearable device.
  • FIG. 6 schematically shows a projection lens optical system 300 according to a second embodiment of the present disclosure
  • Table 3 below shows design data of the second embodiment. This embodiment is merely illustrative and does not limit the disclosure.
  • the projection lens optical system 300 includes first to sixth lenses 310, 320, 330, 340, 350, and 360.
  • S1 refers to the aperture (stop)
  • S14 and S15 refer to the exit and incident surfaces of the optical filter 309
  • S16 refers to the image plane of the display panel.
  • Table 4 below shows the aspherical coefficients of the second example.
  • FIG. 7 is a graph showing the astigmatism of the projection lens optical system 300 of FIG. 6, and FIG. 8 is a graph showing the distortion aberration of the projection lens optical system 300 of FIG. 6.
  • the vertical axis represents image height (IMG HT), and the unit is mm.
  • FIG. 9 is a graph showing the through focus MTF of the projection lens optical system 300 of FIG. 6.
  • FIGS. 7 to 9 show that the projection lens optical system 300 of FIG. 6 has sufficient optical performance to be used as a projection device for a wearable device.
  • FIG. 10 schematically shows a projection lens optical system 300' according to an embodiment of the present disclosure.
  • the projection lens optical system 300' of FIG. 10 is similar to the projection lens optical system 300 described with reference to FIG. 6, but differs in that the third and fourth lenses 330' and 340' are joined. As the third and fourth lenses 330' and 340' are bonded to form a doublet lens, chromatic aberration can be suppressed more effectively.
  • FIG. 11 schematically shows a wearable device 400 employing a projection device according to an embodiment of the present disclosure.
  • FIG. 12 shows the arrangement of the projection device 450 in the wearable device 400 of FIG. 11 .
  • the wearable device 400 is a glasses-type display device configured to be worn by a user.
  • Glasses-type display devices may be Augmented Reality Glasses.
  • the wearable device 400 may include a glasses-shaped body having a frame 410 and temples 420 .
  • the frame 410 may exemplarily have the shape of two rims connected by a bridge. The rim and bridge of the frame 410 may not be distinguished.
  • the temples 420 are respectively connected to both ends of the frame 410 and extend in one direction. Both ends of the frame 410 and the temples 420 may be connected, for example, by a hinge. As another example, the frame 410 and the temples 420 may be integrally connected.
  • a waveguide 440 is fixed to the frame 410.
  • the waveguide 440 is an example of an image combiner.
  • the eyeglasses may be placed on the frame 410.
  • the waveguide 440 may be attached to the eyeglasses or may be spaced apart from the eyeglasses.
  • the waveguide 440 may include an input-coupling element 441 and an output-coupling element 443.
  • the input-coupling element 441 is located on the side of the waveguide 440 that faces the projection device 450 or behind it, and inputs the light output from the projection device 450 into the waveguide 440.
  • the waveguide 440 guides the input light toward the output-coupling element 443 and outputs it to the target area through the output-coupling element (43 in FIG. 13). At this time, the target area may be the user's eye motion box.
  • the input-coupling element 441 or the output-coupling element 443 may have a grid structure such as, for example, a diffractive optical element or a holographic
  • the projection device 450 is configured to output light of a virtual image, and can use a projection device employing the projection lens optical system of the above-described embodiments.
  • the projection device 450 may be fixed to the temple of glasses 420, as shown in FIG. 11, but is not limited thereto.
  • the projection device 450 may be located at any position on the frame 410 (rim shape).
  • the projection device 450 may be provided on each of the left and right eyes.
  • Information processing and image formation for the projection device 450 may be performed directly on the computer of the wearable device itself, or the wearable device may be connected to an external electronic device such as a smartphone, tablet, computer, laptop, or any other intelligent (smart) device. This can be done in an external electronic device.
  • Signal transmission between the wearable device and an external electronic device may be performed through wired communication and/or wireless communication.
  • Wearable devices can receive power from at least one of a built-in power source (rechargeable battery), an external device, and an external power source.
  • the projection device 450 is explained focusing on the example of being applied to augmented reality glasses, but it can be clearly understood by those skilled in the art that it can be applied to wearable devices such as virtual reality devices or mixed reality devices that can express virtual reality. There will be.
  • 'Wearable Device' refers to a device that a user can wear, such as glasses-shaped Augmented Reality Glasses or goggle-shaped devices that the user wears on the face. It includes devices such as Head Mounted Display (HMD), Augmented Reality Helmet, and Head Up Display (HUD) worn on the head.
  • HMD Head Mounted Display
  • HUD Head Up Display

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lenses (AREA)

Abstract

프로젝션 렌즈 광학계, 이를 채용한 프로젝션 장치 및 웨어러블 디바이스가 개시된다. 개시된 프로젝션 렌즈 광학계는 웨어러블 디바이스의 프로젝션 장치에 사용되는 것으로서, 빛이 출사되는 곳부터 이미지 면까지 순차적으로 배치된 제1 내지 제6 렌즈를 포함하며, 제1 내지 제6 렌즈는 순차적으로 양, 음, 양, 음, 음, 양의 굴절력을 가지거나 양, 음, 음, 양, 음, 양의 굴절률을 가지며, 조건식 LB/f ≤ 0.5을 만족할 수 있다.

Description

프로젝션 렌즈 광학계, 이를 채용한 프로젝션 장치 및 웨어러블 디바이스
본 개시는 프로젝션 렌즈 광학계, 이를 채용한 프로젝션 장치 및 웨어러블 디바이스에 관한 것이다.
프로젝션 장치는 가상현실(Virtual Reality, VR), 증강현실(Augmented Reality, AR), 혼합현실(Mixed Reality, MR) 등을 제공하는 웨어러블 디바이스에 적용될 수 있다. 증강현실 안경과 같은 웨어리블 디바이스는 소형 및 경량을 요구하므로, 웨어러블 디바이스에 사용되는 프로젝션 장치는 기존의 프로젝션 장치 대비 월등히 작은 부피로 구현될 수 있도록 광원부를 위한 프리즘을 제거하는 등의 시도가 있어 왔다.
기존의 프로젝션 장치에는 디스플레이 패널로서 LCoS (Liquid Crystal on Silicon), DMD(Digital Micromirror Device) 등을 이용하였다. 이러한 LCos, DMD는 편광 빔 스플리터(polarizing beam splitter, PBS), 프리즘(prism)과 같은 광선 결합기나, 조명 광학계를 필요로 하기에, 총 부피를 줄이는데 한계가 있다. 이러한 점들 때문에 소형 및 경량 부품을 이용해야 하는 웨어러블 디바이스에 적합한 프로젝션 렌즈 광학계에 대한 필요성이 제기되고 있다.
해결하고자 하는 과제는 웨어러블 디바이스에 적합한 소형 폼 팩터를 갖는 프로젝션 렌즈 광학계, 이를 채용한 프로젝션 장치를 제공하는데 있다.
해결하고자 하는 과제는 마이크로 LED, OLED 등의 자발광 디스플레이 패널에 대응 가능한 프로젝션 렌즈 광학계, 이를 채용한 프로젝션 장치 및 웨어러블 디바이스를 제공하는데 있다.
해결하려는 기술적 과제는 상기된 바와 같은 기술적 과제들로 한정되지 않으며, 또 다른 기술적 과제들이 존재할 수 있다.
일 측면에 따르는 프로젝션 렌즈 광학계는 웨어러블 디바이스의 프로젝션 장치에 사용되는 것으로서, 빛이 출사되는 곳부터 이미지 면까지 순차적으로 배치된 제1 렌즈, 제2 렌즈, 제3 렌즈, 제4 렌즈, 제5 렌즈 및 제6 렌즈(이하, 제1 내지 제6 렌즈)를 포함한다. 제1 내지 제6 렌즈는 순차적으로 양, 음, 양, 음, 음, 양의 굴절력을 가지며, 조건식 LB/f ≤ 0.5을 만족할 수 있다. 이때 LB는 제6 렌즈의 입사면과 이미지 면까지의 거리, f는 프로젝션 렌즈 광학계의 초점거리를 의미한다.
본 개시의 일 실시예에서, 제1, 제2, 제3 및 제4 렌즈는 비구면 렌즈이며, 제5 렌즈 및 제6 렌즈는 구면일 수 있다.
다른 측면에 따르는 프로젝션 렌즈 광학계는 웨어러블 디바이스의 프로젝션 장치에 사용되는 것으로서, 빛이 출사되는 곳부터 이미지 면까지 순차적으로 배치된 제1 내지 제6 렌즈를 포함하며, 제1 내지 제6 렌즈는 순차적으로 양, 음, 음, 양, 음, 양의 굴절률을 가지며, 조건식 LB/f ≤ 0.5을 만족할 수 있다. 이때 LB는 제6 렌즈의 입사면과 이미지 면까지의 거리, f는 프로젝션 렌즈 광학계의 초점거리를 의미한다.
본 개시의 일 실시예에서, 제1, 제2 및 제5 렌즈는 비구면 렌즈이며, 제3, 제4 및 제6 렌즈는 구면일 수 있다.
본 개시의 일 실시예에서, 프로젝션 렌즈 광학계는 조건식 LT/f ≤ 1.5을 추가로 만족할 수 있다. 이때 LT는 제1 렌즈의 출사면에서부터 이미지 면까지의 전체 길이, f는 프로젝션 렌즈 광학계의 초점거리를 의미한다.
본 개시의 일 실시예에서, Ω는 프로젝션 렌즈 광학계의 시야각을 의미한다. 본 개시의 일 실시예에서, 프로젝션 렌즈 광학계는 조건식 Ω ≥ 30도(deg)을 추가로 만족할 수 있다.
본 개시의 일 실시예에서, CRA는 주광선이 이미지 면 상에서 광축과 이루는 주광선 각도(Chief ray angle)를 의미한다. 본 개시의 일 실시예에서, 프로젝션 렌즈 광학계는 조건식 CRA <15도(deg.)을 추가로 만족할 수 있다.
본 개시의 일 실시예에서, 제3 및 제4 렌즈가 이중 접합 렌즈일 수 있다.
본 개시의 일 실시예에서, 제1 내지 제6 렌즈에 포함된 임의의 렌즈는 유리 재질로 형성될 수 있다.
또 다른 측면에 따르는 프로젝션 장치는 웨어러블 디바이스에 사용되는 것으로서, 자발광 소자들로 화소들이 구성된 자발광 디스플레이 패널; 자발광 디스플레이 패널의 이미지 면에 형성된 이미지 광을 투사하는 프로젝션 렌즈 광학계;를 포함하며, 프로젝션 렌즈 광학계는 빛이 출사되는 곳부터 이미지 면까지 순차적으로 배치된 제1 내지 제6 렌즈를 포함하며, 제1 내지 제6 렌즈는 순차적으로 양, 음, 양, 음, 음, 양의 굴절력을 가지며, 조건식 LB/f ≤ 0.5을 만족할 수 있다. 이때 LB는 제6 렌즈의 입사면과 이미지 면까지의 거리, f는 프로젝션 렌즈 광학계의 초점거리를 의미한다.
또 다른 측면에 따르는 프로젝션 장치는 웨어러블 디바이스에 사용되는 것으로서, 자발광 소자들로 화소들이 구성된 자발광 디스플레이 패널; 자발광 디스플레이 패널의 이미지 면에 형성된 이미지 광을 투사하는 프로젝션 렌즈 광학계;를 포함하며, 프로젝션 렌즈 광학계는 빛이 출사되는 곳부터 이미지 면까지 순차적으로 배치된 제1 내지 제6 렌즈를 포함하며, 제1 내지 제6 렌즈는 순차적으로 양, 음, 음, 양, 음, 양의 굴절률을 가지며, 조건식 LB/f ≤ 0.5을 만족할 수 있다. 이때 LB는 제6 렌즈의 입사면과 이미지 면까지의 거리, f는 프로젝션 렌즈 광학계의 초점거리를 의미한다.
본 개시의 일 실시예에서, 자발광 디스플레이 패널은 마이크로 LED 패널 또는 OLED 패널일 수 있다.
또 다른 측면에 따르는 웨어러블 디바이스는 이미지의 광을 출력하는 프로젝션 장치; 및 프로젝션 장치에서 출력된 광을 사용자의 아이 모션 박스로 가이드하는 이미지 컴바이너;를 포함하며, 프로젝션 장치는 자발광 소자들로 화소들이 구성된 자발광 디스플레이 패널; 자발광 디스플레이 패널의 이미지 면에 형성된 이미지 광을 투사하는 프로젝션 렌즈 광학계;를 포함하며, 프로젝션 렌즈 광학계는 빛이 출사되는 곳부터 이미지 면까지 순차적으로 배치된 제1 내지 제6 렌즈를 포함하며, 제1 내지 제6 렌즈는 순차적으로 양, 음, 양, 음, 음, 양의 굴절력을 가지며, 조건식 LB/f ≤ 0.5을 만족할 수 있다. 이때 LB는 제6 렌즈의 입사면과 이미지 면까지의 거리, f는 프로젝션 렌즈 광학계의 초점거리를 의미한다.
또 다른 측면에 따르는 웨어러블 디바이스는 이미지의 광을 출력하는 프로젝션 장치; 및 프로젝션 장치에서 출력된 광을 사용자의 아이 모션 박스로 가이드하는 이미지 컴바이너;를 포함하며, 프로젝션 장치는 자발광 소자들로 화소들이 구성된 자발광 디스플레이 패널; 자발광 디스플레이 패널의 이미지 면에 형성된 이미지 광을 투사하는 프로젝션 렌즈 광학계;를 포함하며, 프로젝션 렌즈 광학계는 빛이 출사되는 곳부터 이미지 면까지 순차적으로 배치된 제1 내지 제6 렌즈를 포함하며, 제1 내지 제6 렌즈는 순차적으로 양, 음, 음, 양, 음, 양의 굴절률을 가지며, 조건식 LB/f ≤ 0.5을 만족할 수 있다. 이때 LB는 제6 렌즈의 입사면과 이미지 면까지의 거리, f는 프로젝션 렌즈 광학계의 초점거리를 의미한다.
일 실시예에서, 웨어러블 디바이스는 증강 현실 안경 또는 두부 장착형 디스플레이 장치일 수 있다.
일 실시예에서, 이미지 컴바이너는 웨이브가이드와, 웨이브가이드에 마련되는 입력-커플링 소자와, 웨이브가이드에 마련되는 출력-커플링 소자를 포함하며, 입력-커플링 소자를 통해 웨이브가이드 내로 입력된 광은 출력-커플링 소자를 통해 출력될 수 있다.
개시된 프로젝션 렌즈 광학계는 짧은 후방초점거리(back focal length, BFL)을 가지면서 텔레센트리시티(telecentricity)를 유지할 수 있다.
개시된 프로젝션 렌즈 광학계는 짧은 후방초점거리를 가짐에 따라 동일한 직경에서 더 작은 F-값의 렌즈를 설계할 수 있게 하며, 프로젝션 장치의 소형화 및 경량화를 도모할 수 있게 한다.
개시된 프로젝션 렌즈 광학계를 이용한 프로젝션 장치는 종래의 프로젝션 장치 대비 작은 폼 펙터를 가지기 때문에 AR/MR 등 웨어러블 디바이스에 적합할 수 있다.
상기한 바와 본 개시의 실시예들의 다른 측면과 특징들은, 다음의 자세한 설명과 그에 수반되는 도면들의 결합으로 명확해 질 것이다.
도 1은 본 개시의 일 실시예에 따른 프로젝션 장치를 개략적으로 도시한다.
도 2는 본 개시의 제1 실시예에 따른 프로젝션 렌즈 광학계를 개략적으로 도시한다.
도 3은 도 2의 프로젝션 렌즈 광학계의 비점수차를 보여주는 그래프이다.
도 4는 도 2의 프로젝션 렌즈 광학계의 왜곡수차를 보여주는 그래프이다.
도 5는 도 2의 프로젝션 렌즈 광학계의 스루 포커스 MTF를 보여주는 그래프이다.
도 6은 본 개시의 제2 실시예에 따른 프로젝션 렌즈 광학계를 개략적으로 도시한다.
도 7은 도 6의 프로젝션 렌즈 광학계의 비점수차를 보여주는 그래프이다.
도 8은 도 6의 프로젝션 렌즈 광학계의 왜곡수차를 보여주는 그래프이다.
도 9는 도 6의 프로젝션 렌즈 광학계의 스루 포커스 MTF를 보여주는 그래프이다.
도 10은 본 개시의 일 실시예에 따른 프로젝션 렌즈 광학계를 개략적으로 도시한다.
도 11은 본 개시의 일 실시예에 따른 프로젝션 장치를 채용한 웨어러블 디바이스를 개략적으로 도시한다.
도 12은 도 11의 웨어러블 디바이스에서 프로젝션 장치의 배치를 도시한다.
아래에서는 첨부한 도면을 참조하여 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 개시의 실시예를 상세히 설명한다. 그러나 본 개시는 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 개시를 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본 명세서의 실시예들에서 사용되는 용어는 본 개시의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 실시예의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 명세서에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 개시의 전반에 걸친 내용을 토대로 정의되어야 한다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
이하의 설명에서, “이미지 면(image plane)”은 디스플레이 패널에서 이미지가 형성되는 면을 나타내는 것으로, “이미지 면측”은 이미지 면이 위치하는 방향을 나타낼 수 있다. 프로젝션 렌즈 광학계를 기준으로 이미지 면측과 반대쪽은 빛이 출사되는 방향으로, 예를 들어 웨어러블 디바이스의 이미지 컴바이너(웨이브가이드)와 마주보는 쪽일 수 있다.
이하 첨부된 도면을 참고하여 본 개시를 상세히 설명하기로 한다.
도 1은 본 개시의 일 실시예에 따른 프로젝션 장치(100)를 개략적으로 도시한다.
도 1을 참조하면, 프로젝션 장치(100)는 디스플레이 패널(110)과 프로젝션 렌즈 광학계(130)를 포함한다.
디스플레이 패널(110)은 자발광 소자들로 화소들이 구성된 자발광 디스플레이 패널일 수 있다. 디스플레이 패널(110)는 평판 패널 소자일 수 있다. 디스플레이 패널(110)은 예를 들어 5,000 니트(nit) 이상의 밝기를 가진 고휘도 자발광 디스플레이 패널일 수 있다. 이러한 고휘도 자발광 디스플레이 패널은 마이크로 LED(micro Light Emitting Diode)나 OLED(organic Light Emitting Diode)로 구현될 수 있다.
프로젝션 렌즈 광학계(130)는 6매의 렌즈 즉, 제1 렌즈(131), 제2 렌즈(132), 제3 렌즈(133), 제4 렌즈(134), 제5 렌즈(135), 및 제6 렌즈(136)를 포함한다. 제1 내지 제6 렌즈(131, 132, 133, 134, 135, 136)는 빛이 출사되는 곳부터 디스플레이 패널(110)(즉, 이미지 면)까지 순차적으로 배치된다. 제1 내지 제6 렌즈(131, 132, 133, 134, 135, 136)는 구면 렌즈 및 비구면 렌즈의 조합으로 구성될 수 있다.
일 실시예에서 제1 내지 제6 렌즈(131, 132, 133, 134, 135, 136)는 순차적으로 양, 음, 양, 음, 음, 양의 굴절력을 각각 가질 수 있다. 제1, 제2, 제3 및 제4 렌즈(131, 132, 133, 134)는 각각 비구면 렌즈이며, 제5 및 제6 렌즈(135, 136)는 각각 구면일 수 있다.
일 실시예에서 제1 내지 제6 렌즈(131, 132, 133, 134, 135, 136)는 순차적으로 양, 음, 음, 양, 음, 양의 굴절력을 각각 가질 수 있다. 제1, 제2 및 제5 렌즈(131, 132, 135)는 각각 비구면 렌즈이며, 제3, 제4 및 제6 렌즈(133, 134, 136)는 각각 구면일 수 있다.
일 실시예에서 제3 및 제4 렌즈(133, 134)는 접합되어 이중 접합 렌즈(dublet lens)를 구성할 수도 있다. 이와 같이 제3 및 제4 렌즈(133, 134)가 이중 접합 렌즈로 구성됨에 따라 더욱 효과적으로 색수차를 억제할 수 있다.
일 실시예에서 프로젝션 렌즈 광학계(130)는 하기의 조건식 1을 만족할 수 있다.
<조건식 1>
LB/f ≤ 0.5
이때 LB는 후방초점거리(back focal length)로 제6 렌즈(136)의 입사면부터 디스플레이 패널(110)의 이미지 면까지의 거리를 의미한다.
상기 조건식 1은 전체 초점 거리에 대한 프로젝션 렌즈 광학계(130)의 후방초점거리에 대한 것으로, 프로젝션 렌즈 광학계(130)가 전체 초점 거리 대비 짧은 후방초점거리를 가짐을 의미한다. 조건식 1은 디스플레이 패널(110)이 자발광 소자인 것에 대응한다. 종래의 비자발광 디스플레이 패널(예를 들어, LCoS, DMD)을 사용하는 프로젝션 장치의 경우에 비자발광 디스플레이 패널에 빛을 조명하기 위한 추가적인 공간(예를 들어 프리즘등이 배치될 공간)이 프로젝션 렌즈 광학계와 비자발광 디스플레이 패널 사이에 필요하였다. 이에 비하여, 본 실시예의 프로젝션 장치(100)는 디스플레이 패널(110)이 자발광 소자이기에 프로젝션 렌즈 광학계(130)과 디스플레이 패널(110) 사이에 빛을 조명하기 위한 공간이 필요하지 않고, 따라서 프로젝션 렌즈 광학계(130)는 조건식 1과 같이 짧은 후방초점거리를 가지고, 디스플레이 패널(110)의 바로 앞에 배치될 수 있다.
프로젝션 렌즈 광학계(130)는 하기의 조건식 2을 추가적으로 만족할 수 있다.
<조건식 2>
LT/f ≤ 1.5
여기서, LT는 제1 렌즈(131)의 출사면에서부터 디스플레이 패널(110)의 이미지 면까지 거리, f는 프로젝션 렌즈 광학계(130)의 전체 초점 거리를 나타낸다.
상기 조건식 2는은 전체 초점 거리에 대한 프로젝션 렌즈 광학계(130)의 길이의 비를 정의한 것으로, 프로젝션 렌즈 광학계(130)는 전체 초점 거리 대비 짧은 길이를 가짐을 보여준다. 만일, 프로젝션 렌즈 광학계(130)가 조건식 2의 상한값을 초과하는 경우에 더 작은 F-값과 텔레센트리시티를 더욱 양호하게 만들 수 있지만 프로젝션 렌즈 광학계(130)의 길이가 길어지게 된다.
프로젝션 렌즈 광학계(130)는 하기의 조건식 3을 추가적으로 만족할 수 있다.
<조건식 3>
Ω ≥ 30도(deg)
이때 Ω는 프로젝션 렌즈 광학계(130)의 시야각(field of view)을 의미한다.
조건식 3은 프로젝션 렌즈 광학계(130)가 넓은 시야각을 가짐을 보여주며, 프로젝션 렌즈 광학계(130)를 채용한 프로젝션 장치(100)가 웨어러블 디바이스에 넓은 시야각을 제공할 수 있게 된다.
프로젝션 렌즈 광학계(130)는 하기의 조건식 4를 추가적으로 만족할 수 있다.
<조건식 4>
CRA <15도(deg)
이때 CRA는 주광선(Chief ray)이 디스플레이 패널(110)의 이미지 면 상에서 광축과 이루는 주광선 각도(Chief ray angle)를 의미한다. 주광선은 디스플레이 패널(110)의 각 픽셀에서 출력되어 필드(field)를 구성하는 광선 중 프로젝션 렌즈 광학계(130)의 출사동(exit pupil)의 중심을 지나는 광선이다.
조건식 4는 프로젝션 렌즈 광학계(130)가 텔레센트리시티를 유지하기 위한 것으로 디스플레이 패널(110)의 각 픽셀에서 나온 주광선이 프로젝션 렌즈 광학계(130)를 향한 각도가 최대 15도 이내로 설계되어야 한다는 것을 의미한다. 프로젝션 렌즈 광학계(130)는 조건식 4를 만족함에 따라 디스플레이 패널(110)에서 나오는 빛을 프로젝션 렌즈 광학계(130)가 수광할 때 높은 광효율을 가질 수 있게 되며, 균일한 조도 분포를 가질 수 있게 된다.
제1 내지 제6 렌즈(131, 132, 133, 134, 135, 136)는 열에 대한 변화가 적은 유리 재질로 형성될 수 있다. 프로젝션 렌즈 광학계(130)가 디스플레이 패널(110)에 인접하게 배치됨에 따라, 자발광 소자인 디스플레이 패널(110)의 발열이 제1 내지 제6 렌즈(131, 132, 133, 134, 135, 136)에 영향을 미칠 수 있다. 제1 내지 제6 렌즈(131, 132, 133, 134, 135, 136)가 유리 재질로 형성됨에 따라, 디스플레이 패널(110)의 발열 영향을 억제할 수 있다.
제1 내지 제6 렌즈(131, 132, 133, 134, 135, 136)의 렌즈면은 변곡점이 없도록 설계될 수 있다. 일 실시예에서 제1, 제2, 제3 및 제4 렌즈(131, 132, 133, 134)는 비구면 렌즈일 수 있으나, 제1, 제2, 제3 및 제4 렌즈(131, 132, 133, 134)의 렌즈면은 변곡점이 없도록 설계될 수 있다. 일 실시예에서 제1, 제2 및 제5 렌즈(131, 132, 135)는 비구면 렌즈일 수 있으나, 제1, 제2 및 제5 렌즈(131, 132, 135)의 렌즈면은 변곡점이 없도록 설계될 수 있다. 이와 같이 렌즈면이 변곡점이 없도록 설계됨에 따라, 제1 내지 제6 렌즈(131, 132, 133, 134, 135, 136)가 유리 재질로 형성되더라도 제1 내지 제6 렌즈(131, 132, 133, 134, 135, 136)의 제작성을 향상시킬 수 있다.
제6 렌즈(136)과 디스플레이 패널(110) 사이에는 광학 필터(120)가 배치될 수 있다. 광학 필터(120)는 예를 들어 보호필터이거나, 편광필터일 수 있다.
상기와 같은 프로젝션 렌즈 광학계(130)와 자발광 소자인 디스플레이 패널(110)의 결합은 프로젝션 장치(100)의 초소형을 구현할 수 있으며, 증강현실 안경이나 혼합현실 장비와 같은 웨어러블 디바이스에 이용될 수 있다.
또한, 상기와 같은 프로젝션 렌즈 광학계(130)를 포함한 프로젝션 장치(100)에서 망막 상에서 밀리미터 당 100lp의 MTF (modulation transfer function)이 최소 20% 이상을 달성할 수 있어, 100lp(line pairs)/mm 수준의 영상을 전달할 수 있다.
다음으로, 수치 실시예를 참조하여 프로젝션 렌즈 광학계를 설명하도록 한다.
각 수치 실시예에서 렌즈면 번호(1, 2, 3, …, n; n은 자연수)는 출사측으로부터 이미지 면측으로 순차적으로 나열되며, 도면에는 렌즈 면의 부호 S1, S2, S3, …를 도시한다. 그리고, Y는 곡률 반경을, T는 렌즈의 두께 또는 렌즈와 렌즈 사이의 공기 간격을 나타낸다.
한편, 본 발명의 실시예에 따른 프로젝션 렌즈 광학계에 사용되는 비구면의 정의를 나타내면 다음과 같다.
비구면 형상은 광축 방향을 x축으로 하고, 광축 방향에 대해 수직한 방향을 y축으로 할 때, 광선의 진행 방향을 정으로 하여 다음과 같은 식으로 나타낼 수 있다. 여기서, x는 렌즈의 정점으로부터 광축 방향으로의 거리를, y는 광축에 대해 수직한 방향으로의 거리를, K는 코닉 상수(conic constant)를, A, B, C, D, … 는 비구면 계수를, c는 렌즈의 정점에 있어서의 곡률 반경의 역수(1/R)를 각각 나타낸다.
< 비구면 방정식 >
Figure PCTKR2023006784-appb-img-000001
<제1 실시예>
도 2는 본 개시의 제1 실시예에 따른 프로젝션 렌즈 광학계(200)를 개략적으로 도시하며, 다음의 표 1은 제1 실시예의 설계 데이터를 나타낸 것이다. 본 실시예는 단지 예시적인 것이고 본 개시를 제한하지 않는다.
도 2를 참조하면, 프로젝션 렌즈 광학계(200)는 제1 내지 제6 렌즈(210, 220, 230, 240, 250, 260)를 포함한다. 도 2에서 S3은 조리개(stop)를 의미하며, S14 및 S15는 광학필터(209)의 출사면 및 입사면을 의미하며, S16은 디스플레이 패널의 이미지 면을 의미한다.
프로젝션 렌즈 광학계(200)의 F 넘버(Fno)는 2.0이고, 초점 거리(f)는 약 9mm이며, 화각(2ω)은 50°이다. 이미지 면(S16)의 길이는 대각선 방향으로 4.40mm를 기준으로 한다.
렌즈면 번호 Y T 굴절률 아베수(ν)
Object Inf. Inf.
1 Asphere 6.135 1.154 1.883 40.7
2 Asphere -7.950 -0.144
3 Stop Inf. 0.537
4 Asphere 12.5 0.3 1.7 27.42
5 Asphere 1.952 0.7894
6 Asphere 7.780 1.500 1.732 54.11
7 Asphere -7.726 1.391
8 Asphere -2.272 0.378 1.899 21.3
9 Asphere -2.719 1.580
10 Sphere -3.276 0.351 1.478 69.45
11 Sphere -17.023 0.05
12 Sphere 34.86 2.309 1.885 40.02
13 Sphere -8.210 0.404
14 Sphere Inf. 0.11 1.517 64.17
15 Sphere Inf. 0.722
16 Image Inf. -0.0295
다음의 표 2는 제1 실시예의 비구면 계수를 나타낸다.
1면 2면 4면 5면 6면 7면 8면 9면
Y 6.135 -7.950 12.5 1.952 7.780 -7.726 -2.272 -2.719
K -5.754 -0.207 -2.557 -4.721 -48.141 -0.145 -3.114 -4.062
A 0.00180 0.0202 -0.0226 -0.00374 0.00921 -0.00112 -0.00625 -0.00587
B -0.00075 -0.00861 0.0163 0.0107 -0.00239 0.000708 0.00548 0.00644
C 0.000397 0.00362 -0.00842 -0.00706 0.000942 -3.27E-04 -0.00145 -0.00249
D -2.13E-04 -0.00122 0.00319 0.00304 -0.00023 0.000126 0.000101 0.000803
E 7.68E-05 0.000291 -0.00088 -0.00095 3.50E-05 -3.00E-05 3.34E-05 -0.00022
F -1.80E-05 -4.45E-05 0.000168 0.000209 -4.76E-06 2.00E-06 -1.57E-05 3.94E-05
G 2.63E-06 3.88E-06 -2.06E-05 -2.97E-05 8.57E-07 4.49E-07 3.24E-06 -4.31E-06
H -2.15E-07 -1.40E-07 1.41E-06 2.41E-06 -1.08E-07 -8.47E-08 -3.28E-07 2.55E-07
J 7.50E-09 -7.88E-10 -3.92E-08 -8.33E-08 5.29E-09 4.04E-09 1.28E-08 -6.27E-09
도 3은 도 2의 프로젝션 렌즈 광학계(200)의 비점수차를 보여주는 그래프이며, 도 4는 도 2의 프로젝션 렌즈 광학계(200)의 왜곡수차를 보여주는 그래프이다. 도 3 및 도 4에서 세로축은 상고(IMG HT)를 나타내며, 단위는 mm이다. 도 5는 도 2의 프로젝션 렌즈 광학계(200)의 스루 포커스 MTF를 보여주는 그래프이다. 도 5에서 가로축은 프로젝션 렌즈 광학계(200)의 디포커스 위치를 나타내며, 세로축은 모듈레이션(modulation) 크기를 나타내며, 이미지 면의 높이별로 서로 다른 곡선들로 표시하였다. 도 5에서 프로젝션 렌즈 광학계(200)이 디포커스 0 근방에서 모듈레이션의 최고점들이 양호하게 모여있음을 볼 수 있다.
도 3 내지 도 5는 도 2의 프로젝션 렌즈 광학계(200)가 웨어러블 디바이스의 프로젝션 장치에 사용될 수 있는 충분한 광학 성능을 가지고 있음을 보여준다.
<제2 실시예>
도 6은 본 개시의 제2 실시예에 따른 프로젝션 렌즈 광학계(300)를 개략적으로 도시하며, 다음의 표 3은 제2 실시예의 설계 데이터를 나타낸 것이다. 본 실시예는 단지 예시적인 것이고 본 개시를 제한하지 않는다.
도 6을 참조하면, 프로젝션 렌즈 광학계(300)는 제1 내지 제6 렌즈(310, 320, 330, 340, 350, 360)를 포함한다. 도 6에서 S1은 조리개(stop)를 의미하며, S14 및 S15는 광학필터(309)의 출사면 및 입사면을 의미하며, S16은 디스플레이 패널의 이미지 면을 의미한다.
렌즈면 번호 Y T 굴절률 아베수(ν)
Object Inf. Inf.
1 Stop Inf. -0.464
2 Asphere 3.484 1.549 1.553 71.69
3 Asphere -24.383 0.05
4 Asphere 3.131 0.510 1.856 37
5 Asphere 2.050 1.193
6 Sphere -10.419 0.3 1.705 27.18
7 Sphere 10.324 0.187
8 Sphere 21.506 0.993 1.883 40.74
9 Sphere -6.269 1.431
10 Asphere -1.735 0.947 1.896 31.1
11 Asphere -2.631 0.05
12 Sphere 9.154 2.353 1.742 52.76
13 Sphere -37.372 1.125
14 Sphere Inf. 0.11 1.517 64.17
15 Sphere Inf. 1.209
17 Sphere Inf. 0
다음의 표 4는 제2 실시예의 비구면 계수를 나타낸다.
2면 3면 4면 5면 10면 11면
Y Radius 3.484 -24.383 3.131 2.050 -1.735 -2.631
K -0.253 0 -5.554 -1.210 -0.768 -0.868
A 0.00174 0.00664 0.00569 -0.0123 0.0129 0.00529
B -0.00014 -0.0026 -0.00012 0.00795 0.00344 0.00130
C 0.000236 0.000667 -3.82E-03 -7.82E-03 -0.00121 -0.00027
D -0.00025 7.19E-05 3.72E-03 0.00693 0.000419 5.92E-05
E 0.000139 -0.00013 -1.88E-03 -3.82E-03 -0.00015 -1.54E-05
F -4.42E-05 4.61E-05 5.67E-04 1.30E-03 3.75E-05 2.55E-06
G 8.08E-06 -8.13E-06 -1.02E-04 -2.63E-04 -5.45E-06 -2.39E-07
H -7.90E-07 7.22E-07 1.02E-05 2.89E-05 4.30E-07 1.20E-08
J 3.19E-08 -2.54E-08 -4.25E-07 -1.35E-06 -1.43E-08 -2.50E-10
도 7은 도 6의 프로젝션 렌즈 광학계(300)의 비점수차를 보여주는 그래프이며, 도 8은 도 6의 프로젝션 렌즈 광학계(300)의 왜곡수차를 보여주는 그래프이다. 도 7 및 도 8에서 세로축은 상고(IMG HT)를 나타내며, 단위는 mm이다. 도 9는 도 6의 프로젝션 렌즈 광학계(300)의 스루 포커스 MTF를 보여주는 그래프이다. 도 7 내지 도 9는 도 6의 프로젝션 렌즈 광학계(300)가 웨어러블 디바이스의 프로젝션 장치에 사용될 수 있는 충분한 광학 성능을 가지고 있음을 보여준다.
도 10은 본 개시의 일 실시예에 따른 프로젝션 렌즈 광학계(300')를 개략적으로 도시한다. 도 10의 프로젝션 렌즈 광학계(300')는 도 6을 참조하여 설명한 프로젝션 렌즈 광학계(300)와 유사하나, 제3 및 제4 렌즈(330', 340')가 접합되어 있다는 점에서 차이가 있다. 제3 및 제4 렌즈(330', 340')가 접합되어 이중 접합 렌즈(dublet lens)를 구성함에 따라 더욱 효과적으로 색수차를 억제할 수 있다.
도 11은 본 개시의 일 실시예에 따른 프로젝션 장치를 채용한 웨어러블 디바이스(400)를 개략적으로 도시한다. 도 12는 도 11의 웨어러블 디바이스(400)에서 프로젝션 장치(450)의 배치를 도시한다.
도 11 및 도 12를 참조하면, 웨어러블 디바이스(400)는 사용자가 착용할 수 있도록 구성된 안경형 디스플레이 장치이다. 안경형 디스플레이 장치는 증강현실 안경(Augmented Reality Glasses)일 수 있다.
웨어러블 디바이스(400)는 프레임(410)과 안경다리(420)를 갖는 안경형 몸체를 포함할 수 있다. 프레임(410)은 예시적으로 브릿지로 연결된 2개의 테(rim) 형상을 가질 수 있다. 프레임(410)의 테와 브릿지가 구분되지 않을 수도 있다.
안경다리(420)는 프레임(410)의 양 단부에 각각 연결되고 일 방향으로 연장된다. 프레임(410)의 양단부와 안경다리(420)는 예를 들어 힌지에 의해 연결될 수 있다. 다른 예로, 프레임(410)과 안경다리(420)는 일체로 연결되어 있을 수도 있다.
프레임(410)에는 웨이브가이드(waveguide)(440)가 고정된다. 웨이브가이드(440)는 이미지 컴바이너의 일 예이다. 안경알이 프레임(410)에 배치되어 있을 수 있으며, 이 경우 웨이브가이드(440)는 안경알에 부착되어 배치되거나, 안경알과 이격되어 배치될 수도 있다. 웨이브가이드(440)는 입력-커플링 소자(441)와 출력-커플링 소자(443)을 포함할 수 있다. 입력-커플링 소자(441)는 웨이브가이드(440)의 프로젝션 장치(450)에 대향되는 면이나 그 이면에 위치하여 프로젝션 장치(450)에서 출력되는 광을 웨이브가이드(440)로 입력시킨다. 웨이브가이드(440)는 입력된 광을 출력-커플링 소자(443) 쪽으로 가이드하며, 출력-커플링 소자(도 13의 43)를 통해 타겟 영역으로 출력한다. 이때, 타겟 영역은 사용자의 아이 모션 박스(eye motion box)일 수 있다. 입력-커플링 소자(441)나 출력-커플링 소자(443)는 예를 들어 회절 광학소자(diffractive optical element)나 홀로그래픽 광학소자(holographic optical element)와 같은 격자구조를 가질 수 있다.
프로젝션 장치(450)는 가상 이미지의 광을 출력하도록 구성된 것으로서, 전술한 실시예들의 프로젝션 렌즈 광학계를 채용한 프로젝션 장치를 사용할 수 있다. 프로젝션 장치(450)는 도 11에 도시되듯이, 안경다리(420)에 고정될 수 있으나, 이에 제한되는 것은 아니다. 다른 예로, 프로젝션 장치(450)는 프레임(410)(림 형상)의 임의의 위치에 위치할 수도 있다. 프로젝션 장치(450)는 좌안 및 우안 각각에 마련될 수도 있다. 프로젝션 장치(450)를 위한 정보 처리 및 이미지 형성은, 웨어러블 디바이스 자체의 컴퓨터에서 직접 이루어지거나, 웨어러블 디바이스가 스마트 폰, 태블릿, 컴퓨터, 노트북, 기타 모든 지능형(스마트) 디바이스 등과 같은 외부 전자 디바이스에 연결되어 외부 전자 디바이스에서 이루어질 수 있다. 웨어러블 디바이스와 외부 전자 디바이스 간의 신호 전송은 유선 통신 및/또는 무선 통신을 통해 수행될 수 있다. 웨어러블 디바이스는 내장된 전원(충전식 배터리)과 외부 디바이스 및 외부 전원 중 적어도 어느 하나에서 전원을 공급받을 수 있다.
본 개시에서 프로젝션 장치(450)가 증강 현실 안경에 적용된 예를 중심으로 설명하였으나, 가상현실을 표현할 수 있는 가상현실 디바이스나 혼합현실 디바이스와 같은 웨어러블 디바이스에 적용될 수 있음은 당업자에게 자명하게 이해될 수 있을 것이다.
본 개시에서, ‘웨어러블 디바이스(Wearable Device)’라 함은 사용자가 착용할 수 있는 장치로서, 사용자가 안면부(顔面部)에 착용하는 안경 형상의 증강현실 안경 장치(Augmented Reality Glasses)이나 고글 형상의 장치, 두부(頭部)에 착용하는 헤드 마운트 디스플레이(Head Mounted Display; HMD)나 증강 현실 헬멧(Augmented Reality Helmet), 해드업디스플레이 (Head Up Display; HUD) 등을 포괄한다.
전술한 본 발명인 프로젝션 렌즈 광학계, 이를 채용한 프로젝션 장치 및 웨어러블 디바이스는 이해를 돕기 위하여 도면에 도시된 실시예를 참고로 설명되었으나, 이는 예시적인 것에 불과하며, 당해 분야에서 통상적 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위에 의해 정해져야 할 것이다.

Claims (12)

  1. 웨어러블 디바이스에 사용되는 프로젝션 장치의 프로젝션 렌즈 광학계(130, 200)에 있어서,
    빛이 출사되는 곳부터 이미지 면까지 순차적으로 배치된 제1 내지 제6 렌즈(131, 220), 제2 렌즈(132, 220), 제3 렌즈(133, 230), 제4 렌즈(134, 240), 제5 렌즈(135, 250), 및 제6 렌즈(136, 260)를 포함하며,
    상기 제1 내지 제6 렌즈(131, 132, 133, 134, 135, 136, 210, 220, 230, 240, 250, 260)는 순차적으로 양, 음, 양, 음, 음, 양의 굴절력을 가지며,
    하기의 조건식을 만족하는 프로젝션 렌즈 광학계.
    LB/f ≤ 0.5
    이때 LB는 상기 제6 렌즈(136, 260)의 입사면과 상기 이미지 면까지의 거리, f는 상기 프로젝션 렌즈 광학계의 초점거리를 의미한다.
  2. 제1 항에 있어서,
    상기 제1, 제2, 제3 및 제4 렌즈(131, 132, 133, 134, 210, 220, 230, 240)는 비구면 렌즈이며, 상기 제5 렌즈 및 제6 렌즈(135, 136, 250, 260)는 구면인 프로젝션 렌즈 광학계.
  3. 제1 항 또는 제2 항에 있어서,
    하기의 조건식을 추가로 만족하는 프로젝션 렌즈 광학계.
    LT/f ≤ 1.5,
    이때 LT는 상기 제1 렌즈(131, 210)의 출사면에서부터 상기 이미지 면까지의 전체 길이, f는 상기 프로젝션 렌즈 광학계의 초점거리를 의미한다.
  4. 제1 항 내지 제3 항 중 어느 한 항에 있어서,
    하기의 조건식을 추가로 만족하는 프로젝션 렌즈 광학계.
    Ω ≥ 30도(deg)
    이때 Ω는 상기 프로젝션 렌즈 광학계의 시야각을 의미한다.
  5. 제1 항 내지 제4 항 중 어느 한 항에 있어서,
    하기의 조건식을 추가로 만족하는 프로젝션 렌즈 광학계.
    CRA <15도(deg.)
    이때 CRA는 주광선이 상기 이미지 면 상에서 광축과 이루는 주광선 각도(Chief ray angle)를 의미한다.
  6. 제1 항 내지 제5 항 중 어느 한 항에 있어서,
    상기 제3 및 제4 렌즈(133, 134)가 이중 접합 렌즈인, 프로젝션 렌즈 광학계.
  7. 제1 항 내지 제6 항 중 어느 한 항에 있어서,
    상기 제1 내지 제6 렌즈(131, 132, 133, 134, 135, 136, 210, 220, 230, 240, 250, 260)는 유리 재질로 형성된 프로젝션 렌즈 광학계.
  8. 웨어러블 디바이스(400)에 사용되는 프로젝션 장치(100, 450)에 있어서,
    자발광 소자들로 화소들이 구성된 자발광 디스플레이 패널(110);
    상기 자발광 디스플레이 패널의 이미지 면에 형성된 이미지 광을 투사하는 것으로서, 제1 항 내지 제7 항 중 어느 한 항에 따른 프로젝션 렌즈 광학계(130, 200);를 포함하는 프로젝션 장치.
  9. 제8 항에 있어서,
    상기 자발광 디스플레이 패널(110)은 마이크로 LED 패널 또는 OLED 패널인, 프로젝션 장치.
  10. 이미지의 광을 출력하는 것으로서, 제8 항 또는 제9 항에 따른 프로젝션 장치(100, 450); 및
    상기 프로젝션 장치에서 출력된 광을 사용자의 아이 모션 박스로 가이드하는 이미지 컴바이너;를 포함하며, 웨어러블 디바이스.
  11. 제10 항에 있어서,
    상기 웨어러블 디바이스는 증강 현실 안경 또는 두부 장착형 디스플레이 장치인, 웨어러블 디바이스.
  12. 제10 항 또는 제11 항에 있어서,
    상기 이미지 컴바이너는 웨이브가이드(440)와, 상기 웨이브가이드에 마련되는 입력-커플링 소자(441)와, 상기 웨이브가이드에 마련되는 출력-커플링 소자(443)를 포함하며, 상기 입력-커플링 소자를 통해 상기 웨이브가이드 내로 입력된 광은 상기 출력-커플링 소자를 통해 출력되는, 웨어러블 디바이스.
PCT/KR2023/006784 2022-05-19 2023-05-18 프로젝션 렌즈 광학계, 이를 채용한 프로젝션 장치 및 웨어러블 디바이스 WO2023224409A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/202,589 US20230375836A1 (en) 2022-05-19 2023-05-26 Projection lens optical system, projection device employing the same, and wearable device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0061649 2022-05-19
KR20220061649 2022-05-19
KR1020220067696A KR20230161850A (ko) 2022-05-19 2022-06-02 프로젝션 렌즈 광학계, 이를 채용한 프로젝션 장치 및 웨어러블 디바이스
KR10-2022-0067696 2022-06-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/202,589 Continuation US20230375836A1 (en) 2022-05-19 2023-05-26 Projection lens optical system, projection device employing the same, and wearable device

Publications (1)

Publication Number Publication Date
WO2023224409A1 true WO2023224409A1 (ko) 2023-11-23

Family

ID=88835815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/006784 WO2023224409A1 (ko) 2022-05-19 2023-05-18 프로젝션 렌즈 광학계, 이를 채용한 프로젝션 장치 및 웨어러블 디바이스

Country Status (1)

Country Link
WO (1) WO2023224409A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940013191A (ko) * 1992-11-27 1994-06-25 정용문 프로젝션(projection)광학계
KR20150004774A (ko) * 2014-11-21 2015-01-13 엘지이노텍 주식회사 촬상 렌즈 및 이를 포함하는 카메라 모듈
KR20170129258A (ko) * 2015-09-13 2017-11-24 선전 로욜 테크놀로지스 컴퍼니 리미티드 광학 모듈 어셈블리, 광학 장치 및 웨어러블 표시 장치
KR20190106199A (ko) * 2018-03-08 2019-09-18 해성옵틱스(주) 소형 광학계
KR20200057037A (ko) * 2017-09-29 2020-05-25 상하이 마이크로 일렉트로닉스 이큅먼트(그룹) 컴퍼니 리미티드 투사 대물렌즈

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940013191A (ko) * 1992-11-27 1994-06-25 정용문 프로젝션(projection)광학계
KR20150004774A (ko) * 2014-11-21 2015-01-13 엘지이노텍 주식회사 촬상 렌즈 및 이를 포함하는 카메라 모듈
KR20170129258A (ko) * 2015-09-13 2017-11-24 선전 로욜 테크놀로지스 컴퍼니 리미티드 광학 모듈 어셈블리, 광학 장치 및 웨어러블 표시 장치
KR20200057037A (ko) * 2017-09-29 2020-05-25 상하이 마이크로 일렉트로닉스 이큅먼트(그룹) 컴퍼니 리미티드 투사 대물렌즈
KR20190106199A (ko) * 2018-03-08 2019-09-18 해성옵틱스(주) 소형 광학계

Similar Documents

Publication Publication Date Title
WO2017082480A1 (en) Tele-lens and imaging device
CN107505712B (zh) 光学模组、光学装置及穿戴式显示装置
TW201827880A (zh) 光學影像鏡片系統組、取像裝置及電子裝置
US20070263294A1 (en) Projection zoom lens and projection-type display device
CN111596511B (zh) 光学系统及投影装置
US11803032B2 (en) Camera optical lens
US20210141211A1 (en) Eyepiece and Display Device
WO2017034159A1 (en) Projection lens system and projection system
CN107924043B (zh) 图像拾取装置和图像拾取设备
US20210048642A1 (en) Camera optical lens
CN110261999A (zh) 光学系统和成像镜头
CN114594574A (zh) 一种光学投影系统以及电子设备
WO2023224409A1 (ko) 프로젝션 렌즈 광학계, 이를 채용한 프로젝션 장치 및 웨어러블 디바이스
WO2021102685A1 (zh) 一种大视场角高像质的目镜光学系统及设备
CN209044168U (zh) 一种投影镜头
CN115437127A (zh) 光学镜头及近眼显示系统
CN115356837A (zh) 一种光学投影系统及投影装置
CN114326035A (zh) 一种投影镜头
KR20230161850A (ko) 프로젝션 렌즈 광학계, 이를 채용한 프로젝션 장치 및 웨어러블 디바이스
US20230375836A1 (en) Projection lens optical system, projection device employing the same, and wearable device
WO2022031017A1 (ko) 광학계
CN115616743B (zh) 一种光学投影系统及电子设备
CN115145008B (zh) 一种用于高亮度较大型投影仪的长焦镜头结构
CN218896250U (zh) 一种投影透镜
CN115220182B (zh) 一种投影镜头及投影机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807928

Country of ref document: EP

Kind code of ref document: A1