WO2023224037A1 - Ultraviolet laser printing paper, printed object, processed article, and printed object production method - Google Patents

Ultraviolet laser printing paper, printed object, processed article, and printed object production method Download PDF

Info

Publication number
WO2023224037A1
WO2023224037A1 PCT/JP2023/018264 JP2023018264W WO2023224037A1 WO 2023224037 A1 WO2023224037 A1 WO 2023224037A1 JP 2023018264 W JP2023018264 W JP 2023018264W WO 2023224037 A1 WO2023224037 A1 WO 2023224037A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultraviolet laser
titanium oxide
less
paper
base material
Prior art date
Application number
PCT/JP2023/018264
Other languages
French (fr)
Japanese (ja)
Inventor
壮 佐藤
祐美 石川
明裕 松下
大信 平野
Original Assignee
王子ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022080970A external-priority patent/JP7256915B1/en
Priority claimed from JP2023062640A external-priority patent/JP7306595B1/en
Application filed by 王子ホールディングス株式会社 filed Critical 王子ホールディングス株式会社
Publication of WO2023224037A1 publication Critical patent/WO2023224037A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds

Definitions

  • the present invention relates to ultraviolet laser printing paper, printed matter, processed products, and a method for producing printed matter.
  • Patent Document 1 describes a method that allows clear printing to be performed at high speed by laser light irradiation, and that the printed portion has excellent resistance to various laser beams.
  • a laminate for laser printing manufactured by applying white ink, black ink, and overprint varnish (OP varnish) on the aluminum-deposited surface of aluminum-deposited paper for the purpose of providing a laminate for printing and its printed body. is disclosed.
  • Patent Document 2 discloses that the invention includes first titanium oxide particles with an average particle diameter of 150 nm or less, and that generates relatively little heat and is preferably applicable to laser marking of packaging materials.
  • An ink composition used to form a laser marking layer that changes color upon laser irradiation is described.
  • the method described in Patent Document 1 can increase the speed, the upper layer that easily absorbs laser light is removed by irradiation with CO 2 laser light to expose the lower layer, and the difference in color between the upper and lower layers is eliminated. Since this is a technology for forming characters, etc. that are visible from above, the upper layer is limited to materials that easily absorb laser light, while the lower layer is limited to materials that are difficult to absorb laser light and have a color contrast with the upper layer. be done.
  • the upper layer is a carbon black material (black) that easily absorbs laser light
  • the lower layer is a titanium oxide material (white)
  • the characters formed by laser light irradiation are white on a black background. Poor visibility.
  • the present inventors have proposed that in ultraviolet laser printing paper in which titanium oxide is internally added to a paper base material, the content of titanium oxide is set to be a specified amount or more, and the crystallite size of titanium oxide is set to be set to a specified value or more.
  • the inventors have found that the above-mentioned problems can be solved, and have completed the present invention.
  • the present invention relates to the following ⁇ 1> to ⁇ 12>.
  • ⁇ 1> An ultraviolet laser printing paper having a paper base material to which titanium oxide is internally added, wherein the content of titanium oxide in the paper base layer is 0.5% by mass or more, and the content of titanium oxide is 0.5% by mass or more.
  • Ultraviolet laser printing paper having a crystallite size of 30 nm or more.
  • ⁇ 2> The ultraviolet laser printing paper according to ⁇ 1>, wherein the titanium oxide has a crystallite size of 53 nm or less.
  • ⁇ 3> The ultraviolet laser printing paper according to ⁇ 1> or ⁇ 2>, wherein the titanium oxide is rutile titanium oxide, and the titanium oxide has a diffraction angle of 27.60° or less.
  • ⁇ 4> The ultraviolet laser printing paper according to any one of ⁇ 1> to ⁇ 3>, wherein the length-weighted average fiber length of the pulp constituting the paper base is 0.5 mm or more and 3.0 mm or less.
  • ⁇ 5> Any one of ⁇ 1> to ⁇ 4>, wherein the number ratio of fine fibers with a fiber length of 0.2 mm or less in the pulp fibers constituting the paper base material is 4% or more and 40% or less.
  • Ultraviolet laser printing paper as described.
  • ⁇ 6> The ultraviolet laser printing paper according to any one of ⁇ 1> to ⁇ 5>, wherein the content of titanium oxide in the paper base material is 50% by mass or less.
  • ⁇ 7> The ultraviolet laser printing paper according to any one of ⁇ 1> to ⁇ 6>, which has a sealant layer on at least one surface of the paper base material.
  • ⁇ 8> The ultraviolet laser printing paper according to ⁇ 7>, further comprising a barrier layer.
  • ⁇ 9> A printed matter obtained from the ultraviolet laser printing paper according to any one of ⁇ 1> to ⁇ 8>, wherein the printed matter contains at least a portion of a printed area containing discolored titanium oxide. and the ratio of the Raman intensity derived from titanium oxide in the printed area to the Raman intensity derived from titanium oxide in the non-printed area is 0.70 or less.
  • ⁇ 10> A processed product using the ultraviolet laser printing paper according to any one of ⁇ 1> to ⁇ 8> or the printed matter according to ⁇ 9>.
  • ⁇ 11> A method for producing printed matter, comprising the step of printing by irradiating the ultraviolet laser printing paper according to any one of ⁇ 1> to ⁇ 8> with an ultraviolet laser to change color in the irradiated area.
  • the printing step is a step of irradiating an ultraviolet laser such that the ratio of the Raman intensity originating from titanium oxide in the printing area to the Raman intensity originating from titanium oxide in the non-printing area is 0.70 or less.
  • an ultraviolet laser printing paper that, when irradiated with an ultraviolet laser, provides printing spots with excellent print clarity on a point-by-point basis. Further, according to the present invention, there is provided a printed matter in which the ultraviolet laser printing paper is irradiated with an ultraviolet laser to change color in the irradiated area, and a method for manufacturing the same. Furthermore, according to the present invention, there is provided a processed product using the ultraviolet laser printed paper or printed matter.
  • the ultraviolet laser printing paper (hereinafter also simply referred to as "printing paper") of the present invention has a paper base material to which titanium oxide is internally added, and the content of titanium oxide in the paper base material is 0.5. % by mass or more, and the crystallite size of the titanium oxide is 30 nm or more. According to the present invention, there is provided an ultraviolet laser printing paper that, when irradiated with an ultraviolet laser, provides printing spots with excellent print clarity for each point. Although the detailed reason for the above-mentioned effects is unknown, some of them are thought to be as follows.
  • titanium oxide is internally added to the paper base material of printing paper, the titanium oxide in the paper base material changes color when irradiated with ultraviolet laser, making it possible to print.
  • the discoloration of the titanium oxide is caused by the ionic valence of the titanium oxide contained in the paper base material changing from 4 to 3 and oxygen defects occurring, causing the color to change from white to black, making it visible. It is thought that it has become.
  • the ionic valence of titanium oxide changes when irradiated with light energy corresponding to the band gap of titanium oxide.
  • the band gap of titanium oxide varies depending on the crystal system, but is generally about 3.0 to 3.2 eV, and the corresponding wavelength of light is 420 nm or less.
  • the printable area refers to the area where the titanium oxide contained in the printing paper changes color, preferably when the titanium oxide in the area irradiated with the ultraviolet laser changes color from white to black due to irradiation with an ultraviolet laser.
  • the printing area refers to the area (portion) where printing is possible, and the printing area refers to the area where the titanium oxide has actually changed color within the printable area, preferably where the titanium oxide has changed color due to irradiation with ultraviolet laser and is visible. It means the part where it is possible, that is, the part that is irradiated with the ultraviolet laser.
  • the non-printable area refers to an area (portion) in which titanium oxide has not changed color, for example, an area (portion) that has not been irradiated with an ultraviolet laser, in the printable area. The present invention will be explained in more detail below.
  • Ultraviolet laser printing paper has a paper base material to which titanium oxide is added.
  • the printing paper of this embodiment may be a paper base itself containing titanium oxide, and the printing surface ( A resin layer may be provided on the surface to be printed with an ultraviolet laser. Moreover, it may have a sealant layer (heat seal layer). By having the sealant layer, the printing paper can have heat-sealing properties.
  • the paper base material may have a barrier layer mainly for the purpose of blocking the permeation of oxygen gas. The barrier layer is preferably provided on the surface opposite to the printed surface of the paper base material, and when the sealant layer is provided on the surface opposite to the printed surface, the barrier layer is provided between the sealant layer and the paper base material. is preferred.
  • the printing paper of this embodiment may have one layer mentioned above, for example, may have a plurality of sealant layers, or may have a plurality of layers. Moreover, it may have a layer other than the layer mentioned above, for example, it may have an adhesive layer, an adhesive layer, etc.
  • the ultraviolet laser printing paper of this embodiment has a paper base material to which titanium oxide is internally added.
  • the paper base material has titanium oxide added thereto, and the content of titanium oxide in the paper base material is 0.5% by mass or more.
  • the content of titanium oxide in the paper base material is 0.5% by mass or more, preferably 0.8% by mass or more, more preferably 3.0% by mass or more, even more preferably is 8.0% by mass or more, and from the viewpoint of obtaining a printing spot with excellent printing clarity for each point, from the viewpoint of suppressing the increase in cost due to the printing density reaching a plateau and containing more than the necessary amount of titanium oxide, And from the viewpoint of suppressing the amount of smoke generated during ultraviolet laser irradiation (printing), preferably 50% by mass or less, more preferably 45% by mass or less, still more preferably 35% by mass or less, even more preferably 25% by mass or less, Particularly preferably, it is 15% by mass or less.
  • the paper base material corresponding to at least the printable area of the printing paper contains titanium oxide, and the area where the content of titanium oxide in the paper base material is less than the above lower limit in the area where printing is not performed. may exist. From the viewpoint of ease of production, it is preferable that the entire area of the paper base material contains titanium oxide at or above the above lower limit.
  • Titanium oxide contained in the paper base material is represented by the composition formula TiO 2 and is also called titanium dioxide or titania.
  • the crystallite size of titanium oxide in the paper base material is 30 nm or more.
  • the crystallite size of titanium oxide is preferably 35 nm or more, more preferably 40 nm or more.
  • the upper limit of the crystallite size of titanium oxide is not particularly limited, but from the viewpoint of dispersion stability in paper stock during paper making, it is preferably 60 nm or less, more preferably 56 nm or less, and even more preferably 53 nm or less. . It is preferable that the upper limit of the crystallite size of titanium oxide is within the above range because the dispersibility of titanium oxide is good even in the obtained paper base material and the printing uniformity is excellent.
  • the crystallite size of titanium oxide is measured by the method described in Examples. The crystallite size is determined by the Scherrer equation, and the Bragg angle is the measured value of the maximum strength derived from the 101 plane for anatase titanium oxide and the 110 plane for rutile titanium oxide. use.
  • any of the titanium oxides may have a crystalline structure, and is preferably at least one selected from rutile-type titanium oxide, anatase-type titanium oxide, and brookite-type titanium oxide. It is more preferably at least one selected from type titanium oxide and anatase type titanium oxide, and even more preferably rutile type titanium oxide.
  • the crystal form of titanium oxide can be determined by a known method, and specifically, by Raman spectrum, XRD pattern analysis, etc. For example, when identifying from a Raman spectrum, peaks are generally confirmed at 447 ⁇ 10cm -1 and 609 ⁇ 10cm -1 for the rutile type, and peaks at 395 ⁇ 10cm -1 and 516 ⁇ 10cm for the anatase type. -1 , a peak is confirmed at 637 ⁇ 10 cm -1 .
  • One type of titanium oxide may be used alone, or two or more types may be used in combination.
  • the diffraction angle of the titanium oxide is preferably 27.60° or less from the viewpoint of print clarity for each point.
  • the Bragg angle of rutile-type titanium oxide is originally 27.40°, but if the crystallinity is low, the diffraction angle tends to become high.
  • the diffraction angle of titanium oxide exceeds 27.60°, crystallinity is low and discoloration is suppressed, so that print clarity for each point tends to be poor.
  • the diffraction angle of the titanium oxide is preferably 27.60° or less, more preferably 27.55° or less, and still more preferably 27.50° or less.
  • the diffraction angle of titanium oxide is the actual value of the maximum intensity derived from the 110 plane, as described above.
  • the shape of titanium oxide is not particularly limited, and may be any shape such as amorphous, spherical, rod-like, or needle-like.
  • the average particle diameter of the titanium oxide is not particularly limited, but from the viewpoint of obtaining printing paper with excellent surface smoothness, it is preferably 0.01 ⁇ m or more, more preferably 0.05 ⁇ m or more, More preferably 0.10 ⁇ m or more, even more preferably more than 0.15 ⁇ m, particularly preferably 0.16 ⁇ m or more, and preferably 20.0 ⁇ m or less, more preferably 5.0 ⁇ m or less, even more preferably 1.0 ⁇ m. Below, it is still more preferably 0.50 ⁇ m or less, particularly preferably 0.30 ⁇ m or less.
  • the major axis of the titanium oxide is not particularly limited, but from the viewpoint of obtaining printing paper with excellent surface smoothness, it is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, and It is preferably 1.5 ⁇ m or more, and preferably 50.0 ⁇ m or less, more preferably 30.0 ⁇ m or less, and even more preferably 15.0 ⁇ m or less.
  • the short axis is preferably 0.01 ⁇ m or more, more preferably 0.03 ⁇ m or more, even more preferably 0.05 ⁇ m or more, and preferably 3.0 ⁇ m or less, more preferably 1.5 ⁇ m or less, and even more preferably is 1.0 ⁇ m or less.
  • the aspect ratio (longer axis/breadth axis) is preferably 5 or more, more preferably 10 or more, even more preferably 15 or more, and preferably 300 or less, more preferably It is 100 or less, more preferably 30 or less.
  • the particle diameter, major axis, and minor axis of titanium oxide are measured by the method described in Examples. Note that the values of the particle diameter, major axis, and minor axis of titanium oxide used as a raw material may be adopted, or the catalog values of the particle diameter, major axis, and minor axis of titanium oxide used as a raw material may be adopted. .
  • the printing paper has a paper base material to which titanium oxide is added.
  • the raw material pulp constituting the paper base material include wood pulp, non-wood pulp, and deinked pulp.
  • Wood pulp is not particularly limited, but includes, for example, hardwood bleached kraft pulp (LBKP), hardwood unbleached kraft pulp (LUKP), softwood bleached kraft pulp (NBKP), softwood unbleached kraft pulp (NUKP), and sulfite pulp ( Chemical pulp such as SP), dissolving pulp (DP), soda pulp (AP), oxygen bleached kraft pulp (OKP), semi-chemical pulp such as semi-chemical pulp (SCP), chemical ground wood pulp (CGP), ground wood pulp ( Examples include mechanical pulps such as GP), thermomechanical pulp (TMP), and chemithermomechanical pulp (CTMP).
  • LLKP hardwood bleached kraft pulp
  • LKP hardwood unbleached kraft pulp
  • NKP softwood bleached kraft pulp
  • NUKP softwood unbleached kraft pulp
  • non-wood pulp examples include, but are not particularly limited to, cotton-based pulps such as cotton linters and cotton lint, and non-wood-based pulps such as hemp, wheat straw, bamboo, and bagasse.
  • Deinked pulp is not particularly limited, but includes, for example, deinked pulp made from waste paper.
  • the raw material pulp may be used alone or in combination of two or more of the above.
  • the raw material pulp may be mixed with organic synthetic fibers such as polyamide fibers and polyester fibers, recycled fibers such as polynosic fibers, and inorganic fibers such as glass fibers, ceramic fibers, and carbon fibers. From the viewpoint of easy availability, the raw material pulp is preferably wood pulp or deinked pulp.
  • the raw material pulp is preferably a chemical pulp, more preferably a kraft pulp, and even more preferably a kraft pulp from a hardwood such as eucalyptus or acacia, or a pine or cedar pulp. It is one or more types selected from softwood kraft pulp such as, etc., more preferably one or more types selected from hardwood bleached kraft pulp (LBKP) and softwood bleached kraft pulp (NBKP), and particularly preferably LBKP. .
  • the length-weighted average fiber length of the pulp constituting the paper base material is preferably 0.5 mm or more, more preferably 0.65 mm or more, and even more preferably 0.7 mm or more, and preferably 3.0 mm or less, more preferably 2.5 mm or less, even more preferably 2.0 mm or less, even more preferably 1.5 mm or less, particularly preferably 1.0 mm or less It is. If the length-weighted average fiber length of the pulp constituting the paper base material is 3.0 mm or less, the pulps will become tightly entangled with each other, reducing the voids in the paper base material and causing oxidation to occur during ultraviolet laser irradiation.
  • the length-weighted average fiber length is 0.5 mm or more, the strength as a paper base material is improved, and the fibers are difficult to fall off from the paper base material when irradiated with an ultraviolet laser, suppressing the generation of paper dust. , is preferable because the amount of smoke generation is suppressed and the printing clarity for each point is excellent.
  • the length-weighted average fiber length of the pulp constituting the paper base material is measured by the method described in the Examples.
  • the average fiber width of the pulp constituting the paper base material is preferably 14.0 ⁇ m or more, more preferably 15.0 ⁇ m or more, even more preferably 15.5 ⁇ m or more, even more preferably 16.0 ⁇ m or more, and preferably is 35.0 ⁇ m or less, more preferably 33.0 ⁇ m or less, even more preferably 31.0 ⁇ m or less, even more preferably 28.0 ⁇ m or less, even more preferably 24.0 ⁇ m or less, even more preferably 21.0 ⁇ m or less .
  • the average fiber width of the pulp constituting the paper base material is 35.0 ⁇ m or less, the pulps become tightly intertwined with each other, reducing the voids in the paper base material and causing titanium oxide to scatter during ultraviolet laser irradiation. This is preferable because it can suppress smoke generation, and produce printed matter with excellent printing clarity for each point.
  • the average fiber width is 14.0 ⁇ m or more, the strength as a paper base material is improved, the fibers are difficult to fall off from the paper sheet medium when irradiated with ultraviolet laser, the generation of paper dust is suppressed, and the amount of smoke generated is This is preferable because it suppresses the problem and provides excellent print clarity for each point.
  • the average fiber width of the pulp constituting the paper base material can be measured by the method described in Examples.
  • the number ratio of fine fibers with a fiber length of 0.2 mm or less is preferably 4% or more, more preferably 5% or more, still more preferably 6% or more, and even more preferably 10%. Above, it is particularly preferably 15% or more, and preferably 40% or less, more preferably 30% or less, and still more preferably 20% or less.
  • the number ratio of fine fibers is 4% or more, the fine fibers are arranged in the sheet to fill the voids between the fibers, so scattering of titanium oxide during ultraviolet laser irradiation is suppressed, and as a result, ultraviolet laser irradiation This is preferable because it suppresses smoke generation and improves the print clarity of each point.
  • the number ratio of fine fibers is 40% or less, because the increase in fine fibers suppresses smoke generation due to scattering of fine fibers during ultraviolet laser irradiation, and improves print clarity for each point.
  • the number ratio of fine fibers with a fiber length of 0.2 mm or less in the fiber pulp constituting the paper base material is determined by disintegrating the paper base material by the method described in the example, and determining the fiber length of the resulting pulp slurry. It is calculated by measuring with a fiber length measuring device (for example, manufactured by Valmet, model FS-5, equipped with a UHD base unit). Fibers with a fiber length of 0.2 mm or less and a fiber width of 75 ⁇ m or less are defined as fine fibers, and the ratio of the number of fine fibers to the number of measured pulps is calculated.
  • the Canadian standard freeness (CSF) of the wood pulp used for the paper base material is preferably 150 mL or more, more preferably 300 mL or more, and even more preferably 400 mL, from the viewpoint of obtaining the desired fiber width and fiber length. and is preferably 800 mL or less, more preferably 750 mL or less, still more preferably 700 mL or less, even more preferably 600 mL or less.
  • CSF is Canadian Standard Freeness according to JIS P 8121-2:2012.
  • the paper base material is obtained by paper-making a pulp slurry to which, in addition to the titanium oxide described above, internal additives are added as necessary.
  • the paper base material contains fillers, sizing agents, dry paper strength agents, wet paper strength agents (e.g., polyamide polyamine epichlorohydrin), and retention aids (e.g., sulfuric acid).
  • known internal additives for papermaking such as band
  • drainage improvers e.g., pH adjusters, softeners, antistatic agents, antifoaming agents, dyes and pigments can be added.
  • fillers include kaolin, talc, titanium oxide, heavy calcium carbonate, light calcium carbonate, calcium sulfite, gypsum, calcined kaolin, white carbon, amorphous silica, delaminated kaolin, diatomaceous earth, magnesium carbonate, and hydroxide.
  • examples include aluminum, calcium hydroxide, magnesium hydroxide, and zinc hydroxide.
  • the sizing agent include rosin-based, alkyl ketene dimer-based, alkenyl succinic anhydride-based, styrene-acrylic-based, higher fatty acid-based, and petroleum resin-based sizing agents.
  • a known wet paper machine such as a Fourdrinier paper machine, a gap former paper machine, a cylinder paper machine, a short wire paper machine, etc.
  • a known wet paper machine such as a Fourdrinier paper machine, a gap former paper machine, a cylinder paper machine, a short wire paper machine, etc.
  • the paper layer formed by the paper machine is conveyed using felt and dried using a dryer.
  • a multi-stage cylinder dryer may be used as a pre-dryer before drying.
  • the paper base material obtained as described above may be subjected to surface treatment using a calendar to make the thickness and profile uniform, thereby improving printability.
  • a known calendering machine can be appropriately selected and used.
  • the paper base material may be single layer or multilayer, and may have a multilayer structure with different pulp compositions.
  • the basis weight of the paper base material is preferably 30 g/m 2 or more, more preferably 40 g/m 2 or more, and even more preferably 50 g/m 2 or more, from the viewpoint of strength as a printing paper and improving printability. And, preferably it is 1000 g/m 2 or less, more preferably 700 g/m 2 or less.
  • the basis weight is measured by the method specified in JIS P 8124:2011.
  • the thickness of the paper base material is not particularly limited, but from the viewpoint of strength as printing paper and improvement of printability, it is preferably 30 ⁇ m or more, more preferably 50 ⁇ m or more, even more preferably 70 ⁇ m or more, even more preferably 80 ⁇ m or more. It is preferably 900 ⁇ m or less, more preferably 850 ⁇ m or less, and even more preferably 800 ⁇ m or less.
  • the thickness of the paper base material can be measured by the method described in JIS P 8118:2014.
  • the printing paper of this embodiment may further have a resin layer on the paper base material for the purpose of improving the water resistance of the printing paper and for the purpose of functioning as a protective layer. That is, printing paper may be used, in which a resin layer is further provided in advance on a paper base material.
  • the total light transmittance of the resin layer is preferably 40% or more, more preferably 60% or more, even more preferably 70% or more, even more preferably 80% or more, particularly preferably 90% or more, and 100% or more. % or less.
  • the upper limit is not particularly limited. Total light transmittance is measured in accordance with JIS K 7361-1:1997.
  • the resin constituting the resin layer preferably has a total light transmittance of 40% or more, and is not particularly limited as long as it can be provided on a paper base material, but from the viewpoint of transparency and ease of providing the resin layer,
  • the material is at least one selected from polyethylene, polypropylene, polyethylene terephthalate, polyvinyl alcohol, and starch. It is preferably at least one selected from polyethylene, polypropylene, polyethylene terephthalate, and polyvinyl alcohol, still more preferably polyethylene and polypropylene, and particularly preferably polyethylene.
  • examples include acrylic resin, styrene-maleic acid resin, water-soluble polyurethane resin, and water-soluble polyester resin.
  • acrylic resins include resins obtained by copolymerizing (meth)acrylic acid with other monomers such as its alkyl ester, styrene, unsaturated carboxylic acids other than (meth)acrylic acid, ethylene, and propylene. Specific examples include ethylene-(meth)acrylic acid copolymer and styrene-acrylic acid-maleic acid resin, with ethylene-(meth)acrylic acid copolymer being preferred.
  • the resin layer and paper base material may be laminated by any method, and is not particularly limited, but from the viewpoint of ease of manufacture, the resin layer and paper base material may be laminated via an adhesive layer. , or laminating or applying a transparent paint in the form of a liquid paint.
  • the adhesive layer is not particularly limited, and may be appropriately selected from known adhesive layers. Specifically, the adhesive layer disclosed in JP-A No. 2012-57112 is exemplified.
  • the thickness of the resin layer is not particularly limited, but from the viewpoint of obtaining clear printing and handling of printed matter and printing paper, it is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and even more preferably 15 ⁇ m or more. , preferably 100 ⁇ m or less, more preferably 75 ⁇ m or less, even more preferably 50 ⁇ m or less.
  • the printing paper of this embodiment may have a sealant layer on at least one surface of the paper base material.
  • the sealant layer is a layer that is melted and bonded by heating, ultrasonic waves, or the like.
  • the printing paper of this embodiment may have sealant layers on both sides of the paper base material.
  • the sealant layer is preferably provided at least on the surface of the paper base material opposite to the surface on which printing is performed (printing surface), and may also be provided on the surface opposite to the surface on which printing is performed.
  • the sealant layer may be provided on the entire surface of the paper base material, or may be provided on a portion where heat sealability is required.
  • heat-sealability is imparted, and a printing paper having heat-sealability is provided.
  • gas barrier properties are also provided by having a sealant layer.
  • gas barrier properties mean barrier properties mainly against at least one selected from oxygen and water vapor, and may also have barrier properties against other gases.
  • the printing paper of this embodiment has water vapor barrier properties, and in addition, it is also preferable that it has oxygen barrier properties.
  • the resin constituting the sealant layer (hereinafter also referred to as "sealant layer resin”) is not particularly limited, but includes, for example, vinyl chloride resin, vinyl acetate resin, vinyl chloride-vinyl acetate copolymer, acrylic resin, and polyester resin. , olefin resins, styrene resins, styrene acrylic resins (eg, styrene-acrylic acid copolymers), ethylene acrylic resins (ethylene-(meth)acrylic acid copolymers), and modified products thereof.
  • the sealant layer resins may be used alone or in combination of two or more.
  • the resin for the sealant layer either a synthetic product or a commercially available product may be used, and the commercially available products include those used in the examples.
  • the sealant layer may be formed by laminating by melt extrusion, adhesive, etc., and a method of forming the sealant layer by preparing a coating liquid for the sealant layer and applying the coating liquid is exemplified.
  • the adhesive a known adhesive can be used. Note that two or more sealant layers may be formed. Note that when the sealant layer is laminated with a sealant layer resin film using an adhesive or the like, the resin film may be unstretched, or may be uniaxially or biaxially stretched.
  • the resin for the sealant layer should be selected from the group consisting of polyolefin resins, polyamide resins, polyester resins, and polyvinylidene chloride resins from the viewpoint of heat sealing properties and gas barrier properties. It is more preferable to contain at least one selected kind, it is more preferable to contain a polyolefin resin, and it is even more preferable that it is a polyolefin resin.
  • the surface opposite to the paper base layer is preferably a polyolefin resin layer, and preferably a polyethylene resin layer. More preferred.
  • the polyolefin resin is more preferably at least one selected from the group consisting of polyethylene, polypropylene, and ethylene-propylene copolymers, and is at least one of polyethylene and polypropylene. is even more preferable.
  • the polyethylene may be low density polyethylene (LDPE), linear low density polyethylene (LLDPE), medium density polyethylene (MDPE), or high density polyethylene (HDPE).
  • polyamide resins examples include nylon 6, nylon 11, nylon 12, nylon 66, nylon 610, and nylon 612.
  • polyester resin examples include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), and derivatives thereof. Note that many of the biodegradable resins described below also correspond to polyester resins.
  • PVDC Polyvinylidene chloride resin
  • biodegradable resins examples include polylactic acid (PLA), polybutylene succinate (PBS), polybutylene succinate adipate (PBSA), and 3-hydroxybutanoic acid/3-hydroxyhexanoic acid copolymer (PHBH).
  • PLA polylactic acid
  • PBS polybutylene succinate
  • PHBH 3-hydroxybutanoic acid/3-hydroxyhexanoic acid copolymer
  • PLA polylactic acid
  • PBS polybutylene succinate
  • PBS polybutylene succinate
  • PBS polybutylene succinate
  • a laminated film in which two or more resins are laminated may be used, such as a polyethylene/polypropylene laminated film, a polyamide resin/polyvinylidene chloride resin laminated film, a polyethylene/polyester resin laminated film, etc. be done.
  • the adhesive used is not particularly limited and may be solvent-free, organic solvent-based, water-based, etc., but depending on the shape of the paper base material. From the viewpoint of ensuring stability, it is preferable to use an organic solvent type adhesive or a solventless type adhesive.
  • the main components that make up the adhesive include (meth)acrylic acid ester copolymer, ⁇ -olefin copolymer, ethylene-vinyl acetate copolymer, polyvinyl alcohol, polyurethane, styrene-butadiene copolymer, and polyvinyl chloride.
  • epoxy resin epoxy resin
  • melamine resin silicone resin
  • natural rubber casein, starch, etc.
  • (meth)acrylic acid ester copolymers ethylene-vinyl acetate copolymers
  • polyurethanes polyurethanes
  • polyurethanes are more preferred, from the viewpoint of availability and good adhesion.
  • commercially available adhesives may be used as appropriate.
  • sealant layer or barrier layer and the paper base material may be laminated after applying the adhesive to the sealant layer or barrier layer, or the paper base material and the sealant layer or barrier layer may be laminated after applying the adhesive to the paper base material. Alternatively, after applying an adhesive to both the sealant layer or barrier layer and the paper base material, both may be laminated. Although not particularly limited, from the viewpoint of shape stability, the sealant layer or barrier layer and the paper base material may be laminated. It is preferable to laminate the paper substrate after applying the adhesive to the layer or barrier layer.
  • the method for applying the adhesive may be appropriately selected from conventionally known methods, and examples thereof include, but are not limited to, a roll coater, a die coater, a gravure coater, a spray coater, and the like.
  • the amount of adhesive applied is not particularly limited, but the amount applied after drying (coating amount) is preferably 1 g/m 2 or more, from the viewpoint of improving the adhesion between the sealant layer or barrier layer and the paper base layer. It is more preferably 2 g/m 2 or more, even more preferably 3 g/m 2 or more, and preferably 40 g/m 2 or less, more preferably 20 g/m 2 or less, even more preferably 10 g/m 2 or less.
  • the resin for the sealant layer is not particularly limited as long as it has heat-sealing properties, but examples include styrene-butadiene copolymer; ethylene-acrylic acid copolymer, ethylene-methacrylate.
  • Olefin/unsaturated carboxylic acid copolymers such as acid copolymers; Biodegradable resins; Polyolefin resins such as polyethylene and polypropylene; Methyl acrylate copolymers, methyl methacrylate copolymers, and styrene-acrylic copolymers More preferably, the resin is one or more selected from acrylic resins such as , styrene-methacrylic copolymers, and the like.
  • the acrylic resin does not include an olefin/unsaturated carboxylic acid copolymer.
  • the carboxy groups derived from unsaturated carboxylic acid monomers are partially or completely neutralized with alkali metal hydroxides, ammonia, alkylamines, alkanolamines, etc. It may also be salt.
  • alkali metal hydroxides ammonia, alkylamines, alkanolamines, etc. It may also be salt.
  • the olefin monomer of the olefin/unsaturated carboxylic acid copolymer include ethylene, propylene, butadiene, and the like. These may be used alone or in combination of two or more. Among these, ethylene is preferred.
  • Examples of unsaturated carboxylic acid monomers in the olefin-unsaturated carboxylic acid copolymer include acrylic acid, methacrylic acid, crotonic acid, cinnamic acid, itaconic acid, fumaric acid, maleic acid, and butenetricarboxylic acid.
  • Saturated carboxylic acid unsaturated polycarboxylic acid alkyl ester having at least one carboxy group, such as itaconic acid monoethyl ester, fumaric acid monobutyl ester, maleic acid monobutyl ester; acrylamide propane sulfonic acid, sulfoethyl sodium acrylate salts, unsaturated sulfonic acid monomers such as sulfopropyl sodium methacrylate, or salts thereof; and the like. These may be used alone or in combination of two or more types. Among these, unsaturated carboxylic acids are preferred, acrylic acid and methacrylic acid are more preferred, and acrylic acid is particularly preferred. Therefore, the olefin/unsaturated carboxylic acid copolymer is preferably at least one of an ethylene-acrylic acid copolymer and an ethylene-methacrylic acid copolymer.
  • the ethylene/unsaturated carboxylic acid copolymer is preferably obtained by emulsion polymerization of ethylene and the unsaturated carboxylic acid monomer.
  • ethylene-unsaturated carboxylic acid copolymer ethylene-acrylic acid copolymer and ethylene-methacrylic acid copolymer are preferred.
  • the copolymer may be copolymerized with a monomer consisting of ethylene and other compounds copolymerizable with the unsaturated carboxylic acid monomer.
  • ethylene/unsaturated carboxylic acid copolymers include Zaixen (registered trademark) A, Zaixen (registered trademark) AC (manufactured by Sumitomo Seika Co., Ltd.), and Chemipearl S series (manufactured by Mitsui Chemicals, Inc.). , MFHS1279, MP498345N, MP4983R, MP4990R (manufactured by Michaelman LLC), and the like.
  • Biodegradable resins include polylactic acid (PLA), polybutylene succinate (PBS), polybutylene succinate adipate (PBSA), polybutylene adipate terephthalate (PBAT), and poly(3-hydroxybutyrate-co-hydroxy Hexanoate) (PHBH), more preferably one or more selected from polylactic acid and polybutylene succinate, particularly preferably polylactic acid.
  • Packaging materials using paper base materials have the advantage of reducing environmental impact compared to packaging materials made of resin films, but by using biodegradable resin as the sealant layer in this embodiment, The environmental load can be further reduced.
  • polylactic acid either a commercially available product or a synthetic product may be used.
  • examples of commercially available products include Landy PL-1000 and Landy PL-3000 (aqueous dispersion of polylactic acid, manufactured by Miyoshi Oil Co., Ltd.).
  • the coating liquid for the sealant layer contains, in addition to the resin for the sealant layer (water-suspended polymer), a lubricant, a pigment, an antifoaming agent, a viscosity modifier, a surfactant, and a leveling agent. It may contain additives, colorants, etc.
  • the total content of other components is preferably 30% by mass or less, more preferably 10% by mass, based on the solid content of the sealant layer. % or less, more preferably 5% by mass or less.
  • the content of the sealant layer resin in the solid content of the sealant layer coating liquid is preferably 50% by mass or more, more preferably 60% by mass or more, and even more preferably 70% by mass, from the viewpoint of obtaining high heat seal peel strength. That's all.
  • the device used for coating the coating liquid for the sealant layer is not particularly limited, and may be appropriately selected from commonly used coating devices.
  • coating devices for example, air knife coater, blade coater, gravure coater, rod blade coater, roll coater, reverse roll coater, Meyer bar coater, curtain coater, die slot coater, Champlex coater, metering blade type size press coater, short dwell coater,
  • Various known coating devices such as a spray coater, a gate roll coater, and a lip coater can be used.
  • Drying conditions for the sealant layer are not particularly limited, but the drying temperature is preferably 50 to 120°C, and the drying time is preferably 5 to 120 seconds.
  • the drying equipment for drying the applied sealant layer is not particularly limited, and any known equipment can be used. Examples of the drying equipment include a hot air dryer, an infrared dryer, an explosion-proof dryer, and a hot plate.
  • the amount of the sealant layer applied is preferably 1 g/m 2 or more, more preferably 2 g/m 2 or more, and preferably 30 g/m 2 or less, more preferably 20 g/m 2 from the viewpoint of heat seal peel strength. 2 or less.
  • the total applied amount is within the above range.
  • the printing paper of this embodiment may further have a barrier layer, and it is preferable to have the barrier layer on the surface opposite to the printing surface of the paper base material.
  • the printing paper has a sealant layer, it is preferable to have a barrier layer between the paper base material and the sealant layer.
  • the barrier layer is a layer that mainly has the function of blocking the permeation of oxygen gas.
  • the barrier layer may be formed by applying a coating liquid containing a polymer selected from the group consisting of water-suspended polymers and water-soluble polymers, and by melt-extruding a resin having barrier properties.
  • It may be formed by laminating with an adhesive or the like, or a vapor deposited layer selected from the group consisting of a metal vapor deposited layer and an inorganic vapor deposited layer may be formed, or a vapor deposited layer selected from the group consisting of a metal vapor deposited layer and an inorganic vapor deposited layer. It may also be formed by laminating resin films having vapor deposited layers.
  • the water-suspended polymer used in the barrier layer is a polymer whose solubility in water at 25° C. is 10 g/L or less.
  • the water-suspended polymer is preferably derived from polymers (particles) dispersed in the emulsion.
  • Water-suspended polymers and water-soluble resins used in the barrier layer are not particularly limited, but include, for example, urethane resins, vinylidene chloride resins, olefin resins, polyester resins, nylon resins, epoxy resins, melamine resins, and polyvinyl resins.
  • Examples include alcohol resins, acrylonitrile resins, polycarboxylic acid resins, and silicone resins.
  • One type of water-suspended polymer may be used alone, or two or more types may be used in combination.
  • the water-suspended polymer is preferably at least one selected from the group consisting of urethane-based resins and vinylidene chloride-based resins.
  • Urethane resin can be manufactured by a known manufacturing method.
  • a urethane resin can be obtained by reacting a polyisocyanate compound (for example, a diisocyanate compound) and a polyhydroxy acid (for example, a dihydroxy acid).
  • a polyol compound eg, polyester polyol, polyether polyol
  • the urethane resin preferably contains at least one selected from the group consisting of structural units derived from metaxylylene diisocyanate and structural units derived from hydrogenated metaxylylene diisocyanate.
  • the structural unit derived from metaxylylene diisocyanate refers to a monomer unit reacted with metaxylylene diisocyanate in a urethane resin.
  • a monomer unit refers to a form in which monomer substances in a polymer are reacted.
  • the total mole% of the constituent units derived from metaxylylene diisocyanate and the constituent units derived from hydrogenated metaxylylene diisocyanate is 50 mole% or more based on the total amount of constituent units derived from the polyisocyanate in the urethane resin.
  • the content is preferably 60 mol% or more, and more preferably 60 mol% or more.
  • the upper limit is not particularly limited, but is preferably 95 mol% or less, more preferably 90 mol% or less.
  • the mole % of the structural units can be identified using known analytical techniques such as 1 H-NMR.
  • the urethane resin may have a hydroxyl group, and its hydroxyl value is preferably 50 mgKOH/g or more, more preferably 100 mgKOH/g or more, even more preferably 150 mgKOH/g or more.
  • the upper limit of the hydroxyl value is not particularly limited, but is preferably 1000 mgKOH/g or less, more preferably 800 mgKOH/g or less, and still more preferably 600 mgKOH/g or less.
  • the barrier layer can easily exhibit oxygen barrier properties.
  • the heat sealability of the barrier layer can be improved, and as a result, the heat sealability of the printing paper can also be improved.
  • the hydroxyl value is measured according to JIS K0070-1992, and when 1 g of the sample is acetylated, the number of mg of potassium hydroxide required to neutralize the acetic acid bonded to the hydroxyl group is measured.
  • the urethane resin preferably has an oxygen permeability of 100.0 mL/(m 2 ⁇ day ⁇ atm) or less, and 50.0 mL/atm at 23 °C and 50% relative humidity when converted to a 25 ⁇ m thick sheet. ( m2 ⁇ day ⁇ atm) or less, more preferably 25.0mL/( m2 ⁇ day ⁇ atm) or less, and 10.0mL/( m2 ⁇ day ⁇ atm) or less It is even more preferable that the amount be 3.0 mL/(m 2 ⁇ day ⁇ atm) or less. Note that the oxygen permeability at 23° C.
  • the oxygen permeability when converted to a 25 ⁇ m thick sheet is the oxygen permeability measured using a 25 ⁇ m thick sheet formed using the target urethane resin.
  • the oxygen permeability of the sheet is measured using an oxygen permeability measuring device (OX-TRAN2/22, manufactured by MOCON) under conditions of 23° C. and 50% relative humidity.
  • the glass transition temperature of the urethane resin is preferably 150°C or lower, more preferably 140°C or lower, and particularly preferably 135°C or lower. Note that the glass transition temperature of the urethane resin is measured in accordance with JIS K 7122:2012.
  • urethane resin a synthetic product may be used, and examples of the synthetic product include the urethane resin described in International Publication No. 2015/016069.
  • the urethane resin commercially available products may be used, such as "Takelac W series (trade name)", “Takelac WPB series (trade name)", “Takelac WS series (trade name)” manufactured by Mitsui Chemicals, Inc. A specific example is Takelac WPB-341.
  • Other commercially available products include "HPU W-003" (hydroxyl value 235 mgKOH/g) manufactured by Dainichiseika Kagyo Co., Ltd.
  • Vinylidene chloride resin can be manufactured by a known manufacturing method.
  • the vinylidene chloride resin can be obtained from a homopolymer of vinylidene chloride (polyvinylidene chloride, PVDC), a copolymer of vinylidene chloride and a monomer copolymerizable with vinylidene chloride, and the like.
  • Monomers that can be copolymerized with vinylidene chloride include, but are not limited to, vinyl chloride, (meth)acrylic esters such as methyl (meth)acrylate, ethyl (meth)acrylate, and butyl (meth)acrylate. , acrylonitrile, isobutylene, vinyl acetate, etc.
  • vinylidene chloride resin commercially available products may be used, such as "Saran Latex L549B” manufactured by Asahi Kasei Corporation and Diofan B204 manufactured by Solvay.
  • the weight average molecular weight of the water-suspended polymer is preferably 1,000 or more and 2,000,000 or less, more preferably 5,000 or more and 5,000,000 or less.
  • the weight average molecular weight shall employ
  • the average particle diameter of the water-suspended polymer in the emulsion is preferably 0.001 ⁇ m or more and 100 ⁇ m or less, more preferably 0.01 ⁇ m or more and 10 ⁇ m or less. Note that the average particle diameter can be measured by a dynamic light scattering method.
  • a water-soluble polymer is a resin that can be dissolved in water.
  • a water-soluble resin is a polymer whose backbone polymer has a solubility in water at 25° C. of more than 10 g/L.
  • the polymer serving as the backbone of the water-soluble polymer include polyvinyl alcohol, modified polyvinyl alcohol, starch and its derivatives, cellulose derivatives, polyvinylpyrrolidone, polyacrylic acid and its salts, casein, polyethyleneimine, and the like.
  • the water-soluble polymer is preferably one or more selected from the group consisting of polyvinyl alcohol and modified polyvinyl alcohol, and more preferably modified polyvinyl alcohol.
  • modified polyvinyl alcohol include ethylene-modified polyvinyl alcohol, carboxy-modified polyvinyl alcohol, silicon-modified polyvinyl alcohol, acetoacetyl-modified polyvinyl alcohol, and diacetone-modified polyvinyl alcohol.
  • the modified polyvinyl alcohol is preferably one or more selected from the group consisting of ethylene-modified polyvinyl alcohol, carboxy-modified polyvinyl alcohol, silicon-modified polyvinyl alcohol, and acetoacetyl-modified polyvinyl alcohol; and carboxy-modified polyvinyl alcohol, and more preferably ethylene-modified polyvinyl alcohol.
  • Polyvinyl alcohol and modified polyvinyl alcohol include completely saponified types and partially saponified types, but completely saponified types are preferable. Complete saponification means that the degree of saponification is greater than 96%. Note that the degree of saponification is a value measured by a method based on JIS K 6726:1994.
  • water-soluble polymer examples include "Exeval (trade name)” manufactured by Kuraray Co., Ltd.
  • the content of the water-suspended polymer and water-soluble polymer in the barrier layer is preferably 10% by mass or more, more preferably 30% by mass or more, based on the solid content of the barrier layer. Preferably it is 50% by mass or more, even more preferably 60% by mass or more, and the upper limit is 100% by mass.
  • the barrier layer may be formed by applying the barrier layer coating liquid to a paper base material, or by laminating resin films coated with the barrier layer coating liquid in advance. You may.
  • the resin film may be a sealant layer.
  • the barrier layer When forming the barrier layer by coating, it is preferable to contain a layered inorganic compound in addition to at least one selected from the water-suspending polymer and water-soluble polymer described above. That is, it is preferable that the barrier layer contains a water-suspended polymer and a layered inorganic compound, or a water-soluble polymer and a layered inorganic compound.
  • the barrier properties can be further improved (oxygen permeability can be further reduced).
  • the average length of the layered inorganic compound is preferably 1 ⁇ m or more and 100 ⁇ m or less, more preferably 2 ⁇ m or more and 50 ⁇ m or less, and even more preferably 3 ⁇ m or more and 20 ⁇ m or less.
  • the average length of the layered inorganic compound is the average length of the long axis of the layered inorganic compound in the plane direction.
  • the average length is 1 ⁇ m or more, the layered inorganic compound in the barrier layer tends to be arranged parallel to the paper support. Further, when the average length is 100 ⁇ m or less, there is less concern that a part of the layered inorganic compound will protrude from the barrier layer.
  • the aspect ratio of the layered inorganic compound is preferably 200 or more, more preferably 300 or more, still more preferably 500 or more, even more preferably 800 or more.
  • the upper limit of the aspect ratio of the layered inorganic compound is not particularly limited, but is preferably 10,000 or less, more preferably 5,000 or less, and even more preferably 2,000 or less.
  • the aspect ratio is a value calculated from an enlarged microscopic photograph of the cross section of the barrier layer, and is the average value of the length of the layered inorganic compound divided by its thickness (the phase ratio of 20 to 30 samples). average value).
  • the thickness of the layered inorganic compound is preferably 100 nm or less, more preferably 50 nm or less, even more preferably 30 nm or less.
  • the lower limit of the thickness of the layered inorganic compound is not particularly limited, but is preferably 2 nm or more.
  • the thickness of the layered inorganic compound is the average thickness of the layered inorganic compound (arithmetic average value of 20 to 30 samples) measured from an enlarged microscopic photograph of the cross section of the barrier layer. Note that the thickness is defined as the direction perpendicular to the long axis of the layered inorganic compound.
  • the barrier layer By setting the average thickness of the layered inorganic compound within the above range, the number of layers of the layered inorganic compound in the barrier layer increases, so that the barrier layer can exhibit higher oxygen barrier properties.
  • the barrier layer forms a dense film without voids. This phenomenon can also be observed from an enlarged microscopic photograph of the cross section of the barrier layer.
  • layered inorganic compounds include mica such as mica group and brittle mica group, bentonite, kaolinite (kaolin mineral, hereinafter also referred to as "kaolin"), pyrophyllite, talc, smectite, vermiculite, chlorite, and septechlorite.
  • examples include stone, serpentine, stilpnomelaine, and montmorillonite.
  • the layered inorganic compound is preferably at least one selected from the group consisting of mica, bentonite, and kaolin, and at least one selected from mica and kaolin. It is preferable to have something.
  • mica examples include synthetic mica, muscovite, sericite, phlogopite, biotite, fluorophlogopite (artificial mica), red mica, soda mica, vanadium mica, Examples include illite,zia, paragonite, and brittle mica.
  • swellable mica is preferred as mica because it has a high aspect ratio.
  • kaolin may be a natural product or a synthetic product (engineered kaolin). Among these, at least one selected from the group consisting of mica, bentonite, and kaolin is preferable, and at least one selected from mica and kaolin is more preferable.
  • the barrier layer contains the above-described layered inorganic compound, the barrier properties of the printing paper under high humidity conditions can be more effectively enhanced.
  • the content of the layered inorganic compound is not particularly limited, but it is preferably 0.00 parts by mass based on 100 parts by mass of the water-suspended polymer or water-soluble polymer in the barrier layer. 5 parts by mass or more and 500 parts by mass or less, more preferably 1 part by mass or more and 300 parts by mass or less, even more preferably 2 parts by mass or more and 200 parts by mass or less, even more preferably 5 parts by mass or more and 150 parts by mass or less, particularly preferably 10 parts by mass or more It is not less than 70 parts by mass and not more than 70 parts by mass.
  • the barrier properties of the printing paper under high humidity conditions can be more effectively enhanced.
  • the barrier layer includes at least one selected from a water-suspending polymer and a water-soluble polymer, a layered inorganic compound, and a pigment, a dispersant, a surfactant, an antifoaming agent, a wetting agent, a dye, and a color adjusting agent. , a thickener, etc. may be contained.
  • the coating amount of the coating liquid for the barrier layer is preferably 0.1 g/m 2 or more and 10 g/m 2 or less, more preferably 0.5 g/m 2 or more as solid content. It is 5g/ m2 or less.
  • the resins having barrier properties include ethylene-vinyl alcohol copolymer (EVOH) and MX nylon.
  • EVOH ethylene-vinyl alcohol copolymer
  • MX nylon MXD6 manufactured by Mitsubishi Gas Chemical Co., Ltd. is exemplified.
  • a vapor deposited layer may be formed directly on a paper base material, or a resin film having a vapor deposited layer formed thereon may be laminated to form a barrier layer.
  • the deposited layer is selected from the group consisting of a metal deposited layer and an inorganic deposited layer.
  • Aluminum (Al) is exemplified as the vapor-deposited metal of the metal vapor-deposited layer.
  • examples of the inorganic compound to be deposited in the inorganic vapor deposition layer include silica (SiOx) and alumina (AlOx).
  • the thickness of the metal vapor deposition layer is not particularly limited as long as the desired barrier properties can be obtained.
  • an adhesive may be applied to a resin film provided with a vapor deposition layer, and the resin film may be laminated with a paper base material.
  • resin films include polyester resin films such as polyethylene terephthalate (PET), polyamide resin films such as various nylons, polyethylene resins, polypropylene resins, cyclic polyolefin resins, polystyrene resins, and acrylonitrile-styrene copolymers (AS).
  • polysin acrylonitrile-butadiene-styrene copolymer
  • polyolefin film such as polybutene resin film, polyvinyl chloride resin, polycarbonate resin, polyimide resin, polyamideimide resin, polyaryl phthalate resin, silicone resins, polysulfone resins, polyphenylene sulfide resins, polyether sulfone resins, polyurethane resins, cellulose resins, poly(meth)acrylic resins, polyvinylidene chloride films, acetal resin films, fluorine resins, etc.
  • polypropylene resins, polyester resins, and polyamide resins are particularly preferred.
  • the printed matter of this embodiment is a printed matter obtained from the above-mentioned ultraviolet laser printing paper, and has at least a portion of the printed area containing discolored titanium oxide.
  • the ratio of the Raman intensity originating from titanium oxide in the printing area to the Raman intensity originating from titanium oxide in the non-printing area is preferably 0.70 or less.
  • the printed area having the discolored titanium oxide is an area containing titanium oxide that has been discolored by irradiation with an ultraviolet laser, and is an ultraviolet laser irradiation area, that is, a printing area.
  • the method for manufacturing printed matter of this embodiment includes a step of printing by irradiating the above-described printing paper with an ultraviolet laser to change color in the irradiated area.
  • the printing paper used in the method for manufacturing printed matter of this embodiment the above-mentioned printing paper is exemplified, and the preferable range is also the same.
  • the method for producing printed matter of the present embodiment if the content of titanium oxide in the paper base material in at least the ultraviolet laser irradiation area is 0.5% by mass or more, and the crystallite size of titanium oxide is 30 nm or more, Often, the paper substrate in the non-irradiated areas does not have to meet the above requirements.
  • the ultraviolet laser irradiation is preferably performed such that the ratio of the Raman intensity derived from titanium oxide in the printed area to the Raman intensity derived from titanium oxide in the non-printed area is 0.70 or less. That is, in the printed matter of this embodiment, the ratio of the Raman intensity originating from titanium oxide in the printing area to the Raman intensity originating from titanium oxide in the non-printing area is preferably 0.70 or less.
  • the printed area refers to an area (portion) containing discolored titanium oxide in the printable area, and is an area (portion) printed with an ultraviolet laser.
  • the non-printing area means an area (portion) that is not printed in the printable area.
  • the printable area refers to the area containing titanium oxide, which is the area that can be printed by ultraviolet laser and the area (portion) printed by ultraviolet laser, if any, on ultraviolet laser printing paper or printed matter.
  • the non-printable area means the area other than the printable area on the ultraviolet laser printing paper or printed matter.
  • the ratio of the Raman intensity originating from titanium oxide in the printing area to the Raman intensity originating from titanium oxide in the non-printing area is 0.70 or less. Printing is preferred. By setting the Raman intensity ratio within the above range, printed matter with excellent visibility can be obtained.
  • the above Raman intensity ratio (Raman intensity of printed area/Raman intensity of non-printed area) is 447 ⁇ 10 cm - as the Raman intensity derived from titanium oxide.
  • the Raman intensity of the maximum value in the wave number range of 1 is compared.
  • the Raman intensity of the maximum value in the wave number range of 516 ⁇ 10 cm ⁇ 1 is compared as the Raman intensity derived from titanium oxide. Note that when rutile-type titanium oxide and anatase-type titanium oxide coexist, the Raman intensity derived from rutile-type titanium oxide is used for comparison.
  • the non-printing area is white and the printing area is black. It is preferable that the non-printing area has a brightness of No. 10 in the Munsell color system, that is, white.
  • the printing area is preferably one of numbers 0 to 8 in the Munsell color system, more preferably numbers 0 to 6, and even more preferably numbers 0 to 4.
  • the type and content of titanium oxide in the paper base material of printing paper, the length-weighted average fiber length of the pulp that makes up the paper base material, and other characteristics paper base It is preferable to adjust the water retention degree of the pulp constituting the material, the amount of fine fibers, the fiber width, etc.) and the irradiation conditions of the ultraviolet laser (for example, average output, repetition frequency, wavelength, etc.) as appropriate.
  • the wavelength of the ultraviolet laser is preferably 370 nm or less, more preferably 365 nm or less, even more preferably 360 nm or less, and preferably 260 nm or more, more preferably 340 nm or more, from the viewpoint of improving the visibility of the printed area. More preferably, it is 350 nm or more.
  • the average output of the ultraviolet laser is preferably 0.3 W or more, more preferably 0.8 W or more, still more preferably 1.2 W or more, even more preferably 1.8 W or more, from the viewpoint of improving the visibility of the printed area. And from the viewpoint of economy, it is preferably 30 W or less, more preferably 25 W or less, even more preferably 20 W or less, even more preferably 15 W or less, even more preferably 10 W or less, even more preferably 6 W or less.
  • the repetition frequency (frequency) of the ultraviolet laser is preferably 10 kHz or more, more preferably 20 kHz or more, even more preferably 30 kHz or more, and preferably 100 kHz or less, more preferably is 80 kHz or less, more preferably 60 kHz or less.
  • the spot diameter of the ultraviolet laser is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, even more preferably 30 ⁇ m or more, and preferably 300 ⁇ m or less, more preferably It is 240 ⁇ m or less, more preferably 180 ⁇ m or less, even more preferably 120 ⁇ m or less.
  • the scanning speed of the ultraviolet laser is preferably 500 mm/sec or more, more preferably 1000 mm/sec or more, even more preferably 2000 mm/sec or more, and preferably 7000 mm/sec or more, from the viewpoint of high-speed printing and visibility of the printed area. sec or less, more preferably 6000 mm/sec or less, still more preferably 5000 mm/sec or less.
  • the filling interval (line pitch) of the ultraviolet laser is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, and still more preferably 30 ⁇ m or more, from the viewpoint of obtaining a clear image and the ease of obtaining the device. is 300 ⁇ m or less, more preferably 250 ⁇ m or less, even more preferably 200 ⁇ m or less.
  • the method for producing printed matter of the present invention can be carried out in various ways. Below, various aspects to which the printed matter manufacturing method of this embodiment can be applied will be illustrated, but the printed matter manufacturing method of this embodiment is not limited to the following aspects.
  • the information to be printed is not particularly limited, but preferably variable information. It is preferable that the printed matter manufacturing method of this embodiment is performed in-line.
  • (1) Direct printing on packaging The first embodiment of the method for producing printed matter of this embodiment is a method of printing information on packaging having the printing paper of this embodiment, in which the printed matter is moved on a packaging line. It has a process of directly printing with an ultraviolet laser on the package that is in the middle or intermittently stopped.
  • a package is produced using the ultraviolet laser printing paper of this embodiment, and directly printed with an ultraviolet laser. Note that it is sufficient that at least the outermost layer of the printed area of the package is made of the above-mentioned printing paper. Furthermore, examples of the package include cardboard, boxes, etc., and it is preferable to print directly on the side or top surface of the package using an ultraviolet laser.
  • the second embodiment of the method for producing printed matter of this embodiment is a method of printing information on a label having the printing paper of this embodiment.
  • the printing paper forming the printing surface of the label is the printing paper of this embodiment.
  • the printed label is applied to the package using a label application device.
  • Various label pasting devices have been proposed as label pasting devices.
  • the first label pasting device applies an adhesive to a roll of label base paper and then pastes it onto an article. More specifically, there is a cutting means for cutting a roll of label paper into a predetermined length one by one, and a label paper holder coated with adhesive to cut the label paper cut by the cutting means using a label paper holder coated with adhesive.
  • a gluing conveyance means for receiving and applying an adhesive to the back side of the label base paper
  • an adhesion means for receiving the label base paper (label) to which adhesive has been applied from the gluing conveyance means and pasting it on an article such as a container.
  • An example of a roll labeler is a roll labeler in which a rotary conveying means having a label holding surface on the outer surface is provided between the cutting means and the gluing conveying means, as disclosed in Japanese Patent Application Laid-Open No. 6-64637.
  • It also includes a cutting means that cuts the rolled label paper into a predetermined length one by one, a delivery roll that transfers the label paper to the pasting roll, and a gluing roll that applies glue to the label base paper held by the pasting roll.
  • a cutting means that cuts the rolled label paper into a predetermined length one by one
  • a delivery roll that transfers the label paper to the pasting roll
  • a gluing roll that applies glue to the label base paper held by the pasting roll.
  • Examples include a roll labeler that has a roll labeler and an embodiment that does not require the delivery roll. It is preferable that the irradiation with the ultraviolet laser be performed before cutting the rolled label base paper into a predetermined length, or after cutting the label base paper and before transferring it to the next roll or the like. Depending on the configuration of the roll labeler, the front or back side of the label base paper wound into a roll becomes the front or back side when it is attached to the package, so the ultraviolet laser is irradiated accordingly.
  • the second labeling device uses adhesive label rolls as labels.
  • an adhesive label roll with a release paper for example, a release paper separating means for separating the adhesive label and the release paper, a delivery roll for receiving the adhesive label from which the release paper has been separated, and a delivery roll for removing the adhesive label from the delivery roll are used.
  • An example is a pasting device that includes a pasting roll that applies suction to a product (packaging body). Irradiation with an ultraviolet laser is preferably carried out before the release paper is separated, or after the release paper is separated and before the film is supported on a pasting roll.
  • It also has a mechanism that sets an adhesive label roll with release paper, separates the adhesive label and release paper, and affixes the label immediately after separation, and separates the release paper from the set adhesive label roll.
  • An example is an apparatus that prints with an ultraviolet laser during the process.
  • the adhesive label application method described above is also referred to as flow-adhesion.
  • it has a mechanism for setting an adhesive label roll with release paper and separating the release paper from the adhesive label, and a mechanism for pasting the adhesive label on the article (packaging body), and the pasting mechanism is a syringe type. Examples include a labeling device that uses a , an air jet method, or a robot arm method. It is preferable that the irradiation with the ultraviolet laser be performed from the set pressure-sensitive adhesive label roll with release paper until the release paper is separated.
  • a linerless adhesive label may be used as the label.
  • Linerless adhesive labels are labels without release paper, and compared to the case of using adhesive label rolls with release paper, the number of labels per roll is larger, and because there is no release paper, they are cheaper.
  • a label pasting device using linerless adhesive labels includes a mechanism for setting a linerless label roll, a cutting mechanism for cutting linerless labels one by one, and a mechanism for attaching cut linerless labels to articles (packaging bodies).
  • An example is an apparatus that has a pasting mechanism for pasting, and the pasting mechanism is a cylinder type or a robot arm type. Printing by ultraviolet laser irradiation is preferably carried out between the mechanism that sets the linerless label roll and the cutting mechanism, or while the cut linerless label is sent to the pasting mechanism.
  • the third label pasting device prints with an ultraviolet laser after pasting the printing paper of this embodiment onto an article (package).
  • the first device and the second device described above are referred to.
  • the third embodiment of the method for manufacturing printed matter of this embodiment is an embodiment in which adhesive tape is used as printing paper. That is, the method for producing a printed matter according to the third embodiment includes the step of attaching an adhesive tape made from the printing paper to an article (packaging body), and before or after the attaching step. , has a printing process using an ultraviolet laser.
  • a printing device in which a printing device using an ultraviolet laser is incorporated into a cardboard sealing machine may be used. Specifically, it has a mechanism for setting the adhesive tape winder, a conveyor for conveying the cardboard, a mechanism for folding the flaps of the cardboard, and a mechanism for applying the adhesive tape to seal the cardboard. It has a mechanism that prints on the adhesive tape with an ultraviolet laser during or after pasting.
  • the method for producing printed matter according to the present embodiment is not limited to the above embodiments, and can be applied to various uses that require printing.
  • the printed material obtained by the method for producing printed material is suitably used for packaging, labels, adhesive tapes, and the like.
  • packaging bodies include outer boxes, milk cartons, liquid containers for beverages such as paper cups (preferably liquid paper containers for beverages), and skin packs
  • labels include label base paper, adhesive labels, and adhesive sheets.
  • adhesive tape include adhesive tape and craft tape.
  • the ultraviolet laser printing paper and printed matter of this embodiment are applied to various processed products. That is, the processed product of this embodiment is made using the ultraviolet laser printing paper of this embodiment or the printed matter of this embodiment.
  • the processed product of this embodiment is preferably a package, a label, an adhesive tape, or the like.
  • packaging include corrugated liner base paper (particularly the outermost liner base paper), outer boxes, milk cartons, liquid containers for beverages such as paper cups (preferably liquid paper containers for beverages), food trays, skin packs, pillows, etc.
  • Examples include packaging, standing pouches, three-sided/four-sided sealed packaging, etc.
  • labels include label base paper, adhesive labels, and adhesive sheets
  • examples of adhesive tapes include adhesive tapes and craft tapes.
  • a liquid container as an example of a package has, for example, a printed area on its surface. The printing area is irradiated with an ultraviolet laser and characters such as the date are printed on it.
  • Titanium oxide Titanium oxide used in Examples and Comparative Examples are shown in Table 1 below.
  • Titanium oxide (amorphous) was synthesized by hydrolyzing and polycondensing titanium tetraisopropoxide (TTIP), and crystallized by firing. Specifically, it was synthesized through the following steps (1) to (6).
  • TTIP titanium tetraisopropoxide
  • I0163 titanium tetraisopropoxide
  • Solution A 35.6 parts by mass of TTIP, 200 parts by mass of isopropanol
  • Solution B 200 parts by mass of isopropanol, 6.3 parts by mass of ion-exchanged water
  • Solution C 200 parts by mass of isopropanol, 24.4 parts by mass of ion-exchanged water
  • Teflon While stirring Solution A with a (registered trademark) stirring blade, Solution B was slowly added dropwise, and stirring was continued for 10 minutes.
  • Solution C was slowly added dropwise to the mixture of solution A and solution B obtained in (2) above, stirring was continued for 1 minute, and then allowed to stand at room temperature for 24 hours.
  • Examples 1-1 to 1-12, Comparative Examples 1-1 to 1-3 Broadleaf bleached kraft pulp (LBKP) was beaten with a double disc refiner so that the CSF was 450 mL to prepare a 3% by mass pulp slurry. After diluting by adding 0.5 parts by mass of sulfuric acid to 100 parts by mass of pulp (solid content), the content of titanium oxide shown in Table 2 in the printing paper is equal to the content (mass%) shown in Table 2.
  • Example 1-13 Paper was made in the same manner as in Example 1-4, except that 30 parts of hardwood bleached kraft pulp (LBKP) and 70 parts of softwood bleached kraft pulp (NBKP) were mixed and beaten so that the CSF was 550 mL.
  • LKP hardwood bleached kraft pulp
  • NNKP softwood bleached kraft pulp
  • Example 1-14 Paper was made in the same manner as in Example 1-4, except that 100 parts of softwood bleached kraft pulp (NBKP) was beaten to a CSF of 580 mL.
  • NNKP softwood bleached kraft pulp
  • Example 1-15 70 parts of the same hardwood bleached kraft pulp (LBKP) as in Example 1-4 and 30 parts of powder pulp made from the LBKP (procedure below) were used, except that they were mixed and beaten so that the CSF was 400 mL. , Paper was made in the same manner as in Example 1-4.
  • Example 1-16 The hardwood bleached kraft pulp (LBKP) of Example 1-1 was milled using a pulp machine and dried to obtain dry pulp. Paper was made in the same manner as in Example 1-4, except that the dry pulp was re-disintegrated and beaten to a disintegration freeness of 550 mL.
  • PE low-density polyethylene, manufactured by Japan Polyethylene Co., Ltd., Novatec (registered trademark) LD LC522
  • a single screw extruder manufactured by Toyo Seiki Seisakusho Co., Ltd., D2025
  • resin one side of the paper base material was coated with resin.
  • the sheets were rapidly cooled while being sandwiched between cooling rolls whose temperature was adjusted to 20° C., and a sealant layer was provided to obtain ultraviolet laser printing paper.
  • the melting temperature of the resin in the extrusion laminate was 320°C.
  • a sealant layer was provided on the less smooth surface of the paper base material.
  • Example 2-17 ⁇ Manufacture of paper base material> A paper base material was produced in the same manner as in Example 1-4. ⁇ Formation of sealant layer> On the surface of a PE film (linear low-density polyethylene film (LLDPE), manufactured by Futamura Chemical Co., Ltd., LL-XLTN, thickness 25 ⁇ m), 10 parts of isocyanate adhesive (manufactured by DIC Corporation, Dick Dry LX-500) was applied. Then, 5 g/m 2 of 5 g/m 2 of DIC Dry KW-75 (mixed with 1 part of Dick Dry KW-75 manufactured by DIC Corporation) was applied, and the paper was bonded to a paper base material to obtain an ultraviolet laser printing paper.
  • LLDPE linear low-density polyethylene film
  • DIC Corporation Dick Dry LX-500
  • Example 2-18 ⁇ Manufacture of paper base material> A paper base material was produced in the same manner as in Example 1-4. ⁇ Formation of sealant layer> A sealant layer was formed in the same manner as in Example 2-4, except that PE was changed to PP (polypropylene, manufactured by Mitsubishi Chemical Corporation, Novatec PP MA-3) and the melting temperature was set to 330°C, and then UV laser printing was performed. I got the paper.
  • Example 2-19 ⁇ Manufacture of paper base material> A paper base material was produced in the same manner as in Example 1-4. ⁇ Formation of sealant layer> A sealant layer was formed in the same manner as in Example 2-17, except that the PE film was changed to a CPP film (unoriented polypropylene film, manufactured by Futamura Chemical Co., Ltd., FHK2-L, thickness 25 ⁇ m), and ultraviolet laser printing was performed. I got the paper. The film was a laminated film of CoPP (copolymerized polypropylene)/CoPP (copolymerized polypropylene)/special PP, and the CoPP surface, which was the corona-treated surface, was placed on the paper base material side.
  • CPP film unoriented polypropylene film
  • CoPP copolymerized polypropylene
  • CoPP copolymerized polypropylene
  • Example 2-20 ⁇ Manufacture of paper base material> A paper base material was produced in the same manner as in Example 1-4. ⁇ Formation of sealant layer> Add water to a water-based heat sealing agent (ethylene-acrylic acid copolymer (Et-AA in the table), manufactured by Michaelman, MFHS1279, solid content concentration 42%) to dilute to 20% solid content, and then Apply the sealant to the opposite side of the base material from the side with the printed layer using a Mayer bar to a coating amount (solid content) of 5 g/ m2 , dry at 120°C for 60 seconds, and apply the sealant. A layer was formed to obtain an ultraviolet laser printing paper.
  • a water-based heat sealing agent ethylene-acrylic acid copolymer (Et-AA in the table)
  • Et-AA ethylene-acrylic acid copolymer
  • MFHS1279 solid content concentration 42
  • Example 2-21 ⁇ Manufacture of paper base material> A paper base material was produced in the same manner as in Example 1-4. ⁇ Formation of sealant layer> A water-based heat sealing agent (ethylene-methacrylic acid copolymer (Et-MAA in the table), manufactured by Mitsui Chemicals, Inc., Chemipearl S-300, solid content concentration 35%) was used after adjusting the solid content concentration to 20%. Except for this, a sealant layer was formed in the same manner as in Example 2-20, and an ultraviolet laser printing paper was obtained.
  • Et-MAA ethylene-methacrylic acid copolymer
  • Example 2-22 ⁇ Manufacture of paper base material> A paper base material was produced in the same manner as in Example 1-4. ⁇ Formation of sealant layer> A water-based heat sealing agent (styrene-acrylic acid copolymer (St-AA in the table), manufactured by Seiko PMC Co., Ltd., SEIKOAT RE-2016, solid content concentration 35%) was used after adjusting the solid content concentration to 20%. Except for this, a sealant layer was formed in the same manner as in Example 2-20, and an ultraviolet laser printing paper was obtained.
  • st-AA in the table styrene-acrylic acid copolymer manufactured by Seiko PMC Co., Ltd., SEIKOAT RE-2016, solid content concentration 35%) was used after adjusting the solid content concentration to 20%. Except for this, a sealant layer was formed in the same manner as in Example 2-20, and an ultraviolet laser printing paper was obtained.
  • Example 2-23 ⁇ Manufacture of paper base material> A paper base material was produced in the same manner as in Example 1-4.
  • EVOH ethylene-vinyl alcohol copolymer, manufactured by Kuraray Co., Ltd., EVAL E105B
  • EVAL E105B ethylene-vinyl alcohol copolymer, manufactured by Kuraray Co., Ltd., EVAL E105B
  • the thickness of the resin was added to one side of the paper base material.
  • the material was rapidly cooled while being sandwiched between cooling rolls whose temperature was adjusted to 20° C. to form a barrier layer. Note that the melting temperature of the resin in the extrusion laminate was 215°C.
  • sealant layer A sealant layer was provided in the same manner as in Example 2-4 to obtain ultraviolet laser printing paper.
  • layered inorganic compound synthetic mica (swellable Mica, average length: 6.3 ⁇ m, aspect ratio: approximately 1000, thickness: approximately 5 nm)
  • solid content concentration 6% by mass manufactured by Topy Industries, Ltd., NTO-05
  • the barrier layer coating solution was applied using a Meyer bar so that the coating amount was 2.0 g/m 2 , and then dried in a hot air dryer at 120°C for 1 minute to form a barrier layer. Formed.
  • a sealant layer was provided in the same manner as in Example 2-20 to obtain ultraviolet laser printing paper.
  • Example 2-25 Manufacture of paper base material> A paper base material was produced in the same manner as in Example 1-4.
  • ⁇ Formation of barrier layer> Aqueous dispersion of layered inorganic compound (layered inorganic compound synthetic mica (swellable mica, average length: 6.3 ⁇ m, aspect ratio: approximately 1000, thickness: approximately 5 nm), solid content concentration 6% by mass, Topy Industries, Ltd.
  • urethane emulsion solid concentration 30% by mass, glass transition temperature 130°C, oxygen permeability when forming a 25 ⁇ m thick sheet 2.0mL/( m2 ⁇ day ⁇ atm), Mitsui Chemicals
  • Takelac WPB-341 manufactured by Co., Ltd. was added so that the solid content mass ratio (layered inorganic compound: urethane resin) was 2:10, and the mixture was stirred. Furthermore, dilution water was added so that the solid content concentration was 20% by mass to obtain a barrier layer coating solution.
  • the barrier layer coating solution was applied with a Mayer bar so that the coating amount of the barrier layer was 2.0 g/m 2 , and then dried in a hot air dryer at 120°C for 1 minute to form a barrier layer. formed a layer.
  • ⁇ Formation of sealant layer> A sealant layer was provided in the same manner as in Example 2-20 to obtain ultraviolet laser printing paper.
  • Example 2-26 ⁇ Manufacture of paper base material> A paper base material was produced in the same manner as in Example 1-4.
  • ⁇ Formation of barrier layer> Aluminum vapor deposited PP film (base material CPP (unstretched polypropylene film), manufactured by Mitsui Chemicals Tohcello Co., Ltd., product name: ML, thickness 20 ⁇ m, water vapor permeability 0.2 g/m 2 day, oxygen permeability 50 mL/m
  • an isocyanate adhesive (10 parts of Dick Dry LX-500, manufactured by DIC Corporation , and 1 part of Dick Dry KW-75, manufactured by DIC Corporation) to the surface of the PP film side of the 2-day ATM). After applying 5 g/m 2 , it was laminated to one side of the paper base material.
  • base material PET (polyethylene terephthalate), manufactured by Mitsui Chemicals Tohcello Co., Ltd., product name: ML, thickness 12 ⁇ m, water vapor permeability 1 g/m2) was used instead of the aluminum vapor-deposited PP film.
  • Ultraviolet laser printing paper was obtained in the same manner as in Example 2-26, except for using an oxygen permeability of 10 mL/m 2 ⁇ day ⁇ atm). Note that the adhesive was applied to the base material (PET) side.
  • base material PP, manufactured by Toppan Printing Co., Ltd., product name: GL-LP, thickness 17 ⁇ m, water vapor permeability 0.5 g/m 2 .
  • Ultraviolet laser printing paper was obtained in the same manner as in Example 2-26, except that an oxygen permeability of 1 mL/m 2 ⁇ day ⁇ atm) was used. Note that the adhesive was applied to the base material (PP) side.
  • Ultraviolet laser printing paper was obtained in the same manner as in Example 2-26, except that an oxygen permeability of 0.6 g/m 2 ⁇ day and an oxygen permeability of 0.2 mL/m 2 ⁇ day ⁇ atm) were used. Note that the adhesive was applied to the base material (PET) side.
  • An ultraviolet laser printing paper was obtained in the same manner as in Example 2-26, except that an oxygen permeability of 15 mL/m 2 ⁇ day ⁇ atm) was used. Note that the adhesive was applied to the base material (PET) side.
  • Example 2-31 In forming the barrier layer, a PET film coated with PVDC (polyvinylidene chloride) (manufactured by Mitsui Chemicals Tohcello Co., Ltd., product name: V Barrier, thickness 12 ⁇ m, water vapor permeability 0.2 g/m) was used instead of the aluminum vapor-deposited PP film.
  • PVDC polyvinylidene chloride
  • Ultraviolet laser printing paper was obtained in the same manner as in Example 2-26, except that 2.day and oxygen permeability of 0.8 mL/m 2.day.atm ) were used. Note that the adhesive was applied to the base material (PET) side.
  • the average particle diameter of titanium oxide was measured by the following method.
  • the paper base material was scraped off from the ultraviolet laser printing paper obtained in Examples and Comparative Examples using an industrial razor (manufactured by Feather Safety Razor Co., Ltd., product number: 099769), and the collected paper base material was used as a sample in a muffle furnace. It was calculated from an SEM image (secondary electron image) obtained from a scanning electron microscope (SEM, manufactured by Hitachi High-Technology Corporation, SU7000, etc.) of the ash obtained by combustion. The ash content was obtained by burning at 450° C.
  • the slurry was dispersed in ethanol for 5 minutes using an ultrasonic cleaner (such as LSC-63 manufactured by As One Co., Ltd.) to obtain a 0.1% by mass slurry, and then 0.1 mL was cast onto an aluminum plate and heated at 100°C. A sample for measurement was prepared by drying the sample.
  • an ultrasonic cleaner such as LSC-63 manufactured by As One Co., Ltd.
  • Each aluminum plate was subjected to observation using a scanning electron microscope (SEM, manufactured by Hitachi High-Tech Corporation, SU7000, etc.), and particles that could be clearly distinguished from adjacent particles were visually selected, and the major and minor diameters of each particle were determined. Particle diameter was calculated from the geometric mean. At this time, if primary particles and secondary particles in an agglomerated state are mixed but can be clearly distinguished, each is counted as one particle, 100 particles are selected at random, and the did. In addition, when particles other than titanium oxide were included, particles containing the titanium element were measured using an energy dispersive X-ray analyzer (manufactured by Horiba, Ltd., EMAX, etc.) attached to the SEM. In addition, in the case of needle-like particles, the major axis was measured for 100 particles, and the average was taken as the average particle diameter.
  • SEM scanning electron microscope
  • Goniometer Ultima III Horizontal goniometer Tube: Cu Wavelength: 1.541 ⁇ (K ⁇ 1)
  • Scan mode CONTINUOUS Scan speed: 1.0000deg/min
  • Step width 0.0500deg
  • Incidence slit 1.0mm Longitudinal limit slit: 10mm
  • Light receiving slit 1 Open Light receiving slit 2: Open Sample holder: ASC-6 sample holder (product number 2455E442)
  • Material Aluminum Dimensions: ⁇ 23mm x 2.0mm Holder height adjustment jig: Transparent disc-shaped plate (homemade)
  • Material Polymethyl acrylate Dimensions: ⁇ 23mm x 0.8mm
  • K Crystallite size (nm)
  • X-ray wavelength (nm)
  • B FWHM (rad)
  • Bragg angle (rad)
  • K is 0.89
  • B is the FWHM value obtained by measurement
  • the value of ⁇ is 0.154
  • the value of ⁇ is the actual measurement of the maximum intensity derived from the 101 plane for anatase and the 110 plane for rutile. value.
  • CSF Canadian standard freeness
  • the thickness of the paper base material was measured in accordance with JIS P 8118:2014.
  • the thicknesses of the barrier layer, heat seal layer, resin layer, etc. were calculated from the SEM image as described below, and were subtracted from the values measured in accordance with JIS P 8118:2014.
  • the length-weighted average fiber length, fiber width, and fine fiber content of pulp fibers constituting the paper base material were measured by the following methods.
  • the printing media of Examples and Comparative Examples were cut into 4 cm square pieces, about 50 times the mass of ion-exchanged water was added thereto, and then immersed in ion-exchanged water for 24 hours. After soaking for 24 hours, the pulp was disintegrated into fibers using a standard disintegrator (manufactured by Kumagai Riki Kogyo Co., Ltd.) until there were no undisintegrated fibers. If the resin layer, sealant layer, barrier layer, etc.
  • length-weighted average fiber length (ISO),""fine fiber content,” and "fiber width” were measured using a fiber optic (with 3000 ml, manufactured by Valmet).
  • ISO length-weighted average fiber length
  • amount of fine fibers is the number ratio of fine fibers having a fiber width of 75 ⁇ m or less and a length of 0.08 mm or more and 0.20 mm or less in the disintegrated pulp fibers.
  • Fiber width is a length-weighted average fiber width calculated by selecting fibers with a width of 10 ⁇ m or more and 75 ⁇ m or less.
  • the mass of the test piece may be changed as appropriate, and if the test piece remains undissolved, the ratio of nitric acid and hydrofluoric acid, treatment temperature, treatment time, etc. may be changed as appropriate. After dissolving the test piece, the volume was accurately adjusted using ultrapure water.
  • ICP device ICP-OEC device (manufactured by Rigaku Co., Ltd., CIROS1-20) Measurement condition: ⁇ Carrier gas: Argon gas ⁇ Argon gas flow rate 0.9L/min ⁇ Plasma gas flow rate 14L/min ⁇ Plasma output 1400W ⁇ Pump rotation speed: 2 ⁇ Measurement wavelength Ti: 334.941nm (2) Creating a calibration curve Accurately measure a general-purpose mixed standard solution (manufactured by SPEX, XSTC-622B) to the following concentration, and test it under the above measurement conditions, which corresponds to the emission wavelength of titanium atoms.
  • a general-purpose mixed standard solution manufactured by SPEX, XSTC-622B
  • Titanium oxide content was calculated using the following formula. Note that the molecular weight of titanium oxide divided by the atomic weight of titanium is approximately 1.669.
  • the thickness of the sealant layer was measured from image data obtained from a scanning electron microscope.
  • the sample was embedded in a photocurable resin (manufactured by Toagosei Co., Ltd., D-800), and the cross section of the printing paper was sectioned using an ultramicrotome. A diamond knife was used for cutting, and cutting was performed at room temperature. Gold was deposited to a thickness of about 20 nm on the cut cross section, and the sample was subjected to measurement using a scanning electron microscope.
  • Measuring device/conditions Measuring device S-3600 (manufactured by Hitachi High-Tech Corporation) Measurement conditions: 2000x magnification
  • the type of scanning microscope is not limited to the above, a type of device with a scale bar displayed was used. When the sealant layer was thin, an appropriate magnification was selected to acquire image data.
  • Measurement method Image data was acquired using a scanning electron microscope at a magnification of 2000 times. After printing the obtained image data on printing paper, measure the thickness of the target sealant layer (the length of the boundary from the boundary with other layers) with a ruler, and compare it with the scale bar to determine the actual sealant layer ( The thickness of the coated layer or laminate layer was measured.
  • Image data of 5 randomly selected locations were acquired from one measurement sample, and from the image data of 1 location, the thickness of the location where the sealant layer was the thickest and the location where the sealant layer was the thinnest was measured, and a total of 10 locations were measured. The average was taken as the thickness of the sealant layer. Note that the observation magnification may be changed depending on the thickness of the sealant layer to be observed. Note that when the paper base material further has a resin layer on the opposite side to the side on which the sealant layer is provided, the thickness of the resin layer can be measured by the same method. Further, the thickness of the barrier layer can also be measured in the same manner.
  • the Raman spectrum was measured by the following method. In this example, the measurement of the Raman spectrum was performed on a printed matter obtained with the sharpness of one printing point, which will be described later. ⁇ Measurement conditions>
  • the measurement conditions for Raman spectra are as follows. However, if the laser used for measurement causes damage to the printed matter, the fluorescence is strong, or the peak is weak, etc., please adjust the laser output, irradiation time, etc. as appropriate. measurement conditions can be changed. However, the Raman intensities of the printed area and non-printed area are measured under the same conditions.
  • Measurement was performed using the following method. (1) Calibration of the Raman shift position was performed using a standard sample (single crystal silicon, manufactured by Renishaw) (520.5 cm ⁇ 1 of single crystal silicon). (2) A sheet-shaped sample was placed on a sample stage. Holders were installed as necessary to keep the sheet flat. (3) Observation was performed with the device focused (the simulated laser was set to have the smallest focus). When measuring the printed area, the blackest part that could be visually confirmed was placed in the center of the guide displayed during measurement. When measuring the non-printing area, it was measured at a distance of 300 ⁇ m or more from the printing area.
  • the Raman intensity count of the printed area is within a range of 10,000 or less. Therefore, the measurement conditions were appropriately changed so that the Raman intensity count of the printed area was within 10,000. In addition, measurements were performed 10 times under the following measurement conditions, and values that deviated by more than the average value ⁇ 2 SD (standard deviation) were excluded, and the values were averaged again to obtain the average value of the Raman intensity.
  • the Raman intensity ratio was evaluated based on the following criteria. A: Raman intensity ratio is 0.3 or less B: Raman intensity ratio is more than 0.3 and 0.7 or less C: Raman intensity ratio is more than 0.7
  • a depth composite image of the vicinity of the printed area to be evaluated was obtained using a digital microscope (manufacturer name: Keyence Corporation, model number: VHX-8000).
  • a depth composite image is an image obtained by acquiring a plurality of images by changing the focal length, extracting in-focus portions from each image, and constructing a single image. Depth composite images were acquired using the live depth composite function installed in a digital microscope. Thereafter, the brightness extraction mode of the automatic area measurement function was used to measure the area of the area darker than the threshold value in the printed area.
  • the brightness extraction mode is a mode that hierarchizes the brightness level of an image from -255 to 255 and extracts an area above or below an arbitrary threshold value.
  • Print uniformity evaluation 100 squares were printed, and printing uniformity was evaluated according to the following criteria based on the number of squares in which a visually observable shading difference (print non-uniformity) existed.
  • the number of squares with a difference is 5 or more and less than 10
  • the number of squares with a difference in shade is 10 or more per 100 squares
  • Oxygen permeation of the ultraviolet laser printing papers of Examples 2-23 to 2-31 was measured using an oxygen permeability measuring device (OX-TRAN2/22, manufactured by MOCON) under conditions of a temperature of 23°C and a relative humidity of 85%. The degree was measured. Specifically, the oxygen permeability of the laminated sheet was measured at a temperature of 23° C. and a relative humidity of 85% in accordance with JIS K7126-2:2006. The lower the oxygen permeability value, the better the oxygen barrier property. Oxygen barrier properties were evaluated using the following evaluation criteria.
  • Oxygen barrier evaluation criteria A: Oxygen permeability is 3.0 mL/m 2 ⁇ day ⁇ atm or less B: Oxygen permeability exceeds 3.0 mL/m 2 ⁇ day ⁇ atm and is below 5.0 mL/m 2 ⁇ day ⁇ atm C: Oxygen Permeability exceeds 5.0 mL/m 2 ⁇ day ⁇ atm and is below 15 mL/m 2 ⁇ day ⁇ atm D: Oxygen permeability exceeds 15 mL/m 2 ⁇ day ⁇ atm
  • Reduction rate of water vapor permeability (Water vapor permeability after ultraviolet laser irradiation (g/m 2 ⁇ day) - Water vapor permeability before ultraviolet laser irradiation (g/m 2 ⁇ day)) / Water vapor permeation before ultraviolet laser irradiation degree (g/ m2 ⁇ day) ⁇ 100 Similarly, the rate of decrease in oxygen permeability is calculated as follows.
  • Reduction rate of oxygen permeability (oxygen permeability after ultraviolet laser irradiation (mL/m 2 ⁇ day ⁇ atm) - oxygen permeability before ultraviolet laser irradiation (mL/m 2 ⁇ day ⁇ atm)) / ultraviolet laser irradiation Previous oxygen permeability (mL/ m2 ⁇ day ⁇ atm) ⁇ 100
  • the heat-sealed test piece was cut to a width of 15 mm, and was subjected to T-peeling at a tensile speed of 300 mm/min using a tensile testing machine, and the maximum load recorded was taken as the heat-sealing peel strength.
  • Heat seal peel strength was evaluated using the following evaluation criteria.
  • Heat seal peel strength is 10 N/15 mm or more
  • B Heat seal peel strength is 6.0 N/15 m or more and less than 10 N/15 mm
  • C Heat seal peel strength is 3.0 N/15 mm or more and less than 6.0 N/15 mm
  • D Heat Seal peel strength is less than 3.0N/15mm ⁇ Laser irradiation>
  • the ultraviolet laser printing paper obtained in Examples 2-1 to 2-31, Comparative Examples 2-1 to 2-3, and Reference Example 2-1 was exposed to an ultraviolet laser irradiation machine (manufacturer name: Keyence Corporation, model number: MD-U1020C) was used to print a 10 cm square on the sample surface (printing layer side) under the conditions described below.
  • Example 1-6 in which titanium oxide having a relatively large crystallite size of 55.3 nm was used, a decrease in printing uniformity was observed, which was considered to be due to a decrease in dispersibility.
  • Example 1-8 in which the diffraction angle was 27.74° and titanium oxide with relatively low crystallinity was used, a slight decrease in print clarity from point to point was observed.
  • Example 3 As shown in Table 3, by directly printing with an ultraviolet laser on ultraviolet laser printing paper that contains more than a certain amount of titanium oxide and the crystallite size of titanium oxide is more than a certain value, each point is clearly printed. Printed matter with excellent properties was obtained. Furthermore, it had heat sealability and excellent water vapor barrier properties. Furthermore, the ultraviolet laser printing papers of Examples 2-23 to 2-31 on which barrier layers were formed had excellent oxygen barrier properties. Further, deterioration in barrier properties and heat sealability due to printing with an ultraviolet laser was suppressed. In Example 2-6, in which titanium oxide having a relatively large crystallite size of 55.3 nm was used, a decrease in printing uniformity was observed, which was considered to be due to a decrease in dispersibility.
  • Example 2-8 in which the diffraction angle was 27.74° and titanium oxide with relatively low crystallinity was used, a slight decrease in print clarity from point to point was observed. Furthermore, in the printing paper of Example 2-14 in which the length-weighted average fiber length of the constituent pulp was 2.18 mm, a decrease in print clarity per point was observed, which was thought to be due to an increase in the voids between the fibers. It was done. On the other hand, with the printing papers of Comparative Examples 2-1 and 2-2 in which titanium oxide having a crystalline size of less than 30 nm was used, printed matter was obtained with poor print clarity on a point-by-point basis.
  • titanium oxide changes color by irradiation with ultraviolet laser, so that it is possible to provide printed matter with excellent visibility and excellent print clarity for each point.
  • the ultraviolet laser printed paper and printed matter of the present invention are suitably applied to processed products such as packages (preferably food containers), labels, and adhesive tapes on which variable information such as dates and barcodes are printed.
  • the method for producing printed matter of the present invention is suitably applied to printing variable information on packages, labels, adhesive tapes, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Paper (AREA)

Abstract

The present invention provides ultraviolet laser printing paper with which it is possible, when the paper is irradiated with an ultraviolet laser, to obtain printed spots having excellent print clarity at each point. The present invention also provides a printed object obtained by irradiating the ultraviolet laser printing paper with an ultraviolet laser and changing the color of an irradiated region, and a production method for the printed object. Furthermore, the present invention provides a processed article obtained by using the ultraviolet laser printing paper or the printed object. This ultraviolet laser printing paper has a paper material into which titanium dioxide has been added, the titanium dioxide content in the paper material layer being at least 0.5 mass%, and the titanium dioxide crystallite size being at least 30 nm.

Description

紫外線レーザー印刷用紙、印刷物、加工品、および印刷物の製造方法Ultraviolet laser printing paper, printed matter, processed products, and method for producing printed matter
 本発明は、紫外線レーザー印刷用紙、印刷物、加工品、および印刷物の製造方法に関する。 The present invention relates to ultraviolet laser printing paper, printed matter, processed products, and a method for producing printed matter.
 従来、製造日や出荷日などの日付や、バーコードなどの可変情報を、収容物が収容される容器等の包装体に表示するために、ラベル表示またはインクジェット印刷が行われている。
 また、レーザー光照射により印字する方法も提案されており、例えば、特許文献1には、レーザー光照射により、鮮明な印字が高速で行え、かつ、印字された部分が各種の耐性に優れたレーザー印字用積層体およびその印字体を提供することを目的として、アルミ蒸着紙のアルミ蒸着面上に、白インキ、黒インキおよびオーバープリントニス(OPニス)を塗布して製造したレーザー印刷用積層体が開示されている。
 さらに、特許文献2には、発熱が比較的少なく、包装材のレーザーマーキングに好ましく適用可能な技術を提供することを目的として、平均粒子径が150nm以下の第一の酸化チタン粒子を含み、紫外線レーザーの照射により色変化するレーザーマーキング層を形成するために用いられるインク組成物が記載されている。
Conventionally, labels or inkjet printing have been used to display dates, such as manufacturing dates and shipping dates, and variable information, such as bar codes, on packages such as containers in which contents are housed.
In addition, a method of printing by laser light irradiation has also been proposed. For example, Patent Document 1 describes a method that allows clear printing to be performed at high speed by laser light irradiation, and that the printed portion has excellent resistance to various laser beams. A laminate for laser printing manufactured by applying white ink, black ink, and overprint varnish (OP varnish) on the aluminum-deposited surface of aluminum-deposited paper for the purpose of providing a laminate for printing and its printed body. is disclosed.
Further, Patent Document 2 discloses that the invention includes first titanium oxide particles with an average particle diameter of 150 nm or less, and that generates relatively little heat and is preferably applicable to laser marking of packaging materials. An ink composition used to form a laser marking layer that changes color upon laser irradiation is described.
特開平9-123607号公報Japanese Patent Application Publication No. 9-123607 特開2020-75943号公報JP2020-75943A
 包装体、ラベル、粘着テープなどの表面への印刷手段として、サーマルプリンタやインクジェットプリンタを用いて包装体表面に直接インキを載せる方法があり、現在多用されている。しかし、サーマルプリンタのインクリボンやインクジェットプリンタのインキ等の消耗品は高価であり、多くの変動情報を印刷するにはランニングコストが高額になるという問題がある。また、これら消耗品の交換を怠ると印刷漏れが発生する場合もある。さらに、UV硬化型インキを用いたオフセット印刷による包装体への変動情報の直接印刷も行われているが、包装体表面の汚れや包装体の厚さむら等によって、印刷カスレや文字欠け等が発生する場合がある。
 また、特許文献1に記載の方法では、高速化が可能であるものの、COレーザー光の照射によりレーザー光を吸収しやすい上層を除去して、下層を露出し、上層と下層の色の違いから視認可能な文字等を形成する技術であるため、上層はレーザー光を吸収しやすい材料に限定され、逆に下層はレーザー光を吸収しにくく、かつ、上層と色のコントラストの取れる材料に限定される。すなわち、レーザー光を吸収しやすいカーボンブラック系の材料(黒色)が上層となり、酸化チタン系の材料(白色)が下層となり、レーザー光の照射により形成される文字等は、黒地に白い文字となり、視認性に劣る。また、上層を除去する際に、上層のインクが粉塵化して、作業環境の汚染を招くという問題があった。
 さらに、特許文献2に記載のインク組成物を用いて作製した塗工層に対して、紫外線レーザーによる印刷を行うと、印字スポットの一点ごとの印字鮮明性に劣る場合があった。
BACKGROUND ART As a means of printing on the surface of a package, a label, an adhesive tape, etc., there is a method of directly applying ink to the surface of the package using a thermal printer or an inkjet printer, which is currently widely used. However, consumables such as ink ribbons for thermal printers and ink for inkjet printers are expensive, and there is a problem in that printing a lot of variable information requires high running costs. Furthermore, if these consumables are not replaced, printing errors may occur. Furthermore, offset printing using UV-curable ink is used to directly print variation information on packages, but dirt on the surface of the package or uneven thickness of the package can cause print fades, missing characters, etc. This may occur.
In addition, although the method described in Patent Document 1 can increase the speed, the upper layer that easily absorbs laser light is removed by irradiation with CO 2 laser light to expose the lower layer, and the difference in color between the upper and lower layers is eliminated. Since this is a technology for forming characters, etc. that are visible from above, the upper layer is limited to materials that easily absorb laser light, while the lower layer is limited to materials that are difficult to absorb laser light and have a color contrast with the upper layer. be done. In other words, the upper layer is a carbon black material (black) that easily absorbs laser light, the lower layer is a titanium oxide material (white), and the characters formed by laser light irradiation are white on a black background. Poor visibility. Further, when removing the upper layer, there is a problem in that the ink in the upper layer turns into dust, causing contamination of the working environment.
Furthermore, when a coating layer prepared using the ink composition described in Patent Document 2 is printed with an ultraviolet laser, the print clarity of each print spot may be poor.
 本発明は、紫外線レーザー照射された際に、一点ごとの印字鮮明性に優れる印字スポットが得られる紫外線レーザー印刷用紙を提供することを目的とする。また、本発明は、前記紫外線レーザー印刷用紙に紫外線レーザーを照射して、照射領域を変色させた印刷物およびその製造方法を提供することを目的とする。さらに、本発明は、前記紫外線レーザー印刷用紙または印刷物を用いてなる加工品を提供することを目的とする。 An object of the present invention is to provide an ultraviolet laser printing paper that, when irradiated with an ultraviolet laser, can provide printing spots with excellent print clarity on a point-by-point basis. Another object of the present invention is to provide a printed matter in which the ultraviolet laser printing paper is irradiated with an ultraviolet laser to change color in the irradiated area, and a method for manufacturing the same. A further object of the present invention is to provide a processed product using the ultraviolet laser printed paper or printed matter.
 本発明者等は、紙基材上に酸化チタンが内添されてなる紫外線レーザー印刷用紙において、酸化チタンの含有量を特定量以上とし、酸化チタンの結晶子サイズを特定の値以上とすることにより、上記の課題が解決されることを見出し、本発明を完成するに至った。
 本発明は以下の<1>~<12>に関する。
 <1> 酸化チタンが内添されてなる紙基材を有する紫外線レーザー印刷用紙であって、前記紙基材層中の酸化チタンの含有量が0.5質量%以上であり、前記酸化チタンの結晶子サイズが、30nm以上である、紫外線レーザー印刷用紙。
 <2> 前記酸化チタンの結晶子サイズが53nm以下である、<1>に記載の紫外線レーザー印刷用紙。
 <3> 前記酸化チタンがルチル型酸化チタンであり、前記酸化チタンの回折角度が27.60°以下である、<1>または<2>に記載の紫外線レーザー印刷用紙。
 <4> 前記紙基材を構成するパルプの長さ加重平均繊維長が0.5mm以上3.0mm以下である、<1>~<3>のいずれか1つに記載の紫外線レーザー印刷用紙。
 <5> 前記紙基材を構成するパルプ繊維中、繊維長が0.2mm以下の微細繊維の本数割合が4%以上40%以下である、<1>~<4>のいずれか1つに記載の紫外線レーザー印刷用紙。
 <6> 前記紙基材中の酸化チタンの含有量が50質量%以下である、<1>~<5>のいずれか1つに記載の紫外線レーザー印刷用紙。
 <7> 前記紙基材の少なくとも一方の面にシーラント層を有する、<1>~<6>のいずれか1つに記載の紫外線レーザー印刷用紙。
 <8> さらに、バリア層を有する、<7>に記載の紫外線レーザー印刷用紙。
 <9> <1>~<8>のいずれか1つに記載の紫外線レーザー印刷用紙から得られた印刷物であって、前記印刷物が、少なくとも一部に、変色された酸化チタンを含有する印刷領域を有し、非印刷領域における酸化チタンに由来するラマン強度に対する、印刷領域における酸化チタンに由来するラマン強度の比が0.70以下である、印刷物。
 <10> <1>~<8>のいずれか1つに記載の紫外線レーザー印刷用紙、または<9>に記載の印刷物を用いてなる、加工品。
 <11> <1>~<8>のいずれか1つに記載の紫外線レーザー印刷用紙に紫外線レーザーを照射して、照射領域を変色させることにより印刷する工程を有する、印刷物の製造方法。
 <12> 前記印刷する工程が、非印刷領域における酸化チタンに由来するラマン強度に対する、印刷領域における酸化チタンに由来するラマン強度との比が0.70以下となるように紫外線レーザーを照射する工程である、<11>に記載の印刷物の製造方法。
The present inventors have proposed that in ultraviolet laser printing paper in which titanium oxide is internally added to a paper base material, the content of titanium oxide is set to be a specified amount or more, and the crystallite size of titanium oxide is set to be set to a specified value or more. The inventors have found that the above-mentioned problems can be solved, and have completed the present invention.
The present invention relates to the following <1> to <12>.
<1> An ultraviolet laser printing paper having a paper base material to which titanium oxide is internally added, wherein the content of titanium oxide in the paper base layer is 0.5% by mass or more, and the content of titanium oxide is 0.5% by mass or more. Ultraviolet laser printing paper having a crystallite size of 30 nm or more.
<2> The ultraviolet laser printing paper according to <1>, wherein the titanium oxide has a crystallite size of 53 nm or less.
<3> The ultraviolet laser printing paper according to <1> or <2>, wherein the titanium oxide is rutile titanium oxide, and the titanium oxide has a diffraction angle of 27.60° or less.
<4> The ultraviolet laser printing paper according to any one of <1> to <3>, wherein the length-weighted average fiber length of the pulp constituting the paper base is 0.5 mm or more and 3.0 mm or less.
<5> Any one of <1> to <4>, wherein the number ratio of fine fibers with a fiber length of 0.2 mm or less in the pulp fibers constituting the paper base material is 4% or more and 40% or less. Ultraviolet laser printing paper as described.
<6> The ultraviolet laser printing paper according to any one of <1> to <5>, wherein the content of titanium oxide in the paper base material is 50% by mass or less.
<7> The ultraviolet laser printing paper according to any one of <1> to <6>, which has a sealant layer on at least one surface of the paper base material.
<8> The ultraviolet laser printing paper according to <7>, further comprising a barrier layer.
<9> A printed matter obtained from the ultraviolet laser printing paper according to any one of <1> to <8>, wherein the printed matter contains at least a portion of a printed area containing discolored titanium oxide. and the ratio of the Raman intensity derived from titanium oxide in the printed area to the Raman intensity derived from titanium oxide in the non-printed area is 0.70 or less.
<10> A processed product using the ultraviolet laser printing paper according to any one of <1> to <8> or the printed matter according to <9>.
<11> A method for producing printed matter, comprising the step of printing by irradiating the ultraviolet laser printing paper according to any one of <1> to <8> with an ultraviolet laser to change color in the irradiated area.
<12> The printing step is a step of irradiating an ultraviolet laser such that the ratio of the Raman intensity originating from titanium oxide in the printing area to the Raman intensity originating from titanium oxide in the non-printing area is 0.70 or less. The method for producing a printed matter according to <11>.
 本発明によれば、紫外線レーザー照射された際に、一点ごとの印字鮮明性に優れる印字スポットが得られる紫外線レーザー印刷用紙が提供される。また、本発明によれば、前記紫外線レーザー印刷用紙に紫外線レーザーを照射して、照射領域を変色させた印刷物およびその製造方法が提供される。さらに、本発明によれば、前記紫外線レーザー印刷用紙または印刷物を用いてなる加工品が提供される。 According to the present invention, there is provided an ultraviolet laser printing paper that, when irradiated with an ultraviolet laser, provides printing spots with excellent print clarity on a point-by-point basis. Further, according to the present invention, there is provided a printed matter in which the ultraviolet laser printing paper is irradiated with an ultraviolet laser to change color in the irradiated area, and a method for manufacturing the same. Furthermore, according to the present invention, there is provided a processed product using the ultraviolet laser printed paper or printed matter.
[紫外線レーザー印刷用紙]
 本発明の紫外線レーザー印刷用紙(以下、単に「印刷用紙」ともいう)は、酸化チタンが内添されてなる紙基材を有し、前記紙基材中の酸化チタンの含有量が0.5質量%以上であり、前記酸化チタンの結晶子サイズが、30nm以上である。
 本発明によれば、紫外線レーザー照射された際に、一点ごとの印字鮮明性に優れる印字スポットが得られる紫外線レーザー印刷用紙が提供される。
 上述した効果が得られる詳細な理由は不明であるが、一部は以下のように考えられる。
 印刷用紙の紙基材に酸化チタンが内添されてなることにより、紫外線レーザーによるレーザー照射により、紙基材中の酸化チタンが変色し、印刷することが可能である。前記酸化チタンの変色は、紙基材が含有する酸化チタンのイオン価数が4価から3価に変化し、酸素欠陥が生じることで、白色から黒色へと変化し、これにより、視認可能となっていると考えられる。酸化チタンのイオン価数は、酸化チタンのバンドギャップに相当する光エネルギーを照射する際に変化するものと考えられる。酸化チタンのバンドギャップは結晶系によって異なるが、一般に3.0~3.2eV程度であり、これに相当する光の波長は420nm以下である。そのため、420nmを超える波長のレーザー光(例えば532nm、1064nm、10600nm)を用いても本発明のような酸化チタンのイオン価数変化に起因する印刷を施すことは困難である。この際、紙基材中の酸化チタンの含有量を0.5質量%以上にすることで、視認性に優れ、一点ごとの印字鮮明性に優れた印刷物が得られる。
 また、酸化チタンの結晶子サイズが30nm以上であると、結晶欠陥が少なく、励起電子と正孔の再結合の発生が抑制され、酸化チタンが還元されやすく、変色しやすいため、一点ごとの印字鮮明性に優れた印字スポットが得られたと考えられる。
 なお、本実施形態において、印刷可能領域とは、印刷用紙が含有する酸化チタンの変色、好ましくは紫外線レーザーの照射により、紫外線レーザーにより照射された部分の酸化チタンが白色から黒色に変色することで印刷が可能である領域(部分)を意味し、印刷領域とは、印刷可能領域の中で、実際に酸化チタンが変色している箇所、好ましくは紫外線レーザーの照射により酸化チタンが変色し、視認可能となっている箇所、すなわち、紫外線レーザーの被照射部分を意味する。また、非印刷領域とは、印刷可能領域の中で、酸化チタンが変色していない領域(部分)、例えば、紫外線レーザーが照射されていない領域(部分)を意味する。
 以下、本発明についてさらに詳細に説明する。
[Ultraviolet laser printing paper]
The ultraviolet laser printing paper (hereinafter also simply referred to as "printing paper") of the present invention has a paper base material to which titanium oxide is internally added, and the content of titanium oxide in the paper base material is 0.5. % by mass or more, and the crystallite size of the titanium oxide is 30 nm or more.
According to the present invention, there is provided an ultraviolet laser printing paper that, when irradiated with an ultraviolet laser, provides printing spots with excellent print clarity for each point.
Although the detailed reason for the above-mentioned effects is unknown, some of them are thought to be as follows.
Since titanium oxide is internally added to the paper base material of printing paper, the titanium oxide in the paper base material changes color when irradiated with ultraviolet laser, making it possible to print. The discoloration of the titanium oxide is caused by the ionic valence of the titanium oxide contained in the paper base material changing from 4 to 3 and oxygen defects occurring, causing the color to change from white to black, making it visible. It is thought that it has become. It is thought that the ionic valence of titanium oxide changes when irradiated with light energy corresponding to the band gap of titanium oxide. The band gap of titanium oxide varies depending on the crystal system, but is generally about 3.0 to 3.2 eV, and the corresponding wavelength of light is 420 nm or less. Therefore, even if a laser beam with a wavelength exceeding 420 nm (for example, 532 nm, 1064 nm, 10600 nm) is used, it is difficult to perform printing due to a change in the ion valence of titanium oxide as in the present invention. At this time, by setting the content of titanium oxide in the paper base material to 0.5% by mass or more, printed matter with excellent visibility and excellent printing clarity for each point can be obtained.
In addition, when the crystallite size of titanium oxide is 30 nm or more, there are few crystal defects, the occurrence of recombination of excited electrons and holes is suppressed, and titanium oxide is easily reduced and discolored, so each point can be printed. It is thought that a printed spot with excellent clarity was obtained.
In this embodiment, the printable area refers to the area where the titanium oxide contained in the printing paper changes color, preferably when the titanium oxide in the area irradiated with the ultraviolet laser changes color from white to black due to irradiation with an ultraviolet laser. The printing area refers to the area (portion) where printing is possible, and the printing area refers to the area where the titanium oxide has actually changed color within the printable area, preferably where the titanium oxide has changed color due to irradiation with ultraviolet laser and is visible. It means the part where it is possible, that is, the part that is irradiated with the ultraviolet laser. Furthermore, the non-printable area refers to an area (portion) in which titanium oxide has not changed color, for example, an area (portion) that has not been irradiated with an ultraviolet laser, in the printable area.
The present invention will be explained in more detail below.
 紫外線レーザー印刷用紙は、酸化チタンが内添されてなる紙基材を有する。本実施形態の印刷用紙は、酸化チタンを含有する紙基材自体であってもよく、該紙基材上に印刷用紙の耐水性の向上や、保護層としての機能を目的として、印刷面(紫外線レーザーによる印刷を行う面)に樹脂層を設けてもよい。
 また、シーラント層(ヒートシール層)を有していてもよい。シーラント層を有することにより、ヒートシール性を有する印刷用紙とすることができる。
 さらに、紙基材は、主として酸素ガスの透過を阻止することを目的として、バリア層を有していてもよい。バリア層は、紙基材の印刷面とは反対面に有することが好ましく、印刷面とは反対面にシーラント層を有する場合には、シーラント層と紙基材との間にバリア層を有することが好ましい。
 なお、本実施形態の印刷用紙は、例えば、複数のシーラント層を有するなど、上述した層を1層有していてもよく、複数の層を有していてもよい。また、上述した層以外の層を有していてもよく、例えば、粘着層、接着層等を有していてもよい。
Ultraviolet laser printing paper has a paper base material to which titanium oxide is added. The printing paper of this embodiment may be a paper base itself containing titanium oxide, and the printing surface ( A resin layer may be provided on the surface to be printed with an ultraviolet laser.
Moreover, it may have a sealant layer (heat seal layer). By having the sealant layer, the printing paper can have heat-sealing properties.
Furthermore, the paper base material may have a barrier layer mainly for the purpose of blocking the permeation of oxygen gas. The barrier layer is preferably provided on the surface opposite to the printed surface of the paper base material, and when the sealant layer is provided on the surface opposite to the printed surface, the barrier layer is provided between the sealant layer and the paper base material. is preferred.
In addition, the printing paper of this embodiment may have one layer mentioned above, for example, may have a plurality of sealant layers, or may have a plurality of layers. Moreover, it may have a layer other than the layer mentioned above, for example, it may have an adhesive layer, an adhesive layer, etc.
〔紙基材〕
 本実施形態の紫外線レーザー印刷用紙は、酸化チタンが内添されてなる紙基材を有する。
 紙基材は、酸化チタンが内添されてなり、前記紙基材中の酸化チタンの含有量が0.5質量%以上である。
 紙基材中の酸化チタンの含有量は、十分な印刷濃度を得る観点から0.5質量%以上であり、好ましくは0.8質量%以上、より好ましくは3.0質量%以上、さらに好ましくは8.0質量%以上であり、そして、一点ごとの印字鮮明性に優れる印字スポットを得る観点、印刷濃度が頭打ちとなり、必要量以上の酸化チタンを含有させることによるコストアップを抑制する観点、および紫外線レーザー照射時(印刷時)の発煙量を抑制する観点から、好ましくは50質量%以下、より好ましくは45質量%以下、さらに好ましくは35質量%以下、よりさらに好ましくは25質量%以下、特に好ましくは15質量%以下である。
 紙基材中の酸化チタンの含有量が多過ぎると、紫外線レーザー照射時に酸化チタンの飛散によると考えられる発煙が発生する傾向がある。また、発煙が生じる結果、変色した酸化チタンが印刷用紙から脱離するという現象が生じるため、一点ごとの印字鮮明性も劣化する傾向がある。
 なお、印刷用紙の少なくとも印刷可能領域に該当する紙基材が酸化チタンを含有していればよく、印刷を行わない領域において、紙基材中の酸化チタンの含有量が上記下限未満である領域が存在していてもよい。製造の簡易性の観点から、紙基材の全領域が酸化チタンを上記の下限値以上含有することが好ましい。
[Paper base material]
The ultraviolet laser printing paper of this embodiment has a paper base material to which titanium oxide is internally added.
The paper base material has titanium oxide added thereto, and the content of titanium oxide in the paper base material is 0.5% by mass or more.
The content of titanium oxide in the paper base material is 0.5% by mass or more, preferably 0.8% by mass or more, more preferably 3.0% by mass or more, even more preferably is 8.0% by mass or more, and from the viewpoint of obtaining a printing spot with excellent printing clarity for each point, from the viewpoint of suppressing the increase in cost due to the printing density reaching a plateau and containing more than the necessary amount of titanium oxide, And from the viewpoint of suppressing the amount of smoke generated during ultraviolet laser irradiation (printing), preferably 50% by mass or less, more preferably 45% by mass or less, still more preferably 35% by mass or less, even more preferably 25% by mass or less, Particularly preferably, it is 15% by mass or less.
If the content of titanium oxide in the paper base material is too high, there is a tendency for smoke to be generated during ultraviolet laser irradiation, which is thought to be due to scattering of titanium oxide. Further, as a result of the generation of smoke, a phenomenon occurs in which discolored titanium oxide is detached from the printing paper, so that the print clarity of each point also tends to deteriorate.
In addition, it is sufficient that the paper base material corresponding to at least the printable area of the printing paper contains titanium oxide, and the area where the content of titanium oxide in the paper base material is less than the above lower limit in the area where printing is not performed. may exist. From the viewpoint of ease of production, it is preferable that the entire area of the paper base material contains titanium oxide at or above the above lower limit.
 紙基材が含有する各成分について詳述する。
(酸化チタン)
 紙基材が含有する酸化チタンは、組成式TiOで表され、二酸化チタン、またはチタニアとも呼ばれる。
 本実施形態において、紙基材中の酸化チタンの結晶子サイズは、30nm以上である。紙基材中の酸化チタンの結晶子サイズが30nm未満であると、結晶欠陥が多く、紫外線レーザー照射によって励起した励起電子と正孔の再結合が発生しやすく、結果として、酸化チタンが還元されにくく、一点ごとの印字鮮明性に劣る。酸化チタンの結晶子サイズは、好ましくは35nm以上、より好ましくは40nm以上である。
 また、酸化チタンの結晶子サイズの上限は特に限定されないが、抄紙の際の紙料中での分散安定性の観点から、好ましくは60nm以下、より好ましくは56nm以下、さらに好ましくは53nm以下である。酸化チタンの結晶子サイズの上限が上記範囲内であると、得られた紙基材中でも酸化チタンの分散性が良好であり、印字均一性に優れるので好ましい。
 酸化チタンの結晶子サイズは、実施例に記載の方法により測定される。
 なお、結晶子サイズは、シェラー式により求められ、ブラッグ角としては、アナターゼ型の酸化チタンの場合には101面、ルチル型の酸化チタンの場合には110面に由来する最大強度の実測値を使用する。
Each component contained in the paper base material will be explained in detail.
(Titanium oxide)
Titanium oxide contained in the paper base material is represented by the composition formula TiO 2 and is also called titanium dioxide or titania.
In this embodiment, the crystallite size of titanium oxide in the paper base material is 30 nm or more. When the crystallite size of titanium oxide in the paper base material is less than 30 nm, there are many crystal defects, and the excited electrons and holes excited by ultraviolet laser irradiation are likely to recombine, and as a result, the titanium oxide is reduced. It is difficult to print, and the print clarity of each point is poor. The crystallite size of titanium oxide is preferably 35 nm or more, more preferably 40 nm or more.
Further, the upper limit of the crystallite size of titanium oxide is not particularly limited, but from the viewpoint of dispersion stability in paper stock during paper making, it is preferably 60 nm or less, more preferably 56 nm or less, and even more preferably 53 nm or less. . It is preferable that the upper limit of the crystallite size of titanium oxide is within the above range because the dispersibility of titanium oxide is good even in the obtained paper base material and the printing uniformity is excellent.
The crystallite size of titanium oxide is measured by the method described in Examples.
The crystallite size is determined by the Scherrer equation, and the Bragg angle is the measured value of the maximum strength derived from the 101 plane for anatase titanium oxide and the 110 plane for rutile titanium oxide. use.
 酸化チタンは、いずれも結晶構造でもよく、ルチル型酸化チタン、アナターゼ型酸化チタン、およびブルッカイト型酸化チタンから選択される少なくとも1つであることが好ましく、入手容易性および安定性の観点から、ルチル型酸化チタンおよびアナターゼ型酸化チタンから選択される少なくとも1つであることがより好ましく、ルチル型酸化チタンであることがさらに好ましい。
 酸化チタンの結晶形は、公知の方法で決定することができ、具体的には、ラマンスペクトル、XRDパターンの解析などにより決定することができる。例えば、ラマンスペクトルから同定する場合には、一般的には、ルチル型では、447±10cm-1、609±10cm-1にピークが確認され、アナターゼ型では、395±10cm-1、516±10cm-1、637±10cm-1にピークが確認される。
 酸化チタンは、1種単独で使用してもよく、2種以上を併用してもよい。
Any of the titanium oxides may have a crystalline structure, and is preferably at least one selected from rutile-type titanium oxide, anatase-type titanium oxide, and brookite-type titanium oxide. It is more preferably at least one selected from type titanium oxide and anatase type titanium oxide, and even more preferably rutile type titanium oxide.
The crystal form of titanium oxide can be determined by a known method, and specifically, by Raman spectrum, XRD pattern analysis, etc. For example, when identifying from a Raman spectrum, peaks are generally confirmed at 447±10cm -1 and 609±10cm -1 for the rutile type, and peaks at 395±10cm -1 and 516±10cm for the anatase type. -1 , a peak is confirmed at 637±10 cm -1 .
One type of titanium oxide may be used alone, or two or more types may be used in combination.
 酸化チタンがルチル型酸化チタンであるとき、酸化チタンの回折角度は、一点ごとの印字鮮明性の観点から、27.60°以下であることが好ましい。ルチル型の酸化チタンのブラッグ角は、本来は27.40°であるが、結晶性が低いと、回折角度が高くなる傾向にある。酸化チタンの回折角度が27.60°を超えると、結晶性が低く、変色が抑制されるため、一点ごとの印字鮮明性に劣る傾向にある。
 酸化チタンがルチル型酸化チタンであるとき、酸化チタンの回折角度は、好ましくは27.60°以下、より好ましくは27.55°以下、さらに好ましくは27.50°以下である。
 酸化チタンの回折角度は、ルチル型の場合には、上述したように、110面に由来する最大強度の実測値である。
When the titanium oxide is rutile-type titanium oxide, the diffraction angle of the titanium oxide is preferably 27.60° or less from the viewpoint of print clarity for each point. The Bragg angle of rutile-type titanium oxide is originally 27.40°, but if the crystallinity is low, the diffraction angle tends to become high. When the diffraction angle of titanium oxide exceeds 27.60°, crystallinity is low and discoloration is suppressed, so that print clarity for each point tends to be poor.
When the titanium oxide is rutile titanium oxide, the diffraction angle of the titanium oxide is preferably 27.60° or less, more preferably 27.55° or less, and still more preferably 27.50° or less.
In the case of the rutile type, the diffraction angle of titanium oxide is the actual value of the maximum intensity derived from the 110 plane, as described above.
 酸化チタンの形状は特に限定されず、不定形、球状、棒状、針状等の、いずれの形状であってもよい。
 酸化チタンが不定形または球状である場合、酸化チタンの平均粒子径は特に限定されないが、表面平滑性に優れる印刷用紙を得る観点から、好ましくは0.01μm以上、より好ましくは0.05μm以上、さらに好ましくは0.10μm以上、よりさらに好ましくは0.15μm超、特に好ましくは0.16μm以上であり、そして、好ましくは20.0μm以下、より好ましくは5.0μm以下、さらに好ましくは1.0μm以下、よりさらに好ましくは0.50μm以下、特に好ましくは0.30μm以下である。
The shape of titanium oxide is not particularly limited, and may be any shape such as amorphous, spherical, rod-like, or needle-like.
When the titanium oxide is amorphous or spherical, the average particle diameter of the titanium oxide is not particularly limited, but from the viewpoint of obtaining printing paper with excellent surface smoothness, it is preferably 0.01 μm or more, more preferably 0.05 μm or more, More preferably 0.10 μm or more, even more preferably more than 0.15 μm, particularly preferably 0.16 μm or more, and preferably 20.0 μm or less, more preferably 5.0 μm or less, even more preferably 1.0 μm. Below, it is still more preferably 0.50 μm or less, particularly preferably 0.30 μm or less.
 また、酸化チタンが針状である場合、酸化チタンの長径は、特に限定されないが、表面平滑性に優れる印刷用紙を得る観点から、好ましくは0.1μm以上、より好ましくは0.5μm以上、さらに好ましくは1.5μm以上であり、そして、好ましくは50.0μm以下、より好ましくは30.0μm以下、さらに好ましくは15.0μm以下である。また、短径は、好ましくは0.01μm以上、より好ましくは0.03μm以上、さらに好ましくは0.05μm以上であり、そして、好ましくは3.0μm以下、より好ましくは1.5μm以下、さらに好ましくは1.0μm以下である。また、酸化チタンが針状である場合、アスペクト比(長径/短径)は、好ましくは5以上、より好ましくは10以上、さらに好ましくは15以上であり、そして、好ましくは300以下、より好ましくは100以下、さらに好ましくは30以下である。
 酸化チタンの粒子径、長径および短径は、実施例に記載の方法により測定される。なお、原料として使用した酸化チタンの粒子径、長径、および短径の値を採用してもよく、原料として使用した酸化チタンの粒子径、長径、および短径のカタログ値を採用してもよい。
Further, when the titanium oxide is acicular, the major axis of the titanium oxide is not particularly limited, but from the viewpoint of obtaining printing paper with excellent surface smoothness, it is preferably 0.1 μm or more, more preferably 0.5 μm or more, and It is preferably 1.5 μm or more, and preferably 50.0 μm or less, more preferably 30.0 μm or less, and even more preferably 15.0 μm or less. Further, the short axis is preferably 0.01 μm or more, more preferably 0.03 μm or more, even more preferably 0.05 μm or more, and preferably 3.0 μm or less, more preferably 1.5 μm or less, and even more preferably is 1.0 μm or less. Further, when the titanium oxide is acicular, the aspect ratio (longer axis/breadth axis) is preferably 5 or more, more preferably 10 or more, even more preferably 15 or more, and preferably 300 or less, more preferably It is 100 or less, more preferably 30 or less.
The particle diameter, major axis, and minor axis of titanium oxide are measured by the method described in Examples. Note that the values of the particle diameter, major axis, and minor axis of titanium oxide used as a raw material may be adopted, or the catalog values of the particle diameter, major axis, and minor axis of titanium oxide used as a raw material may be adopted. .
(パルプ)
 本実施形態において、印刷用紙は、酸化チタンが内添されてなる紙基材を有する。
 紙基材を構成する原料パルプとしては、例えば、木材パルプ、非木材パルプ、および脱墨パルプが挙げられる。木材パルプとしては、特に限定されないが、例えば、広葉樹晒クラフトパルプ(LBKP)、広葉樹未晒クラフトパルプ(LUKP)、針葉樹晒クラフトパルプ(NBKP)、針葉樹未晒クラフトパルプ(NUKP)、サルファイトパルプ(SP)、溶解パルプ(DP)、ソーダパルプ(AP)、酸素漂白クラフトパルプ(OKP)等の化学パルプ、セミケミカルパルプ(SCP)、ケミグラウンドウッドパルプ(CGP)等の半化学パルプ、砕木パルプ(GP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)等の機械パルプ等が挙げられる。非木材パルプとしては、特に限定されないが、例えば、コットンリンター、コットンリント等の綿系パルプ、麻、麦わら、竹、バガス等の非木材系パルプが挙げられる。脱墨パルプとしては、特に限定されないが、例えば、古紙を原料とする脱墨パルプが挙げられる。原料パルプは、上記の1種を単独でも2種以上混合して用いてもよい。なお、原料パルプに、ポリアミド繊維、ポリエステル繊維等の有機合成繊維、ポリノジック繊維等の再生繊維、ガラス繊維、セラミック繊維、カーボン繊維等の無機繊維を混用してもよい。
 原料パルプは、入手のしやすさという観点から、木材パルプおよび脱墨パルプが好ましい。また、原料パルプは、木材パルプの中でも、地合いの均一性の観点から、好ましくは化学パルプであり、より好ましくはクラフトパルプであり、さらに好ましくはユーカリ、アカシア等の広葉樹クラフトパルプ、およびマツ、スギ等の針葉樹クラフトパルプから選択される1種以上であり、よりさらに好ましくは広葉樹晒クラフトパルプ(LBKP)および針葉樹晒クラフトパルプ(NBKP)から選択される1種以上であり、特に好ましくはLBKPである。
(pulp)
In this embodiment, the printing paper has a paper base material to which titanium oxide is added.
Examples of the raw material pulp constituting the paper base material include wood pulp, non-wood pulp, and deinked pulp. Wood pulp is not particularly limited, but includes, for example, hardwood bleached kraft pulp (LBKP), hardwood unbleached kraft pulp (LUKP), softwood bleached kraft pulp (NBKP), softwood unbleached kraft pulp (NUKP), and sulfite pulp ( Chemical pulp such as SP), dissolving pulp (DP), soda pulp (AP), oxygen bleached kraft pulp (OKP), semi-chemical pulp such as semi-chemical pulp (SCP), chemical ground wood pulp (CGP), ground wood pulp ( Examples include mechanical pulps such as GP), thermomechanical pulp (TMP), and chemithermomechanical pulp (CTMP). Examples of the non-wood pulp include, but are not particularly limited to, cotton-based pulps such as cotton linters and cotton lint, and non-wood-based pulps such as hemp, wheat straw, bamboo, and bagasse. Deinked pulp is not particularly limited, but includes, for example, deinked pulp made from waste paper. The raw material pulp may be used alone or in combination of two or more of the above. Note that the raw material pulp may be mixed with organic synthetic fibers such as polyamide fibers and polyester fibers, recycled fibers such as polynosic fibers, and inorganic fibers such as glass fibers, ceramic fibers, and carbon fibers.
From the viewpoint of easy availability, the raw material pulp is preferably wood pulp or deinked pulp. In addition, among wood pulps, from the viewpoint of uniformity of texture, the raw material pulp is preferably a chemical pulp, more preferably a kraft pulp, and even more preferably a kraft pulp from a hardwood such as eucalyptus or acacia, or a pine or cedar pulp. It is one or more types selected from softwood kraft pulp such as, etc., more preferably one or more types selected from hardwood bleached kraft pulp (LBKP) and softwood bleached kraft pulp (NBKP), and particularly preferably LBKP. .
 紙基材を構成するパルプの長さ加重平均繊維長は、塗工ムラを抑制し、印字鮮明さを向上させる観点から、好ましくは0.5mm以上、より好ましくは0.65mm以上、さらに好ましくは0.7mm以上であり、そして、好ましくは3.0mm以下であり、より好ましくは2.5mm以下、さらに好ましくは2.0mm以下、よりさらに好ましくは1.5mm以下、特に好ましくは1.0mm以下である。
 紙基材を構成するパルプの長さ加重平均繊維長が3.0mm以下であると、パルプ同士が密に絡まり合うことで、紙基材の空隙が減少し、紫外線レーザー照射の際に、酸化チタンの飛散を抑制することができ、発煙が抑制され、一点ごとの鮮明性に優れた印刷物が得られるので好ましい。また、長さ加重平均繊維長が0.5mm以上であると、紙基材としての強度が向上すると共に、紫外線レーザー照射時に、繊維が紙基材から脱落しにくく、紙粉の発生が抑制され、発煙量が抑制され、一点ごとの印字鮮明性に優れるので好ましい。
 紙基材を構成するパルプの長さ加重平均繊維長は、実施例に記載の方法により測定される。
The length-weighted average fiber length of the pulp constituting the paper base material is preferably 0.5 mm or more, more preferably 0.65 mm or more, and even more preferably 0.7 mm or more, and preferably 3.0 mm or less, more preferably 2.5 mm or less, even more preferably 2.0 mm or less, even more preferably 1.5 mm or less, particularly preferably 1.0 mm or less It is.
If the length-weighted average fiber length of the pulp constituting the paper base material is 3.0 mm or less, the pulps will become tightly entangled with each other, reducing the voids in the paper base material and causing oxidation to occur during ultraviolet laser irradiation. This is preferable because scattering of titanium can be suppressed, smoke generation can be suppressed, and printed matter with excellent clarity from point to point can be obtained. In addition, when the length-weighted average fiber length is 0.5 mm or more, the strength as a paper base material is improved, and the fibers are difficult to fall off from the paper base material when irradiated with an ultraviolet laser, suppressing the generation of paper dust. , is preferable because the amount of smoke generation is suppressed and the printing clarity for each point is excellent.
The length-weighted average fiber length of the pulp constituting the paper base material is measured by the method described in the Examples.
 紙基材を構成するパルプの平均繊維幅は、好ましくは14.0μm以上、より好ましくは15.0μm以上、さらに好ましくは15.5μm以上、よりさらに好ましくは16.0μm以上であり、そして、好ましくは35.0μm以下、より好ましくは33.0μm以下、さらに好ましくは31.0μm以下、よりさらに好ましくは28.0μm以下、よりさらに好ましくは24.0μm以下、よりさらに好ましくは21.0μm以下である。
 紙基材を構成するパルプの平均繊維幅が35.0μm以下であると、パルプ同士が密に絡まり合うことで、紙基材の空隙が減少し、紫外線レーザー照射の際に、酸化チタンの飛散を抑制することができ、発煙が抑制され、一点ごとの印字鮮明性に優れた印刷物が得られるので好ましい。また、平均繊維幅が14.0μm以上であると、紙基材としての強度が向上すると共に、紫外線レーザー照射時に、繊維が紙シート媒体から脱落しにくく、紙粉の発生が抑制され、発煙量が抑制され、一点ごとの印字鮮明性に優れるので好ましい。
 紙基材を構成するパルプの平均繊維幅は、実施例に記載の方法により測定することができる。
The average fiber width of the pulp constituting the paper base material is preferably 14.0 μm or more, more preferably 15.0 μm or more, even more preferably 15.5 μm or more, even more preferably 16.0 μm or more, and preferably is 35.0 μm or less, more preferably 33.0 μm or less, even more preferably 31.0 μm or less, even more preferably 28.0 μm or less, even more preferably 24.0 μm or less, even more preferably 21.0 μm or less .
When the average fiber width of the pulp constituting the paper base material is 35.0 μm or less, the pulps become tightly intertwined with each other, reducing the voids in the paper base material and causing titanium oxide to scatter during ultraviolet laser irradiation. This is preferable because it can suppress smoke generation, and produce printed matter with excellent printing clarity for each point. In addition, when the average fiber width is 14.0 μm or more, the strength as a paper base material is improved, the fibers are difficult to fall off from the paper sheet medium when irradiated with ultraviolet laser, the generation of paper dust is suppressed, and the amount of smoke generated is This is preferable because it suppresses the problem and provides excellent print clarity for each point.
The average fiber width of the pulp constituting the paper base material can be measured by the method described in Examples.
 紙基材を構成するパルプ中、繊維長が0.2mm以下の微細繊維の本数割合は、好ましくは4%以上、より好ましくは5%以上、さらに好ましくは6%以上、よりさらに好ましくは10%以上、特に好ましくは15%以上であり、そして、好ましくは40%以下、より好ましくは30%以下、さらに好ましくは20%以下である。
 微細繊維の本数割合が4%以上であると、微細繊維が繊維間の空隙を埋める形でシートに配置されるため、紫外線レーザー照射時の酸化チタンの飛散が抑制され、その結果、紫外線レーザー照射時の発煙が抑制され、一点ごとの印字鮮明性が向上するので好ましい。また、微細繊維の本数割合が40%以下であると、微細繊維の増加により、紫外線レーザー照射時に微細繊維が飛散することによる発煙が抑制され、一点ごとの印字鮮明性が向上するので好ましい。
 紙基材を構成する繊維のパルプ中、繊維長が0.2mm以下の微細繊維の本数割合は、紙基材を実施例に記載の方法にて離解し、得られたパルプスラリーの繊維長を繊維長測定器(例えば、バルメット社製、型式FS-5、UHDベースユニット付き)にて測定して、算出する。繊維長が0.2mm以下であり、かつ、繊維幅が75μm以下の繊維を微細繊維とし、測定したパルプの本数に対する、微細繊維の本数割合を算出する。
In the pulp constituting the paper base material, the number ratio of fine fibers with a fiber length of 0.2 mm or less is preferably 4% or more, more preferably 5% or more, still more preferably 6% or more, and even more preferably 10%. Above, it is particularly preferably 15% or more, and preferably 40% or less, more preferably 30% or less, and still more preferably 20% or less.
When the number ratio of fine fibers is 4% or more, the fine fibers are arranged in the sheet to fill the voids between the fibers, so scattering of titanium oxide during ultraviolet laser irradiation is suppressed, and as a result, ultraviolet laser irradiation This is preferable because it suppresses smoke generation and improves the print clarity of each point. Further, it is preferable that the number ratio of fine fibers is 40% or less, because the increase in fine fibers suppresses smoke generation due to scattering of fine fibers during ultraviolet laser irradiation, and improves print clarity for each point.
The number ratio of fine fibers with a fiber length of 0.2 mm or less in the fiber pulp constituting the paper base material is determined by disintegrating the paper base material by the method described in the example, and determining the fiber length of the resulting pulp slurry. It is calculated by measuring with a fiber length measuring device (for example, manufactured by Valmet, model FS-5, equipped with a UHD base unit). Fibers with a fiber length of 0.2 mm or less and a fiber width of 75 μm or less are defined as fine fibers, and the ratio of the number of fine fibers to the number of measured pulps is calculated.
 紙基材に用いられる木材パルプのカナダ標準ろ水度(Canadian standard freeness;CSF)は、所望の繊維幅および繊維長を得る観点から、好ましくは150mL以上、より好ましくは300mL以上、さらに好ましくは400mL以上であり、そして、好ましくは800mL以下、より好ましくは750mL以下、さらに好ましくは700mL以下、よりさらに好ましくは600mL以下である。
 ここで、CSFは、JIS P 8121-2:2012によるカナダ標準ろ水度のことである。
The Canadian standard freeness (CSF) of the wood pulp used for the paper base material is preferably 150 mL or more, more preferably 300 mL or more, and even more preferably 400 mL, from the viewpoint of obtaining the desired fiber width and fiber length. and is preferably 800 mL or less, more preferably 750 mL or less, still more preferably 700 mL or less, even more preferably 600 mL or less.
Here, CSF is Canadian Standard Freeness according to JIS P 8121-2:2012.
 紙基材は、上述した酸化チタンに加え、必要に応じて内添剤を添加したパルプスラリーを抄紙することにより得られる。
 紙基材には、上述したパルプおよび酸化チタンに加え、填料、サイズ剤、乾燥紙力増強剤、湿潤紙力増強剤(例えば、ポリアミドポリアミンエピクロロヒドリン)、歩留向上剤(例えば、硫酸バンド)、濾水性向上剤、pH調整剤、柔軟剤、帯電防止剤、消泡剤、染料・顔料等の公知の抄紙用内添剤を必要に応じて添加することができる。
 填料としては、例えば、カオリン、タルク、酸化チタン、重質炭酸カルシウム、軽質炭酸カルシウム、亜硫酸カルシウム、石膏、焼成カオリン、ホワイトカーボン、非晶質シリカ、デラミネーテッドカオリン、珪藻土、炭酸マグネシウム、水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウム、水酸化亜鉛等を例示することができる。
 サイズ剤としては、例えば、ロジン系、アルキルケテンダイマー系、アルケニル無水コハク酸系、スチレン-アクリル系、高級脂肪酸系、石油樹脂系サイズ剤などが挙げられる。
The paper base material is obtained by paper-making a pulp slurry to which, in addition to the titanium oxide described above, internal additives are added as necessary.
In addition to the above-mentioned pulp and titanium oxide, the paper base material contains fillers, sizing agents, dry paper strength agents, wet paper strength agents (e.g., polyamide polyamine epichlorohydrin), and retention aids (e.g., sulfuric acid). If necessary, known internal additives for papermaking such as band), drainage improvers, pH adjusters, softeners, antistatic agents, antifoaming agents, dyes and pigments can be added.
Examples of fillers include kaolin, talc, titanium oxide, heavy calcium carbonate, light calcium carbonate, calcium sulfite, gypsum, calcined kaolin, white carbon, amorphous silica, delaminated kaolin, diatomaceous earth, magnesium carbonate, and hydroxide. Examples include aluminum, calcium hydroxide, magnesium hydroxide, and zinc hydroxide.
Examples of the sizing agent include rosin-based, alkyl ketene dimer-based, alkenyl succinic anhydride-based, styrene-acrylic-based, higher fatty acid-based, and petroleum resin-based sizing agents.
 紙基材の抄紙においては、公知の湿式抄紙機、例えば長網抄紙機、ギャップフォーマー型抄紙機、円網式抄紙機、短網式抄紙機等の抄紙機を適宜選択して使用することができる。次に、抄紙機によって形成された紙層をフェルトにて搬送し、ドライヤーで乾燥させる。ドライヤー乾燥前にプレドライヤーとして、多段式シリンダードライヤーを使用してもよい。 When making paper based paper, a known wet paper machine, such as a Fourdrinier paper machine, a gap former paper machine, a cylinder paper machine, a short wire paper machine, etc., may be selected and used as appropriate. Can be done. Next, the paper layer formed by the paper machine is conveyed using felt and dried using a dryer. A multi-stage cylinder dryer may be used as a pre-dryer before drying.
 また、上記のようにして得られた紙基材に、カレンダーによる表面処理を施して厚さやプロファイルの均一化を図り、印刷適性の向上を図ってもよい。カレンダー処理としては公知のカレンダー処理機を適宜選択して使用することができる。 Additionally, the paper base material obtained as described above may be subjected to surface treatment using a calendar to make the thickness and profile uniform, thereby improving printability. For the calendering process, a known calendering machine can be appropriately selected and used.
 紙基材は、単層であっても多層であってもよく、異なるパルプ組成の多層構成としてもよい。 The paper base material may be single layer or multilayer, and may have a multilayer structure with different pulp compositions.
 紙基材の坪量は、印刷用紙としての強度、および印刷適性向上の観点から、好ましくは30g/m以上、より好ましくは40g/m以上、さらに好ましくは50g/m以上であり、そして、好ましくは1000g/m以下、より好ましくは700g/m以下である。
 坪量はJIS P 8124:2011に規定される方法で測定する。
The basis weight of the paper base material is preferably 30 g/m 2 or more, more preferably 40 g/m 2 or more, and even more preferably 50 g/m 2 or more, from the viewpoint of strength as a printing paper and improving printability. And, preferably it is 1000 g/m 2 or less, more preferably 700 g/m 2 or less.
The basis weight is measured by the method specified in JIS P 8124:2011.
 紙基材の厚さは特に限定されないが、印刷用紙としての強度、および印刷適性向上の観点から、好ましくは30μm以上、より好ましくは50μm以上、さらに好ましくは70μm以上、よりさらに好ましくは80μm以上であり、そして、好ましくは900μm以下、より好ましくは850μm以下であり、さらに好ましくは800μm以下である。
 紙基材の厚さはJIS P 8118:2014記載の方法で測定することができる。
The thickness of the paper base material is not particularly limited, but from the viewpoint of strength as printing paper and improvement of printability, it is preferably 30 μm or more, more preferably 50 μm or more, even more preferably 70 μm or more, even more preferably 80 μm or more. It is preferably 900 μm or less, more preferably 850 μm or less, and even more preferably 800 μm or less.
The thickness of the paper base material can be measured by the method described in JIS P 8118:2014.
〔樹脂層〕
 本実施形態の印刷用紙は、印刷用紙の耐水性を向上させる観点、また、保護層としての機能を目的として、紙基材上に、さらに樹脂層を有していてもよい。すなわち、紙基材の上に、さらに予め樹脂層が設けられた印刷用紙を使用してもよい。
[Resin layer]
The printing paper of this embodiment may further have a resin layer on the paper base material for the purpose of improving the water resistance of the printing paper and for the purpose of functioning as a protective layer. That is, printing paper may be used, in which a resin layer is further provided in advance on a paper base material.
 樹脂層の全光線透過率は、好ましくは40%以上、より好ましくは60%以上であり、さらに好ましく70%以上、よりさらに好ましくは80%以上、特に好ましくは90%以上であり、そして、100%以下である。上限は特に限定されない。
 全光線透過率は、JIS K 7361-1:1997に準拠して測定される。
The total light transmittance of the resin layer is preferably 40% or more, more preferably 60% or more, even more preferably 70% or more, even more preferably 80% or more, particularly preferably 90% or more, and 100% or more. % or less. The upper limit is not particularly limited.
Total light transmittance is measured in accordance with JIS K 7361-1:1997.
 樹脂層を構成する樹脂は、全光線透過率が好ましくは40%以上であり、紙基材上に設けることができれば特に限定されないが、透明性および樹脂層を設けることが容易である観点から、樹脂層と紙基材とを接着剤層とを介して貼付するか、またはラミネート加工により積層する場合には、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリビニルアルコール、およびデンプンから選択される少なくとも1つであることが好ましく、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、およびポリビニルアルコールから選択される少なくとも1つであることがより好ましく、ポリエチレン、ポリプロピレンであることがさらに好ましく、ポリエチレンであることが特に好ましい。
 また、樹脂層を塗工により設ける場合には、アクリル系樹脂、スチレン-マレイン酸樹脂、水溶性ポリウレタン樹脂、水溶性ポリエステル樹脂などが例示される。
 アクリル系樹脂としては、(メタ)アクリル酸と、そのアルキルエステル、スチレン、(メタ)アクリル酸以外の不飽和カルボン酸、エチレン、プロピレン等のその他のモノマーとを共重合した樹脂が例示され、具体的には、エチレン-(メタ)アクリル酸共重合体、スチレン-アクリル酸-マレイン酸樹脂などが例示され、エチレン-(メタ)アクリル酸共重合体が好ましい。
The resin constituting the resin layer preferably has a total light transmittance of 40% or more, and is not particularly limited as long as it can be provided on a paper base material, but from the viewpoint of transparency and ease of providing the resin layer, When the resin layer and the paper base material are attached via an adhesive layer or laminated together, the material is at least one selected from polyethylene, polypropylene, polyethylene terephthalate, polyvinyl alcohol, and starch. It is preferably at least one selected from polyethylene, polypropylene, polyethylene terephthalate, and polyvinyl alcohol, still more preferably polyethylene and polypropylene, and particularly preferably polyethylene.
When the resin layer is provided by coating, examples include acrylic resin, styrene-maleic acid resin, water-soluble polyurethane resin, and water-soluble polyester resin.
Examples of acrylic resins include resins obtained by copolymerizing (meth)acrylic acid with other monomers such as its alkyl ester, styrene, unsaturated carboxylic acids other than (meth)acrylic acid, ethylene, and propylene. Specific examples include ethylene-(meth)acrylic acid copolymer and styrene-acrylic acid-maleic acid resin, with ethylene-(meth)acrylic acid copolymer being preferred.
 樹脂層と紙基材とは、いずれの方法により積層されていてもよく、特に限定されないが、製造容易性の観点から、樹脂層と紙基材とを接着剤層とを介して貼付するか、またはラミネート加工するか、透明塗料を液状塗料の形で塗工することが好ましい。
 局所的に樹脂層を設ける場合には、製造容易性の観点から、接着剤を介して貼付することが好ましい。また、広範囲に樹脂層を設ける場合には、ラミネート加工することが好ましい。
 なお、接着剤層としては特に限定されず、公知の接着剤層から適宜選択して用いればよい。具体的には、特開2012-57112号公報の粘着剤層が例示される。
The resin layer and paper base material may be laminated by any method, and is not particularly limited, but from the viewpoint of ease of manufacture, the resin layer and paper base material may be laminated via an adhesive layer. , or laminating or applying a transparent paint in the form of a liquid paint.
When providing a resin layer locally, it is preferable to attach it via an adhesive from the viewpoint of ease of manufacture. Furthermore, when providing a resin layer over a wide area, it is preferable to perform lamination processing.
Note that the adhesive layer is not particularly limited, and may be appropriately selected from known adhesive layers. Specifically, the adhesive layer disclosed in JP-A No. 2012-57112 is exemplified.
 樹脂層の厚さは特に限定されないが、鮮明な印字を得る観点、および印刷物および印刷用紙のハンドリング性の観点から、好ましくは5μm以上、より好ましくは10μm以上、さらに好ましくは15μm以上であり、そして、好ましくは100μm以下、より好ましくは75μm以下、さらに好ましくは50μm以下である。 The thickness of the resin layer is not particularly limited, but from the viewpoint of obtaining clear printing and handling of printed matter and printing paper, it is preferably 5 μm or more, more preferably 10 μm or more, and even more preferably 15 μm or more. , preferably 100 μm or less, more preferably 75 μm or less, even more preferably 50 μm or less.
〔シーラント層〕
 本実施形態の印刷用紙は、紙基材の少なくとも一方の面にシーラント層を有していてもよい。シーラント層は、加熱、超音波等で溶融し、接着する層である。本実施形態の印刷用紙は、シーラント層を紙基材の両方の面に有していてもよい。また、ヒートシール性を付与する観点から、シーラント層を有する場合には、少なくとも一方の面の最上層にシーラント層を有することが好ましく、シーラント層が一方の面に2層以上形成されていてもよい。なお、シーラント層は、少なくとも紙基材の印刷を行う面(印刷面)と反対面に有することが好ましく、印刷を行う面とは反対側の面にも設けられていてもよい。
 なお、シーラント層は、紙基材の全面に有していてもよいが、ヒートシール性が必要とされる一部分に有していてもよい。
 紙基材の少なくとも一方の面にシーラント層を有することで、ヒートシール性が付与され、ヒートシール性を有する印刷用紙が提供される。さらに、シーラント層を有することで、ガスバリア性も付与されることが好ましい。ここで、ガスバリア性とは、主に酸素および水蒸気から選択される少なくとも1つに対するバリア性を意味し、他のガスに対してもバリア性を有していてもよい。本実施形態の印刷用紙は、水蒸気バリア性を有することも好ましく、これに加え、酸素バリア性を有することも好ましい。
[Sealant layer]
The printing paper of this embodiment may have a sealant layer on at least one surface of the paper base material. The sealant layer is a layer that is melted and bonded by heating, ultrasonic waves, or the like. The printing paper of this embodiment may have sealant layers on both sides of the paper base material. In addition, from the viewpoint of imparting heat sealability, when a sealant layer is provided, it is preferable to have the sealant layer on the top layer of at least one surface, and even if two or more sealant layers are formed on one surface. good. The sealant layer is preferably provided at least on the surface of the paper base material opposite to the surface on which printing is performed (printing surface), and may also be provided on the surface opposite to the surface on which printing is performed.
Note that the sealant layer may be provided on the entire surface of the paper base material, or may be provided on a portion where heat sealability is required.
By having a sealant layer on at least one surface of the paper base material, heat-sealability is imparted, and a printing paper having heat-sealability is provided. Furthermore, it is preferable that gas barrier properties are also provided by having a sealant layer. Here, gas barrier properties mean barrier properties mainly against at least one selected from oxygen and water vapor, and may also have barrier properties against other gases. It is also preferable that the printing paper of this embodiment has water vapor barrier properties, and in addition, it is also preferable that it has oxygen barrier properties.
 シーラント層を構成する樹脂(以下、「シーラント層用樹脂」とも称する)としては、特に限定されないが、例えば、塩化ビニル樹脂、酢酸ビニル樹脂、塩化ビニル-酢酸ビニル共重合体、アクリル樹脂、ポリエステル樹脂、オレフィン樹脂、スチレン樹脂、スチレンアクリル樹脂(例えば、スチレン-アクリル酸共重合体)、エチレンアクリル樹脂(エチレン-(メタ)アクリル酸共重合体)、およびこれらの変性物等が挙げられる。シーラント層用樹脂は、1種単独で使用してもよいし、2種以上を併用してもよい。 The resin constituting the sealant layer (hereinafter also referred to as "sealant layer resin") is not particularly limited, but includes, for example, vinyl chloride resin, vinyl acetate resin, vinyl chloride-vinyl acetate copolymer, acrylic resin, and polyester resin. , olefin resins, styrene resins, styrene acrylic resins (eg, styrene-acrylic acid copolymers), ethylene acrylic resins (ethylene-(meth)acrylic acid copolymers), and modified products thereof. The sealant layer resins may be used alone or in combination of two or more.
 シーラント層用樹脂としては、合成品、市販品のいずれを使用してもよく、市販品としては、実施例で使用しているもの等を使用することができる。 As the resin for the sealant layer, either a synthetic product or a commercially available product may be used, and the commercially available products include those used in the examples.
 シーラント層は、溶融押出、接着剤等により積層して形成してもよく、シーラント層用の塗工液を作製して該塗工液を塗工することにより形成する方法が例示される。接着剤としては、公知の接着剤を使用することができる。なお、シーラント層を二層以上形成してもよい。なお、シーラント層を、シーラント層用樹脂フィルムを接着剤等によりラミネートする場合には、当該樹脂フィルムは、未延伸であってもよく、一軸または二軸延伸されていてもよい。 The sealant layer may be formed by laminating by melt extrusion, adhesive, etc., and a method of forming the sealant layer by preparing a coating liquid for the sealant layer and applying the coating liquid is exemplified. As the adhesive, a known adhesive can be used. Note that two or more sealant layers may be formed. Note that when the sealant layer is laminated with a sealant layer resin film using an adhesive or the like, the resin film may be unstretched, or may be uniaxially or biaxially stretched.
 シーラント層を積層して形成する場合、シーラント層用樹脂としては、これらの中でも、ヒートシール性およびガスバリア性の観点から、ポリオレフィン系樹脂、ポリアミド樹脂、ポリエステル樹脂、およびポリ塩化ビニリデン樹脂よりなる群から選択される少なくとも1種を含むことがより好ましく、ポリオレフィン樹脂を含むことがより好ましく、ポリオレフィン樹脂であることがさらに好ましい。
 また、シーラント層が2種以上の層からなる積層シーラント層である場合、ヒートシール性の観点から、紙基材層と反対面がポリオレフィン樹脂層であることが好ましく、ポリエチレン樹脂層であることがより好ましい。
When forming a sealant layer by laminating them, the resin for the sealant layer should be selected from the group consisting of polyolefin resins, polyamide resins, polyester resins, and polyvinylidene chloride resins from the viewpoint of heat sealing properties and gas barrier properties. It is more preferable to contain at least one selected kind, it is more preferable to contain a polyolefin resin, and it is even more preferable that it is a polyolefin resin.
In addition, when the sealant layer is a laminated sealant layer consisting of two or more types of layers, from the viewpoint of heat sealability, the surface opposite to the paper base layer is preferably a polyolefin resin layer, and preferably a polyethylene resin layer. More preferred.
 ポリオレフィン樹脂は、ヒートシール性およびガスバリア性の観点から、ポリエチレン、ポリプロピレンおよびエチレン-プロピレン共重合体よりなる群から選択される少なくとも1種であることがより好ましく、ポリエチレンおよびポリプロピレンの少なくとも一方であることがさらに好ましい。
 なお、ポリエチレンは、低密度ポリエチレン(LDPE)でもよく、直鎖状低密度ポリエチレン(LLDPE)でもよく、中密度ポリエチレン(MDPE)でもよく、高密度ポリエチレン(HDPE)でもよい。
From the viewpoint of heat-sealing properties and gas barrier properties, the polyolefin resin is more preferably at least one selected from the group consisting of polyethylene, polypropylene, and ethylene-propylene copolymers, and is at least one of polyethylene and polypropylene. is even more preferable.
Note that the polyethylene may be low density polyethylene (LDPE), linear low density polyethylene (LLDPE), medium density polyethylene (MDPE), or high density polyethylene (HDPE).
 ポリアミド樹脂としては、ナイロン6、ナイロン11、ナイロン12、ナイロン66、ナイロン610、ナイロン612などが例示される。 Examples of polyamide resins include nylon 6, nylon 11, nylon 12, nylon 66, nylon 610, and nylon 612.
 ポリエステル樹脂としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)やこれらの誘導体などが例示される。
 なお、後述する生分解性樹脂の多くはポリエステル樹脂にも該当する。
Examples of the polyester resin include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), and derivatives thereof.
Note that many of the biodegradable resins described below also correspond to polyester resins.
 ポリ塩化ビニリデン樹脂(PVDC)は、塩素を含むビニリデン基を重合させた合成樹脂であり、塩化ビニル、アクリロニトリル等との共重合体であってもよい。 Polyvinylidene chloride resin (PVDC) is a synthetic resin in which vinylidene groups containing chlorine are polymerized, and may be a copolymer with vinyl chloride, acrylonitrile, etc.
 生分解性樹脂としては、ポリ乳酸(PLA)、ポリブチレンサクシネート(PBS)、ポリブチレンサクシネートアジペート(PBSA)、3-ヒドロキシブタン酸・3-ヒドロキシヘキサン酸共重合体(PHBH)等が例示され、これらの中でも、ポリ乳酸(PLA)、ポリブチレンサクシネート(PBS)が好ましく、ポリブチレンサクシネート(PBS)がより好ましい。 Examples of biodegradable resins include polylactic acid (PLA), polybutylene succinate (PBS), polybutylene succinate adipate (PBSA), and 3-hydroxybutanoic acid/3-hydroxyhexanoic acid copolymer (PHBH). Among these, polylactic acid (PLA) and polybutylene succinate (PBS) are preferred, and polybutylene succinate (PBS) is more preferred.
 シーラント層として、2種以上の樹脂が積層された、積層フィルムを使用してもよく、例えば、ポリエチレン/ポリプロピレン積層フィルム、ポリアミド樹脂/ポリ塩化ビニリデン樹脂積層フィルム、ポリエチレン/ポリエステル樹脂積層フィルム等が例示される。 As the sealant layer, a laminated film in which two or more resins are laminated may be used, such as a polyethylene/polypropylene laminated film, a polyamide resin/polyvinylidene chloride resin laminated film, a polyethylene/polyester resin laminated film, etc. be done.
 接着剤を用いてシーラント層や後述するバリア層を貼り合わせる場合、使用する接着剤としては特に限定されず、無溶剤型、有機溶剤型、水系型などのいずれでもよいが、紙基材の形状安定性を確保する観点から、有機溶剤型の接着剤、または無溶剤型の接着剤を使用することが好ましい。
 接着剤を構成する主成分としては、(メタ)アクリル酸エステル共重合体、α-オレフィン共重合体、エチレン-酢酸ビニル共重合体、ポリビニルアルコール、ポリウレタン、スチレン-ブタジエン共重合体、ポリ塩化ビニル、エポキシ樹脂、メラミン樹脂、シリコーン樹脂、天然ゴム、カゼイン、澱粉等が例示される。これらの中でも、入手容易性および良好な接着性が得られる観点から、(メタ)アクリル酸エステル共重合体、エチレン-酢酸ビニル共重合体、ポリウレタンが好ましく、ポリウレタンがより好ましい。
 接着剤としては、市販されている接着剤を適宜使用してもよく、例えば、ニッポランID-816(東ソー株式会社製)とHARDENER300(東ソー株式会社製)との組み合わせ、ディックドライLX-500(DIC株式会社製)とディックドライKW-75(DIC株式会社製)との組み合わせが例示される。
 なお、シーラント層やバリア層に接着剤を塗布後に、シーラント層やバリア層と紙基材とを積層してもよく、紙基材に接着剤を塗布後に、紙基材とシーラント層やバリア層とを積層してもよく、また、シーラント層やバリア層と紙基材との両方に接着剤を塗布後に、両者を積層してもよく、特に限定されないが、形状安定性の観点から、シーラント層やバリア層に接着剤を塗布後に、紙基材を積層することが好ましい。
When bonding a sealant layer or a barrier layer (described later) using an adhesive, the adhesive used is not particularly limited and may be solvent-free, organic solvent-based, water-based, etc., but depending on the shape of the paper base material. From the viewpoint of ensuring stability, it is preferable to use an organic solvent type adhesive or a solventless type adhesive.
The main components that make up the adhesive include (meth)acrylic acid ester copolymer, α-olefin copolymer, ethylene-vinyl acetate copolymer, polyvinyl alcohol, polyurethane, styrene-butadiene copolymer, and polyvinyl chloride. , epoxy resin, melamine resin, silicone resin, natural rubber, casein, starch, etc. Among these, preferred are (meth)acrylic acid ester copolymers, ethylene-vinyl acetate copolymers, and polyurethanes, and polyurethanes are more preferred, from the viewpoint of availability and good adhesion.
As the adhesive, commercially available adhesives may be used as appropriate. For example, a combination of Nipporan ID-816 (manufactured by Tosoh Corporation) and HARDENER 300 (manufactured by Tosoh Corporation), Dick Dry LX-500 (manufactured by DIC (manufactured by DIC Corporation) and Dick Dry KW-75 (manufactured by DIC Corporation) is exemplified.
Note that the sealant layer or barrier layer and the paper base material may be laminated after applying the adhesive to the sealant layer or barrier layer, or the paper base material and the sealant layer or barrier layer may be laminated after applying the adhesive to the paper base material. Alternatively, after applying an adhesive to both the sealant layer or barrier layer and the paper base material, both may be laminated. Although not particularly limited, from the viewpoint of shape stability, the sealant layer or barrier layer and the paper base material may be laminated. It is preferable to laminate the paper substrate after applying the adhesive to the layer or barrier layer.
 接着剤の塗布方法としては、従来公知の方法の中から適宜選択すればよく、特に限定されないが、ロールコーター、ダイコーター、グラビアコーター、スプレーコーターなどが例示される。
 接着剤の付与量は特に限定されないが、乾燥後の付与量(塗工量)は、シーラント層やバリア層と紙基材層との密着性を高める観点から、好ましくは1g/m以上、より好ましくは2g/m以上、さらに好ましくは3g/m以上であり、そして、好ましくは40g/m以下、より好ましくは20g/m以下、さらに好ましくは10g/m以下である。
The method for applying the adhesive may be appropriately selected from conventionally known methods, and examples thereof include, but are not limited to, a roll coater, a die coater, a gravure coater, a spray coater, and the like.
The amount of adhesive applied is not particularly limited, but the amount applied after drying (coating amount) is preferably 1 g/m 2 or more, from the viewpoint of improving the adhesion between the sealant layer or barrier layer and the paper base layer. It is more preferably 2 g/m 2 or more, even more preferably 3 g/m 2 or more, and preferably 40 g/m 2 or less, more preferably 20 g/m 2 or less, even more preferably 10 g/m 2 or less.
 塗工液によりシーラント層を形成する場合、シーラント層用樹脂としては、ヒートシール性を有するものであれば特に制限されないが、スチレン-ブタジエン共重合体;エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体等のオレフィン・不飽和カルボン酸系共重合体;生分解性樹脂;ポリエチレン、ポリプロピレン等のポリオレフィン樹脂;アクリル酸メチル共重合体、メタクリル酸メチル共重合体、スチレン-アクリル共重合体、スチレン-メタクリル共重合体等のアクリル系樹脂から選ばれる1種以上であることがより好ましい。 When forming a sealant layer using a coating liquid, the resin for the sealant layer is not particularly limited as long as it has heat-sealing properties, but examples include styrene-butadiene copolymer; ethylene-acrylic acid copolymer, ethylene-methacrylate. Olefin/unsaturated carboxylic acid copolymers such as acid copolymers; Biodegradable resins; Polyolefin resins such as polyethylene and polypropylene; Methyl acrylate copolymers, methyl methacrylate copolymers, and styrene-acrylic copolymers More preferably, the resin is one or more selected from acrylic resins such as , styrene-methacrylic copolymers, and the like.
 これらの中でも、スチレン-アクリル酸共重合体およびオレフィン・不飽和カルボン酸系共重合体から選ばれる1種以上であることがさらに好ましい。本明細書においては、アクリル系樹脂には、オレフィン・不飽和カルボン酸系共重合体が含まれないものとする。 Among these, one or more selected from styrene-acrylic acid copolymers and olefin/unsaturated carboxylic acid copolymers are more preferable. In this specification, the acrylic resin does not include an olefin/unsaturated carboxylic acid copolymer.
 オレフィン・不飽和カルボン酸系共重合体は、不飽和カルボン酸系単量体由来のカルボキシ基が、アルカリ金属水酸化物、アンモニア、アルキルアミン、アルカノールアミン等で一部あるいは全部中和されている塩であってもよい。
 オレフィン・不飽和カルボン酸系共重合体のオレフィン系単量体としては、エチレン、プロピレン、ブタジエン等が挙げられる。これらは、1種単独であってもよいし、2種以上であってもよい。これら中でも、エチレンが好ましい。
In olefin/unsaturated carboxylic acid copolymers, the carboxy groups derived from unsaturated carboxylic acid monomers are partially or completely neutralized with alkali metal hydroxides, ammonia, alkylamines, alkanolamines, etc. It may also be salt.
Examples of the olefin monomer of the olefin/unsaturated carboxylic acid copolymer include ethylene, propylene, butadiene, and the like. These may be used alone or in combination of two or more. Among these, ethylene is preferred.
 オレフィン-不飽和カルボン酸系共重合体の不飽和カルボン酸系単量体としては、アクリル酸、メタクリル酸、クロトン酸、ケイ皮酸、イタコン酸、フマル酸、マレイン酸、ブテントリカルボン酸等の不飽和カルボン酸;イタコン酸モノエチルエステル、フマル酸モノブチルエステル、マレイン酸モノブチルエステル等の、少なくとも1個のカルボキシ基を有する不飽和ポリカルボン酸アルキルエステル;アクリルアミドプロパンスルホン酸、アクリル酸スルホエチルナトリウム塩、メタクリル酸スルホプロピルナトリウム塩等の不飽和スルホン酸単量体またはその塩;などが挙げられる。これらは、1種類であってもよいし、2種類以上を併用してもよい。これらの中でも、不飽和カルボン酸が好ましく、アクリル酸、メタクリル酸がより好ましく、アクリル酸が特に好ましい。
 従って、オレフィン・不飽和カルボン酸系共重合体としては、エチレン-アクリル酸共重合体およびエチレン-メタクリル酸共重合体の少なくとも一方であることが好ましい。
Examples of unsaturated carboxylic acid monomers in the olefin-unsaturated carboxylic acid copolymer include acrylic acid, methacrylic acid, crotonic acid, cinnamic acid, itaconic acid, fumaric acid, maleic acid, and butenetricarboxylic acid. Saturated carboxylic acid; unsaturated polycarboxylic acid alkyl ester having at least one carboxy group, such as itaconic acid monoethyl ester, fumaric acid monobutyl ester, maleic acid monobutyl ester; acrylamide propane sulfonic acid, sulfoethyl sodium acrylate salts, unsaturated sulfonic acid monomers such as sulfopropyl sodium methacrylate, or salts thereof; and the like. These may be used alone or in combination of two or more types. Among these, unsaturated carboxylic acids are preferred, acrylic acid and methacrylic acid are more preferred, and acrylic acid is particularly preferred.
Therefore, the olefin/unsaturated carboxylic acid copolymer is preferably at least one of an ethylene-acrylic acid copolymer and an ethylene-methacrylic acid copolymer.
 エチレン・不飽和カルボン酸系共重合体は、エチレンと前記不飽和カルボン酸系単量体とを乳化重合することによって得ることが好ましい。エチレン-不飽和カルボン酸系共重合体としては、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体が好ましい。本発明の効果を損なわない程度であれば、共重合体には、エチレンおよび不飽和カルボン酸系単量体と共重合可能なその他の化合物からなる単量体が共重合されていてもよい。 The ethylene/unsaturated carboxylic acid copolymer is preferably obtained by emulsion polymerization of ethylene and the unsaturated carboxylic acid monomer. As the ethylene-unsaturated carboxylic acid copolymer, ethylene-acrylic acid copolymer and ethylene-methacrylic acid copolymer are preferred. As long as the effects of the present invention are not impaired, the copolymer may be copolymerized with a monomer consisting of ethylene and other compounds copolymerizable with the unsaturated carboxylic acid monomer.
 エチレン・不飽和カルボン酸系共重合体の具体例としては、ザイクセン(登録商標)A,ザイクセン(登録商標)AC(以上、住友精化株式会社製)、ケミパールSシリーズ(三井化学株式会社製)、MFHS1279、MP498345N、MP4983R、MP4990R(以上、マイケルマン合同会社製)等が挙げられる。 Specific examples of ethylene/unsaturated carboxylic acid copolymers include Zaixen (registered trademark) A, Zaixen (registered trademark) AC (manufactured by Sumitomo Seika Co., Ltd.), and Chemipearl S series (manufactured by Mitsui Chemicals, Inc.). , MFHS1279, MP498345N, MP4983R, MP4990R (manufactured by Michaelman LLC), and the like.
 生分解性樹脂としては、ポリ乳酸(PLA)、ポリブチレンサクシネート(PBS)、ポリブチレンサクシネートアジペート(PBSA)、ポリブチレンアジペートテレフタレート(PBAT)、およびポリ(3-ヒドロキシブチレート-コ-ヒドロキシヘキサノエート)(PHBH)から選ばれる1種以上であることが好ましく、ポリ乳酸およびポリブチレンサクシネートから選ばれる1種以上であることがより好ましく、ポリ乳酸であることが特に好ましい。紙基材を用いた包装材料等は、樹脂フィルムからなる包装材料等と比べて環境負荷の低減という利点を有しているが、本実施形態におけるシーラント層として生分解性樹脂を用いることによって、より一層環境負荷を低減させることができる。 Biodegradable resins include polylactic acid (PLA), polybutylene succinate (PBS), polybutylene succinate adipate (PBSA), polybutylene adipate terephthalate (PBAT), and poly(3-hydroxybutyrate-co-hydroxy Hexanoate) (PHBH), more preferably one or more selected from polylactic acid and polybutylene succinate, particularly preferably polylactic acid. Packaging materials using paper base materials have the advantage of reducing environmental impact compared to packaging materials made of resin films, but by using biodegradable resin as the sealant layer in this embodiment, The environmental load can be further reduced.
 ポリ乳酸は、市販品、合成品のいずれを使用してもよい。市販品としては、例えばランディPL-1000、ランディPL-3000(ポリ乳酸の水性分散液、ミヨシ油脂株式会社製)等が挙げられる。 As polylactic acid, either a commercially available product or a synthetic product may be used. Examples of commercially available products include Landy PL-1000 and Landy PL-3000 (aqueous dispersion of polylactic acid, manufactured by Miyoshi Oil Co., Ltd.).
 シーラント層を塗工により設ける場合、シーラント層用塗工液は、シーラント層用樹脂(水懸濁性高分子)に加えて、滑剤、顔料、消泡剤、粘度調整剤、界面活性剤、レベリング剤、着色剤などを含有していてもよい。
 なお、これらの他の成分は、ヒートシール性を悪化させる傾向があることから、他の成分の含有量の合計は、シーラント層の固形分中、好ましくは30質量%以下、より好ましくは10質量%以下、さらに好ましくは5質量%以下である。
When the sealant layer is provided by coating, the coating liquid for the sealant layer contains, in addition to the resin for the sealant layer (water-suspended polymer), a lubricant, a pigment, an antifoaming agent, a viscosity modifier, a surfactant, and a leveling agent. It may contain additives, colorants, etc.
In addition, since these other components tend to deteriorate heat sealability, the total content of other components is preferably 30% by mass or less, more preferably 10% by mass, based on the solid content of the sealant layer. % or less, more preferably 5% by mass or less.
 シーラント層用塗工液の固形分中のシーラント層用樹脂の含有量は、高いヒートシール剥離強度を得る観点から、好ましくは50質量%以上、より好ましくは60質量%以上、さらに好ましく70質量%以上である。 The content of the sealant layer resin in the solid content of the sealant layer coating liquid is preferably 50% by mass or more, more preferably 60% by mass or more, and even more preferably 70% by mass, from the viewpoint of obtaining high heat seal peel strength. That's all.
 シーラント層用塗工液の塗工に使用する装置は、特に限定されず、一般に使用されている塗工装置から適宜選択して使用すればよい。例えば、エアナイフコーター、ブレードコーター、グラビアコーター、ロッドブレードコーター、ロールコーター、リバースロールコーター、メイヤーバーコーター、カーテンコーター、ダイスロットコーター、チャンプレックスコーター、メータリングブレード式のサイズプレスコーター、ショートドウェルコーター、スプレーコーター、ゲートロールコーター、リップコーター等の公知の各種塗工装置が挙げられる。 The device used for coating the coating liquid for the sealant layer is not particularly limited, and may be appropriately selected from commonly used coating devices. For example, air knife coater, blade coater, gravure coater, rod blade coater, roll coater, reverse roll coater, Meyer bar coater, curtain coater, die slot coater, Champlex coater, metering blade type size press coater, short dwell coater, Various known coating devices such as a spray coater, a gate roll coater, and a lip coater can be used.
 シーラント層の乾燥条件は、特に限定されないが、乾燥温度は、好ましくは50~120℃であり、乾燥時間は、好ましくは5~120秒である。
 塗工したシーラント層を乾燥するための乾燥設備としては、特に限定されず、公知の設備を用いることができる。乾燥設備としては、例えば、熱風乾燥機、赤外線乾燥機、防爆乾燥機、熱板等が挙げられる。
Drying conditions for the sealant layer are not particularly limited, but the drying temperature is preferably 50 to 120°C, and the drying time is preferably 5 to 120 seconds.
The drying equipment for drying the applied sealant layer is not particularly limited, and any known equipment can be used. Examples of the drying equipment include a hot air dryer, an infrared dryer, an explosion-proof dryer, and a hot plate.
 シーラント層の付与量は、ヒートシール剥離強度の観点から、好ましくは1g/m以上、より好ましくは2g/m以上であり、そして、好ましくは30g/m以下、より好ましくは20g/m以下である。なお、印刷用紙が2層以上のシーラント層を有する場合には、合計した付与量が上記範囲であることが好ましい。 The amount of the sealant layer applied is preferably 1 g/m 2 or more, more preferably 2 g/m 2 or more, and preferably 30 g/m 2 or less, more preferably 20 g/m 2 from the viewpoint of heat seal peel strength. 2 or less. In addition, when the printing paper has two or more sealant layers, it is preferable that the total applied amount is within the above range.
〔バリア層〕
 本実施形態の印刷用紙は、さらにバリア層を有していてもよく、紙基材の印刷面と反対面に有することが好ましい。印刷用紙がシーラント層を有する場合には、紙基材とシーラント層との間に、バリア層を有することが好ましい。
 バリア層は、主として酸素ガスの透過を阻止する機能を有する層である。バリア層は、水懸濁性高分子および水溶性高分子よりなる群から選択される高分子を含有する塗工液を塗布することによって形成してもよく、バリア性を有する樹脂を溶融押出、接着剤等により積層して形成してもよく、金属蒸着層および無機蒸着層よりなる群から選択される蒸着層を形成してもよく、金属蒸着層および無機蒸着層よりなる群から選択される蒸着層を有する樹脂フィルムを積層して形成してもよい。
[Barrier layer]
The printing paper of this embodiment may further have a barrier layer, and it is preferable to have the barrier layer on the surface opposite to the printing surface of the paper base material. When the printing paper has a sealant layer, it is preferable to have a barrier layer between the paper base material and the sealant layer.
The barrier layer is a layer that mainly has the function of blocking the permeation of oxygen gas. The barrier layer may be formed by applying a coating liquid containing a polymer selected from the group consisting of water-suspended polymers and water-soluble polymers, and by melt-extruding a resin having barrier properties. It may be formed by laminating with an adhesive or the like, or a vapor deposited layer selected from the group consisting of a metal vapor deposited layer and an inorganic vapor deposited layer may be formed, or a vapor deposited layer selected from the group consisting of a metal vapor deposited layer and an inorganic vapor deposited layer. It may also be formed by laminating resin films having vapor deposited layers.
(水懸濁性高分子)
 本実施形態において、バリア層で使用する水懸濁性高分子とは、25℃の水に対する溶解度が10g/L以下である高分子である。本実施形態において、水懸濁性高分子は、エマルション中に分散している高分子(粒子)に由来するものであることが好ましい。
 バリア層で使用する水懸濁性高分子および水溶性樹脂としては、特に限定されないが、例えば、ウレタン系樹脂、塩化ビニリデン系樹脂、オレフィン樹脂、ポリエステル樹脂、ナイロン樹脂、エポキシ樹脂、メラミン樹脂、ポリビニルアルコール系樹脂、アクリロニトリル系樹脂、ポリカルボン酸系樹脂、シリコーン樹脂等を挙げることができる。水懸濁性高分子は、1種単独で使用してもよいし、2種以上を併用してもよい。中でも、水懸濁性高分子は、ウレタン系樹脂および塩化ビニリデン系樹脂よりなる群から選択される少なくとも1種であることが好ましい。これらの樹脂を用いてバリア層を形成することで、優れたガスバリア性(酸素バリア性)を発揮することができる。
(Water-suspended polymer)
In this embodiment, the water-suspended polymer used in the barrier layer is a polymer whose solubility in water at 25° C. is 10 g/L or less. In this embodiment, the water-suspended polymer is preferably derived from polymers (particles) dispersed in the emulsion.
Water-suspended polymers and water-soluble resins used in the barrier layer are not particularly limited, but include, for example, urethane resins, vinylidene chloride resins, olefin resins, polyester resins, nylon resins, epoxy resins, melamine resins, and polyvinyl resins. Examples include alcohol resins, acrylonitrile resins, polycarboxylic acid resins, and silicone resins. One type of water-suspended polymer may be used alone, or two or more types may be used in combination. Among these, the water-suspended polymer is preferably at least one selected from the group consisting of urethane-based resins and vinylidene chloride-based resins. By forming a barrier layer using these resins, excellent gas barrier properties (oxygen barrier properties) can be exhibited.
 ウレタン系樹脂は、公知の製造方法によって製造することができる。例えば、ウレタン系樹脂は、ポリイソシアネート化合物(例えばジイソシアネート化合物)と、ポリヒドロキシ酸(例えばジヒドロキシ酸)との反応により得ることができる。また、例えば、上記ポリイソシアネート化合物およびポリヒドロキシ酸に加えて、ポリオール化合物(例えば、ポリエステルポリオール、ポリエーテルポリオール)および/または鎖伸長剤との反応により得ることもできる。
 ウレタン系樹脂は、メタキシリレンジイソシアネート由来の構成単位および水添メタキシリレンジイソシアネート由来の構成単位よりなる群から選択される少なくとも1種を含有することが好ましい。このようなウレタン系樹脂は、水素結合およびキシリレン基同士のスタッキング効果によって高い凝集力を発現するため、バリア層は優れたガスバリア性を発揮しやすくなる。メタキシリレンジイソシアネート由来の構成単位とは、ウレタン系樹脂において、メタキシリレンジイソシアネートが反応したモノマーユニットを指す。水添メタキシリレンジイソシアネート由来の構成単位およびポリイソシアネート由来の構成単位についても同様である。モノマーユニットとは、ポリマー中のモノマー物質が反応した形態をいう。
Urethane resin can be manufactured by a known manufacturing method. For example, a urethane resin can be obtained by reacting a polyisocyanate compound (for example, a diisocyanate compound) and a polyhydroxy acid (for example, a dihydroxy acid). Further, for example, in addition to the above-mentioned polyisocyanate compound and polyhydroxy acid, it can also be obtained by reaction with a polyol compound (eg, polyester polyol, polyether polyol) and/or a chain extender.
The urethane resin preferably contains at least one selected from the group consisting of structural units derived from metaxylylene diisocyanate and structural units derived from hydrogenated metaxylylene diisocyanate. Such a urethane-based resin exhibits high cohesive force due to hydrogen bonding and the stacking effect of xylylene groups, so that the barrier layer can easily exhibit excellent gas barrier properties. The structural unit derived from metaxylylene diisocyanate refers to a monomer unit reacted with metaxylylene diisocyanate in a urethane resin. The same applies to the structural units derived from hydrogenated metaxylylene diisocyanate and the structural units derived from polyisocyanate. A monomer unit refers to a form in which monomer substances in a polymer are reacted.
 ウレタン系樹脂において、メタキシリレンジイソシアネート由来の構成単位および水添メタキシリレンジイソシアネート由来の構成単位の合計モル%は、ウレタン系樹脂中のポリイソシアネート由来の構成単位全量に対して50モル%以上であることが好ましく、60モル%以上であることがより好ましい。上限は特に制限されないが、好ましくは95モル%以下であり、より好ましくは90モル%以下である。構成単位のモル%はH-NMRなどの公知の分析手法を用いて同定することができる。 In the urethane resin, the total mole% of the constituent units derived from metaxylylene diisocyanate and the constituent units derived from hydrogenated metaxylylene diisocyanate is 50 mole% or more based on the total amount of constituent units derived from the polyisocyanate in the urethane resin. The content is preferably 60 mol% or more, and more preferably 60 mol% or more. The upper limit is not particularly limited, but is preferably 95 mol% or less, more preferably 90 mol% or less. The mole % of the structural units can be identified using known analytical techniques such as 1 H-NMR.
 ウレタン系樹脂は、ヒドロキシ基を有していてもよく、その水酸基価は、好ましくは50mgKOH/g以上、より好ましくは100mgKOH/g以上、さらに好ましくは150mgKOH/g以上である。なお、水酸基価の上限は特に限定されないが、好ましくは1000mgKOH/g以下、より好ましくは800mgKOH/g以下、さらに好ましくは600mgKOH/g以下である。ウレタン系樹脂の水酸基価が上記範囲内であると、バリア層は酸素バリア性を発揮しやすくなる。また、ウレタン系樹脂の水酸基価を上記範囲内とすることにより、バリア層の熱融着性を高めることができ、その結果、印刷用紙のヒートシール性を高めることもできる。
 水酸基価の測定はJIS K0070-1992に準じて実施し、試料1gをアセチル化させたとき,水酸基と結合した酢酸を中和するのに必要とする水酸化カリウムのmg数を測定する。
The urethane resin may have a hydroxyl group, and its hydroxyl value is preferably 50 mgKOH/g or more, more preferably 100 mgKOH/g or more, even more preferably 150 mgKOH/g or more. Note that the upper limit of the hydroxyl value is not particularly limited, but is preferably 1000 mgKOH/g or less, more preferably 800 mgKOH/g or less, and still more preferably 600 mgKOH/g or less. When the hydroxyl value of the urethane resin is within the above range, the barrier layer can easily exhibit oxygen barrier properties. Further, by controlling the hydroxyl value of the urethane resin within the above range, the heat sealability of the barrier layer can be improved, and as a result, the heat sealability of the printing paper can also be improved.
The hydroxyl value is measured according to JIS K0070-1992, and when 1 g of the sample is acetylated, the number of mg of potassium hydroxide required to neutralize the acetic acid bonded to the hydroxyl group is measured.
 ウレタン系樹脂は、25μm厚のシートに換算した際の23℃、相対湿度50%における酸素透過度が、100.0mL/(m・day・atm)以下であることが好ましく、50.0mL/(m・day・atm)以下であることがより好ましく、25.0mL/(m・day・atm)以下であることがさらに好ましく、10.0mL/(m・day・atm)以下であることがよりさらに好ましく、3.0mL/(m・day・atm)以下であることが特に好ましい。なお、25μm厚のシートに換算した際の23℃、相対湿度50%における酸素透過度は0mL/(m・day・atm)であってもよい。
 なお、25μm厚のシートに換算した際の酸素透過度は、対象のウレタン系樹脂を用いて厚さ25μmのシートを形成し、該シートを用いて測定した酸素透過度を示す。本明細書において、上記シートの酸素透過度は、酸素透過率測定装置(MOCON社製、OX-TRAN2/22)を使用し、23℃、相対湿度50%の条件にて測定される。
The urethane resin preferably has an oxygen permeability of 100.0 mL/(m 2 ·day · atm) or less, and 50.0 mL/atm at 23 °C and 50% relative humidity when converted to a 25 μm thick sheet. ( m2・day・atm) or less, more preferably 25.0mL/( m2・day・atm) or less, and 10.0mL/( m2・day・atm) or less It is even more preferable that the amount be 3.0 mL/(m 2 ·day · atm) or less. Note that the oxygen permeability at 23° C. and 50% relative humidity when converted to a 25 μm thick sheet may be 0 mL/(m 2 ·day · atm).
Note that the oxygen permeability when converted to a 25 μm thick sheet is the oxygen permeability measured using a 25 μm thick sheet formed using the target urethane resin. In this specification, the oxygen permeability of the sheet is measured using an oxygen permeability measuring device (OX-TRAN2/22, manufactured by MOCON) under conditions of 23° C. and 50% relative humidity.
 ウレタン系樹脂のガラス転移温度は、150℃以下であることが好ましく、140℃以下であることがより好ましく、135℃以下であることが特に好ましい。なお、ウレタン系樹脂のガラス転移温度は、JIS K 7122:2012に準拠して測定される。 The glass transition temperature of the urethane resin is preferably 150°C or lower, more preferably 140°C or lower, and particularly preferably 135°C or lower. Note that the glass transition temperature of the urethane resin is measured in accordance with JIS K 7122:2012.
 ウレタン系樹脂としては、合成品を使用してもよく、合成品としては例えば国際公開第2015/016069号に記載のウレタン系樹脂等を挙げることができる。また、ウレタン系樹脂としては、市販品を使用してもよく、例えば、三井化学株式会社製の「タケラックW系(商品名)」、「タケラックWPB系(商品名)」、「タケラックWS系(商品名)」等が挙げられ、具体的には、タケラックWPB-341が例示される。その他の市販品としては、大日精化工業株式会社の「HPU W-003」(水酸基価235mgKOH/g)等が挙げられる。 As the urethane resin, a synthetic product may be used, and examples of the synthetic product include the urethane resin described in International Publication No. 2015/016069. Furthermore, as the urethane resin, commercially available products may be used, such as "Takelac W series (trade name)", "Takelac WPB series (trade name)", "Takelac WS series (trade name)" manufactured by Mitsui Chemicals, Inc. A specific example is Takelac WPB-341. Other commercially available products include "HPU W-003" (hydroxyl value 235 mgKOH/g) manufactured by Dainichiseika Kagyo Co., Ltd.
 塩化ビニリデン系樹脂は、公知の製造方法によって製造することができる。例えば、塩化ビニリデン系樹脂は、塩化ビニリデンの単独重合体(ポリ塩化ビニリデン、PVDC)や、塩化ビニリデンおよび塩化ビニリデンと共重合可能な単量体の共重合体などにより得ることができる。塩化ビニリデンと共重合可能な単量体としては、特に限定されないが、塩化ビニル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル等の(メタ)アクリル酸エステル類、アクリロニトリル、イソブチレン、酢酸ビニルなどが挙げられる。 Vinylidene chloride resin can be manufactured by a known manufacturing method. For example, the vinylidene chloride resin can be obtained from a homopolymer of vinylidene chloride (polyvinylidene chloride, PVDC), a copolymer of vinylidene chloride and a monomer copolymerizable with vinylidene chloride, and the like. Monomers that can be copolymerized with vinylidene chloride include, but are not limited to, vinyl chloride, (meth)acrylic esters such as methyl (meth)acrylate, ethyl (meth)acrylate, and butyl (meth)acrylate. , acrylonitrile, isobutylene, vinyl acetate, etc.
 塩化ビニリデン系樹脂としては、市販品を使用してもよく、例えば、旭化成株式会社製の「サランラテックスL549B」や、Solvay社製のDiofan B204等が挙げられる。 As the vinylidene chloride resin, commercially available products may be used, such as "Saran Latex L549B" manufactured by Asahi Kasei Corporation and Diofan B204 manufactured by Solvay.
 水懸濁性高分子の重量平均分子量は、好ましくは1000以上20000000以下、より好ましくは5000以上5000000以下である。なお、重量平均分子量は、ゲルパーミエイションクロマトグラフィーにより測定されるポリスチレン換算値を採用するものとする。 The weight average molecular weight of the water-suspended polymer is preferably 1,000 or more and 2,000,000 or less, more preferably 5,000 or more and 5,000,000 or less. In addition, the weight average molecular weight shall employ|adopt the polystyrene equivalent value measured by gel permeation chromatography.
 エマルション中の水懸濁性高分子の平均粒子径は、好ましくは0.001μm以上100μm以下、より好ましくは0.01μm以上10μm以下である。なお、平均粒子径は、動的光散乱法により測定することができる。 The average particle diameter of the water-suspended polymer in the emulsion is preferably 0.001 μm or more and 100 μm or less, more preferably 0.01 μm or more and 10 μm or less. Note that the average particle diameter can be measured by a dynamic light scattering method.
(水溶性高分子)
 水溶性高分子とは、水に溶解可能な樹脂である。水に溶解可能な樹脂とは、骨格となるポリマーが25℃の水に対する溶解度が10g/Lを超える高分子である。
 水溶性高分子の骨格となるポリマーとしては、ポリビニルアルコール、変性ポリビニルアルコール、デンプンおよびその誘導体、セルロース誘導体、ポリビニルピロリドン、ポリアクリル酸およびその塩、カゼイン、ポリエチレンイミン等が挙げられる。これらの中でも、ガスバリア性向上の観点から、水溶性高分子は、ポリビニルアルコールおよび変性ポリビニルアルコールよりなる群から選ばれる1種以上であることが好ましく、より好ましくは変性ポリビニルアルコールである。
 変性ポリビニルアルコールとしては、エチレン変性ポリビニルアルコール、カルボキシ変性ポリビニルアルコール、珪素変性ポリビニルアルコール、アセトアセチル変性ポリビニルアルコール、ジアセトン変性ポリビニルアルコール等が挙げられる。これらの中でも、変性ポリビニルアルコールは、エチレン変性ポリビニルアルコール、カルボキシ変性ポリビニルアルコール、珪素変性ポリビニルアルコール、およびアセトアセチル変性ポリビニルアルコールよりなる群から選ばれる1種以上であることが好ましく、エチレン変性ポリビニルアルコール、およびカルボキシ変性ポリビニルアルコールよりなる群から選ばれる1種以上であることがより好ましく、エチレン変性ポリビニルアルコールであることがさらに好ましい。
 ポリビニルアルコールおよび変性ポリビニルアルコールには、完全ケン化型物および部分ケン型物があるが、完全ケン化型であることが好ましい。完全ケン化とは、ケン化度が96%超であることを意味する。なお、ケン化度は、JIS K 6726:1994に準拠した方法で測定される値である。
(Water-soluble polymer)
A water-soluble polymer is a resin that can be dissolved in water. A water-soluble resin is a polymer whose backbone polymer has a solubility in water at 25° C. of more than 10 g/L.
Examples of the polymer serving as the backbone of the water-soluble polymer include polyvinyl alcohol, modified polyvinyl alcohol, starch and its derivatives, cellulose derivatives, polyvinylpyrrolidone, polyacrylic acid and its salts, casein, polyethyleneimine, and the like. Among these, from the viewpoint of improving gas barrier properties, the water-soluble polymer is preferably one or more selected from the group consisting of polyvinyl alcohol and modified polyvinyl alcohol, and more preferably modified polyvinyl alcohol.
Examples of the modified polyvinyl alcohol include ethylene-modified polyvinyl alcohol, carboxy-modified polyvinyl alcohol, silicon-modified polyvinyl alcohol, acetoacetyl-modified polyvinyl alcohol, and diacetone-modified polyvinyl alcohol. Among these, the modified polyvinyl alcohol is preferably one or more selected from the group consisting of ethylene-modified polyvinyl alcohol, carboxy-modified polyvinyl alcohol, silicon-modified polyvinyl alcohol, and acetoacetyl-modified polyvinyl alcohol; and carboxy-modified polyvinyl alcohol, and more preferably ethylene-modified polyvinyl alcohol.
Polyvinyl alcohol and modified polyvinyl alcohol include completely saponified types and partially saponified types, but completely saponified types are preferable. Complete saponification means that the degree of saponification is greater than 96%. Note that the degree of saponification is a value measured by a method based on JIS K 6726:1994.
 水溶性高分子として市販品を用いてもよく、例えば、変性ポリビニルアルコールとして、株式会社クラレ製の「エクセバール(商品名)」等が挙げられる。 Commercially available products may be used as the water-soluble polymer; for example, examples of modified polyvinyl alcohol include "Exeval (trade name)" manufactured by Kuraray Co., Ltd.
 バリア層中の水懸濁性高分子および水溶性高分子の含有量は、バリア性向上の観点から、バリア層の固形分中、好ましくは10質量%以上、より好ましくは30質量%以上、さらに好ましくは50質量%以上、よりさらに好ましくは60質量%以上であり、そして、その上限は、100質量%である。 From the viewpoint of improving barrier properties, the content of the water-suspended polymer and water-soluble polymer in the barrier layer is preferably 10% by mass or more, more preferably 30% by mass or more, based on the solid content of the barrier layer. Preferably it is 50% by mass or more, even more preferably 60% by mass or more, and the upper limit is 100% by mass.
 なお、バリア層用塗工液を紙基材に塗工することでバリア層を形成してもよく、予めバリア層用塗工液を塗工した樹脂フィルムを積層することによって、バリア層を形成してもよい。また、前記樹脂フィルムがシーラント層であってもよい。 Note that the barrier layer may be formed by applying the barrier layer coating liquid to a paper base material, or by laminating resin films coated with the barrier layer coating liquid in advance. You may. Moreover, the resin film may be a sealant layer.
 バリア層を塗工により形成する場合、上記の水懸濁性高分子および水溶性高分子から選択される少なくとも1つに加えて、層状無機化合物を含有させることが好ましい。すなわち、バリア層が水懸濁性高分子および層状無機化合物を含有するか、または、水溶性高分子および層状無機化合物を含有することが好ましい。バリア層に層状無機化合物を含有させることで、バリア性をさらに高める(酸素透過度をさらに低減する)ことができる。 When forming the barrier layer by coating, it is preferable to contain a layered inorganic compound in addition to at least one selected from the water-suspending polymer and water-soluble polymer described above. That is, it is preferable that the barrier layer contains a water-suspended polymer and a layered inorganic compound, or a water-soluble polymer and a layered inorganic compound. By containing a layered inorganic compound in the barrier layer, the barrier properties can be further improved (oxygen permeability can be further reduced).
 層状無機化合物の平均長さは、好ましくは1μm以上100μm以下、より好ましくは2μm以上50μm以下、さらに好ましくは3μm以上20μm以下である。ここで、層状無機化合物の平均長さとは、層状無機化合物の平面方向における長軸の平均長さである。平均長さが1μm以上であると、バリア層中における層状無機化合物が紙支持体に対して平行に配列し易くなる。また、平均長さが100μm以下であると層状無機化合物の一部がバリア層から突出する懸念が少なくなる。 The average length of the layered inorganic compound is preferably 1 μm or more and 100 μm or less, more preferably 2 μm or more and 50 μm or less, and even more preferably 3 μm or more and 20 μm or less. Here, the average length of the layered inorganic compound is the average length of the long axis of the layered inorganic compound in the plane direction. When the average length is 1 μm or more, the layered inorganic compound in the barrier layer tends to be arranged parallel to the paper support. Further, when the average length is 100 μm or less, there is less concern that a part of the layered inorganic compound will protrude from the barrier layer.
 層状無機化合物のアスペクト比は、好ましくは200以上、より好ましくは300以上、さらに好ましくは500以上、よりさらに好ましくは800以上である。なお、層状無機化合物のアスペクト比の上限値は特に限定されるものではないが、好ましくは10000以下、より好ましくは5000以下、さらに好ましくは2000以下である。
 層状無機化合物のアスペクト比が上記範囲内であると、バリア性が向上すると共に、バリア層の塗工量を低減し、印刷用紙のリサイクル性や軽量性を高めることができる。
 ここで、アスペクト比とは、バリア層の断面の顕微鏡拡大写真から算出される値であって、層状無機化合物の長さをその厚さで除した値の平均値(サンプル20~30個の相加平均値)である。
The aspect ratio of the layered inorganic compound is preferably 200 or more, more preferably 300 or more, still more preferably 500 or more, even more preferably 800 or more. The upper limit of the aspect ratio of the layered inorganic compound is not particularly limited, but is preferably 10,000 or less, more preferably 5,000 or less, and even more preferably 2,000 or less.
When the aspect ratio of the layered inorganic compound is within the above range, the barrier properties are improved, and the coating amount of the barrier layer can be reduced, so that the recyclability and lightness of the printing paper can be improved.
Here, the aspect ratio is a value calculated from an enlarged microscopic photograph of the cross section of the barrier layer, and is the average value of the length of the layered inorganic compound divided by its thickness (the phase ratio of 20 to 30 samples). average value).
 層状無機化合物の厚さは、好ましくは100nm以下、より好ましくは50nm以下、さらに好ましくは30nm以下である。なお、層状無機化合物の厚さの下限値は特に限定されるものではないが、好ましくは2nm以上である。ここで、層状無機化合物の厚さとは、バリア層の断面の顕微鏡拡大写真から測定される層状無機化合物の平均厚さ(サンプル20~30個の相加平均値)である。なお、層状無機化合物の長軸に垂直な方向を厚さとする。
 層状無機化合物の平均厚さを上記範囲内とすることにより、バリア層中における層状無機化合物の積層数が大きくなるため、バリア層はより高い酸素バリア性を発揮することができる。特に、アスペクト比が大きくかつ厚さの小さい層状無機化合物を用いると、バリア層は、空隙のない稠密な膜を形成する。これは、バリア層の断面の顕微鏡拡大写真からも観察できる現象である。
The thickness of the layered inorganic compound is preferably 100 nm or less, more preferably 50 nm or less, even more preferably 30 nm or less. Note that the lower limit of the thickness of the layered inorganic compound is not particularly limited, but is preferably 2 nm or more. Here, the thickness of the layered inorganic compound is the average thickness of the layered inorganic compound (arithmetic average value of 20 to 30 samples) measured from an enlarged microscopic photograph of the cross section of the barrier layer. Note that the thickness is defined as the direction perpendicular to the long axis of the layered inorganic compound.
By setting the average thickness of the layered inorganic compound within the above range, the number of layers of the layered inorganic compound in the barrier layer increases, so that the barrier layer can exhibit higher oxygen barrier properties. In particular, when a layered inorganic compound with a large aspect ratio and a small thickness is used, the barrier layer forms a dense film without voids. This phenomenon can also be observed from an enlarged microscopic photograph of the cross section of the barrier layer.
 層状無機化合物の具体例としては、雲母族、脆雲母族等のマイカ、ベントナイト、カオリナイト(カオリン鉱物、以下「カオリン」とも称する)、パイロフィライト、タルク、スメクタイト、バーミキュライト、緑泥石、セプテ緑泥石、蛇紋石、スチルプノメレーン、モンモリロナイトなどが挙げられる。これらの中でも特に、水蒸気バリア性を向上させる観点から、層状無機化合物は、マイカ、ベントナイトおよびカオリンよりなる群から選ばれる少なくとも1種であることが好ましく、マイカおよびカオリンから選択される少なくとも1種であることより好ましい。マイカとしては、合成マイカ、白雲母(マスコバイト)、絹雲母(セリサイト)、金雲母(フロコパイト)、黒雲母(バイオタイト)、フッ素金雲母(人造雲母)、紅マイカ、ソーダマイカ、バナジンマイカ、イライト、チンマイカ、パラゴナイト、ブリトル雲母などが挙げられる。中でも、高いアスペクト比を有することから、マイカとしては膨潤性マイカが好ましい。また、カオリンは、天然物であっても合成物(エンジニアードカオリン)であってもよい。
 これらの中でも、マイカ、ベントナイトおよびカオリンよりなる群から選択される少なくとも1種であることが好ましく、マイカおよびカオリンから選択される少なくとも1種であることがより好ましい。バリア層が上述したような層状無機化合物を含有することで、高湿度条件下における印刷用紙のバリア性をより効果的に高めることができる。
Specific examples of layered inorganic compounds include mica such as mica group and brittle mica group, bentonite, kaolinite (kaolin mineral, hereinafter also referred to as "kaolin"), pyrophyllite, talc, smectite, vermiculite, chlorite, and septechlorite. Examples include stone, serpentine, stilpnomelaine, and montmorillonite. Among these, from the viewpoint of improving water vapor barrier properties, the layered inorganic compound is preferably at least one selected from the group consisting of mica, bentonite, and kaolin, and at least one selected from mica and kaolin. It is preferable to have something. Examples of mica include synthetic mica, muscovite, sericite, phlogopite, biotite, fluorophlogopite (artificial mica), red mica, soda mica, vanadium mica, Examples include illite, chimica, paragonite, and brittle mica. Among these, swellable mica is preferred as mica because it has a high aspect ratio. Further, kaolin may be a natural product or a synthetic product (engineered kaolin).
Among these, at least one selected from the group consisting of mica, bentonite, and kaolin is preferable, and at least one selected from mica and kaolin is more preferable. When the barrier layer contains the above-described layered inorganic compound, the barrier properties of the printing paper under high humidity conditions can be more effectively enhanced.
 層状無機化合物をバリア層に含有させる場合、層状無機化合物の含有量は、特に限定されないが、バリア層中の水懸濁性高分子または水溶性高分子100質量部に対して、好ましくは0.5質量部以上500質量部以下、より好ましくは1質量部以上300質量部以下、さらに好ましくは2質量部以上200質量部以下、よりさらに好ましくは5質量部以上150質量部以下、特に好ましくは10質量部以上70質量部以下である。層状無機化合物の含有量を上記範囲内とすることにより、高湿度条件下における印刷用紙のバリア性をより効果的に高めることができる。 When the layered inorganic compound is contained in the barrier layer, the content of the layered inorganic compound is not particularly limited, but it is preferably 0.00 parts by mass based on 100 parts by mass of the water-suspended polymer or water-soluble polymer in the barrier layer. 5 parts by mass or more and 500 parts by mass or less, more preferably 1 part by mass or more and 300 parts by mass or less, even more preferably 2 parts by mass or more and 200 parts by mass or less, even more preferably 5 parts by mass or more and 150 parts by mass or less, particularly preferably 10 parts by mass or more It is not less than 70 parts by mass and not more than 70 parts by mass. By controlling the content of the layered inorganic compound within the above range, the barrier properties of the printing paper under high humidity conditions can be more effectively enhanced.
 バリア層は、水懸濁性高分子および水溶性高分子から選択される少なくとも1つと層状無機化合物の他に、顔料、分散剤、界面活性剤、消泡剤、濡れ剤、染料、色合い調整剤、増粘剤などを含有してもよい。 The barrier layer includes at least one selected from a water-suspending polymer and a water-soluble polymer, a layered inorganic compound, and a pigment, a dispersant, a surfactant, an antifoaming agent, a wetting agent, a dye, and a color adjusting agent. , a thickener, etc. may be contained.
 バリア層を塗工により設ける場合、バリア層用塗工液の塗工量は、固形分として、好ましくは0.1g/m以上10g/m以下、より好ましくは0.5g/m以上5g/m以下である。 When the barrier layer is provided by coating, the coating amount of the coating liquid for the barrier layer is preferably 0.1 g/m 2 or more and 10 g/m 2 or less, more preferably 0.5 g/m 2 or more as solid content. It is 5g/ m2 or less.
(バリア性を有する樹脂)
 バリア層を、バリア性を有する樹脂を溶融押出、接着剤等により積層して形成する場合、バリア性を有する樹脂としては、エチレン-ビニルアルコール共重合体(EVOH)、MXナイロンが例示される。
 EVOHとしては、上市されている製品を使用してもよく、例えば、クラレ株式会社製のエバールシリーズが例示される。
 また、MXナイロンとしては、三菱ガス化学株式会社製のMXD6が例示される。
(Resin with barrier properties)
When the barrier layer is formed by laminating resins having barrier properties by melt extrusion, adhesive, etc., examples of the resins having barrier properties include ethylene-vinyl alcohol copolymer (EVOH) and MX nylon.
As the EVOH, commercially available products may be used, such as the EVAL series manufactured by Kuraray Co., Ltd., for example.
Further, as the MX nylon, MXD6 manufactured by Mitsubishi Gas Chemical Co., Ltd. is exemplified.
(蒸着層)
 バリア層として、紙基材に直接、蒸着層を形成してもよく、また、蒸着層を形成した樹脂フィルムを積層してバリア層を形成してもよい。
 なお、蒸着層は、金属蒸着層および無機蒸着層よりなる群から選択される。
 金属蒸着層の蒸着金属としては、アルミニウム(Al)が例示される。また、無機蒸着層蒸着する無機化合物としては、シリカ(SiOx)、アルミナ(AlOx)が例示できる。
 金属蒸着層の厚さは、所望のバリア性が得られる範囲で特に限定されない。
(vapor deposited layer)
As a barrier layer, a vapor deposited layer may be formed directly on a paper base material, or a resin film having a vapor deposited layer formed thereon may be laminated to form a barrier layer.
Note that the deposited layer is selected from the group consisting of a metal deposited layer and an inorganic deposited layer.
Aluminum (Al) is exemplified as the vapor-deposited metal of the metal vapor-deposited layer. Furthermore, examples of the inorganic compound to be deposited in the inorganic vapor deposition layer include silica (SiOx) and alumina (AlOx).
The thickness of the metal vapor deposition layer is not particularly limited as long as the desired barrier properties can be obtained.
 バリア層として、蒸着層を設けた樹脂フィルムに接着剤を塗布し、紙基材と積層するしてもよい。
 樹脂フィルムとしては、ポリエチレンテレフタレート(PET)等のポリエステル系樹脂フィルム、各種ナイロン等のポリアミド系樹脂フィルム、ポリエチレン系樹脂、ポリプロピレン系樹脂、環状ポリオレフィン樹脂、ポリスチレン系樹脂、アクリロニトリル-スチレン共重合体(AS樹脂)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、ポリブデン樹脂フィルム等のポリオレフィンフィルム、ポリ塩化ビニル系樹脂、ポリカーボネート系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、ポリアリールフタレイト樹脂、シリコーン系樹脂、ポリスルホン系樹脂、ポリフェニレンスルフィド系樹脂、ポリエーテルスルホン系樹脂、ポリウレタン系樹脂、セルロース系樹脂、ポリ(メタ)アクリル系樹脂、ポリ塩化ビニリデンフィルム、アセタール系樹脂フィルム、フッ素系樹脂、等が挙げられ、特に、ポリプロピレン系樹脂、ポリエステル系樹脂、または、ポリアミド系樹脂が好ましい。
As a barrier layer, an adhesive may be applied to a resin film provided with a vapor deposition layer, and the resin film may be laminated with a paper base material.
Examples of resin films include polyester resin films such as polyethylene terephthalate (PET), polyamide resin films such as various nylons, polyethylene resins, polypropylene resins, cyclic polyolefin resins, polystyrene resins, and acrylonitrile-styrene copolymers (AS). (resin), acrylonitrile-butadiene-styrene copolymer (ABS resin), polyolefin film such as polybutene resin film, polyvinyl chloride resin, polycarbonate resin, polyimide resin, polyamideimide resin, polyaryl phthalate resin, silicone resins, polysulfone resins, polyphenylene sulfide resins, polyether sulfone resins, polyurethane resins, cellulose resins, poly(meth)acrylic resins, polyvinylidene chloride films, acetal resin films, fluorine resins, etc. Among them, polypropylene resins, polyester resins, and polyamide resins are particularly preferred.
[印刷物および印刷物の製造方法]
 本実施形態の印刷物は、上述した紫外線レーザー印刷用紙から得られた印刷物であって、少なくとも一部に、変色された酸化チタンを有する印刷領域を有する。非印刷領域における酸化チタンに由来するラマン強度に対する、前記印刷領域における酸化チタンに由来するラマン強度の比は、0.70以下であることが好ましい。また、前記変色された酸化チタンを有する印刷領域は、紫外線レーザーの照射により変色した酸化チタンを含有する領域であり、紫外線レーザー照射領域、すなわち、印刷領域である。
 また、本実施形態の印刷物の製造方法は、上述した印刷用紙に紫外線レーザーを照射して、照射領域を変色させることにより印刷する工程を有する。
 本実施形態の印刷物の製造方法に使用される印刷用紙としては、上述した印刷用紙が例示され、好ましい範囲も同様である。また、本実施形態の印刷物の製造方法において、少なくとも紫外線レーザー照射領域の紙基材中の酸化チタンの含有量が0.5質量%以上であり、酸化チタンの結晶子サイズが30nm以上であればよく、非照射領域の紙基材が上記の要件を満たしていなくてもよい。
[Printed matter and method of manufacturing printed matter]
The printed matter of this embodiment is a printed matter obtained from the above-mentioned ultraviolet laser printing paper, and has at least a portion of the printed area containing discolored titanium oxide. The ratio of the Raman intensity originating from titanium oxide in the printing area to the Raman intensity originating from titanium oxide in the non-printing area is preferably 0.70 or less. Further, the printed area having the discolored titanium oxide is an area containing titanium oxide that has been discolored by irradiation with an ultraviolet laser, and is an ultraviolet laser irradiation area, that is, a printing area.
Furthermore, the method for manufacturing printed matter of this embodiment includes a step of printing by irradiating the above-described printing paper with an ultraviolet laser to change color in the irradiated area.
As the printing paper used in the method for manufacturing printed matter of this embodiment, the above-mentioned printing paper is exemplified, and the preferable range is also the same. Further, in the method for producing printed matter of the present embodiment, if the content of titanium oxide in the paper base material in at least the ultraviolet laser irradiation area is 0.5% by mass or more, and the crystallite size of titanium oxide is 30 nm or more, Often, the paper substrate in the non-irradiated areas does not have to meet the above requirements.
 紫外線レーザーの照射は、印刷領域における酸化チタンに由来するラマン強度と非印刷領域における酸化チタンに由来するラマン強度との比が0.70以下となるように、紫外線レーザーを照射することが好ましい。すなわち、本実施形態の印刷物において、非印刷領域における酸化チタンに由来するラマン強度に対する、印刷領域における酸化チタンに由来するラマン強度の比は、0.70以下であることが好ましい。
 なお、印刷物において、印刷領域とは、印刷可能領域において、変色された酸化チタンを含有する領域(部分)を意味し、紫外線レーザーにより印刷された領域(部分)である。非印刷領域とは、印刷可能領域において印刷されていない領域(部分)を意味する。また、印刷可能領域とは、紫外線レーザー印刷用紙または印刷物において、紫外線レーザーによる印刷が可能な領域と、存在する場合は紫外線レーザーにより印刷された領域(部分)とを合わせた酸化チタンを含有する領域全体を意味し、非印刷可能領域とは、紫外線レーザー印刷用紙または印刷物における印刷可能領域以外の領域を意味する。
 印刷領域における酸化チタンに由来するラマン強度と、非印刷領域における酸化チタンに由来するラマン強度との比(印刷領域のラマン強度/非印刷領域のラマン強度)が、0.70以下であるように印刷することが好ましい。ラマン強度の比を上記範囲内とすることにより、視認性に優れる印刷物が得られる。
 上記のラマン強度の比(印刷領域のラマン強度/非印刷領域のラマン強度)は、酸化チタンとしてルチル型の酸化チタンを使用した場合には、酸化チタンに由来するラマン強度として、447±10cm-1の波数範囲の最大値のラマン強度を対比する。また、酸化チタンとしてアナターゼ型の酸化チタンを使用する場合には、酸化チタンに由来するラマン強度として、516±10cm-1の波数範囲の最大値のラマン強度を対比する。
 なお、ルチル型の酸化チタンとアナターゼ型の酸化チタンが共存する場合には、ルチル型の酸化チタンに由来するラマン強度で対比することとする。
The ultraviolet laser irradiation is preferably performed such that the ratio of the Raman intensity derived from titanium oxide in the printed area to the Raman intensity derived from titanium oxide in the non-printed area is 0.70 or less. That is, in the printed matter of this embodiment, the ratio of the Raman intensity originating from titanium oxide in the printing area to the Raman intensity originating from titanium oxide in the non-printing area is preferably 0.70 or less.
In the printed matter, the printed area refers to an area (portion) containing discolored titanium oxide in the printable area, and is an area (portion) printed with an ultraviolet laser. The non-printing area means an area (portion) that is not printed in the printable area. In addition, the printable area refers to the area containing titanium oxide, which is the area that can be printed by ultraviolet laser and the area (portion) printed by ultraviolet laser, if any, on ultraviolet laser printing paper or printed matter. The non-printable area means the area other than the printable area on the ultraviolet laser printing paper or printed matter.
The ratio of the Raman intensity originating from titanium oxide in the printing area to the Raman intensity originating from titanium oxide in the non-printing area (Raman intensity in the printing area/Raman intensity in the non-printing area) is 0.70 or less. Printing is preferred. By setting the Raman intensity ratio within the above range, printed matter with excellent visibility can be obtained.
When rutile-type titanium oxide is used as the titanium oxide, the above Raman intensity ratio (Raman intensity of printed area/Raman intensity of non-printed area) is 447 ± 10 cm - as the Raman intensity derived from titanium oxide. The Raman intensity of the maximum value in the wave number range of 1 is compared. Further, when anatase titanium oxide is used as the titanium oxide, the Raman intensity of the maximum value in the wave number range of 516±10 cm −1 is compared as the Raman intensity derived from titanium oxide.
Note that when rutile-type titanium oxide and anatase-type titanium oxide coexist, the Raman intensity derived from rutile-type titanium oxide is used for comparison.
 本実施形態で得られる印刷物は、非印刷領域が白色であり、印刷領域が黒色であることが好ましい。
 非印刷領域は、マンセル表色系における明度が10番、すなわち、白色であることが好ましい。一方、印刷領域は、マンセル表色系における0番~8番のいずれかであることが好ましく、0~6番であることがより好ましく、0~4番であることがさらに好ましい。
 上記のマンセル表色系における色を得るために、印刷用紙における紙基材中の酸化チタンの種類や含有量、紙基材を構成するパルプの長さ加重平均繊維長、その他の特性(紙基材を構成するパルプの保水度、微細繊維量、繊維幅等)、紫外線レーザーの照射条件(例えば、平均出力、繰返し周波数、波長など)を適宜調整することが好ましい。
In the printed matter obtained in this embodiment, it is preferable that the non-printing area is white and the printing area is black.
It is preferable that the non-printing area has a brightness of No. 10 in the Munsell color system, that is, white. On the other hand, the printing area is preferably one of numbers 0 to 8 in the Munsell color system, more preferably numbers 0 to 6, and even more preferably numbers 0 to 4.
In order to obtain the colors in the above Munsell color system, the type and content of titanium oxide in the paper base material of printing paper, the length-weighted average fiber length of the pulp that makes up the paper base material, and other characteristics (paper base It is preferable to adjust the water retention degree of the pulp constituting the material, the amount of fine fibers, the fiber width, etc.) and the irradiation conditions of the ultraviolet laser (for example, average output, repetition frequency, wavelength, etc.) as appropriate.
〔紫外線レーザーの照射条件〕
 紫外線レーザーの波長としては、印刷領域の視認性を向上させる観点から、好ましくは370nm以下、より好ましくは365nm以下、さらに好ましくは360nm以下であり、そして、好ましくは260nm以上、より好ましくは340nm以上、さらに好ましくは350nm以上である。
[Ultraviolet laser irradiation conditions]
The wavelength of the ultraviolet laser is preferably 370 nm or less, more preferably 365 nm or less, even more preferably 360 nm or less, and preferably 260 nm or more, more preferably 340 nm or more, from the viewpoint of improving the visibility of the printed area. More preferably, it is 350 nm or more.
 紫外線レーザーの平均出力は、印刷領域の視認性を向上させる観点から、好ましくは0.3W以上、より好ましくは0.8W以上、さらに好ましくは1.2W以上、よりさらに好ましくは1.8W以上であり、そして、経済性の観点から、好ましくは30W以下、より好ましくは25W以下、さらに好ましくは20W以下、よりさらに好ましくは15W以下、よりさらに好ましくは10W以下、よりさらに好ましくは6W以下である。 The average output of the ultraviolet laser is preferably 0.3 W or more, more preferably 0.8 W or more, still more preferably 1.2 W or more, even more preferably 1.8 W or more, from the viewpoint of improving the visibility of the printed area. And from the viewpoint of economy, it is preferably 30 W or less, more preferably 25 W or less, even more preferably 20 W or less, even more preferably 15 W or less, even more preferably 10 W or less, even more preferably 6 W or less.
 紫外線レーザーの繰返周波数(周波数)は、印刷領域の視認性を向上させる観点から、好ましくは10kHz以上、より好ましくは20kHz以上、さらに好ましくは30kHz以上であり、そして、好ましくは100kHz以下、より好ましくは80kHz以下、さらに好ましくは60kHz以下である。 The repetition frequency (frequency) of the ultraviolet laser is preferably 10 kHz or more, more preferably 20 kHz or more, even more preferably 30 kHz or more, and preferably 100 kHz or less, more preferably is 80 kHz or less, more preferably 60 kHz or less.
 紫外線レーザーのスポット径は、鮮明な画像を得る観点および印刷容易性の観点から、好ましくは10μm以上、より好ましくは20μm以上、さらに好ましくは30μm以上であり、そして、好ましくは300μm以下、より好ましくは240μm以下、さらに好ましくは180μm以下、さらに好ましくは120μm以下である。 The spot diameter of the ultraviolet laser is preferably 10 μm or more, more preferably 20 μm or more, even more preferably 30 μm or more, and preferably 300 μm or less, more preferably It is 240 μm or less, more preferably 180 μm or less, even more preferably 120 μm or less.
 紫外線レーザーのスキャンスピードは、高速印刷および印刷領域の視認性の観点から、好ましくは500mm/sec以上、より好ましくは1000mm/sec以上、さらに好ましくは2000mm/sec以上であり、そして、好ましくは7000mm/sec以下、より好ましくは6000mm/sec以下、さらに好ましくは5000mm/sec以下である。 The scanning speed of the ultraviolet laser is preferably 500 mm/sec or more, more preferably 1000 mm/sec or more, even more preferably 2000 mm/sec or more, and preferably 7000 mm/sec or more, from the viewpoint of high-speed printing and visibility of the printed area. sec or less, more preferably 6000 mm/sec or less, still more preferably 5000 mm/sec or less.
 紫外線レーザーの塗りつぶし間隔(ラインピッチ)は、鮮明な画像を得る観点、および装置の入手容易性の観点から、好ましくは10μm以上、より好ましくは20μm以上、さらに好ましくは30μm以上であり、そして、好ましくは300μm以下、より好ましくは250μm以下、さらに好ましくは200μm以下である。 The filling interval (line pitch) of the ultraviolet laser is preferably 10 μm or more, more preferably 20 μm or more, and still more preferably 30 μm or more, from the viewpoint of obtaining a clear image and the ease of obtaining the device. is 300 μm or less, more preferably 250 μm or less, even more preferably 200 μm or less.
〔印刷物の製造方法の態様〕
 本発明の印刷物の製造方法は、種々の態様で行うことができる。
 以下に、本実施形態の印刷物の製造方法が適用可能な種々な態様について例示するが、本実施形態の印刷物の製造方法は、下記の態様に限定されるものではない。印刷する情報は特に限定されないが、可変情報であることが好ましい。
 本実施形態の印刷物の製造方法は、インラインで行われることが好ましい。
(1)包装体への直接印刷
 本実施形態の印刷物の製造方法の第一の実施態様は、本実施形態の印刷用紙を有する包装体に情報を印刷する方法であって、梱包ライン上を移動中、または間欠停止中の包装体に直接紫外線レーザーにて印刷する工程を有する。
 第一の印刷物の製造方法は、本実施形態の紫外線レーザー印刷用紙にて包装体を作製し、紫外線レーザーにて直接印刷する。なお、少なくとも包装体の印刷される領域の最外層が、前記の印刷用紙にて作製されていればよい。
 また、包装体としては、段ボール、箱等が例示され、該包装体の側面または上面に紫外線レーザーにて直接印刷することが好ましい。
[Aspects of printed matter manufacturing method]
The method for producing printed matter of the present invention can be carried out in various ways.
Below, various aspects to which the printed matter manufacturing method of this embodiment can be applied will be illustrated, but the printed matter manufacturing method of this embodiment is not limited to the following aspects. The information to be printed is not particularly limited, but preferably variable information.
It is preferable that the printed matter manufacturing method of this embodiment is performed in-line.
(1) Direct printing on packaging The first embodiment of the method for producing printed matter of this embodiment is a method of printing information on packaging having the printing paper of this embodiment, in which the printed matter is moved on a packaging line. It has a process of directly printing with an ultraviolet laser on the package that is in the middle or intermittently stopped.
In the first method for producing printed matter, a package is produced using the ultraviolet laser printing paper of this embodiment, and directly printed with an ultraviolet laser. Note that it is sufficient that at least the outermost layer of the printed area of the package is made of the above-mentioned printing paper.
Furthermore, examples of the package include cardboard, boxes, etc., and it is preferable to print directly on the side or top surface of the package using an ultraviolet laser.
(2)ラベルへの印刷
 本実施形態の印刷物の製造方法の第二の実施態様は、本実施形態の印刷用紙を有するラベルに情報を印刷する方法である。該ラベルの印刷面を構成する印刷用紙が、本実施形態の印刷用紙である。
 印刷されたラベルは、ラベル貼り付け装置を用いて包装体に貼付することが好ましい。ラベル貼り付け装置としては、各種のラベル貼り付け装置が提案されている。
 第1のラベル貼り付け装置としては、ロール状に巻いたラベル原紙に接着剤を付与した後に物品に貼付する。より具体的には、ロール状に巻いたラベル原紙を1枚ずつ所定の長さに切断する切断手段と、この切断手段によって切断されたラベル原紙を、接着剤が塗布されたラベル原紙保持体によって受取り、このラベル原紙の裏面に接着剤を付着させる糊付け搬送手段と、この糊付け搬送手段から接着剤が付与されたラベル原紙(ラベル)を受け取って容器等の物品に貼付ける貼着手段とを備えたロールラベラにおいて、上記切断手段と糊付け搬送手段との間に、外面にラベル保持面を有する回転搬送手段を設けたロールラベラが例示され、特開平6-64637号公報が例示される。
 また、ロール状に巻いたラベル原紙を一枚ずつ所定の長さに切断する切断手段と、貼付ロールに受け渡す受渡ロールと、貼付ロールに保持されたラベル原紙に糊を付与する糊付けロールとを有するロールラベラや、前記受渡ロールを不要とした態様が例示される。
 紫外線レーザーの照射は、ロール状に巻いたラベル原紙を所定の長さに切断する前、または切断後であって次のロール等への受け渡し前であることが好ましい。ロールラベラの態様に合わせて、ロール状に巻いたラベル原紙の表面または裏面が、包装体に貼付した際の表面または裏面となるため、これに合わせて紫外線レーザーの照射を行う。
(2) Printing on Labels The second embodiment of the method for producing printed matter of this embodiment is a method of printing information on a label having the printing paper of this embodiment. The printing paper forming the printing surface of the label is the printing paper of this embodiment.
Preferably, the printed label is applied to the package using a label application device. Various label pasting devices have been proposed as label pasting devices.
The first label pasting device applies an adhesive to a roll of label base paper and then pastes it onto an article. More specifically, there is a cutting means for cutting a roll of label paper into a predetermined length one by one, and a label paper holder coated with adhesive to cut the label paper cut by the cutting means using a label paper holder coated with adhesive. It is equipped with a gluing conveyance means for receiving and applying an adhesive to the back side of the label base paper, and an adhesion means for receiving the label base paper (label) to which adhesive has been applied from the gluing conveyance means and pasting it on an article such as a container. An example of a roll labeler is a roll labeler in which a rotary conveying means having a label holding surface on the outer surface is provided between the cutting means and the gluing conveying means, as disclosed in Japanese Patent Application Laid-Open No. 6-64637.
It also includes a cutting means that cuts the rolled label paper into a predetermined length one by one, a delivery roll that transfers the label paper to the pasting roll, and a gluing roll that applies glue to the label base paper held by the pasting roll. Examples include a roll labeler that has a roll labeler and an embodiment that does not require the delivery roll.
It is preferable that the irradiation with the ultraviolet laser be performed before cutting the rolled label base paper into a predetermined length, or after cutting the label base paper and before transferring it to the next roll or the like. Depending on the configuration of the roll labeler, the front or back side of the label base paper wound into a roll becomes the front or back side when it is attached to the package, so the ultraviolet laser is irradiated accordingly.
 第2のラベル貼り付け装置は、ラベルとして、粘着ラベルロールを使用する。
 剥離紙付きの粘着ラベルロールを使用する場合には、例えば、粘着ラベルと剥離紙を分離する剥離紙分離手段と、剥離紙が分離された粘着ラベルを受け取る受渡ロールと、受渡ロールから粘着ラベルを吸引して、物品(包装体)に貼付する貼付ロールとを有する貼り付け装置が例示される。紫外線レーザーによる照射は、剥離紙を分離する前、または剥離紙分離後であって貼付ロールに担持される前に行うことが好ましい。
 また、剥離紙付きの粘着ラベルロールをセットし、粘着ラベルと剥離紙とを分離する機構を有し、分離直後にラベルを貼付する機構を有し、セットされた粘着ラベルロールから剥離紙を分離するまでの間に紫外線レーザーにより印刷する装置が例示される。上記の粘着ラベルの貼付方法は、流し貼りとも呼ばれる。
 さらに、剥離紙付きの粘着ラベルロールをセットし、粘着ラベルから剥離紙を分離する機構を有し、粘着ラベルを物品(包装体)に貼付する機構を有し、前記貼付する機構が、シリンジ方式、エアジェット方式、またはロボットアーム方式であるラベル貼り付け装置が例示される。紫外線レーザーによる照射は、セットされた剥離紙付きの粘着ラベルロールから、剥離紙を分離するまでの間で行われることが好ましい。
The second labeling device uses adhesive label rolls as labels.
When using an adhesive label roll with a release paper, for example, a release paper separating means for separating the adhesive label and the release paper, a delivery roll for receiving the adhesive label from which the release paper has been separated, and a delivery roll for removing the adhesive label from the delivery roll are used. An example is a pasting device that includes a pasting roll that applies suction to a product (packaging body). Irradiation with an ultraviolet laser is preferably carried out before the release paper is separated, or after the release paper is separated and before the film is supported on a pasting roll.
It also has a mechanism that sets an adhesive label roll with release paper, separates the adhesive label and release paper, and affixes the label immediately after separation, and separates the release paper from the set adhesive label roll. An example is an apparatus that prints with an ultraviolet laser during the process. The adhesive label application method described above is also referred to as flow-adhesion.
Furthermore, it has a mechanism for setting an adhesive label roll with release paper and separating the release paper from the adhesive label, and a mechanism for pasting the adhesive label on the article (packaging body), and the pasting mechanism is a syringe type. Examples include a labeling device that uses a , an air jet method, or a robot arm method. It is preferable that the irradiation with the ultraviolet laser be performed from the set pressure-sensitive adhesive label roll with release paper until the release paper is separated.
 ラベルとして、ライナレス粘着ラベルを使用してもよい。ライナレス粘着ラベルは、剥離紙のないラベルであり、剥離紙付きの粘着ラベルロールを使用する場合に比して、1ロールのラベル枚数が多く、剥離紙が存在しないため、安価であるという特徴を有する。
 ライナレス粘着ラベルを使用したラベル貼り付け装置としては、ライナレスラベルロールをセットする機構と、ライナレスラベルを1枚ずつに切断する切断機構と、切断されたライナレスラベルを物品(包装体)に貼付する貼付機構を有し、前記貼付機構が、シリンダー方式またはロボットアーム方式である装置が例示される。紫外線レーザーの照射による印刷は、ライナレスラベルロールをセットする機構から切断機構までの間、または、切断されたライナレスラベルが貼付機構に送られる間であることが好ましい。
A linerless adhesive label may be used as the label. Linerless adhesive labels are labels without release paper, and compared to the case of using adhesive label rolls with release paper, the number of labels per roll is larger, and because there is no release paper, they are cheaper. have
A label pasting device using linerless adhesive labels includes a mechanism for setting a linerless label roll, a cutting mechanism for cutting linerless labels one by one, and a mechanism for attaching cut linerless labels to articles (packaging bodies). An example is an apparatus that has a pasting mechanism for pasting, and the pasting mechanism is a cylinder type or a robot arm type. Printing by ultraviolet laser irradiation is preferably carried out between the mechanism that sets the linerless label roll and the cutting mechanism, or while the cut linerless label is sent to the pasting mechanism.
 第3のラベル貼り付け装置は、本実施形態の印刷用紙を物品(包装体)に貼付した後に、紫外線レーザーにて印刷する。
 ラベルの貼付の方法としては、上述した第1の装置および第2の装置が参照される。
The third label pasting device prints with an ultraviolet laser after pasting the printing paper of this embodiment onto an article (package).
As for the method of attaching a label, the first device and the second device described above are referred to.
(3)粘着テープへの印刷
 本実施形態の印刷物の製造方法の第三の実施態様は、印刷用紙を粘着テープとする態様である。
 すなわち、第三の実施態様の印刷物の製造方法は、前記印刷用紙から作製された粘着テープを物品(包装体)に貼付する工程を有し、前記貼付する工程の前、または貼付する工程の後に、紫外線レーザーにより印刷する工程を有する。
 また、段ボール封緘機に紫外線レーザーによる印字装置を組み込んだ印刷装置を使用してもよい。具体的には、粘着テープ巻取りをセットする機構と、段ボールを搬送用のコンベアを有し、段ボールのフラップを折り込む機構と、粘着テープを貼付して段ボールを封緘する機構を有し、粘着テープを貼付する間、または貼付した後に、粘着テープに紫外線レーザーにて印刷する機構を有する。
(3) Printing on Adhesive Tape The third embodiment of the method for manufacturing printed matter of this embodiment is an embodiment in which adhesive tape is used as printing paper.
That is, the method for producing a printed matter according to the third embodiment includes the step of attaching an adhesive tape made from the printing paper to an article (packaging body), and before or after the attaching step. , has a printing process using an ultraviolet laser.
Alternatively, a printing device in which a printing device using an ultraviolet laser is incorporated into a cardboard sealing machine may be used. Specifically, it has a mechanism for setting the adhesive tape winder, a conveyor for conveying the cardboard, a mechanism for folding the flaps of the cardboard, and a mechanism for applying the adhesive tape to seal the cardboard. It has a mechanism that prints on the adhesive tape with an ultraviolet laser during or after pasting.
 本実施形態の印刷物の製造方法は、上記の態様に限定されるものではなく、印刷が求められる各種用途に応用可能である。 The method for producing printed matter according to the present embodiment is not limited to the above embodiments, and can be applied to various uses that require printing.
 本実施形態において、前記印刷物の製造方法により得られる印刷物は、包装体、ラベル、または粘着テープなどに好適に使用される。
 包装体としては、外装箱、牛乳パック、紙カップ等の飲料用の液体容器(好ましくは飲料用の液体紙容器)、スキンパックが例示され、ラベルとしては、ラベル原紙、粘着ラベル、粘着シートが例示され、粘着テープとしては、粘着テープ、クラフトテープが例示される。
In this embodiment, the printed material obtained by the method for producing printed material is suitably used for packaging, labels, adhesive tapes, and the like.
Examples of packaging bodies include outer boxes, milk cartons, liquid containers for beverages such as paper cups (preferably liquid paper containers for beverages), and skin packs, and examples of labels include label base paper, adhesive labels, and adhesive sheets. Examples of the adhesive tape include adhesive tape and craft tape.
[加工品]
 本実施形態の紫外線レーザー印刷用紙および印刷物は種々の加工品に応用される。すなわち、本実施形態の加工品は、本実施形態の紫外線レーザー印刷用紙または本実施形態の印刷物を用いてなる。
 本実施形態の加工品としては、包装体、ラベル、または粘着テープなどが好適である。
 包装体としては、段ボールのライナー原紙(特に、最表面のライナー原紙)、外装箱、牛乳パック、紙カップ等の飲料用の液体容器(好ましくは飲料用の液体紙容器)、食品トレー、スキンパック、ピロー包装、スタンディングパウチ、三方・四方シール包装等が例示され、ラベルとしては、ラベル原紙、粘着ラベル、粘着シートが例示され、粘着テープとしては、粘着テープ、クラフトテープが例示される。
 包装体の一例としての液体容器は、例えば、表面に印刷領域を有する。印刷領域には紫外線レーザーを照射され、日付などの文字が印字されている。
[Processed goods]
The ultraviolet laser printing paper and printed matter of this embodiment are applied to various processed products. That is, the processed product of this embodiment is made using the ultraviolet laser printing paper of this embodiment or the printed matter of this embodiment.
The processed product of this embodiment is preferably a package, a label, an adhesive tape, or the like.
Examples of packaging include corrugated liner base paper (particularly the outermost liner base paper), outer boxes, milk cartons, liquid containers for beverages such as paper cups (preferably liquid paper containers for beverages), food trays, skin packs, pillows, etc. Examples include packaging, standing pouches, three-sided/four-sided sealed packaging, etc. Examples of labels include label base paper, adhesive labels, and adhesive sheets, and examples of adhesive tapes include adhesive tapes and craft tapes.
A liquid container as an example of a package has, for example, a printed area on its surface. The printing area is irradiated with an ultraviolet laser and characters such as the date are printed on it.
 以下に実施例と比較例とを挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 The features of the present invention will be explained in more detail below with reference to Examples and Comparative Examples. The materials, usage amounts, proportions, processing details, processing procedures, etc. shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be interpreted as being limited by the specific examples shown below.
[酸化チタン]
 実施例および比較例で使用した酸化チタンは、以下の表1の通りである。
[Titanium oxide]
Titanium oxide used in Examples and Comparative Examples are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<酸化チタンC、F~Hの合成方法>
 チタニウムテトライソプロポキシド(TTIP)を加水分解縮重合することで、酸化チタン(アモルファス)を合成し、焼成することで結晶化した。
 具体的には、以下の(1)~(6)の工程により合成した。
 (1)TTIP(東京化成工業株式会社製、製品コード:T0133)、イソプロパノール(東京化成工業株式会社製、純度99.5%以上、製品コード:I0163)およびイオン交換水を用いて、以下の溶液A~Cを作製した。
 溶液A:TTIP 35.6質量部、イソプロパノール 200質量部
 溶液B:イソプロパノール 200質量部、イオン交換水 6.3質量部
 溶液C:イソプロパノール 200質量部、イオン交換水 24.4質量部
 (2)テフロン(登録商標)製撹拌羽根で溶液Aを撹拌しながら、溶液Bをゆっくり滴下した後、10分間撹拌を継続した。
 (3)上記(2)で得られた溶液Aおよび溶液Bの混合液へ、溶液Cをゆっくり滴下し、1分間撹拌を継続した後、24時間室温下で静置した。
 (4)メンブレンフィルター(アドバンテック社製、材質:セルロースアセテート)で沈殿物を固液分離した。
 (5)イソプロパノールで洗浄後、100℃下で5時間乾燥し、酸化チタン(アモルファス)を得た。
 (6)マッフル炉にて焼成し、酸化チタンを結晶化した。
 焼成温度は表中の温度で実施し、昇温速度10℃/min、昇温後2時間かけて焼成した。
<Synthesis method of titanium oxide C, F to H>
Titanium oxide (amorphous) was synthesized by hydrolyzing and polycondensing titanium tetraisopropoxide (TTIP), and crystallized by firing.
Specifically, it was synthesized through the following steps (1) to (6).
(1) Using TTIP (manufactured by Tokyo Kasei Kogyo Co., Ltd., product code: T0133), isopropanol (manufactured by Tokyo Kasei Kogyo Co., Ltd., purity 99.5% or more, product code: I0163) and ion-exchanged water, the following solution was prepared. A to C were produced.
Solution A: 35.6 parts by mass of TTIP, 200 parts by mass of isopropanol Solution B: 200 parts by mass of isopropanol, 6.3 parts by mass of ion-exchanged water Solution C: 200 parts by mass of isopropanol, 24.4 parts by mass of ion-exchanged water (2) Teflon While stirring Solution A with a (registered trademark) stirring blade, Solution B was slowly added dropwise, and stirring was continued for 10 minutes.
(3) Solution C was slowly added dropwise to the mixture of solution A and solution B obtained in (2) above, stirring was continued for 1 minute, and then allowed to stand at room temperature for 24 hours.
(4) The precipitate was separated into solid and liquid using a membrane filter (manufactured by Advantech, material: cellulose acetate).
(5) After washing with isopropanol, it was dried at 100° C. for 5 hours to obtain titanium oxide (amorphous).
(6) Fired in a muffle furnace to crystallize titanium oxide.
The firing was carried out at the temperature shown in the table, at a heating rate of 10° C./min, and for 2 hours after heating.
[実施例1-1~1-12、比較例1-1~1-3]
 広葉樹晒クラフトパルプ(LBKP)を、CSFが450mLとなるようにダブルディスクリファイナーで叩解し、3質量%のパルプスラリーを準備した。
 パルプ(固形分)100質量部に対し、硫酸バンド0.5質量部を添加し希釈した後、表2に示す酸化チタンを印刷用紙における含有量が表2に記載の含有量(質量%)となるように添加した。さらに、パルプ100質量部に対して、ポリエピクロロヒドリン系湿潤紙力増強剤WS4024(星光PMC株式会社製)を0.8質量部添加し、湿式抄紙機にてシート状に成形し、表2に示す坪量および厚さの紫外線レーザー印刷用紙を作製した。
[Examples 1-1 to 1-12, Comparative Examples 1-1 to 1-3]
Broadleaf bleached kraft pulp (LBKP) was beaten with a double disc refiner so that the CSF was 450 mL to prepare a 3% by mass pulp slurry.
After diluting by adding 0.5 parts by mass of sulfuric acid to 100 parts by mass of pulp (solid content), the content of titanium oxide shown in Table 2 in the printing paper is equal to the content (mass%) shown in Table 2. Added so that Furthermore, 0.8 parts by mass of a polyepichlorohydrin wet paper strength agent WS4024 (manufactured by Seiko PMC Co., Ltd.) was added to 100 parts by mass of the pulp, and the mixture was formed into a sheet using a wet paper machine. An ultraviolet laser printing paper having the basis weight and thickness shown in 2 was prepared.
[実施例1-13]
 広葉樹晒クラフトパルプ(LBKP)30部、針葉樹晒クラフトパルプ(NBKP)70部を、CSFが550mLになるように混合叩解して使用した以外は、実施例1-4と同様に抄紙した。
[Example 1-13]
Paper was made in the same manner as in Example 1-4, except that 30 parts of hardwood bleached kraft pulp (LBKP) and 70 parts of softwood bleached kraft pulp (NBKP) were mixed and beaten so that the CSF was 550 mL.
[実施例1-14]
 針葉樹晒クラフトパルプ(NBKP)100部を、CSFが580mLとなるように叩解して使用した以外は、実施例1-4と同様に抄紙した。
[Example 1-14]
Paper was made in the same manner as in Example 1-4, except that 100 parts of softwood bleached kraft pulp (NBKP) was beaten to a CSF of 580 mL.
[実施例1-15]
 実施例1-4と同じ広葉樹晒クラフトパルプ(LBKP)70部と、そのLBKPから作製した粉末パルプ(下記手順)30部を使用し、CSFが400mLとなるように混合叩解して使用した以外は、実施例1-4と同様に抄紙した。
<粉末パルプ>
 粉末パルプは、広葉樹晒クラフトパルプ(LBKP)のドライシートを、カッターミル(株式会社ホーライ製、HA8 2542 30E、スクリーン0.24mm)で機械粉砕して作製した。
[Example 1-15]
70 parts of the same hardwood bleached kraft pulp (LBKP) as in Example 1-4 and 30 parts of powder pulp made from the LBKP (procedure below) were used, except that they were mixed and beaten so that the CSF was 400 mL. , Paper was made in the same manner as in Example 1-4.
<Powder pulp>
The powder pulp was produced by mechanically crushing a dry sheet of bleached hardwood kraft pulp (LBKP) using a cutter mill (manufactured by Horai Co., Ltd., HA8 2542 30E, screen 0.24 mm).
[実施例1-16]
 実施例1-1の広葉樹晒クラフトパルプ(LBKP)をパルプマシンで抄上げ、乾燥してドライパルプとした。ドライパルプを再離解し、離解フリーネス550mLまで叩解して使用した以外は、実施例1-4と同様に抄紙した。
[Example 1-16]
The hardwood bleached kraft pulp (LBKP) of Example 1-1 was milled using a pulp machine and dried to obtain dry pulp. Paper was made in the same manner as in Example 1-4, except that the dry pulp was re-disintegrated and beaten to a disintegration freeness of 550 mL.
[実施例2-1~2-16、比較例2-1~2-3]
<紙基材の製造>
 それぞれ、実施例1-1~1-16、比較例1-1~1-3と同様にして、紙基材を製造した。
[Examples 2-1 to 2-16, Comparative Examples 2-1 to 2-3]
<Manufacture of paper base material>
Paper base materials were produced in the same manner as in Examples 1-1 to 1-16 and Comparative Examples 1-1 to 1-3, respectively.
<シーラント層の形成>
 PE(低密度ポリエチレン、日本ポリエチレン株式会社製、ノバテック(登録商標)LD LC522)を単軸押出機(株式会社東洋精機製作所製、D2025)へ投入し、紙基材の一方の面に、樹脂の厚さが15μmとなるように押出ラミネート(溶融積層)した後、速やかに20℃に調温した冷却ロールで挟持しながら急冷して、シーラント層を設け、紫外線レーザー印刷用紙を得た。なお、押出ラミネートにおける樹脂の溶融温度は320℃とした。なお、紙基材の平滑度の低い面に、シーラント層を設けた。
<Formation of sealant layer>
PE (low-density polyethylene, manufactured by Japan Polyethylene Co., Ltd., Novatec (registered trademark) LD LC522) was introduced into a single screw extruder (manufactured by Toyo Seiki Seisakusho Co., Ltd., D2025), and one side of the paper base material was coated with resin. After extrusion lamination (melt lamination) to a thickness of 15 μm, the sheets were rapidly cooled while being sandwiched between cooling rolls whose temperature was adjusted to 20° C., and a sealant layer was provided to obtain ultraviolet laser printing paper. Note that the melting temperature of the resin in the extrusion laminate was 320°C. Note that a sealant layer was provided on the less smooth surface of the paper base material.
[実施例2-17]
<紙基材の製造>
 実施例1-4と同様にして、紙基材を作製した。
<シーラント層の形成>
 PEフィルム(線状低密度ポリエチレンフィルム(LLDPE)、フタムラ化学株式会社製、LL-XLTN、厚さ25μm)の表面に、イソシアネート系接着剤(DIC株式会社製、ディックドライLX-500 10部に対して、DIC株式会社製、ディックドライKW-75 1部を混合)を5g/mで塗布した後、紙基材と貼り合わせ、紫外線レーザー印刷用紙を得た。
[Example 2-17]
<Manufacture of paper base material>
A paper base material was produced in the same manner as in Example 1-4.
<Formation of sealant layer>
On the surface of a PE film (linear low-density polyethylene film (LLDPE), manufactured by Futamura Chemical Co., Ltd., LL-XLTN, thickness 25 μm), 10 parts of isocyanate adhesive (manufactured by DIC Corporation, Dick Dry LX-500) was applied. Then, 5 g/m 2 of 5 g/m 2 of DIC Dry KW-75 (mixed with 1 part of Dick Dry KW-75 manufactured by DIC Corporation) was applied, and the paper was bonded to a paper base material to obtain an ultraviolet laser printing paper.
[実施例2-18]
<紙基材の製造>
 実施例1-4と同様にして、紙基材を作製した。
<シーラント層の形成>
 PEをPP(ポリプロピレン、三菱ケミカル株式会社製、ノバテックPP MA-3)に変更し、溶融温度を330℃にした以外は、実施例2-4と同様にしてシーラント層を形成し、紫外線レーザー印刷用紙を得た。
[Example 2-18]
<Manufacture of paper base material>
A paper base material was produced in the same manner as in Example 1-4.
<Formation of sealant layer>
A sealant layer was formed in the same manner as in Example 2-4, except that PE was changed to PP (polypropylene, manufactured by Mitsubishi Chemical Corporation, Novatec PP MA-3) and the melting temperature was set to 330°C, and then UV laser printing was performed. I got the paper.
[実施例2-19]
<紙基材の製造>
 実施例1-4と同様にして、紙基材を製造した。
<シーラント層の形成>
 PEフィルムをCPPフィルム(無延伸ポリプロピレン系フィルム、フタムラ化学株式会社製、FHK2-L、厚さ25μm)に変更した以外は、実施例2-17と同様にしてシーラント層を形成し、紫外線レーザー印刷用紙を得た。前記フィルムは、CоPP(共重合ポリプロピレン)/CoPP(共重合ポリプロピレン)/特殊PPの積層フィルムであり、コロナ処理面であるCoPP面を紙基材側とした。
[Example 2-19]
<Manufacture of paper base material>
A paper base material was produced in the same manner as in Example 1-4.
<Formation of sealant layer>
A sealant layer was formed in the same manner as in Example 2-17, except that the PE film was changed to a CPP film (unoriented polypropylene film, manufactured by Futamura Chemical Co., Ltd., FHK2-L, thickness 25 μm), and ultraviolet laser printing was performed. I got the paper. The film was a laminated film of CoPP (copolymerized polypropylene)/CoPP (copolymerized polypropylene)/special PP, and the CoPP surface, which was the corona-treated surface, was placed on the paper base material side.
[実施例2-20]
<紙基材の製造>
 実施例1-4と同様にして、紙基材を製造した。
<シーラント層の形成>
 水系ヒートシール剤(エチレン-アクリル酸共重合体(表中、Et-AA)、マイケルマン社製、MFHS1279、固形分濃度42%)に水を加えて、固形分濃度20%に希釈し、紙基材の印刷層を設けた面とは反対の面に、塗工量(固形分)が5g/mとなるように、メイヤーバーを用いて塗布し、120℃で60秒乾燥させ、シーラント層を形成し、紫外線レーザー印刷用紙を得た。
[Example 2-20]
<Manufacture of paper base material>
A paper base material was produced in the same manner as in Example 1-4.
<Formation of sealant layer>
Add water to a water-based heat sealing agent (ethylene-acrylic acid copolymer (Et-AA in the table), manufactured by Michaelman, MFHS1279, solid content concentration 42%) to dilute to 20% solid content, and then Apply the sealant to the opposite side of the base material from the side with the printed layer using a Mayer bar to a coating amount (solid content) of 5 g/ m2 , dry at 120°C for 60 seconds, and apply the sealant. A layer was formed to obtain an ultraviolet laser printing paper.
[実施例2-21]
<紙基材の製造>
 実施例1-4と同様にして、紙基材を製造した。
<シーラント層の形成>
 水系ヒートシール剤(エチレン-メタクリル酸共重合体(表中、Et-MAA)、三井化学株式会社製、ケミパールS-300、固形分濃度35%)を固形分濃度20%に調整して使用した以外は、実施例2-20と同様にして、シーラント層を形成し、紫外線レーザー印刷用紙を得た。
[Example 2-21]
<Manufacture of paper base material>
A paper base material was produced in the same manner as in Example 1-4.
<Formation of sealant layer>
A water-based heat sealing agent (ethylene-methacrylic acid copolymer (Et-MAA in the table), manufactured by Mitsui Chemicals, Inc., Chemipearl S-300, solid content concentration 35%) was used after adjusting the solid content concentration to 20%. Except for this, a sealant layer was formed in the same manner as in Example 2-20, and an ultraviolet laser printing paper was obtained.
[実施例2-22]
<紙基材の製造>
 実施例1-4と同様にして、紙基材を製造した。
<シーラント層の形成>
 水系ヒートシール剤(スチレン-アクリル酸共重合体(表中、St-AA)、星光PMC株式会社製、SEIKOAT RE-2016、固形分濃度35%)を固形分濃度20%に調整して使用した以外は、実施例2-20と同様にして、シーラント層を形成し、紫外線レーザー印刷用紙を得た。
[Example 2-22]
<Manufacture of paper base material>
A paper base material was produced in the same manner as in Example 1-4.
<Formation of sealant layer>
A water-based heat sealing agent (styrene-acrylic acid copolymer (St-AA in the table), manufactured by Seiko PMC Co., Ltd., SEIKOAT RE-2016, solid content concentration 35%) was used after adjusting the solid content concentration to 20%. Except for this, a sealant layer was formed in the same manner as in Example 2-20, and an ultraviolet laser printing paper was obtained.
[実施例2-23]
<紙基材の製造>
 実施例1-4と同様にして、紙基材を製造した。
<バリア層の形成>
 EVOH(エチレン-ビニルアルコール共重合体、クラレ株式会社製、エバール E105B)を単軸押出機(株式会社東洋精機製作所製、D2025)に投入し、紙基材の一方の面に、樹脂の厚さが15μmとなるように押出ラミネート(溶融積層)した後、速やかに20℃に調温した冷却ロールで挟持しながら急冷して、バリア層を形成した。なお、押出ラミネートにおける樹脂の溶融温度は215℃とした。
<シーラント層の形成>
 実施例2-4と同様にしてシーラント層を設け、紫外線レーザー印刷用紙を得た。
[Example 2-23]
<Manufacture of paper base material>
A paper base material was produced in the same manner as in Example 1-4.
<Formation of barrier layer>
EVOH (ethylene-vinyl alcohol copolymer, manufactured by Kuraray Co., Ltd., EVAL E105B) was charged into a single screw extruder (manufactured by Toyo Seiki Seisakusho Co., Ltd., D2025), and the thickness of the resin was added to one side of the paper base material. After extrusion lamination (melt lamination) so that the thickness was 15 μm, the material was rapidly cooled while being sandwiched between cooling rolls whose temperature was adjusted to 20° C. to form a barrier layer. Note that the melting temperature of the resin in the extrusion laminate was 215°C.
<Formation of sealant layer>
A sealant layer was provided in the same manner as in Example 2-4 to obtain ultraviolet laser printing paper.
[実施例2-24]
<紙基材の製造>
 実施例1-4と同様にして、紙基材を製造した。
<バリア層の形成>
 エチレン変性ポリビニルアルコール(完全けん化型、クラレ株式会社製、エクセバールAQ-4104)の固形分濃度15質量%の水溶液100部に対し、層状無機化合物の水分散液(層状無機化合物=合成マイカ(膨潤性マイカ、平均長さ:6.3μm、アスペクト比:約1000、厚さ:約5nm)、固形分濃度6質量%、トピー工業株式会社製、NTO-05)を50部加え、さらに、これに希釈水を加え、固形分濃度10質量%とし、バリア層用塗工液とした。前記バリア層用塗工液を、塗工量が2.0g/mとなるようにメイヤーバーを用いて塗工し、その後、熱風乾燥機内で120℃にて1分間乾燥し、バリア層を形成した。
<シーラント層の形成>
 実施例2-20と同様にしてシーラント層を設け、紫外線レーザー印刷用紙を得た。
[Example 2-24]
<Manufacture of paper base material>
A paper base material was produced in the same manner as in Example 1-4.
<Formation of barrier layer>
An aqueous dispersion of a layered inorganic compound (layered inorganic compound = synthetic mica (swellable Mica, average length: 6.3 μm, aspect ratio: approximately 1000, thickness: approximately 5 nm), solid content concentration 6% by mass, manufactured by Topy Industries, Ltd., NTO-05) was added, and further diluted to this. Water was added to make the solid content concentration 10% by mass to obtain a barrier layer coating liquid. The barrier layer coating solution was applied using a Meyer bar so that the coating amount was 2.0 g/m 2 , and then dried in a hot air dryer at 120°C for 1 minute to form a barrier layer. Formed.
<Formation of sealant layer>
A sealant layer was provided in the same manner as in Example 2-20 to obtain ultraviolet laser printing paper.
[実施例2-25]
<紙基材の製造>
 実施例1-4と同様にして、紙基材を製造した。
<バリア層の形成>
 層状無機化合物の水分散液(層状無機化合物=合成マイカ(膨潤性マイカ、平均長さ:6.3μm、アスペクト比:約1000、厚さ:約5nm)、固形分濃度6質量%、トピー工業株式会社製、NTO-05)に、ウレタン系エマルション(固形分濃度30質量%、ガラス転移温度130℃、25μm厚シート形成時酸素透過度が2.0mL/(m・day・atm)、三井化学株式会社製、タケラックWPB-341)を固形分の質量比(層状無機化合物:ウレタン系樹脂)が2:10となるように加え、撹拌した。さらに、固形分濃度が20質量%となるように希釈水を加え、バリア層用塗工液とした。前記バリア層用塗工液を、バリア層の塗工量が2.0g/mとなるように、メイヤーバーで塗工した後、熱風乾燥機内で120℃にて、1分間乾燥し、バリア層を形成した。
<シーラント層の形成>
 実施例2-20と同様にしてシーラント層を設け、紫外線レーザー印刷用紙を得た。
[Example 2-25]
<Manufacture of paper base material>
A paper base material was produced in the same manner as in Example 1-4.
<Formation of barrier layer>
Aqueous dispersion of layered inorganic compound (layered inorganic compound = synthetic mica (swellable mica, average length: 6.3 μm, aspect ratio: approximately 1000, thickness: approximately 5 nm), solid content concentration 6% by mass, Topy Industries, Ltd. company, NTO-05), urethane emulsion (solid concentration 30% by mass, glass transition temperature 130°C, oxygen permeability when forming a 25μm thick sheet 2.0mL/( m2・day・atm), Mitsui Chemicals) Takelac WPB-341 (manufactured by Co., Ltd.) was added so that the solid content mass ratio (layered inorganic compound: urethane resin) was 2:10, and the mixture was stirred. Furthermore, dilution water was added so that the solid content concentration was 20% by mass to obtain a barrier layer coating solution. The barrier layer coating solution was applied with a Mayer bar so that the coating amount of the barrier layer was 2.0 g/m 2 , and then dried in a hot air dryer at 120°C for 1 minute to form a barrier layer. formed a layer.
<Formation of sealant layer>
A sealant layer was provided in the same manner as in Example 2-20 to obtain ultraviolet laser printing paper.
[実施例2-26]
<紙基材の製造>
 実施例1-4と同様にして、紙基材を製造した。
<バリア層の形成>
 アルミ蒸着PPフィルム(基材=CPP(無延伸ポリプロピレンフィルム)、三井化学東セロ株式会社製、製品名:ML、厚さ20μm、水蒸気透過度0.2g/m・day、酸素透過度50mL/m・day・atm)のPPフィルム側の表面にイソシアネート系接着剤(DIC株式会社製、ディックドライLX-500 10部に対して、DIC株式会社製、ディックドライKW-75 1部を混合)を5g/m塗布した後、紙基材の一方の面に貼り合わせた。
<シーラント層の形成>
 実施例2-4と同様に、シーラント層を形成し、紫外線レーザー印刷用紙を得た。
[Example 2-26]
<Manufacture of paper base material>
A paper base material was produced in the same manner as in Example 1-4.
<Formation of barrier layer>
Aluminum vapor deposited PP film (base material = CPP (unstretched polypropylene film), manufactured by Mitsui Chemicals Tohcello Co., Ltd., product name: ML, thickness 20 μm, water vapor permeability 0.2 g/m 2 day, oxygen permeability 50 mL/m Apply an isocyanate adhesive (10 parts of Dick Dry LX-500, manufactured by DIC Corporation , and 1 part of Dick Dry KW-75, manufactured by DIC Corporation) to the surface of the PP film side of the 2-day ATM). After applying 5 g/m 2 , it was laminated to one side of the paper base material.
<Formation of sealant layer>
A sealant layer was formed in the same manner as in Example 2-4 to obtain ultraviolet laser printing paper.
[実施例2-27]
 バリア層の形成において、アルミ蒸着PPフィルムの代わりにアルミ蒸着PETフィルム(基材=PET(ポリエチレンテレフタレート)、三井化学東セロ株式会社製、製品名:ML、厚さ12μm、水蒸気透過度1g/m・day、酸素透過度10mL/m・day・atm)を使用すること以外は、実施例2-26と同様にして、紫外線レーザー印刷用紙を得た。なお、接着剤は基材(PET)側に塗布した。
[Example 2-27]
In forming the barrier layer, an aluminum vapor-deposited PET film (base material = PET (polyethylene terephthalate), manufactured by Mitsui Chemicals Tohcello Co., Ltd., product name: ML, thickness 12 μm, water vapor permeability 1 g/m2) was used instead of the aluminum vapor-deposited PP film. Ultraviolet laser printing paper was obtained in the same manner as in Example 2-26, except for using an oxygen permeability of 10 mL/m 2 ·day · atm). Note that the adhesive was applied to the base material (PET) side.
[実施例2-28]
 バリア層の形成において、アルミ蒸着PPフィルムの代わりにシリカ蒸着PPフィルム(基材=PP、凸版印刷株式会社製、製品名:GL-LP、厚さ17μm、水蒸気透過度0.5g/m・day、酸素透過度1mL/m・day・atm)を使用すること以外は、実施例2-26と同様にして、紫外線レーザー印刷用紙を得た。なお、接着剤は基材(PP)側に塗布した。
[Example 2-28]
In forming the barrier layer, a silica-deposited PP film (base material = PP, manufactured by Toppan Printing Co., Ltd., product name: GL-LP, thickness 17 μm, water vapor permeability 0.5 g/m 2 . Ultraviolet laser printing paper was obtained in the same manner as in Example 2-26, except that an oxygen permeability of 1 mL/m 2 ·day · atm) was used. Note that the adhesive was applied to the base material (PP) side.
[実施例2-29]
 バリア層の形成において、アルミ蒸着PPフィルムの代わりにシリカ蒸着PETフィルム(基材=PET、凸版印刷株式会社製、製品名:GL-AE、厚さ12μm、蒸着層の厚さ400nm、水蒸気透過度0.6g/m・day、酸素透過度0.2mL/m・day・atm)を使用すること以外は、実施例2-26と同様にして、紫外線レーザー印刷用紙を得た。なお、接着剤は基材(PET)側に塗布した。
[Example 2-29]
In forming the barrier layer, silica-deposited PET film (base material = PET, manufactured by Toppan Printing Co., Ltd., product name: GL-AE, thickness 12 μm, vapor-deposited layer thickness 400 nm, water vapor permeability) was used instead of aluminum-deposited PP film. Ultraviolet laser printing paper was obtained in the same manner as in Example 2-26, except that an oxygen permeability of 0.6 g/m 2 ·day and an oxygen permeability of 0.2 mL/m 2 ·day ·atm) were used. Note that the adhesive was applied to the base material (PET) side.
[実施例2-30]
 バリア層の形成において、アルミ蒸着PPフィルムの代わりにアルミナ蒸着PETフィルム(基材=PET、三井化学東セロ株式会社製、製品名:TL、厚さ12μm、水蒸気透過度1.5g/m・day、酸素透過度15mL/m・day・atm)を使用すること以外は、実施例2-26と同様にして、紫外線レーザー印刷用紙を得た。なお、接着剤は基材(PET)側に塗布した。
[Example 2-30]
In forming the barrier layer, an alumina vapor-deposited PET film (base material = PET, manufactured by Mitsui Chemicals Tohcello Co., Ltd., product name: TL, thickness 12 μm, water vapor permeability 1.5 g/m 2.day ) was used instead of the aluminum vapor-deposited PP film. An ultraviolet laser printing paper was obtained in the same manner as in Example 2-26, except that an oxygen permeability of 15 mL/m 2 ·day · atm) was used. Note that the adhesive was applied to the base material (PET) side.
[実施例2-31]
 バリア層の形成において、アルミ蒸着PPフィルムの代わりにPVDC(ポリ塩化ビニリデン)をコーティングしたPETフィルム(三井化学東セロ株式会社製、製品名:Vバリア、厚さ12μm、水蒸気透過度0.2g/m・day、酸素透過度0.8mL/m・day・atm)を使用すること以外は、実施例2-26と同様にして、紫外線レーザー印刷用紙を得た。なお、接着剤は基材(PET)側に塗布した。
[Example 2-31]
In forming the barrier layer, a PET film coated with PVDC (polyvinylidene chloride) (manufactured by Mitsui Chemicals Tohcello Co., Ltd., product name: V Barrier, thickness 12 μm, water vapor permeability 0.2 g/m) was used instead of the aluminum vapor-deposited PP film. Ultraviolet laser printing paper was obtained in the same manner as in Example 2-26, except that 2.day and oxygen permeability of 0.8 mL/m 2.day.atm ) were used. Note that the adhesive was applied to the base material (PET) side.
[参考例2-1]
 シーラント層を形成しなかった以外は実施例2-4と同様にして、紫外線レーザー印刷用紙を得た。
[Reference example 2-1]
An ultraviolet laser printing paper was obtained in the same manner as in Example 2-4 except that a sealant layer was not formed.
[測定・評価]
 実施例および比較例で得られた紫外線レーザー印刷用紙、並びに各種原料について、以下の測定および評価を行った。
[Measurement/Evaluation]
The following measurements and evaluations were performed on the ultraviolet laser printing papers and various raw materials obtained in Examples and Comparative Examples.
〔酸化チタンの平均粒子径〕
 酸化チタンの平均粒子径は、以下の方法により測定した。
 実施例および比較例で得られた紫外線レーザー印刷用紙から、紙基材を産業用剃刀(フェザー安全剃刀株式会社製、品番:099769)を用いて削り取り、集めた紙基材をサンプルとして、マッフル炉で燃焼して得た灰分の走査型電子顕微鏡(SEM、株式会社日立ハイテク製、SU7000など)から得られるSEM像(2次電子像)から算出した。灰分は、マッフル炉(ヤマト科学株式会社製、型番FO300)を使用して450℃で焼成し、灰化することで得た。
 なお、紙基材以外の層を有していない場合には、紙基材を削り取って集めることなく、紫外線レーザー印刷用紙自体を同様に焼成して灰化して得られた灰分の走査型電子顕微鏡から得られるSEM像から算出してもよい。
 次いで、超音波洗浄機(アズワン株式会社製、LSC-63など)で5分間かけてエタノールに分散させ0.1質量%スラリーを得た後、アルミ皿上へ0.1mLをキャストし、100℃で乾燥させて測定用サンプルを作製した。アルミ皿ごと、走査型電子顕微鏡(SEM、株式会社日立ハイテク製、SU7000など)の観察に供試し、隣り合う粒子と明瞭に見分けられるものを目視で選択し、1つの粒子の長径と短径の相乗平均から粒子径を算出した。この際、1次粒子と凝集状態の2次粒子が混在していても明瞭に見分けられる場合はそれぞれを1つの粒子としてカウントし、無作為に選択した100個の粒選択し、20000倍程度とした。また、酸化チタン以外の粒子を含む場合、SEMに付属するエネルギー分散型X線分析装置(株式会社堀場製作所製、EMAXなど)を用いてチタン元素の含まれる粒子を測定した。
 なお、針状の場合には、100個の粒子について長径を測定し、平均を平均粒子径とした。
[Average particle size of titanium oxide]
The average particle diameter of titanium oxide was measured by the following method.
The paper base material was scraped off from the ultraviolet laser printing paper obtained in Examples and Comparative Examples using an industrial razor (manufactured by Feather Safety Razor Co., Ltd., product number: 099769), and the collected paper base material was used as a sample in a muffle furnace. It was calculated from an SEM image (secondary electron image) obtained from a scanning electron microscope (SEM, manufactured by Hitachi High-Technology Corporation, SU7000, etc.) of the ash obtained by combustion. The ash content was obtained by burning at 450° C. using a muffle furnace (manufactured by Yamato Scientific Co., Ltd., model number FO300) and incinerating it.
In addition, if it does not have a layer other than the paper base material, the ash obtained by burning the ultraviolet laser printing paper itself in the same way and ashing it without scraping off the paper base material and collecting it. It may be calculated from the SEM image obtained from .
Next, the slurry was dispersed in ethanol for 5 minutes using an ultrasonic cleaner (such as LSC-63 manufactured by As One Co., Ltd.) to obtain a 0.1% by mass slurry, and then 0.1 mL was cast onto an aluminum plate and heated at 100°C. A sample for measurement was prepared by drying the sample. Each aluminum plate was subjected to observation using a scanning electron microscope (SEM, manufactured by Hitachi High-Tech Corporation, SU7000, etc.), and particles that could be clearly distinguished from adjacent particles were visually selected, and the major and minor diameters of each particle were determined. Particle diameter was calculated from the geometric mean. At this time, if primary particles and secondary particles in an agglomerated state are mixed but can be clearly distinguished, each is counted as one particle, 100 particles are selected at random, and the did. In addition, when particles other than titanium oxide were included, particles containing the titanium element were measured using an energy dispersive X-ray analyzer (manufactured by Horiba, Ltd., EMAX, etc.) attached to the SEM.
In addition, in the case of needle-like particles, the major axis was measured for 100 particles, and the average was taken as the average particle diameter.
〔結晶子サイズ算出方法〕
<測定サンプル調整方法>
 実施例および比較例で得られた紫外線レーザー印刷用紙から、紙基材を産業用剃刀(フェザー安全剃刀株式会社製、品番:099769)を用いて削り取り、集めた紙基材をサンプルとして、マッフル炉で燃焼して得た灰分の走査型電子顕微鏡(SEM、株式会社日立ハイテク製、SU7000など)から得られるSEM像(2次電子像)から算出した。灰分は、マッフル炉(ヤマト科学株式会社製、型番FO300)を使用して450℃で焼成し、灰化することで得た。
 なお、紙基材以外の層を有していない場合には、紙基材を削り取って集めることなく、紫外線レーザー印刷用紙自体を同様に焼成して灰化して、灰分を得てもよい。
[Crystallite size calculation method]
<Measurement sample preparation method>
The paper base material was scraped off from the ultraviolet laser printing paper obtained in Examples and Comparative Examples using an industrial razor (manufactured by Feather Safety Razor Co., Ltd., product number: 099769), and the collected paper base material was used as a sample in a muffle furnace. It was calculated from an SEM image (secondary electron image) obtained from a scanning electron microscope (SEM, manufactured by Hitachi High-Technology Corporation, SU7000, etc.) of the ash obtained by combustion. The ash content was obtained by burning at 450° C. using a muffle furnace (manufactured by Yamato Scientific Co., Ltd., model number FO300) and incinerating it.
In addition, when it does not have a layer other than the paper base material, the ultraviolet laser printing paper itself may be similarly fired and incinerated to obtain ash content without scraping off and collecting the paper base material.
<X線回折法による測定>
 灰化して得た試験サンプルをサンプルホルダーに充填し、高速検出器を使用して測定した。充填の際、サンプル量に応じて適宜高さ調節治具を用いることで、試料測定面がサンプルホルダー縁部と同じ高さとなるように調節した。
(測定条件)
 X線回折装置:株式会社リガク製、RINT-Ultima III
 電圧:40kV
 電流:40mA
 光学系:平行ビーム(CBO)
 検出器:株式会社リガク製、高速検出器 D/teX Ultra 2
 ゴニオメーター:Ultima III 水平ゴニオメーター
 管球:Cu
 波長:1.541Å(Kα1)
 スキャンモード:CONTINUOUS
 スキャンスピード:1.0000deg/min
 ステップ幅:0.0500deg
 スキャン軸:2Theta/Theta
 スキャン範囲:5.0000~60.0000deg
 入射スリット:1.0mm
 長手制限スリット:10mm
 受光スリット1:開放
 受光スリット2:開放
 サンプルホルダー:ASC-6試料ホルダー(品番2455E442)
  材質:アルミニウム
  寸法:φ23mm×2.0mm
 ホルダー高さ調節治具:透明な円盤状の板(自製)
  材質:ポリアクリル酸メチル
  寸法:φ23mm×0.8mm
<Measurement by X-ray diffraction method>
The test sample obtained by incineration was filled into a sample holder and measured using a high-speed detector. During filling, the sample measurement surface was adjusted to be at the same height as the edge of the sample holder by using a height adjustment jig as appropriate depending on the sample amount.
(Measurement condition)
X-ray diffraction device: RINT-Ultima III manufactured by Rigaku Co., Ltd.
Voltage: 40kV
Current: 40mA
Optical system: parallel beam (CBO)
Detector: High-speed detector D/teX Ultra 2 manufactured by Rigaku Co., Ltd.
Goniometer: Ultima III Horizontal goniometer Tube: Cu
Wavelength: 1.541 Å (Kα1)
Scan mode: CONTINUOUS
Scan speed: 1.0000deg/min
Step width: 0.0500deg
Scan axis: 2Theta/Theta
Scan range: 5.0000~60.0000deg
Incidence slit: 1.0mm
Longitudinal limit slit: 10mm
Light receiving slit 1: Open Light receiving slit 2: Open Sample holder: ASC-6 sample holder (product number 2455E442)
Material: Aluminum Dimensions: φ23mm x 2.0mm
Holder height adjustment jig: Transparent disc-shaped plate (homemade)
Material: Polymethyl acrylate Dimensions: φ23mm x 0.8mm
<X線回折で得たデータの処理>
 得られた回折プロファイルに対し、統合粉末X線解析ソフトウェア(株式会社リガク製、PDXL2)を用いてバックグラウンド処理とプロファイルフィッティング処理を行った。
 データ処理の設定については、特に記載のないものは全てソフトウェアのデフォルト設定にて行った。
 回折プロファイルのピーク位置とピーク強度の情報から、データベース(ICDD)をもとに結晶相の同定を行った。
<Processing of data obtained by X-ray diffraction>
Background processing and profile fitting processing were performed on the obtained diffraction profile using integrated powder X-ray analysis software (manufactured by Rigaku Co., Ltd., PDXL2).
All data processing settings were set to the default settings of the software unless otherwise specified.
The crystal phase was identified based on the information on the peak position and peak intensity of the diffraction profile based on a database (ICDD).
<X線回折で得たデータをもとにした結晶子サイズの算出>
 データ処理後の回折プロファイルより得た最強回折線の半値幅(FWHM)およびブラッグ角(θ)をシェラー式に代入し、結晶子サイズを算出した。
 算出に使用した酸化チタンのX線回折ピークは、以下の通りである。
  アナターゼ:101面
  ルチル:110面
 シェラー式は、以下の通りである。
<Calculation of crystallite size based on data obtained by X-ray diffraction>
The half-width at half maximum (FWHM) of the strongest diffraction line obtained from the diffraction profile after data processing and the Bragg angle (θ) were substituted into the Scherrer equation to calculate the crystallite size.
The X-ray diffraction peaks of titanium oxide used in the calculation are as follows.
Anatase: 101 planes Rutile: 110 planes The Scherrer formula is as follows.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 D:結晶子サイズ(nm)
 K:シェラー定数
 λ:X線の波長(nm)
 B:FWHM(rad)
 θ:ブラッグ角(rad)
 Kの値は0.89、Bは測定で得たFWHMの値、λの値は0.154、θの値はアナターゼの場合は101面、ルチルの場合は110面に由来する最大強度の実測値とした。
D: Crystallite size (nm)
K: Scherrer constant λ: X-ray wavelength (nm)
B:FWHM (rad)
θ: Bragg angle (rad)
The value of K is 0.89, B is the FWHM value obtained by measurement, the value of λ is 0.154, and the value of θ is the actual measurement of the maximum intensity derived from the 101 plane for anatase and the 110 plane for rutile. value.
〔CSF〕
 原料パルプのカナダ標準ろ水度(Canadian standard freeness;CSF)は、JIS P 8121-2:2012に準拠して測定した。
[CSF]
The Canadian standard freeness (CSF) of the raw material pulp was measured in accordance with JIS P 8121-2:2012.
〔紙基材の坪量〕
 得られた紫外線レーザー印刷用紙に対して、紙基材以外の層を有する場合には、前処理として、シーラント層、バリア層、樹脂層等の紙基材以外の層を、顕微鏡下で層の境界を確認しつつ、研削装置(有限会社佐川製作所製、砥石寸法φ50.8×12.7mm)を用いて研削して除去した。
 次に、塗工により設けたシーラント層、バリア層、樹脂層等を有する場合には、紙基材にこれらの層の一部が浸漬しているため、上記前処理を行った印刷用紙を100℃のキシレンに浸漬し、樹脂分を溶出させた。
 得られた紙基材を、23℃、湿度50%の環境下で1日調湿した。調湿後のサンプルについて、JIS P 8124:2011に準拠して、紙基材の坪量を測定した。
[Basic weight of paper base material]
If the obtained ultraviolet laser printing paper has layers other than the paper base material, as a pretreatment, layers other than the paper base material, such as a sealant layer, barrier layer, and resin layer, are removed under a microscope. While confirming the boundary, it was removed by grinding using a grinding device (manufactured by Sagawa Seisakusho Co., Ltd., grindstone size: φ50.8 x 12.7 mm).
Next, if the printing paper has a sealant layer, barrier layer, resin layer, etc. provided by coating, some of these layers are immersed in the paper base material, so the printing paper that has undergone the above pretreatment is It was immersed in xylene at ℃ to elute the resin content.
The obtained paper base material was conditioned for one day in an environment of 23° C. and 50% humidity. The basis weight of the paper base material of the sample after humidity conditioning was measured in accordance with JIS P 8124:2011.
〔紙基材の厚さ〕
 紙基材の厚さは、JIS P 8118:2014に準拠して測定した。なお、バリア層、ヒートシール層、および樹脂層等の厚さは、後述するようにSEM像から算出し、JIS P 8118:2014に準拠して測定した値から差し引いて算出した。
[Thickness of paper base material]
The thickness of the paper base material was measured in accordance with JIS P 8118:2014. The thicknesses of the barrier layer, heat seal layer, resin layer, etc. were calculated from the SEM image as described below, and were subtracted from the values measured in accordance with JIS P 8118:2014.
〔紙基材を構成するパルプ繊維の長さ加重平均繊維長、繊維幅、微細繊維の含有量〕
 紙基材を構成するパルプの長さ加重平均繊維長、繊維幅および微細繊維の含有量は、以下の方法で測定した。
 実施例および比較例の印刷用媒体を4cm角に切り出し、それに約50質量倍のイオン交換水を添加した上で、イオン交換水に24時間浸した。
 24時間浸した後、標準型離解機(熊谷理機工業株式会社製)を用いて、未離解繊維がなくなるまで処理して、パルプを繊維状に離解した。樹脂層や、シーラント層、バリア層等を有する場合には、これらの層を除いた離解後のスラリー(パルプ繊維の分散液)を分取し、繊維長測定機(型式FS-5 UHDベースユニット付、バルメット社製)を使用して、「長さ加重平均繊維長(ISO)」、「微細繊維量」、および「繊維幅」を測定した。
 なお、「長さ加重平均繊維長(ISO)」は0.2mm以上7.6mm以下の繊維を選択して計算した長さ加重平均繊維長である。また、「微細繊維量」は、離解されたパルプ繊維中の、繊維幅75μm以下、かつ、長さ0.08mm以上0.20mm以下の微細繊維の本数割合である。「繊維幅」は幅10μm以上75μm以下の繊維を選択して計算した、長さ加重平均繊維幅である。
[Length-weighted average fiber length, fiber width, and fine fiber content of pulp fibers constituting the paper base material]
The length-weighted average fiber length, fiber width, and fine fiber content of the pulp constituting the paper base material were measured by the following methods.
The printing media of Examples and Comparative Examples were cut into 4 cm square pieces, about 50 times the mass of ion-exchanged water was added thereto, and then immersed in ion-exchanged water for 24 hours.
After soaking for 24 hours, the pulp was disintegrated into fibers using a standard disintegrator (manufactured by Kumagai Riki Kogyo Co., Ltd.) until there were no undisintegrated fibers. If the resin layer, sealant layer, barrier layer, etc. The "length-weighted average fiber length (ISO),""fine fiber content," and "fiber width" were measured using a fiber optic (with 3000 ml, manufactured by Valmet).
Note that "length-weighted average fiber length (ISO)" is a length-weighted average fiber length calculated by selecting fibers with a length of 0.2 mm or more and 7.6 mm or less. Moreover, "amount of fine fibers" is the number ratio of fine fibers having a fiber width of 75 μm or less and a length of 0.08 mm or more and 0.20 mm or less in the disintegrated pulp fibers. "Fiber width" is a length-weighted average fiber width calculated by selecting fibers with a width of 10 μm or more and 75 μm or less.
〔酸化チタンの含有量〕
<紙基材中水分の測定>
 JIS P 8203:2010(ISO 638:2008)に従い、紙基材の水分率を測定した。
<試験片の作製>
 得られた紫外線レーザー印刷用紙から、前処理として、顕微鏡下で層の境界を確認しつつ、研削装置(有限会社佐川製作所製、砥石寸法φ50.8×12.7mm)を用いて、紙基材以外の層(シーラント層、バリア層、および樹脂層)を研削して除去した。
 得られたサンプルについて、JIS P 8111:1998の方法で調湿後、適当サイズに切り出し、サンプル(試験片)とし、切り出した面積と質量を記録した。
[Titanium oxide content]
<Measurement of moisture in paper base material>
The moisture content of the paper base material was measured according to JIS P 8203:2010 (ISO 638:2008).
<Preparation of test piece>
From the obtained ultraviolet laser printing paper, as a pretreatment, while checking the layer boundaries under a microscope, using a grinding device (manufactured by Sagawa Seisakusho Co., Ltd., grinding wheel size φ50.8 x 12.7 mm), paper base material The other layers (sealant layer, barrier layer, and resin layer) were removed by grinding.
The obtained sample was subjected to humidity conditioning according to the method of JIS P 8111:1998, and then cut into an appropriate size to prepare a sample (test piece), and the cut out area and mass were recorded.
<試験片の溶解>
 オートクレーブ装置(CEMジャパン製、MARS5)のテフロン(登録商標)製容器へ、硝酸:フッ酸=50:5(体積%)の混合溶剤と試験片とを投入し、210℃、120分間でオートクレーブ処理し、試験片を溶解させた。試験片の質量は適宜変更してもよく、また試験片が溶け残る場合は硝酸、フッ酸の比率や処理温度、処理時間等を適宜変更してもよい。
 試験片を溶解後、超純水を用いて正確に定容した。
<Dissolution of test piece>
A mixed solvent of nitric acid:hydrofluoric acid=50:5 (volume%) and the test piece were put into a Teflon (registered trademark) container of an autoclave device (manufactured by CEM Japan, MARS5), and autoclaved at 210°C for 120 minutes. and dissolved the test piece. The mass of the test piece may be changed as appropriate, and if the test piece remains undissolved, the ratio of nitric acid and hydrofluoric acid, treatment temperature, treatment time, etc. may be changed as appropriate.
After dissolving the test piece, the volume was accurately adjusted using ultrapure water.
<溶解液中の酸化チタン量測定>
(1)ICP装置および測定条件は以下の通りである。
 ICP装置:ICP-OEC装置(株式会社リガク製、CIROS1-20)
 測定条件:
 ・キャリアガス:アルゴンガス
 ・アルゴンガス流量0.9L/min
 ・プラズマガス流量14L/min
 ・プラズマ出力1400W
 ・ポンプ回転数:2
 ・測定波長Ti:334.941nm
(2)検量線の作成
 汎用混合標準液(SPEX社製、XSTC-622B)を、以下の濃度になるように正確に測り取り、上記測定条件で測定に供試し、チタン原子の発光波長に相当する334.941nmの強度を測定した。
 ・検量線作成用濃度:0ppm、0.01ppm、0.05ppm、0.1ppm、0.5ppm、1.0ppm、3.0ppm、5.0ppm
(3)溶解液中の酸化チタン含有量測定
 試験片が溶解した溶液を上記検量線内に収まるよう、超純水で希釈し、ICP測定に供試した。
(4)酸化チタン含有量算出方法
 以下の式で酸化チタン含有量を算出した。なお、酸化チタンの分子量÷チタンの原子量≒1.669である。
 酸化チタン含有量(g/m)=ICP測定濃度(ppm)×希釈倍率×定容量(L)×1.669×1000÷面積(m
 酸化チタン含有量(質量%)=ICP測定濃度(ppm)×希釈倍率×定容量(L)×1.669÷試験片質量(mg)×(1-水分率)×100
<Measurement of titanium oxide amount in solution>
(1) The ICP device and measurement conditions are as follows.
ICP device: ICP-OEC device (manufactured by Rigaku Co., Ltd., CIROS1-20)
Measurement condition:
・Carrier gas: Argon gas ・Argon gas flow rate 0.9L/min
・Plasma gas flow rate 14L/min
・Plasma output 1400W
・Pump rotation speed: 2
・Measurement wavelength Ti: 334.941nm
(2) Creating a calibration curve Accurately measure a general-purpose mixed standard solution (manufactured by SPEX, XSTC-622B) to the following concentration, and test it under the above measurement conditions, which corresponds to the emission wavelength of titanium atoms. The intensity at 334.941 nm was measured.
・Concentration for creating a calibration curve: 0ppm, 0.01ppm, 0.05ppm, 0.1ppm, 0.5ppm, 1.0ppm, 3.0ppm, 5.0ppm
(3) Measurement of titanium oxide content in solution The solution in which the test piece was dissolved was diluted with ultrapure water so that it fell within the above calibration curve, and was subjected to ICP measurement.
(4) Titanium oxide content calculation method Titanium oxide content was calculated using the following formula. Note that the molecular weight of titanium oxide divided by the atomic weight of titanium is approximately 1.669.
Titanium oxide content (g/m 2 ) = ICP measurement concentration (ppm) x dilution ratio x constant volume (L) x 1.669 x 1000 ÷ area (m 2 )
Titanium oxide content (mass%) = ICP measurement concentration (ppm) x dilution ratio x constant volume (L) x 1.669 ÷ test piece mass (mg) x (1-moisture content) x 100
〔シーラント層の厚さ〕
 走査型電子顕微鏡から得られる画像データからシーラント層の厚さを測定した。
(1)測定サンプルの作製
 サンプルを光硬化型樹脂(東亞合成株式会社製、D-800)で包埋し、ウルトラミクロトームで印刷用紙の断面出しを実施した。切削にはダイアモンドナイフを使用し、常温で切削した。
 切削した断面へ厚さ20nm程度の金蒸着を施し、走査型電子顕微鏡の測定へ供試した。
(2)測定装置・条件
 測定装置:S-3600(株式会社日立ハイテク製)
 測定条件:倍率2000倍
 走査型顕微鏡の種類は上記に限らないが、スケールバーが表示されるタイプの装置を使用した。
 シーラント層が薄い場合は、適切な倍率を選択して画像データを取得した。
(3)測定方法
 走査型電子顕微鏡にて、倍率2000倍で画像データを取得した。得られた画像データを印刷用紙に印刷した後、定規で対象のシーラント層の厚さ(他の層との境界から境界の長さ)を測定し、スケールバーと比較して実際のシーラント層(塗工層またはラミネート層)の厚さを測定した。1つの測定サンプルから無作為に選んだ5箇所の画像データを取得し、1箇所の画像データから、シーラント層が最も厚い箇所、シーラント層が最も薄い箇所の厚さを測定し、計10箇所の平均をシーラント層の厚さとした。なお、観察するシーラント層の厚さにより観察倍率を変更してもよい。
 なお、紙基材のシーラント層を設けた面反対面に、さらに樹脂層を有する場合には、同様の方法により、樹脂層の厚さを測定できる。また、バリア層の厚さについても同様に測定できる。
[Thickness of sealant layer]
The thickness of the sealant layer was measured from image data obtained from a scanning electron microscope.
(1) Preparation of measurement sample The sample was embedded in a photocurable resin (manufactured by Toagosei Co., Ltd., D-800), and the cross section of the printing paper was sectioned using an ultramicrotome. A diamond knife was used for cutting, and cutting was performed at room temperature.
Gold was deposited to a thickness of about 20 nm on the cut cross section, and the sample was subjected to measurement using a scanning electron microscope.
(2) Measuring device/conditions Measuring device: S-3600 (manufactured by Hitachi High-Tech Corporation)
Measurement conditions: 2000x magnification Although the type of scanning microscope is not limited to the above, a type of device with a scale bar displayed was used.
When the sealant layer was thin, an appropriate magnification was selected to acquire image data.
(3) Measurement method Image data was acquired using a scanning electron microscope at a magnification of 2000 times. After printing the obtained image data on printing paper, measure the thickness of the target sealant layer (the length of the boundary from the boundary with other layers) with a ruler, and compare it with the scale bar to determine the actual sealant layer ( The thickness of the coated layer or laminate layer was measured. Image data of 5 randomly selected locations were acquired from one measurement sample, and from the image data of 1 location, the thickness of the location where the sealant layer was the thickest and the location where the sealant layer was the thinnest was measured, and a total of 10 locations were measured. The average was taken as the thickness of the sealant layer. Note that the observation magnification may be changed depending on the thickness of the sealant layer to be observed.
Note that when the paper base material further has a resin layer on the opposite side to the side on which the sealant layer is provided, the thickness of the resin layer can be measured by the same method. Further, the thickness of the barrier layer can also be measured in the same manner.
〔ラマンスペクトルの測定〕
 ラマンスペクトルは以下の方法により測定した。本実施例において、ラマンスペクトルの測定は、後述する印字1点の鮮明性で得られた印刷物を対象として行った。
<測定条件>
 ラマンスペクトルの測定条件は、以下の通りであるが、測定に使用するレーザーで印刷物にダメージが見られる場合や、蛍光が強い場合、ピークが弱い場合等は、適宜レーザー出力や照射時間等の以下の測定条件を変更することができる。ただし、印刷領域と非印刷領域のラマン強度は同じ条件下で測定した数値を採用する。
 ・装置:レニショー社製 inVia Raman microscope QUONTOR
 ・励起レーザー:532nm
 ・レーザーパワー:50mW(出力100%時)
 ・レーザー出力:50%
 ・測定モード:共焦点モード
 ・照射時間:0.5sec
 ・積算回数:10回
 ・レーザースポット径:2.5μm
 ・対物レンズ:20倍
[Measurement of Raman spectrum]
The Raman spectrum was measured by the following method. In this example, the measurement of the Raman spectrum was performed on a printed matter obtained with the sharpness of one printing point, which will be described later.
<Measurement conditions>
The measurement conditions for Raman spectra are as follows. However, if the laser used for measurement causes damage to the printed matter, the fluorescence is strong, or the peak is weak, etc., please adjust the laser output, irradiation time, etc. as appropriate. measurement conditions can be changed. However, the Raman intensities of the printed area and non-printed area are measured under the same conditions.
・Equipment: inVia Raman microscope QUONTOR manufactured by Renishaw
・Excitation laser: 532nm
・Laser power: 50mW (at 100% output)
・Laser output: 50%
・Measurement mode: Confocal mode ・Irradiation time: 0.5 sec
・Number of integration: 10 times ・Laser spot diameter: 2.5 μm
・Objective lens: 20x
<測定方法>
 以下の方法により測定を行った。
(1)標準試料(単結晶シリコン、レニショー社製)を用いて、ラマンシフト位置のキャリブレーションを実施した(単結晶シリコンの520.5cm-1)。
(2)シート状のサンプルを試料台に設置した。シートが平面を保てるよう、必要に応じて押さえを設置した。
(3)装置にてフォーカスを合わせて観察(模擬レーザーにてフォーカスが最も小さくなるよう設定)した。印刷領域を測定する際は、目視で確認できる最も黒い箇所が測定時に表示されるガイドの中心にくるよう測定した。非印刷領域を測定する際は、印刷領域から300μm以上距離を空けて測定した。
(4)得られたラマンスペクトルは、装置付属の処理ソフト(レニショー社製、Wire5.2)にてベースライン補正(インテリジェント補正)を実施した。前記処理ソフトの多項式11にてベーラインを補正した。
(5)ルチル型酸化チタンの場合447±10cm-1、アナターゼ型酸化チタンの場合516±10cm-1の波数範囲の最大値(最大強度)を読み取り、下記式によりラマン強度比を算出した。
  ラマン強度比=印刷領域の最大強度÷非印刷領域の最大強度
(6)印刷領域(印字部)、非印刷領域(非印字部)について、それぞれ10箇所を測定し、平均値を測定結果とした。
 測定値のバラつきを抑制する観点から、印刷領域のラマン強度のカウントが10,000以下の範囲で測定することが好ましい。従って、印刷領域のラマン強度のカウントが10,000以下の範囲となるように、適宜測定条件を変更して測定を行った。また、以下の測定条件にて10回測定し、平均値±2SD(標準偏差)を超えて外れた数値を除外し、再度平均してラマン強度の平均値とした。
 ラマン強度比は、以下の基準にて評価した。
  A:ラマン強度比が0.3以下である
  B:ラマン強度比が0.3を超え0.7以下である
  C:ラマン強度比が0.7を超える
<Measurement method>
Measurement was performed using the following method.
(1) Calibration of the Raman shift position was performed using a standard sample (single crystal silicon, manufactured by Renishaw) (520.5 cm −1 of single crystal silicon).
(2) A sheet-shaped sample was placed on a sample stage. Holders were installed as necessary to keep the sheet flat.
(3) Observation was performed with the device focused (the simulated laser was set to have the smallest focus). When measuring the printed area, the blackest part that could be visually confirmed was placed in the center of the guide displayed during measurement. When measuring the non-printing area, it was measured at a distance of 300 μm or more from the printing area.
(4) The obtained Raman spectrum was subjected to baseline correction (intelligent correction) using processing software (manufactured by Renishaw, Wire 5.2) attached to the apparatus. The baseline was corrected using polynomial 11 of the processing software.
(5) The maximum value (maximum intensity) in the wavenumber range of 447±10 cm −1 for rutile titanium oxide and 516±10 cm −1 for anatase titanium oxide was read, and the Raman intensity ratio was calculated using the following formula.
Raman intensity ratio = Maximum intensity of printed area ÷ Maximum intensity of non-printed area (6) Measurements were taken at 10 locations each for the printed area (printed area) and non-printed area (non-printed area), and the average value was taken as the measurement result. .
From the viewpoint of suppressing variations in measured values, it is preferable to measure the Raman intensity count of the printed area within a range of 10,000 or less. Therefore, the measurement conditions were appropriately changed so that the Raman intensity count of the printed area was within 10,000. In addition, measurements were performed 10 times under the following measurement conditions, and values that deviated by more than the average value ± 2 SD (standard deviation) were excluded, and the values were averaged again to obtain the average value of the Raman intensity.
The Raman intensity ratio was evaluated based on the following criteria.
A: Raman intensity ratio is 0.3 or less B: Raman intensity ratio is more than 0.3 and 0.7 or less C: Raman intensity ratio is more than 0.7
〔印字1点の鮮明性〕
<レーザー印字方法>
 実施例、比較例で得られた印刷用紙に対して紫外線レーザー照射機(製造社名:株式会社キーエンス、型番:MD-U1020C)を用いて、サンプル表面に10mm角の正方形を印字した。
(印字の条件)
 波長:355nm
 出力:80%(出力100%時2.5W)
 周波数:40kHz
 焦点距離:300mm(装置付属の高さ補正を使用し、焦点合わせを実施)
 スポット径:40μm(焦点合わせ時)
 塗りつぶし間隔:0.3mm
 スキャンスピード:5000mm/sec
 スポット可変:100
[Clearness of one printing point]
<Laser printing method>
A 10 mm square was printed on the sample surface of the printing paper obtained in Examples and Comparative Examples using an ultraviolet laser irradiation machine (manufacturer name: Keyence Corporation, model number: MD-U1020C).
(Printing conditions)
Wavelength: 355nm
Output: 80% (2.5W at 100% output)
Frequency: 40kHz
Focal length: 300mm (focusing is performed using the height correction included with the device)
Spot diameter: 40μm (when focusing)
Filling interval: 0.3mm
Scan speed: 5000mm/sec
Spot variable: 100
<鮮明性評価>
 デジタルマイクロスコープ(製造社名:株式会社キーエンス、型番:VHX-8000)を用いて評価対象の印字部付近の深度合成画像を取得した。
 深度合成画像とは、焦点距離を動かして複数の画像を取得し、それぞれからピントが合った部分を抽出して1枚の画像に構築した画像である。深度合成画像はデジタルマイクロスコープに搭載されるライブ深度合成機能を用いて取得した。
 その後、自動面積計測機能のうち明るさ抽出モードを使用し、印字部で閾値より暗い領域の面積を計測した。明るさ抽出モードとは、画像の輝度レベルを-255から255に階層化して、任意の閾値以上または閾値以下の領域を抽出するモードである。
 印字部について、閾値より輝度レベルが低い領域が多いものほど「濃い印字」とみなすこととした。
(画像撮影時の設定)
 シャッタースピード:オートモード(設定値70)
 ゲイン:0dB
 倍率:400倍
 照明:リング照明
(明るさ抽出モードの設定)
 深度合成画像取得時の倍率:400倍
 照明:同軸落射100%
 シャッタースピード:オートモード70
 ゲイン:0dB
 閾値:-7
 抽出領域:印字部中心より半径60μmの円の内側
(印字部の濃さの評価基準)
  A:-7より輝度レベルが低い領域の面積が抽出領域の70%以上
  B:-7より輝度レベルが低い領域の面積が抽出領域の65%以上70%未満
  C:-7より輝度レベルが低い領域の面積が抽出領域の45%以上65%未満
  D:-7より輝度レベルが低い領域の面積が抽出領域の45%未満
<Clarity evaluation>
A depth composite image of the vicinity of the printed area to be evaluated was obtained using a digital microscope (manufacturer name: Keyence Corporation, model number: VHX-8000).
A depth composite image is an image obtained by acquiring a plurality of images by changing the focal length, extracting in-focus portions from each image, and constructing a single image. Depth composite images were acquired using the live depth composite function installed in a digital microscope.
Thereafter, the brightness extraction mode of the automatic area measurement function was used to measure the area of the area darker than the threshold value in the printed area. The brightness extraction mode is a mode that hierarchizes the brightness level of an image from -255 to 255 and extracts an area above or below an arbitrary threshold value.
Regarding the printed portion, it was decided that the larger the number of areas where the luminance level was lower than the threshold value, the more the area was considered to be a "darker printed character."
(Settings when shooting images)
Shutter speed: Auto mode (setting value 70)
Gain: 0dB
Magnification: 400x Lighting: Ring lighting (brightness extraction mode setting)
Magnification when acquiring depth composite images: 400x Illumination: 100% coaxial epi-illumination
Shutter speed: auto mode 70
Gain: 0dB
Threshold: -7
Extraction area: Inside a circle with a radius of 60 μm from the center of the printed area (criteria for evaluating the darkness of the printed area)
A: The area of the area with a brightness level lower than -7 is 70% or more of the extraction area B: The area of the area with a brightness level lower than -7 is 65% or more and less than 70% of the extraction area C: The brightness level is lower than -7 The area of the area is 45% or more and less than 65% of the extraction area D: The area of the area with a brightness level lower than -7 is less than 45% of the extraction area
〔印字均一性〕
 実施例、比較例で得られた紫外線レーザー印刷用紙に対して紫外線レーザー照射機(製造社名:株式会社キーエンス、型番:MD-U1020C)を用いて、サンプル表面に10mm角の正方形を印字した。
(印字の条件)
 波長:355nm
 出力:80%(出力100%時2.5W)
 周波数:40kHz
 焦点距離:300mm(装置付属の高さ補正を使用し、焦点合わせを実施)
 スポット径:40μm(焦点合わせ時)
 塗りつぶし間隔(ラインピッチ):0.05mm
 スキャンスピード3000mm/sec
 スポット可変:-100
[Printing uniformity]
A 10 mm square was printed on the sample surface using an ultraviolet laser irradiation machine (manufacturer name: Keyence Corporation, model number: MD-U1020C) on the ultraviolet laser printing paper obtained in Examples and Comparative Examples.
(Printing conditions)
Wavelength: 355nm
Output: 80% (2.5W at 100% output)
Frequency: 40kHz
Focal length: 300mm (focusing is performed using the height correction included with the device)
Spot diameter: 40μm (when focusing)
Filling interval (line pitch): 0.05mm
Scan speed 3000mm/sec
Spot variable: -100
(印字均一性評価)
 正方形を100個印字し、1個の正方形中に目視で確認できる濃淡差(印字不均一さ)が存在する正方形の個数により、印字均一性を以下の基準で評価した。
  A:正方形100個に対し、濃淡差がある正方形の個数が3個未満
  B:正方形100個に対し、濃淡差がある正方形の個数が3個以上5個未満
  C:正方形100個に対し、濃淡差がある正方形の個数が5個以上10個未満
  D:正方形100個に対し、濃淡差がある正方形の個数が10個以上
(Printing uniformity evaluation)
100 squares were printed, and printing uniformity was evaluated according to the following criteria based on the number of squares in which a visually observable shading difference (print non-uniformity) existed.
A: For 100 squares, the number of squares with a difference in shading is less than 3 B: For 100 squares, the number of squares with a difference in shading is 3 or more and less than 5 C: For 100 squares, the number of squares with a difference in shading is less than 3 The number of squares with a difference is 5 or more and less than 10 D: The number of squares with a difference in shade is 10 or more per 100 squares
〔発煙性〕
 印字均一性を評価する際に紫外線レーザー照射によりサンプル表面に10mm×10mmの正方形を印刷した際の発煙性を、以下の判定基準で評価した。
(判定基準)
  A:目視で発煙を確認できないか、またはうっすらと発煙を確認できるが非常に少ない
  B:目視で発煙を確認できるが、発煙量は少ない
  C:目視で発煙を確認できるが、印字に影響を与えるほどではない
  D:目視で発煙を楽に確認でき、発煙で紫外線レーザーの光を散乱し、印字に影響を与えるほど発煙量が多い
[Fuming]
When evaluating printing uniformity, smoke generation when a 10 mm x 10 mm square was printed on the sample surface by ultraviolet laser irradiation was evaluated using the following criteria.
(Judgment criteria)
A: Smoke cannot be visually confirmed, or smoke can be faintly confirmed, but it is very rare. B: Smoke can be visually confirmed, but the amount of smoke is small. C: Smoke can be visually confirmed, but it does not affect printing. Not so much D: Smoke can be easily confirmed visually, and the amount of smoke is large enough to scatter the ultraviolet laser light and affect printing.
〔水蒸気バリア性〕
 シーラント層を設けた実施例2-1~2-31、比較例2-1~2-3、および参考例2-1で得られた印刷用紙について、水蒸気バリア性を評価した。JIS-Z-0208:1976(カップ法)B法(40℃±0.5℃、相対湿度90%±2%)に準拠して、シーラント層を内側にして測定した。
 水蒸気バリア性は、以下の評価基準にて評価した。
(水蒸気バリア性の評価基準)
  A:水蒸気透過度が30g/m・day以下
  B:水蒸気透過度が30g/m・dayを超え、40g/m・day以下
  C:水蒸気透過度が40g/m・dayを超え、50g/m・day以下
  D:水蒸気透過度が50g/m・dayを超える
[Water vapor barrier property]
The water vapor barrier properties of the printing papers obtained in Examples 2-1 to 2-31, Comparative Examples 2-1 to 2-3, and Reference Example 2-1 in which sealant layers were provided were evaluated. Measurement was performed with the sealant layer on the inside in accordance with JIS-Z-0208:1976 (cup method) method B (40°C ± 0.5°C, relative humidity 90% ± 2%).
The water vapor barrier property was evaluated using the following evaluation criteria.
(Evaluation criteria for water vapor barrier properties)
A: Water vapor permeability is 30 g/m 2 ·day or less B: Water vapor permeability exceeds 30 g/m 2 ·day and is 40 g/m 2 ·day or less C: Water vapor permeability exceeds 40 g/m 2 ·day 50g/ m2・day or less D: Water vapor permeability exceeds 50g/ m2・day
 また、下記の条件でレーザー照射を行い、レーザー照射後の紫外線レーザー印刷物に対して、同様に水蒸気透過度を測定した。なお、参考例2-1については、紫外線レーザー照射前の水蒸気バリア性の評価がDであったため、測定しなかった。
<レーザー照射>
 実施例2-1~2-31、比較例2-1~2-3で得られた紫外線レーザー印刷用紙に対して紫外線レーザー照射機(製造社名:株式会社キーエンス、型番:MD-U1020C)を用いて、以下に記載の条件でサンプル表面(印刷層側)に10cm角の正方形を印字した。
・印字の条件
 波長:355nm
 出力:80%(出力100%時2.5W)
 周波数:40kHz
 焦点距離:300mm(装置付属の高さ補正を使用し、焦点合わせを実施)
 スポット径:40μm(焦点合わせ時)
 塗りつぶし間隔:0.04mm
 スキャンスピード1000mm/sec
 スポット可変:0
Further, laser irradiation was performed under the following conditions, and the water vapor permeability of the ultraviolet laser printed matter after laser irradiation was similarly measured. Note that for Reference Example 2-1, the evaluation of the water vapor barrier property before ultraviolet laser irradiation was D, so it was not measured.
<Laser irradiation>
The ultraviolet laser printing paper obtained in Examples 2-1 to 2-31 and Comparative Examples 2-1 to 2-3 was treated with an ultraviolet laser irradiation machine (manufacturer name: Keyence Corporation, model number: MD-U1020C). Then, a 10 cm square was printed on the sample surface (printed layer side) under the conditions described below.
・Printing conditions Wavelength: 355nm
Output: 80% (2.5W at 100% output)
Frequency: 40kHz
Focal length: 300mm (focusing is performed using the height correction included with the device)
Spot diameter: 40μm (when focusing)
Filling interval: 0.04mm
Scan speed 1000mm/sec
Spot variable: 0
〔酸素バリア性〕
 酸素透過率測定装置(MOCON社製、OX-TRAN2/22)を使用し、温度23℃、相対湿度85%の条件にて、実施例2-23~2-31の紫外線レーザー印刷用紙の酸素透過度を測定した。
 具体的には、積層シートについて、JIS K7126-2:2006に準拠して、温度23℃、相対湿度85%における酸素透過度を測定した。
 酸素透過度の値は低いほど酸素バリア性に優れる。
 酸素バリア性は、以下の評価基準にて評価した。
(酸素バリア性の評価基準)
  A:酸素透過度が3.0mL/m・day・atm以下
  B:酸素透過度が3.0mL/m・day・atmを超え、5.0mL/m・day・atm以下
  C:酸素透過度が5.0mL/m・day・atmを超え、15mL/m・day・atm以下
  D:酸素透過度が15mL/m・day・atmを超える
[Oxygen barrier property]
Oxygen permeation of the ultraviolet laser printing papers of Examples 2-23 to 2-31 was measured using an oxygen permeability measuring device (OX-TRAN2/22, manufactured by MOCON) under conditions of a temperature of 23°C and a relative humidity of 85%. The degree was measured.
Specifically, the oxygen permeability of the laminated sheet was measured at a temperature of 23° C. and a relative humidity of 85% in accordance with JIS K7126-2:2006.
The lower the oxygen permeability value, the better the oxygen barrier property.
Oxygen barrier properties were evaluated using the following evaluation criteria.
(Oxygen barrier evaluation criteria)
A: Oxygen permeability is 3.0 mL/m 2 ·day · atm or less B: Oxygen permeability exceeds 3.0 mL/m 2 ·day · atm and is below 5.0 mL/m 2 ·day · atm C: Oxygen Permeability exceeds 5.0 mL/m 2 ·day · atm and is below 15 mL/m 2 ·day · atm D: Oxygen permeability exceeds 15 mL/m 2 ·day · atm
 また、下記の条件でレーザー照射を行い、レーザー照射後の紫外線レーザー印刷物に対して、同様に酸素透過度を測定した。
<レーザー照射>
 実施例2-1~2-31、比較例2-1~2-3で得られた紫外線レーザー印刷用紙に対して紫外線レーザー照射機(製造社名:株式会社キーエンス、型番:MD-U1020C)を用いて、以下に記載の条件でサンプル表面(印刷層側)に10cm角の正方形を印字した。
・印字の条件
 波長:355nm
 出力:80%(出力100%時2.5W)
 周波数:40kHz
 焦点距離:300mm(装置付属の高さ補正を使用し、焦点合わせを実施)
 スポット径:40μm(焦点合わせ時)
 塗りつぶし間隔:0.04mm
 スキャンスピード1000mm/sec
 スポット可変:0
Further, laser irradiation was performed under the following conditions, and the oxygen permeability of the ultraviolet laser printed matter after laser irradiation was similarly measured.
<Laser irradiation>
The ultraviolet laser printing paper obtained in Examples 2-1 to 2-31 and Comparative Examples 2-1 to 2-3 was treated with an ultraviolet laser irradiation machine (manufacturer name: Keyence Corporation, model number: MD-U1020C). Then, a 10 cm square was printed on the sample surface (printed layer side) under the conditions described below.
・Printing conditions Wavelength: 355nm
Output: 80% (2.5W at 100% output)
Frequency: 40kHz
Focal length: 300mm (focusing is performed using the height correction included with the device)
Spot diameter: 40μm (when focusing)
Filling interval: 0.04mm
Scan speed 1000mm/sec
Spot variable: 0
〔紫外線レーザー照射後のバリア性低下率(バリア性低下率)〕
 紫外線レーザー照射前後の水蒸気透過度および酸素透過度から、紫外線レーザー照射によるバリア性の低下(バリア性低下率)を、以下の評価基準により評価した。
(バリア性低下率の評価基準)
 A:水蒸気透過度および酸素透過度の低下率(減少率)が5.0%以下
 B:水蒸気透過度および/または酸素透過度の低下率(減少率)が5.0%を超える
 なお、水蒸気透過度の低下率は、以下のように算出される。
 水蒸気透過度の低下率=(紫外線レーザー照射後の水蒸気透過度(g/m・day)-紫外線レーザー照射前の水蒸気透過度(g/m・day))/紫外線レーザー照射前の水蒸気透過度(g/m・day)×100
 同様に、酸素透過度の低下率は、以下のように算出される。
 酸素透過度の低下率=(紫外線レーザー照射後の酸素透過度(mL/m・day・atm)-紫外線レーザー照射前の酸素透過度(mL/m・day・atm))/紫外線レーザー照射前の酸素透過度(mL/m・day・atm)×100
[Barrier property reduction rate after ultraviolet laser irradiation (barrier property reduction rate)]
From the water vapor permeability and oxygen permeability before and after ultraviolet laser irradiation, the reduction in barrier properties (barrier property reduction rate) due to ultraviolet laser irradiation was evaluated using the following evaluation criteria.
(Evaluation criteria for barrier property reduction rate)
A: The rate of decrease (reduction rate) in water vapor permeability and oxygen permeability is 5.0% or less B: The rate of decrease (reduction rate) in water vapor permeability and/or oxygen permeability exceeds 5.0% Note that water vapor The rate of decrease in transmittance is calculated as follows.
Reduction rate of water vapor permeability = (Water vapor permeability after ultraviolet laser irradiation (g/m 2 ·day) - Water vapor permeability before ultraviolet laser irradiation (g/m 2 ·day)) / Water vapor permeation before ultraviolet laser irradiation degree (g/ m2・day)×100
Similarly, the rate of decrease in oxygen permeability is calculated as follows.
Reduction rate of oxygen permeability = (oxygen permeability after ultraviolet laser irradiation (mL/m 2 ·day · atm) - oxygen permeability before ultraviolet laser irradiation (mL/m 2 ·day · atm)) / ultraviolet laser irradiation Previous oxygen permeability (mL/ m2・day・atm)×100
〔ヒートシール剥離強度およびヒートシール剥離強度の低下率(剥離強度低下率)〕
 実施例2-1~2-31および比較例2-1~2-3、および参考例2-1において、2枚1組の紫外線レーザー印刷用紙を、シーラント層が向き合うように重ね、ヒートシールテスター(テスター産業製、TP-701-B)を用いて、160℃、0.2MPa、1秒の条件でヒートシールした。ヒートシールされた試験片を温度23℃±1℃、湿度50%±2%の室内で4時間以上静置した。続いて、ヒートシールされた試験片を15mm幅にカットし、引張試験機を用いて、引張速度300mm/minでT字剥離し、記録された最大荷重をヒートシール剥離強度とした。
 ヒートシール剥離強度を、以下の評価基準で評価した。
(ヒートシール剥離強度の評価基準)
 A:ヒートシール剥離強度が10N/15mm以上
 B:ヒートシール剥離強度が6.0N/15m以上10N/15mm未満
 C:ヒートシール剥離強度が3.0N/15mm以上6.0N/15mm未満
 D:ヒートシール剥離強度が3.0N/15mm未満
<レーザー照射>
 実施例2-1~2-31、比較例2-1~2-3および参考例2-1で得られた紫外線レーザー印刷用紙に対して紫外線レーザー照射機(製造社名:株式会社キーエンス、型番:MD-U1020C)を用いて、以下に記載の条件でサンプル表面(印刷層側)に10cm角の正方形を印字した。
 ・印字の条件
 波長:355nm
 出力:80%(出力100%時2.5W)
 周波数:40kHz
 焦点距離:300mm(装置付属の高さ補正を使用し、焦点合わせを実施)
 スポット径:40μm(焦点合わせ時)
 塗りつぶし間隔:0.04mm
 スキャンスピード1000mm/sec
 スポット可変:0
(ヒートシール剥離強度低下率の評価基準)
 紫外線レーザー照射前後のヒートシール剥離強度から、紫外線レーザー照射によるヒートシール剥離強度の低下率を、以下の評価基準により評価した。なお、比較例2-4については、紫外線レーザー照射前のヒートシール剥離強度の評価がDであったため、測定しなかった。
(ヒートシール剥離強度の低下率の評価基準)
 A:ヒートシール剥離強度の低下率(減少率)が5.0%以下
 B:ヒートシール剥離強度の低下率(減少率)が5.0%を超える
 なお、ヒートシール剥離強度の低下率は、以下のように算出される。
 ヒートシール剥離強度の低下率=(紫外線レーザー照射前のヒートシール剥離強度(N/15mm)-紫外線レーザー照射後のヒートシール剥離強度(N/15mm))/紫外線レーザー照射前のヒートシール剥離強度(N/15mm)×100
[Heat seal peel strength and heat seal peel strength reduction rate (peel strength reduction rate)]
In Examples 2-1 to 2-31, Comparative Examples 2-1 to 2-3, and Reference Example 2-1, a set of two sheets of ultraviolet laser printing paper was stacked so that the sealant layers faced each other, and a heat seal tester was used. (manufactured by Tester Sangyo, TP-701-B) under the conditions of 160° C., 0.2 MPa, and 1 second. The heat-sealed test piece was left standing in a room at a temperature of 23° C.±1° C. and a humidity of 50%±2% for 4 hours or more. Subsequently, the heat-sealed test piece was cut to a width of 15 mm, and was subjected to T-peeling at a tensile speed of 300 mm/min using a tensile testing machine, and the maximum load recorded was taken as the heat-sealing peel strength.
Heat seal peel strength was evaluated using the following evaluation criteria.
(Evaluation criteria for heat seal peel strength)
A: Heat seal peel strength is 10 N/15 mm or more B: Heat seal peel strength is 6.0 N/15 m or more and less than 10 N/15 mm C: Heat seal peel strength is 3.0 N/15 mm or more and less than 6.0 N/15 mm D: Heat Seal peel strength is less than 3.0N/15mm <Laser irradiation>
The ultraviolet laser printing paper obtained in Examples 2-1 to 2-31, Comparative Examples 2-1 to 2-3, and Reference Example 2-1 was exposed to an ultraviolet laser irradiation machine (manufacturer name: Keyence Corporation, model number: MD-U1020C) was used to print a 10 cm square on the sample surface (printing layer side) under the conditions described below.
・Printing conditions Wavelength: 355nm
Output: 80% (2.5W at 100% output)
Frequency: 40kHz
Focal length: 300mm (focusing is performed using the height correction included with the device)
Spot diameter: 40μm (when focusing)
Filling interval: 0.04mm
Scan speed 1000mm/sec
Spot variable: 0
(Evaluation criteria for heat seal peel strength reduction rate)
The rate of decrease in heat seal peel strength due to ultraviolet laser irradiation was evaluated based on the heat seal peel strength before and after ultraviolet laser irradiation using the following evaluation criteria. Note that for Comparative Example 2-4, the evaluation of the heat seal peel strength before UV laser irradiation was D, so it was not measured.
(Evaluation criteria for reduction rate of heat seal peel strength)
A: The rate of decrease (rate of decrease) in heat seal peel strength is 5.0% or less B: The rate of decrease (rate of decrease) in heat seal peel strength exceeds 5.0% The rate of decrease in heat seal peel strength is: It is calculated as follows.
Reduction rate of heat seal peel strength = (Heat seal peel strength before UV laser irradiation (N/15mm) - Heat seal peel strength after UV laser irradiation (N/15 mm)) / Heat seal peel strength before UV laser irradiation ( N/15mm)×100
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表2に示すように、酸化チタンを特定量以上含有し、酸化チタンの結晶子サイズが特定の値以上である紫外線レーザー印刷用紙を、紫外線レーザーにて直接印刷することで、一点ごとの印字鮮明性に優れた印刷物が得られた。
 なお、結晶子サイズが55.3nmと、結晶子サイズが比較的大きい酸化チタンを使用した実施例1-6では、分散性の低下に伴うと考えられる印字均一性の低下が認められた。また、回折角度が27.74°であり、比較的に結晶性が低い酸化チタンを使用した実施例1-8では、若干の一点ごとの印字鮮明性の低下が認められた。さらに、構成するパルプの長さ加重平均繊維長が2.18mmである実施例1-14の印刷用紙では、繊維間の空隙の増加に伴うと考えられる、一点ごとの印字鮮明性の低下が認められた。
 一方、結晶性サイズが30nm未満である酸化チタンを使用した比較例1-1および1-2の印刷用紙では、一点ごとの印字鮮明性に劣る印刷物が得られた。また、酸化チタンの含有量が0.1質量%であり、0.5質量%未満である比較例1-3の印刷用紙では、紫外線レーザー照射した際に、一点ごとの印字鮮明性に劣る印字スポットとなった。
As shown in Table 2, by directly printing with an ultraviolet laser on ultraviolet laser printing paper that contains more than a certain amount of titanium oxide and has a titanium oxide crystallite size of more than a certain value, each point is clearly printed. Printed matter with excellent properties was obtained.
In Example 1-6, in which titanium oxide having a relatively large crystallite size of 55.3 nm was used, a decrease in printing uniformity was observed, which was considered to be due to a decrease in dispersibility. In addition, in Example 1-8 in which the diffraction angle was 27.74° and titanium oxide with relatively low crystallinity was used, a slight decrease in print clarity from point to point was observed. Furthermore, in the printing paper of Example 1-14 in which the length-weighted average fiber length of the constituent pulp was 2.18 mm, a decrease in print clarity per point was observed, which was thought to be due to an increase in the voids between the fibers. It was done.
On the other hand, with the printing papers of Comparative Examples 1-1 and 1-2 in which titanium oxide having a crystalline size of less than 30 nm was used, printed matter was obtained with poor print clarity on a point-by-point basis. In addition, in the printing paper of Comparative Example 1-3, in which the content of titanium oxide is 0.1% by mass and less than 0.5% by mass, when irradiated with ultraviolet laser, the print clarity of each point was poor. It became a spot.
 表3に示すように、酸化チタンを特定量以上含有し、酸化チタンの結晶子サイズが特定の値以上である紫外線レーザー印刷用紙を、紫外線レーザーにて直接印刷することで、一点ごとの印字鮮明性に優れた印刷物が得られた。
 さらに、ヒートシール性を有し、水蒸気バリア性にも優れるものであった。また、バリア層を形成した実施例2-23~2-31の紫外線レーザー印刷用紙は、酸素バリア性にも優れるものであった。また、紫外線レーザーによる印刷による、バリア性およびヒートシール性の低下が抑制されていた。
 なお、結晶子サイズが55.3nmと、結晶子サイズが比較的大きい酸化チタンを使用した実施例2-6では、分散性の低下に伴うと考えられる印字均一性の低下が認められた。また、回折角度が27.74°であり、比較的に結晶性が低い酸化チタンを使用した実施例2-8では、若干の一点ごとの印字鮮明性の低下が認められた。さらに、構成するパルプの長さ加重平均繊維長が2.18mmである実施例2-14の印刷用紙では、繊維間の空隙の増加に伴うと考えられる、一点ごとの印字鮮明性の低下が認められた。
 一方、結晶性サイズが30nm未満である酸化チタンを使用した比較例2-1および2-2の印刷用紙では、一点ごとの印字鮮明性に劣る印刷物が得られた。また、酸化チタンの含有量が0.1質量%であり、0.5質量%未満である比較例2-3の印刷用紙では、紫外線レーザー照射した際に、一点ごとの印字鮮明性に劣る印字スポットとなった。
 また、シーラント層を有していない参考例2-1の印刷用紙を用いた場合には、ヒートシール性および水蒸気バリア性が得られなかった。
As shown in Table 3, by directly printing with an ultraviolet laser on ultraviolet laser printing paper that contains more than a certain amount of titanium oxide and the crystallite size of titanium oxide is more than a certain value, each point is clearly printed. Printed matter with excellent properties was obtained.
Furthermore, it had heat sealability and excellent water vapor barrier properties. Furthermore, the ultraviolet laser printing papers of Examples 2-23 to 2-31 on which barrier layers were formed had excellent oxygen barrier properties. Further, deterioration in barrier properties and heat sealability due to printing with an ultraviolet laser was suppressed.
In Example 2-6, in which titanium oxide having a relatively large crystallite size of 55.3 nm was used, a decrease in printing uniformity was observed, which was considered to be due to a decrease in dispersibility. In addition, in Example 2-8 in which the diffraction angle was 27.74° and titanium oxide with relatively low crystallinity was used, a slight decrease in print clarity from point to point was observed. Furthermore, in the printing paper of Example 2-14 in which the length-weighted average fiber length of the constituent pulp was 2.18 mm, a decrease in print clarity per point was observed, which was thought to be due to an increase in the voids between the fibers. It was done.
On the other hand, with the printing papers of Comparative Examples 2-1 and 2-2 in which titanium oxide having a crystalline size of less than 30 nm was used, printed matter was obtained with poor print clarity on a point-by-point basis. In addition, in the printing paper of Comparative Example 2-3, in which the content of titanium oxide is 0.1% by mass and less than 0.5% by mass, when irradiated with ultraviolet laser, the print clarity of each point was poor. It became a spot.
Furthermore, when the printing paper of Reference Example 2-1 which did not have a sealant layer was used, heat sealing properties and water vapor barrier properties were not obtained.
 本発明の紫外線レーザー印刷用紙は、紫外線レーザーの照射によって酸化チタンが変色することで、視認性に優れ、一点ごとの印字鮮明性に優れる印刷物が提供できる。本発明の紫外線レーザー印刷用紙および印刷物は、日付、バーコード等の可変情報が印刷される包装体(好ましくは食品用容器)、ラベル、および粘着テープなどの加工品に好適に適用される。さらに、本発明の印刷物の製造方法は、包装体、ラベル、粘着テープなどへの可変情報の印刷に好適に適用される。

 
In the ultraviolet laser printing paper of the present invention, titanium oxide changes color by irradiation with ultraviolet laser, so that it is possible to provide printed matter with excellent visibility and excellent print clarity for each point. The ultraviolet laser printed paper and printed matter of the present invention are suitably applied to processed products such as packages (preferably food containers), labels, and adhesive tapes on which variable information such as dates and barcodes are printed. Furthermore, the method for producing printed matter of the present invention is suitably applied to printing variable information on packages, labels, adhesive tapes, and the like.

Claims (13)

  1.  酸化チタンが内添されてなる紙基材を有する紫外線レーザー印刷用紙であって、
     前記紙基材中の酸化チタンの含有量が0.5質量%以上であり、
     前記酸化チタンの結晶子サイズが、30nm以上である、
     紫外線レーザー印刷用紙。
    An ultraviolet laser printing paper having a paper base material internally doped with titanium oxide,
    The content of titanium oxide in the paper base material is 0.5% by mass or more,
    The crystallite size of the titanium oxide is 30 nm or more,
    UV laser printing paper.
  2.  前記酸化チタンの結晶子サイズが53nm以下である、請求項1に記載の紫外線レーザー印刷用紙。 The ultraviolet laser printing paper according to claim 1, wherein the titanium oxide has a crystallite size of 53 nm or less.
  3.  前記酸化チタンがルチル型酸化チタンであり、前記酸化チタンの回折角度が27.60°以下である、請求項1に記載の紫外線レーザー印刷用紙。 The ultraviolet laser printing paper according to claim 1, wherein the titanium oxide is rutile-type titanium oxide, and the diffraction angle of the titanium oxide is 27.60° or less.
  4.  前記紙基材を構成するパルプの長さ加重平均繊維長が0.5mm以上3.0mm以下である、請求項1に記載の紫外線レーザー印刷用紙。 The ultraviolet laser printing paper according to claim 1, wherein the length-weighted average fiber length of the pulp constituting the paper base is 0.5 mm or more and 3.0 mm or less.
  5.  前記紙基材を構成するパルプ繊維中、繊維長が0.2mm以下の微細繊維の本数割合が4%以上40%以下である、請求項1に記載の紫外線レーザー印刷用紙。 The ultraviolet laser printing paper according to claim 1, wherein the number ratio of fine fibers with a fiber length of 0.2 mm or less among the pulp fibers constituting the paper base material is 4% or more and 40% or less.
  6.  前記紙基材中の酸化チタンの含有量が50質量%以下である、請求項1に記載の紫外線レーザー印刷用紙。 The ultraviolet laser printing paper according to claim 1, wherein the content of titanium oxide in the paper base material is 50% by mass or less.
  7.  前記紙基材の少なくとも一方の面にシーラント層を有する、請求項1に記載の紫外線レーザー印刷用紙。 The ultraviolet laser printing paper according to claim 1, which has a sealant layer on at least one surface of the paper base material.
  8.  前記紙基材とシーラント層との間に、バリア層を有する、請求項7に記載の紫外線レーザー印刷用紙。 The ultraviolet laser printing paper according to claim 7, further comprising a barrier layer between the paper base material and the sealant layer.
  9.  請求項1~8のいずれか1項に記載の紫外線レーザー印刷用紙から得られた印刷物であって、
     前記印刷物が、少なくとも一部に、変色された酸化チタンを含有する印刷領域を有し、
     非印刷領域における酸化チタンに由来するラマン強度に対する、印刷領域における酸化チタンに由来するラマン強度の比が0.70以下である、印刷物。
    A printed matter obtained from the ultraviolet laser printing paper according to any one of claims 1 to 8, comprising:
    The printed matter has at least a portion of a printed area containing discolored titanium oxide,
    A printed matter in which the ratio of the Raman intensity derived from titanium oxide in the printed area to the Raman intensity derived from titanium oxide in the non-printed area is 0.70 or less.
  10.  請求項1~8のいずれか1項に記載の紫外線レーザー印刷用紙を用いてなる、加工品。 A processed product made using the ultraviolet laser printing paper according to any one of claims 1 to 8.
  11.  請求項9に記載の印刷物を用いてなる、加工品。 A processed product made using the printed matter according to claim 9.
  12.  請求項1~8のいずれか1項に記載の紫外線レーザー印刷用紙に紫外線レーザーを照射して、照射領域を変色させることにより印刷する工程を有する、
     印刷物の製造方法。
    A step of printing by irradiating the ultraviolet laser printing paper according to any one of claims 1 to 8 with an ultraviolet laser to change color in the irradiated area,
    Method of manufacturing printed matter.
  13.  前記印刷する工程が、非印刷領域における酸化チタンに由来するラマン強度に対する、印刷領域における酸化チタンに由来するラマン強度との比が0.70以下となるように紫外線レーザーを照射する工程である、請求項12に記載の印刷物の製造方法。

     
    The printing step is a step of irradiating an ultraviolet laser so that the ratio of the Raman intensity originating from titanium oxide in the printing area to the Raman intensity originating from titanium oxide in the non-printing area is 0.70 or less. The method for producing a printed matter according to claim 12.

PCT/JP2023/018264 2022-05-17 2023-05-16 Ultraviolet laser printing paper, printed object, processed article, and printed object production method WO2023224037A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022080970A JP7256915B1 (en) 2022-05-17 2022-05-17 Ultraviolet laser printing paper, printed matter, processed product, and method for producing printed matter
JP2022-080970 2022-05-17
JP2023062640A JP7306595B1 (en) 2023-04-07 2023-04-07 Ultraviolet laser printing paper, printed matter, processed product, and method for producing printed matter
JP2023-062640 2023-04-07

Publications (1)

Publication Number Publication Date
WO2023224037A1 true WO2023224037A1 (en) 2023-11-23

Family

ID=88835612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018264 WO2023224037A1 (en) 2022-05-17 2023-05-16 Ultraviolet laser printing paper, printed object, processed article, and printed object production method

Country Status (1)

Country Link
WO (1) WO2023224037A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020075943A (en) * 2018-11-05 2020-05-21 サトーホールディングス株式会社 Ink composition, ultraviolet laser marking material, manufacturing method of material with laser marking, manufacturing method of package, manufacturing method of article with label for printing, and laser marking method
JP2022050447A (en) * 2020-05-22 2022-03-30 王子ホールディングス株式会社 Printed material, method for producing printed material, and printing medium for laser printing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020075943A (en) * 2018-11-05 2020-05-21 サトーホールディングス株式会社 Ink composition, ultraviolet laser marking material, manufacturing method of material with laser marking, manufacturing method of package, manufacturing method of article with label for printing, and laser marking method
JP2022050447A (en) * 2020-05-22 2022-03-30 王子ホールディングス株式会社 Printed material, method for producing printed material, and printing medium for laser printing

Similar Documents

Publication Publication Date Title
JP7070787B2 (en) Printed matter, printed matter manufacturing methods, and printing media for laser printing
JP7188541B1 (en) Ultraviolet Laser Print Media, Prints, and Artifacts
JP7347705B1 (en) Ultraviolet laser printing paper, printed matter, manufacturing method thereof, and processed products
JP7120429B1 (en) Ultraviolet laser printing paper, printed matter, processed product, and method for producing printed matter
WO2023224038A1 (en) Ultraviolet laser printing paper, printed matter and manufacturing method therefor, processed object, and ink composition
JP7306595B1 (en) Ultraviolet laser printing paper, printed matter, processed product, and method for producing printed matter
JP7347707B1 (en) Ultraviolet laser printing media, printed matter and its manufacturing method, and processed products
WO2023224037A1 (en) Ultraviolet laser printing paper, printed object, processed article, and printed object production method
WO2023224035A1 (en) Ultraviolet laser printing medium, printed matter and method for manufacturing same, processed article, and ink composition
JP7347706B1 (en) Ultraviolet laser printing film, printed matter, manufacturing method thereof, and processed products
JP7302709B1 (en) UV LASER PRINTING MEDIUM, PRINTED MATERIAL AND MANUFACTURING METHOD THEREOF, PROCESSED PRODUCT, AND INK COMPOSITION
JP7115620B1 (en) Ultraviolet Laser Print Media, Prints, and Artifacts
JP7188540B1 (en) Ultraviolet Laser Print Media, Prints, and Artifacts
JP7302708B1 (en) Ultraviolet laser printing paper, printed matter and its manufacturing method, processed product, and ink composition
JP7120430B1 (en) Ultraviolet laser printing paper, printed matter, method for producing printed matter, and processed paper product
WO2023224034A1 (en) Ultraviolet laser printing film, printed matter and manufacturing method therefor, and processed object
JP7256915B1 (en) Ultraviolet laser printing paper, printed matter, processed product, and method for producing printed matter
JP7256916B1 (en) Ultraviolet laser printing film, printed matter, manufacturing method thereof, and processed product
JP7127726B1 (en) Ultraviolet laser printing films, prints, and processed products
JP7127727B1 (en) Print media for printed matter and laser printing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807639

Country of ref document: EP

Kind code of ref document: A1