WO2023224012A1 - Physical property prediction device, physical property prediction method, and program - Google Patents

Physical property prediction device, physical property prediction method, and program Download PDF

Info

Publication number
WO2023224012A1
WO2023224012A1 PCT/JP2023/018162 JP2023018162W WO2023224012A1 WO 2023224012 A1 WO2023224012 A1 WO 2023224012A1 JP 2023018162 W JP2023018162 W JP 2023018162W WO 2023224012 A1 WO2023224012 A1 WO 2023224012A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
physical property
composition
neural network
data
Prior art date
Application number
PCT/JP2023/018162
Other languages
French (fr)
Japanese (ja)
Inventor
駿 室賀
賢治 畠
康彰 三木
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Publication of WO2023224012A1 publication Critical patent/WO2023224012A1/en

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/30Prediction of properties of chemical compounds, compositions or mixtures
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C60/00Computational materials science, i.e. ICT specially adapted for investigating the physical or chemical properties of materials or phenomena associated with their design, synthesis, processing, characterisation or utilisation

Definitions

  • the present invention relates to a physical property prediction device, a physical property prediction method, and a program for predicting physical property information of a composition such as a composite material.
  • Non-Patent Document 1 a method has been proposed that uses images obtained through experiments as training data and performs machine learning based on a multilayer neural network to predict unknown physical properties of compositions.
  • the information to be captured is limited to images showing the structure of the composition.
  • information indicating physical properties is not necessarily included in the image; physical properties such as chemical properties, optical properties, and molecular structure also exist.
  • physical properties such as chemical properties, optical properties, and molecular structure also exist.
  • the present invention aims to provide a physical property prediction device, a physical property prediction method, and a program that can predict the physical properties of unknown compositions such as composite materials based on machine learning that integrates complex material information. do.
  • One aspect of the present invention includes a calculation unit that generates physical property information of the composition based on input data, and an output unit that outputs the physical property information, and the calculation unit includes first material information as the input data. to generate physical structure information of a composition to be predicted based on a first neural network; a physical property prediction device that generates chemical structure information of the composition, generates integrated information that integrates the physical structure information and the chemical structure information, and generates the physical property information of the composition based on the integrated information. It is.
  • the physical properties of an unknown composition such as a composite material can be predicted based on machine learning that integrates complex material information.
  • FIG. 1 is a block diagram showing the configuration of a physical property prediction system. It is a flowchart which shows the process flow of the machine learning process performed in a physical property prediction device. It is a flowchart which shows the process flow of the virtual experiment process performed in a physical property prediction device.
  • FIG. 3 is a diagram showing experimental results using a physical property prediction device. It is a figure showing an example of image data generated by a physical property prediction device. It is a figure showing an example of spectrum data generated by a physical property prediction device.
  • the physical property prediction device predicts a new complex material having multiple physical property information based on machine learning using a neural network.
  • the physical property prediction system 1 includes, for example, a physical property prediction device 10 communicably connected to a communication network NW and a server device 20.
  • the server device 20 is, for example, a storage server that stores a huge amount of information such as experimental data.
  • the server device 20 is communicably connected to the physical property prediction device 10 via the communication network NW.
  • the server device 20 may be directly connected to the physical property prediction device 10.
  • the server device 20 includes, for example, a storage unit 22 that stores experimental data.
  • the storage unit 22 is, for example, a storage device such as a hard disk drive (HDD) or a flash memory.
  • Experimental data is stored in the storage unit 22 via the communication network NW. The contents of the experimental data will be described later.
  • the server device 20 provides experimental data to the physical property prediction device 10 via the communication network NW.
  • the physical property prediction device 10 is configured by, for example, a terminal device such as a personal computer for the purpose of information processing.
  • the physical property prediction device 10 may be composed of two or more terminal devices that can cooperate to perform processing.
  • the physical property prediction device 10 includes, for example, a calculation unit 12 that performs calculations necessary for information processing, a storage unit 14 that stores data and programs necessary for the calculation, and an output unit that outputs information such as calculation results of the calculation unit 12. 16, and an acquisition unit 18 that acquires data necessary for calculation via the communication network NW.
  • the calculation unit 12 is realized by hardware (including circuitry) such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), and GPU (Graphics Processing Unit). Alternatively, it may be realized by cooperation of software and hardware.
  • the program may be stored in advance in a storage device (a storage device including a non-transitory storage medium) such as the HDD or flash memory of the storage unit 14, or a removable storage device such as a DVD or CD-ROM.
  • the information may be installed in the HDD or flash memory of the storage unit 14 by attaching a storage medium (non-transitory storage medium) to the drive device.
  • the storage unit 14 is, for example, a storage device such as a hard disk drive or flash memory.
  • the storage unit 14 stores, for example, programs necessary for calculations by the calculation unit 12 and other various information.
  • the output unit 16 is a display device configured with, for example, an LCD (Liquid Crystal Display) or an organic EL (Electro Luminescence) display.
  • the output unit 16 is configured integrally with the physical property prediction device 10 or separately.
  • the acquisition unit 18 includes a communication interface that can communicate with the communication network NW.
  • the acquisition unit 18 performs communication via the communication network NW using, for example, a cellular network, a Wi-Fi network, Bluetooth (registered trademark), DSRC (Dedicated Short Range Communication), or the like.
  • the acquisition unit 18 communicates with the server device 20 via the communication network NW, for example, and acquires the experimental data stored in the server device 20.
  • the composition is, for example, a polymeric composite.
  • the composition is not limited to polymer composite materials, but may be other materials.
  • the calculation unit 12 performs a learning process of performing deep learning based on a neural network using experimental data acquired from the server device 20, and a virtual experiment process of performing a virtual experiment using input data and outputting physical property information of the composition. Execute. For example, the calculation unit 12 performs machine learning using different types of measurement data to improve the ability to calculate predicted values of physical property information of the composition based on input data.
  • the calculation unit 12 performs machine learning using multimodal AI (Artificial Intelligence) based on the input data, and calculates physical property information of the composition based on the multimodal AI after machine learning.
  • Multimodal AI is a computer program that executes processing that outputs advanced determination results using multiple different types of information. According to multimodal AI, it is possible to output calculated values depending on the purpose using different types of input data such as images and numerical data.
  • the calculation unit 12 performs a virtual experiment using, for example, image data of the composition and measured values of the substance, and calculates predicted values of physical property information of the composition.
  • the calculation unit 12 is configured to generate physical structure information of a composition to be predicted based on a first learning model based on a first neural network using first material information including image data among input data. It is composed of Physical structure information is information representing the mixing/dispersion state of substances, composition distribution, etc. in a composition. Further, the calculation unit 12 is configured to generate chemical structure information of the composition based on a second learning model based on a second neural network using second material information including a different type of numerical value from the first material information. has been done. Chemical structure information is information representing the chemical structure of substances constituting the composition, their types, numbers, interactions, etc. The calculation unit 12 is configured to generate physical property information of the composition by integrating the generated physical structure information and chemical structure information.
  • the calculation unit 12 calculates different types of data, such as image data showing the structure of the composition, measured values based on infrared absorption spectrometry (IR) of the composition, and measured values including numerical values based on Raman spectroscopy. Using the input data, predict the predicted values of at least three types of physical property indicators of the composition, such as Young's modulus, strength, elongation at break, glass transition temperature, density, electrical resistance, storage modulus, and loss tangent. calculate.
  • the physical property information is not limited to the eight indicators described above, and may include other physical property indicators.
  • the calculation unit 12 executes a learning process based on machine learning in order to improve the accuracy of generating physical property information of the composition.
  • the calculation unit 12 selects data belonging to a predetermined type of category from among the input data input to the server device 20, and generates first material information.
  • the first material information includes, for example, image data indicating physical structure information of the composition.
  • the first material information is, for example, data based on images compiled into a database in past experiments.
  • the first material information is, for example, image data showing the structure of a polymer composite material created from a matrix, additives, and fillers blended based on a predetermined blending ratio.
  • the first material information is, for example, an optical microscope, a laser microscope, a scanning electron microscope (SEM), a scanning probe microscope (SPM), an atomic force microscope (AFM), It may be image data containing physical structure information captured by a transmission electron microscope (TEM), birefringence imaging, or a laser scanner.
  • the first material information may be two-dimensional pixel data obtained from thermography, three-dimensional voxel data obtained from tomography such as X-ray CT (Computed Tomography) or TEM-CT, hyperspectral data including wavelength information, etc. good.
  • the first material information indirectly includes physical structure information, it may be replaced with data such as light scattering, X-ray diffraction, ultrasonic attenuation, gas adsorption test, dielectric relaxation spectrum, viscoelastic spectrum, etc. good. Further, the first material information may be generated by combining the above data.
  • the calculation unit 12 executes first machine learning based on a first neural network using first material information stored in advance.
  • the first neural network is configured with a first learning model used for calculations to calculate output values.
  • the first learning model is configured, for example, to calculate a predicted value of the physical structure information of the composition upon input of the first material information. Initial parameters for calculating predicted values are set in the first learning model.
  • the calculation unit 12 repeatedly executes a process of calculating an output value for the input value using the first neural network and adjusting parameters included in the first learning model based on a comparison between the output value and the correct value. do.
  • the calculation unit 12 improves the accuracy of the first learning model based on the process of performing the first machine learning described above.
  • the first learning model is, for example, a model that can perform supervised learning and unsupervised learning using the first material information.
  • the calculation unit 12 When the input data is small, the calculation unit 12 performs unsupervised learning using the first neural network based on the first material information. When there is a large amount of input data, the calculation unit 12 may perform supervised learning using the first material information using the first neural network.
  • the calculation unit 12 is configured to execute processing based on Generative Adversarial Networks (GAN) in unsupervised learning using the first neural network, for example.
  • GAN Generative Adversarial Networks
  • a GAN is composed of two networks: a generation network (generator) that generates data and a discrimination network (discriminator) that identifies the authenticity of the generated data.
  • the generation network generates image data of the composition based on the first material information.
  • the identification network identifies the authenticity of the generated image data.
  • the generative network generates noise-added image data that learns to fool the identification network.
  • the identification network learns to make the generated image data more accurate.
  • GAN learning accuracy is improved by competition between a generation network and an identification network.
  • GAN it is possible to perform unsupervised learning to learn the characteristics of an object even if correct data is not provided.
  • GAN by learning features from data, it is possible to generate data that does not exist, and it is possible to transform data that does not exist in accordance with the features of the data.
  • the calculation unit 12 adjusts the parameters of the first learning model by first machine learning using the first neural network in the first machine learning step described above.
  • the calculation unit 12 may perform one or more first machine learnings based on different types of first material information.
  • the calculation unit 12 calculates a predicted value of the physical structure information of the composition using the first learning model whose parameters have been adjusted.
  • the calculation unit 12 executes the second machine learning for calculating the chemical structure information of the composition.
  • the second machine learning may be performed sequentially with respect to the first machine learning, or may be performed in parallel.
  • the calculation unit 12 selects data belonging to a predetermined type of category from among the input data input to the server device 20, and generates second material information of a different type from the first material information.
  • the second material information includes, for example, numerical data of measured values indicating chemical structure information of the composition.
  • the second material information is, for example, data based on measured values compiled into a database in past experiments.
  • the second material information is, for example, numerical data indicating the blending ratio and manufacturing conditions of a polymer composite material produced from a matrix, additives, and fillers blended based on a predetermined blending ratio.
  • the second material information includes, for example, spectral data quantifying the characteristics of the chemical structure of the composition.
  • the second material information includes, for example, infrared spectroscopy (IR), Raman spectroscopy, ultraviolet/visible absorption spectroscopy (UV-VIS), near infrared (NIR) spectroscopy, and far Infrared (FIR) spectroscopy, terahertz (THz) spectroscopy, nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy ( Chemical structure of compositions for energy dispersive spectrometry (EDS), electron energy loss spectroscopy (EELS), fluorescence spectroscopy, mass spectrometry (MS), electron spin resonance measurement (ESR), etc.
  • the data may include chemical structure information that quantifies the properties of.
  • the second material information may be data such as a molecular structure such as the arrangement of atoms and chemical bonds, its text representation (Simplified Molecular Input Line Entry System: SMILES), and molecular descriptors and fingerprints. Further, the second material information may include information on chromatography, thermal analysis, odor measurement, etc., as long as it indirectly includes chemical structure information. The second material information may be generated by combining the above data.
  • the calculation unit 12 executes second machine learning based on the second neural network using the second material information.
  • the second neural network is configured with a second learning model used for calculations to calculate output values.
  • the second learning model is configured, for example, to calculate a predicted value of the chemical structure information of the composition when the second material information is input. Initial parameters for calculating predicted values are set in the second learning model.
  • the calculation unit 12 repeatedly executes a process of calculating an output value for the input value using the second neural network and adjusting parameters included in the second learning model based on a comparison between the output value and the correct value. do.
  • the calculation unit 12 improves the accuracy of the second learning model based on the process of performing the second machine learning described above.
  • the second learning model is, for example, a model that can perform supervised learning and unsupervised learning using the second material information.
  • the calculation unit 12 When the input data is small, the calculation unit 12 performs unsupervised learning based on the second material information using the second neural network. When there is a large amount of input data, the calculation unit 12 may perform supervised learning using the second material information using the second neural network.
  • the calculation unit 12 is configured to execute processing based on a generative adversarial network in unsupervised learning using a second neural network, for example.
  • the calculation unit 12 adjusts the parameters of the second learning model through second machine learning using the second neural network in the second machine learning step described above.
  • the calculation unit 12 may perform one or more types of second machine learning based on different types of second material information.
  • the calculation unit 12 calculates chemical structure information of the composition using the second learning model with adjusted parameters.
  • the calculation unit 12 generates integrated information by integrating the physical structure information generated by the first neural network and the chemical structure information generated by the second neural network.
  • the calculation unit 12 uses the integrated information to perform third machine learning based on the third neural network.
  • the third neural network is configured by a third learning model that calculates physical property information of the composition based on the integrated information.
  • the third learning model is configured, for example, to calculate a predicted value of the physical property information of the composition when the integrated information is input. Initial parameters for calculating predicted values are set in the third learning model.
  • the calculation unit 12 adjusts the parameters of the third learning model by third machine learning using a third neural network. In generating integrated information, the calculation unit 12 digitizes physical structure information including image data and converts it into numerical data. The calculation unit 12 repeatedly executes machine learning using, for example, a convolutional neural network included in the third neural network, extracts features included in the image data, and classifies the extracted features for each feature. The calculation unit 12 converts the classified image data into one-dimensional vector data in which feature amounts are digitized.
  • the calculation unit 12 When multiple pieces of chemical structure information based on numerical data such as spectra exist in the generation of integrated information, the calculation unit 12 repeatedly performs machine learning using a third neural network to extract features included in the numerical data. , classified by characteristics. The calculation unit 12 converts the classified numerical data into one-dimensional vector data in which feature amounts are digitized. The calculation unit 12 integrates physical structure information based on one-dimensional vector data and chemical structure information based on one-dimensional vector data, and generates integrated information based on one-dimensional vector data.
  • the calculation unit 12 uses integrated information based on one-dimensional vector data to adjust the parameters of the third learning model by third machine learning using a fully connected neural network included in the third neural network.
  • the calculation unit 12 generates physical property information of the composition based on one-dimensional vector data based on the integrated information using the adjusted third learning model. After performing machine learning, a virtual experiment can be performed to predict the physical properties of a new composition using the physical property prediction device 10.
  • the calculation unit 12 not only executes machine learning using a third neural network based on deep learning in generating integrated information, but also performs multiple linear regression (MLR), principal component regression (PCR), Partial Least Squares Regression (PLS), Support Vector Machine (SVM), Decision Tree, Random Forest, Logistic Regression, Elastic Net Regression, Lasso Regression, Ridge Regression, Gaussian Process
  • MLR linear regression
  • PCR principal component regression
  • PLS Partial Least Squares Regression
  • SVM Support Vector Machine
  • Decision Tree Random Forest
  • Logistic Regression Elastic Net Regression
  • Lasso Regression Lasso Regression
  • Ridge Regression Gaussian Process
  • GPR Regression
  • GPR Regression
  • GPR Regression
  • GA genetic algorithms
  • FIG. 2 shows a flowchart of the process flow of the machine learning process of the physical property prediction method executed in the physical property prediction device 10.
  • the calculation unit 12 acquires input data from the server device 20 via the communication network NW (step S100).
  • the calculation unit 12 performs first machine learning and second machine learning based on input data.
  • the calculation unit 12 acquires first material information including image data when performing the first machine learning (step S102).
  • the calculation unit 12 repeatedly performs first machine learning using the first neural network using the image data for learning (step S104).
  • the calculation unit 12 adjusts the parameters of the first learning model constituting the first neural network by first machine learning, and generates physical structure information based on the adjusted first learning model (step S106).
  • the calculation unit 12 acquires second material information including spectral data when executing the second machine learning (step S108).
  • the calculation unit 12 repeatedly performs second machine learning using the second neural network using the learning spectrum data (step S110).
  • the calculation unit 12 adjusts the parameters of the second learning model constituting the second neural network by second machine learning, and generates chemical structure information based on the adjusted second learning model (step S112).
  • the calculation unit 12 integrates the generated physical structure information and chemical structure information (step S114).
  • the calculation unit 12 uses the integrated information to perform third machine learning using the third neural network (step S116).
  • the calculation unit 12 uses the integrated information to adjust parameters of a third learning model that constitutes the third neural network, and repeatedly executes third machine learning that generates physical property information based on the adjusted third learning model. .
  • FIG. 3 shows a flowchart of a process flow of a virtual experiment of a physical property prediction method executed in the physical property prediction device 10.
  • Input data regarding a new composition used in the virtual experiment is created (step S200).
  • the input data may be data generated in the machine learning process, or may be newly created.
  • the composition is formed of at least two of the matrix, filler, and additive in an unknown blending ratio.
  • the calculation unit 12 generates first material information based on image data of the input data.
  • the calculation unit 12 acquires the generated first material information (step S202).
  • the calculation unit 12 repeatedly performs the first virtual experiment using the first learning model in which the parameters of the first neural network are adjusted based on the first material information (step S204).
  • the calculation unit 12 generates physical structure information based on the first virtual experiment (step S206).
  • the calculation unit 12 generates second material information based on the spectrum data of the input data.
  • the calculation unit 12 acquires the generated second material information (step S208).
  • the calculation unit 12 repeatedly performs the second virtual experiment using the second learning model in which the parameters of the second neural network are adjusted based on the second material information (step S210).
  • the calculation unit 12 generates chemical structure information based on the second virtual experiment (step S212).
  • the calculation unit 12 integrates the physical structure information and the chemical structure information to generate integrated information (step S214).
  • the calculation unit 12 uses the integrated information to generate physical property information of the composition based on the third neural network (step S216).
  • the calculation unit 12 generates physical property information based on the adjusted third learning model of the third neural network using the integrated information.
  • the calculation unit 12 changes the input data and repeats the virtual experiment to generate physical property information of the unknown composition.
  • the calculation unit 12 stores the generated physical property information in the storage unit 14 and creates a database.
  • the calculation unit 12 controls the output unit 16 to output physical property information (step S218).
  • FIG. 4 shows the results of an experiment that verified the accuracy of the physical property information generated by the physical property prediction device 10.
  • the accuracy of physical property information for eight properties was predicted when weight fractions were given to the composition of a certain composition.
  • the 8 properties are, for example, Young's modulus, tensile strength, elongation at break, logarithmic electrical resistance, density, room temperature storage modulus, and room temperature loss tangent (see FIG. 4(B)).
  • the accuracy of the physical property information was evaluated based on eight characteristics.
  • the input data includes a combination of image data (optical image) of first material information including physical structure information and spectral data (IR) of second material information including chemical structure information, and image data (optical image) of first material information.
  • the physical property information calculated based on a single neural network and the physical property information calculated based on multiple neural networks of the physical property prediction device 10 are both Accuracy was high.
  • the accuracy of the physical property information calculated based on a single neural network was low, whereas the physical property information calculated based on multiple neural networks of the physical property prediction device 10 was Accuracy was high.
  • the physical property predicted values for the eight properties by the physical property predicting device 10 are stable when calculated based on multiple neural networks, whereas the numerical values are stable when calculated based on multiple neural networks.
  • the physical property information calculated based on the network varied in numerical values.
  • the weight fraction and eight characteristics of the composition described above are not limited to these, and may be changed and increased or decreased. Further, the physical property information may be changed to other conditions to include different parameters, or other conditions may be added.
  • the physical properties of an unknown composition can be accurately predicted by performing machine learning that integrates different and complex material information such as image data and spectral data.
  • the input data was expanded to generate a large amount of learning data, making it possible to perform deep learning that generates more accurate predicted values.
  • machine learning may be performed depending on the performance of the computer configuring the physical property prediction device 10 and the amount of data if the original image is of approximately 1000 x 1000 pixels. is difficult.
  • Image data obtained through normal observation has a data size exceeding 1000 x 1000 pixels per piece, so if deep learning is performed using the entire image as it is, it will overwhelm the computer's memory and increase the size of the neural network. do. Furthermore, the amount of experimental data that can be obtained through actual experiments is limited, and a sufficient number of learning data cannot be obtained before performing deep learning. Therefore, the image data was set to an appropriate scale (observation magnification) and pixel number that reflected the physical structure of the composition so that the first machine learning in the physical property prediction device 10 was executed smoothly. In addition, the image data was processed by rotation, tilting, adding noise, etc., and data expansion was performed.
  • the image data was acquired based on observation at a low magnification (100x) that allows the physical structure of the material to be broadly captured in deep learning, and was divided into small images of 128 x 128 pixels.
  • the small images were divided to include enough information on the physical structure of fillers such as particles to enable deep learning to classify the features.
  • data expansion was performed on a small image of 128 x 128 pixels by rotating it in four directions every 90 degrees. This does not put pressure on the computer's memory, prevents the size of the neural network from increasing, and enables deep learning education by obtaining a sufficient number of learning data from limited experimental data, thereby stabilizing the learning of the neural network. , the effect of improving accuracy was obtained.
  • the image data was also pre-processed for first machine learning based on the first neural network.
  • One pixel of image data is a 1-byte (8-bit) unsigned integer of type uint8, and has a value range of 0-255. If this data remains as it is, the training of the first neural network, which generates an image by inputting the material information of the composition, will not proceed correctly.
  • the image data was preprocessed by dividing the luminance value of each pixel by 127.5 and subtracting by 1 so that the data range was within the range of -1 to 1. Based on the pre-processing of the image data, the learning process was stabilized in the generative model of the first neural network.
  • the physical property prediction device 10 by performing the second machine learning based on the data-enhanced image data, it is possible to output generated image data equivalent to the measured image data. .
  • a neural network that generates an image by inputting material information of a composition
  • learning has conventionally been performed by inputting one-hot vectors.
  • learning is performed by inputting vectors such as 1 for cat - 0 for dog, and 0 for cat - 1 for dog.
  • the input vector becomes longer depending on the sample types used for learning, and when the number of sample types increases, there is a problem in that the memory of the computer is overwhelmed. Therefore, by training a neural network using the composition's material information (continuous variables such as blending ratios and manufacturing conditions) as input, we were able to generate data directly from the material information, thereby reducing computer memory. This time, we constructed a generative model using as input the blending ratio of the acrylic cured resin composite material converted to a weight fraction in the 0-1 range.
  • the spectral data was expanded by applying Gaussian noise so that the second machine learning in the physical property prediction device 10 could be executed smoothly.
  • the spectral data had a data length of 1024 by selecting, for example, a wave number range of 1800 cm-1 or less.
  • the spectral data was preprocessed so that the absorbance value was normalized by the maximum value and minimum value within one sample so that the data fell within the range of 0-1.
  • the spectral data is numerical data in the range of 0-1 because it is normalized absorbance using the minimum and maximum values.
  • the normalized absorbance of each wavenumber is divided by 0.5 and subtracted by 1, so that the preprocessing is performed to keep the data range within the range of -1 to 1. It was conducted. This stabilized the learning process of the second neural network in the second learning model.
  • the spectral data was expanded by generating Gaussian noise with an average of 0 and a standard deviation of 0.001, and adding noise with a different pattern to the original spectral data, resulting in 128 times expanded learning data. was generated.
  • the spectral data used included numerical arrays consisting of corresponding compounding ratios, images as physical structure information, and IR spectra and Raman spectra as chemical structure information for 75 acrylic cured resin composite materials with different compounding ratios. .
  • the machine learning model was able to adjust the number of layers and layer structure by determining the effect of changing the number of layers, layer structure, etc. on the processing behavior in the learning process and the accuracy that appears in the calculation results. It was done.
  • the learning process cannot be executed smoothly unless learning appropriate to the model structure is performed, so the GAN learning process was adjusted according to the model structure.
  • the calculated physical property information of the composition includes eight physical property indicators: Young's modulus, tensile strength, elongation at break, glass transition temperature, density, normal temperature storage modulus, normal temperature loss tangent, and surface electrical resistance.
  • values were used that were preprocessed by standardization using the average and standard deviation.
  • a neural network that integrates physical structure information and chemical structure information was constructed using these learning data. By inputting numerical values of material composition using a trained neural network, physical property information including indicators of eight properties was obtained as output.
  • the matrices used in this experiment include, for example, phenyl glycidyl ether acrylate hexamethylene diisocyanate urethane prepolymer (AH-600, Kyoeisha Chemical Co., Ltd.), 2-ethylhexyl methacrylate (2-EH, Tokyo Kasei Kogyo Co., Ltd.), methacrylate Acid 2-hydroxyethyl ethylene glycol methacrylate (2-HEMA, Tokyo Kasei Kogyo Co., Ltd.), benzyl methacrylate (Light Ester BZ, Kyoeisha Co., Ltd.), difunctional aliphatic urethane acrylate (EBECRYL230, Daicel Ornex Co., Ltd.), be.
  • AH-600 Kyoeisha Chemical Co., Ltd.
  • 2-ethylhexyl methacrylate (2-EH, Tokyo Kasei Kogyo Co., Ltd.
  • the matrix was prepared by changing the addition ratio in the range of ⁇ 50% for AH-600, ⁇ 90% for 2-EH, ⁇ 30% for 2-HEMA, ⁇ 30% for Light Ester BZ, and ⁇ 90% for EBECRYL230. Created.
  • the total amount of matrix at this time was set as 100, and the proportion of additives and fillers was added externally (unit: phr, per hundred resin) to produce a composite material.
  • the additives used in this experiment include, for example, trimethylolpropane trimethacrylate (Light Ester TMP, Kyoeisha Chemical Co., Ltd.) as a crosslinking agent, and 1,3,5-tris (2-(3-sulfanylbutanyl)) as a chain transfer agent.
  • trimethylolpropane trimethacrylate Light Ester TMP, Kyoeisha Chemical Co., Ltd.
  • 1,3,5-tris (2-(3-sulfanylbutanyl) as a chain transfer agent.
  • (noyloxy)ethyl)-1,3,5-triazinane-2,4,6-trione Karens MT-NR1, Showa Denko K.K.
  • the reaction initiator was t-amylperoxy-2-ethylhexanoate ( Luperox 575 (Arkema Yoshitomi Co., Ltd.).
  • the fillers used in this experiment include, for example, spherical alumina particles (Alunabeads CB-A20S, Showa Denko K.K.) as a spherical filler, carbon fiber chopped fiber (DIALEAD K223HE, Mitsubishi Chemical Corporation) as a rigid rod filler, and flexible fibrous fillers.
  • Single-walled carbon nanotubes (SG101, Nippon Zeon Co., Ltd.) were used as fillers.
  • Alumina particles were added at ⁇ 30 phr, chopped carbon fibers at ⁇ 30 phr, and single-walled carbon nanotubes at ⁇ 0.5 phr.
  • the filler dispersion conditions were fixed at a rotation speed of 10,000 rpm for 20 minutes, and the thermosetting conditions for the acrylic cured resin composite material were 100°C for 1 hour for all samples.
  • the matrix is not limited to the above, but may include thermoplastic resins such as polyethylene, polypropylene, polyamide, polystyrene, acrylic resin, vinyl resin, polyester, polycaprolactone, polybutylene succinate, polylactic acid, polyvinyl alcohol, polyhydroxybutyrate, etc. It may be a biodegradable polymer, an elastomer, an epoxy resin, a thermosetting polyester, a polyurethane, a polyimide, a thermo/photocurable resin having a vinyl group, a (meth)acrylic group, an epoxy group, an oxetane, etc. It may also be a polymer alloy containing a high molecular weight polymer.
  • thermoplastic resins such as polyethylene, polypropylene, polyamide, polystyrene, acrylic resin, vinyl resin, polyester, polycaprolactone, polybutylene succinate, polylactic acid, polyvinyl alcohol, polyhydroxybutyrate, etc. It may be a biodegradable polymer,
  • the matrix may contain a solvent made of a low molecular compound, or the like.
  • the matrix is not limited to a solid or liquid state, but may be in a slurry, paste, electrolyte, or the like. The state and efficacy of the matrix may be changed based on environmental conditions.
  • Fillers include, but are not limited to, carbon fibers, glass fibers, single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene, graphene oxide, reduced graphene oxide, carbon black, cellulose nanofibers, cellulose nanocrystals, wood fibers, talc, and montmorillonite. , mica, silica, alumina, titania, calcium carbonate, hexagonal boron nitride, aluminum nitride, zeolite, metal oxide, metal powder, magnetic material, and the like.
  • the filler may be a substance containing not only a single substance but also a combination of at least two or more substances. The state and efficacy of the filler may be changed based on environmental conditions.
  • Additives are not limited to the above, but include crosslinking agents, crosslinking accelerators, scorch inhibitors, chain transfer agents, antioxidants, thermal decomposition inhibitors, anti-hydrolysis agents, ozone deterioration inhibitors, anti-climate agents, and photoprotectants.
  • Stabilizers ultraviolet absorbers, antistatic agents, compatibilizers, tackifiers, plasticizers, lubricants, sliding agents, surfactants, crystal nucleating agents, crystallization promoters, crystallization retarders, flame retardants, It may be a foaming agent, a foaming aid, an antibacterial agent, a fungicide, a pigment, a fluorescent agent, a perfume, or the like.
  • the additive may be a substance containing not only a single substance but also a combination of at least two or more substances. The condition and efficacy of the additive may be varied based on environmental conditions.
  • the physical properties of an unknown composition can be predicted based on machine learning that integrates complex material information.
  • integrated information is obtained by integrating the physical structure information of the composition generated using image data and the chemical structure information of the composition generated using the image data and different types of spectral data.
  • Physical property information of the composition can be generated based on the following.
  • machine learning based on multimodal AI that can integrate and determine different types of information
  • machine learning based on a single type of information can be performed to obtain physical property information of a composition. It is possible to calculate physical property information of the composition with higher accuracy than when calculating .
  • the present invention is not limited to the above-described one embodiment, and can be modified as appropriate without departing from the spirit thereof.
  • the physical property prediction device 10 of the embodiment uses a polymer composite material as an example of the composition, the composition is not limited to this, and other composite materials having a complicated structure may be handled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

Provided is a physical property prediction device comprising: an operation unit that generates physical property information for a composition on the basis of input data; and an output unit that outputs the physical property information. Using first material information as the input data, the operation unit generates, on the basis of a first neural network, physical structure information regarding a composition for which the physical properties are to be predicted, and using second material information of a type differing from the first material information as the input data, generates, on the basis of a second neural network, chemical structure information regarding the composition. The operation unit then generates integrated information in which the physical structure information and the chemical structure information are integrated, and generates the physical property information of the composition on the basis of the integrated information.

Description

物性予測装置、物性予測方法、及びプログラムPhysical property prediction device, physical property prediction method, and program
 本発明は、複合材料等の組成物の物性情報を予測する物性予測装置、物性予測方法、及びプログラムに関する。
 本願は、2022年5月18日に、日本に出願された特願2022-081299号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a physical property prediction device, a physical property prediction method, and a program for predicting physical property information of a composition such as a composite material.
This application claims priority based on Japanese Patent Application No. 2022-081299 filed in Japan on May 18, 2022, the contents of which are incorporated herein.
 近年、新規材料の探索や材料開発期間の短縮を目的として、ケモインフォマティクス、マテリアルズ・インフォマティクス、プロセスインフォマティクスといったコンピュータを用いた情報処理技術を化学研究に活用する手法の研究が進んでいる。その中で、カーボンナノチューブ等の新規材料の開発において、実験により得られた画像を教師データとして用い、多層ニューラルネットワークに基づく機械学習を行い、組成物の未知の物理特性を予測する手法が提案されている(例えば、非特許文献1参照)。 In recent years, research has been progressing on methods to utilize computer-based information processing technologies such as chemoinformatics, materials informatics, and process informatics in chemical research with the aim of searching for new materials and shortening the material development period. Among these, in the development of new materials such as carbon nanotubes, a method has been proposed that uses images obtained through experiments as training data and performs machine learning based on a multilayer neural network to predict unknown physical properties of compositions. (For example, see Non-Patent Document 1).
 非特許文献1に記載された組成物の予測手法は、取り込む情報が組成物の構造を示す画像に限定されていた。一般的な組成物は、画像内に物性を示す情報が含まれているとは限らず、化学特性、光学特性、分子構造等の物性も存在している。また、複合材料は、構造を構成する要素に様々な組み合わせが存在するのに対して明確な定義が存在しておらず、構造情報を画像や数値に基づいて取り扱うことが困難である。そのため、非特許文献1に記載された組成物の予測手法によれば、複数の材料や構造に基づいて形成されている複合材料等の複雑な構造を有する組成物に対して物性情報を予測することについては取り扱うことができなかった。 In the composition prediction method described in Non-Patent Document 1, the information to be captured is limited to images showing the structure of the composition. For general compositions, information indicating physical properties is not necessarily included in the image; physical properties such as chemical properties, optical properties, and molecular structure also exist. Furthermore, although there are various combinations of elements that make up the structure of composite materials, there is no clear definition, and it is difficult to handle structural information based on images or numerical values. Therefore, according to the composition prediction method described in Non-Patent Document 1, physical property information is predicted for compositions with complex structures such as composite materials formed based on multiple materials and structures. I couldn't deal with that.
 本発明は、複雑な材料情報を統合する機械学習に基づいて、複合材料等の未知の組成物における物性を予測することができる物性予測装置、物性予測方法、及びプログラムを提供することを目的とする。 The present invention aims to provide a physical property prediction device, a physical property prediction method, and a program that can predict the physical properties of unknown compositions such as composite materials based on machine learning that integrates complex material information. do.
 本発明の一態様は、入力データに基づいて組成物の物性情報を生成する演算部と、前記物性情報を出力する出力部と、を備え、前記演算部は、前記入力データとして第1材料情報を用いて第1ニューラルネットワークに基づいて予測対象となる組成物の物理構造情報を生成し、前記入力データとして前記第1材料情報と異なる種類の第2材料情報を用いて第2ニューラルネットワークに基づいて前記組成物の化学構造情報を生成し、前記物理構造情報と前記化学構造情報とを統合した統合情報を生成し、前記統合情報に基づいて前記組成物の前記物性情報を生成する物性予測装置である。 One aspect of the present invention includes a calculation unit that generates physical property information of the composition based on input data, and an output unit that outputs the physical property information, and the calculation unit includes first material information as the input data. to generate physical structure information of a composition to be predicted based on a first neural network; a physical property prediction device that generates chemical structure information of the composition, generates integrated information that integrates the physical structure information and the chemical structure information, and generates the physical property information of the composition based on the integrated information. It is.
 本発明によれば、複雑な材料情報を統合する機械学習に基づいて、複合材料等の未知の組成物における物性を予測することができる。 According to the present invention, the physical properties of an unknown composition such as a composite material can be predicted based on machine learning that integrates complex material information.
物性予測システムの構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of a physical property prediction system. 物性予測装置において実行される機械学習工程の処理の流れを示すフローチャートである。It is a flowchart which shows the process flow of the machine learning process performed in a physical property prediction device. 物性予測装置において実行される仮想実験工程の処理の流れを示すフローチャートである。It is a flowchart which shows the process flow of the virtual experiment process performed in a physical property prediction device. 物性予測装置を用いた実験結果を示す図である。FIG. 3 is a diagram showing experimental results using a physical property prediction device. 物性予測装置により生成された画像データの一例を示す図である。It is a figure showing an example of image data generated by a physical property prediction device. 物性予測装置により生成されたスペクトルデータの一例を示す図である。It is a figure showing an example of spectrum data generated by a physical property prediction device.
 以下、図面を参照しつつ、本発明に係る物性予測装置の実施形態について説明する。物性予測装置は、ニューラルネットワークを用いた機械学習に基づいて複数の物性情報を有する新規な複雑系材料を予測するものである。 Hereinafter, embodiments of a physical property prediction device according to the present invention will be described with reference to the drawings. The physical property prediction device predicts a new complex material having multiple physical property information based on machine learning using a neural network.
 図1に示されるように、物性予測システム1は、例えば、通信ネットワークNWに通信可能に接続された物性予測装置10と、サーバ装置20とを備えている。サーバ装置20は、例えば、実験データ等の膨大な情報を記憶する記憶サーバである。サーバ装置20は、通信ネットワークNWを介して物性予測装置10と通信可能に接続されている。サーバ装置20は、物性予測装置10と直接に接続されていてもよい。サーバ装置20は、例えば、実験データを記憶する記憶部22を備えている。記憶部22は、例えば、ハードディスクドライブ(HDD)、フラッシュメモリ等の記憶装置である。記憶部22には、通信ネットワークNWを介して実験データが記憶される。実験データの内容については後述する。サーバ装置20は、通信ネットワークNWを介して実験データを物性予測装置10に提供する。 As shown in FIG. 1, the physical property prediction system 1 includes, for example, a physical property prediction device 10 communicably connected to a communication network NW and a server device 20. The server device 20 is, for example, a storage server that stores a huge amount of information such as experimental data. The server device 20 is communicably connected to the physical property prediction device 10 via the communication network NW. The server device 20 may be directly connected to the physical property prediction device 10. The server device 20 includes, for example, a storage unit 22 that stores experimental data. The storage unit 22 is, for example, a storage device such as a hard disk drive (HDD) or a flash memory. Experimental data is stored in the storage unit 22 via the communication network NW. The contents of the experimental data will be described later. The server device 20 provides experimental data to the physical property prediction device 10 via the communication network NW.
 物性予測装置10は、例えば、パーソナルコンピュータ等の情報処理を目的とした端末装置により構成されている。物性予測装置10は、協働して処理可能に2つ以上の端末装置により構成されていてもよい。物性予測装置10は、例えば、情報処理に必要な演算を行う演算部12と、演算に必要なデータ及びプログラムを記憶する記憶部14と、演算部12の演算結果等の情報を出力する出力部16と、通信ネットワークNWを介して演算に必要なデータを取得する取得部18とを備える。 The physical property prediction device 10 is configured by, for example, a terminal device such as a personal computer for the purpose of information processing. The physical property prediction device 10 may be composed of two or more terminal devices that can cooperate to perform processing. The physical property prediction device 10 includes, for example, a calculation unit 12 that performs calculations necessary for information processing, a storage unit 14 that stores data and programs necessary for the calculation, and an output unit that outputs information such as calculation results of the calculation unit 12. 16, and an acquisition unit 18 that acquires data necessary for calculation via the communication network NW.
 演算部12は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、GPU(Graphics Processing Unit)等のハードウェア(回路部;circuitryを含む)によって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。プログラムは、予め記憶部14のHDDやフラッシュメモリ等の記憶装置(非一過性の記憶媒体を備える記憶装置)に格納されていてもよいし、DVDやCD-ROM等の着脱可能な記憶媒体に格納されており、記憶媒体(非一過性の記憶媒体)がドライブ装置に装着されることで記憶部14のHDDやフラッシュメモリにインストールされてもよい。 The calculation unit 12 is realized by hardware (including circuitry) such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), and GPU (Graphics Processing Unit). Alternatively, it may be realized by cooperation of software and hardware. The program may be stored in advance in a storage device (a storage device including a non-transitory storage medium) such as the HDD or flash memory of the storage unit 14, or a removable storage device such as a DVD or CD-ROM. The information may be installed in the HDD or flash memory of the storage unit 14 by attaching a storage medium (non-transitory storage medium) to the drive device.
 記憶部14は、例えば、ハードディスクドライブ、フラッシュメモリ等の記憶装置である。記憶部14は、例えば、演算部12の演算に必要なプログラム、その他の各種情報等が格納される。出力部16は、例えば、LCD(Liquid Crystal Display)や有機EL(Electro Luminescence)ディスプレイ等により構成された表示装置である。出力部16は、物性予測装置10に一体又は別体に構成されている。 The storage unit 14 is, for example, a storage device such as a hard disk drive or flash memory. The storage unit 14 stores, for example, programs necessary for calculations by the calculation unit 12 and other various information. The output unit 16 is a display device configured with, for example, an LCD (Liquid Crystal Display) or an organic EL (Electro Luminescence) display. The output unit 16 is configured integrally with the physical property prediction device 10 or separately.
 取得部18は、通信ネットワークNWと通信可能な通信インタフェースを含む。取得部18は、例えば、セルラー網やWi-Fi網、Bluetooth(登録商標)、DSRC(Dedicated Short Range Communication)等を利用して、通信ネットワークNWを介した通信を行う。取得部18は、例えば、通信ネットワークNWを介してサーバ装置20と通信し、サーバ装置20に記憶された実験データを取得する。 The acquisition unit 18 includes a communication interface that can communicate with the communication network NW. The acquisition unit 18 performs communication via the communication network NW using, for example, a cellular network, a Wi-Fi network, Bluetooth (registered trademark), DSRC (Dedicated Short Range Communication), or the like. The acquisition unit 18 communicates with the server device 20 via the communication network NW, for example, and acquires the experimental data stored in the server device 20.
 次に、演算部12において実行される処理について説明する。以下の説明では組成物は、例えば、高分子複合材料である。組成物は、高分子複合材料に限らず他のものであってもよい。演算部12は、サーバ装置20から取得した実験データを用いてニューラルネットワークに基づく深層学習を行う学習工程と、入力データを用いて仮想実験を行い組成物の物性情報を出力する仮想実験工程とを実行する。演算部12は、例えば、異なる種類の計測データを用いて機械学習を行い、入力データに対して組成物の物性情報の予測値を算出する能力を向上させる。 Next, the processing executed in the calculation unit 12 will be explained. In the following description, the composition is, for example, a polymeric composite. The composition is not limited to polymer composite materials, but may be other materials. The calculation unit 12 performs a learning process of performing deep learning based on a neural network using experimental data acquired from the server device 20, and a virtual experiment process of performing a virtual experiment using input data and outputting physical property information of the composition. Execute. For example, the calculation unit 12 performs machine learning using different types of measurement data to improve the ability to calculate predicted values of physical property information of the composition based on input data.
 演算部12は、例えば、入力データに基づいて、マルチモーダルAI(Artificial Intelligence)を用いた機械学習を実行し、機械学習後のマルチモーダルAIに基づいて、組成物の物性情報を算出する。マルチモーダルAIとは、複数の異なる種類の情報を利用して高度な判定結果を出力する処理を実行するコンピュータプログラムである。マルチモーダルAIによれば、画像や数値データ等の異なる種類の入力データを利用して目的に応じた算出値を出力することができる。演算部12は、例えば、組成物の画像データと、物質の計測値とを用いて仮想実験を行い、組成物の物性情報の予測値を算出する。 The calculation unit 12, for example, performs machine learning using multimodal AI (Artificial Intelligence) based on the input data, and calculates physical property information of the composition based on the multimodal AI after machine learning. Multimodal AI is a computer program that executes processing that outputs advanced determination results using multiple different types of information. According to multimodal AI, it is possible to output calculated values depending on the purpose using different types of input data such as images and numerical data. The calculation unit 12 performs a virtual experiment using, for example, image data of the composition and measured values of the substance, and calculates predicted values of physical property information of the composition.
 演算部12は、例えば、入力データのうち、画像データを含む第1材料情報を用いて第1ニューラルネットワークに基づく第1学習モデルに基づいて予測対象となる組成物の物理構造情報を生成するように構成されている。物理構造情報とは、組成物中における物質の混合・分散状態や組成分布等を表す情報である。また、演算部12は、第1材料情報と異なる種類の数値を含む第2材料情報を用いて第2ニューラルネットワークに基づく第2学習モデルに基づいて組成物の化学構造情報を生成するように構成されている。化学構造情報とは、組成物を構成する物質の化学構造や、その種類・数や相互作用等を表す情報である。演算部12は、生成した物理構造情報と化学構造情報とを統合した組成物の物性情報を生成するように構成されている。 For example, the calculation unit 12 is configured to generate physical structure information of a composition to be predicted based on a first learning model based on a first neural network using first material information including image data among input data. It is composed of Physical structure information is information representing the mixing/dispersion state of substances, composition distribution, etc. in a composition. Further, the calculation unit 12 is configured to generate chemical structure information of the composition based on a second learning model based on a second neural network using second material information including a different type of numerical value from the first material information. has been done. Chemical structure information is information representing the chemical structure of substances constituting the composition, their types, numbers, interactions, etc. The calculation unit 12 is configured to generate physical property information of the composition by integrating the generated physical structure information and chemical structure information.
 演算部12は、例えば、組成物の構造を示す画像データ、組成物の赤外吸収分光法(infrared absorption spectrometry:IR)に基づく測定値、ラマン分光法に基づく数値を含む測定値等の異なる種類の入力データを用いて、組成物のヤング率、強度、破断伸び、ガラス転移温度、密度、電気抵抗、貯蔵弾性率、損失正接等の物性の指標のうち少なくとも3種類の物性情報の予測値を算出する。物性情報は、上述した8個に限らず他の物性の指標が含まれていてもよい。 The calculation unit 12 calculates different types of data, such as image data showing the structure of the composition, measured values based on infrared absorption spectrometry (IR) of the composition, and measured values including numerical values based on Raman spectroscopy. Using the input data, predict the predicted values of at least three types of physical property indicators of the composition, such as Young's modulus, strength, elongation at break, glass transition temperature, density, electrical resistance, storage modulus, and loss tangent. calculate. The physical property information is not limited to the eight indicators described above, and may include other physical property indicators.
 演算部12は、組成物の物性情報を生成する精度を向上させるため、機械学習に基づく学習工程を実行する。演算部12は、サーバ装置20に入力された入力データのうち所定の種類のカテゴリーに属するデータを選択し、第1材料情報を生成する。第1材料情報は、例えば、組成物の物理構造情報を示す画像データを含んでいる。第1材料情報は、例えば、過去の実験においてデータベース化された画像に基づくデータである。第1材料情報は、例えば、所定の配合比に基づいて配合されたマトリックス、添加剤、フィラーにより生成された高分子複合材料の構造を示す画像データである。 The calculation unit 12 executes a learning process based on machine learning in order to improve the accuracy of generating physical property information of the composition. The calculation unit 12 selects data belonging to a predetermined type of category from among the input data input to the server device 20, and generates first material information. The first material information includes, for example, image data indicating physical structure information of the composition. The first material information is, for example, data based on images compiled into a database in past experiments. The first material information is, for example, image data showing the structure of a polymer composite material created from a matrix, additives, and fillers blended based on a predetermined blending ratio.
 第1材料情報は、例えば、光学顕微鏡、レーザー顕微鏡、走査型電子顕微鏡(Scanning Electron Microscope:SEM)、走査型プローブ顕微鏡(Scanning Probe Microscope:SPM)、原子間力顕微鏡(Atomic Force Microscope:AFM)、透過型電子顕微鏡(Transmission Electron Microscopy:TEM)、複屈折イメージング、レーザースキャナーにより撮像された物理構造情報を含む画像データであってもよい。第1材料情報は、サーモグラフィから得られる2次元ピクセルデータ、X線CT(Computed Tomography)やTEM-CT等のトモグラフィで得られる3次元ボクセルデータ、波長情報を含むハイパースペクトルデータ等であってもよい。また、第1材料情報は、物理構造情報を間接的に含んでいれば、光散乱、X線回折、超音波減衰、ガス吸着試験、誘電緩和スペクトル、粘弾性スペクトル等のデータに置き換えられてもよい。また、第1材料情報は、上記のデータを組み合わせて生成されもよい。  The first material information is, for example, an optical microscope, a laser microscope, a scanning electron microscope (SEM), a scanning probe microscope (SPM), an atomic force microscope (AFM), It may be image data containing physical structure information captured by a transmission electron microscope (TEM), birefringence imaging, or a laser scanner. The first material information may be two-dimensional pixel data obtained from thermography, three-dimensional voxel data obtained from tomography such as X-ray CT (Computed Tomography) or TEM-CT, hyperspectral data including wavelength information, etc. good. Furthermore, if the first material information indirectly includes physical structure information, it may be replaced with data such as light scattering, X-ray diffraction, ultrasonic attenuation, gas adsorption test, dielectric relaxation spectrum, viscoelastic spectrum, etc. good. Further, the first material information may be generated by combining the above data. 
 演算部12は、予め記憶された第1材料情報を用いて第1ニューラルネットワークに基づく第1機械学習を実行する。第1ニューラルネットワークは、出力値を算出するための演算に用いられる第1学習モデルにより構成されている。第1学習モデルは、例えば、第1材料情報を入力すると組成物の物理構造情報の予測値を算出するように構成されている。第1学習モデルには、予測値を算出するための初期パラメータが設定されている。 The calculation unit 12 executes first machine learning based on a first neural network using first material information stored in advance. The first neural network is configured with a first learning model used for calculations to calculate output values. The first learning model is configured, for example, to calculate a predicted value of the physical structure information of the composition upon input of the first material information. Initial parameters for calculating predicted values are set in the first learning model.
 演算部12は、第1ニューラルネットワークを用いて、入力値に対して出力値を算出し、出力値と正解値との比較に基づいて第1学習モデルに含まれるパラメータを調整する処理を繰り返し実行する。演算部12は、上記の第1機械学習を実行する処理に基づいて、第1学習モデルの精度を向上させる。第1学習モデルは、例えば、第1材料情報を用いた教師あり学習と、教師なし学習とを実行可能なモデルである。 The calculation unit 12 repeatedly executes a process of calculating an output value for the input value using the first neural network and adjusting parameters included in the first learning model based on a comparison between the output value and the correct value. do. The calculation unit 12 improves the accuracy of the first learning model based on the process of performing the first machine learning described above. The first learning model is, for example, a model that can perform supervised learning and unsupervised learning using the first material information.
 演算部12は、入力データが少ない場合、第1ニューラルネットワークにより第1材料情報に基づいて教師なし学習を行う。演算部12は、入力データが大量に存在する場合、第1ニューラルネットワークにより第1材料情報を用いた教師あり学習を行ってもよい。演算部12は、例えば、第1ニューラルネットワークを用いた教師なし学習において敵対的生成ネットワーク(Generative Adversarial Networks:GAN)に基づく処理を実行するように構成されている。GANは、データを生成する生成ネットワーク(generator)と、生成されたデータの真偽を識別する識別ネットワーク(discriminator)との2つのネットワークにより構成されている。 When the input data is small, the calculation unit 12 performs unsupervised learning using the first neural network based on the first material information. When there is a large amount of input data, the calculation unit 12 may perform supervised learning using the first material information using the first neural network. The calculation unit 12 is configured to execute processing based on Generative Adversarial Networks (GAN) in unsupervised learning using the first neural network, for example. A GAN is composed of two networks: a generation network (generator) that generates data and a discrimination network (discriminator) that identifies the authenticity of the generated data.
 生成ネットワークは、第1材料情報に基づいて組成物の画像データを生成する。識別ネットワークは、生成された画像データの真偽を識別する。生成ネットワークは、ノイズを追加した画像データを生成し、識別ネットワークを欺くように学習する。識別ネットワークは、生成された画像データの真偽をより正確にするように学習する。GANによれば、生成ネットワークと識別ネットワークとが競争することにより、学習精度が向上する。GANによれば、正解データが与えられていなくても、対象物の特徴を学習する教師なし学習を行うことができる。GANによれば、データから特徴を学習することで、実在しないデータを生成することができ、存在するデータの特徴に沿って変換することができる。 The generation network generates image data of the composition based on the first material information. The identification network identifies the authenticity of the generated image data. The generative network generates noise-added image data that learns to fool the identification network. The identification network learns to make the generated image data more accurate. According to GAN, learning accuracy is improved by competition between a generation network and an identification network. According to GAN, it is possible to perform unsupervised learning to learn the characteristics of an object even if correct data is not provided. According to GAN, by learning features from data, it is possible to generate data that does not exist, and it is possible to transform data that does not exist in accordance with the features of the data.
 演算部12は、上述した第1機械学習の工程において第1ニューラルネットワークを用いた第1機械学習により第1学習モデルのパラメータを調整する。演算部12は、異なる種類の第1材料情報に基づいて1つ以上の第1機械学習を実行してもよい。演算部12は、パラメータが調整された第1学習モデルを用いて組成物の物理構造情報の予測値を算出する。 The calculation unit 12 adjusts the parameters of the first learning model by first machine learning using the first neural network in the first machine learning step described above. The calculation unit 12 may perform one or more first machine learnings based on different types of first material information. The calculation unit 12 calculates a predicted value of the physical structure information of the composition using the first learning model whose parameters have been adjusted.
 演算部12は、上述した組成物の物理構造情報を算出するための第1機械学習を実行することに加えて、組成物の化学構造情報を算出するための第2機械学習を実行する。第2機械学習は、第1機械学習に対して順次行われてもよいし、並行処理により行われてもよい。 In addition to executing the first machine learning for calculating the physical structure information of the composition described above, the calculation unit 12 executes the second machine learning for calculating the chemical structure information of the composition. The second machine learning may be performed sequentially with respect to the first machine learning, or may be performed in parallel.
 演算部12は、サーバ装置20に入力された入力データのうち所定の種類のカテゴリーに属するデータを選択し、第1材料情報と異なる種類の第2材料情報を生成する。第2材料情報は、例えば、組成物の化学構造情報を示す測定値の数値データを含んでいる。第2材料情報は、例えば、過去の実験においてデータベース化された測定値に基づくデータである。第2材料情報は、例えば、所定の配合比に基づいて配合されたマトリックス、添加剤、フィラーにより生成された高分子複合材料の配合比率や製造条件を示す数値データである。第2材料情報は、例えば、組成物の化学構造の特性を数値化したスペクトルデータを含んでいる。 The calculation unit 12 selects data belonging to a predetermined type of category from among the input data input to the server device 20, and generates second material information of a different type from the first material information. The second material information includes, for example, numerical data of measured values indicating chemical structure information of the composition. The second material information is, for example, data based on measured values compiled into a database in past experiments. The second material information is, for example, numerical data indicating the blending ratio and manufacturing conditions of a polymer composite material produced from a matrix, additives, and fillers blended based on a predetermined blending ratio. The second material information includes, for example, spectral data quantifying the characteristics of the chemical structure of the composition.
 第2材料情報は、例えば、赤外吸収分光(Infrared Spectroscopy:IR)、Raman分光、紫外・可視分光(Ultraviolet・Visible Absorption Spectroscopy: UV-VIS)、近赤外(Near Infrared:NIR)分光、遠赤外(Far Infrared:FIR)分光、テラヘルツ(THz)分光、核磁気共鳴分光(Nuclear magnetic resonance: NMR)、X線光電子分光法(X-ray Photoelectron Spectroscopy:XPS)、エネルギー分散型X線分光(Energy Dispersive Spectrometry: EDS)、電子エネルギー損失分光(Electron Energy Loss Spectroscopy: EELS)、蛍光分光、質量分析(Mass spectrometry: MS)、電子スピン共鳴測定(Electron Spin Resonance: ESR)等の組成物の化学構造の特性を数値化した化学構造情報を含むデータであってもよい。第2材料情報は、原子や化学結合の配置等の分子構造、そのテキスト表現(Simplified Molecular Input Line Entry System: SMILES)、及び分子記述子・フィンガープリント等のデータであってもよい。また、第2材料情報は、間接的に化学構造情報が含まれるのであればクロマトグラフィー、熱分析、臭気測定等の情報が含まれていてもよい。第2材料情報は、上記のデータを組み合わせて生成されもよい。 The second material information includes, for example, infrared spectroscopy (IR), Raman spectroscopy, ultraviolet/visible absorption spectroscopy (UV-VIS), near infrared (NIR) spectroscopy, and far Infrared (FIR) spectroscopy, terahertz (THz) spectroscopy, nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy ( Chemical structure of compositions for energy dispersive spectrometry (EDS), electron energy loss spectroscopy (EELS), fluorescence spectroscopy, mass spectrometry (MS), electron spin resonance measurement (ESR), etc. The data may include chemical structure information that quantifies the properties of. The second material information may be data such as a molecular structure such as the arrangement of atoms and chemical bonds, its text representation (Simplified Molecular Input Line Entry System: SMILES), and molecular descriptors and fingerprints. Further, the second material information may include information on chromatography, thermal analysis, odor measurement, etc., as long as it indirectly includes chemical structure information. The second material information may be generated by combining the above data.
 演算部12は、第2材料情報を用いて第2ニューラルネットワークに基づく第2機械学習を実行する。第2ニューラルネットワークは、出力値を算出するための演算に用いられる第2学習モデルにより構成されている。第2学習モデルは、例えば、第2材料情報を入力すると組成物の化学構造情報の予測値を算出するように構成されている。第2学習モデルには、予測値を算出するための初期パラメータが設定されている。 The calculation unit 12 executes second machine learning based on the second neural network using the second material information. The second neural network is configured with a second learning model used for calculations to calculate output values. The second learning model is configured, for example, to calculate a predicted value of the chemical structure information of the composition when the second material information is input. Initial parameters for calculating predicted values are set in the second learning model.
 演算部12は、第2ニューラルネットワークを用いて、入力値に対して出力値を算出し、出力値と正解値との比較に基づいて第2学習モデルに含まれるパラメータを調整する処理を繰り返し実行する。演算部12は、上記の第2機械学習を実行する処理に基づいて、第2学習モデルの精度を向上させる。第2学習モデルは、例えば、第2材料情報を用いた教師あり学習と、教師なし学習とを実行可能なモデルである。 The calculation unit 12 repeatedly executes a process of calculating an output value for the input value using the second neural network and adjusting parameters included in the second learning model based on a comparison between the output value and the correct value. do. The calculation unit 12 improves the accuracy of the second learning model based on the process of performing the second machine learning described above. The second learning model is, for example, a model that can perform supervised learning and unsupervised learning using the second material information.
 演算部12は、入力データが少ない場合、第2ニューラルネットワークにより第2材料情報に基づいて教師なし学習を行う。演算部12は、入力データが大量に存在する場合、第2ニューラルネットワークにより第2材料情報を用いた教師あり学習を行ってもよい。演算部12は、例えば、第2ニューラルネットワークを用いた教師なし学習において敵対的生成ネットワークに基づく処理を実行するように構成されている。 When the input data is small, the calculation unit 12 performs unsupervised learning based on the second material information using the second neural network. When there is a large amount of input data, the calculation unit 12 may perform supervised learning using the second material information using the second neural network. The calculation unit 12 is configured to execute processing based on a generative adversarial network in unsupervised learning using a second neural network, for example.
 演算部12は、上述した第2機械学習の工程において第2ニューラルネットワークを用いた第2機械学習により第2学習モデルのパラメータを調整する。演算部12は、異なる種類の第2材料情報に基づいて1つ以上の第2機械学習を実行してもよい。演算部12は、パラメータが調整された第2学習モデルを用いて組成物の化学構造情報を算出する。 The calculation unit 12 adjusts the parameters of the second learning model through second machine learning using the second neural network in the second machine learning step described above. The calculation unit 12 may perform one or more types of second machine learning based on different types of second material information. The calculation unit 12 calculates chemical structure information of the composition using the second learning model with adjusted parameters.
 演算部12は、第1ニューラルネットワークにより生成された物理構造情報と第2ニューラルネットワークにより生成された化学構造情報とを統合した統合情報を生成する。演算部12は、統合情報を用いて第3ニューラルネットワークに基づく第3機械学習を実行する。第3ニューラルネットワークは、統合情報に基づいて組成物の物性情報を算出する第3学習モデルにより構成されている。 The calculation unit 12 generates integrated information by integrating the physical structure information generated by the first neural network and the chemical structure information generated by the second neural network. The calculation unit 12 uses the integrated information to perform third machine learning based on the third neural network. The third neural network is configured by a third learning model that calculates physical property information of the composition based on the integrated information.
 第3学習モデルは、例えば、統合情報を入力すると組成物の物性情報の予測値を算出するように構成されている。第3学習モデルには、予測値を算出するための初期パラメータが設定されている。演算部12は、第3ニューラルネットワークを用いた第3機械学習により第3学習モデルのパラメータを調整する。演算部12は、統合情報の生成において画像データを含む物理構造情報を数値化し、数値データに変換する。演算部12は、例えば、第3ニューラルネットワークに含まれる畳み込みニューラルネットワークを用いた機械学習を繰り返し実行し、画像データに含まれる特徴を抽出し、特徴毎に分類する。演算部12は、分類した画像データを特徴量が数値化された一次元のベクトルデータに変換する。 The third learning model is configured, for example, to calculate a predicted value of the physical property information of the composition when the integrated information is input. Initial parameters for calculating predicted values are set in the third learning model. The calculation unit 12 adjusts the parameters of the third learning model by third machine learning using a third neural network. In generating integrated information, the calculation unit 12 digitizes physical structure information including image data and converts it into numerical data. The calculation unit 12 repeatedly executes machine learning using, for example, a convolutional neural network included in the third neural network, extracts features included in the image data, and classifies the extracted features for each feature. The calculation unit 12 converts the classified image data into one-dimensional vector data in which feature amounts are digitized.
 演算部12は、統合情報の生成においてスペクトル等の数値データに基づく複数の化学構造情報が存在する場合、第3ニューラルネットワークを用いた機械学習を繰り返し実行し、数値データに含まれる特徴を抽出し、特徴毎に分類する。演算部12は、分類した数値データを特徴量が数値化された一次元のベクトルデータに変換する。演算部12は、一次元のベクトルデータに基づく物理構造情報と、一次元のベクトルデータに基づく化学構造情報とを統合し、一次元のベクトルデータに基づく統合情報を生成する。 When multiple pieces of chemical structure information based on numerical data such as spectra exist in the generation of integrated information, the calculation unit 12 repeatedly performs machine learning using a third neural network to extract features included in the numerical data. , classified by characteristics. The calculation unit 12 converts the classified numerical data into one-dimensional vector data in which feature amounts are digitized. The calculation unit 12 integrates physical structure information based on one-dimensional vector data and chemical structure information based on one-dimensional vector data, and generates integrated information based on one-dimensional vector data.
 演算部12は、一次元のベクトルデータに基づく統合情報を用いて第3ニューラルネットワークに含まれる全結合ニューラルネットワークを用いた第3機械学習により第3学習モデルのパラメータを調整する。演算部12は、調整された第3学習モデルを用いて統合情報に基づいて一次元のベクトルデータに基づく組成物の物性情報を生成する。機械学習を実行した後、物性予測装置10を用いて新規な組成物の物性を予測する仮想実験を行うことができる。 The calculation unit 12 uses integrated information based on one-dimensional vector data to adjust the parameters of the third learning model by third machine learning using a fully connected neural network included in the third neural network. The calculation unit 12 generates physical property information of the composition based on one-dimensional vector data based on the integrated information using the adjusted third learning model. After performing machine learning, a virtual experiment can be performed to predict the physical properties of a new composition using the physical property prediction device 10.
 演算部12は、統合情報の生成においてディープラーニングによる第3ニューラルネットワークを用いた機械学習を実行するだけでなく、重回帰(Multiple Linear Regression:MLR)、主成分回帰(Principal Components Regression:PCR)、部分最小二乗回帰(Partial Least Squares Regression:PLS)、サポートベクトルマシン(Support Vector Machine:SVM)、決定木、ランダムフォレスト、ロジスティック回帰、エラスティックネット回帰、ラッソ回帰、リッジ回帰、ガウス過程回帰(Gaussian Process Regression:GPR)、勾配ブースティング回帰等の分析方法を用いて数値データに基づく複数の化学構造情報に含まれる特徴を抽出し、特徴毎に分類してもよい。また、演算部12は、統合情報の生成において機械学習を実行する前に、フォワード法、バックワード法、ステップワイズ法、遺伝的アルゴリズム(Genetic Algorithms:GA)等の演算手法を用いて数値データに基づく複数の物理構造情報や化学構造情報の変数選択を行ってもよい。 The calculation unit 12 not only executes machine learning using a third neural network based on deep learning in generating integrated information, but also performs multiple linear regression (MLR), principal component regression (PCR), Partial Least Squares Regression (PLS), Support Vector Machine (SVM), Decision Tree, Random Forest, Logistic Regression, Elastic Net Regression, Lasso Regression, Ridge Regression, Gaussian Process Features included in a plurality of pieces of chemical structure information based on numerical data may be extracted using an analysis method such as Regression (GPR) or gradient boosting regression, and classified for each feature. Furthermore, before performing machine learning in generating integrated information, the calculation unit 12 processes numerical data using calculation methods such as forward method, backward method, stepwise method, and genetic algorithms (GA). Variables may be selected based on a plurality of pieces of physical structure information and chemical structure information.
 図2には、物性予測装置10において実行される物性予測方法の機械学習工程の処理の流れがフローチャートにより示されている。演算部12は、通信ネットワークNWを介してサーバ装置20から入力データを取得する(ステップS100)。演算部12は、入力データに基づいて第1機械学習と第2機械学習とを実行する。演算部12は、第1機械学習を実行する際に、画像データを含む第1材料情報を取得する(ステップS102)。 FIG. 2 shows a flowchart of the process flow of the machine learning process of the physical property prediction method executed in the physical property prediction device 10. The calculation unit 12 acquires input data from the server device 20 via the communication network NW (step S100). The calculation unit 12 performs first machine learning and second machine learning based on input data. The calculation unit 12 acquires first material information including image data when performing the first machine learning (step S102).
 演算部12は、学習用の画像データを用いて第1ニューラルネットワークを用いた第1機械学習を繰り返し実行する(ステップS104)。演算部12は、第1機械学習により第1ニューラルネットワークを構成する第1学習モデルのパラメータを調整し、調整された第1学習モデルに基づいて物理構造情報を生成する(ステップS106)。 The calculation unit 12 repeatedly performs first machine learning using the first neural network using the image data for learning (step S104). The calculation unit 12 adjusts the parameters of the first learning model constituting the first neural network by first machine learning, and generates physical structure information based on the adjusted first learning model (step S106).
 演算部12は、第2機械学習を実行する際に、スペクトルデータを含む第2材料情報を取得する(ステップS108)。演算部12は、学習用のスペクトルデータを用いて第2ニューラルネットワークを用いた第2機械学習を繰り返し実行する(ステップS110)。演算部12は、第2機械学習により第2ニューラルネットワークを構成する第2学習モデルのパラメータを調整し、調整された第2学習モデルに基づいて化学構造情報を生成する(ステップS112)。 The calculation unit 12 acquires second material information including spectral data when executing the second machine learning (step S108). The calculation unit 12 repeatedly performs second machine learning using the second neural network using the learning spectrum data (step S110). The calculation unit 12 adjusts the parameters of the second learning model constituting the second neural network by second machine learning, and generates chemical structure information based on the adjusted second learning model (step S112).
 演算部12は、生成された物理構造情報と化学構造情報とを統合する(ステップS114)。演算部12は、統合情報を用いて第3ニューラルネットワークを用いた第3機械学習を実行する(ステップS116)。演算部12は、統合情報を用いて第3ニューラルネットワークを構成する第3学習モデルのパラメータを調整し、調整された第3学習モデルに基づいて物性情報を生成する第3機械学習を繰り返し実行する。 The calculation unit 12 integrates the generated physical structure information and chemical structure information (step S114). The calculation unit 12 uses the integrated information to perform third machine learning using the third neural network (step S116). The calculation unit 12 uses the integrated information to adjust parameters of a third learning model that constitutes the third neural network, and repeatedly executes third machine learning that generates physical property information based on the adjusted third learning model. .
 図3には、物性予測装置10において実行される物性予測方法の仮想実験の処理の流れがフローチャートにより示されている。仮想実験に用いられる新規な組成物に関する入力データが作成される(ステップS200)。入力データは、機械学習工程において生成されたデータが用いられてもよいし、新たに作成されていてもよい。組成物は、マトリックス、フィラー、添加剤のうち少なくとも2つが未知の配合比率により形成されている。演算部12は、入力データのうち画像データに基づく第1材料情報を生成する。演算部12は、生成された第1材料情報を取得する(ステップS202)。 FIG. 3 shows a flowchart of a process flow of a virtual experiment of a physical property prediction method executed in the physical property prediction device 10. Input data regarding a new composition used in the virtual experiment is created (step S200). The input data may be data generated in the machine learning process, or may be newly created. The composition is formed of at least two of the matrix, filler, and additive in an unknown blending ratio. The calculation unit 12 generates first material information based on image data of the input data. The calculation unit 12 acquires the generated first material information (step S202).
 演算部12は、第1材料情報に基づいて第1ニューラルネットワークのパラメータが調整された第1学習モデルを用いて第1仮想実験を繰り返し行う(ステップS204)。演算部12は、第1仮想実験に基づいて物理構造情報を生成する(ステップS206)。演算部12は、入力データのうちスペクトルデータに基づく第2材料情報を生成する。演算部12は、生成された第2材料情報を取得する(ステップS208)。演算部12は、第2材料情報に基づいて第2ニューラルネットワークのパラメータが調整された第2学習モデルを用いて第2仮想実験を繰り返し行う(ステップS210)。 The calculation unit 12 repeatedly performs the first virtual experiment using the first learning model in which the parameters of the first neural network are adjusted based on the first material information (step S204). The calculation unit 12 generates physical structure information based on the first virtual experiment (step S206). The calculation unit 12 generates second material information based on the spectrum data of the input data. The calculation unit 12 acquires the generated second material information (step S208). The calculation unit 12 repeatedly performs the second virtual experiment using the second learning model in which the parameters of the second neural network are adjusted based on the second material information (step S210).
 演算部12は、第2仮想実験に基づいて化学構造情報を生成する(ステップS212)。演算部12は、物理構造情報と化学構造情報とを統合し、統合情報を生成する(ステップS214)。演算部12は、統合情報を用いて第3ニューラルネットワークに基づいて組成物の物性情報を生成する(ステップS216)。演算部12は、統合情報を用いて第3ニューラルネットワークの調整された第3学習モデルに基づいて物性情報を生成する。演算部12は、入力データを変更して仮想実験を繰り返し、未知の組成物の物性情報を生成する。演算部12は、生成した物性情報を記憶部14に記憶し、データベース化する。演算部12は、出力部16を制御して物性情報を出力する(ステップS218)。 The calculation unit 12 generates chemical structure information based on the second virtual experiment (step S212). The calculation unit 12 integrates the physical structure information and the chemical structure information to generate integrated information (step S214). The calculation unit 12 uses the integrated information to generate physical property information of the composition based on the third neural network (step S216). The calculation unit 12 generates physical property information based on the adjusted third learning model of the third neural network using the integrated information. The calculation unit 12 changes the input data and repeats the virtual experiment to generate physical property information of the unknown composition. The calculation unit 12 stores the generated physical property information in the storage unit 14 and creates a database. The calculation unit 12 controls the output unit 16 to output physical property information (step S218).
 図4には、物性予測装置10により生成された物性情報の精度を検証した実験結果が示されている。実験においては、ある組成物の組成に重量分率を与えた場合の8特性の物性情報の精度が予測された。8特性とは、例えば、ヤング率、引張強度、破断伸び、対数電気抵抗値、密度、常温貯蔵弾性率、常温損失正接である(図4(B)参照)。物性情報の精度は、8特性に基づいて評価された。入力データは、物理構造情報を含む第1材料情報の画像データ(光学画像)と化学構造情報を含む第2材料情報のスペクトルデータ(IR)との組合せ、第1材料情報の画像データ(光学画像)と第2材料情報のスペクトルデータ(IR)とスペクトルデータ(ラマン)との組合せのデータが用いられた。比較対象として画像データ(光学画像)のみを用いたニューラルネットワークに基づく物性情報の算出値と、スペクトルデータ(IR)のみを用いたニューラルネットワークに基づく物性情報の算出値と、スペクトルデータ(ラマン)のみを用いたニューラルネットワークに基づく物性情報の算出値とが算出された。精度の比較には、学習データを用いて算出した物性情報と、新たに生成したテストデータを用いて算出した物性情報とが用いられた。 FIG. 4 shows the results of an experiment that verified the accuracy of the physical property information generated by the physical property prediction device 10. In experiments, the accuracy of physical property information for eight properties was predicted when weight fractions were given to the composition of a certain composition. The 8 properties are, for example, Young's modulus, tensile strength, elongation at break, logarithmic electrical resistance, density, room temperature storage modulus, and room temperature loss tangent (see FIG. 4(B)). The accuracy of the physical property information was evaluated based on eight characteristics. The input data includes a combination of image data (optical image) of first material information including physical structure information and spectral data (IR) of second material information including chemical structure information, and image data (optical image) of first material information. ) and the combination of spectral data (IR) and spectral data (Raman) of the second material information were used. Calculated values of physical property information based on a neural network using only image data (optical images) as comparison targets, calculated values of physical property information based on a neural network using only spectral data (IR), and only spectral data (Raman) Calculated values of physical property information based on a neural network were calculated. For accuracy comparison, physical property information calculated using learning data and physical property information calculated using newly generated test data were used.
 図4(A)に示されるように、学習データを用いた場合、単独のニューラルネットワークに基づいて算出した物性情報と、物性予測装置10の複数のニューラルネットワークに基づいて算出した物性情報は、ともに精度が高かった。その一方でテストデータを用いた場合、単独のニューラルネットワークに基づいて算出した物性情報は精度が低かったのに比して、物性予測装置10の複数のニューラルネットワークに基づいて算出した物性情報は、精度が高かった。 As shown in FIG. 4(A), when learning data is used, the physical property information calculated based on a single neural network and the physical property information calculated based on multiple neural networks of the physical property prediction device 10 are both Accuracy was high. On the other hand, when test data was used, the accuracy of the physical property information calculated based on a single neural network was low, whereas the physical property information calculated based on multiple neural networks of the physical property prediction device 10 was Accuracy was high.
 図4(B)に示されるように、物性予測装置10による8特性の物性予想値は、複数のニューラルネットワークに基づいて算出した場合は数値が安定しているのに比して、単独のニューラルネットワークに基づいて算出した物性情報は数値にばらつきが生じた。上記の組成物の組成の重量分率や8特性は、これに限らず変更され、増減されてもよい。また、物性情報は、異なるパラメータを含むように他の条件に変更され、又は他の条件が加えられてもよい。 As shown in FIG. 4(B), the physical property predicted values for the eight properties by the physical property predicting device 10 are stable when calculated based on multiple neural networks, whereas the numerical values are stable when calculated based on multiple neural networks. The physical property information calculated based on the network varied in numerical values. The weight fraction and eight characteristics of the composition described above are not limited to these, and may be changed and increased or decreased. Further, the physical property information may be changed to other conditions to include different parameters, or other conditions may be added.
 上述したように、物性予測装置10によれば、画像データ、スペクトルデータ等の異なる複雑な材料情報を統合する機械学習を行うことにより、未知の組成物における物性を正確に予測することができる。 As described above, according to the physical property prediction device 10, the physical properties of an unknown composition can be accurately predicted by performing machine learning that integrates different and complex material information such as image data and spectral data.
 上記実験において、入力データは、データ拡張により多数の学習用データが生成され、より正確な予測値を生成するような深層学習を実行可能としている。例えば、画像データをデータ拡張する場合、元の画像が1000×1000ピクセル程度であった場合、そのままのサイズでは物性予測装置10を構成するコンピュータの性能とデータ数の関係で機械学習を実行することが困難である。 In the above experiment, the input data was expanded to generate a large amount of learning data, making it possible to perform deep learning that generates more accurate predicted values. For example, when data augmenting image data, if the original image is approximately 1000 x 1000 pixels, machine learning may be performed depending on the performance of the computer configuring the physical property prediction device 10 and the amount of data if the original image is of approximately 1000 x 1000 pixels. is difficult.
 通常観察で得られる画像データは1つあたり1000×1000ピクセルを越えるデータサイズを持つため、そのまま画像全体を用いて深層学習を実行すると、計算機のメモリを圧迫すると共に、ニューラルネットワークのサイズが肥大化する。また、実際に実験を行って得られる実験データは限られており、深層学習を行うまでの学習データの数が十分数得られない。従って、画像データは、物性予測装置10における第1機械学習が円滑に実行されるように、組成物の物理構造を反映した適切なスケール(観察倍率)と、ピクセル数とに設定された。また、画像データは、回転、傾斜、ノイズ付与等の加工を行い、データ拡張が行われた。 Image data obtained through normal observation has a data size exceeding 1000 x 1000 pixels per piece, so if deep learning is performed using the entire image as it is, it will overwhelm the computer's memory and increase the size of the neural network. do. Furthermore, the amount of experimental data that can be obtained through actual experiments is limited, and a sufficient number of learning data cannot be obtained before performing deep learning. Therefore, the image data was set to an appropriate scale (observation magnification) and pixel number that reflected the physical structure of the composition so that the first machine learning in the physical property prediction device 10 was executed smoothly. In addition, the image data was processed by rotation, tilting, adding noise, etc., and data expansion was performed.
 画像データは、深層学習において材料の物理構造を広く取り込める低めの倍率(100倍)による観察に基づいて取得され、128×128ピクセルの小画像に分割された。小画像は、深層学習において特徴を分類可能とするように、粒子などのフィラーの物理構造情報が充分含まれるように分割された。また、128×128ピクセルの小画像は、90°毎に4方向に回転させてデータ拡張が行われた。これにより、計算機のメモリを圧迫せず、ニューラルネットワークのサイズの肥大化を防ぎ、限られた実験データから十分数の学習データを得て深層学習の教育を可能にして、ニューラルネットワークの学習安定化、精度向上の効果を得た。 The image data was acquired based on observation at a low magnification (100x) that allows the physical structure of the material to be broadly captured in deep learning, and was divided into small images of 128 x 128 pixels. The small images were divided to include enough information on the physical structure of fillers such as particles to enable deep learning to classify the features. Furthermore, data expansion was performed on a small image of 128 x 128 pixels by rotating it in four directions every 90 degrees. This does not put pressure on the computer's memory, prevents the size of the neural network from increasing, and enables deep learning education by obtaining a sufficient number of learning data from limited experimental data, thereby stabilizing the learning of the neural network. , the effect of improving accuracy was obtained.
 また、画像データは、第1ニューラルネットワークに基づいて第1機械学習させるために前処理された。画像データにおける1ピクセルのデータは1バイト(8ビット)符号なし整数のuint8型であり、0-255の値の範囲をとる。このデータのままでは組成物の材料情報を入力として画像を生成する第1ニューラルネットワークの教育が正しく進行しない。画像データは、各ピクセルの輝度値を127.5で除算を行い1で減算を行うことで、データの範囲を-1から1の範囲に収まるように前処理が行われた。画像データの前処理に基づいて、第1ニューラルネットワークの生成モデルにおいて学習処理が安定化された。 The image data was also pre-processed for first machine learning based on the first neural network. One pixel of image data is a 1-byte (8-bit) unsigned integer of type uint8, and has a value range of 0-255. If this data remains as it is, the training of the first neural network, which generates an image by inputting the material information of the composition, will not proceed correctly. The image data was preprocessed by dividing the luminance value of each pixel by 127.5 and subtracting by 1 so that the data range was within the range of -1 to 1. Based on the pre-processing of the image data, the learning process was stabilized in the generative model of the first neural network.
 図5に示されるように、物性予測装置10によれば、データ拡張された画像データに基づいて第2機械学習を実行することにより、実測画像データと同等の生成画像データを出力することができる。 As shown in FIG. 5, according to the physical property prediction device 10, by performing the second machine learning based on the data-enhanced image data, it is possible to output generated image data equivalent to the measured image data. .
 組成物の材料情報を入力として画像を生成するニューラルネットワークにおいて、従来はone-hotベクトルを入力として、学習が行われてきた。一般物体認識では猫が1-犬が0、猫が0-犬が1といったベクトルを入力させて学習が行われる。材料分野における組成物の場合、学習に用いるサンプル種分だけ入力ベクトルが長くなり、サンプル種が増えた際に計算機のメモリを圧迫する問題があった。そこで組成物の材料情報(配合比率や製造条件の連続変数)を入力としてニューラルネットワークを学習させることで、材料情報から直接的にデータ生成を可能にし、計算機のメモリ削減の効果を得た。今回はアクリル硬化樹脂複合材料の配合比率を重量分率で0-1範囲に換算したものを入力として生成モデルの構築を行った。 In a neural network that generates an image by inputting material information of a composition, learning has conventionally been performed by inputting one-hot vectors. In general object recognition, learning is performed by inputting vectors such as 1 for cat - 0 for dog, and 0 for cat - 1 for dog. In the case of compositions in the materials field, the input vector becomes longer depending on the sample types used for learning, and when the number of sample types increases, there is a problem in that the memory of the computer is overwhelmed. Therefore, by training a neural network using the composition's material information (continuous variables such as blending ratios and manufacturing conditions) as input, we were able to generate data directly from the material information, thereby reducing computer memory. This time, we constructed a generative model using as input the blending ratio of the acrylic cured resin composite material converted to a weight fraction in the 0-1 range.
 スペクトルデータは、画像データと異なりデータ拡張方法が確立されていない。そのため、スペクトルデータは、物性予測装置10における第2機械学習が円滑に実行されるように、ガウスノイズを印加してデータ拡張した。スペクトルデータは、例えば、1800cm-1以下の波数域を選択して1024のデータ長にした。スペクトルデータは、吸光度の値を1サンプル内での最大値、最小値で規格化して0-1の範囲に収まるデータになるように前処理が行われた。 Unlike image data, there is no established data expansion method for spectral data. Therefore, the spectral data was expanded by applying Gaussian noise so that the second machine learning in the physical property prediction device 10 could be executed smoothly. The spectral data had a data length of 1024 by selecting, for example, a wave number range of 1800 cm-1 or less. The spectral data was preprocessed so that the absorbance value was normalized by the maximum value and minimum value within one sample so that the data fell within the range of 0-1.
 スペクトルデータは、最小値及び最大値を用いた規格化吸光度であるため0-1の範囲の数値データである。ここで、生成モデルを学習させるために各波数の規格化吸光度を0.5で除算を行い、1で減算を行うことで、データの範囲を-1から1の範囲に収まるように前処理が行われた。これにより第2学習モデルにおける第2ニューラルネットワークの学習処理が安定化した。 The spectral data is numerical data in the range of 0-1 because it is normalized absorbance using the minimum and maximum values. Here, in order to train the generative model, the normalized absorbance of each wavenumber is divided by 0.5 and subtracted by 1, so that the preprocessing is performed to keep the data range within the range of -1 to 1. It was conducted. This stabilized the learning process of the second neural network in the second learning model.
 生成モデルとしてはConditional table GAN等のモデルによる学習を行ったところ、モデルの学習及び生成挙動が不安定であった。そこで1024のデータ長のスペクトルデータを32×32の二次元データ配列に変形し、画像と同様に生成モデルのニューラルネットワークに学習させることで、生成モデルにおけるニューラルネットワークの学習処理が安定化した。 When learning was performed using a model such as Conditional table GAN as a generative model, the learning and generation behavior of the model was unstable. Therefore, by transforming the spectral data with a data length of 1024 into a 32 x 32 two-dimensional data array and having the neural network of the generative model learn it in the same way as images, the learning process of the neural network in the generative model was stabilized.
 スペクトルデータは、平均が0、標準偏差が0.001のガウスノイズを発生させて、パターンの異なるノイズを元のスペクトルデータに追加することでデータ拡張が行われ、128倍に拡張された学習データが生成された。 The spectral data was expanded by generating Gaussian noise with an average of 0 and a standard deviation of 0.001, and adding noise with a different pattern to the original spectral data, resulting in 128 times expanded learning data. was generated.
 図6に示されるように、拡張されたスペクトルデータに基づいて、第2ニューラルネットワークに基づいてスペクトルデータの実測値に近い生成スペクトルデータ(化学構造情報)を生成することができた。上記実験において、データ拡張を行うことにより、物性予測装置10において実行される深層学習の回数が増加し、データ拡張をしない場合に比して第2ニューラルネットワークの学習処理が安定化すると共に、推定精度が上昇した。 As shown in FIG. 6, based on the expanded spectrum data, it was possible to generate generated spectrum data (chemical structure information) that was close to the actually measured value of the spectrum data based on the second neural network. In the above experiment, by performing data expansion, the number of times deep learning is executed in the physical property prediction device 10 increases, and the learning process of the second neural network is stabilized compared to the case without data expansion, and the estimation Accuracy increased.
 スペクトル生成において、生成モデルにおいてone-hotベクトルを入力とすると学習に用いるサンプル種分だけ入力ベクトルが長くなり、サンプル種が増えた際に計算機のメモリを圧迫する問題があった。そこで組成物の材料情報(配合比率や製造条件の連続変数)を入力として第2ニューラルネットワークを学習させることで、材料情報から直接的にデータ生成を可能にし、計算機のメモリ削減の効果を得た。今回はアクリル硬化樹脂複合材料の配合比率を重量分率で0-1範囲にしたものを入力として生成モデルの構築を行った。 In spectrum generation, if a one-hot vector is used as an input in a generative model, the input vector becomes longer by the number of sample types used for learning, and when the number of sample types increases, there is a problem in that the memory of the computer is overwhelmed. Therefore, by training a second neural network using the composition's material information (continuous variables such as blending ratios and manufacturing conditions) as input, we were able to generate data directly from the material information, resulting in the effect of reducing computer memory. . This time, we constructed a generative model using as input the blending ratio of the acrylic cured resin composite material in the weight fraction range of 0-1.
 スペクトルデータは、組成物の配合比率の異なる75のアクリル硬化樹脂複合材料において、対応配合比率からなる数値配列、物理構造情報として画像、化学構造情報としてIRスペクトル、Ramanスペクトルを含むデータが用いられた。 The spectral data used included numerical arrays consisting of corresponding compounding ratios, images as physical structure information, and IR spectra and Raman spectra as chemical structure information for 75 acrylic cured resin composite materials with different compounding ratios. .
 また、上記実験において、機械学習モデルは、層数、層構造等を変更した場合の学習工程における処理の挙動や計算結果に現れる精度への影響を判定することにより、層数や層構造が調整された。また、GANの学習において、モデル構造に適した学習を実行させないと学習処理が円滑に実行されないため、モデル構造に応じたGANの学習工程に調整された。 In addition, in the above experiment, the machine learning model was able to adjust the number of layers and layer structure by determining the effect of changing the number of layers, layer structure, etc. on the processing behavior in the learning process and the accuracy that appears in the calculation results. It was done. In addition, in GAN learning, the learning process cannot be executed smoothly unless learning appropriate to the model structure is performed, so the GAN learning process was adjusted according to the model structure.
 統合情報を生成する工程において、画像とスペクトルといった次元の異なる情報を結合する必要がある。例えば、128×128ピクセルの画像データを16384ピクセルの1次元のベクトルに変換し、1次元のスペクトルデータと並列に処理することで機械学習を行うことは可能である。この場合、画像データに含まれる材料の相対配置などの空間の特徴が損なわれるため、物理構造情報を充分ニューラルネットワークに学習させることができない。そこで、二次元の画像データは、近傍ピクセルとの相対配置の情報を取り込む畳み込み層を含むニューラルネットワークに基づいて特徴量が抽出され、その後、スペクトルデータから得られた特徴量と統合させた後、全結合ニューラルネットワークを経由して組成物の物性情報が算出された。これにより物理構造情報と化学構造情報を損なわずに学習処理させる効果を得た。 In the process of generating integrated information, it is necessary to combine information with different dimensions, such as images and spectra. For example, it is possible to perform machine learning by converting 128x128 pixel image data into a 16384 pixel one-dimensional vector and processing it in parallel with one-dimensional spectral data. In this case, spatial features such as the relative arrangement of materials included in the image data are impaired, so that the neural network cannot sufficiently learn physical structure information. Therefore, from two-dimensional image data, features are extracted based on a neural network that includes a convolution layer that captures information about relative placement with neighboring pixels, and then integrated with features obtained from spectral data. Physical property information of the composition was calculated via a fully connected neural network. This resulted in the effect of learning processing without losing physical structure information and chemical structure information.
 算出される組成物の物性情報は、ヤング率、引張強度、破断伸び、ガラス転移温度、密度、常温貯蔵弾性率、常温損失正接、表面電気抵抗の8つの物性の指標が含まれる。物性情報は、平均、標準偏差による標準化による前処理を行った値が使用された。物性予測装置10において、これらの学習データを用いて物理構造情報と化学構造情報を統合するニューラルネットワークが構築された。学習させたニューラルネットワークを用いて材料配合の数値を入力することで、8特性の指標を含む物性情報が出力として得られた。 The calculated physical property information of the composition includes eight physical property indicators: Young's modulus, tensile strength, elongation at break, glass transition temperature, density, normal temperature storage modulus, normal temperature loss tangent, and surface electrical resistance. For the physical property information, values were used that were preprocessed by standardization using the average and standard deviation. In the physical property prediction device 10, a neural network that integrates physical structure information and chemical structure information was constructed using these learning data. By inputting numerical values of material composition using a trained neural network, physical property information including indicators of eight properties was obtained as output.
 本実験に用いられたマトリックスは、例えば、フェニルグリシジルエーテルアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー(AH-600、共栄社化学株式会社)、メタクリル酸2-エチルヘキシル(2-EH、東京化成工業株式会社)、メタクリル酸2-ヒドロキシエチルエチレングリコールメタクリラート(2-HEMA、東京化成工業株式会社)、ベンジルメタクリレート(ライトエステルBZ、共栄社株式会社)、2官能脂肪族ウレタンアクリレート(EBECRYL230、ダイセルオルネクス株式会社)、である。添加量はAH-600が~50%、2-EHが~90%、2-HEMAが~30%、ライトエステルBZが~30%、EBECRYL230が~90%のレンジで添加割合を変えてマトリックスを作成した。この時のマトリックスの総量を100として、添加剤及びフィラーの割合を外部(単位:phr, per hundred resin)で添加し複合材料を作製した。 The matrices used in this experiment include, for example, phenyl glycidyl ether acrylate hexamethylene diisocyanate urethane prepolymer (AH-600, Kyoeisha Chemical Co., Ltd.), 2-ethylhexyl methacrylate (2-EH, Tokyo Kasei Kogyo Co., Ltd.), methacrylate Acid 2-hydroxyethyl ethylene glycol methacrylate (2-HEMA, Tokyo Kasei Kogyo Co., Ltd.), benzyl methacrylate (Light Ester BZ, Kyoeisha Co., Ltd.), difunctional aliphatic urethane acrylate (EBECRYL230, Daicel Ornex Co., Ltd.), be. The matrix was prepared by changing the addition ratio in the range of ~50% for AH-600, ~90% for 2-EH, ~30% for 2-HEMA, ~30% for Light Ester BZ, and ~90% for EBECRYL230. Created. The total amount of matrix at this time was set as 100, and the proportion of additives and fillers was added externally (unit: phr, per hundred resin) to produce a composite material.
 本実験に用いられた添加剤は、例えば、架橋剤としてトリメチロールプロパントリメタクリレート(ライトエステルTMP、共栄社化学株式会社)、連鎖移動剤として1,3,5-トリス(2-(3-スルファニルブタノイルオキシ)エチル)-1,3,5-トリアジナン-2,4,6-トリオン(カレンズMT-NR1、昭和電工株式会社)、反応開始剤はt-アミルパーオキシ-2-エチルヘキサノエート(ルペロックス575、アルケマ吉富株式会社)、である。ライトエステルTMPは~10phr、カレンズMT-NR1は~5phrの割合で添加し、反応開始剤であるルペロックス575に関しては全ての試料において1phrで固定した。 The additives used in this experiment include, for example, trimethylolpropane trimethacrylate (Light Ester TMP, Kyoeisha Chemical Co., Ltd.) as a crosslinking agent, and 1,3,5-tris (2-(3-sulfanylbutanyl)) as a chain transfer agent. (noyloxy)ethyl)-1,3,5-triazinane-2,4,6-trione (Karens MT-NR1, Showa Denko K.K.), the reaction initiator was t-amylperoxy-2-ethylhexanoate ( Luperox 575 (Arkema Yoshitomi Co., Ltd.). Light ester TMP was added at a rate of ~10 phr, Karenz MT-NR1 was added at a rate of ~5 phr, and the reaction initiator Luperox 575 was fixed at 1 phr in all samples.
 本実験に用いられたフィラーは、例えば、球状フィラーとして球状アルミナ粒子(アルナビーズCB-A20S、昭和電工株式会社)、剛直棒状フィラーとして炭素繊維チョップドファイバー(DIALEAD K223HE、三菱ケミカル株式会社)、柔軟繊維状フィラーとして単層カーボンナノチューブ(SG101、日本ゼオン株式会社)である。アルミナ粒子は~30phr、炭素繊維チョップドファイバーは~30phr、単層カーボンナノチューブは~0.5phrの割合で添加した。またフィラーの分散条件は回転数10000rpm、20分で固定し、アクリル硬化樹脂複合材料の熱硬化条件は100℃1時間の条件で全ての試料において実施した。 The fillers used in this experiment include, for example, spherical alumina particles (Alunabeads CB-A20S, Showa Denko K.K.) as a spherical filler, carbon fiber chopped fiber (DIALEAD K223HE, Mitsubishi Chemical Corporation) as a rigid rod filler, and flexible fibrous fillers. Single-walled carbon nanotubes (SG101, Nippon Zeon Co., Ltd.) were used as fillers. Alumina particles were added at ~30 phr, chopped carbon fibers at ~30 phr, and single-walled carbon nanotubes at ~0.5 phr. In addition, the filler dispersion conditions were fixed at a rotation speed of 10,000 rpm for 20 minutes, and the thermosetting conditions for the acrylic cured resin composite material were 100°C for 1 hour for all samples.
 マトリックスは上記に限定されず、ポリエチレン、ポリプロピレン、ポリアミド、ポリスチレン、アクリル系樹脂、ビニル樹脂、ポリエステル等の熱可塑性樹脂、ポリカプロラクトン、ポリブチレンサクシネート、ポリ乳酸、ポリビニルアルコール、ポリヒドロキシブチレート等の生分解性ポリマー、エラストマー、エポキシ樹脂、熱硬化性ポリエステル、ポリウレタン、ポリイミド、ビニル基、(メタ)アクリル基、エポキシ基、オキセタン等を有する熱・光硬化性樹脂等であってもよく、複数の高分子ポリマーを含んだポリマーアロイであってもよい。また、マトリックスは、低分子化合物からなる溶媒等を含んでもよい。マトリックスは、固体や液体の状態に限らずスラリー、ペースト、電解液等の状態のものであってもよい。マトリックスの状態や効能は、環境条件に基づく変化が適用されていてもよい。 The matrix is not limited to the above, but may include thermoplastic resins such as polyethylene, polypropylene, polyamide, polystyrene, acrylic resin, vinyl resin, polyester, polycaprolactone, polybutylene succinate, polylactic acid, polyvinyl alcohol, polyhydroxybutyrate, etc. It may be a biodegradable polymer, an elastomer, an epoxy resin, a thermosetting polyester, a polyurethane, a polyimide, a thermo/photocurable resin having a vinyl group, a (meth)acrylic group, an epoxy group, an oxetane, etc. It may also be a polymer alloy containing a high molecular weight polymer. Further, the matrix may contain a solvent made of a low molecular compound, or the like. The matrix is not limited to a solid or liquid state, but may be in a slurry, paste, electrolyte, or the like. The state and efficacy of the matrix may be changed based on environmental conditions.
 フィラーは上記に限定されず、炭素繊維、ガラス繊維、単層カーボンナノチューブ、多層カーボンナノチューブ、グラフェン、酸化グラフェン、還元型酸化グラフェン、カーボンブラック、セルロースナノファイバー、セルロースナノクリスタル、木材繊維、タルク、モンモリロナイト、マイカ、シリカ、アルミナ、チタニア、炭酸カルシウム、六方晶窒化ホウ素、窒化アルミニウム、ゼオライト、金属酸化物、金属粉、磁性材料等であってもよい。フィラーは、単体の物質だけでなく少なくとも2つ以上の物質の組み合わせを含む物質であってもよい。フィラーの状態や効能は、環境条件に基づく変化が適用されていてもよい。 Fillers include, but are not limited to, carbon fibers, glass fibers, single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene, graphene oxide, reduced graphene oxide, carbon black, cellulose nanofibers, cellulose nanocrystals, wood fibers, talc, and montmorillonite. , mica, silica, alumina, titania, calcium carbonate, hexagonal boron nitride, aluminum nitride, zeolite, metal oxide, metal powder, magnetic material, and the like. The filler may be a substance containing not only a single substance but also a combination of at least two or more substances. The state and efficacy of the filler may be changed based on environmental conditions.
 添加剤は上記には限定されず、架橋剤、架橋促進剤、スコーチ防止剤、連鎖移動剤、酸化防止剤、熱分解防止剤、対加水分解防止剤、オゾン劣化防止剤、対候剤、光安定剤、紫外線吸収剤、帯電防止剤、相容化剤、粘着付与剤、可塑剤、滑剤、摺動剤、界面活性剤、結晶核剤、結晶化促進剤、結晶化遅延剤、難燃剤、発泡剤、発泡助剤、抗菌剤、防かび剤、顔料、蛍光剤、香料等であってもよい。また、添加剤は、単体の物質だけでなく少なくとも2つ以上の物質の組み合わせを含む物質であってもよい。添加剤の状態や効能は、環境条件に基づく変化が適用されていてもよい。 Additives are not limited to the above, but include crosslinking agents, crosslinking accelerators, scorch inhibitors, chain transfer agents, antioxidants, thermal decomposition inhibitors, anti-hydrolysis agents, ozone deterioration inhibitors, anti-climate agents, and photoprotectants. Stabilizers, ultraviolet absorbers, antistatic agents, compatibilizers, tackifiers, plasticizers, lubricants, sliding agents, surfactants, crystal nucleating agents, crystallization promoters, crystallization retarders, flame retardants, It may be a foaming agent, a foaming aid, an antibacterial agent, a fungicide, a pigment, a fluorescent agent, a perfume, or the like. Further, the additive may be a substance containing not only a single substance but also a combination of at least two or more substances. The condition and efficacy of the additive may be varied based on environmental conditions.
 上述したように物性予測装置10によれば、複雑な材料情報を統合する機械学習に基づいて、未知の組成物における物性を予測することができる。物性予測装置10によれば、画像データを用いて生成された組成物の物理構造情報と、画像データと異なる種類のスペクトルデータを用いて生成された組成物の化学構造情報とを統合した統合情報に基づいて組成物の物性情報を生成することができる。物性予測装置10によれば、異なる種類の情報を統合して判定可能なマルチモーダルAIに基づく機械学習を実行することにより、単独の種類の情報に基づく機械学習を実行して組成物の物性情報を算出する場合に比して高い精度により組成物の物性情報を算出することができる。 As described above, according to the physical property prediction device 10, the physical properties of an unknown composition can be predicted based on machine learning that integrates complex material information. According to the physical property prediction device 10, integrated information is obtained by integrating the physical structure information of the composition generated using image data and the chemical structure information of the composition generated using the image data and different types of spectral data. Physical property information of the composition can be generated based on the following. According to the physical property prediction device 10, by performing machine learning based on multimodal AI that can integrate and determine different types of information, machine learning based on a single type of information can be performed to obtain physical property information of a composition. It is possible to calculate physical property information of the composition with higher accuracy than when calculating .
 以上、本発明の一実施形態について説明したが、本発明は上記の一実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。実施形態の物性予測装置10は、組成物として高分子複合材料を例示しているが、これに限らず、複雑な構造を有する他の複合材料を取り扱ってもよい。 Although one embodiment of the present invention has been described above, the present invention is not limited to the above-described one embodiment, and can be modified as appropriate without departing from the spirit thereof. Although the physical property prediction device 10 of the embodiment uses a polymer composite material as an example of the composition, the composition is not limited to this, and other composite materials having a complicated structure may be handled.
10 物性予測装置
12 演算部
16 出力部
10 Physical property prediction device 12 Arithmetic unit 16 Output unit

Claims (10)

  1.  入力データに基づいて組成物の物性情報を生成する演算部と、
     前記物性情報を出力する出力部と、を備え、
     前記演算部は、
     前記入力データとして第1材料情報を用いて第1ニューラルネットワークに基づいて予測対象となる組成物の物理構造情報を生成し、
     前記入力データとして前記第1材料情報と異なる種類の第2材料情報を用いて第2ニューラルネットワークに基づいて前記組成物の化学構造情報を生成し、
     前記物理構造情報と前記化学構造情報とを統合した統合情報を生成し、前記統合情報に基づいて前記組成物の前記物性情報を生成する、
    物性予測装置。
    a calculation unit that generates physical property information of the composition based on input data;
    an output unit that outputs the physical property information,
    The arithmetic unit is
    generating physical structure information of a composition to be predicted based on a first neural network using first material information as the input data;
    generating chemical structure information of the composition based on a second neural network using second material information of a different type from the first material information as the input data;
    generating integrated information by integrating the physical structure information and the chemical structure information, and generating the physical property information of the composition based on the integrated information,
    Physical property prediction device.
  2.  前記第1材料情報は、前記組成物の物理構造を示す画像データを含み、
     前記演算部は、前記画像データに基づいて前記物理構造情報を生成する、
    請求項1に記載の物性予測装置。
    The first material information includes image data indicating the physical structure of the composition,
    The calculation unit generates the physical structure information based on the image data.
    The physical property prediction device according to claim 1.
  3.  前記第2材料情報は、前記組成物の化学構造の特性を数値化したスペクトルデータを含み、
     前記演算部は、前記スペクトルデータに基づいて前記化学構造情報を生成する、
    請求項2に記載の物性予測装置。
    The second material information includes spectral data quantifying the characteristics of the chemical structure of the composition,
    the calculation unit generates the chemical structure information based on the spectral data;
    The physical property prediction device according to claim 2.
  4.  前記演算部は、少なくとも3種類の前記組成物の物性の指標を含む前記物性情報を生成する、
    請求項3に記載の物性予測装置。
    the calculation unit generates the physical property information including at least three types of physical property indicators of the composition;
    The physical property prediction device according to claim 3.
  5.  前記演算部は、
     学習用の前記画像データを用いて前記第1ニューラルネットワークを用いた第1機械学習を実行し、
     前記第1機械学習により前記第1ニューラルネットワークを構成する第1学習モデルを調整し、
     調整された前記第1学習モデルに基づいて前記物理構造情報を生成する、
    請求項4に記載の物性予測装置。
    The arithmetic unit is
    Performing first machine learning using the first neural network using the image data for learning,
    adjusting a first learning model constituting the first neural network by the first machine learning;
    generating the physical structure information based on the adjusted first learning model;
    The physical property prediction device according to claim 4.
  6.  前記演算部は、
     学習用の前記スペクトルデータを用いて前記第2ニューラルネットワークを用いた第2機械学習を実行し、
     前記第2機械学習により前記第2ニューラルネットワークを構成する第2学習モデルを調整し、
     調整された前記第2学習モデルに基づいて前記化学構造情報を生成する、
    請求項5に記載の物性予測装置。
    The arithmetic unit is
    performing second machine learning using the second neural network using the spectrum data for learning;
    adjusting a second learning model constituting the second neural network by the second machine learning;
    generating the chemical structure information based on the adjusted second learning model;
    The physical property prediction device according to claim 5.
  7.  前記演算部は、
     前記統合情報を用いて第3ニューラルネットワークを用いた第3機械学習を実行し、 前記第3機械学習により前記第3ニューラルネットワークを構成する第3学習モデルを調整し、
     調整された前記第3学習モデルに基づいて前記物性情報を生成する、
    請求項6に記載の物性予測装置。
    The arithmetic unit is
    performing third machine learning using a third neural network using the integrated information; adjusting a third learning model constituting the third neural network by the third machine learning;
    generating the physical property information based on the adjusted third learning model;
    The physical property prediction device according to claim 6.
  8.  前記演算部は、前記組成物を構成するためのマトリックス、フィラー、添加剤のうち少なくとも2つを含む前記組成物の前記物性情報を生成する、
    請求項7に記載の物性予測装置。
    The calculation unit generates the physical property information of the composition containing at least two of a matrix, a filler, and an additive for forming the composition.
    The physical property prediction device according to claim 7.
  9.  入力データに基づいて組成物の物性情報を生成する物性予測装置を構成するコンピュータが、
     前記入力データとして第1材料情報を用いて第1ニューラルネットワークに基づいて予測対象となる組成物の物理構造情報を生成し、
     前記入力データとして前記第1材料情報と異なる種類の第2材料情報を用いて第2ニューラルネットワークに基づいて前記組成物の化学構造情報を生成し、
     前記物理構造情報と前記化学構造情報とを統合した統合情報を生成し、前記統合情報に基づいて前記組成物の物性情報を生成し、
     生成された前記物性情報を出力する処理を実行する、
    物性予測方法。
    A computer constituting a physical property prediction device that generates physical property information of the composition based on input data,
    generating physical structure information of a composition to be predicted based on a first neural network using first material information as the input data;
    generating chemical structure information of the composition based on a second neural network using second material information of a different type from the first material information as the input data;
    generating integrated information that integrates the physical structure information and the chemical structure information, and generating physical property information of the composition based on the integrated information;
    executing a process of outputting the generated physical property information;
    Physical property prediction method.
  10.  入力データに基づいて組成物の物性情報を生成する物性予測装置を構成するコンピュータに、
     前記入力データとして第1材料情報を用いて第1ニューラルネットワークに基づいて予測対象となる組成物の物理構造情報を生成させ、
     前記入力データとして前記第1材料情報と異なる種類の第2材料情報を用いて第2ニューラルネットワークに基づいて前記組成物の化学構造情報を生成させ、
     前記物理構造情報と前記化学構造情報とを統合した統合情報を生成し、前記統合情報に基づいて前記組成物の物性情報を生成させ、
     生成された前記物性情報を出力する処理を実行させる、
    プログラム。
    A computer constituting a physical property prediction device that generates physical property information of the composition based on input data,
    Generating physical structure information of a composition to be predicted based on a first neural network using first material information as the input data,
    Generating chemical structure information of the composition based on a second neural network using second material information of a different type from the first material information as the input data;
    generating integrated information that integrates the physical structure information and the chemical structure information, and generating physical property information of the composition based on the integrated information,
    executing a process of outputting the generated physical property information;
    program.
PCT/JP2023/018162 2022-05-18 2023-05-15 Physical property prediction device, physical property prediction method, and program WO2023224012A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-081299 2022-05-18
JP2022081299 2022-05-18

Publications (1)

Publication Number Publication Date
WO2023224012A1 true WO2023224012A1 (en) 2023-11-23

Family

ID=88835489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018162 WO2023224012A1 (en) 2022-05-18 2023-05-15 Physical property prediction device, physical property prediction method, and program

Country Status (1)

Country Link
WO (1) WO2023224012A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019048965A1 (en) * 2017-09-06 2019-03-14 株式会社半導体エネルギー研究所 Physical property prediction method and physical property prediction system
JP2020187417A (en) * 2019-05-10 2020-11-19 株式会社日立製作所 Physical property prediction device and physical property prediction method
WO2021095722A1 (en) * 2019-11-11 2021-05-20 昭和電工マテリアルズ株式会社 Information processing system, information processing method, and information processing program
JP2022163051A (en) * 2021-12-07 2022-10-25 ベイジン バイドゥ ネットコム サイエンス テクノロジー カンパニー リミテッド Compound property prediction model training method and device, electronic device, storage medium, and computer program
JP2022167397A (en) * 2021-04-23 2022-11-04 昭和電工マテリアルズ株式会社 Characteristic prediction system, characteristic prediction method and characteristic prediction program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019048965A1 (en) * 2017-09-06 2019-03-14 株式会社半導体エネルギー研究所 Physical property prediction method and physical property prediction system
JP2020187417A (en) * 2019-05-10 2020-11-19 株式会社日立製作所 Physical property prediction device and physical property prediction method
WO2021095722A1 (en) * 2019-11-11 2021-05-20 昭和電工マテリアルズ株式会社 Information processing system, information processing method, and information processing program
JP2022167397A (en) * 2021-04-23 2022-11-04 昭和電工マテリアルズ株式会社 Characteristic prediction system, characteristic prediction method and characteristic prediction program
JP2022163051A (en) * 2021-12-07 2022-10-25 ベイジン バイドゥ ネットコム サイエンス テクノロジー カンパニー リミテッド Compound property prediction model training method and device, electronic device, storage medium, and computer program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MUROGA SHUN, TAKASHI HONDA, HIDEAKI NAKAJIMA, KAZUFUMI KOBASHI, TAIYO SHIMIZU, HIROSHI MORITA, TOSHIYA OKAZAKI, KENJI HATAKE: "Deep Learning Virtual Experimentations for Materials and Process Informatics of Tangible Materials", LECTURE PREPRINTS OF THE 82ND JSAP AUTUMN MEETING 2021, THE JAPA SOCIETY OF APPLIED PHYSICS, 1 January 2021 (2021-01-01), pages 18 - 012, XP093108193 *

Similar Documents

Publication Publication Date Title
Tony Cai et al. Semisupervised inference for explained variance in high dimensional linear regression and its applications
Such et al. An atari model zoo for analyzing, visualizing, and comparing deep reinforcement learning agents
Neven et al. Training a binary classifier with the quantum adiabatic algorithm
US11550823B2 (en) Preprocessing for a classification algorithm
CN113723438A (en) Classification model calibration
Fernandez Martinez et al. Methodology to classify the shape of reinforcement fillers: optimization, evaluation, comparison, and selection of models
Yang et al. A robust regression framework with laplace kernel-induced loss
JP2021072100A (en) Information processing device, integrated model generation method, and integrated model generation program
Paul et al. Calculation of phase fraction in steel microstructure images using random forest classifier
Metz et al. A “big-data” algorithm for KNN-PLS
WO2023224012A1 (en) Physical property prediction device, physical property prediction method, and program
JP6815296B2 (en) Neural network evaluation device, neural network evaluation method, and program
Stammes et al. Find it if you can: end-to-end adversarial erasing for weakly-supervised semantic segmentation
Aswolinskiy et al. Impact of regularization on the model space for time series classification
Cheng et al. Differentiable fine-grained quantization for deep neural network compression
CN117114627A (en) land resource management system
US20210279590A1 (en) Apparatus and method for creating and training artificial neural networks
Llorente et al. On the computation of marginal likelihood via MCMC for model selection and hypothesis testing
Lahcene et al. A Hybrid Deep Learning Model for Predicting Lifetime and Mechanical Performance Degradation of Multilayer Greenhouse Polyethylene Films
Crosta Image analysis and classification by spectrum enhancement: new developments
Dominguez-Pacheco et al. Obtaining thermal images of creole corn by means of photoacoustic microscopy
Fumero et al. Retrieving genuine nonlinear Raman responses in ultrafast spectroscopy via deep learning
Jodas et al. Multiclass Oversampling via Optimum-Path Forest for Tree Species Classification from Street-view Perspectives
Carrara et al. Defending neural ODE image classifiers from adversarial attacks with tolerance randomization
Moomtaheen et al. DNA-Stabilized Silver Nanocluster Design via Regularized Variational Autoencoders

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807614

Country of ref document: EP

Kind code of ref document: A1