WO2023224000A1 - Modified regenerated collagen fiber, production method therefor, and headdress product containing same - Google Patents
Modified regenerated collagen fiber, production method therefor, and headdress product containing same Download PDFInfo
- Publication number
- WO2023224000A1 WO2023224000A1 PCT/JP2023/018107 JP2023018107W WO2023224000A1 WO 2023224000 A1 WO2023224000 A1 WO 2023224000A1 JP 2023018107 W JP2023018107 W JP 2023018107W WO 2023224000 A1 WO2023224000 A1 WO 2023224000A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- regenerated collagen
- mass
- fibers
- fiber
- collagen fibers
- Prior art date
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 300
- 102000008186 Collagen Human genes 0.000 title claims abstract description 178
- 108010035532 Collagen Proteins 0.000 title claims abstract description 178
- 229920001436 collagen Polymers 0.000 title claims abstract description 178
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 claims abstract description 77
- 239000005711 Benzoic acid Substances 0.000 claims abstract description 39
- 235000010233 benzoic acid Nutrition 0.000 claims abstract description 38
- 150000003839 salts Chemical class 0.000 claims abstract description 38
- 238000011282 treatment Methods 0.000 claims description 82
- 238000000034 method Methods 0.000 claims description 49
- 239000003795 chemical substances by application Substances 0.000 claims description 40
- 229910052751 metal Inorganic materials 0.000 claims description 27
- 239000002184 metal Substances 0.000 claims description 27
- 229910052782 aluminium Inorganic materials 0.000 claims description 20
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 20
- 238000003672 processing method Methods 0.000 claims description 14
- 239000000470 constituent Substances 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 66
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 22
- 238000011156 evaluation Methods 0.000 description 22
- 239000000047 product Substances 0.000 description 22
- 239000007864 aqueous solution Substances 0.000 description 19
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 18
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 15
- 229910017053 inorganic salt Inorganic materials 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 11
- 229910052742 iron Inorganic materials 0.000 description 11
- 150000002739 metals Chemical class 0.000 description 10
- 230000007928 solubilization Effects 0.000 description 10
- 238000005063 solubilization Methods 0.000 description 10
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- 239000004593 Epoxy Substances 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 9
- 230000007087 memory ability Effects 0.000 description 9
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 8
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 8
- 229920000728 polyester Polymers 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 239000010936 titanium Substances 0.000 description 8
- 229910052719 titanium Inorganic materials 0.000 description 8
- 229910052726 zirconium Inorganic materials 0.000 description 8
- 239000000203 mixture Substances 0.000 description 7
- 229910021642 ultra pure water Inorganic materials 0.000 description 7
- 239000012498 ultrapure water Substances 0.000 description 7
- 102000004190 Enzymes Human genes 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 229920001283 Polyalkylene terephthalate Polymers 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000003513 alkali Substances 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 239000008399 tap water Substances 0.000 description 6
- 235000020679 tap water Nutrition 0.000 description 6
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000003063 flame retardant Substances 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 238000009987 spinning Methods 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 229910052787 antimony Inorganic materials 0.000 description 4
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 4
- 229910052788 barium Inorganic materials 0.000 description 4
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 4
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 4
- 239000004327 boric acid Substances 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 238000004040 coloring Methods 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000001632 sodium acetate Substances 0.000 description 4
- 235000017281 sodium acetate Nutrition 0.000 description 4
- 239000012086 standard solution Substances 0.000 description 4
- 229910052712 strontium Inorganic materials 0.000 description 4
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 4
- 229920002994 synthetic fiber Polymers 0.000 description 4
- 239000012209 synthetic fiber Substances 0.000 description 4
- 239000004753 textile Substances 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- 229920001634 Copolyester Polymers 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000011088 calibration curve Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000012488 sample solution Substances 0.000 description 3
- 239000002453 shampoo Substances 0.000 description 3
- 239000000779 smoke Substances 0.000 description 3
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 235000010724 Wisteria floribunda Nutrition 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 2
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 2
- 235000011130 ammonium sulphate Nutrition 0.000 description 2
- 150000001463 antimony compounds Chemical class 0.000 description 2
- 229910021538 borax Inorganic materials 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 235000019441 ethanol Nutrition 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000009998 heat setting Methods 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000010985 leather Substances 0.000 description 2
- 238000004811 liquid chromatography Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- -1 polyvalent metals Chemical class 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 238000004445 quantitative analysis Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 235000002639 sodium chloride Nutrition 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 235000010339 sodium tetraborate Nutrition 0.000 description 2
- 230000003381 solubilizing effect Effects 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- BSVBQGMMJUBVOD-UHFFFAOYSA-N trisodium borate Chemical compound [Na+].[Na+].[Na+].[O-]B([O-])[O-] BSVBQGMMJUBVOD-UHFFFAOYSA-N 0.000 description 2
- 238000009941 weaving Methods 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- JPNPISCPFZAIKX-UHFFFAOYSA-N 2-hydroxy-1,2-diphenylethanone;sodium Chemical compound [Na].C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 JPNPISCPFZAIKX-UHFFFAOYSA-N 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- 101100008049 Caenorhabditis elegans cut-5 gene Proteins 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- ZGTMUACCHSMWAC-UHFFFAOYSA-L EDTA disodium salt (anhydrous) Chemical compound [Na+].[Na+].OC(=O)CN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O ZGTMUACCHSMWAC-UHFFFAOYSA-L 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 229920002821 Modacrylic Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- ILRSCQWREDREME-UHFFFAOYSA-N dodecanamide Chemical compound CCCCCCCCCCCC(N)=O ILRSCQWREDREME-UHFFFAOYSA-N 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 1
- 235000021588 free fatty acids Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- 230000003648 hair appearance Effects 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000010409 ironing Methods 0.000 description 1
- 238000010829 isocratic elution Methods 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 238000003307 slaughter Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 description 1
- 239000004299 sodium benzoate Substances 0.000 description 1
- 235000010234 sodium benzoate Nutrition 0.000 description 1
- 229940057950 sodium laureth sulfate Drugs 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- SXHLENDCVBIJFO-UHFFFAOYSA-M sodium;2-[2-(2-dodecoxyethoxy)ethoxy]ethyl sulfate Chemical compound [Na+].CCCCCCCCCCCCOCCOCCOCCOS([O-])(=O)=O SXHLENDCVBIJFO-UHFFFAOYSA-M 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41G—ARTIFICIAL FLOWERS; WIGS; MASKS; FEATHERS
- A41G3/00—Wigs
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F4/00—Monocomponent artificial filaments or the like of proteins; Manufacture thereof
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/10—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
- D06M13/184—Carboxylic acids; Anhydrides, halides or salts thereof
- D06M13/188—Monocarboxylic acids; Anhydrides, halides or salts thereof
Definitions
- the present invention relates to regenerated collagen fibers imparted with water resistance, heat resistance, and thermal shape memory ability, and preferably relates to regenerated collagen fibers used in textile products such as headdress products such as wigs and extensions.
- Regenerated collagen fibers generally have a natural texture and appearance that come from natural materials, unlike synthetic fibers.
- the regenerated collagen fibers are obtained by solubilizing acid-soluble collagen or insoluble collagen with an alkali or enzyme to obtain a spinning solution, which is then discharged into a coagulation bath through a spinning nozzle to form fibers.
- regenerated collagen fibers generally have higher water absorption than synthetic fibers because they are more hydrophilic, and their mechanical strength is extremely low when they contain a large amount of water. For this reason, during washing, the mechanical strength is significantly reduced due to the high water absorption rate, and the fibers break during subsequent drying, leading to a decline in their suitability as textile products such as headdresses.
- regenerated collagen fibers also have the problem of low heat resistance; for example, when heat-set using a hair iron, etc., if set at a high temperature similar to that of human hair, shrinkage and frizz will occur. This will spoil the appearance.
- plastic synthetic fibers retain their shape even after subsequent washing (they have thermal shape memory), but regenerated collagen fibers retain their shape when heat-set with an iron, etc. Because it is lost after a single wash (it does not have thermal shape memory), it is inferior to conventional plastic synthetic fibers in terms of the degree of freedom in shape setting.
- Patent Document 1 Japanese Patent Application Publication No. 2019-143281
- the present invention provides modified regenerated collagen fibers containing 1.0% by mass or more of the following component (A) as benzoic acid in the regenerated collagen fibers.
- component (A) Benzoic acid or its salts
- the present invention provides a method for treating regenerated collagen fibers, which includes the following step (i). Step (i) Step of immersing regenerated collagen fibers in a fiber treatment agent containing the following component (A) (A) Benzoic acid or its salt
- the present invention provides a method for producing modified regenerated collagen fibers, which includes a step of treating regenerated collagen fibers by the above-mentioned method for treating regenerated collagen fibers.
- the present invention provides a method for manufacturing a headdress product, which includes a step of treating regenerated collagen fibers by the above-described regenerated collagen fiber treatment method.
- the present invention provides a headdress product containing the above-mentioned modified regenerated collagen fiber as a constituent element.
- Patent Document 1 In the production of textile products, there are cases where fibers are strongly stretched, and the technique described in Patent Document 1 sometimes does not provide sufficient stretchability (tenacity) of the fibers after treatment. Therefore, in order to prevent breakage during elongation, there has been a demand for increasing the elasticity of the treated fibers. Furthermore, in the technique described in Patent Document 1, the fibers were sometimes colored.
- the present invention improves water resistance and heat resistance, which are problems in regenerated collagen fibers, provides thermal shape memory ability, has excellent elasticity (tenacity) and surface feel, and has no coloration.
- This invention relates to modified and regenerated collagen fibers.
- modified regenerated collagen fibers containing benzoic acid or its salt have a structure in which the carboxy groups of the benzoic acid or its salt are metals (mainly polyvalent metals) in the regenerated collagen fibers. It has been found that benzoic acid or its salts are strongly coordinated with the fibers, thereby making the interior of the fibers hydrophobic and preventing leakage of benzoic acid or its salts from the fibers. As a result, these modified regenerated collagen fibers not only have improved water resistance and heat resistance in both dry and wet conditions, and can be given shape by heat setting, but also surprisingly have elasticity (tenacity).
- the present invention was completed based on the discovery that the hair's hair quality was improved compared to before the treatment, reaching a level close to that of human hair, and that there was no coloration associated with the modification treatment.
- water resistance and heat resistance which are problems of regenerated collagen fibers, are improved, thermal shape memory ability is imparted, elasticity (tenacity) and surface feel are improved, and coloring is improved. No modification can provide regenerated collagen fibers.
- the fibers to be subjected to the fiber treatment of the present invention are fibers artificially manufactured using collagen-derived polymers or oligomers as raw materials, that is, regenerated collagen fibers using collagen as raw materials.
- Regenerated collagen fibers can be produced using known techniques, and the composition does not need to be 100% collagen, and may contain natural or synthetic polymers and additives for quality improvement. Furthermore, the regenerated collagen fibers may be post-processed. The preferred form of the regenerated collagen fibers is filaments. Filament is generally taken out from a bobbin wound or boxed state. Furthermore, the filaments that come out of the drying process can also be used directly in the process of producing regenerated collagen fibers.
- the bedding skin can be obtained, for example, from fresh bedding skin obtained by slaughtering a domestic animal such as a cow, or from salted rawhide. Most of these bedding skins are made up of insoluble collagen fibers, but they are usually used after removing the fleshy parts attached to them in a network and removing the salt used to prevent rot and deterioration.
- insoluble collagen fibers contain impurities such as lipids such as glycerides, phospholipids, and free fatty acids, glycoproteins, and proteins other than collagen such as albumin. These impurities greatly affect spinning stability, quality such as gloss and strength and elongation, and odor during fiberization. Therefore, for example, after soaking in lime to hydrolyze the fat content in insoluble collagen fibers and loosen the collagen fibers, conventional leather treatments such as acid/alkali treatment, enzyme treatment, and solvent treatment are applied to the leather. It is preferable to remove these impurities.
- the insoluble collagen that has been treated as described above is subjected to a solubilization treatment in order to cleave the crosslinked peptide portions.
- a solubilization treatment commonly employed known alkali solubilization methods, enzyme solubilization methods, etc. can be applied.
- the alkali solubilization method and the enzyme solubilization method may be used in combination.
- the alkali solubilization method it is preferable to neutralize with an acid such as hydrochloric acid.
- an improved method of the conventionally known alkali solubilization method the method described in Japanese Patent Publication No. 15033/1983 may be used.
- the enzyme solubilization method has the advantage of being able to obtain solubilized collagen with a uniform molecular weight, and is a method that can be suitably employed in the present invention.
- an enzyme solubilization method for example, methods described in Japanese Patent Publication No. 43-25829, Japanese Patent Publication No. 43-27513, etc. can be adopted.
- collagen that has been solubilized in this way is further subjected to operations such as pH adjustment, salting out, water washing, and solvent treatment, it is possible to obtain regenerated collagen fibers with excellent quality. It is preferable to perform these treatments.
- the obtained solubilized collagen is dissolved in an acid such as hydrochloric acid, acetic acid, or lactic acid, has a pH of 2 to 4.5, and has a collagen concentration of 1% by mass or more, preferably 2% by mass or more, or 15% by mass.
- the collagen aqueous solution is adjusted to preferably have a content of 10% by mass or less.
- the collagen aqueous solution may be defoamed under vacuum stirring or filtered to remove fine dust that is water-insoluble, if necessary.
- the collagen aqueous solution may contain stabilizers, if necessary, for the purpose of improving mechanical strength, improving water resistance and heat resistance, improving gloss, improving spinnability, preventing discoloration, preservatives, etc. , a water-soluble polymer compound, and other additives may be added in appropriate amounts.
- Regenerated collagen fibers are formed by discharging the collagen aqueous solution through, for example, a spinning nozzle or slit and immersing it in an inorganic salt aqueous solution.
- an inorganic salt aqueous solution for example, an aqueous solution of a water-soluble inorganic salt such as sodium sulfate, sodium chloride, ammonium sulfate, etc. is used.
- the concentration of these inorganic salts in the inorganic salt aqueous solution is adjusted to 10 to 40% by mass.
- the pH of the inorganic salt aqueous solution is preferably 2 or more, more preferably 4 or more, and preferably 13 or less, more preferably 12 or less.
- the inorganic salt aqueous solution is not particularly limited, but it is usually 35°C or lower because it does not cause denaturation of soluble collagen, does not reduce the strength of spun fibers, and facilitates the production of stable threads. This is desirable.
- the lower limit of the temperature of the inorganic salt aqueous solution is not particularly limited, but can be adjusted as appropriate depending on the solubility of the inorganic salt.
- the regenerated collagen fibers may be pretreated (crosslinked) by immersing them in an epoxy compound or a solution thereof.
- the amount of the epoxy compound is preferably 0.1 equivalent or more, more preferably 0.5 equivalent or more, and still more preferably 1 equivalent or more with respect to the amount of amino groups that can react with the epoxy compound in the regenerated collagen fibers measured by amino acid analysis method.
- the amount is preferably 500 equivalents or less, more preferably 100 equivalents or less, and even more preferably 50 equivalents or less.
- the amount of the epoxy compound is within the above range, it is possible to sufficiently impart an effect of insolubilizing the regenerated collagen fibers to water, and it is also preferable in terms of industrial handling and environmental aspects.
- Epoxy compounds are used as they are or dissolved in various solvents.
- solvents include water; alcohols such as methyl alcohol, ethyl alcohol, and isopropanol; ethers such as tetrahydrofuran and dioxane; halogenated organic solvents such as dichloromethane, chloroform, and carbon tetrachloride; dimethylformamide (DMF), and dimethyl sulfoxide.
- Examples include neutral organic solvents such as (DMSO). These solvents may be used alone or in combination of two or more.
- an aqueous solution of an inorganic salt such as sodium sulfate, sodium chloride, ammonium sulfate, etc. may be used as necessary.
- the concentration of the inorganic salt in the aqueous solution of the inorganic salt is adjusted to 10 to 40% by mass.
- the pH of the aqueous solution may be adjusted using, for example, metal salts such as sodium borate and sodium acetate, hydrochloric acid, boric acid, acetic acid, sodium hydroxide, and the like.
- the pH of the aqueous solution is preferably 6 or higher, more preferably 8 or higher, from the viewpoint of not slowing down the reaction between the epoxy group of the epoxy compound and the amino group of collagen and ensuring sufficient insolubilization in water.
- a buffer may be used if necessary.
- the temperature at which the regenerated collagen fibers are treated with the epoxy compound is preferably 50°C or lower, from the viewpoints that the regenerated collagen fibers do not denature, the strength of the obtained fibers does not decrease, and stable yarn production is facilitated. .
- the regenerated collagen fibers may then be washed with water, oiled, and dried. Washing with water can be carried out, for example, by washing with running water for 10 minutes to 4 hours.
- an oil agent used for oiling for example, an oil agent made of an emulsion such as an amino-modified silicone, an epoxy-modified silicone, a polyether-modified silicone, or a Pluronic type polyether antistatic agent can be used.
- the drying temperature is preferably 100°C or lower, more preferably 75°C or lower.
- the regenerated collagen fibers to be treated preferably contain a polyvalent metal, a salt thereof, or a complex thereof from the viewpoint of improving water resistance.
- polyvalent metals include calcium, magnesium, strontium, barium, zinc, chromium, aluminum, titanium, zirconium, tin, lead, antimony, iron, and copper, which improve water resistance, reduce coloration of fibers.
- aluminum, zirconium, and titanium are preferably used, and aluminum is more preferably used.
- the content of the polyvalent metal, its salt, or its complex in the regenerated collagen fibers is preferably 1.0% by mass or more, more preferably 2.0% by mass or more, still more preferably The content is 3.0% by mass or more, even more preferably 5.0% by mass or more, and from the viewpoint of improving the feel of the fiber surface, preferably 40% by mass or less, more preferably 30% by mass or less, even more preferably 20% by mass or less. , even more preferably 10% by mass or less. That is, from the above point of view, the content of the polyvalent metal, its salt, or its complex in the regenerated collagen fibers to be treated is preferably 1.0 to 40% by mass, more preferably 2.0 to 30% by mass, as the amount of metal element. , more preferably 3.0 to 20% by weight, even more preferably 5.0 to 10% by weight.
- the fiber processing method of the present invention includes the following step (i), which improves water resistance and heat resistance, which are problems of regenerated collagen fibers, imparts thermal shape memory ability, and provides elasticity. It is possible to produce modified regenerated collagen fibers that have improved properties (tenacity) and surface feel, and are free from coloration.
- step (i) Step of immersing regenerated collagen fibers in a fiber treatment agent containing the following component (A) (A) Benzoic acid or its salt
- the content of component (A) in the fiber treatment agent used in step (i) varies depending on the pH range of the fiber treatment agent, but is preferably in the range shown below.
- the modified regenerated collagen fibers after treatment will have high shape sustainability, water resistance, elasticity (toughness, i.e., high elongation at break when the fiber is pulled), and heat resistance.
- the content of component (A) in the fiber treatment agent, as benzoic acid is preferably 0.8% by mass or more, more preferably 3.0% by mass or more, still more preferably 5.0% by mass or more, and even more preferably is 10% by mass or more, even more preferably 15% by mass or more, even more preferably 20% by mass or more, and from the viewpoint of improving the feel of the fiber surface, preferably 90% by mass or less, more preferably 80% by mass.
- the content of component (A) in the fiber treatment agent is preferably 0.8 to 90% by mass, more preferably 3.0% as benzoic acid, from the above viewpoint. ⁇ 80% by weight, more preferably 5.0-70% by weight, even more preferably 10-50% by weight, even more preferably 15-40% by weight, even more preferably 20-35% by weight.
- the content of component (A) in the fiber treatment agent is preferably 0.8% by mass or more, more preferably 3.0% by mass or more, even more preferably 5.0% by mass or more, as benzoic acid. More preferably 10% by mass or more, even more preferably 15% by mass or more, even more preferably 20% by mass or more, even more preferably 25% by mass or more, even more preferably 26% by mass or more, even more preferably 28% by mass.
- % or more even more preferably 30% by mass or more, and from the viewpoint of improving the feel of the fiber surface, preferably 90% by mass or less, more preferably 80% by mass or less, still more preferably 70% by mass or less, and It is more preferably 50% by mass or less, even more preferably 45% by mass or less, even more preferably 40% by mass or less. That is, when the pH of the fiber treatment agent is 6.5 or more and 11.0 or less, the content of component (A) in the fiber treatment agent is preferably 0.8 to 90% by mass, more preferably 3.0% as benzoic acid, from the above viewpoint.
- the fiber treatment agent used in step (i) uses water as a medium.
- the content of water in the fiber treatment agent is preferably 10% by mass or more, more preferably 20% by mass or more, even more preferably 30% by mass or more, even more preferably 40% by mass or more, and preferably 95% by mass or more. % or less, more preferably 90% by mass or less, still more preferably 85% by mass or less. That is, the content of water in the fiber treatment agent is preferably 10 to 95% by mass, more preferably 20 to 90% by mass, even more preferably 30 to 85% by mass, and even more preferably 40 to 85% by mass. .
- the pH of the fiber treatment agent used in step (i) is preferably 2.0 or higher, more preferably 3.0 or higher, still more preferably 3.5 or higher, and even more preferably 4.0 from the viewpoint of suppressing damage to regenerated collagen fibers and improving durability. or more, and preferably 11.0 or less, more preferably 10.0 or less, and even more preferably 9.0 or less.
- the pH in the present invention is a value at 25°C. That is, from the viewpoint of suppressing damage to regenerated collagen fibers and improving durability, the pH of the fiber treatment agent is preferably 2.0 to 11.0, more preferably 3.0 to 10.0, still more preferably 3.5 to 9.0, and even more preferably 4.0 to 9.0. It is.
- the regenerated collagen fibers subjected to fiber treatment may be dry or wet.
- the treatment may be performed directly before drying during production of regenerated collagen fibers.
- the amount of fiber treatment agent in which the regenerated collagen fibers are immersed is a bath ratio (mass of fiber treatment agent/mass of regenerated collagen fibers) to the mass of the regenerated collagen fibers, preferably 2.0 or more, more preferably 3.0 or more, and even more preferably It is 5.0 or more, even more preferably 10 or more, even more preferably 20 or more, and preferably 500 or less, more preferably 250 or less, and still more preferably 100 or less. That is, the bath ratio is preferably 2.0 to 500, more preferably 3.0 to 250, even more preferably 5.0 to 100, even more preferably 10 to 100, and even more preferably 20 to 100.
- the regenerated collagen fibers may be fixed in advance with a curler or the like, and then subjected to the fiber treatment of the present invention under heating. By doing so, it is possible to simultaneously impart a desired shape to the regenerated collagen fibers in addition to thermal shape memory ability and high durability.
- the immersion of the regenerated collagen fibers in the fiber treatment agent in step (i) is preferably performed under heating, and this heating is performed by heating the fiber treatment agent.
- this heating may be performed by immersing the regenerated collagen fibers in a heated fiber treatment agent, or may be performed by immersing the regenerated collagen fibers in a low-temperature fiber treatment agent and then heating.
- the temperature of the fiber treatment agent is preferably 20°C or higher, more preferably 20°C or higher, in order to obtain the effects of the present invention by increasing the interaction between component (A) and fiber constituent molecules in the regenerated collagen fibers, such as protein molecules.
- the temperature is 35°C or higher, more preferably 45°C or higher, and preferably lower than 100°C, more preferably 80°C or lower, even more preferably 70°C or lower, in order to prevent the regenerated collagen fibers from being denatured and deteriorated by heat. , more preferably 60°C or lower.
- the immersion time in step (i) is appropriately adjusted depending on the heating temperature, but for example, from the viewpoint of exerting the effect of improving elasticity on regenerated collagen fibers, it is preferably 15 minutes or more, more preferably 30 minutes or more, and even more preferably
- the duration is 1 hour or more, and in order to suppress damage to regenerated collagen fibers, the duration is preferably 48 hours or less, more preferably 24 hours or less, and even more preferably 12 hours or less.
- step (i) is performed in an environment where evaporation of water is suppressed.
- a specific method for suppressing water evaporation includes a method of covering the container of the fiber treatment agent in which the regenerated collagen fibers are immersed with a film-like substance, cap, lid, etc. made of a material that does not permeate water vapor.
- the regenerated collagen fibers may or may not be rinsed, but rinsing is preferred from the viewpoint of preventing deterioration in the feel of the regenerated collagen fiber surface due to excess component (A).
- step (i) component (A) penetrates into the regenerated collagen fibers and strongly coordinates with metals, such as polyvalent metals, within the fibers, thereby producing various effects. That is, by the regenerated collagen fiber processing method including step (i), it is possible to produce modified regenerated collagen fibers containing the component (A) within the fibers, and the obtained modified regenerated collagen fibers can be heat-set.
- the regenerated collagen fibers can be given a shape, have excellent water resistance, heat resistance, and tensile modulus, and have highly improved elasticity (tenacity) of the regenerated collagen fibers.
- Modified regenerated collagen fiber The modified regenerated collagen fibers of the present invention obtained by the above method will be explained below.
- component (A) Benzoic acid or its salt
- the modified regenerated collagen fiber of the present invention contains component (A) benzoic acid or a salt thereof.
- component (A) is a salt include alkali metal salts such as sodium salts and potassium salts.
- the content of component (A) in the modified regenerated collagen fibers of the present invention is 1.0% by mass or more as benzoic acid from the viewpoint of having higher shape sustainability, water resistance, and heat resistance, and Preferably 5.0% by mass or more, more preferably 10% by mass or more, still more preferably 12% by mass or more, even more preferably 15% by mass or more, and from the viewpoint of improving the feel of the fiber surface, preferably 50% by mass. % or less, more preferably 40% by mass or less, still more preferably 30% by mass or less.
- the content of component (A) in the modified regenerated collagen fibers of the present invention is preferably 1.0 to 50% by mass, more preferably 5.0 to 40% by mass, and still more preferably 10% by mass as benzoic acid. ⁇ 40% by weight, even more preferably 12-40% by weight, even more preferably 15-30% by weight.
- the modified regenerated collagen fiber of the present invention preferably further contains (B) a polyvalent metal, a salt thereof, or a complex thereof from the viewpoint of improving water resistance.
- polyvalent metals include calcium, magnesium, strontium, barium, zinc, chromium, aluminum, titanium, zirconium, tin, lead, antimony, iron, and copper, which improve water resistance, reduce coloration of fibers.
- aluminum, zirconium, and titanium are preferably used, and aluminum is more preferably used. Any of these can be used alone or in combination of two or more.
- the content of component (B) in the modified regenerated collagen fibers of the present invention is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and still more preferably 1.0% by mass. % by mass or more, even more preferably 2.0% by mass or more, even more preferably 5.0% by mass or more, and from the viewpoint of improving the feel of the fiber surface, preferably 40% by mass or less, more preferably 30% by mass or less, It is more preferably 20% by mass or less, even more preferably 10% by mass or less, even more preferably 7.0% by mass or less.
- the content of component (B) in the modified regenerated collagen fibers of the present invention is preferably 0.1 to 40% by mass, more preferably 0.5 to 30% by mass, even more preferably 1.0 to 20% by weight, even more preferably 2.0 to 10% by weight, even more preferably 5.0 to 7.0% by weight.
- the content of component (A) as benzoic acid (component (A) benzoic acid
- the mass ratio (component (A) benzoic acid amount )/(component (B) metal element amount ) is preferably 0.025 or more, from the viewpoint of having higher shape sustainability, water resistance, and heat resistance. More preferably 0.2 or more, still more preferably 0.5 or more, even more preferably 1.0 or more, even more preferably 2.0 or more, even more preferably 2.5 or more, and from the viewpoint of having high durability and the fiber surface.
- the mass ratio (component (A) amount of benzoic acid )/(component (B) amount of metal element ) in the modified regenerated collagen fibers of the present invention is preferably 0.025 to 100, more preferably 0.2. -50, more preferably 0.5-20, even more preferably 1.0-10, even more preferably 2.0-8, even more preferably 2.5-6, even more preferably 2.5-4.
- the modified regenerated collagen fibers of the present invention can be given a shape by heat setting, have excellent water resistance, heat resistance, and tensile modulus, and are fibers with highly improved elasticity (tenacity) of the regenerated collagen fibers. be. Therefore, the modified regenerated collagen fibers of the present invention can be suitably used as fibers for headdress products, and various headdress products can be manufactured using the fibers.
- suitable headdress products in the present invention include, for example, hair wigs, wigs, weaving, hair extensions, braided hair, hair accessories, doll hair, and the like.
- the modified regenerated collagen fibers of the present invention may be used alone as a headdress product, or may be mixed with other fibers to make a headdress product.
- Other fibers are not particularly limited as long as they can be used for headdress products.
- Other fibers include, for example, polyester fibers, human hair, animal hair, polyvinyl chloride fibers, modacrylic fibers, polyamide fibers, polyolefin fibers, etc. From the viewpoint of excellent retention, polyester fibers are preferred, and flame-retardant polyester fibers are more preferred.
- the flame-retardant polyester fiber is not particularly limited, but from the viewpoint of flame retardancy, the flame-retardant polyester fiber is one or more polyester resins selected from the group consisting of polyalkylene terephthalate and copolyester mainly composed of polyalkylene terephthalate. It is preferable that the brominated epoxy flame retardant is contained in an amount of 5 to 40 parts by mass.
- containing mainly means containing 50 mol% or more
- copolyester mainly containing polyalkylene terephthalate means copolymer containing polyalkylene terephthalate at 50 mol% or more. Refers to polyester.
- the "copolyester mainly composed of polyalkylene terephthalate” contains polyalkylene terephthalate in an amount of 60 mol% or more, more preferably 70 mol% or more, still more preferably 80 mol% or more.
- the flame-retardant polyester fiber further contains 0 to 5 parts by mass of an antimony compound based on 100 parts by mass of the polyester resin. Including an antimony compound improves the flame retardancy of the polyester fiber.
- the content of component (A) as benzoic acid is preferably 5.0% by mass or more, more preferably 10% by mass or more, still more preferably 12% by mass or more, even more preferably 15% by mass or more, and preferably is 50% by mass or less, more preferably 40% by mass or less, even more preferably 30% by mass or less, the modified regenerated collagen fiber according to ⁇ 1>.
- the modified regenerated collagen fiber according to ⁇ 1> or ⁇ 2> further contains the following component (B).
- B Polyvalent metal, its salt or its complex
- Component (B) is preferably one or more polyvalent metals selected from calcium, magnesium, strontium, barium, zinc, chromium, aluminum, titanium, zirconium, tin, lead, antimony, iron and copper, or a salt thereof or a salt thereof.
- the modified regenerated collagen according to ⁇ 3> which is a complex, more preferably one or more polyvalent metals selected from aluminum, zirconium, and titanium, or a salt thereof, or a complex thereof, and even more preferably aluminum, a salt thereof, or a complex thereof. fiber.
- the content of component (B) is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, still more preferably 1.0% by mass or more, even more preferably 2.0% by mass or more, and even more preferably 5.0% by mass or more, and preferably 40% by mass or less, more preferably 30% by mass or less, even more preferably 20% by mass or less, even more preferably 10% by mass or less, even more preferably 7.0% by mass or less.
- the mass ratio of the content of component (A) as benzoic acid to the content of component (B) as a metal element (component (A) benzoic acid amount )/(component (B) metal element amount ) is preferably 0.025 or more, more preferably 0.2 or more, still more preferably 0.5 or more, even more preferably 1.0 or more, even more preferably 2.0 or more, even more preferably 2.5 or more, and preferably 100 or less, more preferably 50 or less , more preferably 20 or less, even more preferably 10 or less, even more preferably 8 or less, even more preferably 6 or less, even more preferably 4 or less, according to any one of ⁇ 1> to ⁇ 5>.
- Modified regenerated collagen fibers as described.
- a regenerated collagen fiber processing method comprising the following step (i). Step (i) Step of immersing regenerated collagen fibers in a fiber treatment agent containing the following component (A) (A) Benzoic acid or its salt
- a solubilized collagen aqueous solution obtained by solubilizing insoluble collagen fibers made from livestock animal bedding is discharged through a spinning nozzle or slit, and the regenerated collagen is immersed in an inorganic salt aqueous solution.
- the regenerated collagen fiber processing method according to ⁇ 7> which includes a fiber manufacturing step.
- the regenerated collagen fiber processing method according to ⁇ 8> which includes a crosslinking treatment step of immersing the regenerated collagen fibers in an epoxy compound or a solution thereof after the regenerated collagen fiber manufacturing step.
- regenerated collagen fiber processing method according to any one of ⁇ 7> to ⁇ 9>, wherein the regenerated collagen fiber contains the following component (B).
- B Polyvalent metal, its salt or its complex
- Component (B) is preferably one or more polyvalent metals selected from calcium, magnesium, strontium, barium, zinc, chromium, aluminum, titanium, zirconium, tin, lead, antimony, iron and copper, or a salt thereof or a salt thereof.
- the regenerated collagen fiber treatment according to ⁇ 10> which is a complex, more preferably one or more polyvalent metals selected from aluminum, zirconium, and titanium, or a salt thereof, or a complex thereof, and even more preferably aluminum, a salt thereof, or a complex thereof.
- the pH at 25°C of the fiber treatment agent used in step (i) is preferably 2.0 or higher, more preferably 3.0 or higher, even more preferably 3.5 or higher, even more preferably 4.0 or higher, and preferably 11.0 or lower,
- the pH of the fiber treatment agent used in step (i) is 2.0 or more and less than 6.5, and the content of component (A) in the fiber treatment agent is preferably 0.8% by mass or more, more preferably 0.8% by mass or more as benzoic acid.
- the pH of the fiber treatment agent used in step (i) is 6.5 or more and 11.0 or less, and the content of component (A) in the fiber treatment agent is preferably 0.8% by mass or more, more preferably 3.0% as benzoic acid. mass% or more, more preferably 5.0 mass% or more, even more preferably 10 mass% or more, even more preferably 15 mass% or more, even more preferably 20 mass% or more, even more preferably 25 mass% or more, and even more Preferably 26% by mass or more, even more preferably 28% by mass or more, even more preferably 30% by mass or more, and preferably 90% by mass or less, more preferably 80% by mass or less, even more preferably 70% by mass.
- the fiber treatment agent used in step (i) uses water as a medium, and the content of water in the fiber treatment agent is preferably 10% by mass or more, more preferably 20% by mass or more, even more preferably 30% by mass or more, Still more preferably 40% by mass or more, and preferably 95% by mass or less, more preferably 90% by mass or less, even more preferably 85% by mass or less, in any one of ⁇ 7> to ⁇ 14>.
- the amount of the fiber treatment agent in which the regenerated collagen fibers are immersed in step (i) is a bath ratio (mass of the fiber treatment agent/mass of the regenerated collagen fiber) to the mass of the regenerated collagen fibers, preferably 2 or more, more preferably 3.
- ⁇ 7> to ⁇ 15 The method for treating regenerated collagen fibers according to any one of >.
- the temperature of the fiber treatment agent in which the regenerated collagen fibers are immersed in step (i) is preferably 20°C or higher, more preferably 35°C or higher, even more preferably 45°C or higher, and preferably lower than 100°C, more preferably The method for treating regenerated collagen fibers according to any one of ⁇ 7> to ⁇ 16>, wherein the temperature is 80°C or lower, more preferably 70°C or lower, even more preferably 60°C or lower.
- the immersion time in step (i) is preferably 15 minutes or more, more preferably 30 minutes or more, even more preferably 1 hour or more, and preferably 48 hours or less, more preferably 24 hours or less, even more preferably 12
- the regenerated collagen fiber processing method according to any one of ⁇ 7> to ⁇ 17>, wherein the regenerated collagen fiber processing time is 1 hour or less.
- step (i) is performed in an environment where evaporation of water is suppressed.
- a method for producing modified regenerated collagen fibers comprising a step of treating regenerated collagen fibers by the regenerated collagen fiber treatment method according to any one of ⁇ 7> to ⁇ 19>.
- a method for producing a headdress product comprising a step of treating regenerated collagen fibers by the regenerated collagen fiber treatment method according to any one of ⁇ 7> to ⁇ 19>.
- a headdress product comprising the modified regenerated collagen fiber according to any one of ⁇ 1> to ⁇ 6> as a constituent element.
- the headdress product described in ⁇ 22> selected from hair wigs, wigs, weaving, hair extensions, braided hair, hair accessories, and doll hair.
- Regenerated collagen fibers (*) 0.50g of hair strands with a length of 22cm are soaked in a container containing a fiber treatment agent in an amount that corresponds to the bath ratio shown in the table. It was immersed in a water bath (manufacturer: Toyo Seisakusho Co., Ltd./model number: TBS221FA) at the temperature shown and heated for the time shown in the table.
- * Regenerated collagen fibers manufactured by Kaneka were purchased in the form of commercially available extension products, and the fibers were cut and divided into hair bundles for evaluation. For this evaluation, we used extension products that are labeled as using 100% Ultima as the fiber type, are white with a color count of 30, and are straight in shape. 2.
- the container containing the hair tresses was removed from the water bath and allowed to come to room temperature. 3. Remove the hair strands from the container, rinse with running tap water at 30°C for 30 seconds, lather with evaluation shampoo for 60 seconds, rinse with running tap water at 30°C for 30 seconds, lightly dry with a towel, and remove the hair strands. was dried while combing with a hot air dryer (Tescom, Nobby White NB3000).
- the average elongation at break As an indicator of water resistance and elasticity (tenacity) when fibers are stretched, the average elongation at break, that is, the percentage of the original fiber length at which the fiber will break when it is stretched by tension, is The average value of multiple fibers (10 fibers) was used to determine whether or not this occurred.
- the evaluation was performed using the hair bundles immediately after being treated in the above ⁇ Treatment Method> according to the following procedure. 1. Ten fibers were cut from the root of the hair bundle. A 3 cm piece of fiber was collected from around the middle between the root and tip of each fiber, yielding a total of 10 pieces of 3 cm hair. 2.
- the fiber piece was set in "MTT690 Automatic Fiber Tensile Testing Machine" manufactured by DIA-STRON limited. Automatic measurement was started after the fibers were left immersed in water for 30 minutes, and the average elongation at break was determined while the fibers were immersed in water. The higher the numerical value, the higher the elasticity, the higher the tenacity, and the higher the durability.
- the average breaking elongation (A%) of the hair bundle after the treatment is based on the average breaking elongation (A%) when the fiber is pulled as it is (untreated; Comparative Example 1) cut from a commercially available product (untreated; Comparative Example 1), and the average breaking elongation (B %) increased from the untreated state (C%) is described in the table as "increase rate [%] of average elongation at break during fiber tension.”
- C (%) B (%) - A (%)
- the average breaking load during fiber tension was used as an index of water resistance during fiber tension.
- the evaluation was performed using hair bundles immediately after being treated by the above ⁇ treatment method>. Further, as the numerical value, the average value when evaluating multiple fibers (10 fibers) was used. The evaluation was performed according to the following procedure. 1. Ten fibers were cut from the root of the hair bundle. A 3 cm piece of fiber was collected from around the middle between the root and tip of each fiber, yielding a total of 10 pieces of 3 cm hair. 2. The fiber piece was set in "MTT690 Automatic Fiber Tensile Testing Machine" manufactured by DIA-STRON limited.
- the average breaking load (W 0 (gf)) of the hair bundle after the treatment is based on the average breaking load (W 0 (gf)) when the fiber is pulled in the as-is condition (untreated; Comparative Example 1) cut from the commercially available product (untreated; Comparative Example 1).
- the extent to which W 1 (gf)) increased from the untreated state (Y (gf)) is shown in the table as "increase in average breaking load during fiber tension [gf]".
- Y (gf) W 1 (gf) - W 0 (gf)
- ⁇ Shrinkage rate when setting with high temperature iron> The shrinkage rate when set with a high temperature iron was used as an index of heat resistance.
- the evaluation was performed using hair bundles immediately after being treated by the above ⁇ treatment method>. Further, as the numerical value, the average value when evaluating a plurality of fibers (5 fibers) was used. The evaluation was performed according to the following procedure. 1. ⁇ Treatment method> Five fibers were cut from the root of the hair bundle immediately after treatment and marked. After these treatments, the lengths of the five fibers were measured, and the average value was recorded (defining the length L1 ).
- the five treated fibers with these markings are bundled together between two separately prepared untreated regenerated collagen fiber bundles of 0.5 g (1 g in total) to form a new hair bundle (hereinafter referred to as a large hair bundle).
- a flat iron manufactured by Miki Electric Industrial Co., Ltd./model number: AHI-938, set at 180°C was applied three times at a speed of 5 cm/sec to the entire large hair bundle. 2. After the ironing operation, take out the 5 marked treated fibers from the large hair bundle, measure the length of each of the 5 marked treated fibers, and record the average value (take the length L 2 ). did. 3.
- the shrinkage rate when heated with hot water was used as an index of water resistance and heat resistance.
- the evaluation was performed using hair bundles immediately after being treated by the above ⁇ treatment method>. Further, as the numerical value, the average value when evaluating a plurality of fibers (5 fibers) was used. The evaluation was performed according to the following procedure. 1. Cut 5 fibers from the root of the hair bundle, record the average length of each fiber (length L 1 ), and then soak in a 90°C water bath (manufacturer: Toyo Seisakusho Co., Ltd. / model number: TBS221FA) ) and heated for 1 minute. 2.
- Thermal shape memory ability was evaluated using hair bundles immediately after being treated by the above ⁇ treatment method>.
- Value of the result of "I: Shape imparting (curl)" was 5% or less, it was considered that there was no effect, and subsequent processing and evaluation were not performed.
- a 22 cm long hair bundle containing 0.5 g of regenerated collagen fibers was wetted with tap water at 30°C for 30 seconds, and then the wet hair bundle was wrapped around a plastic rod with a diameter of 14 mm and fixed with a clip. 2.
- the hair bundle wrapped around the rod was immersed in a 60°C water bath (manufacturer: Toyo Seisakusho Co., Ltd./model number: TBS221FA) and heated for 1 minute. 3.
- the hair tresses were taken out of the water bath, immersed in water at 25°C for 1 minute, taken out of the water, and allowed to return to room temperature. 4.
- the hair bundle was removed from the rod, passed through the comb three times, and 3 minutes after being removed from the water, a photo was taken from the side while it was hanging.
- ⁇ II Reshaping (straight) 1.
- the hair bundle evaluated in I was passed through a comb to remove tangles, and then slid 6 times at a speed of 5 cm/sec with a flat iron (manufactured by Miki Electric Industrial Co., Ltd./model number: AHI-938) set at 180°C. 2.
- a flat iron manufactured by Miki Electric Industrial Co., Ltd./model number: AHI-938
- ⁇ III Reshaping (curl) 1.
- the hair bundle evaluated in II was wetted with tap water at 30°C for 30 seconds, and then the wet hair bundle was wrapped around a plastic rod with a diameter of 14 mm and fixed with a clip.
- the hair bundle wrapped around the rod was immersed in a 60°C water bath (manufacturer: Toyo Seisakusho Co., Ltd./model number: TBS221FA) and heated for 1 minute.
- the hair tresses were taken out of the water bath, immersed in water at 25°C for 1 minute, taken out of the water, and allowed to return to room temperature. 4.
- the hair bundle was removed from the rod, passed through the comb three times, and 3 minutes after being removed from the water, a photo was taken from the side while it was hanging.
- the color was measured near the root, near the middle, and near the tip using a colorimeter (Konica Minolta Colorimeter CR-400), and the average value of a total of 6 points was taken as the colorimetric value ( L, a, b). 2.
- the degree of coloring was evaluated by ⁇ E*ab using an untreated hair bundle of color count 30 white (*) (Comparative Example 1) as a standard.
- the color was measured on the same day that the treatment was performed.
- ⁇ E*ab is when the measured values of the untreated hair bundle with color count 30 white are (L 0 , a 0 , b 0 ) and the measured values of the treated hair bundle are (L 1 , a 1 , b 1 ) , [(L 1 -L 0 ) 2 + (a 1 -a 0 ) 2 +(b 1 -b 0 ) 2 ] 1/2 , and the coloring suppression effect was judged according to the following criteria. 5: ⁇ E*ab ⁇ 5.0 4:5.0 ⁇ ⁇ E*ab ⁇ 10.0 3: 10.0 ⁇ ⁇ E*ab ⁇ 15.0 2: 15.0 ⁇ ⁇ E*ab ⁇ 20.0 1:20.0 ⁇ E*ab
- Ultrapure water Ultrapure water production equipment Milli-Q manufactured water, manufactured by Millipore, quantitative method Cut the sample into small pieces, accurately weigh approximately 10mg, and add 3mL of 6N hydrochloric acid. The mixture was heated and dissolved at 50°C for 15 hours. After cooling, the solution was filtered and used as a sample solution. Separately, sodium benzoate was dissolved in a mobile phase and prepared to have a concentration of 0.1 to 100 ⁇ g/mL as benzoic acid, which was used as a standard solution for drawing a calibration curve. The sample solution and standard solution were tested by liquid chromatography, and the peak area of the sample solution and the peak area of the standard solution were measured.
- Detector UV-visible spectrophotometer Measurement wavelength: 230nm
- Column A stainless steel tube with an inner diameter of 21 mm and a length of 150 mm was filled with 5 ⁇ m octadecylsilylated silica gel for liquid chromatography.
- Column temperature Constant temperature around 40°C
- Mobile phase About 0.68 g of sodium acetate and 0.91 g of acetic acid were dissolved by adding 750 mL of ultrapure water, and then 250 mL of acetonitrile was added and mixed.
- Component (B) Al amount in the table (not measured for Comparative Examples 2 and 3).
- Ultrapure water Ultrapure water production equipment Milli-Q manufactured water, manufactured by Millipore, Inc.
- the hair bundles treated in the above examples can be used as extensions as they are by fixing them to the hair with pins or the like, and can exhibit sufficient performance even on a human head.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Artificial Filaments (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Abstract
The present invention relates to modified regenerated collagen fibers: in which water resistance and heat resistance, which are problems in regenerated collagen fibers, are improved; to which thermal shape memory is imparted; that are also superior in terms of the elasticity (tenacity) and the surface feel; and that are, moreover, not colored. Modified regenerated collagen fibers according to the present invention are formed by containing 1.0 mass% or more of a component (A), indicated below, in the form of benzoic acid in regenerated collagen fibers. (A) Benzoic acid or a salt thereof
Description
本発明は、耐水性、耐熱性及び熱形状記憶能を付与された再生コラーゲン繊維に関し、好適にはかつら、エクステンション等の頭飾製品等繊維製品に用いられる再生コラーゲン繊維に関する。
The present invention relates to regenerated collagen fibers imparted with water resistance, heat resistance, and thermal shape memory ability, and preferably relates to regenerated collagen fibers used in textile products such as headdress products such as wigs and extensions.
再生コラーゲン繊維は、一般に、合成繊維とは異なって、天然素材から来る自然な風合いや外観を有する。本再生コラーゲン繊維は、酸可溶性コラーゲンあるいは不溶性コラーゲンをアルカリや酵素で可溶化して紡糸原液とし、紡糸ノズルを通して凝固浴に吐出して繊維化することで得られる。
Regenerated collagen fibers generally have a natural texture and appearance that come from natural materials, unlike synthetic fibers. The regenerated collagen fibers are obtained by solubilizing acid-soluble collagen or insoluble collagen with an alkali or enzyme to obtain a spinning solution, which is then discharged into a coagulation bath through a spinning nozzle to form fibers.
しかし、再生コラーゲン繊維は、一般的に、合成繊維に比べて親水性が高いため吸水率が高く、多くの水を含んだ状態においては機械的強度が極めて低い。このため、洗浄時には高い吸水率のために機械強度が著しく低下し、その後の乾燥時に破断するなど、頭飾製品等繊維製品としての適性低下につながっている。
However, regenerated collagen fibers generally have higher water absorption than synthetic fibers because they are more hydrophilic, and their mechanical strength is extremely low when they contain a large amount of water. For this reason, during washing, the mechanical strength is significantly reduced due to the high water absorption rate, and the fibers break during subsequent drying, leading to a decline in their suitability as textile products such as headdresses.
また、再生コラーゲン繊維には、耐熱性の低さという問題もあり、例えば、ヘアアイロン等を使用した熱セットにおいては、人毛と同じような高い温度でセットした場合には収縮や縮れを発生し見栄えを損なってしまう。
In addition, regenerated collagen fibers also have the problem of low heat resistance; for example, when heat-set using a hair iron, etc., if set at a high temperature similar to that of human hair, shrinkage and frizz will occur. This will spoil the appearance.
さらに、プラスチック製の合成繊維ではアイロン等による熱セット時における形状がその後の洗浄を経ても記憶され続ける(熱形状記憶能がある)が、再生コラーゲン繊維は、アイロン等による熱セット時における形状がその後の一度の洗浄で失われてしまう(熱形状記憶能がない)ため、従来のプラスチック製の合成繊維に比べて形状セットの自由度の観点で劣る部分があった。
Furthermore, plastic synthetic fibers retain their shape even after subsequent washing (they have thermal shape memory), but regenerated collagen fibers retain their shape when heat-set with an iron, etc. Because it is lost after a single wash (it does not have thermal shape memory), it is inferior to conventional plastic synthetic fibers in terms of the degree of freedom in shape setting.
上記の点が、繊維製品への再生コラーゲン繊維の普及を妨げる要因となっていた。特に耐水性、すなわち濡れ時の機械強度の低下が与える影響が顕著であった。
一方、人毛繊維の分野において、本来熱形状記憶能を有しない人毛繊維に対し、新たに熱形状記憶能を付与するために特定のアルデヒド誘導体とフェノール化合物を作用させる方法が知られている(特許文献1)。 The above points have been factors that have hindered the spread of regenerated collagen fibers in textile products. In particular, the influence of water resistance, that is, a decrease in mechanical strength when wet, was significant.
On the other hand, in the field of human hair fibers, a method is known in which specific aldehyde derivatives and phenolic compounds are applied to human hair fibers, which do not originally have thermal shape memory ability, in order to impart new thermal shape memory ability. (Patent Document 1).
一方、人毛繊維の分野において、本来熱形状記憶能を有しない人毛繊維に対し、新たに熱形状記憶能を付与するために特定のアルデヒド誘導体とフェノール化合物を作用させる方法が知られている(特許文献1)。 The above points have been factors that have hindered the spread of regenerated collagen fibers in textile products. In particular, the influence of water resistance, that is, a decrease in mechanical strength when wet, was significant.
On the other hand, in the field of human hair fibers, a method is known in which specific aldehyde derivatives and phenolic compounds are applied to human hair fibers, which do not originally have thermal shape memory ability, in order to impart new thermal shape memory ability. (Patent Document 1).
(特許文献1)特開2019-143281号公報
(Patent Document 1) Japanese Patent Application Publication No. 2019-143281
本発明は、再生コラーゲン繊維中に以下の成分(A)を安息香酸として1.0質量%以上含有してなる改質再生コラーゲン繊維を提供するものである。
(A) 安息香酸又はその塩 The present invention provides modified regenerated collagen fibers containing 1.0% by mass or more of the following component (A) as benzoic acid in the regenerated collagen fibers.
(A) Benzoic acid or its salts
(A) 安息香酸又はその塩 The present invention provides modified regenerated collagen fibers containing 1.0% by mass or more of the following component (A) as benzoic acid in the regenerated collagen fibers.
(A) Benzoic acid or its salts
更に本発明は、下記工程(i)を含む再生コラーゲン繊維処理方法を提供するものである。
工程(i) 以下の成分(A)を含有する繊維処理剤に再生コラーゲン繊維を浸漬する工程
(A)安息香酸又はその塩 Furthermore, the present invention provides a method for treating regenerated collagen fibers, which includes the following step (i).
Step (i) Step of immersing regenerated collagen fibers in a fiber treatment agent containing the following component (A) (A) Benzoic acid or its salt
工程(i) 以下の成分(A)を含有する繊維処理剤に再生コラーゲン繊維を浸漬する工程
(A)安息香酸又はその塩 Furthermore, the present invention provides a method for treating regenerated collagen fibers, which includes the following step (i).
Step (i) Step of immersing regenerated collagen fibers in a fiber treatment agent containing the following component (A) (A) Benzoic acid or its salt
更に本発明は、上記の再生コラーゲン繊維処理方法によって、再生コラーゲン繊維を処理する工程を含む、改質再生コラーゲン繊維の製造方法を提供するものである。
Furthermore, the present invention provides a method for producing modified regenerated collagen fibers, which includes a step of treating regenerated collagen fibers by the above-mentioned method for treating regenerated collagen fibers.
更に本発明は、上記の再生コラーゲン繊維処理方法によって、再生コラーゲン繊維を処理する工程を含む、頭飾製品の製造方法を提供するものである。
Furthermore, the present invention provides a method for manufacturing a headdress product, which includes a step of treating regenerated collagen fibers by the above-described regenerated collagen fiber treatment method.
更に本発明は、上記の改質再生コラーゲン繊維を構成要素として含む頭飾製品を提供するものである。
Furthermore, the present invention provides a headdress product containing the above-mentioned modified regenerated collagen fiber as a constituent element.
繊維製品の製造場面においては繊維を強く伸長する場合もあり、特許文献1に記載の技術では処理後の繊維の伸縮性(粘り強さ)が十分とはならないこともあった。このため、伸長時の破断を防ぐため、処理後の繊維の伸縮性を高める要求があった。
また、特許文献1に記載の技術では、繊維が着色する場合もあった。 In the production of textile products, there are cases where fibers are strongly stretched, and the technique described in Patent Document 1 sometimes does not provide sufficient stretchability (tenacity) of the fibers after treatment. Therefore, in order to prevent breakage during elongation, there has been a demand for increasing the elasticity of the treated fibers.
Furthermore, in the technique described in Patent Document 1, the fibers were sometimes colored.
また、特許文献1に記載の技術では、繊維が着色する場合もあった。 In the production of textile products, there are cases where fibers are strongly stretched, and the technique described in Patent Document 1 sometimes does not provide sufficient stretchability (tenacity) of the fibers after treatment. Therefore, in order to prevent breakage during elongation, there has been a demand for increasing the elasticity of the treated fibers.
Furthermore, in the technique described in Patent Document 1, the fibers were sometimes colored.
したがって本発明は、再生コラーゲン繊維における問題点である耐水性、耐熱性が改善され、熱形状記憶能が付与されると共に、伸縮性(粘り強さ)、表面の感触にも優れ、しかも着色のない改質再生コラーゲン繊維に関する。
Therefore, the present invention improves water resistance and heat resistance, which are problems in regenerated collagen fibers, provides thermal shape memory ability, has excellent elasticity (tenacity) and surface feel, and has no coloration. This invention relates to modified and regenerated collagen fibers.
本発明者らは、鋭意研究を進めた結果、安息香酸又はその塩を含有する改質再生コラーゲン繊維は、前記安息香酸又はその塩のカルボキシ基が再生コラーゲン繊維中の金属(主として多価金属)に強く配位しているため、繊維内部が疎水化されつつ繊維からの安息香酸又はその塩の漏出も防止されることを見出した。そしてその結果、この改質再生コラーゲン繊維は、耐水性と乾燥時・湿潤時の両場面での耐熱性が向上し、熱セットにより形状を付与できるのみならず、意外にも、伸縮性(粘り強さ)が処理前より向上し、人毛に近い水準まで高まること、更には改質処理に伴う着色もないことを見出し、本発明を完成した。
As a result of intensive research, the present inventors have found that modified regenerated collagen fibers containing benzoic acid or its salt have a structure in which the carboxy groups of the benzoic acid or its salt are metals (mainly polyvalent metals) in the regenerated collagen fibers. It has been found that benzoic acid or its salts are strongly coordinated with the fibers, thereby making the interior of the fibers hydrophobic and preventing leakage of benzoic acid or its salts from the fibers. As a result, these modified regenerated collagen fibers not only have improved water resistance and heat resistance in both dry and wet conditions, and can be given shape by heat setting, but also surprisingly have elasticity (tenacity). The present invention was completed based on the discovery that the hair's hair quality was improved compared to before the treatment, reaching a level close to that of human hair, and that there was no coloration associated with the modification treatment.
本発明によれば、再生コラーゲン繊維の問題点である耐水性、耐熱性が向上し、熱形状記憶能が付与されると共に、伸縮性(粘り強さ)、表面の感触が向上し、しかも着色のない改質再生コラーゲン繊維を提供することができる。
According to the present invention, water resistance and heat resistance, which are problems of regenerated collagen fibers, are improved, thermal shape memory ability is imparted, elasticity (tenacity) and surface feel are improved, and coloring is improved. No modification can provide regenerated collagen fibers.
〔本発明において処理対象となる繊維〕
本発明の繊維処理の対象となる繊維は、コラーゲン由来のポリマーやオリゴマーを原料として人工的に製造された繊維、すなわちコラーゲンを原料とする再生コラーゲン繊維である。 [Fibers to be treated in the present invention]
The fibers to be subjected to the fiber treatment of the present invention are fibers artificially manufactured using collagen-derived polymers or oligomers as raw materials, that is, regenerated collagen fibers using collagen as raw materials.
本発明の繊維処理の対象となる繊維は、コラーゲン由来のポリマーやオリゴマーを原料として人工的に製造された繊維、すなわちコラーゲンを原料とする再生コラーゲン繊維である。 [Fibers to be treated in the present invention]
The fibers to be subjected to the fiber treatment of the present invention are fibers artificially manufactured using collagen-derived polymers or oligomers as raw materials, that is, regenerated collagen fibers using collagen as raw materials.
再生コラーゲン繊維は、公知の技術で製造することができ、また、組成もコラーゲン100%である必要はなく、品質改良のための天然あるいは合成ポリマーや添加剤が含まれていてもよい。更には、再生コラーゲン繊維を後加工したものであってもよい。再生コラーゲン繊維の形態としてはフィラメントが好ましい。フィラメントは一般にボビン巻きしたものや箱詰めした状態から取り出される。また、再生コラーゲン繊維の製造工程で乾燥工程から出てきたフィラメントを直接利用することもできる。
Regenerated collagen fibers can be produced using known techniques, and the composition does not need to be 100% collagen, and may contain natural or synthetic polymers and additives for quality improvement. Furthermore, the regenerated collagen fibers may be post-processed. The preferred form of the regenerated collagen fibers is filaments. Filament is generally taken out from a bobbin wound or boxed state. Furthermore, the filaments that come out of the drying process can also be used directly in the process of producing regenerated collagen fibers.
再生コラーゲン繊維の製造に用いるコラーゲンの原料には、床皮の部分を用いるのが好ましい。床皮は、例えば牛などの家畜動物を屠殺して得られるフレッシュな床皮や塩漬けした生皮より得られる。これら床皮などは、大部分が不溶性コラーゲン繊維からなるが、通常網状に付着している肉質部分を除去し、腐敗・変質防止のために用いた塩分を除去したのちに用いられる。
It is preferable to use floor skin as the raw material for collagen used in the production of regenerated collagen fibers. The bedding skin can be obtained, for example, from fresh bedding skin obtained by slaughtering a domestic animal such as a cow, or from salted rawhide. Most of these bedding skins are made up of insoluble collagen fibers, but they are usually used after removing the fleshy parts attached to them in a network and removing the salt used to prevent rot and deterioration.
この不溶性コラーゲン繊維には、グリセライド、リン脂質、遊離脂肪酸等の脂質、糖タンパク質、アルブミン等のコラーゲン以外のタンパク質などの不純物が存在している。これらの不純物は、繊維化するにあたって紡糸安定性、光沢や強伸度などの品質、臭気などに多大な影響を及ぼす。したがって、例えば石灰漬けにして不溶性コラーゲン繊維中の脂肪分を加水分解し、コラーゲン繊維を解きほぐした後、酸・アルカリ処理、酵素処理、溶剤処理などの従来一般に行われている皮革処理を施し、あらかじめこれらの不純物を除去しておくことが好ましい。
These insoluble collagen fibers contain impurities such as lipids such as glycerides, phospholipids, and free fatty acids, glycoproteins, and proteins other than collagen such as albumin. These impurities greatly affect spinning stability, quality such as gloss and strength and elongation, and odor during fiberization. Therefore, for example, after soaking in lime to hydrolyze the fat content in insoluble collagen fibers and loosen the collagen fibers, conventional leather treatments such as acid/alkali treatment, enzyme treatment, and solvent treatment are applied to the leather. It is preferable to remove these impurities.
前記のような処理の施された不溶性コラーゲンは、架橋しているペプチド部を切断するために、可溶化処理が施される。かかる可溶化処理の方法としては、一般に採用されている公知のアルカリ可溶化法、酵素可溶化法等を適用することができる。さらに、前記アルカリ可溶化法及び酵素可溶化法を併用してもよい。
The insoluble collagen that has been treated as described above is subjected to a solubilization treatment in order to cleave the crosslinked peptide portions. As a method for such solubilization treatment, commonly employed known alkali solubilization methods, enzyme solubilization methods, etc. can be applied. Furthermore, the alkali solubilization method and the enzyme solubilization method may be used in combination.
前記アルカリ可溶化法を適用する場合には、例えば塩酸等の酸で中和することが好ましい。なお、従来知られているアルカリ可溶化法の改善された方法として、特公昭46-15033号公報に記載された方法を用いてもよい。
When applying the alkali solubilization method, it is preferable to neutralize with an acid such as hydrochloric acid. Note that as an improved method of the conventionally known alkali solubilization method, the method described in Japanese Patent Publication No. 15033/1983 may be used.
前記酵素可溶化法は、分子量が均一な可溶化コラーゲンを得ることができるという利点を有するものであり、本発明において好適に採用しうる方法である。かかる酵素可溶化法としては、例えば特公昭43-25829号公報、特公昭43-27513号公報等に記載された方法を採用することができる。
The enzyme solubilization method has the advantage of being able to obtain solubilized collagen with a uniform molecular weight, and is a method that can be suitably employed in the present invention. As such an enzyme solubilization method, for example, methods described in Japanese Patent Publication No. 43-25829, Japanese Patent Publication No. 43-27513, etc. can be adopted.
このように可溶化処理を施したコラーゲンに、pHの調整、塩析、水洗、溶剤処理等の操作を更に施した場合には、品質などに優れた再生コラーゲン繊維を得ることが可能なため、これらの処理を施すことが好ましい。
When collagen that has been solubilized in this way is further subjected to operations such as pH adjustment, salting out, water washing, and solvent treatment, it is possible to obtain regenerated collagen fibers with excellent quality. It is preferable to perform these treatments.
得られた可溶化コラーゲンは、例えば、塩酸、酢酸、乳酸等の酸で溶解し、pHが2~4.5であり、コラーゲンの濃度が1質量%以上、好ましくは2質量%以上、また15質量%以下、好ましくは10質量%以下であるコラーゲン水溶液になるように調整する。前記コラーゲン水溶液は、必要に応じて減圧攪拌下で脱泡を施したり、水不溶分である細かいゴミを除去したりするために濾過を行ってもよい。また、前記コラーゲン水溶液には、さらに必要に応じて、例えば機械的強度の向上、耐水・耐熱性の向上、光沢性の改良、紡糸性の改良、着色の防止、防腐等を目的として、安定剤、水溶性高分子化合物等の添加剤を適量配合してもよい。
The obtained solubilized collagen is dissolved in an acid such as hydrochloric acid, acetic acid, or lactic acid, has a pH of 2 to 4.5, and has a collagen concentration of 1% by mass or more, preferably 2% by mass or more, or 15% by mass. Hereinafter, the collagen aqueous solution is adjusted to preferably have a content of 10% by mass or less. The collagen aqueous solution may be defoamed under vacuum stirring or filtered to remove fine dust that is water-insoluble, if necessary. In addition, the collagen aqueous solution may contain stabilizers, if necessary, for the purpose of improving mechanical strength, improving water resistance and heat resistance, improving gloss, improving spinnability, preventing discoloration, preservatives, etc. , a water-soluble polymer compound, and other additives may be added in appropriate amounts.
前記コラーゲン水溶液を、例えば紡糸ノズルやスリットを通して吐出し、無機塩水溶液に浸漬することにより、再生コラーゲン繊維を形成する。無機塩水溶液としては、例えば硫酸ナトリウム、塩化ナトリウム、硫酸アンモニウム等の水溶性無機塩の水溶液が用いられる。通常、これらの無機塩水溶液中の無機塩の濃度は10~40質量%に調整する。無機塩水溶液のpHは、好ましくは2以上、より好ましくは4以上、また、好ましくは13以下、より好ましくは12以下である。このpHの調整には、例えばホウ酸ナトリウム、酢酸ナトリウム等の金属塩、塩酸、ホウ酸、酢酸、水酸化ナトリウムなどを用いることができる。無機塩水溶液のpHが前記の範囲であると、コラーゲンのペプチド結合が加水分解を受けにくく、目的とする繊維が得られやすくなる。また、無機塩水溶液の温度は特に限定されないが、可溶性コラーゲンが変性することもなく、紡糸した繊維の強度が低下せず、安定した糸の製造が容易となる点から、通常35℃以下であることが望ましい。なお、無機塩水溶液の温度の下限は特に限定されないが、通常無機塩の溶解度に応じて適宜調整することができる。
Regenerated collagen fibers are formed by discharging the collagen aqueous solution through, for example, a spinning nozzle or slit and immersing it in an inorganic salt aqueous solution. As the inorganic salt aqueous solution, for example, an aqueous solution of a water-soluble inorganic salt such as sodium sulfate, sodium chloride, ammonium sulfate, etc. is used. Usually, the concentration of these inorganic salts in the inorganic salt aqueous solution is adjusted to 10 to 40% by mass. The pH of the inorganic salt aqueous solution is preferably 2 or more, more preferably 4 or more, and preferably 13 or less, more preferably 12 or less. To adjust this pH, for example, metal salts such as sodium borate and sodium acetate, hydrochloric acid, boric acid, acetic acid, sodium hydroxide, etc. can be used. When the pH of the inorganic salt aqueous solution is within the above range, the peptide bonds of collagen are less susceptible to hydrolysis, making it easier to obtain the desired fibers. Further, the temperature of the inorganic salt aqueous solution is not particularly limited, but it is usually 35°C or lower because it does not cause denaturation of soluble collagen, does not reduce the strength of spun fibers, and facilitates the production of stable threads. This is desirable. Note that the lower limit of the temperature of the inorganic salt aqueous solution is not particularly limited, but can be adjusted as appropriate depending on the solubility of the inorganic salt.
前記再生コラーゲン繊維を、エポキシ化合物あるいはその溶液に浸漬して再生コラーゲン繊維を前処理(架橋処理)してもよい。エポキシ化合物の量は、アミノ酸分析法により測定した再生コラーゲン繊維中におけるエポキシ化合物と反応可能なアミノ基の量に対し、好ましくは0.1当量以上、より好ましくは0.5当量以上、更に好ましくは1当量以上であり、また、好ましくは500当量以下、より好ましくは100当量以下、更に好ましくは50当量以下である。エポキシ化合物の量が前記範囲であることにより、再生コラーゲン繊維に水に対する不溶化効果を充分付与し得る上、工業的な取扱い性や環境面でも好ましい。
The regenerated collagen fibers may be pretreated (crosslinked) by immersing them in an epoxy compound or a solution thereof. The amount of the epoxy compound is preferably 0.1 equivalent or more, more preferably 0.5 equivalent or more, and still more preferably 1 equivalent or more with respect to the amount of amino groups that can react with the epoxy compound in the regenerated collagen fibers measured by amino acid analysis method. The amount is preferably 500 equivalents or less, more preferably 100 equivalents or less, and even more preferably 50 equivalents or less. When the amount of the epoxy compound is within the above range, it is possible to sufficiently impart an effect of insolubilizing the regenerated collagen fibers to water, and it is also preferable in terms of industrial handling and environmental aspects.
エポキシ化合物はそのままあるいは各種溶剤に溶解して用いる。溶剤としては、例えば、水;メチルアルコール、エチルアルコール、イソプロパノール等のアルコール類;テトラヒドロフラン、ジオキサン等のエーテル類;ジクロロメタン、クロロホルム、四塩化炭素等のハロゲン系有機溶媒;ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)等の中性有機溶媒などが挙げられる。これらの溶剤は、単独で用いてもよく、二種以上を混合して用いてよい。溶剤として水を用いる場合、必要に応じて硫酸ナトリウム、塩化ナトリウム、硫酸アンモニウム等の無機塩の水溶液を用いてもよい。通常、無機塩の水溶液中の無機塩の濃度は、10~40質量%に調整される。また、水溶液のpHを、例えば、ホウ酸ナトリウム、酢酸ナトリウム等の金属塩や、塩酸、ホウ酸、酢酸、水酸化ナトリウムなどにより、調整してもよい。この場合、水溶液のpHは、エポキシ化合物のエポキシ基とコラーゲンのアミノ基との反応が遅くならず、水に対する不溶化が十分となる観点から、好ましくは6以上、より好ましくは8以上である。また、無機塩の水溶液のpHは時間とともに低下していく傾向にあるため、必要により緩衝剤を使用してもよい。
Epoxy compounds are used as they are or dissolved in various solvents. Examples of solvents include water; alcohols such as methyl alcohol, ethyl alcohol, and isopropanol; ethers such as tetrahydrofuran and dioxane; halogenated organic solvents such as dichloromethane, chloroform, and carbon tetrachloride; dimethylformamide (DMF), and dimethyl sulfoxide. Examples include neutral organic solvents such as (DMSO). These solvents may be used alone or in combination of two or more. When using water as a solvent, an aqueous solution of an inorganic salt such as sodium sulfate, sodium chloride, ammonium sulfate, etc. may be used as necessary. Usually, the concentration of the inorganic salt in the aqueous solution of the inorganic salt is adjusted to 10 to 40% by mass. Further, the pH of the aqueous solution may be adjusted using, for example, metal salts such as sodium borate and sodium acetate, hydrochloric acid, boric acid, acetic acid, sodium hydroxide, and the like. In this case, the pH of the aqueous solution is preferably 6 or higher, more preferably 8 or higher, from the viewpoint of not slowing down the reaction between the epoxy group of the epoxy compound and the amino group of collagen and ensuring sufficient insolubilization in water. Furthermore, since the pH of an aqueous solution of an inorganic salt tends to decrease over time, a buffer may be used if necessary.
前記エポキシ化合物による再生コラーゲン繊維の処理温度は、再生コラーゲン繊維が変性することがなく、得られる繊維の強度が低下せず、安定的な糸の製造が容易となる観点から、50℃以下が好ましい。
The temperature at which the regenerated collagen fibers are treated with the epoxy compound is preferably 50°C or lower, from the viewpoints that the regenerated collagen fibers do not denature, the strength of the obtained fibers does not decrease, and stable yarn production is facilitated. .
再生コラーゲン繊維は、次いで水洗、オイリング、乾燥してもよい。水洗は、例えば、10分間~4時間流水水洗することにより行うことができる。オイリングに用いる油剤としては、例えば、アミノ変性シリコーン、エポキシ変性シリコーン、ポリエーテル変性シリコーン等のエマルジョン及びプルロニック型ポリエーテル系静電防止剤からなる油剤などを用いることができる。乾燥温度は、好ましくは100℃以下、より好ましくは75℃以下である。
The regenerated collagen fibers may then be washed with water, oiled, and dried. Washing with water can be carried out, for example, by washing with running water for 10 minutes to 4 hours. As the oil agent used for oiling, for example, an oil agent made of an emulsion such as an amino-modified silicone, an epoxy-modified silicone, a polyether-modified silicone, or a Pluronic type polyether antistatic agent can be used. The drying temperature is preferably 100°C or lower, more preferably 75°C or lower.
処理される再生コラーゲン繊維としては、耐水性向上の観点から、多価金属、又はその塩若しくはその錯体を含有するものが好ましい。多価金属としては、カルシウム、マグネシウム、ストロンチウム、バリウム、亜鉛、クロム、アルミニウム、チタン、ジルコニウム、スズ、鉛、アンチモン、鉄、銅等が挙げられ、耐水性向上、及び、繊維の着色低減や、環境への影響低減、経済性向上の観点から、好ましくはアルミニウム、ジルコニウム、チタン、より好ましくはアルミニウムが用いられる。再生コラーゲン繊維中における多価金属、又はその塩若しくはその錯体の含有量は、耐水性向上の観点から、金属元素量として、好ましくは1.0質量%以上、より好ましくは2.0質量%以上、更に好ましくは3.0質量%以上、更により好ましくは5.0質量%以上であり、また、繊維表面の感触の向上の観点から、好ましくは40質量%以下、より好ましくは30質量%以下、更に好ましくは20質量%以下、更により好ましくは10質量%以下である。
すなわち、処理される再生コラーゲン繊維中の多価金属、又はその塩若しくはその錯体の含有量は、前記観点から、金属元素量として、好ましくは1.0~40質量%、より好ましくは2.0~30質量%、更に好ましくは3.0~20質量%、更により好ましくは5.0~10質量%である。 The regenerated collagen fibers to be treated preferably contain a polyvalent metal, a salt thereof, or a complex thereof from the viewpoint of improving water resistance. Examples of polyvalent metals include calcium, magnesium, strontium, barium, zinc, chromium, aluminum, titanium, zirconium, tin, lead, antimony, iron, and copper, which improve water resistance, reduce coloration of fibers, From the viewpoint of reducing environmental impact and improving economic efficiency, aluminum, zirconium, and titanium are preferably used, and aluminum is more preferably used. From the viewpoint of improving water resistance, the content of the polyvalent metal, its salt, or its complex in the regenerated collagen fibers is preferably 1.0% by mass or more, more preferably 2.0% by mass or more, still more preferably The content is 3.0% by mass or more, even more preferably 5.0% by mass or more, and from the viewpoint of improving the feel of the fiber surface, preferably 40% by mass or less, more preferably 30% by mass or less, even more preferably 20% by mass or less. , even more preferably 10% by mass or less.
That is, from the above point of view, the content of the polyvalent metal, its salt, or its complex in the regenerated collagen fibers to be treated is preferably 1.0 to 40% by mass, more preferably 2.0 to 30% by mass, as the amount of metal element. , more preferably 3.0 to 20% by weight, even more preferably 5.0 to 10% by weight.
すなわち、処理される再生コラーゲン繊維中の多価金属、又はその塩若しくはその錯体の含有量は、前記観点から、金属元素量として、好ましくは1.0~40質量%、より好ましくは2.0~30質量%、更に好ましくは3.0~20質量%、更により好ましくは5.0~10質量%である。 The regenerated collagen fibers to be treated preferably contain a polyvalent metal, a salt thereof, or a complex thereof from the viewpoint of improving water resistance. Examples of polyvalent metals include calcium, magnesium, strontium, barium, zinc, chromium, aluminum, titanium, zirconium, tin, lead, antimony, iron, and copper, which improve water resistance, reduce coloration of fibers, From the viewpoint of reducing environmental impact and improving economic efficiency, aluminum, zirconium, and titanium are preferably used, and aluminum is more preferably used. From the viewpoint of improving water resistance, the content of the polyvalent metal, its salt, or its complex in the regenerated collagen fibers is preferably 1.0% by mass or more, more preferably 2.0% by mass or more, still more preferably The content is 3.0% by mass or more, even more preferably 5.0% by mass or more, and from the viewpoint of improving the feel of the fiber surface, preferably 40% by mass or less, more preferably 30% by mass or less, even more preferably 20% by mass or less. , even more preferably 10% by mass or less.
That is, from the above point of view, the content of the polyvalent metal, its salt, or its complex in the regenerated collagen fibers to be treated is preferably 1.0 to 40% by mass, more preferably 2.0 to 30% by mass, as the amount of metal element. , more preferably 3.0 to 20% by weight, even more preferably 5.0 to 10% by weight.
〔繊維処理方法〕
(基本的処理)
本発明の繊維処理方法は、下記工程(i)を含むものであり、これにより、再生コラーゲン繊維の問題点である耐水性、耐熱性が向上し、熱形状記憶能が付与されると共に、伸縮性(粘り強さ)、表面の感触が向上し、しかも着色のない改質再生コラーゲン繊維を製造することができる。
工程(i) 以下の成分(A)を含有する繊維処理剤に再生コラーゲン繊維を浸漬する工程
(A) 安息香酸又はその塩 [Fiber processing method]
(Basic processing)
The fiber processing method of the present invention includes the following step (i), which improves water resistance and heat resistance, which are problems of regenerated collagen fibers, imparts thermal shape memory ability, and provides elasticity. It is possible to produce modified regenerated collagen fibers that have improved properties (tenacity) and surface feel, and are free from coloration.
Step (i) Step of immersing regenerated collagen fibers in a fiber treatment agent containing the following component (A) (A) Benzoic acid or its salt
(基本的処理)
本発明の繊維処理方法は、下記工程(i)を含むものであり、これにより、再生コラーゲン繊維の問題点である耐水性、耐熱性が向上し、熱形状記憶能が付与されると共に、伸縮性(粘り強さ)、表面の感触が向上し、しかも着色のない改質再生コラーゲン繊維を製造することができる。
工程(i) 以下の成分(A)を含有する繊維処理剤に再生コラーゲン繊維を浸漬する工程
(A) 安息香酸又はその塩 [Fiber processing method]
(Basic processing)
The fiber processing method of the present invention includes the following step (i), which improves water resistance and heat resistance, which are problems of regenerated collagen fibers, imparts thermal shape memory ability, and provides elasticity. It is possible to produce modified regenerated collagen fibers that have improved properties (tenacity) and surface feel, and are free from coloration.
Step (i) Step of immersing regenerated collagen fibers in a fiber treatment agent containing the following component (A) (A) Benzoic acid or its salt
工程(i)で使用する繊維処理剤中における成分(A)の含有量は、繊維処理剤のpH範囲によって異なるが、以下に示す範囲が好ましい。
The content of component (A) in the fiber treatment agent used in step (i) varies depending on the pH range of the fiber treatment agent, but is preferably in the range shown below.
繊維処理剤のpHが2.0以上かつ6.5未満の場合、処理後の改質再生コラーゲン繊維により高い形状持続性、耐水性、伸縮性(粘り強さ、すなわち繊維引張時の高い破断伸度)及び耐熱性を付与する観点から、繊維処理剤中における成分(A)の含有量は、安息香酸として、好ましくは0.8質量%以上、より好ましくは3.0質量%以上、更に好ましくは5.0質量%以上、更により好ましくは10質量%以上、更により好ましくは15質量%以上、更により好ましくは20質量%以上であり、また、繊維表面の感触を向上する観点から、好ましくは90質量%以下、より好ましくは80質量%以下、更に好ましくは70質量%以下、更により好ましくは50質量%以下、更により好ましくは40質量%以下、更により好ましくは35質量%以下である。
すなわち、繊維処理剤のpHが2.0以上かつ6.5未満の場合、繊維処理剤中における成分(A)の含有量は、前記観点から、安息香酸として、好ましくは0.8~90質量%、より好ましくは3.0~80質量%、更に好ましくは5.0~70質量%、更により好ましくは10~50質量%、更により好ましくは15~40質量%、更により好ましくは20~35質量%である。 When the pH of the fiber treatment agent is 2.0 or more and less than 6.5, the modified regenerated collagen fibers after treatment will have high shape sustainability, water resistance, elasticity (toughness, i.e., high elongation at break when the fiber is pulled), and heat resistance. The content of component (A) in the fiber treatment agent, as benzoic acid, is preferably 0.8% by mass or more, more preferably 3.0% by mass or more, still more preferably 5.0% by mass or more, and even more preferably is 10% by mass or more, even more preferably 15% by mass or more, even more preferably 20% by mass or more, and from the viewpoint of improving the feel of the fiber surface, preferably 90% by mass or less, more preferably 80% by mass. % or less, more preferably 70% by mass or less, even more preferably 50% by mass or less, even more preferably 40% by mass or less, even more preferably 35% by mass or less.
That is, when the pH of the fiber treatment agent is 2.0 or more and less than 6.5, the content of component (A) in the fiber treatment agent is preferably 0.8 to 90% by mass, more preferably 3.0% as benzoic acid, from the above viewpoint. ~80% by weight, more preferably 5.0-70% by weight, even more preferably 10-50% by weight, even more preferably 15-40% by weight, even more preferably 20-35% by weight.
すなわち、繊維処理剤のpHが2.0以上かつ6.5未満の場合、繊維処理剤中における成分(A)の含有量は、前記観点から、安息香酸として、好ましくは0.8~90質量%、より好ましくは3.0~80質量%、更に好ましくは5.0~70質量%、更により好ましくは10~50質量%、更により好ましくは15~40質量%、更により好ましくは20~35質量%である。 When the pH of the fiber treatment agent is 2.0 or more and less than 6.5, the modified regenerated collagen fibers after treatment will have high shape sustainability, water resistance, elasticity (toughness, i.e., high elongation at break when the fiber is pulled), and heat resistance. The content of component (A) in the fiber treatment agent, as benzoic acid, is preferably 0.8% by mass or more, more preferably 3.0% by mass or more, still more preferably 5.0% by mass or more, and even more preferably is 10% by mass or more, even more preferably 15% by mass or more, even more preferably 20% by mass or more, and from the viewpoint of improving the feel of the fiber surface, preferably 90% by mass or less, more preferably 80% by mass. % or less, more preferably 70% by mass or less, even more preferably 50% by mass or less, even more preferably 40% by mass or less, even more preferably 35% by mass or less.
That is, when the pH of the fiber treatment agent is 2.0 or more and less than 6.5, the content of component (A) in the fiber treatment agent is preferably 0.8 to 90% by mass, more preferably 3.0% as benzoic acid, from the above viewpoint. ~80% by weight, more preferably 5.0-70% by weight, even more preferably 10-50% by weight, even more preferably 15-40% by weight, even more preferably 20-35% by weight.
また、繊維処理剤のpHが6.5以上11.0以下の場合、処理後の改質再生コラーゲン繊維により高い形状持続性と、耐水性、伸縮性(粘り強さ、すなわち繊維引張時の高い破断伸度)及び耐熱性を付与する観点から、繊維処理剤中における成分(A)の含有量は、安息香酸として、好ましくは0.8質量%以上、より好ましくは3.0質量%以上、更に好ましくは5.0質量%以上、更により好ましくは10質量%以上、更により好ましくは15質量%以上、更により好ましくは20質量%以上、更により好ましくは25質量%以上、更により好ましくは26質量%以上、更により好ましくは28質量%以上、更により好ましくは30質量%以上であり、また、繊維表面の感触を向上する観点から、好ましくは90質量%以下、より好ましくは80質量%以下、更に好ましくは70質量%以下、更により好ましくは50質量%以下、更により好ましくは45質量%以下、更により好ましくは40質量%以下である。
すなわち、繊維処理剤のpHが6.5以上かつ11.0以下の場合、繊維処理剤中における成分(A)の含有量は、前記観点から、安息香酸として、好ましくは0.8~90質量%、より好ましくは3.0~80質量%、更に好ましくは5.0~70質量%、更により好ましくは10~70質量%、更により好ましくは15~50質量%、更により好ましくは20~50質量%、更により好ましくは25~45質量%、更により好ましくは26~45質量%、更により好ましくは28~40質量%、更により好ましくは30~40質量%である。 In addition, when the pH of the fiber treatment agent is 6.5 or more and 11.0 or less, the modified and regenerated collagen fibers after treatment have high shape sustainability, water resistance, elasticity (tenacity, that is, high breaking elongation when fibers are pulled) and From the viewpoint of imparting heat resistance, the content of component (A) in the fiber treatment agent is preferably 0.8% by mass or more, more preferably 3.0% by mass or more, even more preferably 5.0% by mass or more, as benzoic acid. More preferably 10% by mass or more, even more preferably 15% by mass or more, even more preferably 20% by mass or more, even more preferably 25% by mass or more, even more preferably 26% by mass or more, even more preferably 28% by mass. % or more, even more preferably 30% by mass or more, and from the viewpoint of improving the feel of the fiber surface, preferably 90% by mass or less, more preferably 80% by mass or less, still more preferably 70% by mass or less, and It is more preferably 50% by mass or less, even more preferably 45% by mass or less, even more preferably 40% by mass or less.
That is, when the pH of the fiber treatment agent is 6.5 or more and 11.0 or less, the content of component (A) in the fiber treatment agent is preferably 0.8 to 90% by mass, more preferably 3.0% as benzoic acid, from the above viewpoint. ~80% by weight, more preferably 5.0~70% by weight, even more preferably 10~70% by weight, even more preferably 15~50% by weight, even more preferably 20~50% by weight, even more preferably 25~ 45% by weight, even more preferably 26-45% by weight, even more preferably 28-40% by weight, even more preferably 30-40% by weight.
すなわち、繊維処理剤のpHが6.5以上かつ11.0以下の場合、繊維処理剤中における成分(A)の含有量は、前記観点から、安息香酸として、好ましくは0.8~90質量%、より好ましくは3.0~80質量%、更に好ましくは5.0~70質量%、更により好ましくは10~70質量%、更により好ましくは15~50質量%、更により好ましくは20~50質量%、更により好ましくは25~45質量%、更により好ましくは26~45質量%、更により好ましくは28~40質量%、更により好ましくは30~40質量%である。 In addition, when the pH of the fiber treatment agent is 6.5 or more and 11.0 or less, the modified and regenerated collagen fibers after treatment have high shape sustainability, water resistance, elasticity (tenacity, that is, high breaking elongation when fibers are pulled) and From the viewpoint of imparting heat resistance, the content of component (A) in the fiber treatment agent is preferably 0.8% by mass or more, more preferably 3.0% by mass or more, even more preferably 5.0% by mass or more, as benzoic acid. More preferably 10% by mass or more, even more preferably 15% by mass or more, even more preferably 20% by mass or more, even more preferably 25% by mass or more, even more preferably 26% by mass or more, even more preferably 28% by mass. % or more, even more preferably 30% by mass or more, and from the viewpoint of improving the feel of the fiber surface, preferably 90% by mass or less, more preferably 80% by mass or less, still more preferably 70% by mass or less, and It is more preferably 50% by mass or less, even more preferably 45% by mass or less, even more preferably 40% by mass or less.
That is, when the pH of the fiber treatment agent is 6.5 or more and 11.0 or less, the content of component (A) in the fiber treatment agent is preferably 0.8 to 90% by mass, more preferably 3.0% as benzoic acid, from the above viewpoint. ~80% by weight, more preferably 5.0~70% by weight, even more preferably 10~70% by weight, even more preferably 15~50% by weight, even more preferably 20~50% by weight, even more preferably 25~ 45% by weight, even more preferably 26-45% by weight, even more preferably 28-40% by weight, even more preferably 30-40% by weight.
工程(i)で使用する繊維処理剤は、水を媒体とする。繊維処理剤中における水の含有量は、好ましくは10質量%以上、より好ましくは20質量%以上、更に好ましくは30質量%以上、更により好ましくは40質量%以上であり、また好ましくは95質量%以下、より好ましくは90質量%以下、更に好ましくは85質量%以下である。
すなわち、繊維処理剤中における水の含有量は、好ましくは10~95質量%、より好ましくは20~90質量%、更に好ましくは30~85質量%、更により好ましくは40~85質量%である。 The fiber treatment agent used in step (i) uses water as a medium. The content of water in the fiber treatment agent is preferably 10% by mass or more, more preferably 20% by mass or more, even more preferably 30% by mass or more, even more preferably 40% by mass or more, and preferably 95% by mass or more. % or less, more preferably 90% by mass or less, still more preferably 85% by mass or less.
That is, the content of water in the fiber treatment agent is preferably 10 to 95% by mass, more preferably 20 to 90% by mass, even more preferably 30 to 85% by mass, and even more preferably 40 to 85% by mass. .
すなわち、繊維処理剤中における水の含有量は、好ましくは10~95質量%、より好ましくは20~90質量%、更に好ましくは30~85質量%、更により好ましくは40~85質量%である。 The fiber treatment agent used in step (i) uses water as a medium. The content of water in the fiber treatment agent is preferably 10% by mass or more, more preferably 20% by mass or more, even more preferably 30% by mass or more, even more preferably 40% by mass or more, and preferably 95% by mass or more. % or less, more preferably 90% by mass or less, still more preferably 85% by mass or less.
That is, the content of water in the fiber treatment agent is preferably 10 to 95% by mass, more preferably 20 to 90% by mass, even more preferably 30 to 85% by mass, and even more preferably 40 to 85% by mass. .
工程(i)で使用する繊維処理剤のpHは、再生コラーゲン繊維のダメージ抑制及び耐久性向上の観点から、好ましくは2.0以上、より好ましくは3.0以上、更に好ましくは3.5以上、更により好ましくは4.0以上であり、また、好ましくは11.0以下、より好ましくは10.0以下、更に好ましくは9.0以下である。なお、本発明におけるpHは25℃のときの値である。
すなわち、繊維処理剤のpHは、再生コラーゲン繊維のダメージ抑制及び耐久性向上の観点から、好ましくは2.0~11.0、より好ましくは3.0~10.0、更に好ましくは3.5~9.0、更により好ましくは4.0~9.0である。 The pH of the fiber treatment agent used in step (i) is preferably 2.0 or higher, more preferably 3.0 or higher, still more preferably 3.5 or higher, and even more preferably 4.0 from the viewpoint of suppressing damage to regenerated collagen fibers and improving durability. or more, and preferably 11.0 or less, more preferably 10.0 or less, and even more preferably 9.0 or less. Note that the pH in the present invention is a value at 25°C.
That is, from the viewpoint of suppressing damage to regenerated collagen fibers and improving durability, the pH of the fiber treatment agent is preferably 2.0 to 11.0, more preferably 3.0 to 10.0, still more preferably 3.5 to 9.0, and even more preferably 4.0 to 9.0. It is.
すなわち、繊維処理剤のpHは、再生コラーゲン繊維のダメージ抑制及び耐久性向上の観点から、好ましくは2.0~11.0、より好ましくは3.0~10.0、更に好ましくは3.5~9.0、更により好ましくは4.0~9.0である。 The pH of the fiber treatment agent used in step (i) is preferably 2.0 or higher, more preferably 3.0 or higher, still more preferably 3.5 or higher, and even more preferably 4.0 from the viewpoint of suppressing damage to regenerated collagen fibers and improving durability. or more, and preferably 11.0 or less, more preferably 10.0 or less, and even more preferably 9.0 or less. Note that the pH in the present invention is a value at 25°C.
That is, from the viewpoint of suppressing damage to regenerated collagen fibers and improving durability, the pH of the fiber treatment agent is preferably 2.0 to 11.0, more preferably 3.0 to 10.0, still more preferably 3.5 to 9.0, and even more preferably 4.0 to 9.0. It is.
工程(i)において、繊維処理に供する再生コラーゲン繊維は、乾燥していても濡れていてもよい。例えば、再生コラーゲン繊維製造時の乾燥前の状態で直接処理してもよい。再生コラーゲン繊維を浸漬する繊維処理剤の量は、再生コラーゲン繊維の質量に対する浴比(繊維処理剤の質量/再生コラーゲン繊維の質量)で、好ましくは2.0以上、より好ましくは3.0以上、更に好ましくは5.0以上、更により好ましくは10以上、更により好ましくは20以上であり、また好ましくは500以下、より好ましくは250以下、更に好ましくは100以下である。
すなわち、上記浴比は、好ましくは2.0~500、より好ましくは3.0~250、更に好ましくは5.0~100、更により好ましくは10~100、更により好ましくは20~100である。 In step (i), the regenerated collagen fibers subjected to fiber treatment may be dry or wet. For example, the treatment may be performed directly before drying during production of regenerated collagen fibers. The amount of fiber treatment agent in which the regenerated collagen fibers are immersed is a bath ratio (mass of fiber treatment agent/mass of regenerated collagen fibers) to the mass of the regenerated collagen fibers, preferably 2.0 or more, more preferably 3.0 or more, and even more preferably It is 5.0 or more, even more preferably 10 or more, even more preferably 20 or more, and preferably 500 or less, more preferably 250 or less, and still more preferably 100 or less.
That is, the bath ratio is preferably 2.0 to 500, more preferably 3.0 to 250, even more preferably 5.0 to 100, even more preferably 10 to 100, and even more preferably 20 to 100.
すなわち、上記浴比は、好ましくは2.0~500、より好ましくは3.0~250、更に好ましくは5.0~100、更により好ましくは10~100、更により好ましくは20~100である。 In step (i), the regenerated collagen fibers subjected to fiber treatment may be dry or wet. For example, the treatment may be performed directly before drying during production of regenerated collagen fibers. The amount of fiber treatment agent in which the regenerated collagen fibers are immersed is a bath ratio (mass of fiber treatment agent/mass of regenerated collagen fibers) to the mass of the regenerated collagen fibers, preferably 2.0 or more, more preferably 3.0 or more, and even more preferably It is 5.0 or more, even more preferably 10 or more, even more preferably 20 or more, and preferably 500 or less, more preferably 250 or less, and still more preferably 100 or less.
That is, the bath ratio is preferably 2.0 to 500, more preferably 3.0 to 250, even more preferably 5.0 to 100, even more preferably 10 to 100, and even more preferably 20 to 100.
また、工程(i)では、あらかじめ再生コラーゲン繊維をカーラー等で固定し、次いで、加熱下で、本発明の繊維処理に供してもよい。このようにすることで、再生コラーゲン繊維に対し、熱形状記憶能と高い耐久性に加え、所望の形状を同時に付与することができる。
Furthermore, in step (i), the regenerated collagen fibers may be fixed in advance with a curler or the like, and then subjected to the fiber treatment of the present invention under heating. By doing so, it is possible to simultaneously impart a desired shape to the regenerated collagen fibers in addition to thermal shape memory ability and high durability.
工程(i)における繊維処理剤への再生コラーゲン繊維の浸漬は、加熱下において行うことが好ましく、この加熱は繊維処理剤を加温することで行われる。なお、この加熱は、加熱状態の繊維処理剤に再生コラーゲン繊維を浸漬することで行ってもよいが、低温の繊維処理剤に再生コラーゲン繊維を浸漬した後加熱することで行ってもよい。繊維処理剤の温度は、成分(A)と再生コラーゲン繊維内の繊維構成分子、例えばタンパク質分子との相互作用を大きくすることで本発明の効果を得るため、好ましくは20℃以上、より好ましくは35℃以上、更に好ましくは45℃以上であり、また、再生コラーゲン繊維が熱により変性を起こし劣化するのを防ぐため、好ましくは100℃未満、より好ましくは80℃以下、更に好ましくは70℃以下、更に好ましくは60℃以下である。
The immersion of the regenerated collagen fibers in the fiber treatment agent in step (i) is preferably performed under heating, and this heating is performed by heating the fiber treatment agent. Note that this heating may be performed by immersing the regenerated collagen fibers in a heated fiber treatment agent, or may be performed by immersing the regenerated collagen fibers in a low-temperature fiber treatment agent and then heating. The temperature of the fiber treatment agent is preferably 20°C or higher, more preferably 20°C or higher, in order to obtain the effects of the present invention by increasing the interaction between component (A) and fiber constituent molecules in the regenerated collagen fibers, such as protein molecules. The temperature is 35°C or higher, more preferably 45°C or higher, and preferably lower than 100°C, more preferably 80°C or lower, even more preferably 70°C or lower, in order to prevent the regenerated collagen fibers from being denatured and deteriorated by heat. , more preferably 60°C or lower.
工程(i)における浸漬時間は、加熱温度によって適宜調整されるが、例えば、再生コラーゲン繊維に対する伸縮性向上効果を発現させる観点から、好ましくは15分以上、より好ましくは30分以上、更に好ましくは1時間以上であり、また、再生コラーゲン繊維のダメージ抑制のため、好ましくは48時間以下、より好ましくは24時間以下、更に好ましくは12時間以下である。
The immersion time in step (i) is appropriately adjusted depending on the heating temperature, but for example, from the viewpoint of exerting the effect of improving elasticity on regenerated collagen fibers, it is preferably 15 minutes or more, more preferably 30 minutes or more, and even more preferably The duration is 1 hour or more, and in order to suppress damage to regenerated collagen fibers, the duration is preferably 48 hours or less, more preferably 24 hours or less, and even more preferably 12 hours or less.
工程(i)は、水分の蒸発が抑制される環境下で行われることが好ましい。水分の蒸発を抑制する具体的手段としては、再生コラーゲン繊維が浸漬されている繊維処理剤の容器を、水蒸気を透過しない素材でできたフィルム状物質、キャップ、フタ等で覆う方法が挙げられる。
It is preferable that step (i) is performed in an environment where evaporation of water is suppressed. A specific method for suppressing water evaporation includes a method of covering the container of the fiber treatment agent in which the regenerated collagen fibers are immersed with a film-like substance, cap, lid, etc. made of a material that does not permeate water vapor.
工程(i)の後、再生コラーゲン繊維をすすいでもよく、また、すすがなくてもよいが、余剰の成分(A)による再生コラーゲン繊維表面の感触低下を防ぐ観点から、すすぐ方が好ましい。
After step (i), the regenerated collagen fibers may or may not be rinsed, but rinsing is preferred from the viewpoint of preventing deterioration in the feel of the regenerated collagen fiber surface due to excess component (A).
工程(i)の処理によって、再生コラーゲン繊維内に成分(A)が浸透し、繊維内の金属、例えば多価金属に強く配位することで、種々の効果を生じるものと思われる。すなわち、工程(i)を含む再生コラーゲン繊維処理方法によって、繊維内に成分(A)を含有する改質再生コラーゲン繊維を製造することができ、得られた改質再生コラーゲン繊維は、熱セットにより形状を付与することができ、耐水性、耐熱性、引張弾性率に優れ、再生コラーゲン繊維の伸縮性(粘り強さ)が高度に改善された繊維となる。
It is believed that by the treatment in step (i), component (A) penetrates into the regenerated collagen fibers and strongly coordinates with metals, such as polyvalent metals, within the fibers, thereby producing various effects. That is, by the regenerated collagen fiber processing method including step (i), it is possible to produce modified regenerated collagen fibers containing the component (A) within the fibers, and the obtained modified regenerated collagen fibers can be heat-set. The regenerated collagen fibers can be given a shape, have excellent water resistance, heat resistance, and tensile modulus, and have highly improved elasticity (tenacity) of the regenerated collagen fibers.
〔改質再生コラーゲン繊維〕
以下、前記方法によって得られる本発明の改質再生コラーゲン繊維について説明する。 [Modified regenerated collagen fiber]
The modified regenerated collagen fibers of the present invention obtained by the above method will be explained below.
以下、前記方法によって得られる本発明の改質再生コラーゲン繊維について説明する。 [Modified regenerated collagen fiber]
The modified regenerated collagen fibers of the present invention obtained by the above method will be explained below.
(成分(A):安息香酸又はその塩)
本発明の改質再生コラーゲン繊維は、成分(A)の安息香酸又はその塩を含有する。成分(A)が塩である場合の例としては、ナトリウム塩、カリウム塩等のアルカリ金属塩が挙げられる。 (Component (A): Benzoic acid or its salt)
The modified regenerated collagen fiber of the present invention contains component (A) benzoic acid or a salt thereof. Examples of when component (A) is a salt include alkali metal salts such as sodium salts and potassium salts.
本発明の改質再生コラーゲン繊維は、成分(A)の安息香酸又はその塩を含有する。成分(A)が塩である場合の例としては、ナトリウム塩、カリウム塩等のアルカリ金属塩が挙げられる。 (Component (A): Benzoic acid or its salt)
The modified regenerated collagen fiber of the present invention contains component (A) benzoic acid or a salt thereof. Examples of when component (A) is a salt include alkali metal salts such as sodium salts and potassium salts.
本発明の改質再生コラーゲン繊維中における成分(A)の含有量は、より高い形状持続性、耐水性及び耐熱性を有するものとする観点から、安息香酸として、1.0質量%以上であって、好ましくは5.0質量%以上、より好ましくは10質量%以上、更に好ましくは12質量%以上、更により好ましくは15質量%以上であり、また、繊維表面の感触を向上する観点から、好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは30質量%以下である。
すなわち、本発明の改質再生コラーゲン繊維中における成分(A)の含有量は、前記観点から、安息香酸として、好ましくは1.0~50質量%、より好ましくは5.0~40質量%、更に好ましくは10~40質量%、更により好ましくは12~40質量%、更により好ましくは15~30質量%である。 The content of component (A) in the modified regenerated collagen fibers of the present invention is 1.0% by mass or more as benzoic acid from the viewpoint of having higher shape sustainability, water resistance, and heat resistance, and Preferably 5.0% by mass or more, more preferably 10% by mass or more, still more preferably 12% by mass or more, even more preferably 15% by mass or more, and from the viewpoint of improving the feel of the fiber surface, preferably 50% by mass. % or less, more preferably 40% by mass or less, still more preferably 30% by mass or less.
That is, from the above viewpoint, the content of component (A) in the modified regenerated collagen fibers of the present invention is preferably 1.0 to 50% by mass, more preferably 5.0 to 40% by mass, and still more preferably 10% by mass as benzoic acid. ~40% by weight, even more preferably 12-40% by weight, even more preferably 15-30% by weight.
すなわち、本発明の改質再生コラーゲン繊維中における成分(A)の含有量は、前記観点から、安息香酸として、好ましくは1.0~50質量%、より好ましくは5.0~40質量%、更に好ましくは10~40質量%、更により好ましくは12~40質量%、更により好ましくは15~30質量%である。 The content of component (A) in the modified regenerated collagen fibers of the present invention is 1.0% by mass or more as benzoic acid from the viewpoint of having higher shape sustainability, water resistance, and heat resistance, and Preferably 5.0% by mass or more, more preferably 10% by mass or more, still more preferably 12% by mass or more, even more preferably 15% by mass or more, and from the viewpoint of improving the feel of the fiber surface, preferably 50% by mass. % or less, more preferably 40% by mass or less, still more preferably 30% by mass or less.
That is, from the above viewpoint, the content of component (A) in the modified regenerated collagen fibers of the present invention is preferably 1.0 to 50% by mass, more preferably 5.0 to 40% by mass, and still more preferably 10% by mass as benzoic acid. ~40% by weight, even more preferably 12-40% by weight, even more preferably 15-30% by weight.
(成分(B):多価金属、又はその塩若しくはその錯体)
本発明の改質再生コラーゲン繊維は、耐水性向上の観点から、更に(B)多価金属、又はその塩若しくはその錯体を含有することが好ましい。多価金属としては、カルシウム、マグネシウム、ストロンチウム、バリウム、亜鉛、クロム、アルミニウム、チタン、ジルコニウム、スズ、鉛、アンチモン、鉄、銅等が挙げられ、耐水性向上、及び、繊維の着色低減や、環境への影響低減、経済性向上の観点から、好ましくはアルミニウム、ジルコニウム、チタン、より好ましくはアルミニウムが用いられる。これらはいずれかを単独で又は2種以上を組み合わせて使用することができる。 (Component (B): polyvalent metal, its salt, or its complex)
The modified regenerated collagen fiber of the present invention preferably further contains (B) a polyvalent metal, a salt thereof, or a complex thereof from the viewpoint of improving water resistance. Examples of polyvalent metals include calcium, magnesium, strontium, barium, zinc, chromium, aluminum, titanium, zirconium, tin, lead, antimony, iron, and copper, which improve water resistance, reduce coloration of fibers, From the viewpoint of reducing environmental impact and improving economic efficiency, aluminum, zirconium, and titanium are preferably used, and aluminum is more preferably used. Any of these can be used alone or in combination of two or more.
本発明の改質再生コラーゲン繊維は、耐水性向上の観点から、更に(B)多価金属、又はその塩若しくはその錯体を含有することが好ましい。多価金属としては、カルシウム、マグネシウム、ストロンチウム、バリウム、亜鉛、クロム、アルミニウム、チタン、ジルコニウム、スズ、鉛、アンチモン、鉄、銅等が挙げられ、耐水性向上、及び、繊維の着色低減や、環境への影響低減、経済性向上の観点から、好ましくはアルミニウム、ジルコニウム、チタン、より好ましくはアルミニウムが用いられる。これらはいずれかを単独で又は2種以上を組み合わせて使用することができる。 (Component (B): polyvalent metal, its salt, or its complex)
The modified regenerated collagen fiber of the present invention preferably further contains (B) a polyvalent metal, a salt thereof, or a complex thereof from the viewpoint of improving water resistance. Examples of polyvalent metals include calcium, magnesium, strontium, barium, zinc, chromium, aluminum, titanium, zirconium, tin, lead, antimony, iron, and copper, which improve water resistance, reduce coloration of fibers, From the viewpoint of reducing environmental impact and improving economic efficiency, aluminum, zirconium, and titanium are preferably used, and aluminum is more preferably used. Any of these can be used alone or in combination of two or more.
本発明の改質再生コラーゲン繊維中における成分(B)の含有量は、耐水性向上の観点から、金属元素量として、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、更に好ましくは1.0質量%以上、更により好ましくは2.0質量%以上、更により好ましくは5.0質量%以上であり、また、繊維表面の感触の向上観点から、好ましくは40質量%以下、より好ましくは30質量%以下、更に好ましくは20質量%以下、更により好ましくは10質量%以下、更により好ましくは7.0質量%以下である。
すなわち、本発明の改質再生コラーゲン繊維中における成分(B)の含有量は、前記観点から、金属元素量として、好ましくは0.1~40質量%、より好ましくは0.5~30質量%、更に好ましくは1.0~20質量%、更により好ましくは2.0~10質量%、更により好ましくは5.0~7.0質量%である。 From the viewpoint of improving water resistance, the content of component (B) in the modified regenerated collagen fibers of the present invention is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and still more preferably 1.0% by mass. % by mass or more, even more preferably 2.0% by mass or more, even more preferably 5.0% by mass or more, and from the viewpoint of improving the feel of the fiber surface, preferably 40% by mass or less, more preferably 30% by mass or less, It is more preferably 20% by mass or less, even more preferably 10% by mass or less, even more preferably 7.0% by mass or less.
That is, from the above viewpoint, the content of component (B) in the modified regenerated collagen fibers of the present invention is preferably 0.1 to 40% by mass, more preferably 0.5 to 30% by mass, even more preferably 1.0 to 20% by weight, even more preferably 2.0 to 10% by weight, even more preferably 5.0 to 7.0% by weight.
すなわち、本発明の改質再生コラーゲン繊維中における成分(B)の含有量は、前記観点から、金属元素量として、好ましくは0.1~40質量%、より好ましくは0.5~30質量%、更に好ましくは1.0~20質量%、更により好ましくは2.0~10質量%、更により好ましくは5.0~7.0質量%である。 From the viewpoint of improving water resistance, the content of component (B) in the modified regenerated collagen fibers of the present invention is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and still more preferably 1.0% by mass. % by mass or more, even more preferably 2.0% by mass or more, even more preferably 5.0% by mass or more, and from the viewpoint of improving the feel of the fiber surface, preferably 40% by mass or less, more preferably 30% by mass or less, It is more preferably 20% by mass or less, even more preferably 10% by mass or less, even more preferably 7.0% by mass or less.
That is, from the above viewpoint, the content of component (B) in the modified regenerated collagen fibers of the present invention is preferably 0.1 to 40% by mass, more preferably 0.5 to 30% by mass, even more preferably 1.0 to 20% by weight, even more preferably 2.0 to 10% by weight, even more preferably 5.0 to 7.0% by weight.
本発明の改質再生コラーゲン繊維中における、成分(B)の金属元素としての含有量(成分(B)金属元素量)に対する成分(A)の安息香酸としての含有量(成分(A)安息香酸量)の質量比(成分(A)安息香酸量)/(成分(B)金属元素量)は、より高い形状持続性、耐水性及び耐熱性を有するものとする観点から、好ましくは0.025以上、より好ましくは0.2以上、更に好ましくは0.5以上、更により好ましくは1.0以上、更により好ましくは2.0以上、更により好ましくは2.5以上であり、また、高い耐久性を有するものとする観点及び繊維表面の感触を向上する観点から、好ましくは100以下、より好ましくは50以下、更に好ましくは20以下、更により好ましくは10以下、更により好ましくは8以下、更により好ましくは6以下、更により好ましくは4以下である。
すなわち、本発明の改質再生コラーゲン繊維中における、質量比(成分(A)安息香酸量)/(成分(B)金属元素量)は、前記観点から、好ましくは0.025~100、より好ましくは0.2~50、更に好ましくは0.5~20、更により好ましくは1.0~10、更により好ましくは2.0~8、更により好ましくは2.5~6、更により好ましくは2.5~4である。 In the modified regenerated collagen fibers of the present invention, the content of component (A) as benzoic acid (component (A) benzoic acid The mass ratio (component (A) benzoic acid amount )/(component (B) metal element amount ) is preferably 0.025 or more, from the viewpoint of having higher shape sustainability, water resistance, and heat resistance. More preferably 0.2 or more, still more preferably 0.5 or more, even more preferably 1.0 or more, even more preferably 2.0 or more, even more preferably 2.5 or more, and from the viewpoint of having high durability and the fiber surface. From the viewpoint of improving the feel, it is preferably 100 or less, more preferably 50 or less, even more preferably 20 or less, even more preferably 10 or less, even more preferably 8 or less, even more preferably 6 or less, and even more preferably 4. It is as follows.
That is, from the above point of view, the mass ratio (component (A) amount of benzoic acid )/(component (B) amount of metal element ) in the modified regenerated collagen fibers of the present invention is preferably 0.025 to 100, more preferably 0.2. -50, more preferably 0.5-20, even more preferably 1.0-10, even more preferably 2.0-8, even more preferably 2.5-6, even more preferably 2.5-4.
すなわち、本発明の改質再生コラーゲン繊維中における、質量比(成分(A)安息香酸量)/(成分(B)金属元素量)は、前記観点から、好ましくは0.025~100、より好ましくは0.2~50、更に好ましくは0.5~20、更により好ましくは1.0~10、更により好ましくは2.0~8、更により好ましくは2.5~6、更により好ましくは2.5~4である。 In the modified regenerated collagen fibers of the present invention, the content of component (A) as benzoic acid (component (A) benzoic acid The mass ratio (component (A) benzoic acid amount )/(component (B) metal element amount ) is preferably 0.025 or more, from the viewpoint of having higher shape sustainability, water resistance, and heat resistance. More preferably 0.2 or more, still more preferably 0.5 or more, even more preferably 1.0 or more, even more preferably 2.0 or more, even more preferably 2.5 or more, and from the viewpoint of having high durability and the fiber surface. From the viewpoint of improving the feel, it is preferably 100 or less, more preferably 50 or less, even more preferably 20 or less, even more preferably 10 or less, even more preferably 8 or less, even more preferably 6 or less, and even more preferably 4. It is as follows.
That is, from the above point of view, the mass ratio (component (A) amount of benzoic acid )/(component (B) amount of metal element ) in the modified regenerated collagen fibers of the present invention is preferably 0.025 to 100, more preferably 0.2. -50, more preferably 0.5-20, even more preferably 1.0-10, even more preferably 2.0-8, even more preferably 2.5-6, even more preferably 2.5-4.
本発明の改質再生コラーゲン繊維は、熱セットにより形状を付与することができ、耐水性、耐熱性、引張弾性率に優れ、再生コラーゲン繊維の伸縮性(粘り強さ)を高度に改善した繊維である。したがって、本発明の改質再生コラーゲン繊維は頭飾製品用繊維として好適に利用することができ、また、当該繊維を用いて各種の頭飾製品を製造することができる。
なお、本発明において好適な頭飾製品としては、例えば、ヘアーウィッグ、かつら、ウィービング、ヘアーエクステンション、ブレードヘアー、ヘアーアクセサリー、ドールヘアー等が挙げられる。 The modified regenerated collagen fibers of the present invention can be given a shape by heat setting, have excellent water resistance, heat resistance, and tensile modulus, and are fibers with highly improved elasticity (tenacity) of the regenerated collagen fibers. be. Therefore, the modified regenerated collagen fibers of the present invention can be suitably used as fibers for headdress products, and various headdress products can be manufactured using the fibers.
In addition, suitable headdress products in the present invention include, for example, hair wigs, wigs, weaving, hair extensions, braided hair, hair accessories, doll hair, and the like.
なお、本発明において好適な頭飾製品としては、例えば、ヘアーウィッグ、かつら、ウィービング、ヘアーエクステンション、ブレードヘアー、ヘアーアクセサリー、ドールヘアー等が挙げられる。 The modified regenerated collagen fibers of the present invention can be given a shape by heat setting, have excellent water resistance, heat resistance, and tensile modulus, and are fibers with highly improved elasticity (tenacity) of the regenerated collagen fibers. be. Therefore, the modified regenerated collagen fibers of the present invention can be suitably used as fibers for headdress products, and various headdress products can be manufactured using the fibers.
In addition, suitable headdress products in the present invention include, for example, hair wigs, wigs, weaving, hair extensions, braided hair, hair accessories, doll hair, and the like.
本発明の改質再生コラーゲン繊維は、単独で頭飾製品として用いてもよく、他の繊維と混合して頭飾製品としてもよい。他の繊維としては、頭飾製品に用いることができる繊維であればよく、特に限定されない。他の繊維としては、例えば、ポリエステル系繊維、人毛、獣毛、ポリ塩化ビニル系繊維、モダアクリル繊維、ポリアミド系繊維、ポリオレフィン系繊維等が挙げられ、なかでも、耐熱性、難燃性及びカール保持性に優れるという観点から、ポリエステル系繊維が好ましく、難燃性ポリエステル系繊維がより好ましい。
The modified regenerated collagen fibers of the present invention may be used alone as a headdress product, or may be mixed with other fibers to make a headdress product. Other fibers are not particularly limited as long as they can be used for headdress products. Other fibers include, for example, polyester fibers, human hair, animal hair, polyvinyl chloride fibers, modacrylic fibers, polyamide fibers, polyolefin fibers, etc. From the viewpoint of excellent retention, polyester fibers are preferred, and flame-retardant polyester fibers are more preferred.
前記難燃性ポリエステル系繊維は、特に限定されないが、難燃性の観点から、ポリアルキレンテレフタレート、及びポリアルキレンテレフタレートを主体とする共重合ポリエステルからなる群から選ばれる一つ以上のポリエステル樹脂100質量部に対して臭素化エポキシ系難燃剤を5~40質量部含むことが好ましい。本発明において、「主体とする」とは、50モル%以上含有されることを意味し、「ポリアルキレンテレフタレートを主体とする共重合ポリエステル」は、ポリアルキレンテレフタレートを50モル%以上含有する共重合ポリエステルをいう。好ましくは、「ポリアルキレンテレフタレートを主体とする共重合ポリエステル」は、ポリアルキレンテレフタレートを60モル%以上、より好ましくは70モル%以上、更に好ましくは80モル%以上含有する。前記難燃性ポリエステル系繊維は、さらに、ポリエステル樹脂100質量部に対し、アンチモン化合物を0~5質量部含むことが好ましい。アンチモン化合物を含むことにより、ポリエステル系繊維の難燃性が向上する。
The flame-retardant polyester fiber is not particularly limited, but from the viewpoint of flame retardancy, the flame-retardant polyester fiber is one or more polyester resins selected from the group consisting of polyalkylene terephthalate and copolyester mainly composed of polyalkylene terephthalate. It is preferable that the brominated epoxy flame retardant is contained in an amount of 5 to 40 parts by mass. In the present invention, "containing mainly" means containing 50 mol% or more, and "copolyester mainly containing polyalkylene terephthalate" means copolymer containing polyalkylene terephthalate at 50 mol% or more. Refers to polyester. Preferably, the "copolyester mainly composed of polyalkylene terephthalate" contains polyalkylene terephthalate in an amount of 60 mol% or more, more preferably 70 mol% or more, still more preferably 80 mol% or more. Preferably, the flame-retardant polyester fiber further contains 0 to 5 parts by mass of an antimony compound based on 100 parts by mass of the polyester resin. Including an antimony compound improves the flame retardancy of the polyester fiber.
以上述べた実施形態に関し、以下に本発明の好ましい態様を更に開示する。
Regarding the embodiments described above, preferred aspects of the present invention will be further disclosed below.
<1>
再生コラーゲン繊維中に以下の成分(A)を安息香酸として1.0質量%以上含有してなる改質再生コラーゲン繊維。
(A) 安息香酸又はその塩 <1>
A modified regenerated collagen fiber containing 1.0% by mass or more of the following component (A) as benzoic acid in the regenerated collagen fiber.
(A) Benzoic acid or its salts
再生コラーゲン繊維中に以下の成分(A)を安息香酸として1.0質量%以上含有してなる改質再生コラーゲン繊維。
(A) 安息香酸又はその塩 <1>
A modified regenerated collagen fiber containing 1.0% by mass or more of the following component (A) as benzoic acid in the regenerated collagen fiber.
(A) Benzoic acid or its salts
<2>
成分(A)の含有量が、安息香酸として、好ましくは5.0質量%以上、より好ましくは10質量%以上、更に好ましくは12質量%以上、更により好ましくは15質量%以上であり、また、好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは30質量%以下である、<1>に記載の改質再生コラーゲン繊維。 <2>
The content of component (A) as benzoic acid is preferably 5.0% by mass or more, more preferably 10% by mass or more, still more preferably 12% by mass or more, even more preferably 15% by mass or more, and preferably is 50% by mass or less, more preferably 40% by mass or less, even more preferably 30% by mass or less, the modified regenerated collagen fiber according to <1>.
成分(A)の含有量が、安息香酸として、好ましくは5.0質量%以上、より好ましくは10質量%以上、更に好ましくは12質量%以上、更により好ましくは15質量%以上であり、また、好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは30質量%以下である、<1>に記載の改質再生コラーゲン繊維。 <2>
The content of component (A) as benzoic acid is preferably 5.0% by mass or more, more preferably 10% by mass or more, still more preferably 12% by mass or more, even more preferably 15% by mass or more, and preferably is 50% by mass or less, more preferably 40% by mass or less, even more preferably 30% by mass or less, the modified regenerated collagen fiber according to <1>.
<3>
好ましくは、さらに、以下の成分(B)を含有する<1>又は<2>に記載の改質再生コラーゲン繊維。
(B) 多価金属、又はその塩若しくはその錯体 <3>
Preferably, the modified regenerated collagen fiber according to <1> or <2> further contains the following component (B).
(B) Polyvalent metal, its salt or its complex
好ましくは、さらに、以下の成分(B)を含有する<1>又は<2>に記載の改質再生コラーゲン繊維。
(B) 多価金属、又はその塩若しくはその錯体 <3>
Preferably, the modified regenerated collagen fiber according to <1> or <2> further contains the following component (B).
(B) Polyvalent metal, its salt or its complex
<4>
成分(B)が、好ましくはカルシウム、マグネシウム、ストロンチウム、バリウム、亜鉛、クロム、アルミニウム、チタン、ジルコニウム、スズ、鉛、アンチモン、鉄及び銅から選ばれる1種以上の多価金属又はその塩若しくはその錯体、より好ましくはアルミニウム、ジルコニウム及びチタンから選ばれる1種以上の多価金属又はその塩若しくはその錯体、更に好ましくはアルミニウム又はその塩若しくはその錯体である、<3>に記載の改質再生コラーゲン繊維。 <4>
Component (B) is preferably one or more polyvalent metals selected from calcium, magnesium, strontium, barium, zinc, chromium, aluminum, titanium, zirconium, tin, lead, antimony, iron and copper, or a salt thereof or a salt thereof. The modified regenerated collagen according to <3>, which is a complex, more preferably one or more polyvalent metals selected from aluminum, zirconium, and titanium, or a salt thereof, or a complex thereof, and even more preferably aluminum, a salt thereof, or a complex thereof. fiber.
成分(B)が、好ましくはカルシウム、マグネシウム、ストロンチウム、バリウム、亜鉛、クロム、アルミニウム、チタン、ジルコニウム、スズ、鉛、アンチモン、鉄及び銅から選ばれる1種以上の多価金属又はその塩若しくはその錯体、より好ましくはアルミニウム、ジルコニウム及びチタンから選ばれる1種以上の多価金属又はその塩若しくはその錯体、更に好ましくはアルミニウム又はその塩若しくはその錯体である、<3>に記載の改質再生コラーゲン繊維。 <4>
Component (B) is preferably one or more polyvalent metals selected from calcium, magnesium, strontium, barium, zinc, chromium, aluminum, titanium, zirconium, tin, lead, antimony, iron and copper, or a salt thereof or a salt thereof. The modified regenerated collagen according to <3>, which is a complex, more preferably one or more polyvalent metals selected from aluminum, zirconium, and titanium, or a salt thereof, or a complex thereof, and even more preferably aluminum, a salt thereof, or a complex thereof. fiber.
<5>
成分(B)の含有量が、金属元素量として、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、更に好ましくは1.0質量%以上、更により好ましくは2.0質量%以上、更により好ましくは5.0質量%以上であり、また、好ましくは40質量%以下、より好ましくは30質量%以下、更に好ましくは20質量%以下、更により好ましくは10質量%以下、更により好ましくは7.0質量%以下である、<3>又は<4>に記載の改質再生コラーゲン繊維。 <5>
The content of component (B) is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, still more preferably 1.0% by mass or more, even more preferably 2.0% by mass or more, and even more preferably 5.0% by mass or more, and preferably 40% by mass or less, more preferably 30% by mass or less, even more preferably 20% by mass or less, even more preferably 10% by mass or less, even more preferably 7.0% by mass or less. The modified regenerated collagen fiber according to <3> or <4>.
成分(B)の含有量が、金属元素量として、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、更に好ましくは1.0質量%以上、更により好ましくは2.0質量%以上、更により好ましくは5.0質量%以上であり、また、好ましくは40質量%以下、より好ましくは30質量%以下、更に好ましくは20質量%以下、更により好ましくは10質量%以下、更により好ましくは7.0質量%以下である、<3>又は<4>に記載の改質再生コラーゲン繊維。 <5>
The content of component (B) is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, still more preferably 1.0% by mass or more, even more preferably 2.0% by mass or more, and even more preferably 5.0% by mass or more, and preferably 40% by mass or less, more preferably 30% by mass or less, even more preferably 20% by mass or less, even more preferably 10% by mass or less, even more preferably 7.0% by mass or less. The modified regenerated collagen fiber according to <3> or <4>.
<6>
成分(B)の金属元素としての含有量に対する、成分(A)の安息香酸としての含有量の質量比(成分(A)安息香酸量)/(成分(B)金属元素量)が、好ましくは0.025以上、より好ましくは0.2以上、更に好ましくは0.5以上、更により好ましくは1.0以上、更により好ましくは2.0以上、更により好ましくは2.5以上であり、また、好ましくは100以下、より好ましくは50以下、更に好ましくは20以下、更により好ましくは10以下、更により好ましくは8以下、更により好ましくは6以下、更により好ましくは4以下である、<1>~<5>のいずれか1項に記載の改質再生コラーゲン繊維。 <6>
The mass ratio of the content of component (A) as benzoic acid to the content of component (B) as a metal element (component (A) benzoic acid amount )/(component (B) metal element amount ) is preferably 0.025 or more, more preferably 0.2 or more, still more preferably 0.5 or more, even more preferably 1.0 or more, even more preferably 2.0 or more, even more preferably 2.5 or more, and preferably 100 or less, more preferably 50 or less , more preferably 20 or less, even more preferably 10 or less, even more preferably 8 or less, even more preferably 6 or less, even more preferably 4 or less, according to any one of <1> to <5>. Modified regenerated collagen fibers as described.
成分(B)の金属元素としての含有量に対する、成分(A)の安息香酸としての含有量の質量比(成分(A)安息香酸量)/(成分(B)金属元素量)が、好ましくは0.025以上、より好ましくは0.2以上、更に好ましくは0.5以上、更により好ましくは1.0以上、更により好ましくは2.0以上、更により好ましくは2.5以上であり、また、好ましくは100以下、より好ましくは50以下、更に好ましくは20以下、更により好ましくは10以下、更により好ましくは8以下、更により好ましくは6以下、更により好ましくは4以下である、<1>~<5>のいずれか1項に記載の改質再生コラーゲン繊維。 <6>
The mass ratio of the content of component (A) as benzoic acid to the content of component (B) as a metal element (component (A) benzoic acid amount )/(component (B) metal element amount ) is preferably 0.025 or more, more preferably 0.2 or more, still more preferably 0.5 or more, even more preferably 1.0 or more, even more preferably 2.0 or more, even more preferably 2.5 or more, and preferably 100 or less, more preferably 50 or less , more preferably 20 or less, even more preferably 10 or less, even more preferably 8 or less, even more preferably 6 or less, even more preferably 4 or less, according to any one of <1> to <5>. Modified regenerated collagen fibers as described.
<7>
下記工程(i)を含む再生コラーゲン繊維処理方法。
工程(i) 以下の成分(A)を含有する繊維処理剤に再生コラーゲン繊維を浸漬する工程
(A) 安息香酸又はその塩 <7>
A regenerated collagen fiber processing method comprising the following step (i).
Step (i) Step of immersing regenerated collagen fibers in a fiber treatment agent containing the following component (A) (A) Benzoic acid or its salt
下記工程(i)を含む再生コラーゲン繊維処理方法。
工程(i) 以下の成分(A)を含有する繊維処理剤に再生コラーゲン繊維を浸漬する工程
(A) 安息香酸又はその塩 <7>
A regenerated collagen fiber processing method comprising the following step (i).
Step (i) Step of immersing regenerated collagen fibers in a fiber treatment agent containing the following component (A) (A) Benzoic acid or its salt
<8>
工程(i)の前に、家畜動物の床皮を原料とする不溶性コラーゲン繊維を可溶化処理して得られた可溶化コラーゲン水溶液を紡糸ノズル又はスリットを通して吐出し、無機塩水溶液に浸漬する再生コラーゲン繊維製造工程を含む、<7>に記載の再生コラーゲン繊維処理方法。 <8>
Before step (i), a solubilized collagen aqueous solution obtained by solubilizing insoluble collagen fibers made from livestock animal bedding is discharged through a spinning nozzle or slit, and the regenerated collagen is immersed in an inorganic salt aqueous solution. The regenerated collagen fiber processing method according to <7>, which includes a fiber manufacturing step.
工程(i)の前に、家畜動物の床皮を原料とする不溶性コラーゲン繊維を可溶化処理して得られた可溶化コラーゲン水溶液を紡糸ノズル又はスリットを通して吐出し、無機塩水溶液に浸漬する再生コラーゲン繊維製造工程を含む、<7>に記載の再生コラーゲン繊維処理方法。 <8>
Before step (i), a solubilized collagen aqueous solution obtained by solubilizing insoluble collagen fibers made from livestock animal bedding is discharged through a spinning nozzle or slit, and the regenerated collagen is immersed in an inorganic salt aqueous solution. The regenerated collagen fiber processing method according to <7>, which includes a fiber manufacturing step.
<9>
好ましくは、前記再生コラーゲン繊維製造工程の後、再生コラーゲン繊維をエポキシ化合物又はその溶液に浸漬する架橋処理工程を含む、<8>に記載の再生コラーゲン繊維処理方法。 <9>
Preferably, the regenerated collagen fiber processing method according to <8>, which includes a crosslinking treatment step of immersing the regenerated collagen fibers in an epoxy compound or a solution thereof after the regenerated collagen fiber manufacturing step.
好ましくは、前記再生コラーゲン繊維製造工程の後、再生コラーゲン繊維をエポキシ化合物又はその溶液に浸漬する架橋処理工程を含む、<8>に記載の再生コラーゲン繊維処理方法。 <9>
Preferably, the regenerated collagen fiber processing method according to <8>, which includes a crosslinking treatment step of immersing the regenerated collagen fibers in an epoxy compound or a solution thereof after the regenerated collagen fiber manufacturing step.
<10>
前記再生コラーゲン繊維が、以下の成分(B)を含有する、<7>~<9>のいずれか1項に記載の再生コラーゲン繊維処理方法。
(B) 多価金属、又はその塩若しくはその錯体 <10>
The regenerated collagen fiber processing method according to any one of <7> to <9>, wherein the regenerated collagen fiber contains the following component (B).
(B) Polyvalent metal, its salt or its complex
前記再生コラーゲン繊維が、以下の成分(B)を含有する、<7>~<9>のいずれか1項に記載の再生コラーゲン繊維処理方法。
(B) 多価金属、又はその塩若しくはその錯体 <10>
The regenerated collagen fiber processing method according to any one of <7> to <9>, wherein the regenerated collagen fiber contains the following component (B).
(B) Polyvalent metal, its salt or its complex
<11>
成分(B)が、好ましくはカルシウム、マグネシウム、ストロンチウム、バリウム、亜鉛、クロム、アルミニウム、チタン、ジルコニウム、スズ、鉛、アンチモン、鉄及び銅から選ばれる1種以上の多価金属又はその塩若しくはその錯体、より好ましくはアルミニウム、ジルコニウム及びチタンから選ばれる1種以上の多価金属又はその塩若しくはその錯体、更に好ましくはアルミニウム又はその塩若しくはその錯体である、<10>に記載の再生コラーゲン繊維処理方法。 <11>
Component (B) is preferably one or more polyvalent metals selected from calcium, magnesium, strontium, barium, zinc, chromium, aluminum, titanium, zirconium, tin, lead, antimony, iron and copper, or a salt thereof or a salt thereof. The regenerated collagen fiber treatment according to <10>, which is a complex, more preferably one or more polyvalent metals selected from aluminum, zirconium, and titanium, or a salt thereof, or a complex thereof, and even more preferably aluminum, a salt thereof, or a complex thereof. Method.
成分(B)が、好ましくはカルシウム、マグネシウム、ストロンチウム、バリウム、亜鉛、クロム、アルミニウム、チタン、ジルコニウム、スズ、鉛、アンチモン、鉄及び銅から選ばれる1種以上の多価金属又はその塩若しくはその錯体、より好ましくはアルミニウム、ジルコニウム及びチタンから選ばれる1種以上の多価金属又はその塩若しくはその錯体、更に好ましくはアルミニウム又はその塩若しくはその錯体である、<10>に記載の再生コラーゲン繊維処理方法。 <11>
Component (B) is preferably one or more polyvalent metals selected from calcium, magnesium, strontium, barium, zinc, chromium, aluminum, titanium, zirconium, tin, lead, antimony, iron and copper, or a salt thereof or a salt thereof. The regenerated collagen fiber treatment according to <10>, which is a complex, more preferably one or more polyvalent metals selected from aluminum, zirconium, and titanium, or a salt thereof, or a complex thereof, and even more preferably aluminum, a salt thereof, or a complex thereof. Method.
<12>
工程(i)で使用する繊維処理剤の25℃におけるpHが、好ましくは2.0以上、より好ましくは3.0以上、更に好ましくは3.5以上、更により好ましくは4.0以上であり、また、好ましくは11.0以下、より好ましくは10.0以下、更に好ましくは9.0以下である、<7>~<11>のいずれか1項に記載の再生コラーゲン繊維処理方法。 <12>
The pH at 25°C of the fiber treatment agent used in step (i) is preferably 2.0 or higher, more preferably 3.0 or higher, even more preferably 3.5 or higher, even more preferably 4.0 or higher, and preferably 11.0 or lower, The method for treating regenerated collagen fibers according to any one of <7> to <11>, which is more preferably 10.0 or less, and even more preferably 9.0 or less.
工程(i)で使用する繊維処理剤の25℃におけるpHが、好ましくは2.0以上、より好ましくは3.0以上、更に好ましくは3.5以上、更により好ましくは4.0以上であり、また、好ましくは11.0以下、より好ましくは10.0以下、更に好ましくは9.0以下である、<7>~<11>のいずれか1項に記載の再生コラーゲン繊維処理方法。 <12>
The pH at 25°C of the fiber treatment agent used in step (i) is preferably 2.0 or higher, more preferably 3.0 or higher, even more preferably 3.5 or higher, even more preferably 4.0 or higher, and preferably 11.0 or lower, The method for treating regenerated collagen fibers according to any one of <7> to <11>, which is more preferably 10.0 or less, and even more preferably 9.0 or less.
<13>
工程(i)で使用する繊維処理剤のpHが2.0以上かつ6.5未満であって、繊維処理剤中における成分(A)の含有量が、安息香酸として、好ましくは0.8質量%以上、より好ましくは3.0質量%以上、更に好ましくは5.0質量%以上、更により好ましくは10質量%以上、更により好ましくは15質量%以上、更により好ましくは20質量%以上であり、また、好ましくは90質量%以下、より好ましくは80質量%以下、更に好ましくは70質量%以下、更により好ましくは50質量%以下、更により好ましくは40質量%以下、更により好ましくは35質量%以下である、<7>~<12>のいずれか1項に記載の再生コラーゲン繊維処理方法。 <13>
The pH of the fiber treatment agent used in step (i) is 2.0 or more and less than 6.5, and the content of component (A) in the fiber treatment agent is preferably 0.8% by mass or more, more preferably 0.8% by mass or more as benzoic acid. 3.0% by mass or more, more preferably 5.0% by mass or more, even more preferably 10% by mass or more, even more preferably 15% by mass or more, even more preferably 20% by mass or more, and preferably 90% by mass or less , more preferably 80% by mass or less, still more preferably 70% by mass or less, even more preferably 50% by mass or less, even more preferably 40% by mass or less, even more preferably 35% by mass or less, <7>~ The regenerated collagen fiber processing method according to any one of <12>.
工程(i)で使用する繊維処理剤のpHが2.0以上かつ6.5未満であって、繊維処理剤中における成分(A)の含有量が、安息香酸として、好ましくは0.8質量%以上、より好ましくは3.0質量%以上、更に好ましくは5.0質量%以上、更により好ましくは10質量%以上、更により好ましくは15質量%以上、更により好ましくは20質量%以上であり、また、好ましくは90質量%以下、より好ましくは80質量%以下、更に好ましくは70質量%以下、更により好ましくは50質量%以下、更により好ましくは40質量%以下、更により好ましくは35質量%以下である、<7>~<12>のいずれか1項に記載の再生コラーゲン繊維処理方法。 <13>
The pH of the fiber treatment agent used in step (i) is 2.0 or more and less than 6.5, and the content of component (A) in the fiber treatment agent is preferably 0.8% by mass or more, more preferably 0.8% by mass or more as benzoic acid. 3.0% by mass or more, more preferably 5.0% by mass or more, even more preferably 10% by mass or more, even more preferably 15% by mass or more, even more preferably 20% by mass or more, and preferably 90% by mass or less , more preferably 80% by mass or less, still more preferably 70% by mass or less, even more preferably 50% by mass or less, even more preferably 40% by mass or less, even more preferably 35% by mass or less, <7>~ The regenerated collagen fiber processing method according to any one of <12>.
<14>
工程(i)で使用する繊維処理剤のpHが6.5以上11.0以下であって、繊維処理剤中における成分(A)の含有量は、安息香酸として、好ましくは0.8質量%以上、より好ましくは3.0質量%以上、更に好ましくは5.0質量%以上、更により好ましくは10質量%以上、更により好ましくは15質量%以上、更により好ましくは20質量%以上、更により好ましくは25質量%以上、更により好ましくは26質量%以上、更により好ましくは28質量%以上、更により好ましくは30質量%以上であり、また、好ましくは90質量%以下、より好ましくは80質量%以下、更に好ましくは70質量%以下、更により好ましくは50質量%以下、更により好ましくは45質量%以下、更により好ましくは40質量%以下である、<7>~<12>のいずれか1項に記載の再生コラーゲン繊維処理方法。 <14>
The pH of the fiber treatment agent used in step (i) is 6.5 or more and 11.0 or less, and the content of component (A) in the fiber treatment agent is preferably 0.8% by mass or more, more preferably 3.0% as benzoic acid. mass% or more, more preferably 5.0 mass% or more, even more preferably 10 mass% or more, even more preferably 15 mass% or more, even more preferably 20 mass% or more, even more preferably 25 mass% or more, and even more Preferably 26% by mass or more, even more preferably 28% by mass or more, even more preferably 30% by mass or more, and preferably 90% by mass or less, more preferably 80% by mass or less, even more preferably 70% by mass. The regenerated collagen fiber treatment according to any one of <7> to <12>, which is still more preferably 50% by mass or less, even more preferably 45% by mass or less, even more preferably 40% by mass or less Method.
工程(i)で使用する繊維処理剤のpHが6.5以上11.0以下であって、繊維処理剤中における成分(A)の含有量は、安息香酸として、好ましくは0.8質量%以上、より好ましくは3.0質量%以上、更に好ましくは5.0質量%以上、更により好ましくは10質量%以上、更により好ましくは15質量%以上、更により好ましくは20質量%以上、更により好ましくは25質量%以上、更により好ましくは26質量%以上、更により好ましくは28質量%以上、更により好ましくは30質量%以上であり、また、好ましくは90質量%以下、より好ましくは80質量%以下、更に好ましくは70質量%以下、更により好ましくは50質量%以下、更により好ましくは45質量%以下、更により好ましくは40質量%以下である、<7>~<12>のいずれか1項に記載の再生コラーゲン繊維処理方法。 <14>
The pH of the fiber treatment agent used in step (i) is 6.5 or more and 11.0 or less, and the content of component (A) in the fiber treatment agent is preferably 0.8% by mass or more, more preferably 3.0% as benzoic acid. mass% or more, more preferably 5.0 mass% or more, even more preferably 10 mass% or more, even more preferably 15 mass% or more, even more preferably 20 mass% or more, even more preferably 25 mass% or more, and even more Preferably 26% by mass or more, even more preferably 28% by mass or more, even more preferably 30% by mass or more, and preferably 90% by mass or less, more preferably 80% by mass or less, even more preferably 70% by mass. The regenerated collagen fiber treatment according to any one of <7> to <12>, which is still more preferably 50% by mass or less, even more preferably 45% by mass or less, even more preferably 40% by mass or less Method.
<15>
工程(i)で使用する繊維処理剤が水を媒体とし、繊維処理剤中における水の含有量が、好ましくは10質量%以上、より好ましくは20質量%以上、更に好ましくは30質量%以上、更により好ましくは40質量%以上であり、また好ましくは95質量%以下、より好ましくは90質量%以下、更に好ましくは85質量%以下である、<7>~<14>のいずれか1項に記載の再生コラーゲン繊維処理方法。 <15>
The fiber treatment agent used in step (i) uses water as a medium, and the content of water in the fiber treatment agent is preferably 10% by mass or more, more preferably 20% by mass or more, even more preferably 30% by mass or more, Still more preferably 40% by mass or more, and preferably 95% by mass or less, more preferably 90% by mass or less, even more preferably 85% by mass or less, in any one of <7> to <14>. The regenerated collagen fiber processing method described.
工程(i)で使用する繊維処理剤が水を媒体とし、繊維処理剤中における水の含有量が、好ましくは10質量%以上、より好ましくは20質量%以上、更に好ましくは30質量%以上、更により好ましくは40質量%以上であり、また好ましくは95質量%以下、より好ましくは90質量%以下、更に好ましくは85質量%以下である、<7>~<14>のいずれか1項に記載の再生コラーゲン繊維処理方法。 <15>
The fiber treatment agent used in step (i) uses water as a medium, and the content of water in the fiber treatment agent is preferably 10% by mass or more, more preferably 20% by mass or more, even more preferably 30% by mass or more, Still more preferably 40% by mass or more, and preferably 95% by mass or less, more preferably 90% by mass or less, even more preferably 85% by mass or less, in any one of <7> to <14>. The regenerated collagen fiber processing method described.
<16>
工程(i)において再生コラーゲン繊維を浸漬する繊維処理剤の量が、再生コラーゲン繊維の質量に対する浴比(繊維処理剤の質量/再生コラーゲン繊維の質量)で、好ましくは2以上、より好ましくは3以上、更に好ましくは5以上、更により好ましくは10以上、更により好ましくは20以上であり、また好ましくは500以下、より好ましくは250以下、更に好ましくは100以下である、<7>~<15>のいずれか1項に記載の再生コラーゲン繊維処理方法。 <16>
The amount of the fiber treatment agent in which the regenerated collagen fibers are immersed in step (i) is a bath ratio (mass of the fiber treatment agent/mass of the regenerated collagen fiber) to the mass of the regenerated collagen fibers, preferably 2 or more, more preferably 3. <7> to <15 >The method for treating regenerated collagen fibers according to any one of >.
工程(i)において再生コラーゲン繊維を浸漬する繊維処理剤の量が、再生コラーゲン繊維の質量に対する浴比(繊維処理剤の質量/再生コラーゲン繊維の質量)で、好ましくは2以上、より好ましくは3以上、更に好ましくは5以上、更により好ましくは10以上、更により好ましくは20以上であり、また好ましくは500以下、より好ましくは250以下、更に好ましくは100以下である、<7>~<15>のいずれか1項に記載の再生コラーゲン繊維処理方法。 <16>
The amount of the fiber treatment agent in which the regenerated collagen fibers are immersed in step (i) is a bath ratio (mass of the fiber treatment agent/mass of the regenerated collagen fiber) to the mass of the regenerated collagen fibers, preferably 2 or more, more preferably 3. <7> to <15 >The method for treating regenerated collagen fibers according to any one of >.
<17>
工程(i)における再生コラーゲン繊維を浸漬する繊維処理剤の温度が、好ましくは20℃以上、より好ましくは35℃以上、更に好ましくは45℃以上であり、また、好ましくは100℃未満、より好ましくは80℃以下、更に好ましくは70℃以下、更に好ましくは60℃以下である、<7>~<16>のいずれか1項に記載の再生コラーゲン繊維処理方法。 <17>
The temperature of the fiber treatment agent in which the regenerated collagen fibers are immersed in step (i) is preferably 20°C or higher, more preferably 35°C or higher, even more preferably 45°C or higher, and preferably lower than 100°C, more preferably The method for treating regenerated collagen fibers according to any one of <7> to <16>, wherein the temperature is 80°C or lower, more preferably 70°C or lower, even more preferably 60°C or lower.
工程(i)における再生コラーゲン繊維を浸漬する繊維処理剤の温度が、好ましくは20℃以上、より好ましくは35℃以上、更に好ましくは45℃以上であり、また、好ましくは100℃未満、より好ましくは80℃以下、更に好ましくは70℃以下、更に好ましくは60℃以下である、<7>~<16>のいずれか1項に記載の再生コラーゲン繊維処理方法。 <17>
The temperature of the fiber treatment agent in which the regenerated collagen fibers are immersed in step (i) is preferably 20°C or higher, more preferably 35°C or higher, even more preferably 45°C or higher, and preferably lower than 100°C, more preferably The method for treating regenerated collagen fibers according to any one of <7> to <16>, wherein the temperature is 80°C or lower, more preferably 70°C or lower, even more preferably 60°C or lower.
<18>
工程(i)における浸漬時間が、好ましくは15分以上、より好ましくは30分以上、更に好ましくは1時間以上であり、また、好ましくは48時間以下、より好ましくは24時間以下、更に好ましくは12時間以下である、<7>~<17>のいずれか1項に記載の再生コラーゲン繊維処理方法。 <18>
The immersion time in step (i) is preferably 15 minutes or more, more preferably 30 minutes or more, even more preferably 1 hour or more, and preferably 48 hours or less, more preferably 24 hours or less, even more preferably 12 The regenerated collagen fiber processing method according to any one of <7> to <17>, wherein the regenerated collagen fiber processing time is 1 hour or less.
工程(i)における浸漬時間が、好ましくは15分以上、より好ましくは30分以上、更に好ましくは1時間以上であり、また、好ましくは48時間以下、より好ましくは24時間以下、更に好ましくは12時間以下である、<7>~<17>のいずれか1項に記載の再生コラーゲン繊維処理方法。 <18>
The immersion time in step (i) is preferably 15 minutes or more, more preferably 30 minutes or more, even more preferably 1 hour or more, and preferably 48 hours or less, more preferably 24 hours or less, even more preferably 12 The regenerated collagen fiber processing method according to any one of <7> to <17>, wherein the regenerated collagen fiber processing time is 1 hour or less.
<19>
好ましくは、工程(i)が水分の蒸発が抑制される環境下で行われる、<7>~<18>のいずれか1項に記載の再生コラーゲン繊維処理方法。 <19>
Preferably, the method for treating regenerated collagen fibers according to any one of <7> to <18>, wherein step (i) is performed in an environment where evaporation of water is suppressed.
好ましくは、工程(i)が水分の蒸発が抑制される環境下で行われる、<7>~<18>のいずれか1項に記載の再生コラーゲン繊維処理方法。 <19>
Preferably, the method for treating regenerated collagen fibers according to any one of <7> to <18>, wherein step (i) is performed in an environment where evaporation of water is suppressed.
<20>
<7>~<19>のいずれか1項に記載の再生コラーゲン繊維処理方法によって、再生コラーゲン繊維を処理する工程を含む、改質再生コラーゲン繊維の製造方法。 <20>
A method for producing modified regenerated collagen fibers, comprising a step of treating regenerated collagen fibers by the regenerated collagen fiber treatment method according to any one of <7> to <19>.
<7>~<19>のいずれか1項に記載の再生コラーゲン繊維処理方法によって、再生コラーゲン繊維を処理する工程を含む、改質再生コラーゲン繊維の製造方法。 <20>
A method for producing modified regenerated collagen fibers, comprising a step of treating regenerated collagen fibers by the regenerated collagen fiber treatment method according to any one of <7> to <19>.
<21>
<7>~<19>のいずれか1項に記載の再生コラーゲン繊維処理方法によって、再生コラーゲン繊維を処理する工程を含む、頭飾製品の製造方法。 <21>
A method for producing a headdress product, comprising a step of treating regenerated collagen fibers by the regenerated collagen fiber treatment method according to any one of <7> to <19>.
<7>~<19>のいずれか1項に記載の再生コラーゲン繊維処理方法によって、再生コラーゲン繊維を処理する工程を含む、頭飾製品の製造方法。 <21>
A method for producing a headdress product, comprising a step of treating regenerated collagen fibers by the regenerated collagen fiber treatment method according to any one of <7> to <19>.
<22>
<1>~<6>のいずれか1項に記載の改質再生コラーゲン繊維を構成要素として含む頭飾製品。 <22>
A headdress product comprising the modified regenerated collagen fiber according to any one of <1> to <6> as a constituent element.
<1>~<6>のいずれか1項に記載の改質再生コラーゲン繊維を構成要素として含む頭飾製品。 <22>
A headdress product comprising the modified regenerated collagen fiber according to any one of <1> to <6> as a constituent element.
<23>
ヘアーウィッグ、かつら、ウィービング、ヘアーエクステンション、ブレードヘアー、ヘアーアクセサリー及びドールヘアーから選ばれる<22>に記載の頭飾製品。 <23>
The headdress product described in <22> selected from hair wigs, wigs, weaving, hair extensions, braided hair, hair accessories, and doll hair.
ヘアーウィッグ、かつら、ウィービング、ヘアーエクステンション、ブレードヘアー、ヘアーアクセサリー及びドールヘアーから選ばれる<22>に記載の頭飾製品。 <23>
The headdress product described in <22> selected from hair wigs, wigs, weaving, hair extensions, braided hair, hair accessories, and doll hair.
実施例1~11、比較例1~3
表1に示す処方の組成物を用い、下記方法に従って再生コラーゲン繊維を処理し、各種評価を行った。なお、各組成物のpHは、調製した組成物を室温(25℃)において、そのままpHメーター(HORIBA社製、F-52)で測定した。 Examples 1 to 11, Comparative Examples 1 to 3
Using the composition shown in Table 1, regenerated collagen fibers were treated according to the following method, and various evaluations were performed. The pH of each composition was measured using a pH meter (manufactured by HORIBA, F-52) at room temperature (25° C.).
表1に示す処方の組成物を用い、下記方法に従って再生コラーゲン繊維を処理し、各種評価を行った。なお、各組成物のpHは、調製した組成物を室温(25℃)において、そのままpHメーター(HORIBA社製、F-52)で測定した。 Examples 1 to 11, Comparative Examples 1 to 3
Using the composition shown in Table 1, regenerated collagen fibers were treated according to the following method, and various evaluations were performed. The pH of each composition was measured using a pH meter (manufactured by HORIBA, F-52) at room temperature (25° C.).
<処理方法>
1.再生コラーゲン繊維(※)0.50gの長さ22cmの毛束を、表中に示す浴比となる量の繊維処理剤が入った容器に浸漬し、容器の口を密閉し、容器ごと表中に示す温度のウォーターバス(製造元:株式会社東洋製作所/型番:TBS221FA)に浸漬し表中に示す時間加熱した。
※:カネカ社製再生コラーゲン繊維を市販エクステンション製品の形態で購入し、そこから繊維を切り取り毛束に小分けして評価に使用した。今回の評価では、エクステンション製品に繊維種としてUltima100%使用表記があり、色番手が30のホワイト、形状ストレートのものを使用した。
2.毛束の入った容器をウォーターバスから取り出し、室温に戻した。
3.毛束を容器から取り出し、水道水の30℃流水にて30秒すすぎ、評価用シャンプーで60秒泡立て、水道水の30℃流水にて30秒すすぎ、タオルで軽く水気を切った後、毛束を温風ドライヤー(テスコム社製、Nobby ホワイトNB3000)でコーミングしながら乾かした。 <Processing method>
1. Regenerated collagen fibers (*) 0.50g of hair strands with a length of 22cm are soaked in a container containing a fiber treatment agent in an amount that corresponds to the bath ratio shown in the table. It was immersed in a water bath (manufacturer: Toyo Seisakusho Co., Ltd./model number: TBS221FA) at the temperature shown and heated for the time shown in the table.
*: Regenerated collagen fibers manufactured by Kaneka were purchased in the form of commercially available extension products, and the fibers were cut and divided into hair bundles for evaluation. For this evaluation, we used extension products that are labeled as using 100% Ultima as the fiber type, are white with a color count of 30, and are straight in shape.
2. The container containing the hair tresses was removed from the water bath and allowed to come to room temperature.
3. Remove the hair strands from the container, rinse with running tap water at 30°C for 30 seconds, lather with evaluation shampoo for 60 seconds, rinse with running tap water at 30°C for 30 seconds, lightly dry with a towel, and remove the hair strands. was dried while combing with a hot air dryer (Tescom, Nobby White NB3000).
1.再生コラーゲン繊維(※)0.50gの長さ22cmの毛束を、表中に示す浴比となる量の繊維処理剤が入った容器に浸漬し、容器の口を密閉し、容器ごと表中に示す温度のウォーターバス(製造元:株式会社東洋製作所/型番:TBS221FA)に浸漬し表中に示す時間加熱した。
※:カネカ社製再生コラーゲン繊維を市販エクステンション製品の形態で購入し、そこから繊維を切り取り毛束に小分けして評価に使用した。今回の評価では、エクステンション製品に繊維種としてUltima100%使用表記があり、色番手が30のホワイト、形状ストレートのものを使用した。
2.毛束の入った容器をウォーターバスから取り出し、室温に戻した。
3.毛束を容器から取り出し、水道水の30℃流水にて30秒すすぎ、評価用シャンプーで60秒泡立て、水道水の30℃流水にて30秒すすぎ、タオルで軽く水気を切った後、毛束を温風ドライヤー(テスコム社製、Nobby ホワイトNB3000)でコーミングしながら乾かした。 <Processing method>
1. Regenerated collagen fibers (*) 0.50g of hair strands with a length of 22cm are soaked in a container containing a fiber treatment agent in an amount that corresponds to the bath ratio shown in the table. It was immersed in a water bath (manufacturer: Toyo Seisakusho Co., Ltd./model number: TBS221FA) at the temperature shown and heated for the time shown in the table.
*: Regenerated collagen fibers manufactured by Kaneka were purchased in the form of commercially available extension products, and the fibers were cut and divided into hair bundles for evaluation. For this evaluation, we used extension products that are labeled as using 100% Ultima as the fiber type, are white with a color count of 30, and are straight in shape.
2. The container containing the hair tresses was removed from the water bath and allowed to come to room temperature.
3. Remove the hair strands from the container, rinse with running tap water at 30°C for 30 seconds, lather with evaluation shampoo for 60 seconds, rinse with running tap water at 30°C for 30 seconds, lightly dry with a towel, and remove the hair strands. was dried while combing with a hot air dryer (Tescom, Nobby White NB3000).
<評価用シャンプーの処方>
成分 (質量%)
ラウレス硫酸ナトリウム 15.5
ラウラミドDEA 1.5
EDTA-2Na 0.3
リン酸 pH7に調整する量
イオン交換水 バランス
合計 100 <Formulation of shampoo for evaluation>
Ingredients (mass%)
Sodium Laureth Sulfate 15.5
Lauramid DEA 1.5
EDTA-2Na 0.3
Phosphoric acid Amount to adjust to pH7 Ion exchange water Balance Total 100
成分 (質量%)
ラウレス硫酸ナトリウム 15.5
ラウラミドDEA 1.5
EDTA-2Na 0.3
リン酸 pH7に調整する量
イオン交換水 バランス
合計 100 <Formulation of shampoo for evaluation>
Ingredients (mass%)
Sodium Laureth Sulfate 15.5
Lauramid DEA 1.5
EDTA-2Na 0.3
Phosphoric acid Amount to adjust to pH7 Ion exchange water Balance Total 100
<繊維引張時の平均破断伸度の増加>
繊維引張時の耐水性、及び伸縮性(粘り強さ)の指標として、平均破断伸度、すなわち引張で繊維が延伸されていったときに元の繊維長に対して何%延伸されたところで破断が起こるかについて、複数本(10本)の繊維で評価したときの平均値を用いた。評価は、上記<処理方法>で処理された直後の毛束を用いて、以下の手順で行った。
1.毛束の根本から、繊維10本を切り取った。それぞれの繊維の根本と毛先の中間付近から3cmの繊維片を採取し、合計で10個の3cmの毛髪片を得た。
2.繊維片をDIA-STRON limited社製「MTT690 繊維自動引張り試験機」にセットした。水に浸漬した状態で30分放置後自動測定を開始し、繊維が水に浸漬された状態での平均破断伸度を求めた。数値が高いほど、伸縮性が高く粘り強さに優れ、耐久性にも優れることを示す。
次式に従い、市販品から切り取ったそのままの状態(未処理;比較例1)での繊維引張時の平均破断伸度(A%)を基準とし、処理後の毛束の平均破断伸度(B%)が、未処理の状態からどの程度(C%)増加したかを、表中に「繊維引張時の平均破断伸度の増加率 [%]」として記載した。
C(%)=B(%)-A(%) <Increase in average elongation at break during fiber tension>
As an indicator of water resistance and elasticity (tenacity) when fibers are stretched, the average elongation at break, that is, the percentage of the original fiber length at which the fiber will break when it is stretched by tension, is The average value of multiple fibers (10 fibers) was used to determine whether or not this occurred. The evaluation was performed using the hair bundles immediately after being treated in the above <Treatment Method> according to the following procedure.
1. Ten fibers were cut from the root of the hair bundle. A 3 cm piece of fiber was collected from around the middle between the root and tip of each fiber, yielding a total of 10 pieces of 3 cm hair.
2. The fiber piece was set in "MTT690 Automatic Fiber Tensile Testing Machine" manufactured by DIA-STRON limited. Automatic measurement was started after the fibers were left immersed in water for 30 minutes, and the average elongation at break was determined while the fibers were immersed in water. The higher the numerical value, the higher the elasticity, the higher the tenacity, and the higher the durability.
According to the following formula, the average breaking elongation (A%) of the hair bundle after the treatment is based on the average breaking elongation (A%) when the fiber is pulled as it is (untreated; Comparative Example 1) cut from a commercially available product (untreated; Comparative Example 1), and the average breaking elongation (B %) increased from the untreated state (C%) is described in the table as "increase rate [%] of average elongation at break during fiber tension."
C (%) = B (%) - A (%)
繊維引張時の耐水性、及び伸縮性(粘り強さ)の指標として、平均破断伸度、すなわち引張で繊維が延伸されていったときに元の繊維長に対して何%延伸されたところで破断が起こるかについて、複数本(10本)の繊維で評価したときの平均値を用いた。評価は、上記<処理方法>で処理された直後の毛束を用いて、以下の手順で行った。
1.毛束の根本から、繊維10本を切り取った。それぞれの繊維の根本と毛先の中間付近から3cmの繊維片を採取し、合計で10個の3cmの毛髪片を得た。
2.繊維片をDIA-STRON limited社製「MTT690 繊維自動引張り試験機」にセットした。水に浸漬した状態で30分放置後自動測定を開始し、繊維が水に浸漬された状態での平均破断伸度を求めた。数値が高いほど、伸縮性が高く粘り強さに優れ、耐久性にも優れることを示す。
次式に従い、市販品から切り取ったそのままの状態(未処理;比較例1)での繊維引張時の平均破断伸度(A%)を基準とし、処理後の毛束の平均破断伸度(B%)が、未処理の状態からどの程度(C%)増加したかを、表中に「繊維引張時の平均破断伸度の増加率 [%]」として記載した。
C(%)=B(%)-A(%) <Increase in average elongation at break during fiber tension>
As an indicator of water resistance and elasticity (tenacity) when fibers are stretched, the average elongation at break, that is, the percentage of the original fiber length at which the fiber will break when it is stretched by tension, is The average value of multiple fibers (10 fibers) was used to determine whether or not this occurred. The evaluation was performed using the hair bundles immediately after being treated in the above <Treatment Method> according to the following procedure.
1. Ten fibers were cut from the root of the hair bundle. A 3 cm piece of fiber was collected from around the middle between the root and tip of each fiber, yielding a total of 10 pieces of 3 cm hair.
2. The fiber piece was set in "MTT690 Automatic Fiber Tensile Testing Machine" manufactured by DIA-STRON limited. Automatic measurement was started after the fibers were left immersed in water for 30 minutes, and the average elongation at break was determined while the fibers were immersed in water. The higher the numerical value, the higher the elasticity, the higher the tenacity, and the higher the durability.
According to the following formula, the average breaking elongation (A%) of the hair bundle after the treatment is based on the average breaking elongation (A%) when the fiber is pulled as it is (untreated; Comparative Example 1) cut from a commercially available product (untreated; Comparative Example 1), and the average breaking elongation (B %) increased from the untreated state (C%) is described in the table as "increase rate [%] of average elongation at break during fiber tension."
C (%) = B (%) - A (%)
<繊維引張時の平均破断荷重の増加>
繊維引張時の耐水性の指標として、繊維引張時の平均破断荷重を用いた。評価は、上記<処理方法>で処理された直後の毛束を用いて行った。また、数値としては複数本(10本)の繊維で評価したときの平均値を用いた。評価は、以下の手順で行った。
1.毛束の根本から、繊維10本を切り取った。それぞれの繊維の根本と毛先の中間付近から3cmの繊維片を採取し、合計で10個の3cmの毛髪片を得た。
2.繊維片をDIA-STRON limited社製「MTT690 繊維自動引張り試験機」にセットした。水に浸漬した状態で30分放置後自動測定を開始し、繊維が水に浸漬された状態で延伸したときの破断荷重を求めた。数値が高いほど、ハリコシがあって外力による延伸に強く、耐久性にも優れることを示す。
次式に従い、市販品から切り取ったそのままの状態(未処理;比較例1)での繊維引張時の平均破断荷重(W0(gf))を基準とし、処理後の毛束の平均破断荷重(W1(gf))が、未処理の状態からどの程度(Y(gf))増加したかを、表中に「繊維引張時の平均破断荷重の増加量 [gf]」として記載した。
Y(gf)=W1(gf)-W0(gf) <Increase in average breaking load during fiber tension>
The average breaking load during fiber tension was used as an index of water resistance during fiber tension. The evaluation was performed using hair bundles immediately after being treated by the above <treatment method>. Further, as the numerical value, the average value when evaluating multiple fibers (10 fibers) was used. The evaluation was performed according to the following procedure.
1. Ten fibers were cut from the root of the hair bundle. A 3 cm piece of fiber was collected from around the middle between the root and tip of each fiber, yielding a total of 10 pieces of 3 cm hair.
2. The fiber piece was set in "MTT690 Automatic Fiber Tensile Testing Machine" manufactured by DIA-STRON limited. Automatic measurement was started after leaving the fiber immersed in water for 30 minutes, and the breaking load when the fiber was stretched while immersed in water was determined. The higher the value, the firmer the material is, the more resistant it is to stretching by external force, and the more durable it is.
According to the following formula, the average breaking load (W 0 (gf)) of the hair bundle after the treatment is based on the average breaking load (W 0 (gf)) when the fiber is pulled in the as-is condition (untreated; Comparative Example 1) cut from the commercially available product (untreated; Comparative Example 1). The extent to which W 1 (gf)) increased from the untreated state (Y (gf)) is shown in the table as "increase in average breaking load during fiber tension [gf]".
Y (gf) = W 1 (gf) - W 0 (gf)
繊維引張時の耐水性の指標として、繊維引張時の平均破断荷重を用いた。評価は、上記<処理方法>で処理された直後の毛束を用いて行った。また、数値としては複数本(10本)の繊維で評価したときの平均値を用いた。評価は、以下の手順で行った。
1.毛束の根本から、繊維10本を切り取った。それぞれの繊維の根本と毛先の中間付近から3cmの繊維片を採取し、合計で10個の3cmの毛髪片を得た。
2.繊維片をDIA-STRON limited社製「MTT690 繊維自動引張り試験機」にセットした。水に浸漬した状態で30分放置後自動測定を開始し、繊維が水に浸漬された状態で延伸したときの破断荷重を求めた。数値が高いほど、ハリコシがあって外力による延伸に強く、耐久性にも優れることを示す。
次式に従い、市販品から切り取ったそのままの状態(未処理;比較例1)での繊維引張時の平均破断荷重(W0(gf))を基準とし、処理後の毛束の平均破断荷重(W1(gf))が、未処理の状態からどの程度(Y(gf))増加したかを、表中に「繊維引張時の平均破断荷重の増加量 [gf]」として記載した。
Y(gf)=W1(gf)-W0(gf) <Increase in average breaking load during fiber tension>
The average breaking load during fiber tension was used as an index of water resistance during fiber tension. The evaluation was performed using hair bundles immediately after being treated by the above <treatment method>. Further, as the numerical value, the average value when evaluating multiple fibers (10 fibers) was used. The evaluation was performed according to the following procedure.
1. Ten fibers were cut from the root of the hair bundle. A 3 cm piece of fiber was collected from around the middle between the root and tip of each fiber, yielding a total of 10 pieces of 3 cm hair.
2. The fiber piece was set in "MTT690 Automatic Fiber Tensile Testing Machine" manufactured by DIA-STRON limited. Automatic measurement was started after leaving the fiber immersed in water for 30 minutes, and the breaking load when the fiber was stretched while immersed in water was determined. The higher the value, the firmer the material is, the more resistant it is to stretching by external force, and the more durable it is.
According to the following formula, the average breaking load (W 0 (gf)) of the hair bundle after the treatment is based on the average breaking load (W 0 (gf)) when the fiber is pulled in the as-is condition (untreated; Comparative Example 1) cut from the commercially available product (untreated; Comparative Example 1). The extent to which W 1 (gf)) increased from the untreated state (Y (gf)) is shown in the table as "increase in average breaking load during fiber tension [gf]".
Y (gf) = W 1 (gf) - W 0 (gf)
<高温アイロンセット時の収縮率>
耐熱性の指標として、高温アイロンセット時の収縮率を用いた。評価は、上記<処理方法>で処理された直後の毛束を用いて行った。また、数値としては複数本(5本)の繊維で評価したときの平均値を用いた。評価は、以下の手順で行った。
1.上記<処理方法>処理直後の毛束の根本から、繊維5本を切り取り、印をつけた。これら処理後繊維5本の長さを測定し、平均値を記録(長さL1とする)した。次いで、これら印をつけた処理後繊維5本を、別途準備した未処理の再生コラーゲン繊維0.5gの毛束2本(計1g)に挟むように共に束ね、新たな毛束(以下大毛束)を作製し、大毛束全体に180℃設定のフラットアイロン(三木電器産業株式会社製/型番:AHI-938)を5cm/secの速度で3回かけた。
2.アイロン操作の後、大毛束から印をつけた処理後繊維5本を取り出し、改めてこれら印をつけた処理後繊維各5本の長さを測定し平均値を記録(長さL2とする)した。
3.高温アイロンセット時の収縮率 Sdry = { 1-(L2/L1)} x 100 [%]と定義した。Sdryが0%に近いほど、乾熱による収縮が起こりづらく、耐熱性に優れることを示す。 <Shrinkage rate when setting with high temperature iron>
The shrinkage rate when set with a high temperature iron was used as an index of heat resistance. The evaluation was performed using hair bundles immediately after being treated by the above <treatment method>. Further, as the numerical value, the average value when evaluating a plurality of fibers (5 fibers) was used. The evaluation was performed according to the following procedure.
1. <Treatment method> Five fibers were cut from the root of the hair bundle immediately after treatment and marked. After these treatments, the lengths of the five fibers were measured, and the average value was recorded (defining the length L1 ). Next, the five treated fibers with these markings are bundled together between two separately prepared untreated regenerated collagen fiber bundles of 0.5 g (1 g in total) to form a new hair bundle (hereinafter referred to as a large hair bundle). A flat iron (manufactured by Miki Electric Industrial Co., Ltd./model number: AHI-938) set at 180°C was applied three times at a speed of 5 cm/sec to the entire large hair bundle.
2. After the ironing operation, take out the 5 marked treated fibers from the large hair bundle, measure the length of each of the 5 marked treated fibers, and record the average value (take the length L 2 ). did.
3. The shrinkage rate when set with a high temperature iron was defined as S dry = {1-(L 2 /L 1 )} x 100 [%]. The closer S dry is to 0%, the less shrinkage due to dry heat occurs and the better the heat resistance is.
耐熱性の指標として、高温アイロンセット時の収縮率を用いた。評価は、上記<処理方法>で処理された直後の毛束を用いて行った。また、数値としては複数本(5本)の繊維で評価したときの平均値を用いた。評価は、以下の手順で行った。
1.上記<処理方法>処理直後の毛束の根本から、繊維5本を切り取り、印をつけた。これら処理後繊維5本の長さを測定し、平均値を記録(長さL1とする)した。次いで、これら印をつけた処理後繊維5本を、別途準備した未処理の再生コラーゲン繊維0.5gの毛束2本(計1g)に挟むように共に束ね、新たな毛束(以下大毛束)を作製し、大毛束全体に180℃設定のフラットアイロン(三木電器産業株式会社製/型番:AHI-938)を5cm/secの速度で3回かけた。
2.アイロン操作の後、大毛束から印をつけた処理後繊維5本を取り出し、改めてこれら印をつけた処理後繊維各5本の長さを測定し平均値を記録(長さL2とする)した。
3.高温アイロンセット時の収縮率 Sdry = { 1-(L2/L1)} x 100 [%]と定義した。Sdryが0%に近いほど、乾熱による収縮が起こりづらく、耐熱性に優れることを示す。 <Shrinkage rate when setting with high temperature iron>
The shrinkage rate when set with a high temperature iron was used as an index of heat resistance. The evaluation was performed using hair bundles immediately after being treated by the above <treatment method>. Further, as the numerical value, the average value when evaluating a plurality of fibers (5 fibers) was used. The evaluation was performed according to the following procedure.
1. <Treatment method> Five fibers were cut from the root of the hair bundle immediately after treatment and marked. After these treatments, the lengths of the five fibers were measured, and the average value was recorded (defining the length L1 ). Next, the five treated fibers with these markings are bundled together between two separately prepared untreated regenerated collagen fiber bundles of 0.5 g (1 g in total) to form a new hair bundle (hereinafter referred to as a large hair bundle). A flat iron (manufactured by Miki Electric Industrial Co., Ltd./model number: AHI-938) set at 180°C was applied three times at a speed of 5 cm/sec to the entire large hair bundle.
2. After the ironing operation, take out the 5 marked treated fibers from the large hair bundle, measure the length of each of the 5 marked treated fibers, and record the average value (take the length L 2 ). did.
3. The shrinkage rate when set with a high temperature iron was defined as S dry = {1-(L 2 /L 1 )} x 100 [%]. The closer S dry is to 0%, the less shrinkage due to dry heat occurs and the better the heat resistance is.
<熱水加熱時の収縮率>
耐水性、耐熱性の指標として、熱水加熱時の収縮率を用いた。評価は、上記<処理方法>で処理された直後の毛束を用いて行った。また、数値としては複数本(5本)の繊維で評価したときの平均値を用いた。評価は、以下の手順で行った。
1.毛束の根本から、繊維5本を切り取り、各繊維の長さの平均値を記録(長さL1とする)した上で、90℃のウォーターバス(製造元:株式会社東洋製作所/型番:TBS221FA)に浸漬し1分間加熱した。
2.加熱操作の後で、繊維5本を取り出してきて、タオルで軽く水気を切り、常温常湿で30分間乾燥した後、改めて各繊維の長さの平均値を記録(長さL2とする)した。
3.熱水加熱時の収縮率 Swet = { 1-(L2/L1)} x 100 [%]と定義した。Swetが0%に近いほど、湿熱による収縮が起こりづらく、耐熱性に優れることを示す。 <Shrinkage rate when heating hot water>
The shrinkage rate when heated with hot water was used as an index of water resistance and heat resistance. The evaluation was performed using hair bundles immediately after being treated by the above <treatment method>. Further, as the numerical value, the average value when evaluating a plurality of fibers (5 fibers) was used. The evaluation was performed according to the following procedure.
1. Cut 5 fibers from the root of the hair bundle, record the average length of each fiber (length L 1 ), and then soak in a 90℃ water bath (manufacturer: Toyo Seisakusho Co., Ltd. / model number: TBS221FA) ) and heated for 1 minute.
2. After the heating operation, take out the 5 fibers, lightly drain them with a towel, dry them at room temperature and humidity for 30 minutes, and then record the average length of each fiber again (the length is L 2 ). did.
3. The shrinkage rate during heating with hot water was defined as S wet = {1-(L 2 /L 1 )} x 100 [%]. The closer S wet is to 0%, the less shrinkage due to moist heat occurs and the better the heat resistance is.
耐水性、耐熱性の指標として、熱水加熱時の収縮率を用いた。評価は、上記<処理方法>で処理された直後の毛束を用いて行った。また、数値としては複数本(5本)の繊維で評価したときの平均値を用いた。評価は、以下の手順で行った。
1.毛束の根本から、繊維5本を切り取り、各繊維の長さの平均値を記録(長さL1とする)した上で、90℃のウォーターバス(製造元:株式会社東洋製作所/型番:TBS221FA)に浸漬し1分間加熱した。
2.加熱操作の後で、繊維5本を取り出してきて、タオルで軽く水気を切り、常温常湿で30分間乾燥した後、改めて各繊維の長さの平均値を記録(長さL2とする)した。
3.熱水加熱時の収縮率 Swet = { 1-(L2/L1)} x 100 [%]と定義した。Swetが0%に近いほど、湿熱による収縮が起こりづらく、耐熱性に優れることを示す。 <Shrinkage rate when heating hot water>
The shrinkage rate when heated with hot water was used as an index of water resistance and heat resistance. The evaluation was performed using hair bundles immediately after being treated by the above <treatment method>. Further, as the numerical value, the average value when evaluating a plurality of fibers (5 fibers) was used. The evaluation was performed according to the following procedure.
1. Cut 5 fibers from the root of the hair bundle, record the average length of each fiber (length L 1 ), and then soak in a 90℃ water bath (manufacturer: Toyo Seisakusho Co., Ltd. / model number: TBS221FA) ) and heated for 1 minute.
2. After the heating operation, take out the 5 fibers, lightly drain them with a towel, dry them at room temperature and humidity for 30 minutes, and then record the average length of each fiber again (the length is L 2 ). did.
3. The shrinkage rate during heating with hot water was defined as S wet = {1-(L 2 /L 1 )} x 100 [%]. The closer S wet is to 0%, the less shrinkage due to moist heat occurs and the better the heat resistance is.
<熱形状記憶能>
熱形状記憶能の評価は、上記<処理方法>で処理された直後の毛束を用いて行った。なお、「I:形状付与(カール)」の結果の値が5%以下であった場合は、効果なしとして、以降の処理、評価は行わなかった。
・I:形状付与(カール)
1.再生コラーゲン繊維0.5gの長さ22cmの毛束を30℃の水道水で30秒間濡らした後、濡れた毛束を直径14mmのプラスチック製ロッドに巻き付け、クリップで固定した。
2.ロッドに巻き付けられた毛束ごと60℃のウォーターバス(製造元:株式会社東洋製作所/型番:TBS221FA)に浸漬し1分間加熱した。
3.毛束をウォーターバスから取り出し、25℃の水に1分間浸漬し、水から取り出して室温に戻した。
4.毛束をロッドから外し、クシを3回通した後、水から取り出してから3分後に、吊した状態で真横から写真を撮った。 <Thermal shape memory ability>
Thermal shape memory ability was evaluated using hair bundles immediately after being treated by the above <treatment method>. In addition, when the value of the result of "I: Shape imparting (curl)" was 5% or less, it was considered that there was no effect, and subsequent processing and evaluation were not performed.
・I: Giving shape (curl)
1. A 22 cm long hair bundle containing 0.5 g of regenerated collagen fibers was wetted with tap water at 30°C for 30 seconds, and then the wet hair bundle was wrapped around a plastic rod with a diameter of 14 mm and fixed with a clip.
2. The hair bundle wrapped around the rod was immersed in a 60°C water bath (manufacturer: Toyo Seisakusho Co., Ltd./model number: TBS221FA) and heated for 1 minute.
3. The hair tresses were taken out of the water bath, immersed in water at 25°C for 1 minute, taken out of the water, and allowed to return to room temperature.
4. The hair bundle was removed from the rod, passed through the comb three times, and 3 minutes after being removed from the water, a photo was taken from the side while it was hanging.
熱形状記憶能の評価は、上記<処理方法>で処理された直後の毛束を用いて行った。なお、「I:形状付与(カール)」の結果の値が5%以下であった場合は、効果なしとして、以降の処理、評価は行わなかった。
・I:形状付与(カール)
1.再生コラーゲン繊維0.5gの長さ22cmの毛束を30℃の水道水で30秒間濡らした後、濡れた毛束を直径14mmのプラスチック製ロッドに巻き付け、クリップで固定した。
2.ロッドに巻き付けられた毛束ごと60℃のウォーターバス(製造元:株式会社東洋製作所/型番:TBS221FA)に浸漬し1分間加熱した。
3.毛束をウォーターバスから取り出し、25℃の水に1分間浸漬し、水から取り出して室温に戻した。
4.毛束をロッドから外し、クシを3回通した後、水から取り出してから3分後に、吊した状態で真横から写真を撮った。 <Thermal shape memory ability>
Thermal shape memory ability was evaluated using hair bundles immediately after being treated by the above <treatment method>. In addition, when the value of the result of "I: Shape imparting (curl)" was 5% or less, it was considered that there was no effect, and subsequent processing and evaluation were not performed.
・I: Giving shape (curl)
1. A 22 cm long hair bundle containing 0.5 g of regenerated collagen fibers was wetted with tap water at 30°C for 30 seconds, and then the wet hair bundle was wrapped around a plastic rod with a diameter of 14 mm and fixed with a clip.
2. The hair bundle wrapped around the rod was immersed in a 60°C water bath (manufacturer: Toyo Seisakusho Co., Ltd./model number: TBS221FA) and heated for 1 minute.
3. The hair tresses were taken out of the water bath, immersed in water at 25°C for 1 minute, taken out of the water, and allowed to return to room temperature.
4. The hair bundle was removed from the rod, passed through the comb three times, and 3 minutes after being removed from the water, a photo was taken from the side while it was hanging.
(評価基準)
未処理の毛束長さをL0(22cm)、処理後の毛束長さをLとして、次式に従って求められるカールアップ率=毛束長さ減少率(I)(%)をカールの巻き強さと定義した。
I=[(L0-L)/L0]×100 (Evaluation criteria)
Assuming that the length of the untreated hair bundle is L 0 (22cm) and the length of the hair bundle after treatment is L, the curl up rate = hair bundle length reduction rate (I) (%) is calculated according to the following formula. Defined as strength.
I=[(L 0 -L)/L 0 ]×100
未処理の毛束長さをL0(22cm)、処理後の毛束長さをLとして、次式に従って求められるカールアップ率=毛束長さ減少率(I)(%)をカールの巻き強さと定義した。
I=[(L0-L)/L0]×100 (Evaluation criteria)
Assuming that the length of the untreated hair bundle is L 0 (22cm) and the length of the hair bundle after treatment is L, the curl up rate = hair bundle length reduction rate (I) (%) is calculated according to the following formula. Defined as strength.
I=[(L 0 -L)/L 0 ]×100
・II:再形状付与(ストレート)
1.Iで評価した毛束に対し、クシを通して絡まりをとった後に、180℃設定のフラットアイロン(三木電器産業株式会社製/型番:AHI-938)で5cm/secの速度で6回スライドした。
2.水道水の30℃流水にて30秒すすぎ、評価用シャンプーで60秒泡立てた後、水道水の30℃流水にて30秒すすぎ、タオルドライした。
3.吊るして20℃65%RHで12時間自然乾燥し、クシを通した後、吊した状態で真横から目視観察した。 ・II: Reshaping (straight)
1. The hair bundle evaluated in I was passed through a comb to remove tangles, and then slid 6 times at a speed of 5 cm/sec with a flat iron (manufactured by Miki Electric Industrial Co., Ltd./model number: AHI-938) set at 180°C.
2. After rinsing with running tap water at 30°C for 30 seconds, lathering with evaluation shampoo for 60 seconds, rinsing with running tap water at 30°C for 30 seconds, and towel drying.
3. After hanging and air drying at 20°C and 65% RH for 12 hours, passing it through a comb, it was visually observed from the side while hanging.
1.Iで評価した毛束に対し、クシを通して絡まりをとった後に、180℃設定のフラットアイロン(三木電器産業株式会社製/型番:AHI-938)で5cm/secの速度で6回スライドした。
2.水道水の30℃流水にて30秒すすぎ、評価用シャンプーで60秒泡立てた後、水道水の30℃流水にて30秒すすぎ、タオルドライした。
3.吊るして20℃65%RHで12時間自然乾燥し、クシを通した後、吊した状態で真横から目視観察した。 ・II: Reshaping (straight)
1. The hair bundle evaluated in I was passed through a comb to remove tangles, and then slid 6 times at a speed of 5 cm/sec with a flat iron (manufactured by Miki Electric Industrial Co., Ltd./model number: AHI-938) set at 180°C.
2. After rinsing with running tap water at 30°C for 30 seconds, lathering with evaluation shampoo for 60 seconds, rinsing with running tap water at 30°C for 30 seconds, and towel drying.
3. After hanging and air drying at 20°C and 65% RH for 12 hours, passing it through a comb, it was visually observed from the side while hanging.
(評価基準)
未処理の毛束長さをL0(22cm)、処理後の毛束長さをLとして、次式に従って求められるストレート化率(ST)(%)をストレート化の達成度合いと定義した。ST=100%のとき、毛束は完全にストレート化されている。
ST=[1-(L0-L)/L0]×100 (Evaluation criteria)
The straightening rate (ST) (%) determined according to the following formula was defined as the degree of straightening, where the length of the untreated hair bundle was L 0 (22 cm) and the length of the hair bundle after treatment was L. When ST=100%, the hair bundle is completely straightened.
ST=[1-(L 0 -L)/L 0 ]×100
未処理の毛束長さをL0(22cm)、処理後の毛束長さをLとして、次式に従って求められるストレート化率(ST)(%)をストレート化の達成度合いと定義した。ST=100%のとき、毛束は完全にストレート化されている。
ST=[1-(L0-L)/L0]×100 (Evaluation criteria)
The straightening rate (ST) (%) determined according to the following formula was defined as the degree of straightening, where the length of the untreated hair bundle was L 0 (22 cm) and the length of the hair bundle after treatment was L. When ST=100%, the hair bundle is completely straightened.
ST=[1-(L 0 -L)/L 0 ]×100
・III:再再形状付与(カール)
1.IIで評価した毛束を30℃の水道水で30秒間濡らした後、濡れた毛束を直径14mmのプラスチック製ロッドに巻き付け、クリップで固定した。
2.ロッドに巻き付けられた毛束ごと60℃のウォーターバス(製造元:株式会社東洋製作所/型番:TBS221FA)に浸漬し1分間加熱した。
3.毛束をウォーターバスから取り出し、25℃の水に1分間浸漬し、水から取り出して室温に戻した。
4.毛束をロッドから外し、クシを3回通した後、水から取り出してから3分後に、吊した状態で真横から写真を撮った。 ・III: Reshaping (curl)
1. The hair bundle evaluated in II was wetted with tap water at 30°C for 30 seconds, and then the wet hair bundle was wrapped around a plastic rod with a diameter of 14 mm and fixed with a clip.
2. The hair bundle wrapped around the rod was immersed in a 60°C water bath (manufacturer: Toyo Seisakusho Co., Ltd./model number: TBS221FA) and heated for 1 minute.
3. The hair tresses were taken out of the water bath, immersed in water at 25°C for 1 minute, taken out of the water, and allowed to return to room temperature.
4. The hair bundle was removed from the rod, passed through the comb three times, and 3 minutes after being removed from the water, a photo was taken from the side while it was hanging.
1.IIで評価した毛束を30℃の水道水で30秒間濡らした後、濡れた毛束を直径14mmのプラスチック製ロッドに巻き付け、クリップで固定した。
2.ロッドに巻き付けられた毛束ごと60℃のウォーターバス(製造元:株式会社東洋製作所/型番:TBS221FA)に浸漬し1分間加熱した。
3.毛束をウォーターバスから取り出し、25℃の水に1分間浸漬し、水から取り出して室温に戻した。
4.毛束をロッドから外し、クシを3回通した後、水から取り出してから3分後に、吊した状態で真横から写真を撮った。 ・III: Reshaping (curl)
1. The hair bundle evaluated in II was wetted with tap water at 30°C for 30 seconds, and then the wet hair bundle was wrapped around a plastic rod with a diameter of 14 mm and fixed with a clip.
2. The hair bundle wrapped around the rod was immersed in a 60°C water bath (manufacturer: Toyo Seisakusho Co., Ltd./model number: TBS221FA) and heated for 1 minute.
3. The hair tresses were taken out of the water bath, immersed in water at 25°C for 1 minute, taken out of the water, and allowed to return to room temperature.
4. The hair bundle was removed from the rod, passed through the comb three times, and 3 minutes after being removed from the water, a photo was taken from the side while it was hanging.
(評価基準)
未処理の毛束長さをL0(22cm)、処理後の毛束長さをLとして、次式に従って求められるカールアップ率=毛束長さ減少率(I)(%)をカールの巻き強さと定義した。
I=[(L0-L)/L0]×100 (Evaluation criteria)
Assuming that the length of the untreated hair bundle is L 0 (22cm) and the length of the hair bundle after treatment is L, the curl up rate = hair bundle length reduction rate (I) (%) is calculated according to the following formula. Defined as strength.
I=[(L 0 -L)/L 0 ]×100
未処理の毛束長さをL0(22cm)、処理後の毛束長さをLとして、次式に従って求められるカールアップ率=毛束長さ減少率(I)(%)をカールの巻き強さと定義した。
I=[(L0-L)/L0]×100 (Evaluation criteria)
Assuming that the length of the untreated hair bundle is L 0 (22cm) and the length of the hair bundle after treatment is L, the curl up rate = hair bundle length reduction rate (I) (%) is calculated according to the following formula. Defined as strength.
I=[(L 0 -L)/L 0 ]×100
<表面感触の良さ>
表面の感触の評価は<処理方法>で処理された直後の毛束を用い、手で触れた際の感触の滑らかさについて、専門パネラー5名が下記基準によって評価し、5名の合計値を評価結果とした。
(評価基準)
5:未処理繊維(比較例1)に比べてきわめて滑らかな手触りである
4:未処理繊維(比較例1)に比べて滑らかな手触りである
3:未処理繊維(比較例1)に比べてわずかに滑らかな手触りである
2:未処理繊維(比較例1)の手触りと変わらない
1:未処理繊維(比較例1)よりもざらつき・きしみがあり手触りが劣る <Good surface feel>
To evaluate the surface feel, 5 expert panelists evaluated the smoothness of the touch using the following criteria using hair strands that had just been treated using the <treatment method>. This is the evaluation result.
(Evaluation criteria)
5: Extremely smooth texture compared to untreated fibers (Comparative Example 1) 4: Smooth texture compared to untreated fibers (Comparative Example 1) 3: Compared to untreated fibers (Comparative Example 1) Slightly smooth to the touch 2: Same texture as untreated fibers (Comparative Example 1) 1: Rough and squeaky, inferior to untreated fibers (Comparative Example 1)
表面の感触の評価は<処理方法>で処理された直後の毛束を用い、手で触れた際の感触の滑らかさについて、専門パネラー5名が下記基準によって評価し、5名の合計値を評価結果とした。
(評価基準)
5:未処理繊維(比較例1)に比べてきわめて滑らかな手触りである
4:未処理繊維(比較例1)に比べて滑らかな手触りである
3:未処理繊維(比較例1)に比べてわずかに滑らかな手触りである
2:未処理繊維(比較例1)の手触りと変わらない
1:未処理繊維(比較例1)よりもざらつき・きしみがあり手触りが劣る <Good surface feel>
To evaluate the surface feel, 5 expert panelists evaluated the smoothness of the touch using the following criteria using hair strands that had just been treated using the <treatment method>. This is the evaluation result.
(Evaluation criteria)
5: Extremely smooth texture compared to untreated fibers (Comparative Example 1) 4: Smooth texture compared to untreated fibers (Comparative Example 1) 3: Compared to untreated fibers (Comparative Example 1) Slightly smooth to the touch 2: Same texture as untreated fibers (Comparative Example 1) 1: Rough and squeaky, inferior to untreated fibers (Comparative Example 1)
<繊維への着色抑制>
1.毛束の表裏それぞれについて、根本付近、中間付近、毛先付近を測色器(コニカミノルタ社製測色計CR-400)で測色し、合計6点の平均値を測色値とした(L,a,b)。
2.着色の程度は、未処理の色番手30ホワイトの毛束(※)(比較例1)を基準としてΔE*abで評価した。また、処理を行ったその日のうちに測色した。
(※)未処理の色番手30ホワイトの毛束
カネカ社製再生コラーゲン繊維を市販エクステンション製品の形態で購入し、そこから繊維を切り取り毛束に小分けして評価に使用した。今回の評価では、エクステンション製品に繊維種としてUltima100%使用表記があり、色番手が30のホワイト、形状ストレートのものを使用した。
なお、これらカネカ社製再生コラーゲン繊維は、アルミニウムを含有するものであり、前述の分析法によるアルミニウム含有量はいずれも6.8質量%であった。
ΔE*abは、未処理の色番手30ホワイトの毛束の測定値を(L0,a0,b0)、処理毛束の測定値を(L1,a1,b1)としたとき、〔(L1-L0)2+(a1-a0)2+(b1-b0)2〕1/2で定義され、着色抑制効果を以下の基準で判定した。
5:ΔE*ab ≦ 5.0
4:5.0< ΔE*ab ≦ 10.0
3:10.0< ΔE*ab ≦ 15.0
2:15.0< ΔE*ab ≦ 20.0
1:20.0< ΔE*ab <Suppression of coloring of fibers>
1. For each of the front and back sides of the hair bundle, the color was measured near the root, near the middle, and near the tip using a colorimeter (Konica Minolta Colorimeter CR-400), and the average value of a total of 6 points was taken as the colorimetric value ( L, a, b).
2. The degree of coloring was evaluated by ΔE*ab using an untreated hair bundle of color count 30 white (*) (Comparative Example 1) as a standard. In addition, the color was measured on the same day that the treatment was performed.
(*) Untreated hair bundles with a color count of 30 white Regenerated collagen fibers made by Kaneka were purchased in the form of commercially available extension products, and the fibers were cut and divided into hair bundles for evaluation. For this evaluation, we used extension products that are labeled as using 100% Ultima as the fiber type, are white with a color count of 30, and are straight in shape.
Note that these regenerated collagen fibers manufactured by Kaneka Co., Ltd. contain aluminum, and the aluminum content according to the above-mentioned analysis method was 6.8% by mass.
ΔE*ab is when the measured values of the untreated hair bundle with color count 30 white are (L 0 , a 0 , b 0 ) and the measured values of the treated hair bundle are (L 1 , a 1 , b 1 ) , [(L 1 -L 0 ) 2 + (a 1 -a 0 ) 2 +(b 1 -b 0 ) 2 ] 1/2 , and the coloring suppression effect was judged according to the following criteria.
5: ΔE*ab ≦ 5.0
4:5.0< ΔE*ab ≦ 10.0
3: 10.0< ΔE*ab ≦ 15.0
2: 15.0< ΔE*ab ≦ 20.0
1:20.0<ΔE*ab
1.毛束の表裏それぞれについて、根本付近、中間付近、毛先付近を測色器(コニカミノルタ社製測色計CR-400)で測色し、合計6点の平均値を測色値とした(L,a,b)。
2.着色の程度は、未処理の色番手30ホワイトの毛束(※)(比較例1)を基準としてΔE*abで評価した。また、処理を行ったその日のうちに測色した。
(※)未処理の色番手30ホワイトの毛束
カネカ社製再生コラーゲン繊維を市販エクステンション製品の形態で購入し、そこから繊維を切り取り毛束に小分けして評価に使用した。今回の評価では、エクステンション製品に繊維種としてUltima100%使用表記があり、色番手が30のホワイト、形状ストレートのものを使用した。
なお、これらカネカ社製再生コラーゲン繊維は、アルミニウムを含有するものであり、前述の分析法によるアルミニウム含有量はいずれも6.8質量%であった。
ΔE*abは、未処理の色番手30ホワイトの毛束の測定値を(L0,a0,b0)、処理毛束の測定値を(L1,a1,b1)としたとき、〔(L1-L0)2+(a1-a0)2+(b1-b0)2〕1/2で定義され、着色抑制効果を以下の基準で判定した。
5:ΔE*ab ≦ 5.0
4:5.0< ΔE*ab ≦ 10.0
3:10.0< ΔE*ab ≦ 15.0
2:15.0< ΔE*ab ≦ 20.0
1:20.0< ΔE*ab <Suppression of coloring of fibers>
1. For each of the front and back sides of the hair bundle, the color was measured near the root, near the middle, and near the tip using a colorimeter (Konica Minolta Colorimeter CR-400), and the average value of a total of 6 points was taken as the colorimetric value ( L, a, b).
2. The degree of coloring was evaluated by ΔE*ab using an untreated hair bundle of color count 30 white (*) (Comparative Example 1) as a standard. In addition, the color was measured on the same day that the treatment was performed.
(*) Untreated hair bundles with a color count of 30 white Regenerated collagen fibers made by Kaneka were purchased in the form of commercially available extension products, and the fibers were cut and divided into hair bundles for evaluation. For this evaluation, we used extension products that are labeled as using 100% Ultima as the fiber type, are white with a color count of 30, and are straight in shape.
Note that these regenerated collagen fibers manufactured by Kaneka Co., Ltd. contain aluminum, and the aluminum content according to the above-mentioned analysis method was 6.8% by mass.
ΔE*ab is when the measured values of the untreated hair bundle with color count 30 white are (L 0 , a 0 , b 0 ) and the measured values of the treated hair bundle are (L 1 , a 1 , b 1 ) , [(L 1 -L 0 ) 2 + (a 1 -a 0 ) 2 +(b 1 -b 0 ) 2 ] 1/2 , and the coloring suppression effect was judged according to the following criteria.
5: ΔE*ab ≦ 5.0
4:5.0< ΔE*ab ≦ 10.0
3: 10.0< ΔE*ab ≦ 15.0
2: 15.0< ΔE*ab ≦ 20.0
1:20.0<ΔE*ab
<安息香酸の定量>
処理後の再生コラーゲン繊維中に含有される安息香酸量を、以下の方法によって定量し、表中に「成分(A)安息香酸量」として示した(比較例2及び3については測定せず)。
・試薬
6N塩酸:容量分析用滴定液、関東化学社製
酢酸ナトリウム:特級、富士フイルム和光純薬社製
酢酸:特級、富士フイルム和光純薬社製
アセトニトリル:LC/MS用、関東化学社製
安息香酸ナトリウム:特級、富士フイルム和光純薬社製
超純水:超純水製造装置ミリQ製造水、ミリポア社製
・定量法
試料は細かく裁断し、約10mgを精密に量り、6N塩酸を3mL添加し、50℃で15時間加温溶解した。放冷後、フィルターろ過したものを試料溶液とした。別に安息香酸ナトリウムを移動相に溶解し、安息香酸として0.1~100μg/mLの濃度になるように調製したものを、検量線作図のための標準溶液とした。試料溶液及び標準溶液を、液体クロマトグラフィーにより試験を行い、試料溶液のピーク面積並びに標準溶液のピーク面積を測定した。
・測定条件
検出器:紫外可視分光光度計
測定波長:230nm
カラム:内径21mm、長さ150mmのステンレス管に5μmの液体クロマトグラフィー用オクタデシルシリル化シリカゲルを充填した。
カラム温度:40℃付近の一定温度
移動相:酢酸ナトリウムを約0.68gと酢酸0.91gに超純水を750mL加えて溶かした後、アセトニトリルを250mL加え、混和した。
・HPLC/UV条件
装置:UltiMate3000システム(サーモフィッシャーサイエンティフィック社製)
カラム:Lカラム2 ODS5μm 2.1×150mm(化学物質評価研究機構)
カラム温度:40℃
移動相:20mM酢酸アンモニウム25%アセトニトリル緩衝液
分析時間:10分
検出器:DAD(ダイオードアレイ検出器)
検出波長:230nm
流速:0.3mL/min(アイソクラティック溶出)
注入量:10μL <Quantification of benzoic acid>
The amount of benzoic acid contained in the regenerated collagen fibers after treatment was quantified by the following method and shown in the table as "Component (A) benzoic acid amount " (not measured for Comparative Examples 2 and 3). .
・Reagents 6N hydrochloric acid: Titrant for volumetric analysis, manufactured by Kanto Kagaku Co., Ltd. Sodium acetate: Special grade, manufactured by Fuji Film Wako Pure Chemical Industries, Ltd. Acetic acid: Special grade, manufactured by Fuji Film Wako Pure Chemical Industries, Ltd. Acetonitrile: For LC/MS, manufactured by Kanto Kagaku Co., Ltd. Benzoin Sodium acid: Special grade, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. Ultrapure water: Ultrapure water production equipment Milli-Q manufactured water, manufactured by Millipore, quantitative method Cut the sample into small pieces, accurately weigh approximately 10mg, and add 3mL of 6N hydrochloric acid. The mixture was heated and dissolved at 50°C for 15 hours. After cooling, the solution was filtered and used as a sample solution. Separately, sodium benzoate was dissolved in a mobile phase and prepared to have a concentration of 0.1 to 100 μg/mL as benzoic acid, which was used as a standard solution for drawing a calibration curve. The sample solution and standard solution were tested by liquid chromatography, and the peak area of the sample solution and the peak area of the standard solution were measured.
・Measurement conditions Detector: UV-visible spectrophotometer Measurement wavelength: 230nm
Column: A stainless steel tube with an inner diameter of 21 mm and a length of 150 mm was filled with 5 μm octadecylsilylated silica gel for liquid chromatography.
Column temperature: Constant temperature around 40°C Mobile phase: About 0.68 g of sodium acetate and 0.91 g of acetic acid were dissolved by adding 750 mL of ultrapure water, and then 250 mL of acetonitrile was added and mixed.
・HPLC/UV conditions Equipment: UltiMate3000 system (manufactured by Thermo Fisher Scientific)
Column: L column 2 ODS5μm 2.1×150mm (Chemical Evaluation and Research Organization)
Column temperature: 40℃
Mobile phase: 20mM ammonium acetate 25% acetonitrile buffer Analysis time: 10 minutes Detector: DAD (diode array detector)
Detection wavelength: 230nm
Flow rate: 0.3mL/min (isocratic elution)
Injection volume: 10μL
処理後の再生コラーゲン繊維中に含有される安息香酸量を、以下の方法によって定量し、表中に「成分(A)安息香酸量」として示した(比較例2及び3については測定せず)。
・試薬
6N塩酸:容量分析用滴定液、関東化学社製
酢酸ナトリウム:特級、富士フイルム和光純薬社製
酢酸:特級、富士フイルム和光純薬社製
アセトニトリル:LC/MS用、関東化学社製
安息香酸ナトリウム:特級、富士フイルム和光純薬社製
超純水:超純水製造装置ミリQ製造水、ミリポア社製
・定量法
試料は細かく裁断し、約10mgを精密に量り、6N塩酸を3mL添加し、50℃で15時間加温溶解した。放冷後、フィルターろ過したものを試料溶液とした。別に安息香酸ナトリウムを移動相に溶解し、安息香酸として0.1~100μg/mLの濃度になるように調製したものを、検量線作図のための標準溶液とした。試料溶液及び標準溶液を、液体クロマトグラフィーにより試験を行い、試料溶液のピーク面積並びに標準溶液のピーク面積を測定した。
・測定条件
検出器:紫外可視分光光度計
測定波長:230nm
カラム:内径21mm、長さ150mmのステンレス管に5μmの液体クロマトグラフィー用オクタデシルシリル化シリカゲルを充填した。
カラム温度:40℃付近の一定温度
移動相:酢酸ナトリウムを約0.68gと酢酸0.91gに超純水を750mL加えて溶かした後、アセトニトリルを250mL加え、混和した。
・HPLC/UV条件
装置:UltiMate3000システム(サーモフィッシャーサイエンティフィック社製)
カラム:Lカラム2 ODS5μm 2.1×150mm(化学物質評価研究機構)
カラム温度:40℃
移動相:20mM酢酸アンモニウム25%アセトニトリル緩衝液
分析時間:10分
検出器:DAD(ダイオードアレイ検出器)
検出波長:230nm
流速:0.3mL/min(アイソクラティック溶出)
注入量:10μL <Quantification of benzoic acid>
The amount of benzoic acid contained in the regenerated collagen fibers after treatment was quantified by the following method and shown in the table as "Component (A) benzoic acid amount " (not measured for Comparative Examples 2 and 3). .
・Reagents 6N hydrochloric acid: Titrant for volumetric analysis, manufactured by Kanto Kagaku Co., Ltd. Sodium acetate: Special grade, manufactured by Fuji Film Wako Pure Chemical Industries, Ltd. Acetic acid: Special grade, manufactured by Fuji Film Wako Pure Chemical Industries, Ltd. Acetonitrile: For LC/MS, manufactured by Kanto Kagaku Co., Ltd. Benzoin Sodium acid: Special grade, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. Ultrapure water: Ultrapure water production equipment Milli-Q manufactured water, manufactured by Millipore, quantitative method Cut the sample into small pieces, accurately weigh approximately 10mg, and add 3mL of 6N hydrochloric acid. The mixture was heated and dissolved at 50°C for 15 hours. After cooling, the solution was filtered and used as a sample solution. Separately, sodium benzoate was dissolved in a mobile phase and prepared to have a concentration of 0.1 to 100 μg/mL as benzoic acid, which was used as a standard solution for drawing a calibration curve. The sample solution and standard solution were tested by liquid chromatography, and the peak area of the sample solution and the peak area of the standard solution were measured.
・Measurement conditions Detector: UV-visible spectrophotometer Measurement wavelength: 230nm
Column: A stainless steel tube with an inner diameter of 21 mm and a length of 150 mm was filled with 5 μm octadecylsilylated silica gel for liquid chromatography.
Column temperature: Constant temperature around 40°C Mobile phase: About 0.68 g of sodium acetate and 0.91 g of acetic acid were dissolved by adding 750 mL of ultrapure water, and then 250 mL of acetonitrile was added and mixed.
・HPLC/UV conditions Equipment: UltiMate3000 system (manufactured by Thermo Fisher Scientific)
Column: L column 2 ODS5μm 2.1×150mm (Chemical Evaluation and Research Organization)
Column temperature: 40℃
Mobile phase: 20mM ammonium acetate 25% acetonitrile buffer Analysis time: 10 minutes Detector: DAD (diode array detector)
Detection wavelength: 230nm
Flow rate: 0.3mL/min (isocratic elution)
Injection volume: 10μL
<アルミニウム定量法>
処理後の再生コラーゲン繊維中に含有されるアルミニウム量を、以下の方法によって定量し、表中に「成分(B)Al量」として示した(比較例2及び3については測定せず)。
・試薬
硫酸:精密分析用、富士フイルム和光純薬社製
塩酸:金属分析用、関東化学社製
炭酸ナトリウム:特級、富士フイルム和光純薬社製
ほう酸:特級、富士フイルム和光純薬社製
アルミニウム標準液:原子吸光分析用1000mg/L、関東化学社製
超純水:超純水製造装置ミリQ製造水、ミリポア社製
・試料前処理方法
試料0.1gを白金ルツボに精秤し、白煙が出なくなるまで加熱した後、硫酸を数滴添加し、再び白煙が出なくなるまで加熱し、550℃電気炉で十分灰化処理を行った。その後、アルカリ融剤(炭酸ナトリウム:ほう酸=1:0.4)1gを添加し、950℃の電気炉で溶融した。時計皿をかぶせ、超純水及び塩酸(6mol/L)5mLを添加して、70~80℃のホットプレートで加熱溶解し、冷後、超純水で50mLに定容とした液を測定溶液とした。
・検量線溶液調製
アルミニウム標準液(1000mg/L)を用いて、0.1~20mg/Lの検量線溶液を調製した。それぞれの溶液には試料と同程度となるようにアルカリ融剤及び塩酸を添加した。
・測定
調製した試料を、ICP発光分光分析装置にて、以下の条件で各元素の測定を行った。
分析装置:iCAP6500Duo(サーモフィッシャーサイエンティフィック社製)
波長:Al 396.152nm
RFパワー:1150W
クーラントガス流量:12L/min
ネブライザー流量:0.70L/min
補助ガス:0.5L/min
ポンプ流量:50rpm <Aluminum quantitative method>
The amount of aluminum contained in the regenerated collagen fibers after the treatment was quantified by the following method and shown as "Component (B) Al amount " in the table (not measured for Comparative Examples 2 and 3).
・Reagents Sulfuric acid: For precision analysis, manufactured by Fujifilm Wako Pure Chemicals Hydrochloric acid: For metal analysis, manufactured by Kanto Kagaku Co., Ltd. Sodium carbonate: Special grade, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. Boric acid: Special grade, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. Aluminum standard Liquid: 1000mg/L for atomic absorption spectrometry, manufactured by Kanto Kagaku Co., Ltd. Ultrapure water: Ultrapure water production equipment Milli-Q manufactured water, manufactured by Millipore, Inc. Sample pretreatment method: Precisely weigh 0.1g of sample into a platinum crucible, and remove white smoke. After heating until no more white smoke was emitted, a few drops of sulfuric acid was added, and the mixture was heated again until no white smoke was emitted, followed by thorough ashing treatment in an electric furnace at 550°C. Thereafter, 1 g of an alkaline flux (sodium carbonate:boric acid=1:0.4) was added, and the mixture was melted in an electric furnace at 950°C. Cover with a watch glass, add 5 mL of ultrapure water and hydrochloric acid (6 mol/L), heat and dissolve on a hot plate at 70-80°C, and after cooling, adjust the volume to 50 mL with ultrapure water as the measurement solution. And so.
・Preparation of calibration curve solution A calibration curve solution of 0.1 to 20 mg/L was prepared using aluminum standard solution (1000 mg/L). An alkaline flux and hydrochloric acid were added to each solution to the same extent as the sample.
-Measurement Each element of the prepared sample was measured using an ICP emission spectrometer under the following conditions.
Analyzer: iCAP6500Duo (manufactured by Thermo Fisher Scientific)
Wavelength: Al 396.152nm
RF power: 1150W
Coolant gas flow rate: 12L/min
Nebulizer flow rate: 0.70L/min
Auxiliary gas: 0.5L/min
Pump flow rate: 50rpm
処理後の再生コラーゲン繊維中に含有されるアルミニウム量を、以下の方法によって定量し、表中に「成分(B)Al量」として示した(比較例2及び3については測定せず)。
・試薬
硫酸:精密分析用、富士フイルム和光純薬社製
塩酸:金属分析用、関東化学社製
炭酸ナトリウム:特級、富士フイルム和光純薬社製
ほう酸:特級、富士フイルム和光純薬社製
アルミニウム標準液:原子吸光分析用1000mg/L、関東化学社製
超純水:超純水製造装置ミリQ製造水、ミリポア社製
・試料前処理方法
試料0.1gを白金ルツボに精秤し、白煙が出なくなるまで加熱した後、硫酸を数滴添加し、再び白煙が出なくなるまで加熱し、550℃電気炉で十分灰化処理を行った。その後、アルカリ融剤(炭酸ナトリウム:ほう酸=1:0.4)1gを添加し、950℃の電気炉で溶融した。時計皿をかぶせ、超純水及び塩酸(6mol/L)5mLを添加して、70~80℃のホットプレートで加熱溶解し、冷後、超純水で50mLに定容とした液を測定溶液とした。
・検量線溶液調製
アルミニウム標準液(1000mg/L)を用いて、0.1~20mg/Lの検量線溶液を調製した。それぞれの溶液には試料と同程度となるようにアルカリ融剤及び塩酸を添加した。
・測定
調製した試料を、ICP発光分光分析装置にて、以下の条件で各元素の測定を行った。
分析装置:iCAP6500Duo(サーモフィッシャーサイエンティフィック社製)
波長:Al 396.152nm
RFパワー:1150W
クーラントガス流量:12L/min
ネブライザー流量:0.70L/min
補助ガス:0.5L/min
ポンプ流量:50rpm <Aluminum quantitative method>
The amount of aluminum contained in the regenerated collagen fibers after the treatment was quantified by the following method and shown as "Component (B) Al amount " in the table (not measured for Comparative Examples 2 and 3).
・Reagents Sulfuric acid: For precision analysis, manufactured by Fujifilm Wako Pure Chemicals Hydrochloric acid: For metal analysis, manufactured by Kanto Kagaku Co., Ltd. Sodium carbonate: Special grade, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. Boric acid: Special grade, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. Aluminum standard Liquid: 1000mg/L for atomic absorption spectrometry, manufactured by Kanto Kagaku Co., Ltd. Ultrapure water: Ultrapure water production equipment Milli-Q manufactured water, manufactured by Millipore, Inc. Sample pretreatment method: Precisely weigh 0.1g of sample into a platinum crucible, and remove white smoke. After heating until no more white smoke was emitted, a few drops of sulfuric acid was added, and the mixture was heated again until no white smoke was emitted, followed by thorough ashing treatment in an electric furnace at 550°C. Thereafter, 1 g of an alkaline flux (sodium carbonate:boric acid=1:0.4) was added, and the mixture was melted in an electric furnace at 950°C. Cover with a watch glass, add 5 mL of ultrapure water and hydrochloric acid (6 mol/L), heat and dissolve on a hot plate at 70-80°C, and after cooling, adjust the volume to 50 mL with ultrapure water as the measurement solution. And so.
・Preparation of calibration curve solution A calibration curve solution of 0.1 to 20 mg/L was prepared using aluminum standard solution (1000 mg/L). An alkaline flux and hydrochloric acid were added to each solution to the same extent as the sample.
-Measurement Each element of the prepared sample was measured using an ICP emission spectrometer under the following conditions.
Analyzer: iCAP6500Duo (manufactured by Thermo Fisher Scientific)
Wavelength: Al 396.152nm
RF power: 1150W
Coolant gas flow rate: 12L/min
Nebulizer flow rate: 0.70L/min
Auxiliary gas: 0.5L/min
Pump flow rate: 50rpm
なお、以上の実施例において処理された毛束は、すべてピンなどで頭髪に留めることにより、そのままエクステンションとして用いることができ、人頭上でも十分な性能を発揮することができる。
The hair bundles treated in the above examples can be used as extensions as they are by fixing them to the hair with pins or the like, and can exhibit sufficient performance even on a human head.
The hair bundles treated in the above examples can be used as extensions as they are by fixing them to the hair with pins or the like, and can exhibit sufficient performance even on a human head.
Claims (11)
- 再生コラーゲン繊維中に以下の成分(A)を安息香酸として1.0質量%以上含有してなる改質再生コラーゲン繊維。
(A) 安息香酸又はその塩 A modified regenerated collagen fiber containing 1.0% by mass or more of the following component (A) as benzoic acid in the regenerated collagen fiber.
(A) Benzoic acid or its salts - 成分(A)の含有量が安息香酸として1.0~50質量%である請求項1に記載の改質再生コラーゲン繊維。 The modified regenerated collagen fiber according to claim 1, wherein the content of component (A) is 1.0 to 50% by mass as benzoic acid.
- 成分(A)の含有量が安息香酸として5.0~40質量%である請求項1に記載の改質再生コラーゲン繊維。 The modified regenerated collagen fiber according to claim 1, wherein the content of component (A) is 5.0 to 40% by mass as benzoic acid.
- さらに、以下の成分(B)を含有する請求項1~3のいずれか1項に記載の改質再生コラーゲン繊維。
(B) 多価金属、又はその塩若しくはその錯体 The modified regenerated collagen fiber according to any one of claims 1 to 3, further comprising the following component (B).
(B) Polyvalent metal, its salt or its complex - 成分(B)がアルミニウム、又はその塩若しくはその錯体である、請求項4に記載の改質再生コラーゲン繊維。 The modified regenerated collagen fiber according to claim 4, wherein component (B) is aluminum, a salt thereof, or a complex thereof.
- 下記工程(i)を含む再生コラーゲン繊維処理方法。
工程(i) 以下の成分(A)を含有する繊維処理剤に再生コラーゲン繊維を浸漬する工程
(A) 安息香酸又はその塩 A regenerated collagen fiber processing method comprising the following step (i).
Step (i) Step of immersing regenerated collagen fibers in a fiber treatment agent containing the following component (A) (A) Benzoic acid or its salt - 前記再生コラーゲン繊維が、以下の成分(B)を含有する、請求項6に記載の再生コラーゲン繊維処理方法。
(B) 多価金属、又はその塩若しくはその錯体 The regenerated collagen fiber processing method according to claim 6, wherein the regenerated collagen fiber contains the following component (B).
(B) Polyvalent metal, its salt or its complex - 成分(B)がアルミニウム、又はその塩若しくはその錯体である、請求項7に記載の再生コラーゲン繊維処理方法。 The regenerated collagen fiber processing method according to claim 7, wherein component (B) is aluminum, a salt thereof, or a complex thereof.
- 請求項6~8のいずれか1項に記載の再生コラーゲン繊維処理方法によって、再生コラーゲン繊維を処理する工程を含む、改質再生コラーゲン繊維の製造方法。 A method for producing modified regenerated collagen fibers, comprising the step of treating regenerated collagen fibers by the regenerated collagen fiber treatment method according to any one of claims 6 to 8.
- 請求項6~8のいずれか1項に記載の再生コラーゲン繊維処理方法によって、再生コラーゲン繊維を処理する工程を含む、頭飾製品の製造方法。 A method for producing a headdress product, comprising the step of treating regenerated collagen fibers by the regenerated collagen fiber treatment method according to any one of claims 6 to 8.
- 請求項1~5のいずれか1項に記載の改質再生コラーゲン繊維を構成要素として含む頭飾製品。 A headdress product comprising the modified regenerated collagen fiber according to any one of claims 1 to 5 as a constituent element.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-081667 | 2022-05-18 | ||
JP2022081667 | 2022-05-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023224000A1 true WO2023224000A1 (en) | 2023-11-23 |
Family
ID=88835578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/018107 WO2023224000A1 (en) | 2022-05-18 | 2023-05-15 | Modified regenerated collagen fiber, production method therefor, and headdress product containing same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2023171309A (en) |
WO (1) | WO2023224000A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2525035B2 (en) * | 1988-05-13 | 1996-08-14 | 株式会社クラレ | Synthetic fiber cloth processing method |
JP2009526897A (en) * | 2006-02-16 | 2009-07-23 | ジョン グリエム、 | Flame retardant chemical composition |
WO2016158702A1 (en) * | 2015-03-30 | 2016-10-06 | 株式会社カネカ | Artificial protein fibers for hair, manufacturing method therefor and head accessory containing same |
-
2023
- 2023-05-15 WO PCT/JP2023/018107 patent/WO2023224000A1/en unknown
- 2023-05-15 JP JP2023080244A patent/JP2023171309A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2525035B2 (en) * | 1988-05-13 | 1996-08-14 | 株式会社クラレ | Synthetic fiber cloth processing method |
JP2009526897A (en) * | 2006-02-16 | 2009-07-23 | ジョン グリエム、 | Flame retardant chemical composition |
WO2016158702A1 (en) * | 2015-03-30 | 2016-10-06 | 株式会社カネカ | Artificial protein fibers for hair, manufacturing method therefor and head accessory containing same |
Also Published As
Publication number | Publication date |
---|---|
JP2023171309A (en) | 2023-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4578749B2 (en) | Regenerated collagen fiber with excellent heat resistance | |
RU2143017C1 (en) | Treatment of fiber | |
US9403984B2 (en) | Water-resistant regenerated collagen fiber containing zirconium salt and phosphorus compound, method for producing the same, and fiber bundle for hair containing the same | |
JP5069668B2 (en) | Dyed regenerated collagen fiber, artificial hair, dye fixing method for dyed regenerated collagen fiber, and method for producing dyed regenerated collagen fiber | |
JPH09512591A (en) | Treatment method for reducing fibrillation of lyocell fabric | |
JP3848621B2 (en) | Method for producing and setting regenerated collagen fiber | |
JP4559680B2 (en) | Regenerated collagen fiber with reduced odor and improved setability, method for producing the same, and set method | |
JPH06305942A (en) | Keratin fiber-treating agent | |
WO2023224000A1 (en) | Modified regenerated collagen fiber, production method therefor, and headdress product containing same | |
KR20130113585A (en) | Manufacturing method of functional fabrics comprising cold compositions | |
WO2023224001A1 (en) | Modified regenerated collagen fibers, production method therefor, and headdress product including same | |
JP4822622B2 (en) | Weaving made of regenerated collagen fibers | |
JP2002249982A (en) | Chemically modified regenerated collagen fiber | |
JPH08284064A (en) | Modification of cellulosic fiber | |
NO169752B (en) | PORTFOLIOUS PREPARATION AND ITS USE FOR PERMANENTIZING HER | |
JPH09250081A (en) | Method for applying shape to regenerated collagen fiber | |
CN107988783B (en) | Modified flexible material for silk non-woven fabric and preparation method thereof | |
WO2023224002A1 (en) | Fiber-treating agent | |
WO2023224003A1 (en) | Fiber-treating agent | |
JP3229307B2 (en) | Modification method of artificial cellulosic fiber | |
JPH08218276A (en) | Production of washing-resistant antimicrobial textile fabric | |
JP3997478B2 (en) | Thermal insulation product | |
JPH04295411A (en) | Keratinous fiber treating agent composition | |
JPH07258973A (en) | Method for processing silk fibroin | |
JP2002227021A (en) | Composite fiber bundle for hair |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23807602 Country of ref document: EP Kind code of ref document: A1 |