WO2023223879A1 - Deformation amount detection device - Google Patents

Deformation amount detection device Download PDF

Info

Publication number
WO2023223879A1
WO2023223879A1 PCT/JP2023/017364 JP2023017364W WO2023223879A1 WO 2023223879 A1 WO2023223879 A1 WO 2023223879A1 JP 2023017364 W JP2023017364 W JP 2023017364W WO 2023223879 A1 WO2023223879 A1 WO 2023223879A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
piezoelectric body
detection device
resonance
deformation amount
Prior art date
Application number
PCT/JP2023/017364
Other languages
French (fr)
Japanese (ja)
Inventor
佳郎 田實
健 山本
隼 宝田
健一 森
正道 安藤
Original Assignee
株式会社村田製作所
学校法人関西大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所, 学校法人関西大学 filed Critical 株式会社村田製作所
Publication of WO2023223879A1 publication Critical patent/WO2023223879A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge

Definitions

  • the present invention relates to a deformation amount detection device.
  • Patent Document 1 discloses a deformation detection device that includes a first electrode, a second electrode, and a flexible transmission section.
  • Patent Document 1 an elastic wave is generated when an input signal is input to the first electrode.
  • the transmission section transmits the elastic wave to the second electrode.
  • the second electrode generates an output signal using an elastic wave.
  • An object of an embodiment of the present invention is to provide a deformation amount detection device that detects deformation amount with high sensitivity using resonance in the thickness direction.
  • a deformation amount detection device has a first end and a second end that are both ends along a first direction, and a substrate to which the first end side and the second end side are fixed. , a piezoelectric body that overlaps the substrate in plan view and is disposed between the first end and the second end; and an input electrode that overlaps the piezoelectric body in plan view and inputs an input signal to the piezoelectric body. an output electrode that overlaps the piezoelectric body in plan view and outputs an output signal from the piezoelectric body; and a controller that inputs an input signal to the input electrode and receives the output signal from the output electrode.
  • the substrate is provided with a slit between the first end and the second end, and the output electrode is disposed at a position overlapping the slit in plan view,
  • the piezoelectric body resonates in the thickness direction of the piezoelectric body.
  • the substrate and the piezoelectric body tend to vibrate in the thickness direction due to the slits provided in the substrate. Since the output electrode is arranged at a position overlapping the slit in plan view, it is arranged at a position of the piezoelectric body where the amount of deformation is the largest. Therefore, the deformation amount detection device can detect the deformation amount with high sensitivity using resonance in the thickness direction.
  • the amount of deformation can be detected with high sensitivity using resonance in the thickness direction.
  • FIG. 2 is a perspective view of the deformation amount detection device 1.
  • FIG. 2 is a cross-sectional view taken along line II shown in FIG. 1.
  • FIG. 2 is a cross-sectional view taken along line II shown in FIG. 1.
  • FIG. FIG. 2 is a plan view of the deformation amount detection device 1.
  • FIG. 5(A) and 5(B) are schematic diagrams showing the vibration mode of the piezoelectric body 30, and
  • FIG. 5(C) is a sectional view taken along the line II-II shown in FIG. 5(B).
  • . 3 is a diagram showing the relationship between the bending angle of the substrate 10 and the resonance frequency of the piezoelectric body 30.
  • FIG. FIG. 3 is a diagram showing frequency characteristics of an output signal.
  • FIG. 3 is a diagram showing the relationship between the bending angle of the substrate 10 and the output signal.
  • FIGS. 9(A) and 9(B) are schematic diagrams showing how the deformation amount detection device 1 is fixed to a detection target 70 that may undergo minute deformation.
  • FIGS. 10(A) and 10(B) are schematic diagrams showing how the deformation amount detection device 1 is fixed to a detection target 70 that may undergo minute deformation.
  • 7 is a schematic diagram showing a vibration mode of a piezoelectric body 30 according to Modification 1.
  • FIG. 7 is a diagram showing the relationship between the bending angle of the substrate 10 and the resonant frequency of the piezoelectric body 30 according to Modification 1.
  • FIG. 7 is a diagram showing the relationship between the bending angle of the substrate 10 and the output signal according to Modification 1.
  • FIG. 1 is an external perspective view of the deformation amount detection device 1.
  • 2 and 3 are cross-sectional views taken along line II shown in FIG. 1.
  • FIG. 4 is a plan view of the deformation amount detection device 1.
  • the deformation detection device 1 includes a substrate 10 , a first fixing section 15 , a second fixing section 17 , a piezoelectric body 30 , an input electrode 21 , an output electrode 22 , a reference electrode 25 , and a controller 90 .
  • the substrate 10 is made of, for example, PET, polycarbonate (PC), acrylic (PMMA), stainless steel, aluminum alloy, copper alloy, or the like.
  • the substrate 10 has a first end 101 and a second end 102, which are both ends along the first direction.
  • the lower surface of the substrate 10 on the first end 101 side is fixed to the detection target 70 by the first fixing part 15 .
  • the lower surface of the substrate 10 on the second end 102 side is fixed to the detection target 70 by the second fixing part 17 .
  • the first fixing part 15 and the second fixing part 17 are, for example, adhesive tapes.
  • the first direction which is the length direction of the substrate 10
  • the thickness direction of the substrate 10 is defined as the Z direction
  • the width direction of the substrate 10, which is orthogonal to the Y direction when viewed from above, is defined as the Y direction.
  • the X direction is defined as the first direction.
  • the deformation amount detection device 1 detects the amount of deformation of the flexible substrate 10 from its reference state. In this embodiment, the deformation amount detection device 1 detects the angle ⁇ when the substrate 10 is bent along the Y direction, as shown in FIG.
  • a reference electrode 25 is arranged on the upper surface of the substrate 10.
  • the reference electrode 25 is arranged at a position overlapping the substrate 10 when viewed from above.
  • the reference electrode 25 has the same area as the substrate 10 in plan view. However, the reference electrode 25 may be arranged only at a position overlapping the input electrode 21 and the output electrode 22 in plan view.
  • the reference electrode 25 is, for example, an inorganic electrode such as ITO (indium tin oxide) or ZnO (zinc oxide), an organic electrode such as PeDOT or conductive polyaniline, a metal film formed by vapor deposition or plating, or a printed electrode film formed from silver paste.
  • a piezoelectric body 30 is arranged on the upper surface of the reference electrode 25.
  • the piezoelectric body 30 is arranged at a position overlapping the substrate 10 when viewed from above.
  • the piezoelectric body 30 has the same area as the substrate 10 in plan view.
  • the piezoelectric body 30 deforms as the substrate 10 deforms.
  • the material of the piezoelectric body 30 is polyvinylidene fluoride or chiral polymer.
  • the chiral polymer is, for example, polylactic acid (PLA).
  • Polylactic acid is L-type polylactic acid (PLLA) or D-type polylactic acid (PDLA).
  • Polylactic acid consisting of a chiral polymer has a main chain having a helical structure.
  • Polylactic acid has piezoelectricity in which molecules are oriented by being uniaxially stretched.
  • Polylactic acid has a piezoelectric constant of d14.
  • the uniaxial stretching direction of polylactic acid is set to form a predetermined angle (for example, about 45° ⁇ 10°) with the Y direction or the X direction when viewed from above.
  • the substrate 10 is provided with a slit 50.
  • the slit 50 is provided between the first end 101 and the second end 102 in plan view.
  • the slit 50 is arranged at the center of the substrate 10 in the Y direction (dotted line shown in FIGS. 3 and 4).
  • the center of the substrate 10 in the Y direction coincides with the bending center line of the substrate 10.
  • the slits 50 make it easier for the substrate 10 and the piezoelectric body 30 to vibrate in the thickness direction.
  • the slit 50 has a rectangular shape that is long in the Y direction when viewed from above, but the shape of the slit 50 when viewed from above is not particularly limited.
  • the slit 50 may have a square, diamond, circular, oval, or other shape, for example.
  • An input electrode 21 and an output electrode 22 are arranged on the upper surface of the piezoelectric body 30.
  • the input electrode 21 and the output electrode 22 are arranged at positions overlapping the substrate 10 when viewed from above.
  • the input electrode 21 and the output electrode 22 are arranged at positions that do not overlap the first fixing part 15 and the second fixing part 17 in plan view.
  • the input electrode 21 is arranged on the side closer to the first end 101 than the center of the substrate 10 in the Y direction (the dotted line shown in FIGS. 3 and 4).
  • the output electrode 22 is arranged at a position overlapping the slit 50 when viewed from above.
  • the output electrode 22 is arranged at the center of the substrate 10 in the Y direction (dotted line shown in FIGS. 3 and 4). That is, the output electrode 22 is arranged at the position of the piezoelectric body 30 where the amount of deformation is the largest.
  • the input electrode 21 and the output electrode 22 are, for example, an inorganic electrode such as ITO (indium tin oxide) or ZnO (zinc oxide), an organic electrode such as PeDOT or conductive polyaniline, a metal film formed by vapor deposition or plating, or a printed electrode formed by silver paste. It is a membrane.
  • ITO indium tin oxide
  • ZnO zinc oxide
  • organic electrode such as PeDOT or conductive polyaniline
  • a metal film formed by vapor deposition or plating or a printed electrode formed by silver paste. It is a membrane.
  • the input electrode 21 and the output electrode 22 are each connected to a controller 90.
  • Controller 90 inputs an input signal to input electrode 21 and receives an output signal from output electrode 22 .
  • the input electrode 21 inputs an input signal whose voltage changes periodically to the piezoelectric body 30.
  • the piezoelectric body 30 vibrates in response to an input signal.
  • the output electrode 22 outputs an output signal generated by the vibration of the piezoelectric body 30.
  • FIGS. 5(A) and 5(B) are schematic diagrams showing how the piezoelectric body 30 vibrates.
  • FIG. 5(C) is a cross-sectional view taken along line II-II shown in FIG. 5(B).
  • the piezoelectric body 30 resonates in the thickness direction of the piezoelectric body 30.
  • the piezoelectric body 30 has a resonance mode standing along the Y direction as shown in FIG. 5(A), and a resonance mode as shown in FIGS.
  • the resonance mode is located at the center of the Y direction along the X direction.
  • the resonance mode that exists along the Y direction will be referred to as resonance mode A
  • the resonance mode that will exist along the X direction will be referred to as resonance mode B.
  • FIG. 6 shows the relationship between the bending angle of the substrate 10 and the resonance frequency of the piezoelectric body 30.
  • the horizontal axis shown in FIG. 6 is the bending angle (°) of the substrate 10, and the vertical axis is the resonant frequency (Hz) of the piezoelectric body 30.
  • the resonance of the piezoelectric body 30 has multiple resonance modes.
  • A1 shown in FIG. 6 indicates the first-order resonance mode among the resonance modes A.
  • A2 indicates a secondary resonance mode among the resonance modes A.
  • A3 indicates a third-order resonance mode among the resonance modes A.
  • B1 indicates a first-order resonance mode among resonance modes B.
  • B2 indicates a secondary resonance mode among the resonance modes B.
  • the controller 90 inputs a sine wave input signal with an amplitude of 5 V while sweeping the frequency.
  • the controller 90 measures the resonance frequency of each of the plurality of resonance modes.
  • the piezoelectric body 30 exhibits resonance frequencies at approximately 70 Hz and approximately 330 Hz.
  • the resonant frequency of 70 Hz corresponds to the primary resonant mode A1 of the resonant modes A.
  • the frequency of 330 Hz corresponds to the secondary resonance mode A2 of the resonance mode A.
  • the resonance frequency of the primary resonance mode A1 increases in accordance with the bending angle of the substrate 10.
  • the resonant frequency of the primary resonant mode A1 does not change.
  • the resonance frequency of the secondary resonance mode A2 increases in accordance with the bending angle of the substrate 10.
  • the resonant frequency of the secondary resonant mode A2 does not change.
  • the resonance frequency of the tertiary resonance mode A3 increases in accordance with the bending angle of the substrate 10.
  • FIG. 7 is a diagram showing the frequency characteristics of the output signal.
  • the horizontal axis shown in FIG. 7 is frequency (Hz), and the vertical axis is voltage (mV).
  • the example in FIG. 7 shows the frequency characteristics of the output signal obtained from the output electrode 22 when the controller 90 inputs an input signal of 5 V voltage to the input electrode 21 and changes the bending angle of the substrate 10. It is a graph.
  • FIG. 7 shows the frequency characteristics of the output signal when the bending angle of the substrate 10 is changed from 4.2° to 5.0° in 0.2° increments.
  • the resonant frequency corresponding to the resonant mode A changes toward a higher frequency depending on the bending angle of the substrate 10.
  • the resonant frequency corresponding to the resonant mode B also changes to the high frequency side according to the bending angle of the substrate 10.
  • the controller 90 sweeps the frequency of the input signal and detects the bending angle of the substrate 10 according to the value of the detected resonance frequency. For example, when the controller 90 detects a resonance frequency of 150 Hz, the controller 90 detects the bending angle of the substrate 10 as 1 degree.
  • the controller 90 detects the bending angle according to the value of the second resonance frequency of the second resonance mode. For example, when the first resonance frequency of the first resonance mode A1, which is the first resonance mode, exceeds 290 Hz, the controller 90 controls the controller 90 according to the value of the second resonance frequency of the second resonance mode A2, which is the second resonance mode. Detects bending angle. Alternatively, if the second resonance frequency of the second resonance mode A2, which is the second resonance mode, exceeds 570 Hz, the controller 90 controls the controller 90 according to the value of the third resonance frequency of the third resonance mode A3, which is the third resonance mode. Detects bending angle.
  • the controller 90 controls the controller 90 according to the value of the second resonance frequency of the second resonance mode B2, which is the second resonance mode. Detects bending angle.
  • the controller 90 can accurately detect the bending angle of the substrate 10 according to the value of the resonance frequency.
  • FIG. 8 shows the relationship between the bending angle of the substrate 10 and the output signal.
  • the horizontal axis shown in FIG. 8 is the bending angle (°) of the substrate 10, and the vertical axis is the voltage (mV) of the output signal.
  • controller 90 applies a sinusoidal input signal of a certain fixed frequency to the input electrode 21. Controller 90 receives the output signal from output electrode 22 and measures the voltage.
  • a voltage of about 10 mV is measured when the substrate 10 is bent at an angle of 2.2°.
  • the bending angle of the substrate 10 is made smaller or larger than 2.2 degrees, the measured voltage drops rapidly.
  • the controller 90 detects the bending angle of the substrate 10 according to the magnitude of the output signal when an input signal of a constant frequency such as 53 Hz or 430 Hz is input. Thereby, the controller 90 can detect minute bending angles with high precision.
  • FIGS. 9(A) and 9(B) are schematic diagrams showing how the substrate 10 of the deformation amount detection device 1 is attached and fixed to the detection target 70.
  • the detection target 70 in this example is a battery. Batteries may swell slightly over a long period of time, from several months to several years, and may undergo slight deformation. It is difficult for general sensors to detect such minute deformations that occur over a long period of time.
  • the substrate 10 of the deformation amount detection device 1 bends in accordance with the deformation of the detection object 70. Since the deformation of the detection target 70 due to the bulge is very small, the bending angle of the substrate 10 is also very small.
  • the controller 90 applies a sine wave input signal of, for example, 53 Hz to the input electrode 21 and measures the voltage of the output signal, thereby allowing a very small bending angle from the reference state. Can be detected. Therefore, the deformation amount detection device 1 can detect a slight bulge in the detection target object 70, which is a battery.
  • FIGS. 10(A) and 10(B) are schematic diagrams showing how the substrate 10 of the deformation amount detection device 1 is attached and fixed to the detection target 70.
  • the detection target 70 in this example is also a battery.
  • the substrate 10 of the deformation amount detection device 1 is attached to the detection target 70 with the holding member 900 bent at a predetermined angle (for example, 2.2°).
  • the controller 90 can detect a very small bending angle by applying, for example, a 430 Hz sine wave input signal to the input electrode 21 and measuring the voltage of the output signal. Therefore, also in this case, the deformation amount detection device 1 can detect a slight bulge in the detection target object 70, which is a battery.
  • FIG. 11 is a schematic diagram showing the vibration mode of the piezoelectric body 30 according to the first modification.
  • FIG. 12 shows the relationship between the bending angle of the substrate 10 and the resonance frequency of the piezoelectric body 30 according to Modification 1.
  • FIG. 13 shows the relationship between the bending angle of the substrate 10 and the output signal according to Modification 1.
  • the deformation amount detection device has the same configuration as the configuration shown in FIG.
  • the material of the piezoelectric body 30 is polylactic acid.
  • the uniaxial stretching direction of polylactic acid is set to form the same angle (for example, about 0° ⁇ 10°) as the Y direction or the X direction when viewed from above.
  • FIG. 11 shows the vibration mode when a sine wave with an amplitude of 5 V is applied to the input electrode 21 of the deformation amount detection device 1.
  • the piezoelectric body 30 when the uniaxial stretching direction of polylactic acid is at the same angle as the Y direction or the X direction in plan view, when a sinusoidal input signal is input to the input electrode 21, the piezoelectric body 30 mainly becomes a resonance mode that vibrates in the plane direction.
  • the resonance frequency increases as the bending angle of the substrate 10 increases. Therefore, the controller 90 can accurately detect the bending angle by measuring the resonance frequency.
  • the controller 90 can detect an accurate bending angle by measuring the output voltage with respect to the input of a sine wave of a certain fixed frequency.
  • Deformation detection device 10 Substrate 15: First fixed part 17: Second fixed part 21: Input electrode 22: Output electrode 25: Reference electrode 30: Piezoelectric body 50: Slit 70: Detection target 90: Controller 101: First end 102: Second end 900: Holding member

Abstract

A deformation amount detection device (1) comprises: a substrate (10) that has a first end and a second end which are two ends in a first direction, and that is fixed at the first end side and the second end side; a piezoelectric body (30) that overlaps the substrate (10) in a plan view and that is disposed between the first end and the second end; an input electrode (21) that overlaps the piezoelectric body (30) in a plan view and that inputs an input signal to the piezoelectric body (30); an output electrode (22) that overlaps the piezoelectric body (30) in a plan view and that outputs an output signal from the piezoelectric body (30); and a controller that inputs the input signal to the input electrode (21) and receives the output signal from the output electrode (22). The substrate (10) is provided with a slit (50) between the first end and the second end. The output electrode (22) is disposed at a position so as to overlap the slit (50) in a plan view. The piezoelectric body (30) resonates in the thickness direction of the piezoelectric body (30).

Description

変形量検知装置Deformation amount detection device
 本発明は、変形量検知装置に関する。 The present invention relates to a deformation amount detection device.
 特許文献1には、第1電極と、第2電極と、可撓性を有している伝達部と、を備えた変形量検知装置が開示されている。 Patent Document 1 discloses a deformation detection device that includes a first electrode, a second electrode, and a flexible transmission section.
 特許文献1の構成では、第1電極に入力信号を入力すると弾性波が発生する。伝達部は、当該弾性波を第2電極に伝達する。第2電極は、弾性波により出力信号を発生する。特許文献1の構成では、出力信号に基づいて伝達部の基準状態からの変形量を検知することができる。 In the configuration of Patent Document 1, an elastic wave is generated when an input signal is input to the first electrode. The transmission section transmits the elastic wave to the second electrode. The second electrode generates an output signal using an elastic wave. With the configuration of Patent Document 1, the amount of deformation of the transmission section from the reference state can be detected based on the output signal.
国際公開第2022/030356号International Publication No. 2022/030356
 本発明の一実施形態の目的は、厚み方向の共振を利用して変形量を高感度に検知する変形量検知装置を提供することにある。 An object of an embodiment of the present invention is to provide a deformation amount detection device that detects deformation amount with high sensitivity using resonance in the thickness direction.
 本発明の一実施形態に係る変形量検知装置は、第1方向に沿った両端である第1端および第2端を有し、該第1端側および該第2端側が固定された基板と、前記基板に平面視して重なり、前記第1端および前記第2端の間に配置された圧電体と、前記圧電体に平面視して重なり、前記圧電体に入力信号を入力する入力電極と、前記圧電体に平面視して重なり、前記圧電体から出力信号を出力する出力電極と、前記入力電極に入力信号を入力し、前記出力電極から前記出力信号を受信するコントローラと、を備えた変形量検知装置であって、前記基板は、前記第1端および前記第2端の間にスリットが設けられ、前記出力電極は、平面視して前記スリットに重なる位置に配置されていて、前記圧電体は、該圧電体の厚み方向に共振する。 A deformation amount detection device according to an embodiment of the present invention has a first end and a second end that are both ends along a first direction, and a substrate to which the first end side and the second end side are fixed. , a piezoelectric body that overlaps the substrate in plan view and is disposed between the first end and the second end; and an input electrode that overlaps the piezoelectric body in plan view and inputs an input signal to the piezoelectric body. an output electrode that overlaps the piezoelectric body in plan view and outputs an output signal from the piezoelectric body; and a controller that inputs an input signal to the input electrode and receives the output signal from the output electrode. In the deformation detection device, the substrate is provided with a slit between the first end and the second end, and the output electrode is disposed at a position overlapping the slit in plan view, The piezoelectric body resonates in the thickness direction of the piezoelectric body.
 基板および圧電体は、基板に設けられたスリットにより、厚み方向に振動し易くなる。出力電極は、平面視してスリットに重なる位置に配置されていているため、圧電体のうち最も変形量の大きい位置に配置される。したがって、変形量検出装置は、厚み方向の共振を利用して変形量を高感度に検知することができる。 The substrate and the piezoelectric body tend to vibrate in the thickness direction due to the slits provided in the substrate. Since the output electrode is arranged at a position overlapping the slit in plan view, it is arranged at a position of the piezoelectric body where the amount of deformation is the largest. Therefore, the deformation amount detection device can detect the deformation amount with high sensitivity using resonance in the thickness direction.
 本発明の一実施形態によれば、厚み方向の共振を利用して変形量を高感度に検知することができる。 According to an embodiment of the present invention, the amount of deformation can be detected with high sensitivity using resonance in the thickness direction.
変形量検知装置1の斜視図である。FIG. 2 is a perspective view of the deformation amount detection device 1. FIG. 図1に示すI-I線の断面図である。2 is a cross-sectional view taken along line II shown in FIG. 1. FIG. 図1に示すI-I線の断面図である。2 is a cross-sectional view taken along line II shown in FIG. 1. FIG. 変形量検知装置1の平面図である。FIG. 2 is a plan view of the deformation amount detection device 1. FIG. 図5(A)および図5(B)は、圧電体30の振動態様を示す概略図であり、図5(C)は、図5(B)中に示すII-II線の断面図である。5(A) and 5(B) are schematic diagrams showing the vibration mode of the piezoelectric body 30, and FIG. 5(C) is a sectional view taken along the line II-II shown in FIG. 5(B). . 基板10の曲げ角度と圧電体30の共振周波数の関係を示す図である。3 is a diagram showing the relationship between the bending angle of the substrate 10 and the resonance frequency of the piezoelectric body 30. FIG. 出力信号の周波数特性を示す図である。FIG. 3 is a diagram showing frequency characteristics of an output signal. 基板10の曲げ角度と出力信号の関係を示す図である。FIG. 3 is a diagram showing the relationship between the bending angle of the substrate 10 and the output signal. 図9(A)および図9(B)は、微小な変形を生じる可能性のある検知対象物70に変形量検知装置1を固定した様子を表す概略図である。FIGS. 9(A) and 9(B) are schematic diagrams showing how the deformation amount detection device 1 is fixed to a detection target 70 that may undergo minute deformation. 図10(A)および図10(B)は、微小な変形を生じる可能性のある検知対象物70に変形量検知装置1を固定した様子を表す概略図である。FIGS. 10(A) and 10(B) are schematic diagrams showing how the deformation amount detection device 1 is fixed to a detection target 70 that may undergo minute deformation. 変形例1に係る圧電体30の振動態様を示す概略図である。7 is a schematic diagram showing a vibration mode of a piezoelectric body 30 according to Modification 1. FIG. 変形例1に係る基板10の曲げ角度と圧電体30の共振周波数の関係を示す図である。7 is a diagram showing the relationship between the bending angle of the substrate 10 and the resonant frequency of the piezoelectric body 30 according to Modification 1. FIG. 変形例1に係る基板10の曲げ角度と出力信号の関係を示す図である。7 is a diagram showing the relationship between the bending angle of the substrate 10 and the output signal according to Modification 1. FIG.
 図1は、変形量検知装置1の外観斜視図である。図2および図3は、図1に示すI-I線の断面図である。図4は、変形量検知装置1の平面図である。 FIG. 1 is an external perspective view of the deformation amount detection device 1. 2 and 3 are cross-sectional views taken along line II shown in FIG. 1. FIG. 4 is a plan view of the deformation amount detection device 1.
 変形量検知装置1は、基板10、第1固定部15、第2固定部17、圧電体30、入力電極21、出力電極22、基準電極25、およびコントローラ90を有する。 The deformation detection device 1 includes a substrate 10 , a first fixing section 15 , a second fixing section 17 , a piezoelectric body 30 , an input electrode 21 , an output electrode 22 , a reference electrode 25 , and a controller 90 .
 基板10は、例えばPET、ポリカーボネート(PC)、アクリル(PMMA)、ステンレス、アルミ系合金、または銅系合金等からなる。基板10は、第1方向に沿った両端である第1端101および第2端102を有する。基板10の第1端101側の下面は第1固定部15で検知対象物70に固定される。基板10の第2端102側の下面は第2固定部17で検知対象物70に固定される。第1固定部15および第2固定部17は、例えば粘着テープである。 The substrate 10 is made of, for example, PET, polycarbonate (PC), acrylic (PMMA), stainless steel, aluminum alloy, copper alloy, or the like. The substrate 10 has a first end 101 and a second end 102, which are both ends along the first direction. The lower surface of the substrate 10 on the first end 101 side is fixed to the detection target 70 by the first fixing part 15 . The lower surface of the substrate 10 on the second end 102 side is fixed to the detection target 70 by the second fixing part 17 . The first fixing part 15 and the second fixing part 17 are, for example, adhesive tapes.
 以下の説明では、基板10の長さ方向である第1方向をY方向と定義し、基板10の厚み方向をZ方向と定義し、平面視してY方向に直交する、基板10の幅方向をX方向と定義する。 In the following description, the first direction, which is the length direction of the substrate 10, is defined as the Y direction, the thickness direction of the substrate 10 is defined as the Z direction, and the width direction of the substrate 10, which is orthogonal to the Y direction when viewed from above, is defined as the Y direction. is defined as the X direction.
 変形量検知装置1は、可撓性を有する基板10の基準状態からの変形量を検知する。本実施形態では、変形量検知装置1は、図3に示すように、基板10がY方向に沿って曲げられたときの角度θを検知する。 The deformation amount detection device 1 detects the amount of deformation of the flexible substrate 10 from its reference state. In this embodiment, the deformation amount detection device 1 detects the angle θ when the substrate 10 is bent along the Y direction, as shown in FIG.
 基板10の上面には、基準電極25が配置される。基準電極25は、平面視して基板10と重なる位置に配置されている。基準電極25は、平面視して基板10と同じ面積を有する。ただし、基準電極25は、平面視して入力電極21および出力電極22に重なる位置にのみ配置されていてもよい。基準電極25は、例えば、ITO(酸化インジウムスズ)、ZnO(酸化亜鉛)等の無機電極、PeDOTや導電ポリアニリン等の有機電極、蒸着、メッキによる金属皮膜、または銀ペーストによる印刷電極膜である。 A reference electrode 25 is arranged on the upper surface of the substrate 10. The reference electrode 25 is arranged at a position overlapping the substrate 10 when viewed from above. The reference electrode 25 has the same area as the substrate 10 in plan view. However, the reference electrode 25 may be arranged only at a position overlapping the input electrode 21 and the output electrode 22 in plan view. The reference electrode 25 is, for example, an inorganic electrode such as ITO (indium tin oxide) or ZnO (zinc oxide), an organic electrode such as PeDOT or conductive polyaniline, a metal film formed by vapor deposition or plating, or a printed electrode film formed from silver paste.
 基準電極25の上面には圧電体30が配置される。圧電体30は、平面視して基板10と重なる位置に配置される。圧電体30は、平面視して基板10と同じ面積を有する。圧電体30は、基板10の変形に伴い変形する。 A piezoelectric body 30 is arranged on the upper surface of the reference electrode 25. The piezoelectric body 30 is arranged at a position overlapping the substrate 10 when viewed from above. The piezoelectric body 30 has the same area as the substrate 10 in plan view. The piezoelectric body 30 deforms as the substrate 10 deforms.
 圧電体30の材料は、ポリフッ化ビニリデンあるいはキラル高分子である。キラル高分子とは、例えば、ポリ乳酸(PLA)である。ポリ乳酸は、L型ポリ乳酸(PLLA)またはD型ポリ乳酸(PDLA)である。キラル高分子からなるポリ乳酸は、主鎖が螺旋構造を有する。ポリ乳酸は、一軸延伸されて分子が配向する圧電性を有する。ポリ乳酸は、d14の圧電定数を有している。ポリ乳酸の一軸延伸方向は、平面視してY方向またはX方向と所定の角度(例えば45°±10°程度)を成すように設定されている。 The material of the piezoelectric body 30 is polyvinylidene fluoride or chiral polymer. The chiral polymer is, for example, polylactic acid (PLA). Polylactic acid is L-type polylactic acid (PLLA) or D-type polylactic acid (PDLA). Polylactic acid consisting of a chiral polymer has a main chain having a helical structure. Polylactic acid has piezoelectricity in which molecules are oriented by being uniaxially stretched. Polylactic acid has a piezoelectric constant of d14. The uniaxial stretching direction of polylactic acid is set to form a predetermined angle (for example, about 45°±10°) with the Y direction or the X direction when viewed from above.
 基板10は、スリット50が設けられている。スリット50は、平面視して第1端101および第2端102の間に設けられている。本実施形態では、スリット50は、基板10のY方向の中心(図3および図4に示す一点破線)に配置される。基板10のY方向の中心は、基板10の曲げの中心線と一致する。スリット50により、基板10および圧電体30は、厚み方向に振動し易くなる。なお、本実施形態では、スリット50は、平面視してY方向に長い長方形状であるが、スリット50を平面視した形状は特に限定されない。スリット50は、例えば正方形、ひし形、円形、楕円形等の形状であってもよい。 The substrate 10 is provided with a slit 50. The slit 50 is provided between the first end 101 and the second end 102 in plan view. In this embodiment, the slit 50 is arranged at the center of the substrate 10 in the Y direction (dotted line shown in FIGS. 3 and 4). The center of the substrate 10 in the Y direction coincides with the bending center line of the substrate 10. The slits 50 make it easier for the substrate 10 and the piezoelectric body 30 to vibrate in the thickness direction. Note that in this embodiment, the slit 50 has a rectangular shape that is long in the Y direction when viewed from above, but the shape of the slit 50 when viewed from above is not particularly limited. The slit 50 may have a square, diamond, circular, oval, or other shape, for example.
 圧電体30の上面には、入力電極21および出力電極22が配置される。入力電極21および出力電極22は、平面視して基板10と重なる位置に配置される。入力電極21および出力電極22は、平面視して第1固定部15および第2固定部17に重ならない位置に配置される。入力電極21は、基板10のY方向の中心(図3および図4に示す一点破線)よりも第1端101に近い側に配置される。出力電極22は、平面視してスリット50に重なる位置に配置されていている。本実施形態では、出力電極22は、基板10のY方向の中心(図3および図4に示す一点破線)に配置される。つまり、出力電極22は、圧電体30のうち最も変形量の大きい位置に配置される。 An input electrode 21 and an output electrode 22 are arranged on the upper surface of the piezoelectric body 30. The input electrode 21 and the output electrode 22 are arranged at positions overlapping the substrate 10 when viewed from above. The input electrode 21 and the output electrode 22 are arranged at positions that do not overlap the first fixing part 15 and the second fixing part 17 in plan view. The input electrode 21 is arranged on the side closer to the first end 101 than the center of the substrate 10 in the Y direction (the dotted line shown in FIGS. 3 and 4). The output electrode 22 is arranged at a position overlapping the slit 50 when viewed from above. In this embodiment, the output electrode 22 is arranged at the center of the substrate 10 in the Y direction (dotted line shown in FIGS. 3 and 4). That is, the output electrode 22 is arranged at the position of the piezoelectric body 30 where the amount of deformation is the largest.
 入力電極21および出力電極22は、例えば、ITO(酸化インジウムスズ)、ZnO(酸化亜鉛)等の無機電極、PeDOTや導電ポリアニリン等の有機電極、蒸着、メッキによる金属皮膜、または銀ペーストによる印刷電極膜である。 The input electrode 21 and the output electrode 22 are, for example, an inorganic electrode such as ITO (indium tin oxide) or ZnO (zinc oxide), an organic electrode such as PeDOT or conductive polyaniline, a metal film formed by vapor deposition or plating, or a printed electrode formed by silver paste. It is a membrane.
 入力電極21および出力電極22は、それぞれコントローラ90に接続される。コントローラ90は、入力電極21に入力信号を入力し、出力電極22から出力信号を受信する。入力電極21は、圧電体30に対して、周期的に電圧が変化する入力信号を入力する。圧電体30は、入力信号により振動する。出力電極22は、圧電体30の振動により生じる出力信号を出力する。 The input electrode 21 and the output electrode 22 are each connected to a controller 90. Controller 90 inputs an input signal to input electrode 21 and receives an output signal from output electrode 22 . The input electrode 21 inputs an input signal whose voltage changes periodically to the piezoelectric body 30. The piezoelectric body 30 vibrates in response to an input signal. The output electrode 22 outputs an output signal generated by the vibration of the piezoelectric body 30.
 図5(A)および図5(B)は、圧電体30の振動の様子を示す概略図である。図5(C)は、図5(B)中に示すII-II線の断面図である。圧電体30は、該圧電体30の厚み方向に共振する。具体的には、入力電極21から正弦波の入力信号を入力すると、圧電体30は、図5(A)に示す様なY方向に沿って定在する共振モードと、図5(B)および図5(C)に示す様なY方向の中心でX方向に沿って定在する共振モードと、を有する。以下の説明では、Y方向に沿って定在する共振モードを共振モードAと称し、X方向に沿って定在する共振モードを共振モードBと称する。 FIGS. 5(A) and 5(B) are schematic diagrams showing how the piezoelectric body 30 vibrates. FIG. 5(C) is a cross-sectional view taken along line II-II shown in FIG. 5(B). The piezoelectric body 30 resonates in the thickness direction of the piezoelectric body 30. Specifically, when a sinusoidal input signal is input from the input electrode 21, the piezoelectric body 30 has a resonance mode standing along the Y direction as shown in FIG. 5(A), and a resonance mode as shown in FIGS. As shown in FIG. 5(C), the resonance mode is located at the center of the Y direction along the X direction. In the following description, the resonance mode that exists along the Y direction will be referred to as resonance mode A, and the resonance mode that will exist along the X direction will be referred to as resonance mode B.
 図6は、基板10の曲げ角度と圧電体30の共振周波数の関係を示すである。図6に示す横軸は基板10の曲げ角度(°)であり、縦軸は圧電体30の共振周波数(Hz)である。 FIG. 6 shows the relationship between the bending angle of the substrate 10 and the resonance frequency of the piezoelectric body 30. The horizontal axis shown in FIG. 6 is the bending angle (°) of the substrate 10, and the vertical axis is the resonant frequency (Hz) of the piezoelectric body 30.
 図6に示す様に、圧電体30の共振は、複数の共振モードを有する。図6に示すA1は、共振モードAのうち1次共振モードを示す。A2は、共振モードAのうち2次共振モードを示す。A3は、共振モードAのうち3次共振モードを示す。B1は、共振モードBのうち1次共振モードを示す。B2は、共振モードBのうち2次共振モードを示す。 As shown in FIG. 6, the resonance of the piezoelectric body 30 has multiple resonance modes. A1 shown in FIG. 6 indicates the first-order resonance mode among the resonance modes A. A2 indicates a secondary resonance mode among the resonance modes A. A3 indicates a third-order resonance mode among the resonance modes A. B1 indicates a first-order resonance mode among resonance modes B. B2 indicates a secondary resonance mode among the resonance modes B.
 コントローラ90は、一例として振幅5Vの正弦波の入力信号を、周波数をスイープさせて入力する。コントローラ90は、複数の共振モードのそれぞれの共振周波数を計測する。 For example, the controller 90 inputs a sine wave input signal with an amplitude of 5 V while sweeping the frequency. The controller 90 measures the resonance frequency of each of the plurality of resonance modes.
 圧電体30は、基準状態(曲げ角度0°)では、約70Hzおよび約330Hzに共振周波数が現れる。当該70Hzの共振周波数は、共振モードAのうち1次共振モードA1に対応する。330Hzの周波数は、共振モードAのうち2次共振モードA2に対応する。基板10の曲げ角度が大きくなると1次共振モードA1の共振周波数は、基板10の曲げ角度に応じて大きくなる。基板10の曲げ角度が2°になり共振周波数が約290Hzに達すると、1次共振モードA1の共振周波数は変化しなくなる。しかし、基板10の曲げ角度が2°以上になると2次共振モードA2の共振周波数は、基板10の曲げ角度に応じて大きくなる。基板10の曲げ角度が3°になり共振周波数が約570Hzに達すると、2次共振モードA2の共振周波数は変化しなくなる。しかし、基板10の曲げ角度が3°以上になると3次共振モードA3の共振周波数は、基板10の曲げ角度に応じて大きくなる。 In the standard state (bending angle 0°), the piezoelectric body 30 exhibits resonance frequencies at approximately 70 Hz and approximately 330 Hz. The resonant frequency of 70 Hz corresponds to the primary resonant mode A1 of the resonant modes A. The frequency of 330 Hz corresponds to the secondary resonance mode A2 of the resonance mode A. As the bending angle of the substrate 10 increases, the resonance frequency of the primary resonance mode A1 increases in accordance with the bending angle of the substrate 10. When the bending angle of the substrate 10 becomes 2 degrees and the resonant frequency reaches approximately 290 Hz, the resonant frequency of the primary resonant mode A1 does not change. However, when the bending angle of the substrate 10 becomes 2 degrees or more, the resonance frequency of the secondary resonance mode A2 increases in accordance with the bending angle of the substrate 10. When the bending angle of the substrate 10 becomes 3 degrees and the resonant frequency reaches approximately 570 Hz, the resonant frequency of the secondary resonant mode A2 does not change. However, when the bending angle of the substrate 10 becomes 3 degrees or more, the resonance frequency of the tertiary resonance mode A3 increases in accordance with the bending angle of the substrate 10.
 図7は、出力信号の周波数特性を示す図である。図7に示す横軸は周波数(Hz)であり、縦軸は電圧(mV)である。図7の例は、コントローラ90が入力電極21に対して5Vの電圧の入力信号を入力し、基板10の曲げ角度を変化させたときに出力電極22から得られる出力信号の周波数特性を示したグラフである。 FIG. 7 is a diagram showing the frequency characteristics of the output signal. The horizontal axis shown in FIG. 7 is frequency (Hz), and the vertical axis is voltage (mV). The example in FIG. 7 shows the frequency characteristics of the output signal obtained from the output electrode 22 when the controller 90 inputs an input signal of 5 V voltage to the input electrode 21 and changes the bending angle of the substrate 10. It is a graph.
 図7の例では、基板10の曲げ角度を4.2°から5.0まで0.2°刻みで変化させた時の出力信号の周波数特性を示す。図7に示す様に、共振モードAに対応する共振周波数は、基板10の曲げ角度に応じて高周波側に変化することが分かる。また、共振モードBに対応する共振周波数も基板10の曲げ角度に応じて高周波側に変化することが分かる。 The example in FIG. 7 shows the frequency characteristics of the output signal when the bending angle of the substrate 10 is changed from 4.2° to 5.0° in 0.2° increments. As shown in FIG. 7, it can be seen that the resonant frequency corresponding to the resonant mode A changes toward a higher frequency depending on the bending angle of the substrate 10. Further, it can be seen that the resonant frequency corresponding to the resonant mode B also changes to the high frequency side according to the bending angle of the substrate 10.
 そこで、コントローラ90は、入力信号の周波数をスイープして、検知する共振周波数の値に応じて基板10の曲げ角度を検知する。例えば、コントローラ90は、150Hzの共振周波数を検知した時、基板10の曲げ角度を1°として検知する。 Therefore, the controller 90 sweeps the frequency of the input signal and detects the bending angle of the substrate 10 according to the value of the detected resonance frequency. For example, when the controller 90 detects a resonance frequency of 150 Hz, the controller 90 detects the bending angle of the substrate 10 as 1 degree.
 一方で、コントローラ90は、複数の共振モードのうち第1共振モードの第1共振周波数が所定値を超えた場合、第2共振モードの第2共振周波数の値に応じて曲げ角度を検知する。例えば、コントローラ90は、第1共振モードである1次共振モードA1の第1共振周波数が290Hzを超えた場合、第2共振モードである2次共振モードA2の第2共振周波数の値に応じて曲げ角度を検知する。あるいは、コントローラ90は、第2共振モードである2次共振モードA2の第2共振周波数が570Hzを超えた場合、第3共振モードである3次共振モードA3の第3共振周波数の値に応じて曲げ角度を検知する。あるいは、コントローラ90は、第1共振モードである1次共振モードB1の第1共振周波数が900Hzを超えた場合、第2共振モードである2次共振モードB2の第2共振周波数の値に応じて曲げ角度を検知する。 On the other hand, when the first resonance frequency of the first resonance mode among the plurality of resonance modes exceeds a predetermined value, the controller 90 detects the bending angle according to the value of the second resonance frequency of the second resonance mode. For example, when the first resonance frequency of the first resonance mode A1, which is the first resonance mode, exceeds 290 Hz, the controller 90 controls the controller 90 according to the value of the second resonance frequency of the second resonance mode A2, which is the second resonance mode. Detects bending angle. Alternatively, if the second resonance frequency of the second resonance mode A2, which is the second resonance mode, exceeds 570 Hz, the controller 90 controls the controller 90 according to the value of the third resonance frequency of the third resonance mode A3, which is the third resonance mode. Detects bending angle. Alternatively, when the first resonance frequency of the first resonance mode B1, which is the first resonance mode, exceeds 900 Hz, the controller 90 controls the controller 90 according to the value of the second resonance frequency of the second resonance mode B2, which is the second resonance mode. Detects bending angle.
 以上の様に、コントローラ90は、曲げ角度に対応付ける共振周波数の共振モードを変更することで、共振周波数の値に応じて正確に基板10の曲げ角度を検知することができる。 As described above, by changing the resonance mode of the resonance frequency associated with the bending angle, the controller 90 can accurately detect the bending angle of the substrate 10 according to the value of the resonance frequency.
 次に、図8は、基板10の曲げ角度と出力信号の関係を示すである。図8に示す横軸は基板10の曲げ角度(°)であり、縦軸は出力信号の電圧(mV)である。 Next, FIG. 8 shows the relationship between the bending angle of the substrate 10 and the output signal. The horizontal axis shown in FIG. 8 is the bending angle (°) of the substrate 10, and the vertical axis is the voltage (mV) of the output signal.
 この例では、コントローラ90は、ある固定された周波数の正弦波の入力信号を入力電極21に印加する。コントローラ90は、出力電極22から出力信号を受信し、電圧を測定する。 In this example, the controller 90 applies a sinusoidal input signal of a certain fixed frequency to the input electrode 21. Controller 90 receives the output signal from output electrode 22 and measures the voltage.
 図8に示す様に、例えば、第1の周波数53Hzの正弦波の入力信号を入力電極21に印加すると、基板10の基準状態(曲げ角度0°)では、約10mVの電圧が測定される。そして、図8の例では、基板10の曲げ角度を大きくすると、測定される電圧が急激に低下することが分かる。 As shown in FIG. 8, for example, when a sine wave input signal with a first frequency of 53 Hz is applied to the input electrode 21, a voltage of about 10 mV is measured when the substrate 10 is in the reference state (bending angle 0°). In the example of FIG. 8, it can be seen that when the bending angle of the substrate 10 is increased, the measured voltage drops rapidly.
 また、図8に示す様に、例えば、第2の周波数430Hzの正弦波の入力信号を入力電極21に印加すると、基板10の曲げ角度2.2°で、約10mVの電圧が測定される。そして、図8の例では、基板10の曲げ角度を2.2°より小さくまたは大きくすると、測定される電圧が急激に低下することが分かる。 Further, as shown in FIG. 8, for example, when a sine wave input signal with a second frequency of 430 Hz is applied to the input electrode 21, a voltage of about 10 mV is measured when the substrate 10 is bent at an angle of 2.2°. In the example of FIG. 8, it can be seen that when the bending angle of the substrate 10 is made smaller or larger than 2.2 degrees, the measured voltage drops rapidly.
 したがって、コントローラ90は、53Hzまたは430Hz等の一定の周波数の入力信号を入力した時の出力信号の大きさに応じて基板10の曲げ角度を検知する。これにより、コントローラ90は、微少な曲げ角度を高精度に検知することができる。 Therefore, the controller 90 detects the bending angle of the substrate 10 according to the magnitude of the output signal when an input signal of a constant frequency such as 53 Hz or 430 Hz is input. Thereby, the controller 90 can detect minute bending angles with high precision.
 図9(A)および図9(B)は、検知対象物70に変形量検知装置1の基板10を貼り付けて固定した様子を表す概略図である。この例の検知対象物70はバッテリである。バッテリは、数か月から数年という長い時間をかけて微少に膨らみ、微少な変形を生じる場合がある。一般的なセンサは、このような長時間にわたって生じる微少な変形を検知することが難しい。 FIGS. 9(A) and 9(B) are schematic diagrams showing how the substrate 10 of the deformation amount detection device 1 is attached and fixed to the detection target 70. The detection target 70 in this example is a battery. Batteries may swell slightly over a long period of time, from several months to several years, and may undergo slight deformation. It is difficult for general sensors to detect such minute deformations that occur over a long period of time.
 一方、図9(B)に示す様に、本実施形態では、バッテリである検知対象物70が膨らむと、検知対象物70の変形に応じて変形量検知装置1の基板10が曲がる。検知対象物70の膨らみによる変形は非常に小さいため、基板10の曲げ角度も非常に小さくなる。しかし、図8に示した様に、コントローラ90は、例えば53Hzの正弦波の入力信号を入力電極21に印加し、出力信号の電圧を測定することで、基準状態からの非常に小さい曲げ角度を検知することができる。したがって、変形量検知装置1は、バッテリである検知対象物70の微少な膨らみを検知できる。 On the other hand, as shown in FIG. 9(B), in this embodiment, when the detection object 70, which is a battery, swells, the substrate 10 of the deformation amount detection device 1 bends in accordance with the deformation of the detection object 70. Since the deformation of the detection target 70 due to the bulge is very small, the bending angle of the substrate 10 is also very small. However, as shown in FIG. 8, the controller 90 applies a sine wave input signal of, for example, 53 Hz to the input electrode 21 and measures the voltage of the output signal, thereby allowing a very small bending angle from the reference state. Can be detected. Therefore, the deformation amount detection device 1 can detect a slight bulge in the detection target object 70, which is a battery.
 次に、図10(A)および図10(B)は、検知対象物70に変形量検知装置1の基板10を貼り付けて固定した様子を表す概略図である。この例の検知対象物70もバッテリである。 Next, FIGS. 10(A) and 10(B) are schematic diagrams showing how the substrate 10 of the deformation amount detection device 1 is attached and fixed to the detection target 70. The detection target 70 in this example is also a battery.
 この例では、変形量検知装置1の基板10は、保持部材900を介して所定角度(例えば2.2°)曲げられた状態で検知対象物70に貼り付けられる。 In this example, the substrate 10 of the deformation amount detection device 1 is attached to the detection target 70 with the holding member 900 bent at a predetermined angle (for example, 2.2°).
 図8に示した様に、コントローラ90は、例えば430Hzの正弦波の入力信号を入力電極21に印加し、出力信号の電圧を測定することで、非常に小さい曲げ角度を検知することができる。したがって、この場合も、変形量検知装置1は、バッテリである検知対象物70の微少な膨らみを検知できる。 As shown in FIG. 8, the controller 90 can detect a very small bending angle by applying, for example, a 430 Hz sine wave input signal to the input electrode 21 and measuring the voltage of the output signal. Therefore, also in this case, the deformation amount detection device 1 can detect a slight bulge in the detection target object 70, which is a battery.
 図11は、変形例1に係る圧電体30の振動態様を示す概略図である。図12は、変形例1に係る基板10の曲げ角度と圧電体30の共振周波数の関係を示すである。図13は、変形例1に係る基板10の曲げ角度と出力信号の関係を示すである。 FIG. 11 is a schematic diagram showing the vibration mode of the piezoelectric body 30 according to the first modification. FIG. 12 shows the relationship between the bending angle of the substrate 10 and the resonance frequency of the piezoelectric body 30 according to Modification 1. FIG. 13 shows the relationship between the bending angle of the substrate 10 and the output signal according to Modification 1.
 変形例1に係る変形量検知装置は、図1に示した構成と同じ構成を備える。ただし、圧電体30の材料は、ポリ乳酸である。ポリ乳酸の一軸延伸方向は、平面視してY方向またはX方向と同じ角度(例えば0°±10°程度)を成すように設定されている。 The deformation amount detection device according to Modification 1 has the same configuration as the configuration shown in FIG. However, the material of the piezoelectric body 30 is polylactic acid. The uniaxial stretching direction of polylactic acid is set to form the same angle (for example, about 0°±10°) as the Y direction or the X direction when viewed from above.
 図11では、変形量検知装置1の入力電極21に振幅5Vの正弦波を印加した時の振動態様を示す。図11に示す様に、ポリ乳酸の一軸延伸方向は、平面視してY方向またはX方向と同じ角度である場合、入力電極21に正弦波の入力信号を入力すると、圧電体30は、主に平面方向に振動する共振モードとなる。 FIG. 11 shows the vibration mode when a sine wave with an amplitude of 5 V is applied to the input electrode 21 of the deformation amount detection device 1. As shown in FIG. 11, when the uniaxial stretching direction of polylactic acid is at the same angle as the Y direction or the X direction in plan view, when a sinusoidal input signal is input to the input electrode 21, the piezoelectric body 30 mainly becomes a resonance mode that vibrates in the plane direction.
 当該共振モードでは、図12に示す様に、基板10の曲げ角度が大きくなるにつれて共振周波数が大きくなる。したがって、コントローラ90は、共振周波数を測定することにより、正確な曲げ角度を検知することができる。 In the resonance mode, as shown in FIG. 12, the resonance frequency increases as the bending angle of the substrate 10 increases. Therefore, the controller 90 can accurately detect the bending angle by measuring the resonance frequency.
 また、当該共振モードでは、図13に示す様に、基板10の曲げ角度が大きくなるにしたがって出力電圧が小さくなる。したがって、コントローラ90は、ある固定周波数の正弦波の入力に対して出力電圧を測定することにより、正確な曲げ角度を検知することができる。 Furthermore, in the resonance mode, as shown in FIG. 13, the output voltage decreases as the bending angle of the substrate 10 increases. Therefore, the controller 90 can detect an accurate bending angle by measuring the output voltage with respect to the input of a sine wave of a certain fixed frequency.
 本実施形態の説明は、すべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲は、特許請求の範囲と均等の範囲を含む。 The description of this embodiment is illustrative in all respects, and should be considered not to be restrictive. The scope of the invention is indicated by the claims rather than the embodiments described above. Furthermore, the scope of the present invention includes a range equivalent to the claims.
1   :変形量検知装置
10  :基板
15  :第1固定部
17  :第2固定部
21  :入力電極
22  :出力電極
25  :基準電極
30  :圧電体
50  :スリット
70  :検知対象物
90  :コントローラ
101 :第1端
102 :第2端
900 :保持部材
1: Deformation detection device 10: Substrate 15: First fixed part 17: Second fixed part 21: Input electrode 22: Output electrode 25: Reference electrode 30: Piezoelectric body 50: Slit 70: Detection target 90: Controller 101: First end 102: Second end 900: Holding member

Claims (6)

  1.  第1方向に沿った両端である第1端および第2端を有し、該第1端側および該第2端側が固定された基板と、
     前記基板に平面視して重なり、前記第1端および前記第2端の間に配置された圧電体と、
     前記圧電体に平面視して重なり、前記圧電体に入力信号を入力する入力電極と、
     前記圧電体に平面視して重なり、前記圧電体から出力信号を出力する出力電極と、
     前記入力電極に前記入力信号を入力し、前記出力電極から前記出力信号を受信するコントローラと、
     を備えた変形量検知装置であって、
     前記基板は、前記第1端および前記第2端の間にスリットが設けられ、
     前記出力電極は、平面視して前記スリットに重なる位置に配置されていて、
     前記圧電体は、該圧電体の厚み方向に共振する、
     変形量検知装置。
    A substrate having a first end and a second end that are both ends along the first direction, and the first end side and the second end side are fixed;
    a piezoelectric body that overlaps the substrate in plan view and is disposed between the first end and the second end;
    an input electrode that overlaps the piezoelectric body in plan view and inputs an input signal to the piezoelectric body;
    an output electrode that overlaps the piezoelectric body in plan view and outputs an output signal from the piezoelectric body;
    a controller that inputs the input signal to the input electrode and receives the output signal from the output electrode;
    A deformation amount detection device comprising:
    The substrate is provided with a slit between the first end and the second end,
    The output electrode is arranged at a position overlapping the slit in plan view,
    The piezoelectric body resonates in a thickness direction of the piezoelectric body,
    Deformation amount detection device.
  2.  前記共振は、複数の共振モードを有し、
     前記コントローラは、前記複数の共振モードのそれぞれの共振周波数を計測し、
     前記共振周波数の値に応じて前記基板の曲げ角度を検知し、
     前記入力信号の周波数をスイープし、
     前記複数の共振モードのうち第1共振モードの第1共振周波数が所定値を超えた場合、第2共振モードの第2共振周波数の値に応じて曲げ角度を検知する、
     請求項1に記載の変形量検知装置。
    The resonance has a plurality of resonance modes,
    The controller measures the resonance frequency of each of the plurality of resonance modes,
    detecting a bending angle of the substrate according to the value of the resonant frequency;
    Sweeping the frequency of the input signal;
    If the first resonance frequency of the first resonance mode among the plurality of resonance modes exceeds a predetermined value, detecting the bending angle according to the value of the second resonance frequency of the second resonance mode.
    The deformation amount detection device according to claim 1.
  3.  前記コントローラは、第1の周波数の入力信号を入力し、
     前記出力信号の大きさに応じて前記基板の曲げ角度を検知する、
     請求項1に記載の変形量検知装置。
    The controller receives an input signal of a first frequency;
    detecting the bending angle of the substrate according to the magnitude of the output signal;
    The deformation amount detection device according to claim 1.
  4.  前記基板は、検知対象物に貼り付けられる、
     請求項3に記載の変形量検知装置。
    The substrate is attached to a detection target,
    The deformation amount detection device according to claim 3.
  5.  前記コントローラは、第2の周波数の入力信号を入力し、
     前記出力信号の大きさに応じて前記基板の曲げ角度を検知し、
     前記基板は、保持部材を介して所定角度曲げられた状態で検知対象物に貼り付けられる、
     請求項1に記載の変形量検知装置。
    The controller receives an input signal of a second frequency;
    detecting the bending angle of the substrate according to the magnitude of the output signal;
    The substrate is attached to the detection target while being bent at a predetermined angle via a holding member.
    The deformation amount detection device according to claim 1.
  6.  前記圧電体はポリ乳酸を含み、
     前記ポリ乳酸の一軸延伸方向は、前記第1方向または該第1方向に直交する方向と同じ角度を成し、
     前記コントローラは、正弦波の入力信号を入力し、
     前記出力信号の大きさに応じて前記基板の曲げ角度を検知する、
     請求項1に記載の変形量検知装置。
    The piezoelectric body contains polylactic acid,
    The uniaxial stretching direction of the polylactic acid forms the same angle as the first direction or a direction perpendicular to the first direction,
    The controller receives a sine wave input signal,
    detecting the bending angle of the substrate according to the magnitude of the output signal;
    The deformation amount detection device according to claim 1.
PCT/JP2023/017364 2022-05-19 2023-05-09 Deformation amount detection device WO2023223879A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022082518 2022-05-19
JP2022-082518 2022-05-19

Publications (1)

Publication Number Publication Date
WO2023223879A1 true WO2023223879A1 (en) 2023-11-23

Family

ID=88835224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017364 WO2023223879A1 (en) 2022-05-19 2023-05-09 Deformation amount detection device

Country Status (1)

Country Link
WO (1) WO2023223879A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5720632U (en) * 1980-07-10 1982-02-02
WO2020255920A1 (en) * 2019-06-19 2020-12-24 三井化学株式会社 Tactile sensor formed on polyimide thin film having high total light transmittance, and switching device using same
WO2022030356A1 (en) * 2020-08-06 2022-02-10 株式会社村田製作所 Deformation amount detection device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5720632U (en) * 1980-07-10 1982-02-02
WO2020255920A1 (en) * 2019-06-19 2020-12-24 三井化学株式会社 Tactile sensor formed on polyimide thin film having high total light transmittance, and switching device using same
WO2022030356A1 (en) * 2020-08-06 2022-02-10 株式会社村田製作所 Deformation amount detection device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Thesis", 31 March 2014, KANSAI UNIVERSITY, JP, article ANDO, MASAMICHI: "Study of Industrial Uses of Piezoelectric Poly-L-Lactic Acid Intended for Creation of Novel Human-Machine Interfaces", pages: 1 - 192, XP009550770, DOI: 10.32286/00000127 *

Similar Documents

Publication Publication Date Title
US11877516B2 (en) Displacement sensor, displacement detecting device, and operation device
JP5924405B2 (en) Pressure sensor
JP5871111B1 (en) Touch panel and electronic equipment
WO2016027818A1 (en) Pressing sensor and electronic device
US10627929B2 (en) Input terminal
JP5950053B2 (en) Press detection sensor
WO2020213477A1 (en) Vibration device
JPWO2015041195A1 (en) Press sensor
JP6126692B2 (en) Press detection sensor
JP6136462B2 (en) Press detection sensor and operation input device
WO2023223879A1 (en) Deformation amount detection device
JP6624343B2 (en) Sensors, touch panels, and electronic devices
JP7188654B2 (en) Deformation detector
JP5804213B2 (en) Displacement detection sensor and operation input device
JP6652882B2 (en) Pressure detector
US11982524B2 (en) Deformation amount detection device
JP6620912B2 (en) Push position detection sensor and electronic device
CN212749660U (en) Shell structure
JP2023091157A (en) Electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807483

Country of ref document: EP

Kind code of ref document: A1