WO2023223790A1 - Training device, training method, abnormality detection device, and abnormality detection method - Google Patents

Training device, training method, abnormality detection device, and abnormality detection method Download PDF

Info

Publication number
WO2023223790A1
WO2023223790A1 PCT/JP2023/016448 JP2023016448W WO2023223790A1 WO 2023223790 A1 WO2023223790 A1 WO 2023223790A1 JP 2023016448 W JP2023016448 W JP 2023016448W WO 2023223790 A1 WO2023223790 A1 WO 2023223790A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
training
location
trained
detection
Prior art date
Application number
PCT/JP2023/016448
Other languages
French (fr)
Japanese (ja)
Inventor
貴一 奥野
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2023223790A1 publication Critical patent/WO2023223790A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Definitions

  • the present disclosure relates to a training device, a training method, an abnormality detection device, and an abnormality detection method.
  • machine learning technology Due to advances in machine learning technology such as deep learning, machine learning technology is being widely used in various technical fields. For example, machine learning technology has come to be used in visual inspections for quality control of products and the like.
  • a typical appearance inspection an image of a product captured by a camera or the like is input to a machine learning model, and the machine learning model predicts whether there are any abnormalities in the product. For example, when an anomaly is detected in a product, the machine learning model identifies the abnormal location on the product (e.g., a rectangular area in an image, a bounding box, etc.) and the classification result indicating the type of anomaly (e.g., dirt, scratch, etc.). (transformation, etc.).
  • the abnormal location on the product e.g., a rectangular area in an image, a bounding box, etc.
  • the classification result indicating the type of anomaly (e.g., dirt, scratch, etc.). (transformation, etc.).
  • an anomaly location detection model that detects anomaly locations
  • an anomaly classification model that detects classification results for each detected anomaly location.
  • anomalies occur with low frequency, making it difficult and costly to collect the anomaly data required for training machine learning models.
  • the same training dataset may be utilized. That is, a training data set including normal images showing normal products and abnormal images showing defective products can be used to train both the abnormal location detection model and the abnormality classification model. For example, a normal image for training is given a label indicating a "normal" classification result, and an abnormal image for training is given a rectangular area indicating an abnormal location and a label indicating the classification result of each abnormal location. Ru.
  • a trained anomaly detection model receives an image of a product to be detected, it predicts a rectangular area indicating a candidate anomaly location of the product and an anomaly probability indicating the possibility of an anomaly at the location. , an image showing a rectangular area having an abnormality probability equal to or higher than a threshold value is output as an abnormal image.
  • the trained anomaly classification model receives an image containing a rectangular area output from the trained anomaly detection model, the trained anomaly classification model generates a classification result for each rectangular area indicating an abnormality candidate area (for example, normal, dirty, scratched, deformed, etc.). ).
  • the candidate anomaly locations predicted by the trained anomaly location detection model may increase or decrease depending on the threshold of the anomaly probability that is set. For example, when the threshold value is set relatively high, the number of abnormality candidate locations to be detected is reduced, and the probability that the detected abnormality candidate locations are abnormal increases, but the detection of abnormality candidate locations may occur. On the other hand, when the threshold value is set relatively low, the number of detected abnormality candidate locations increases and the number of missed detections decreases. However, the discrimination accuracy of an anomaly classification model that does not use such overdetection data as training data may decrease.
  • one objective of the present disclosure is to provide a technique for effectively training multiple machine learning models that cooperate.
  • One aspect of the present disclosure provides a training target model storage unit that stores a second model that classifies abnormality candidate locations detected by the first model, and a training target model storage unit that stores data for first training data of the first model.
  • a data expansion unit that performs expansion and obtains second training data expanded to correspond to the detection results of the first model; and a training unit that trains the second model using the second training data.
  • a training device comprising:
  • multiple machine learning models that cooperate can be effectively trained.
  • FIG. 1 is a schematic diagram showing abnormality detection processing according to an embodiment of the present disclosure.
  • 2A and 2B are schematic diagrams illustrating anomaly location detection and anomaly classification according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram showing training processing and inference processing of an abnormal location detection model and an abnormal classification model according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram illustrating data expansion according to one embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram illustrating a training device and an abnormality detection device according to an embodiment of the present disclosure.
  • FIG. 6 is a block diagram showing the hardware configuration of a training device and an abnormality detection device according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram showing abnormality detection processing according to an embodiment of the present disclosure.
  • 2A and 2B are schematic diagrams illustrating anomaly location detection and anomaly classification according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram showing training processing and inference processing of an abnormal location detection model
  • FIG. 7 is a block diagram showing the functional configuration of a training device according to an embodiment of the present disclosure.
  • 8A-8D are diagrams illustrating augmented training data according to one embodiment of the present disclosure.
  • FIG. 9 is a flowchart illustrating training processing according to an embodiment of the present disclosure.
  • FIG. 10 is a block diagram showing the functional configuration of an abnormality detection device according to an embodiment of the present disclosure.
  • FIG. 11 is a flowchart showing abnormality detection processing according to an embodiment of the present disclosure.
  • an anomaly is detected using a training device that trains an anomaly detection model and an anomaly classification model that operate in conjunction, and an anomaly detection model and an anomaly classification model trained by the training device.
  • An abnormality detection device is disclosed.
  • FIG. 1 An image is output from the abnormal location detection model 10.
  • the abnormal location detection model 10 for example, as shown in FIG. 2A, normal location candidates (anomaly undetected regions) and abnormal location candidates (abnormality detection regions) are separated.
  • the abnormal location detection image output from the abnormal location detection model 10 is generated by superimposing detected abnormal location candidates (for example, rectangular areas, bounding boxes, etc.) on the input image. Good too.
  • the acquired abnormality detection image is input to the abnormality classification model 20, and the detection result indicating the classification result (for example, normal, dirt, flaw, deformation, etc.) of each abnormality candidate part of the abnormality detection image is generated. , is output from the anomaly classification model 20.
  • the abnormality classification model 20 predicts the classification result of the abnormality location candidates detected by the abnormality detection model 10, for example, as shown in FIG. 2B.
  • label A may correspond to the abnormality type "deformation”
  • label B may correspond to "normal”
  • label C may correspond to the abnormality type "stain.”
  • the anomaly detection model 10 and the anomaly classification model 20 can typically be trained using the same training data set.
  • a training data set including normal images showing normal products and abnormal images showing defective products is used as training data for training both the abnormal location detection model 10 and the abnormality classification model 20.
  • a normal image for training is given a label indicating a "normal" classification result.
  • a rectangular region indicating an abnormal location and a label indicating a classification result (for example, dirt, scratch, deformation, etc.) of each abnormal location are added to the abnormal image for training.
  • the trained abnormality detection model 10 When the trained abnormality detection model 10 receives an image of a product to be detected, it predicts a rectangular area indicating an abnormality candidate area of the product and an abnormality probability indicating the possibility of an abnormality in the area, An image showing a rectangular region with an abnormality probability of is output. On the other hand, when the trained abnormality classification model 20 receives an image including a rectangular region indicating an abnormality candidate location outputted from the trained abnormality detection model 10, the trained abnormality classification model 20 receives the classification result of each rectangular region (for example, normal, dirt, scratch, deformation, etc.).
  • the anomaly candidate locations predicted by the trained anomaly location detection model 10 can be increased or decreased depending on the threshold of the anomaly probability that is set. For example, when the threshold value is set relatively high, the number of abnormality candidate locations to be detected is reduced, and the probability that the detected abnormality candidate locations are abnormal increases, but the detection of abnormality candidate locations may occur. On the other hand, when the threshold value is set relatively low, the number of detected abnormality candidate locations increases and the number of missed detections decreases. However, since the anomaly classification model 20 is trained using the same training data set as the anomaly location detection model 10, it cannot deal with over-detected anomaly location detection images, and the discrimination accuracy of the anomaly classification model 20 may decrease.
  • data expansion is performed on the training data of the abnormality detection model 10, and training data expanded to correspond to the detection results of the abnormality detection model 10 is obtained. Then, an anomaly classification model 20 for classifying anomaly candidate locations over-detected by the anomaly location detection model 10 is trained using the expanded training data. Thereby, even if the abnormality candidate location is over-detected by the abnormality location detection model 10, the abnormality classification model 20 can appropriately classify the abnormality candidate location.
  • the anomaly detection model 10 is a machine learning model such as a neural network that detects anomaly candidate locations from an image showing a detection target, and the anomaly classification model 20 classifies anomaly candidate locations from an image showing the anomaly candidate locations. It may also be realized as a machine learning model such as a neural network.
  • FIG. 3 is a schematic diagram showing training processing and inference processing using the abnormal location detection model 10 and the abnormal classification model 20 according to an embodiment of the present disclosure.
  • the abnormal location detection model 10 is trained using a training data set that includes normal images of the detection target, and abnormal images that indicate the abnormal locations in the detection target and the classification results of the abnormal locations.
  • the illustrated training data is an abnormal image showing the appearance of a product on which a rectangular region labeled with the abnormality type "stain" is superimposed.
  • the anomaly location detection model 10 outputs an anomaly location detection result indicating an anomaly candidate location for the received detection target data.
  • the illustrated abnormality location detection result includes a plurality of abnormality candidate locations.
  • the anomaly classification model 20 is trained using expanded training data obtained by performing data expansion on the training data used to train the abnormal location detection model 10.
  • expanded locations for example, rectangular regions
  • rectangular areas may be randomly added to positions corresponding to abnormal locations in all training data in the training data set.
  • the classification result of the added rectangular area is determined based on the presence or absence of overlap between the rectangular area and the abnormal location in the training data. For example, if a rectangular region at least partially overlaps with an abnormal location in the training data, the classification result of the overlapping abnormal location is assigned to the rectangular region.
  • the anomaly classification model 20 is trained using the training data expanded in this way.
  • the trained abnormality classification model 20 acquires the abnormality detection results inferred by the trained abnormality detection model 10, it infers abnormality detection results indicating the classification results of each abnormality candidate location.
  • the training target abnormality detection model 10 and the training target abnormality classification model 20 are trained by the training device 100 using the training data set. Specifically, as shown in FIG. 5, the training device 100 trains the anomaly detection model 10 and the anomaly classification model 20 using training data and expanded training data, respectively, and trains the trained anomaly detection model 10 and The trained anomaly classification model 20 is provided to the anomaly detection device 200.
  • the trained abnormality detection model 10 and the trained abnormality classification model 20 are used by the abnormality detection device 200 for abnormality detection processing. Specifically, upon receiving the detection target data, the abnormality detection device 200 inputs the detection target data into the trained abnormality location detection model 10 and obtains the abnormality candidate location detection data. Then, the anomaly detection device 200 inputs the acquired anomaly candidate location detection data to the trained anomaly classification model 20, and obtains an anomaly detection result for the detection target data.
  • the present disclosure is not necessarily limited to the abnormality detection model 10 and the abnormality classification model 20; It may be applied to multiple machine learning models that work together. That is, the training device according to the present disclosure performs data augmentation on the training data of model A, obtains training data that has been extended to correspond to the output result of model A, and uses the extended training data to expand the training data of model A. Model B may be trained to perform specific processing on the output results output by.
  • the inference device when the inference device according to the present disclosure acquires data indicating an inference target, the inference device uses a trained model A that acquires an output result from the data and a trained model B that acquires a processing result for the inference target data. Then, the inference result for the data to be inferred may be obtained.
  • each of the training device 100 and the abnormality detection device 200 may be realized by a computing device such as a server, a personal computer (PC), a smartphone, or a tablet, and have a hardware configuration as shown in FIG. 6, for example. It's okay. That is, each of the training device 100 and the abnormality detection device 200 includes a drive device 101, a storage device 102, a memory device 103, a processor 104, a user interface (UI) device 105, and a communication device 106 that are interconnected via bus B. .
  • a computing device such as a server, a personal computer (PC), a smartphone, or a tablet
  • Programs or instructions for realizing various functions and processes to be described later in the training device 100 and the abnormality detection device 200 may be stored in a removable storage medium such as a CD-ROM (Compact Disk-Read Only Memory) or a flash memory. good.
  • a program or instruction is installed from the storage medium into the storage device 102 or the memory device 103 via the drive device 101.
  • the program or instructions do not necessarily need to be installed from a storage medium, and may be downloaded from any external device via a network or the like.
  • the storage device 102 is realized by a hard disk drive or the like, and stores installed programs or instructions as well as files, data, etc. used to execute the programs or instructions.
  • the memory device 103 is realized by random access memory, static memory, etc., and when a program or instruction is started, reads the program or instruction, data, etc. from the storage device 102 and stores it.
  • the storage device 102, the memory device 103, and the removable storage medium may be collectively referred to as a non-transitory storage medium.
  • the processor 104 may be realized by one or more CPUs (Central Processing Units), GPUs (Graphics Processing Units), processing circuits, etc. that may be configured from one or more processor cores, and may include memory.
  • CPUs Central Processing Units
  • GPUs Graphics Processing Units
  • processing circuits etc. that may be configured from one or more processor cores, and may include memory.
  • device 103 Various functions and processes of the training device 100 and the abnormality detection device 200, which will be described later, are executed according to the stored programs, instructions, and data such as parameters necessary to execute the programs or instructions.
  • the user interface (UI) device 105 may include input devices such as a keyboard, mouse, camera, and microphone, output devices such as a display, speaker, headset, and printer, and input/output devices such as a touch panel.
  • An interface between the device 100 and the abnormality detection device 200 is realized. For example, a user operates a GUI (Graphical User Interface) displayed on a display or a touch panel using a keyboard, a mouse, etc., and operates the training device 100 and the abnormality detection device 200.
  • GUI Graphic User Interface
  • the communication device 106 is realized by various communication circuits that perform wired and/or wireless communication processing with communication networks such as external devices, the Internet, LAN (Local Area Network), and cellular networks.
  • communication networks such as external devices, the Internet, LAN (Local Area Network), and cellular networks.
  • the hardware configuration described above is merely an example, and the training device 100 and the abnormality detection device 200 according to the present disclosure may be realized by any other suitable hardware configuration.
  • the training device 100 executes data expansion on the training data of the training data set used to train the abnormal location detection model 10, and trains the abnormality classification model 20 using the expanded training data. .
  • FIG. 7 is a block diagram showing the functional configuration of the training device 100 according to an embodiment of the present disclosure.
  • the training device 100 includes a training target model storage section 110, a data expansion section 120, and a training section 130.
  • the training target model storage unit 110, the data extension unit 120, and the training unit 130 may be realized by one or more processors 104 executing one or more programs or instructions. .
  • the training target model storage unit 110 stores a second model that classifies the abnormality candidate locations detected by the first model.
  • the training target model storage unit 110 stores an abnormality classification model 20 that classifies the abnormality candidate locations detected by the abnormality location detection model 10 as a training target machine learning model.
  • the abnormality detection model 10 and/or the abnormality classification model 20 may be a neural network such as a convolutional neural network, but the abnormality detection model 10 and/or the abnormality classification model 20 according to the present disclosure are limited to this. However, it may be any other type of multiple machine learning models working together.
  • the training target model storage unit 110 may also store the abnormal location detection model 10.
  • the data expansion unit 120 performs data expansion on the training data of the first model, and obtains training data expanded to correspond to the detection results of the first model.
  • the data extension unit 120 may extend the training data by arranging an extension location corresponding to the position of an abnormal location in the training data.
  • the data expansion unit 120 identifies abnormal locations from all the abnormal images of the training data set used to train the abnormal location detection model 10, and creates an abnormal location list from the rectangular area of the identified abnormal locations.
  • the abnormality list may indicate the coordinates of each vertex of a plurality of rectangular areas on the XY plane.
  • the data expansion unit 120 randomly selects one or more rectangular areas from the abnormal location list, and superimposes the selected one or more rectangular areas on the abnormal image to be expanded. Thereafter, the data expansion unit 120 determines that when the superimposed rectangular area at least partially overlaps with the abnormal location in the abnormal image (that is, when the IoU (Intersection of Union) between the rectangular area and the abnormal location is non-zero),
  • the classification result of the superimposed rectangular area may be set as the classification result of the abnormal location. For example, if the classification result of the overlapping abnormal location is "dirt", the data expansion unit 120 may set the classification result of the overlapped rectangular area as "dirt".
  • the data expansion unit 120 classifies the classification result of the superimposed rectangular area as "normal". ” may also be set.
  • the data expansion unit 120 when adding a rectangular area as shown in FIG. 8A to an abnormal image of the training data set based on the abnormal location list, the data expansion unit 120 adds a rectangular area such as that shown in FIG. Since there is no overlap with any location, the classification result may be set as "normal".
  • the data expansion unit 120 adds a rectangular area as shown in FIG. 8B to the abnormal image of the training dataset based on the abnormal area list, the added rectangular area is a "stain” abnormal area. Since the classification result overlaps with that of "dirt", the classification result may be set as "dirt”.
  • the data expansion unit 120 classifies the added rectangular area as "normal”. You can also set it as .
  • the data expansion unit 120 may repeatedly add a plurality of rectangular areas as shown in FIG. 8D to the abnormal image of the training dataset based on the abnormal location list, and add The classification result of the rectangular area may be set depending on whether or not there is an overlap between the rectangular area and the abnormal location of the abnormal image.
  • the anomaly area detection model 10 by adding rectangular areas using the anomaly area list created based on the training dataset, it is possible to add rectangular areas that may be detected by the anomaly area detection model 10, and The classification results of the rectangular areas can be automatically obtained depending on the presence or absence of overlap. This allows training data to be expanded efficiently. Furthermore, even if a relatively low threshold is applied to the abnormality probability in detecting an abnormality, that is, even if a normal place is likely to be detected as an abnormality candidate, the abnormality classification model 20 can be appropriately classified as "normal". Even if such an over-detected abnormality detection model 10 is applied, highly accurate abnormality detection can be achieved by using it in conjunction with the abnormality classification model 20.
  • the data expansion unit 120 performs a minute position change and/or size change (for example, randomly set) to the rectangular area in the abnormality list, and superimposes the changed rectangular area on the training data. You may let them. This makes it possible for the data expansion unit 120 to increase variations in rectangular areas, and to cope with deterioration in accuracy due to positional shifts and the like.
  • the training unit 130 trains the second model using the expanded training data. Specifically, the training unit 130 trains the anomaly classification model 20 using the training data expanded by the data expansion unit 120. For example, when the anomaly classification model 20 is implemented as a convolutional neural network, the training unit 130 inputs the expanded training images to the convolutional neural network to be trained, and combines the output results from the convolutional neural network to be trained and the expanded training images. The parameters of the convolutional neural network to be trained may be updated according to the error backpropagation method according to the error with the training image. The training unit 130 repeats the parameter update process, such as executing the above-described parameter update process on all expanded training data, until a predetermined termination condition is satisfied. When a predetermined termination condition is satisfied, the training unit 130 may end the training of the anomaly classification model 20 to be trained, and may provide the obtained anomaly classification model 20 to the anomaly detection device 200 as a trained model.
  • the training unit 130 may end the training of the anomaly classification model 20 to be trained, and may provide the obtained
  • the training unit 130 may further train the abnormal location detection model 10.
  • the training target model storage unit 110 further stores the anomaly location detection model 10 as the training target, and the training unit 130 trains the anomaly location detection model 10 using unexpanded training data of the training data set. It's okay.
  • the training unit 130 may train the abnormal location detection model 10 and/or the abnormality classification model 10 using a loss function that more severely punishes non-detection.
  • the variable flag is "0" or "1”
  • the flag is set to "0”
  • the flag is set to " It may be set to 1”. While this can reduce the possibility that an abnormal location is not detected by the abnormal location detection model 10, the overall error classification accuracy rate may decrease.
  • Classification learning that allows undetected results allows tuning without constraining the loss function, and can maximize the overall classification accuracy rate.
  • the machine learning model to be trained according to the present disclosure is not limited to this, and is trained using the same training data set. It may be similarly applied to multiple machine learning models that are linked together.
  • FIG. 9 is a flowchart illustrating training processing according to an embodiment of the present disclosure.
  • the training device 100 performs data expansion on the training data of the abnormal location detection model 10. Specifically, the training device 100 may extend the training data by arranging an extension location (for example, a rectangular area) corresponding to the position of the abnormal location in the training data. Then, the training device 100 may classify the expanded locations depending on whether or not there is an overlap between the abnormal location and the extended location in the training data. For example, when the abnormal part of the training data and the extended part overlap at least partially, the training device 100 classifies the extended part so as to match the classification result of the abnormal part, and the training device 100 classifies the extended part so as to match the classification result of the abnormal part. If there is no overlap, the expanded location may be classified as normal.
  • an extension location for example, a rectangular area
  • the training device 100 adds a rectangular region to the abnormal image of the training dataset, and when the added rectangular region at least partially overlaps with an abnormal location in the abnormal image, the training device 100 uses the classification result of the rectangular region as the abnormal location. It may also be set in the classification results. After determining the classification result of the rectangular area, the training device 100 may extend the training data by superimposing the rectangular area to which the set classification result is given on the training data. On the other hand, the training device 100 may add a rectangular region to the normal image of the training dataset. In this case, the training device 100 may expand the training data by superimposing the rectangular region classified as normal on the training data.
  • the training device 100 trains the anomaly classification model 20 using the expanded training data.
  • the training device 100 inputs training images that have been expanded to the convolutional neural network that is the training target, and combines the output results from the convolutional neural network that is the training target with the expanded training images.
  • the parameters of the convolutional neural network to be trained may be updated according to the error backpropagation method according to the error with the training image.
  • the training device 100 repeats the parameter update process until a predetermined termination condition is satisfied. When a predetermined termination condition is satisfied, the training device 100 may end the training of the anomaly classification model 20 to be trained, and may provide the obtained anomaly classification model 20 to the anomaly detection device 200 as a trained model.
  • the training device 100 may train the abnormal location detection model 10 using unenhanced training data. For example, when the anomaly detection model 10 is realized as a convolutional neural network, the training device 100 inputs a training image to the convolutional neural network to be trained, and combines the output result from the convolutional neural network to be trained with the training image. Depending on the error, parameters of the convolutional neural network to be trained may be updated according to the error backpropagation method. The training device 100 repeats the parameter update process until a predetermined termination condition is satisfied. When a predetermined termination condition is satisfied, the training device 100 may end the training of the abnormal location detection model 10 to be trained, and may provide the acquired abnormal location detection model 10 to the abnormality detection device 200 as a trained model.
  • the anomaly detection device 200 uses the trained anomaly location detection model 10 and the trained anomaly classification model 20 acquired from the training device 100 to perform anomaly detection on an image showing a product or the like to be detected.
  • the anomaly detection device 200 includes a trained model storage section 210 and an anomaly detection section 220.
  • the trained model storage unit 210 stores a trained first model that detects abnormality candidate locations from images showing detection targets, and a trained second model that classifies abnormality candidate locations from detection target images showing abnormality candidate locations.
  • the first model is an anomaly location detection model 10 that detects an anomaly candidate location from an image showing a detection target
  • the second model is an anomaly classification model that classifies an anomaly candidate location from an image showing an anomaly candidate location.
  • Model 20 may also be used.
  • the anomaly detection unit 220 Upon acquiring an image showing a detection target, the anomaly detection unit 220 uses the trained first model and the trained second model to classify the abnormality candidate location and the abnormality candidate location in the detection target image. Get the results. Specifically, upon acquiring an image to be inferred, the anomaly detection unit 220 inputs the image to be inferred to the trained abnormality detection model 10, and extracts abnormality candidate locations in the input image from the trained abnormality detection model 10. Obtain an abnormal point detection image showing the For example, if a relatively low threshold is set to prevent abnormalities from not being detected, and a rectangular area exhibiting an abnormality probability greater than or equal to the set threshold is detected, the abnormality detection unit 220 detects a relatively large number of abnormalities. Potential abnormalities can be detected.
  • the anomaly detection unit 220 Upon detecting an abnormality candidate location, the anomaly detection unit 220 inputs the detected abnormality location detection image to the trained abnormality classification model 20 and obtains the classification result of each abnormality candidate location in the input image from the trained abnormality classification model 20. . For example, if the abnormality candidate location is normal, the abnormality detection unit 220 classifies the abnormality candidate location as “normal”, and if the abnormality candidate location is “dirt”, “flaw”, “deformation”, etc. If a type of abnormality is indicated, a detection result is obtained that classifies the abnormality candidate location into the corresponding abnormality type.
  • abnormality detection processing is executed by the above-mentioned abnormality detection device 200, and more specifically, one or more processors 104 of the abnormality detection device 200 execute one or more programs or programs stored in one or more memory devices 103. This may be accomplished by executing instructions.
  • FIG. 11 is a flowchart showing abnormality detection processing according to an embodiment of the present disclosure.
  • the abnormality detection device 200 acquires an image showing the detection target. Specifically, the abnormality detection device 200 acquires an image of the appearance of a product to be detected, captured by an imaging means such as a camera.
  • the anomaly detection device 200 uses the trained abnormality detection model 10 and the trained abnormality classification model 20 to obtain abnormality candidate locations and their classification results in the acquired detection target image. Specifically, the anomaly detection device 200 first inputs the acquired image into the trained abnormality detection model 10, and obtains an abnormality detection image indicating abnormality candidate locations in the input image from the trained abnormality detection model 10. . Next, the anomaly detection device 200 inputs the acquired abnormality detection image to the trained abnormality classification model 20, and obtains a detection result indicating the classification result of each abnormality candidate location in the input image from the trained abnormality classification model 20. .
  • a training target model storage unit that stores a second model that classifies the abnormality candidate locations detected by the first model; a data expansion unit that executes data expansion on first training data of the first model and obtains second training data expanded to correspond to the detection result of the first model; a training unit that trains the second model using the second training data; A training device with.
  • the data expansion unit generates the second training data by arranging an expansion location corresponding to a position of an abnormal location in the first training data.
  • the first model is an anomaly location detection model that detects an anomaly candidate location from an image showing a detection target
  • the training device according to any one of Supplementary Notes 1 to 4, wherein the second model is an abnormality classification model that classifies the abnormality candidate location from an image showing the abnormality candidate location.
  • (Appendix 6) performing data augmentation on first training data of a first model, and obtaining second training data augmented to correspond to the detection results of the first model; training a second model for classifying abnormality candidate locations detected by the first model using the second training data; A training method performed by a computer.
  • a trained model that stores a trained first model that detects an abnormality candidate location from an image showing a detection target, and a trained second model that classifies the abnormality candidate location from an image showing the abnormality candidate location.
  • a storage section When an image indicating the detection target is acquired, the trained first model and the trained second model are used to classify the abnormality candidate location and the abnormality candidate location in the detection target image.
  • an anomaly detection unit that obtains the has The trained second model performs data augmentation on the first training data of the trained first model, and is expanded to correspond to the detection result of the trained first model.
  • the anomaly detection device is trained using the second training data.
  • Anomaly location detection model 20 Anomaly classification model 100 Training device 110 Training target model storage section 120 Data extension section 130 Training section 200 Anomaly detection device 210 Trained model storage section 220 Anomaly detection section

Abstract

Disclosed is a technology for effectively training a plurality of machine learning models cooperating with each other. A training device according to one aspect of the present disclosure comprises: a to-be-trained model storage unit that stores a second model for classifying a candidate abnormality location detected by a first model; a data augmentation unit that performs data augmentation on first training data for the first model to acquire second training data obtained through such augmentation as to correspond to the result of detection by the first model; and a training unit that trains the second model by using the second training data.

Description

訓練装置、訓練方法、異常検出装置及び異常検出方法Training device, training method, abnormality detection device and abnormality detection method
 本開示は、訓練装置、訓練方法、異常検出装置及び異常検出方法に関する。 The present disclosure relates to a training device, a training method, an abnormality detection device, and an abnormality detection method.
 ディープラーニングなどの機械学習技術の進展によって、様々な技術分野に機械学習技術が広範に利用されている。例えば、製品等の品質管理のための外観検査などに機械学習技術が利用されるようになってきている。典型的な外観検査では、カメラ等によって撮像された製品の画像が機械学習モデルに入力され、機械学習モデルにおいて当該製品に異常がないか予測される。例えば、製品に異常が検出された場合、機械学習モデルは、当該製品における異常箇所(例えば、画像内の矩形領域、バウンディングボックスなど)と、異常の種類を示す分類結果(例えば、汚れ、きず、変形など)とを出力する。 Due to advances in machine learning technology such as deep learning, machine learning technology is being widely used in various technical fields. For example, machine learning technology has come to be used in visual inspections for quality control of products and the like. In a typical appearance inspection, an image of a product captured by a camera or the like is input to a machine learning model, and the machine learning model predicts whether there are any abnormalities in the product. For example, when an anomaly is detected in a product, the machine learning model identifies the abnormal location on the product (e.g., a rectangular area in an image, a bounding box, etc.) and the classification result indicating the type of anomaly (e.g., dirt, scratch, etc.). (transformation, etc.).
特開2021-93004号公報Japanese Patent Application Publication No. 2021-93004
 このような異常箇所と分類結果との検出では、異常箇所を検出する異常箇所検出モデルと、検出された各異常箇所の分類結果を検出する異常分類モデルとの2つの機械学習モデルが利用されうる。一般に、異常の出現頻度は低く、機械学習モデルの訓練に必要とされる異常データを収集することは困難であり、また、コストがかかる。従って、このような連携する複数の機械学習モデルが個別に訓練される場合、同一の訓練データセットが利用されうる。すなわち、正常な製品を示す正常画像と、不良な製品を示す異常画像とを含む訓練データセットが、異常箇所検出モデルと異常分類モデルとの双方を訓練するのに利用されうる。例えば、訓練用の正常画像には“正常”の分類結果を示すラベルが付与され、訓練用の異常画像には異常箇所を示す矩形領域と、各異常箇所の分類結果を示すラベルとが付与される。 In such detection of anomaly locations and classification results, two machine learning models can be used: an anomaly location detection model that detects anomaly locations, and an anomaly classification model that detects classification results for each detected anomaly location. . Generally, anomalies occur with low frequency, making it difficult and costly to collect the anomaly data required for training machine learning models. Accordingly, when multiple such cooperative machine learning models are trained individually, the same training dataset may be utilized. That is, a training data set including normal images showing normal products and abnormal images showing defective products can be used to train both the abnormal location detection model and the abnormality classification model. For example, a normal image for training is given a label indicating a "normal" classification result, and an abnormal image for training is given a rectangular area indicating an abnormal location and a label indicating the classification result of each abnormal location. Ru.
 典型的には、訓練済み異常箇所検出モデルは、検知対象の製品の画像を受け付けると、当該製品の異常候補箇所を示す矩形領域と、当該箇所の異常の可能性を示す異常確率とを予測し、閾値以上の異常確率を有する矩形領域を示す画像を異常画像として出力する。一方、訓練済み異常分類モデルは、訓練済み異常箇所検出モデルから出力された矩形領域を含む画像を受け付けると、異常候補箇所を示す各矩形領域の分類結果(例えば、正常、汚れ、きず、変形などを)を判定する。 Typically, when a trained anomaly detection model receives an image of a product to be detected, it predicts a rectangular area indicating a candidate anomaly location of the product and an anomaly probability indicating the possibility of an anomaly at the location. , an image showing a rectangular area having an abnormality probability equal to or higher than a threshold value is output as an abnormal image. On the other hand, when the trained anomaly classification model receives an image containing a rectangular area output from the trained anomaly detection model, the trained anomaly classification model generates a classification result for each rectangular area indicating an abnormality candidate area (for example, normal, dirty, scratched, deformed, etc.). ).
 この場合、訓練済み異常箇所検出モデルによって予測される異常候補箇所は、設定される異常確率の閾値に応じて増減しうる。例えば、閾値が相対的に高く設定される場合、検出される異常候補箇所は少なくなり、検出された異常候補箇所が異常である確度は高くなる一方、異常候補箇所の検出漏れが生じうる。他方、閾値が相対的に低く設定される場合、検出される異常候補箇所は増えて、検出漏れが少なくなる。しかしながら、このような過検出データを訓練データとして利用していない異常分類モデルの判別精度は、低下しうる。 In this case, the candidate anomaly locations predicted by the trained anomaly location detection model may increase or decrease depending on the threshold of the anomaly probability that is set. For example, when the threshold value is set relatively high, the number of abnormality candidate locations to be detected is reduced, and the probability that the detected abnormality candidate locations are abnormal increases, but the detection of abnormality candidate locations may occur. On the other hand, when the threshold value is set relatively low, the number of detected abnormality candidate locations increases and the number of missed detections decreases. However, the discrimination accuracy of an anomaly classification model that does not use such overdetection data as training data may decrease.
 上記問題点に鑑み、本開示の1つの課題は、連携する複数の機械学習モデルを効果的に訓練するための技術を提供することである。 In view of the above problems, one objective of the present disclosure is to provide a technique for effectively training multiple machine learning models that cooperate.
 本開示の一態様は、第1のモデルによって検出された異常候補箇所を分類する第2のモデルを格納する訓練対象モデル格納部と、前記第1のモデルの第1の訓練データに対してデータ拡張を実行し、前記第1のモデルの検出結果に対応するよう拡張された第2の訓練データを取得するデータ拡張部と、前記第2の訓練データによって前記第2のモデルを訓練する訓練部と、を有する、訓練装置に関する。 One aspect of the present disclosure provides a training target model storage unit that stores a second model that classifies abnormality candidate locations detected by the first model, and a training target model storage unit that stores data for first training data of the first model. a data expansion unit that performs expansion and obtains second training data expanded to correspond to the detection results of the first model; and a training unit that trains the second model using the second training data. A training device comprising:
 本開示によると、連携する複数の機械学習モデルを効果的に訓練することができる。 According to the present disclosure, multiple machine learning models that cooperate can be effectively trained.
図1は、本開示の一実施例による異常検出処理を示す概略図である。FIG. 1 is a schematic diagram showing abnormality detection processing according to an embodiment of the present disclosure. 図2A及び2Bは、本開示の一実施例による異常箇所検出及び異常分類を示す概略図である。2A and 2B are schematic diagrams illustrating anomaly location detection and anomaly classification according to an embodiment of the present disclosure. 図3は、本開示の一実施例による異常箇所検出モデル及び異常分類モデルの訓練処理及び推論処理を示す概略図である。FIG. 3 is a schematic diagram showing training processing and inference processing of an abnormal location detection model and an abnormal classification model according to an embodiment of the present disclosure. 図4は、本開示の一実施例によるデータ拡張を示す概略図である。FIG. 4 is a schematic diagram illustrating data expansion according to one embodiment of the present disclosure. 図5は、本開示の一実施例による訓練装置及び異常検出装置を示す概略図である。FIG. 5 is a schematic diagram illustrating a training device and an abnormality detection device according to an embodiment of the present disclosure. 図6は、本開示の一実施例による訓練装置及び異常検出装置のハードウェア構成を示すブロック図である。FIG. 6 is a block diagram showing the hardware configuration of a training device and an abnormality detection device according to an embodiment of the present disclosure. 図7は、本開示の一実施例による訓練装置の機能構成を示すブロック図である。FIG. 7 is a block diagram showing the functional configuration of a training device according to an embodiment of the present disclosure. 図8A~8Dは、本開示の一実施例による拡張された訓練データを示す図である。8A-8D are diagrams illustrating augmented training data according to one embodiment of the present disclosure. 図9は、本開示の一実施例による訓練処理を示すフローチャートである。FIG. 9 is a flowchart illustrating training processing according to an embodiment of the present disclosure. 図10は、本開示の一実施例による異常検出装置の機能構成を示すブロック図である。FIG. 10 is a block diagram showing the functional configuration of an abnormality detection device according to an embodiment of the present disclosure. 図11は、本開示の一実施例による異常検出処理を示すフローチャートである。FIG. 11 is a flowchart showing abnormality detection processing according to an embodiment of the present disclosure.
 以下、図面を参照して本開示の実施の形態を説明する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
 以下の実施例では、連携して動作する異常箇所検出モデルと異常分類モデルとを訓練する訓練装置と、当該訓練装置によって訓練された異常箇所検出モデルと異常分類モデルとを利用して異常を検出する異常検出装置とが開示される。 In the following example, an anomaly is detected using a training device that trains an anomaly detection model and an anomaly classification model that operate in conjunction, and an anomaly detection model and an anomaly classification model trained by the training device. An abnormality detection device is disclosed.
 [概略]
 以下の実施例による異常検出処理では、図1に示されるように、検知対象を示す画像(例えば、製品の外観画像など)が異常箇所検出モデル10に入力され、異常候補箇所を示す異常箇所検出画像が、異常箇所検出モデル10から出力される。異常箇所検出モデル10では、例えば、図2Aに示されるように、正常箇所候補(異常未検知領域)と異常箇所候補(異常検知領域)とが分離される。異常箇所検出モデル10から出力される異常箇所検出画像は、図1に示されるように、検出された異常箇所候補(例えば、矩形領域、バウンディングボックスなど)を入力画像に重畳することによって生成されてもよい。
[Summary]
In the anomaly detection process according to the following embodiment, as shown in FIG. An image is output from the abnormal location detection model 10. In the abnormal location detection model 10, for example, as shown in FIG. 2A, normal location candidates (anomaly undetected regions) and abnormal location candidates (abnormality detection regions) are separated. As shown in FIG. 1, the abnormal location detection image output from the abnormal location detection model 10 is generated by superimposing detected abnormal location candidates (for example, rectangular areas, bounding boxes, etc.) on the input image. Good too.
 次に、取得された異常箇所検出画像が、異常分類モデル20に入力され、異常箇所検出画像の各異常候補箇所の分類結果(例えば、正常、汚れ、きず、変形などを)を示す検出結果が、異常分類モデル20から出力される。異常分類モデル20では、例えば、図2Bに示されるように、異常箇所検出モデル10によって検出された異常箇所候補の分類結果が予測される。例えば、ラベルAは異常種別“変形”に該当し、ラベルBは“正常”に該当し、ラベルCは異常種別“汚れ”に該当しうる。 Next, the acquired abnormality detection image is input to the abnormality classification model 20, and the detection result indicating the classification result (for example, normal, dirt, flaw, deformation, etc.) of each abnormality candidate part of the abnormality detection image is generated. , is output from the anomaly classification model 20. The abnormality classification model 20 predicts the classification result of the abnormality location candidates detected by the abnormality detection model 10, for example, as shown in FIG. 2B. For example, label A may correspond to the abnormality type "deformation," label B may correspond to "normal," and label C may correspond to the abnormality type "stain."
 異常箇所検出モデル10及び異常分類モデル20は、典型的には、同一の訓練データセットによって訓練されうる。具体的には、正常な製品を示す正常画像と、不良な製品を示す異常画像とを含む訓練データセットが、異常箇所検出モデル10と異常分類モデル20との双方を訓練するための教師データとして準備される。例えば、訓練用の正常画像には、“正常”の分類結果を示すラベルが付与される。一方、訓練用の異常画像には、異常箇所を示す矩形領域と、各異常箇所の分類結果(例えば、汚れ、きず、変形など)を示すラベルとが付与される。 The anomaly detection model 10 and the anomaly classification model 20 can typically be trained using the same training data set. Specifically, a training data set including normal images showing normal products and abnormal images showing defective products is used as training data for training both the abnormal location detection model 10 and the abnormality classification model 20. be prepared. For example, a normal image for training is given a label indicating a "normal" classification result. On the other hand, a rectangular region indicating an abnormal location and a label indicating a classification result (for example, dirt, scratch, deformation, etc.) of each abnormal location are added to the abnormal image for training.
 訓練済みの異常箇所検出モデル10は、検知対象の製品の画像を受け付けると、当該製品の異常候補箇所を示す矩形領域と、当該箇所の異常の可能性を示す異常確率とを予測し、閾値以上の異常確率を有する矩形領域を示す画像を出力する。一方、訓練済み異常分類モデル20は、訓練済み異常箇所検出モデル10から出力された異常候補箇所を示す矩形領域を含む画像を受け付けると、各矩形領域の分類結果(例えば、正常、汚れ、きず、変形などを)を判定する。 When the trained abnormality detection model 10 receives an image of a product to be detected, it predicts a rectangular area indicating an abnormality candidate area of the product and an abnormality probability indicating the possibility of an abnormality in the area, An image showing a rectangular region with an abnormality probability of is output. On the other hand, when the trained abnormality classification model 20 receives an image including a rectangular region indicating an abnormality candidate location outputted from the trained abnormality detection model 10, the trained abnormality classification model 20 receives the classification result of each rectangular region (for example, normal, dirt, scratch, deformation, etc.).
 訓練済み異常箇所検出モデル10によって予測される異常候補箇所は、設定される異常確率の閾値に応じて増減しうる。例えば、閾値が相対的に高く設定される場合、検出される異常候補箇所は少なくなり、検出された異常候補箇所が異常である確度は高くなる一方、異常候補箇所の検出漏れが生じうる。他方、閾値が相対的に低く設定される場合、検出される異常候補箇所は増えて、検出漏れが少なくなる。しかしながら、異常分類モデル20が異常箇所検出モデル10と同一の訓練データセットによって訓練されているため、過検出される異常箇所検出画像に対処できず、異常分類モデル20の判別精度は低下しうる。 The anomaly candidate locations predicted by the trained anomaly location detection model 10 can be increased or decreased depending on the threshold of the anomaly probability that is set. For example, when the threshold value is set relatively high, the number of abnormality candidate locations to be detected is reduced, and the probability that the detected abnormality candidate locations are abnormal increases, but the detection of abnormality candidate locations may occur. On the other hand, when the threshold value is set relatively low, the number of detected abnormality candidate locations increases and the number of missed detections decreases. However, since the anomaly classification model 20 is trained using the same training data set as the anomaly location detection model 10, it cannot deal with over-detected anomaly location detection images, and the discrimination accuracy of the anomaly classification model 20 may decrease.
 以下の実施例では、異常箇所検出モデル10の訓練データに対してデータ拡張を実行し、異常箇所検出モデル10の検出結果に対応するよう拡張された訓練データが取得される。そして、異常箇所検出モデル10によって過検出される異常候補箇所を分類する異常分類モデル20が、拡張された訓練データによって訓練される。これにより、異常箇所検出モデル10によって異常候補箇所が過検出されても、異常分類モデル20は、適切に異常候補箇所を分類することができる。 In the following embodiments, data expansion is performed on the training data of the abnormality detection model 10, and training data expanded to correspond to the detection results of the abnormality detection model 10 is obtained. Then, an anomaly classification model 20 for classifying anomaly candidate locations over-detected by the anomaly location detection model 10 is trained using the expanded training data. Thereby, even if the abnormality candidate location is over-detected by the abnormality location detection model 10, the abnormality classification model 20 can appropriately classify the abnormality candidate location.
 [異常箇所検出モデル及び異常分類モデル]
 図3~6を参照して、本開示の一実施例による異常箇所検出モデル10及び異常分類モデル20を説明する。例えば、異常箇所検出モデル10は、検知対象を示す画像から異常候補箇所を検出するニューラルネットワークなどの機械学習モデルであり、異常分類モデル20は、異常候補箇所を示す画像から異常候補箇所を分類するニューラルネットワークなどの機械学習モデルとして実現されてもよい。
[Anomaly location detection model and anomaly classification model]
An abnormal location detection model 10 and an abnormality classification model 20 according to an embodiment of the present disclosure will be described with reference to FIGS. 3 to 6. For example, the anomaly detection model 10 is a machine learning model such as a neural network that detects anomaly candidate locations from an image showing a detection target, and the anomaly classification model 20 classifies anomaly candidate locations from an image showing the anomaly candidate locations. It may also be realized as a machine learning model such as a neural network.
 図3は、本開示の一実施例による異常箇所検出モデル10及び異常分類モデル20を利用した訓練処理及び推論処理を示す概略図である。図3に示されるように、異常箇所検出モデル10は、検知対象の正常画像と、検知対象における異常箇所と当該異常箇所の分類結果とを示す異常画像とを含む訓練データセットによって訓練される。例えば、図示される訓練データは、異常種別“汚れ”がラベル付けされた矩形領域が重畳された製品の外観を示す異常画像である。このような訓練データセットによって訓練されると、異常箇所検出モデル10は、受け付けた検知対象データに対して、異常候補箇所を示す異常箇所検出結果を出力する。図示された異常箇所検出結果は、複数の異常候補箇所を含む。 FIG. 3 is a schematic diagram showing training processing and inference processing using the abnormal location detection model 10 and the abnormal classification model 20 according to an embodiment of the present disclosure. As shown in FIG. 3, the abnormal location detection model 10 is trained using a training data set that includes normal images of the detection target, and abnormal images that indicate the abnormal locations in the detection target and the classification results of the abnormal locations. For example, the illustrated training data is an abnormal image showing the appearance of a product on which a rectangular region labeled with the abnormality type "stain" is superimposed. When trained using such a training data set, the anomaly location detection model 10 outputs an anomaly location detection result indicating an anomaly candidate location for the received detection target data. The illustrated abnormality location detection result includes a plurality of abnormality candidate locations.
 他方、異常分類モデル20は、異常箇所検出モデル10を訓練するのに利用された訓練データに対してデータ拡張を実行することによって取得された拡張された訓練データによって訓練される。具体的には、図4に示されるように、訓練データセットの訓練データにおける異常箇所の位置に対応して拡張箇所(例えば、矩形領域)が配置される。例えば、訓練データセットの全ての訓練データの異常箇所に対応する位置に矩形領域がランダムに追加されてもよい。そして、追加された矩形領域の分類結果は、当該矩形領域と訓練データの異常箇所との重複の有無に基づいて決定される。例えば、矩形領域が訓練データの異常箇所と少なくとも部分的に重複している場合、重複する異常箇所の分類結果が当該矩形領域に付与される。例えば、図4に示される拡張された訓練データの例では、訓練データの異常箇所(“汚れ”)と少なくとも部分的に重複する矩形領域には、分類結果“汚れ”がラベル付けされる。他方、矩形領域が訓練データの異常箇所と重複していない場合、当該矩形領域は“正常”として分類される。 On the other hand, the anomaly classification model 20 is trained using expanded training data obtained by performing data expansion on the training data used to train the abnormal location detection model 10. Specifically, as shown in FIG. 4, expanded locations (for example, rectangular regions) are arranged corresponding to the positions of abnormal locations in the training data of the training data set. For example, rectangular areas may be randomly added to positions corresponding to abnormal locations in all training data in the training data set. Then, the classification result of the added rectangular area is determined based on the presence or absence of overlap between the rectangular area and the abnormal location in the training data. For example, if a rectangular region at least partially overlaps with an abnormal location in the training data, the classification result of the overlapping abnormal location is assigned to the rectangular region. For example, in the example of the expanded training data shown in FIG. 4, a rectangular region that at least partially overlaps with an abnormal location ("dirt") in the training data is labeled with the classification result "dirt". On the other hand, if the rectangular area does not overlap with an abnormal location in the training data, the rectangular area is classified as "normal."
 このように拡張された訓練データを利用して、異常分類モデル20は訓練される。訓練された異常分類モデル20は、訓練済み異常箇所検出モデル10によって推論された異常箇所検出結果を取得すると、各異常候補箇所の分類結果を示す異常検出結果を推論する。 The anomaly classification model 20 is trained using the training data expanded in this way. When the trained abnormality classification model 20 acquires the abnormality detection results inferred by the trained abnormality detection model 10, it infers abnormality detection results indicating the classification results of each abnormality candidate location.
 訓練対象の異常箇所検出モデル10及び訓練対象の異常分類モデル20は、訓練データセットを利用して訓練装置100によって訓練される。具体的には、図5に示されるように、訓練装置100は、異常箇所検出モデル10及び異常分類モデル20を訓練データ及び拡張された訓練データによってそれぞれ訓練し、訓練済み異常箇所検出モデル10及び訓練済み異常分類モデル20を異常検出装置200に提供する。 The training target abnormality detection model 10 and the training target abnormality classification model 20 are trained by the training device 100 using the training data set. Specifically, as shown in FIG. 5, the training device 100 trains the anomaly detection model 10 and the anomaly classification model 20 using training data and expanded training data, respectively, and trains the trained anomaly detection model 10 and The trained anomaly classification model 20 is provided to the anomaly detection device 200.
 一方、訓練済み異常箇所検出モデル10及び訓練済み異常分類モデル20は、異常検出装置200によって異常検出処理のために利用される。具体的には、異常検出装置200は、検知対象データを受け付けると、検知対象データを訓練済み異常箇所検出モデル10に入力し、異常候補箇所検出データを取得する。そして、異常検出装置200は、取得した異常候補箇所検出データを訓練済み異常分類モデル20に入力し、検知対象データに対する異常検出結果を取得する。 On the other hand, the trained abnormality detection model 10 and the trained abnormality classification model 20 are used by the abnormality detection device 200 for abnormality detection processing. Specifically, upon receiving the detection target data, the abnormality detection device 200 inputs the detection target data into the trained abnormality location detection model 10 and obtains the abnormality candidate location detection data. Then, the anomaly detection device 200 inputs the acquired anomaly candidate location detection data to the trained anomaly classification model 20, and obtains an anomaly detection result for the detection target data.
 なお、以下の実施例は、異常箇所検出モデル10及び異常分類モデル20に着目して説明されるが、本開示は必ずしも異常箇所検出モデル10及び異常分類モデル20に限定されず、他の何れかの連携する複数の機械学習モデルに適用されてもよい。すなわち、本開示による訓練装置は、モデルAの訓練データに対してデータ拡張を実行し、モデルAの出力結果に対応するよう拡張された訓練データを取得し、拡張された訓練データによって、モデルAによって出力された出力結果に対して特定の処理を実行するモデルBを訓練してもよい。また、本開示による推論装置は、推論対象を示すデータを取得すると、当該データから出力結果を取得する訓練済みモデルAと、推論対象のデータに対する処理結果を取得する訓練済みモデルBとを利用して、推論対象のデータに対する推論結果を取得してもよい。 Note that although the following embodiments will be described with a focus on the abnormality detection model 10 and the abnormality classification model 20, the present disclosure is not necessarily limited to the abnormality detection model 10 and the abnormality classification model 20; It may be applied to multiple machine learning models that work together. That is, the training device according to the present disclosure performs data augmentation on the training data of model A, obtains training data that has been extended to correspond to the output result of model A, and uses the extended training data to expand the training data of model A. Model B may be trained to perform specific processing on the output results output by. Further, when the inference device according to the present disclosure acquires data indicating an inference target, the inference device uses a trained model A that acquires an output result from the data and a trained model B that acquires a processing result for the inference target data. Then, the inference result for the data to be inferred may be obtained.
 ここで、訓練装置100及び異常検出装置200は、サーバ、パーソナルコンピュータ(PC)、スマートフォン、タブレット等の計算装置によって実現されてもよく、例えば、図6に示されるようなハードウェア構成を有してもよい。すなわち、訓練装置100及び異常検出装置200のそれぞれは、バスBを介し相互接続されるドライブ装置101、ストレージ装置102、メモリ装置103、プロセッサ104、ユーザインタフェース(UI)装置105及び通信装置106を有する。 Here, the training device 100 and the abnormality detection device 200 may be realized by a computing device such as a server, a personal computer (PC), a smartphone, or a tablet, and have a hardware configuration as shown in FIG. 6, for example. It's okay. That is, each of the training device 100 and the abnormality detection device 200 includes a drive device 101, a storage device 102, a memory device 103, a processor 104, a user interface (UI) device 105, and a communication device 106 that are interconnected via bus B. .
 訓練装置100及び異常検出装置200における後述される各種機能及び処理を実現するプログラム又は指示は、CD-ROM(Compact Disk-Read Only Memory)、フラッシュメモリ等の着脱可能な記憶媒体に格納されてもよい。当該記憶媒体がドライブ装置101にセットされると、プログラム又は指示が記憶媒体からドライブ装置101を介しストレージ装置102又はメモリ装置103にインストールされる。ただし、プログラム又は指示は、必ずしも記憶媒体からインストールされる必要はなく、ネットワークなどを介し何れかの外部装置からダウンロードされてもよい。 Programs or instructions for realizing various functions and processes to be described later in the training device 100 and the abnormality detection device 200 may be stored in a removable storage medium such as a CD-ROM (Compact Disk-Read Only Memory) or a flash memory. good. When the storage medium is set in the drive device 101, a program or instruction is installed from the storage medium into the storage device 102 or the memory device 103 via the drive device 101. However, the program or instructions do not necessarily need to be installed from a storage medium, and may be downloaded from any external device via a network or the like.
 ストレージ装置102は、ハードディスクドライブなどによって実現され、インストールされたプログラム又は指示と共に、プログラム又は指示の実行に用いられるファイル、データ等を格納する。 The storage device 102 is realized by a hard disk drive or the like, and stores installed programs or instructions as well as files, data, etc. used to execute the programs or instructions.
 メモリ装置103は、ランダムアクセスメモリ、スタティックメモリ等によって実現され、プログラム又は指示が起動されると、ストレージ装置102からプログラム又は指示、データ等を読み出して格納する。ストレージ装置102、メモリ装置103及び着脱可能な記憶媒体は、非一時的な記憶媒体(non-transitory storage medium)として総称されてもよい。 The memory device 103 is realized by random access memory, static memory, etc., and when a program or instruction is started, reads the program or instruction, data, etc. from the storage device 102 and stores it. The storage device 102, the memory device 103, and the removable storage medium may be collectively referred to as a non-transitory storage medium.
 プロセッサ104は、1つ以上のプロセッサコアから構成されうる1つ以上のCPU(Central Processing Unit)、GPU(Graphics Processing Unit)、処理回路(processing circuitry)等によって実現されてもよく、メモリ装置103に格納されたプログラム、指示、当該プログラム若しくは指示を実行するのに必要なパラメータなどのデータ等に従って、後述される訓練装置100及び異常検出装置200の各種機能及び処理を実行する。 The processor 104 may be realized by one or more CPUs (Central Processing Units), GPUs (Graphics Processing Units), processing circuits, etc. that may be configured from one or more processor cores, and may include memory. to device 103 Various functions and processes of the training device 100 and the abnormality detection device 200, which will be described later, are executed according to the stored programs, instructions, and data such as parameters necessary to execute the programs or instructions.
 ユーザインタフェース(UI)装置105は、キーボード、マウス、カメラ、マイクロフォン等の入力装置、ディスプレイ、スピーカ、ヘッドセット、プリンタ等の出力装置、タッチパネル等の入出力装置から構成されてもよく、ユーザと訓練装置100及び異常検出装置200との間のインタフェースを実現する。例えば、ユーザは、ディスプレイ又はタッチパネルに表示されたGUI(Graphical User Interface)をキーボード、マウス等を操作し、訓練装置100及び異常検出装置200を操作する。 The user interface (UI) device 105 may include input devices such as a keyboard, mouse, camera, and microphone, output devices such as a display, speaker, headset, and printer, and input/output devices such as a touch panel. An interface between the device 100 and the abnormality detection device 200 is realized. For example, a user operates a GUI (Graphical User Interface) displayed on a display or a touch panel using a keyboard, a mouse, etc., and operates the training device 100 and the abnormality detection device 200.
 通信装置106は、外部装置、インターネット、LAN(Local Area Network)、セルラーネットワーク等の通信ネットワークとの有線及び/又は無線通信処理を実行する各種通信回路により実現される。 The communication device 106 is realized by various communication circuits that perform wired and/or wireless communication processing with communication networks such as external devices, the Internet, LAN (Local Area Network), and cellular networks.
 しかしながら、上述したハードウェア構成は単なる一例であり、本開示による訓練装置100及び異常検出装置200は、他の何れか適切なハードウェア構成により実現されてもよい。 However, the hardware configuration described above is merely an example, and the training device 100 and the abnormality detection device 200 according to the present disclosure may be realized by any other suitable hardware configuration.
 [訓練装置]
 次に、図7及び8を参照して、本開示の一実施例による訓練装置100を説明する。本実施例による訓練装置100は、異常箇所検出モデル10を訓練するのに利用された訓練データセットの訓練データに対してデータ拡張を実行し、拡張された訓練データによって異常分類モデル20を訓練する。
[Training device]
Next, a training device 100 according to an embodiment of the present disclosure will be described with reference to FIGS. 7 and 8. The training device 100 according to the present embodiment executes data expansion on the training data of the training data set used to train the abnormal location detection model 10, and trains the abnormality classification model 20 using the expanded training data. .
 図7は、本開示の一実施例による訓練装置100の機能構成を示すブロック図である。図7に示されるように、訓練装置100は、訓練対象モデル格納部110、データ拡張部120及び訓練部130を有する。例えば、訓練対象モデル格納部110、データ拡張部120及び訓練部130の1つ以上の機能部は、1つ以上のプロセッサ104が1つ以上のプログラム又は指示を実行することによって実現されてもよい。 FIG. 7 is a block diagram showing the functional configuration of the training device 100 according to an embodiment of the present disclosure. As shown in FIG. 7, the training device 100 includes a training target model storage section 110, a data expansion section 120, and a training section 130. For example, one or more functional units of the training target model storage unit 110, the data extension unit 120, and the training unit 130 may be realized by one or more processors 104 executing one or more programs or instructions. .
 訓練対象モデル格納部110は、第1のモデルによって検出された異常候補箇所を分類する第2のモデルを格納する。具体的には、訓練対象モデル格納部110は、異常箇所検出モデル10によって検出された異常候補箇所を分類する異常分類モデル20を訓練対象の機械学習モデルとして格納する。例えば、異常箇所検出モデル10及び/又は異常分類モデル20は、畳み込みニューラルネットワークなどのニューラルネットワークであってもよいが、本開示による異常箇所検出モデル10及び/又は異常分類モデル20は、これに限定されず、他の何れかのタイプの連携する複数の機械学習モデルであってもよい。また、訓練装置100が、異常箇所検出モデル10もまた訓練する場合、訓練対象モデル格納部110は、異常箇所検出モデル10もまた格納してもよい。 The training target model storage unit 110 stores a second model that classifies the abnormality candidate locations detected by the first model. Specifically, the training target model storage unit 110 stores an abnormality classification model 20 that classifies the abnormality candidate locations detected by the abnormality location detection model 10 as a training target machine learning model. For example, the abnormality detection model 10 and/or the abnormality classification model 20 may be a neural network such as a convolutional neural network, but the abnormality detection model 10 and/or the abnormality classification model 20 according to the present disclosure are limited to this. However, it may be any other type of multiple machine learning models working together. Furthermore, when the training device 100 also trains the abnormal location detection model 10, the training target model storage unit 110 may also store the abnormal location detection model 10.
 データ拡張部120は、第1のモデルの訓練データに対してデータ拡張を実行し、第1のモデルの検出結果に対応するよう拡張された訓練データを取得する。例えば、データ拡張部120は、訓練データにおける異常箇所の位置に対応して拡張箇所を配置することによって、訓練データを拡張してもよい。具体的には、データ拡張部120は、異常箇所検出モデル10を訓練するのに利用された訓練データセットの全ての異常画像から異常箇所を特定し、特定した異常箇所の矩形領域から異常箇所リストを構成してもよい。例えば、異常箇所リストは、XY平面上の複数の矩形領域の各頂点の座標を示すものであってもよい。 The data expansion unit 120 performs data expansion on the training data of the first model, and obtains training data expanded to correspond to the detection results of the first model. For example, the data extension unit 120 may extend the training data by arranging an extension location corresponding to the position of an abnormal location in the training data. Specifically, the data expansion unit 120 identifies abnormal locations from all the abnormal images of the training data set used to train the abnormal location detection model 10, and creates an abnormal location list from the rectangular area of the identified abnormal locations. may be configured. For example, the abnormality list may indicate the coordinates of each vertex of a plurality of rectangular areas on the XY plane.
 そして、データ拡張部120は、異常箇所リストから1つ以上の矩形領域をランダムに選択し、選択した1つ以上の矩形領域を拡張対象の異常画像に重畳する。その後、データ拡張部120は、重畳した矩形領域が異常画像の異常箇所と少なくとも部分的に重複する場合(すなわち、矩形領域と異常箇所とのIoU(Intersection of Union)が非ゼロである場合)、重畳した矩形領域の分類結果を当該異常箇所の分類結果として設定してもよい。例えば、データ拡張部120は、重複する異常箇所の分類結果が“汚れ”である場合、重畳した矩形領域の分類結果を“汚れ”として設定してもよい。他方、重畳した矩形領域が異常画像の異常箇所と重複しない場合(すなわち、矩形領域と異常箇所とのIoUがゼロである場合)、データ拡張部120は、重畳した矩形領域の分類結果を“正常”として設定してもよい。 Then, the data expansion unit 120 randomly selects one or more rectangular areas from the abnormal location list, and superimposes the selected one or more rectangular areas on the abnormal image to be expanded. Thereafter, the data expansion unit 120 determines that when the superimposed rectangular area at least partially overlaps with the abnormal location in the abnormal image (that is, when the IoU (Intersection of Union) between the rectangular area and the abnormal location is non-zero), The classification result of the superimposed rectangular area may be set as the classification result of the abnormal location. For example, if the classification result of the overlapping abnormal location is "dirt", the data expansion unit 120 may set the classification result of the overlapped rectangular area as "dirt". On the other hand, if the superimposed rectangular area does not overlap with the abnormal part of the abnormal image (that is, if the IoU between the rectangular area and the abnormal part is zero), the data expansion unit 120 classifies the classification result of the superimposed rectangular area as "normal". ” may also be set.
 例えば、データ拡張部120は、訓練データセットの異常画像に対して、異常箇所リストに基づいて図8Aに示されるような矩形領域を追加する場合、追加される矩形領域は異常画像の何れの異常箇所とも重複していないため、その分類結果を“正常”として設定してもよい。 For example, when adding a rectangular area as shown in FIG. 8A to an abnormal image of the training data set based on the abnormal location list, the data expansion unit 120 adds a rectangular area such as that shown in FIG. Since there is no overlap with any location, the classification result may be set as "normal".
 あるいは、データ拡張部120は、訓練データセットの異常画像に対して、異常箇所リストに基づいて図8Bに示されるような矩形領域を追加する場合、追加される矩形領域は“汚れ”の異常箇所と重複しているため、その分類結果を“汚れ”として設定してもよい。 Alternatively, when the data expansion unit 120 adds a rectangular area as shown in FIG. 8B to the abnormal image of the training dataset based on the abnormal area list, the added rectangular area is a "stain" abnormal area. Since the classification result overlaps with that of "dirt", the classification result may be set as "dirt".
 あるいは、データ拡張部120は、訓練データセットの正常画像に対して、異常箇所リストに基づいて図8Cに示されるような矩形領域を追加する場合、追加される矩形領域の分類結果を“正常”として設定してもよい。 Alternatively, when adding a rectangular area as shown in FIG. 8C to the normal image of the training dataset based on the abnormal location list, the data expansion unit 120 classifies the added rectangular area as "normal". You can also set it as .
 なお、上述した矩形領域の追加は繰り返されてもよい。図8Dに示されるように、データ拡張部120は、訓練データセットの異常画像に対して、異常箇所リストに基づいて図8Dに示されるような複数の矩形領域を繰り返し追加してもよく、追加される矩形領域と異常画像の異常箇所との重複の有無に応じて矩形領域の分類結果を設定してもよい。 Note that the above-described addition of rectangular areas may be repeated. As shown in FIG. 8D, the data expansion unit 120 may repeatedly add a plurality of rectangular areas as shown in FIG. 8D to the abnormal image of the training dataset based on the abnormal location list, and add The classification result of the rectangular area may be set depending on whether or not there is an overlap between the rectangular area and the abnormal location of the abnormal image.
 このようにして、訓練データセットに基づいて作成された異常箇所リストを利用して矩形領域を追加することによって、異常箇所検出モデル10によって検出される可能性がある矩形領域を追加できると共に、追加した矩形領域の分類結果を重複の有無に応じて自動的に取得することができる。これにより、訓練データを効率的に拡張することができる。また、異常箇所検出において相対的に低い閾値が異常確率に適用される場合、すなわち、正常箇所が異常候補箇所として検出されやすい場合であっても、異常分類モデル20が、検出された異常候補箇所を“正常”として適切に分類しうると考えられる。このような過検出な異常箇所検出モデル10が適用される場合であっても、異常分類モデル20と併せて利用することによって高精度な異常検出が実現できる。 In this way, by adding rectangular areas using the anomaly area list created based on the training dataset, it is possible to add rectangular areas that may be detected by the anomaly area detection model 10, and The classification results of the rectangular areas can be automatically obtained depending on the presence or absence of overlap. This allows training data to be expanded efficiently. Furthermore, even if a relatively low threshold is applied to the abnormality probability in detecting an abnormality, that is, even if a normal place is likely to be detected as an abnormality candidate, the abnormality classification model 20 can be appropriately classified as "normal". Even if such an over-detected abnormality detection model 10 is applied, highly accurate abnormality detection can be achieved by using it in conjunction with the abnormality classification model 20.
 また、データ拡張部120は、異常箇所リストの矩形領域に対して(例えば、ランダムに設定された)微少量の位置変更及び/又はサイズ変更を実行し、変更された矩形領域を訓練データに重畳させてもよい。これにより、データ拡張部120は、矩形領域のバリエーションを増やすことが可能になり、位置ずれなどによる精度の低下に対処することができる。 Additionally, the data expansion unit 120 performs a minute position change and/or size change (for example, randomly set) to the rectangular area in the abnormality list, and superimposes the changed rectangular area on the training data. You may let them. This makes it possible for the data expansion unit 120 to increase variations in rectangular areas, and to cope with deterioration in accuracy due to positional shifts and the like.
 訓練部130は、拡張された訓練データによって第2のモデルを訓練する。具体的には、訓練部130は、データ拡張部120によって拡張された訓練データによって異常分類モデル20を訓練する。例えば、異常分類モデル20が畳み込みニューラルネットワークとして実現される場合、訓練部130は、訓練対象の畳み込みニューラルネットワークに拡張された訓練画像を入力し、訓練対象の畳み込みニューラルネットワークからの出力結果と拡張された訓練画像との誤差に応じて、誤差逆伝播法に従って訓練対象の畳み込みニューラルネットワークのパラメータを更新してもよい。訓練部130は、全ての拡張された訓練データに対して上述したパラメータ更新処理を実行するなど、所定の終了条件を充足するまで、パラメータ更新処理を繰り返す。所定の終了条件を充足すると、訓練部130は、訓練対象の異常分類モデル20の訓練を終了し、取得した異常分類モデル20を訓練済みモデルとして異常検出装置200に提供してもよい。 The training unit 130 trains the second model using the expanded training data. Specifically, the training unit 130 trains the anomaly classification model 20 using the training data expanded by the data expansion unit 120. For example, when the anomaly classification model 20 is implemented as a convolutional neural network, the training unit 130 inputs the expanded training images to the convolutional neural network to be trained, and combines the output results from the convolutional neural network to be trained and the expanded training images. The parameters of the convolutional neural network to be trained may be updated according to the error backpropagation method according to the error with the training image. The training unit 130 repeats the parameter update process, such as executing the above-described parameter update process on all expanded training data, until a predetermined termination condition is satisfied. When a predetermined termination condition is satisfied, the training unit 130 may end the training of the anomaly classification model 20 to be trained, and may provide the obtained anomaly classification model 20 to the anomaly detection device 200 as a trained model.
 訓練部130は更に、異常箇所検出モデル10を訓練してもよい。具体的には、訓練対象モデル格納部110は更に、訓練対象の異常箇所検出モデル10を格納し、訓練部130は、訓練データセットの拡張されていない訓練データによって異常箇所検出モデル10を訓練してもよい。 The training unit 130 may further train the abnormal location detection model 10. Specifically, the training target model storage unit 110 further stores the anomaly location detection model 10 as the training target, and the training unit 130 trains the anomaly location detection model 10 using unexpanded training data of the training data set. It's okay.
 例えば、訓練部130は、未検出を回避するため、未検出をより厳しく罰するような損失関数を利用して、異常箇所検出モデル10及び/又は異常分類モデル10を訓練してもよい。そのような損失関数は、例えば、以下のようなに規定されてもよい。
 loss=(1-flag)*loss0+flag*(0.1*loss1)
 ここで、変数flagは“0”又は“1”であり、計算対象の矩形領域が正常である場合、flagは“0”に設定され、計算対象の矩形領域が異常である場合、flagは“1”に設定されてもよい。これにより、異常箇所検出モデル10による異常箇所の未検出の可能性を低下させることができる一方、全体の異常分類正解率は低下する可能性がある。未検出を許容する分類学習では、損失関数を制約することなくチューニングを行うことが可能であり、全体の分類正解率を最大化することができる。
For example, in order to avoid non-detection, the training unit 130 may train the abnormal location detection model 10 and/or the abnormality classification model 10 using a loss function that more severely punishes non-detection. Such a loss function may be defined as follows, for example.
loss=(1-flag)*loss0+flag*(0.1*loss1)
Here, the variable flag is "0" or "1", and if the rectangular area to be calculated is normal, the flag is set to "0", and if the rectangular area to be calculated is abnormal, the flag is set to " It may be set to 1”. While this can reduce the possibility that an abnormal location is not detected by the abnormal location detection model 10, the overall error classification accuracy rate may decrease. Classification learning that allows undetected results allows tuning without constraining the loss function, and can maximize the overall classification accuracy rate.
 本実施例は、異常箇所検出モデル10及び/又は異常分類モデル20に着目して説明されたが、本開示による訓練対象の機械学習モデルは、これに限定されず、同一の訓練データセットにより訓練される連携する複数の機械学習モデルに同様に適用されてもよい。 Although the present embodiment has been described with a focus on the anomaly detection model 10 and/or the anomaly classification model 20, the machine learning model to be trained according to the present disclosure is not limited to this, and is trained using the same training data set. It may be similarly applied to multiple machine learning models that are linked together.
 [訓練処理]
 次に、図9を参照して、本開示の一実施例による訓練処理を説明する。当該訓練処理は、上述した訓練装置100によって実行され、より詳細には、訓練装置100の1つ以上のプロセッサ104が1つ以上のメモリ装置103に格納された1つ以上のプログラム又は指示を実行することによって実現されてもよい。図9は、本開示の一実施例による訓練処理を示すフローチャートである。
[Training process]
Next, with reference to FIG. 9, a training process according to an embodiment of the present disclosure will be described. The training process is executed by the training device 100 described above, and more specifically, one or more processors 104 of the training device 100 execute one or more programs or instructions stored in one or more memory devices 103. It may be realized by doing. FIG. 9 is a flowchart illustrating training processing according to an embodiment of the present disclosure.
 図9に示されるように、ステップS101において、訓練装置100は、異常箇所検出モデル10の訓練データに対してデータ拡張を実行する。具体的には、訓練装置100は、訓練データにおける異常箇所の位置に対応して拡張箇所(例えば、矩形領域など)を配置することによって、訓練データを拡張してもよい。そして、訓練装置100は、訓練データの異常箇所と拡張箇所との重複の有無に応じて拡張箇所を分類してもよい。例えば、訓練装置100は、訓練データの異常箇所と拡張箇所とが少なくとも部分的に重複する場合、異常箇所の分類結果に一致するよう拡張箇所を分類し、訓練データの異常箇所と拡張箇所とが重複しない場合、拡張箇所を正常と分類してもよい。 As shown in FIG. 9, in step S101, the training device 100 performs data expansion on the training data of the abnormal location detection model 10. Specifically, the training device 100 may extend the training data by arranging an extension location (for example, a rectangular area) corresponding to the position of the abnormal location in the training data. Then, the training device 100 may classify the expanded locations depending on whether or not there is an overlap between the abnormal location and the extended location in the training data. For example, when the abnormal part of the training data and the extended part overlap at least partially, the training device 100 classifies the extended part so as to match the classification result of the abnormal part, and the training device 100 classifies the extended part so as to match the classification result of the abnormal part. If there is no overlap, the expanded location may be classified as normal.
 すなわち、訓練装置100は、訓練データセットの異常画像に対して矩形領域を追加し、追加した矩形領域が異常画像の異常箇所と少なくとも部分的に重複する場合、矩形領域の分類結果を異常箇所の分類結果に設定してもよい。矩形領域の分類結果を決定すると、訓練装置100は、設定した分類結果が付与された矩形領域を訓練データに重畳し、訓練データを拡張してもよい。一方、訓練装置100は、訓練データセットの正常画像に対して矩形領域を追加してもよい。この場合、訓練装置100は、正常と分類された矩形領域を訓練データに重畳し、訓練データを拡張してもよい。 That is, the training device 100 adds a rectangular region to the abnormal image of the training dataset, and when the added rectangular region at least partially overlaps with an abnormal location in the abnormal image, the training device 100 uses the classification result of the rectangular region as the abnormal location. It may also be set in the classification results. After determining the classification result of the rectangular area, the training device 100 may extend the training data by superimposing the rectangular area to which the set classification result is given on the training data. On the other hand, the training device 100 may add a rectangular region to the normal image of the training dataset. In this case, the training device 100 may expand the training data by superimposing the rectangular region classified as normal on the training data.
 ステップS102において、訓練装置100は、拡張された訓練データによって異常分類モデル20を訓練する。例えば、異常分類モデル20が畳み込みニューラルネットワークとして実現される場合、訓練装置100は、訓練対象の畳み込みニューラルネットワークに拡張された訓練画像を入力し、訓練対象の畳み込みニューラルネットワークからの出力結果と拡張された訓練画像との誤差に応じて、誤差逆伝播法に従って訓練対象の畳み込みニューラルネットワークのパラメータを更新してもよい。訓練装置100は、所定の終了条件を充足するまで、パラメータ更新処理を繰り返す。所定の終了条件を充足すると、訓練装置100は、訓練対象の異常分類モデル20の訓練を終了し、取得した異常分類モデル20を訓練済みモデルとして異常検出装置200に提供してもよい。 In step S102, the training device 100 trains the anomaly classification model 20 using the expanded training data. For example, when the anomaly classification model 20 is implemented as a convolutional neural network, the training device 100 inputs training images that have been expanded to the convolutional neural network that is the training target, and combines the output results from the convolutional neural network that is the training target with the expanded training images. The parameters of the convolutional neural network to be trained may be updated according to the error backpropagation method according to the error with the training image. The training device 100 repeats the parameter update process until a predetermined termination condition is satisfied. When a predetermined termination condition is satisfied, the training device 100 may end the training of the anomaly classification model 20 to be trained, and may provide the obtained anomaly classification model 20 to the anomaly detection device 200 as a trained model.
 また、訓練装置100は、拡張されていない訓練データによって異常箇所検出モデル10を訓練してもよい。例えば、異常箇所検出モデル10が畳み込みニューラルネットワークとして実現される場合、訓練装置100は、訓練対象の畳み込みニューラルネットワークに訓練画像を入力し、訓練対象の畳み込みニューラルネットワークからの出力結果と訓練画像との誤差に応じて、誤差逆伝播法に従って訓練対象の畳み込みニューラルネットワークのパラメータを更新してもよい。訓練装置100は、所定の終了条件を充足するまで、パラメータ更新処理を繰り返す。所定の終了条件を充足すると、訓練装置100は、訓練対象の異常箇所検出モデル10の訓練を終了し、取得した異常箇所検出モデル10を訓練済みモデルとして異常検出装置200に提供してもよい。 Additionally, the training device 100 may train the abnormal location detection model 10 using unenhanced training data. For example, when the anomaly detection model 10 is realized as a convolutional neural network, the training device 100 inputs a training image to the convolutional neural network to be trained, and combines the output result from the convolutional neural network to be trained with the training image. Depending on the error, parameters of the convolutional neural network to be trained may be updated according to the error backpropagation method. The training device 100 repeats the parameter update process until a predetermined termination condition is satisfied. When a predetermined termination condition is satisfied, the training device 100 may end the training of the abnormal location detection model 10 to be trained, and may provide the acquired abnormal location detection model 10 to the abnormality detection device 200 as a trained model.
 [異常検出装置]
 次に、図10を参照して、本開示の一実施例による異常検出装置200を説明する。異常検出装置200は、訓練装置100から取得した訓練済み異常箇所検出モデル10及び訓練済み異常分類モデル20を利用して、検知対象の製品等を示す画像に対して異常検出を実行する。
[Anomaly detection device]
Next, with reference to FIG. 10, an abnormality detection device 200 according to an embodiment of the present disclosure will be described. The anomaly detection device 200 uses the trained anomaly location detection model 10 and the trained anomaly classification model 20 acquired from the training device 100 to perform anomaly detection on an image showing a product or the like to be detected.
 図10に示されるように、異常検出装置200は、訓練済みモデル格納部210及び異常検出部220を有する。 As shown in FIG. 10, the anomaly detection device 200 includes a trained model storage section 210 and an anomaly detection section 220.
 訓練済みモデル格納部210は、検知対象を示す画像から異常候補箇所を検出する訓練済みの第1のモデルと、異常候補箇所を示す検知対象の画像から異常候補箇所を分類する訓練済みの第2のモデルとを格納する。ここで、第1のモデルは、検知対象を示す画像から異常候補箇所を検出する異常箇所検出モデル10であり、第2のモデルは、異常候補箇所を示す画像から異常候補箇所を分類する異常分類モデル20であってもよい。 The trained model storage unit 210 stores a trained first model that detects abnormality candidate locations from images showing detection targets, and a trained second model that classifies abnormality candidate locations from detection target images showing abnormality candidate locations. Store the model of. Here, the first model is an anomaly location detection model 10 that detects an anomaly candidate location from an image showing a detection target, and the second model is an anomaly classification model that classifies an anomaly candidate location from an image showing an anomaly candidate location. Model 20 may also be used.
 異常検出部220は、検知対象を示す画像を取得すると、訓練済みの第1のモデルと訓練済みの第2のモデルとを利用して、検知対象の画像における異常候補箇所と異常候補箇所の分類結果とを取得する。具体的には、異常検出部220は、推論対象の画像を取得すると、当該推論対象の画像を訓練済み異常箇所検出モデル10に入力し、訓練済み異常箇所検出モデル10から入力画像における異常候補箇所を示す異常箇所検出画像を取得する。例えば、異常箇所の未検出を抑制するため、相対的に低い閾値が設定され、設定された閾値以上の異常確率を示す矩形領域が検出される場合、異常検出部220は、相対的に多数の異常候補箇所を検出しうる。 Upon acquiring an image showing a detection target, the anomaly detection unit 220 uses the trained first model and the trained second model to classify the abnormality candidate location and the abnormality candidate location in the detection target image. Get the results. Specifically, upon acquiring an image to be inferred, the anomaly detection unit 220 inputs the image to be inferred to the trained abnormality detection model 10, and extracts abnormality candidate locations in the input image from the trained abnormality detection model 10. Obtain an abnormal point detection image showing the For example, if a relatively low threshold is set to prevent abnormalities from not being detected, and a rectangular area exhibiting an abnormality probability greater than or equal to the set threshold is detected, the abnormality detection unit 220 detects a relatively large number of abnormalities. Potential abnormalities can be detected.
 異常候補箇所を検出すると、異常検出部220は、検出した異常箇所検出画像を訓練済み異常分類モデル20に入力し、訓練済み異常分類モデル20から入力画像における各異常候補箇所の分類結果を取得する。例えば、異常検出部220は、異常候補箇所が正常であった場合、当該異常候補箇所を“正常”として分類し、異常候補箇所が“汚れ”、“きず”、“変形”等の何れかのタイプの異常を示す場合、当該異常候補箇所を対応する異常種別に分類する検出結果を取得する。 Upon detecting an abnormality candidate location, the anomaly detection unit 220 inputs the detected abnormality location detection image to the trained abnormality classification model 20 and obtains the classification result of each abnormality candidate location in the input image from the trained abnormality classification model 20. . For example, if the abnormality candidate location is normal, the abnormality detection unit 220 classifies the abnormality candidate location as “normal”, and if the abnormality candidate location is “dirt”, “flaw”, “deformation”, etc. If a type of abnormality is indicated, a detection result is obtained that classifies the abnormality candidate location into the corresponding abnormality type.
 [異常検出処理]
 次に、図11を参照して、本開示の一実施例による異常検出処理を説明する。当該異常検出処理は、上述した異常検出装置200によって実行され、より詳細には、異常検出装置200の1つ以上のプロセッサ104が1つ以上のメモリ装置103に格納された1つ以上のプログラム又は指示を実行することによって実現されてもよい。図11は、本開示の一実施例による異常検出処理を示すフローチャートである。
[Anomaly detection processing]
Next, with reference to FIG. 11, abnormality detection processing according to an embodiment of the present disclosure will be described. The abnormality detection process is executed by the above-mentioned abnormality detection device 200, and more specifically, one or more processors 104 of the abnormality detection device 200 execute one or more programs or programs stored in one or more memory devices 103. This may be accomplished by executing instructions. FIG. 11 is a flowchart showing abnormality detection processing according to an embodiment of the present disclosure.
 図11に示されるように、ステップS201において、異常検出装置200は、検知対象を示す画像を取得する。具体的には、異常検出装置200は、検知対象の製品等の外観をカメラなどの撮像手段によって撮像された画像を取得する。 As shown in FIG. 11, in step S201, the abnormality detection device 200 acquires an image showing the detection target. Specifically, the abnormality detection device 200 acquires an image of the appearance of a product to be detected, captured by an imaging means such as a camera.
 ステップS202において、異常検出装置200は、訓練済み異常箇所検出モデル10及び訓練済み異常分類モデル20を利用して、取得した検知対象の画像における異常候補箇所及びその分類結果を取得する。具体的には、異常検出装置200はまず、取得した画像を訓練済み異常箇所検出モデル10に入力し、訓練済み異常箇所検出モデル10から入力画像における異常候補箇所を示す異常箇所検出画像を取得する。次に、異常検出装置200は、取得した異常箇所検出画像を訓練済み異常分類モデル20に入力し、訓練済み異常分類モデル20から入力画像における各異常候補箇所の分類結果を示す検出結果を取得する。 In step S202, the anomaly detection device 200 uses the trained abnormality detection model 10 and the trained abnormality classification model 20 to obtain abnormality candidate locations and their classification results in the acquired detection target image. Specifically, the anomaly detection device 200 first inputs the acquired image into the trained abnormality detection model 10, and obtains an abnormality detection image indicating abnormality candidate locations in the input image from the trained abnormality detection model 10. . Next, the anomaly detection device 200 inputs the acquired abnormality detection image to the trained abnormality classification model 20, and obtains a detection result indicating the classification result of each abnormality candidate location in the input image from the trained abnormality classification model 20. .
 なお、以上の説明に関して更に以下の付記を開示する。
 (付記1)
 第1のモデルによって検出された異常候補箇所を分類する第2のモデルを格納する訓練対象モデル格納部と、
 前記第1のモデルの第1の訓練データに対してデータ拡張を実行し、前記第1のモデルの検出結果に対応するよう拡張された第2の訓練データを取得するデータ拡張部と、
 前記第2の訓練データによって前記第2のモデルを訓練する訓練部と、
 を有する、訓練装置。
 (付記2)
 前記データ拡張部は、前記第1の訓練データにおける異常箇所の位置に対応して拡張箇所を配置することによって、前記第2の訓練データを生成する、付記1に記載の訓練装置。
 (付記3)
 前記データ拡張部は、前記第1の訓練データの異常箇所と前記拡張箇所との重複の有無に応じて前記拡張箇所を分類する、付記2に記載の訓練装置。
 (付記4)
 前記データ拡張部は、前記第1の訓練データの異常箇所と前記拡張箇所とが少なくとも部分的に重複する場合、前記異常箇所の分類結果に一致するよう前記拡張箇所を分類し、前記第1の訓練データの異常箇所と前記拡張箇所とが重複しない場合、前記拡張箇所を正常と分類する、付記3に記載の訓練装置。
 (付記5)
 前記第1のモデルは、検知対象を示す画像から異常候補箇所を検出する異常箇所検出モデルであり、
 前記第2のモデルは、前記異常候補箇所を示す画像から前記異常候補箇所を分類する異常分類モデルである、付記1から4の何れか一項に記載の訓練装置。
 (付記6)
 第1のモデルの第1の訓練データに対してデータ拡張を実行し、前記第1のモデルの検出結果に対応するよう拡張された第2の訓練データを取得することと、
 前記第2の訓練データによって、前記第1のモデルによって検出された異常候補箇所を分類する第2のモデルを訓練することと、
 をコンピュータが実行する訓練方法。
 (付記7)
 検知対象を示す画像から異常候補箇所を検出する訓練済みの第1のモデルと、前記異常候補箇所を示す画像から前記異常候補箇所を分類する訓練済みの第2のモデルとを格納する訓練済みモデル格納部と、
 前記検知対象を示す画像を取得すると、前記訓練済みの第1のモデルと前記訓練済みの第2のモデルとを利用して、前記検知対象の画像における異常候補箇所と前記異常候補箇所の分類結果とを取得する異常検出部と、
 を有し、
 前記訓練済みの第2のモデルは、前記訓練済みの第1のモデルの第1の訓練データに対してデータ拡張を実行し、前記訓練済みの第1のモデルの検出結果に対応するよう拡張された第2の訓練データによって訓練されている、異常検出装置。
 (付記8)
 検知対象を示す画像を取得すると、前記検知対象を示す画像から異常候補箇所を検出する訓練済みの第1のモデルと、前記異常候補箇所を示す画像から前記異常候補箇所を分類する訓練済みの第2のモデルとを利用して、前記検知対象の画像における異常候補箇所と前記異常候補箇所の分類結果とを取得することを有し、
 前記訓練済みの第2のモデルは、前記訓練済みの第1のモデルの第1の訓練データに対してデータ拡張を実行し、前記訓練済みの第1のモデルの検出結果に対応するよう拡張された第2の訓練データによって訓練されている、コンピュータが実行する異常検出方法。
In addition, the following additional notes are further disclosed regarding the above description.
(Additional note 1)
a training target model storage unit that stores a second model that classifies the abnormality candidate locations detected by the first model;
a data expansion unit that executes data expansion on first training data of the first model and obtains second training data expanded to correspond to the detection result of the first model;
a training unit that trains the second model using the second training data;
A training device with.
(Additional note 2)
The training device according to supplementary note 1, wherein the data expansion unit generates the second training data by arranging an expansion location corresponding to a position of an abnormal location in the first training data.
(Additional note 3)
The training device according to supplementary note 2, wherein the data expansion unit classifies the expanded location depending on whether or not there is an overlap between an abnormal location in the first training data and the expanded location.
(Additional note 4)
When the abnormal location of the first training data and the extended location at least partially overlap, the data expansion unit classifies the extended location so as to match the classification result of the abnormal location; The training device according to supplementary note 3, wherein if an abnormal location in the training data and the expanded location do not overlap, the expanded location is classified as normal.
(Appendix 5)
The first model is an anomaly location detection model that detects an anomaly candidate location from an image showing a detection target,
The training device according to any one of Supplementary Notes 1 to 4, wherein the second model is an abnormality classification model that classifies the abnormality candidate location from an image showing the abnormality candidate location.
(Appendix 6)
performing data augmentation on first training data of a first model, and obtaining second training data augmented to correspond to the detection results of the first model;
training a second model for classifying abnormality candidate locations detected by the first model using the second training data;
A training method performed by a computer.
(Appendix 7)
A trained model that stores a trained first model that detects an abnormality candidate location from an image showing a detection target, and a trained second model that classifies the abnormality candidate location from an image showing the abnormality candidate location. a storage section;
When an image indicating the detection target is acquired, the trained first model and the trained second model are used to classify the abnormality candidate location and the abnormality candidate location in the detection target image. an anomaly detection unit that obtains the
has
The trained second model performs data augmentation on the first training data of the trained first model, and is expanded to correspond to the detection result of the trained first model. The anomaly detection device is trained using the second training data.
(Appendix 8)
When an image showing a detection target is acquired, a trained first model that detects an abnormality candidate location from the image showing the detection target, and a trained first model that classifies the abnormality candidate location from the image showing the abnormality candidate location. 2, to obtain an abnormality candidate location in the detection target image and a classification result of the abnormality candidate location,
The trained second model performs data augmentation on the first training data of the trained first model, and is expanded to correspond to the detection result of the trained first model. a computer-implemented anomaly detection method, the computer-implemented anomaly detection method being trained on second training data;
 以上、本開示の実施例について詳述したが、本開示は上述した特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本開示の要旨の範囲内において、種々の変形・変更が可能である。 Although the embodiments of the present disclosure have been described in detail above, the present disclosure is not limited to the specific embodiments described above, and various modifications may be made within the scope of the gist of the present disclosure described in the claims. - Can be changed.
 2022年5月18日出願の特願2022-081576号の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。 The disclosure contents of the specification, drawings, and abstract included in the Japanese application No. 2022-081576 filed on May 18, 2022 are all incorporated into the present application.
 10 異常箇所検出モデル
 20 異常分類モデル
 100 訓練装置
 110 訓練対象モデル格納部
 120 データ拡張部
 130 訓練部
 200 異常検出装置
 210 訓練済みモデル格納部
 220 異常検出部
 

 
10 Anomaly location detection model 20 Anomaly classification model 100 Training device 110 Training target model storage section 120 Data extension section 130 Training section 200 Anomaly detection device 210 Trained model storage section 220 Anomaly detection section

Claims (8)

  1.  第1のモデルによって検出された異常候補箇所を分類する第2のモデルを格納する訓練対象モデル格納部と、
     前記第1のモデルの第1の訓練データに対してデータ拡張を実行し、前記第1のモデルの検出結果に対応するよう拡張された第2の訓練データを取得するデータ拡張部と、
     前記第2の訓練データによって前記第2のモデルを訓練する訓練部と、
     を有する、訓練装置。
    a training target model storage unit that stores a second model that classifies the abnormality candidate locations detected by the first model;
    a data expansion unit that executes data expansion on first training data of the first model and obtains second training data expanded to correspond to the detection result of the first model;
    a training unit that trains the second model using the second training data;
    A training device with.
  2.  前記データ拡張部は、前記第1の訓練データにおける異常箇所の位置に対応して拡張箇所を配置することによって、前記第2の訓練データを生成する、請求項1に記載の訓練装置。 The training device according to claim 1, wherein the data extension unit generates the second training data by arranging an extension location corresponding to a position of an abnormal location in the first training data.
  3.  前記データ拡張部は、前記第1の訓練データの異常箇所と前記拡張箇所との重複の有無に応じて前記拡張箇所を分類する、請求項2に記載の訓練装置。 The training device according to claim 2, wherein the data expansion unit classifies the expanded location depending on whether or not there is an overlap between an abnormal location in the first training data and the expanded location.
  4.  前記データ拡張部は、前記第1の訓練データの異常箇所と前記拡張箇所とが少なくとも部分的に重複する場合、前記異常箇所の分類結果に一致するよう前記拡張箇所を分類し、前記第1の訓練データの異常箇所と前記拡張箇所とが重複しない場合、前記拡張箇所を正常と分類する、請求項3に記載の訓練装置。 When the abnormal location of the first training data and the extended location at least partially overlap, the data expansion unit classifies the extended location so as to match the classification result of the abnormal location; 4. The training device according to claim 3, wherein if an abnormal location in the training data and the expanded location do not overlap, the expanded location is classified as normal.
  5.  前記第1のモデルは、検知対象を示す画像から異常候補箇所を検出する異常箇所検出モデルであり、
     前記第2のモデルは、前記異常候補箇所を示す画像から前記異常候補箇所を分類する異常分類モデルである、請求項1から4の何れか一項に記載の訓練装置。
    The first model is an anomaly location detection model that detects an anomaly candidate location from an image showing a detection target,
    The training device according to any one of claims 1 to 4, wherein the second model is an abnormality classification model that classifies the abnormality candidate location from an image showing the abnormality candidate location.
  6.  第1のモデルの第1の訓練データに対してデータ拡張を実行し、前記第1のモデルの検出結果に対応するよう拡張された第2の訓練データを取得することと、
     前記第2の訓練データによって、前記第1のモデルによって検出された異常候補箇所を分類する第2のモデルを訓練することと、
     をコンピュータが実行する訓練方法。
    performing data augmentation on first training data of a first model, and obtaining second training data augmented to correspond to the detection results of the first model;
    training a second model for classifying abnormality candidate locations detected by the first model using the second training data;
    A training method performed by a computer.
  7.  検知対象を示す画像から異常候補箇所を検出する訓練済みの第1のモデルと、前記異常候補箇所を示す画像から前記異常候補箇所を分類する訓練済みの第2のモデルとを格納する訓練済みモデル格納部と、
     前記検知対象を示す画像を取得すると、前記訓練済みの第1のモデルと前記訓練済みの第2のモデルとを利用して、前記検知対象の画像における異常候補箇所と前記異常候補箇所の分類結果とを取得する異常検出部と、
     を有し、
     前記訓練済みの第2のモデルは、前記訓練済みの第1のモデルの第1の訓練データに対してデータ拡張を実行し、前記訓練済みの第1のモデルの検出結果に対応するよう拡張された第2の訓練データによって訓練されている、異常検出装置。
    A trained model that stores a trained first model that detects an abnormality candidate location from an image showing a detection target, and a trained second model that classifies the abnormality candidate location from an image showing the abnormality candidate location. a storage section;
    When an image indicating the detection target is acquired, the trained first model and the trained second model are used to classify the abnormality candidate location and the abnormality candidate location in the detection target image. an anomaly detection unit that obtains the
    has
    The trained second model performs data augmentation on the first training data of the trained first model, and is expanded to correspond to the detection result of the trained first model. The anomaly detection device is trained using the second training data.
  8.  検知対象を示す画像を取得すると、前記検知対象を示す画像から異常候補箇所を検出する訓練済みの第1のモデルと、前記異常候補箇所を示す画像から前記異常候補箇所を分類する訓練済みの第2のモデルとを利用して、前記検知対象の画像における異常候補箇所と前記異常候補箇所の分類結果とを取得することを有し、
     前記訓練済みの第2のモデルは、前記訓練済みの第1のモデルの第1の訓練データに対してデータ拡張を実行し、前記訓練済みの第1のモデルの検出結果に対応するよう拡張された第2の訓練データによって訓練されている、コンピュータが実行する異常検出方法。
    When an image showing a detection target is acquired, a trained first model that detects an abnormality candidate location from the image showing the detection target, and a trained first model that classifies the abnormality candidate location from the image showing the abnormality candidate location. 2, to obtain an abnormality candidate location in the detection target image and a classification result of the abnormality candidate location,
    The trained second model performs data augmentation on the first training data of the trained first model, and is expanded to correspond to the detection result of the trained first model. a computer-implemented anomaly detection method, the computer-implemented anomaly detection method being trained on second training data;
PCT/JP2023/016448 2022-05-18 2023-04-26 Training device, training method, abnormality detection device, and abnormality detection method WO2023223790A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022081576 2022-05-18
JP2022-081576 2022-05-18

Publications (1)

Publication Number Publication Date
WO2023223790A1 true WO2023223790A1 (en) 2023-11-23

Family

ID=88835046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016448 WO2023223790A1 (en) 2022-05-18 2023-04-26 Training device, training method, abnormality detection device, and abnormality detection method

Country Status (1)

Country Link
WO (1) WO2023223790A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019114116A (en) * 2017-12-25 2019-07-11 オムロン株式会社 Data generation device, data generation method, and data generation program
JP2021139769A (en) * 2020-03-05 2021-09-16 国立大学法人 筑波大学 Defect detection classification system and defect determination training system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019114116A (en) * 2017-12-25 2019-07-11 オムロン株式会社 Data generation device, data generation method, and data generation program
JP2021139769A (en) * 2020-03-05 2021-09-16 国立大学法人 筑波大学 Defect detection classification system and defect determination training system

Similar Documents

Publication Publication Date Title
US10489684B2 (en) Image processing apparatus and method based on deep learning and neural network learning
Pal et al. Deep-learning-based visual data analytics for smart construction management
JP2020027424A (en) Learning data generating device, discrimination model generating device, and program
US9478040B2 (en) Method and apparatus for segmenting object in image
JP5351971B2 (en) Method, apparatus and software for determining motion vectors
JP2020060879A (en) Learning device, image generator, method for learning, and learning program
JP4442042B2 (en) Image processing program creation method and system
US11804283B2 (en) Predicting molecular properties of molecular variants using residue-specific molecular structural features
WO2023223790A1 (en) Training device, training method, abnormality detection device, and abnormality detection method
WO2020097461A1 (en) Convolutional neural networks with reduced attention overlap
US11941774B2 (en) Machine learning artificial intelligence system for producing 360 virtual representation of an object
JP2010102396A (en) Person detection device, person detection method, and program
US20220392127A1 (en) Image annotation method
US20220318887A1 (en) Machine learning model generation platform
JP7414629B2 (en) Learning data processing device, learning device, learning data processing method, and program
JP4915522B2 (en) Graphic processing device
JP2023069083A (en) Learning apparatus, learning method, learning program, object detection apparatus, object detection method, object detection method, learning support system, learning support method, and learning support program
JP6984020B2 (en) Image analysis device and image analysis method
JP2000338052A (en) Flaw display device and inspection device
JP2021056435A (en) Information processor, information processing method, and program
CN113268188A (en) Task processing method, device, equipment and storage medium
JP2022074861A (en) Image processing device, image processing method, learning model generation device, learning model manufacturing method, learned model and program
JP6948547B2 (en) Programs, information processing systems, and information processing methods
JP2011141664A (en) Device, method and program for comparing document
WO2020057104A1 (en) Method and device for application development

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807400

Country of ref document: EP

Kind code of ref document: A1