WO2023223781A1 - Control device - Google Patents

Control device Download PDF

Info

Publication number
WO2023223781A1
WO2023223781A1 PCT/JP2023/016249 JP2023016249W WO2023223781A1 WO 2023223781 A1 WO2023223781 A1 WO 2023223781A1 JP 2023016249 W JP2023016249 W JP 2023016249W WO 2023223781 A1 WO2023223781 A1 WO 2023223781A1
Authority
WO
WIPO (PCT)
Prior art keywords
door
movable range
drone
destination
control device
Prior art date
Application number
PCT/JP2023/016249
Other languages
French (fr)
Japanese (ja)
Inventor
真幸 森下
広樹 石塚
昌志 安沢
圭祐 中島
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Publication of WO2023223781A1 publication Critical patent/WO2023223781A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D9/00Equipment for handling freight; Equipment for facilitating passenger embarkation or the like
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/04Anti-collision systems

Definitions

  • the present invention relates to a technology for delivering cargo to a destination by means of a flying vehicle.
  • Patent Document 1 describes a mechanism in which a landing pad is provided in a landing zone of a delivery destination of a drone, and the drone is guided to the landing pad using a visual support device, an optical support device, or a radio support device.
  • Patent Document 1 The system described in Patent Document 1 has a problem in that dedicated equipment called landing pads must be provided at all destinations to which packages are delivered.
  • the present invention was made in view of the above-mentioned background, and an object of the present invention is to prevent a flying vehicle or baggage delivered by the flying vehicle from coming into contact with a door provided at a destination.
  • the present invention includes a movable range calculation unit that calculates a movable range when a door provided at a destination of an aircraft opens and closes, and a range that includes the calculated movable range to prohibit entry of the aircraft.
  • a control device is provided, comprising: a setting section for setting a prohibited range.
  • the present invention it is possible to prevent a flying vehicle or baggage delivered by the flying vehicle from coming into contact with a door provided at the destination.
  • FIG. 1 is a block diagram showing an example of the configuration of a drone control system 1 according to an embodiment of the present invention. It is a block diagram showing an example of the hardware configuration of drone 10 concerning the same embodiment. It is a block diagram showing an example of the hardware configuration of server device 50 concerning the same embodiment. It is a block diagram showing an example of the functional composition of drone 10 concerning the same embodiment. It is a figure which illustrates the movable range when a door is a sliding door. It is a figure which illustrates the movable range when a door opens inward. It is a figure which illustrates the movable range when a door opens outward and opens to the right. It is a figure which illustrates the movable range when a door opens outward and opens to the left. FIG.
  • FIG. 3 is a diagram illustrating a movable range when the door opens outward and opens both ways.
  • FIG. 3 is a diagram illustrating a relationship between a door movable range and a drone-prohibited range. It is a flowchart illustrating the procedure of processing by the drone 10 according to the embodiment. It is a figure which illustrates the door information which the server apparatus 50 memorize
  • FIG. 1 is a block diagram showing an example of the configuration of a drone control system 1 according to an embodiment of the present invention.
  • the drone control system 1 is connected to a drone 10 that flies in the air and delivers a package to a destination, a user terminal 30 used by a user who is the destination of the package, a wireless communication network 40, and a wireless communication network 40. and a server device 50.
  • the wireless communication network 40 is a system that implements wireless communication, and may be, for example, equipment compliant with a 4th generation mobile communication system or equipment compliant with a 5th generation mobile communication system.
  • FIG. 1 shows one drone 10, one user terminal 30, one wireless communication network 40, and one server device 50, there may be a plurality of each.
  • the drone 10 is an unmanned flying object that flies in the air.
  • the drone 10 flies from a departure/arrival point called a base or hub to a destination with a load loaded thereon, and then delivers the load to the destination by landing at the destination.
  • the user terminal 30 is, for example, a communicable computer such as a smartphone, a tablet, or a personal computer.
  • the user terminal 30 is a smartphone, and functions as a communication terminal for a user receiving the package to access the server device 50 via the wireless communication network 40.
  • the server device 50 stores flight plan information regarding the flight date and time, flight route, and flight altitude of the drone 10, and baggage information regarding the baggage to be delivered by the drone 10, and remotely controls the drone 10 according to the flight plan information.
  • the remote control by the server device 50 is mainly carried out between the above-described departure and landing point and the destination area of the drone 10 or between a plurality of destinations of the drone 10.
  • the flight between the destination area and the landing position of the drone 10 is performed under autonomous control by the drone itself. Specifically, the drone 10 determines the landing position at the destination, lands at the landing position, performs an unloading operation to separate the cargo, and rises again to the sky above the destination. Thereafter, the drone 10 is remotely controlled by the server device 50 and flies to the departure and landing place or the next destination.
  • the section above the departure and landing place of the drone 10 and the destination depends on the remote control by the server device 50
  • the section between the above destination and the landing position of the drone 10 depends on the section above the destination and the landing position of the drone 10.
  • This is achieved through autonomous flight, but is not limited to this example.
  • the drone 10 may autonomously fly the entire area between the departure and landing points and the destination landing position without relying on remote control by the server device 50, or The flight may be performed under remote control of the server device 50 in all sections between.
  • a certain range that includes the movable range of the door provided at the destination of the drone 10 when the door opens and closes is set as a prohibited range in which the drone 10 is prohibited from entering.
  • FIG. 2 is a diagram showing an example of the hardware configuration of the drone 10.
  • the drone 10 physically includes a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a positioning device 1007, a sensor 1008, a flight drive mechanism 1009, a luggage loading mechanism 1010, and these are connected. It is configured as a computer device including a bus for In addition, in the following description, the word "apparatus" can be read as a circuit, a device, a unit, etc.
  • the hardware configuration of the drone 10 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
  • Each function in the drone 10 is performed by loading predetermined software (programs) onto hardware such as the processor 1001 and the memory 1002, so that the processor 1001 performs calculations, controls communication by the communication device 1004, and controls the memory 1002 and the memory 1002. This is realized by controlling at least one of data reading and writing in the storage 1003, and by controlling the positioning device 1007, the sensor 1008, the flight drive mechanism 1009, and the luggage loading mechanism 1010.
  • the processor 1001 for example, operates an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) that includes interfaces with peripheral devices, a control device, an arithmetic unit, registers, and the like. Further, for example, a baseband signal processing unit, a call processing unit, etc. may be realized by the processor 1001.
  • CPU central processing unit
  • a baseband signal processing unit, a call processing unit, etc. may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes in accordance with the programs.
  • programs program codes
  • software modules software modules
  • data etc.
  • the functional blocks of the drone 10 may be realized by a control program stored in the memory 1002 and operated in the processor 1001.
  • Various types of processing may be executed by one processor 1001, or may be executed simultaneously or sequentially by two or more processors 1001.
  • Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted to the drone 10 via the wireless communication network 40.
  • the memory 1002 is a computer-readable recording medium, and may be configured of at least one of ROM, EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM, etc.
  • Memory 1002 may be called a register, cache, main memory, or the like.
  • the memory 1002 can store executable programs (program codes), software modules, etc. for implementing the method according to the present embodiment.
  • the storage 1003 is a computer-readable recording medium, such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (such as a compact disk, a digital versatile disk, or a Blu-ray disk). (registered trademark disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, etc.
  • Storage 1003 may also be called an auxiliary storage device.
  • Storage 1003 stores various programs and data groups.
  • the processor 1001, memory 1002, and storage 1003 described above function as an example of the control device of the present invention.
  • the communication device 1004 is hardware (transmission/reception device) for communicating between computers via the wireless communication network 40, and is also referred to as a network device, network controller, network card, communication module, etc., for example.
  • the communication device 1004 is configured to include a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize frequency division duplexing and time division duplexing.
  • a transmitting/receiving antenna, an amplifier section, a transmitting/receiving section, a transmission path interface, etc. may be realized by the communication device 1004.
  • the transmitting and receiving unit may be physically or logically separated into a transmitting unit and a receiving unit.
  • the input device 1005 is an input device that accepts input from the outside, and includes, for example, keys, switches, microphones, and the like.
  • the output device 1006 is an output device that performs output to the outside, and includes, for example, a display device such as a liquid crystal display, a speaker, and the like. Note that the input device 1005 and the output device 1006 may have an integrated configuration.
  • the positioning device 1007 is hardware that measures the position of the drone 10, and is, for example, a GPS (Global Positioning System) device.
  • the drone 10 flies from its departure and landing place to the destination over the sky based on positioning by the positioning device 1007.
  • the sensor 1008 includes a distance sensor that functions as an altitude measuring means of the drone 10 and a means for checking the status of the landing position, a gyro sensor and a direction sensor that function as an attitude measuring means of the drone 10, an image sensor that functions as an imaging means, and the like.
  • the flight drive mechanism 1009 is a mechanism for the drone 10 to fly, and includes hardware such as a motor, a shaft, a gear, and a propeller.
  • the cargo loading mechanism 1010 is a mechanism for loading and unloading cargo on the drone 10, and includes hardware such as a motor, a winch, wires, gears, a locking mechanism, and a hanging mechanism.
  • Each device such as the processor 1001 and the memory 1002 is connected by a bus for communicating information.
  • the bus may be configured using a single bus, or may be configured using different buses for each device.
  • the drone 10 also includes hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA).
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • a part or all of each functional block may be realized by the hardware.
  • processor 1001 may be implemented using at least one of these hardwares.
  • FIG. 3 is a diagram showing the hardware configuration of the server device 50.
  • the hardware configuration of the server device 50 may be configured to include one or more of each device shown in FIG. 3, or may be configured not to include some of the devices. Further, the server device 50 may be configured by communicatively connecting a plurality of devices each having a different housing.
  • the server device 50 is physically configured as a computer device including a processor 5001, a memory 5002, a storage 5003, a communication device 5004, a bus connecting these, and the like.
  • Each function in the server device 50 is performed by loading predetermined software (programs) onto hardware such as a processor 5001 and a memory 5002, so that the processor 5001 performs calculations, controls communication by a communication device 5004, and controls communication by a communication device 5004. This is realized by controlling at least one of data reading and writing in the storage 5003.
  • Each of these devices is operated by power supplied from a power source (not shown).
  • the word "apparatus" can be read as a circuit, a device, a unit, etc.
  • the processor 5001 controls the entire computer by operating an operating system, for example.
  • the processor 5001 may be configured by a central processing unit (CPU) that includes interfaces with peripheral devices, a control device, an arithmetic unit, registers, and the like. Further, for example, a baseband signal processing unit, a call processing unit, etc. may be realized by the processor 5001.
  • CPU central processing unit
  • a baseband signal processing unit, a call processing unit, etc. may be realized by the processor 5001.
  • the processor 5001 reads programs (program codes), software modules, data, etc. from at least one of the storage 5003 and the communication device 5004 to the memory 5002, and executes various processes in accordance with the programs.
  • programs program codes
  • software modules software modules
  • data etc.
  • the functional blocks of the server device 50 may be realized by a control program stored in the memory 5002 and operated on the processor 5001.
  • Various types of processing may be executed by one processor 5001, or may be executed by two or more processors 5001 simultaneously or sequentially.
  • Processor 5001 may be implemented by one or more chips.
  • the memory 5002 is a computer-readable recording medium, and may be configured with at least one of ROM, EPROM, EEPROM, RAM, etc., for example.
  • Memory 5002 may be called a register, cache, main memory (main memory), or the like.
  • the memory 5002 can store executable programs (program codes), software modules, etc. to implement the method according to the present embodiment.
  • the storage 5003 is a computer-readable recording medium, such as an optical disk such as a CD-ROM, a hard disk drive, a flexible disk, or a magneto-optical disk (for example, a compact disk, a digital versatile disk, or a Blu-ray (registered trademark) disk). ), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, etc.
  • Storage 5003 may also be called an auxiliary storage device.
  • the storage 5003 stores at least programs and data groups for executing various processes as described below.
  • the communication device 5004 is hardware (transmission/reception device) for communicating between computers via the wireless communication network 40, and is also referred to as a network device, network controller, network card, communication module, etc., for example.
  • Each device such as the processor 5001 and the memory 5002 is connected by a bus for communicating information.
  • the bus may be configured using a single bus, or may be configured using different buses for each device.
  • the server device 50 may be configured to include hardware such as a microprocessor, digital signal processor, ASIC, PLD, FPGA, etc., and a part or all of each functional block may be realized by the hardware.
  • processor 5001 may be implemented using at least one of these hardwares.
  • the hardware configuration of the user terminal 30 includes not only the same configuration as the server device 50 but also the same input device and output device as the drone 10 as a user interface.
  • FIG. 4 is a diagram showing an example of the functional configuration of the drone 10.
  • functions such as an acquisition section 11, a movable range calculation section 12, a setting section 13, and a flight control section 14 are realized.
  • the acquisition unit 11 acquires various data from the positioning device 1007, the sensor 1008, the server device 50, etc.
  • the acquisition unit 11 acquires, for example, instructions regarding remote control of the drone 10 from the server device 50 via the wireless communication network 40. Further, the acquisition unit 11 sets a prohibited area for the drone 10 to deliver cargo at a destination, for example, and acquires data from the sensor 1008 for determining a landing position.
  • this data is image data obtained by capturing an image of a space including a door provided at the destination by an image sensor included in sensor 1008.
  • the movable range calculation unit 12 calculates the movable range when the door provided at the destination of the drone 10 opens and closes. Specifically, the movable range calculation unit 12 detects the appearance or shape of the door using analysis techniques such as pattern matching and feature amount recognition on the image data acquired by the acquisition unit 11, and calculates the detection result. The door information about the door is recognized from the , and the movable range of the door is calculated.
  • the door information here includes information regarding the position of the door, the size of the door, or the opening/closing mechanism of the door.
  • the door position is the position of the door in three-dimensional space.
  • the door size is the length of each side of the door in three-dimensional space. The positions and sizes of these doors can be specified by calculating coordinate values in a three-dimensional space.
  • the opening/closing mechanism of the door refers to whether the door is a sliding door or a swinging door, and if it is a swinging door, whether it opens inward or outward, or whether it is a swinging door, and if it is a door that swings outward, whether it swings to the right.
  • the type of mechanism whether it is left-handed or double-sided.
  • the opening/closing mechanism of such a door depends on whether the shape of the door handle is compatible with a sliding door or a swinging door, and whether the shape of the door handle is compatible with an outward opening or an inward opening. Is the position of the door handle suitable for opening to the right, left, or both sides? Whether the hinge can be observed from the outside of the building (in other words, if it can be observed, it opens outward), and whether the hinge position corresponds to opening to the right, to the left, or to opening on both sides. It can be identified by analyzing whether the
  • the setting unit 13 sets a range including the movable range calculated by the movable range calculation unit 12 as a prohibited range in which the drone 10 is prohibited from entering.
  • FIGS. 5 to 9 are diagrams illustrating the movable range of each door for each door opening/closing structure.
  • FIG. 5 is a diagram illustrating a movable range when the door is a sliding door, and is a plan view when a space including the door D and the wall W is observed from above.
  • the movable range of the door D is linear, so the drone 10 flying near the door D and its door The possibility that door D will come into contact with luggage placed in front of door D is extremely small. Therefore, in this case, a prohibited range for the drone 10 is not particularly set.
  • FIG. 6 is a diagram illustrating the movable range when the door opens inward, and is a plan view when the space including the door D and the wall W is observed from above.
  • the movable range of the door D is inside the building.
  • the possibility that door D will come into contact with luggage placed in front of door D is extremely small. Therefore, in this case, a prohibited range for the drone 10 is not particularly set.
  • FIG. 7 is a diagram illustrating the movable range when the door opens outward and to the right, and is a plan view when the space including the door D and the wall W is observed from above.
  • the inside of the movable range line A is the movable range of the door D.
  • a range including the movable range of the door is set as a prohibited range for the drone 10.
  • the area inside the no-entry line B which is separated by a certain margin M from the semicircular movable range line A, is set as the no-entry range for the drone 10.
  • the setting unit 13 sets a position within a predetermined distance (for example, several tens of centimeters) from the outer edge of the prohibited area (prohibited line B) as a storage location for the package to be delivered by the drone 10. This is because, considering the effort required by the user to retrieve the luggage, a location outside the movable range of the door and as close to the door as possible is appropriate as a place to store the luggage.
  • FIG. 8 is a diagram illustrating the movable range when the door opens outward and to the left, and is a plan view when the space including the door D and the wall W is observed from above.
  • FIG. 8 when the closed door D is opened to the position of the door D' in the direction of the arrow O, a semicircular shape with the hinge H of the door D as the center and the horizontal length of the door as the radius
  • the inside of the movable range line A is the movable range of the door D.
  • a range including the movable range of the door is set as a prohibited range for the drone 10.
  • the area inside the no-entry line B which is separated by a certain margin M from the semicircular movable range line A, is set as the no-entry range for the drone 10.
  • FIG. 9 is a diagram illustrating the movable range when the door opens outward and opens both ways, and is a plan view of the space including the door D and the wall W observed from above.
  • the horizontal length of the door is set as a radius of 2 with the position of the hinge H of each door D as the center.
  • the inside of the two semicircular movable range lines A is the movable range of the door D.
  • each door D may come into contact with the drone 10 flying near each door D or with luggage placed in front of the door D. Therefore, a range including the movable range of each door is set as a prohibited range for the drone 10.
  • the area inside the no-entry line B which is separated by a certain margin M from the semicircular movable range line A, is set as the no-entry range for the drone 10.
  • the movable range calculation unit 12 detects the appearance or shape of the door from the image data acquired by the acquisition unit 11, and recognizes door information regarding the door (particularly door information regarding the opening/closing mechanism) from the detection result. There may be cases where the recognition accuracy of door information is low. Therefore, when the recognition accuracy of the door information is lower than the threshold value or when it is unrecognizable, the movable range calculation unit 12 assumes that the target door corresponds to all the opening/closing mechanisms and calculates the movable Calculate the range. In this way, no matter what kind of door opening/closing mechanism there is, at least the possible movable range of the door can be calculated.
  • the flight control unit 14 controls the flight drive mechanism 1009 to land the drone 10 at the luggage storage location set by the setting unit 13, and after landing, the flight control unit 14 controls the flight drive mechanism 1009 to land the drone 10.
  • the cargo is controlled and separated from the drone 10, that is, so-called unloading is performed.
  • step S01 the drone 10 starts flying toward its destination from its departure and landing locations, and performs flight control according to remote control from the server device 50 (step S01). Under the control of the server device 50, the drone 10 flies over the destination address specified at the time of requesting delivery of the package.
  • the drone 10 When the drone 10 reaches the sky above the destination, it searches for a door provided at the destination by performing image recognition on image data captured by an image sensor, for example, while gradually descending.
  • the movable range calculation unit 12 analyzes the image data captured by the image sensor using an analysis method such as pattern matching or feature recognition ( Step S03).
  • the movable range calculation unit 12 detects the appearance or shape of the door included in the image data, recognizes door information regarding the door from the detection result, and calculates the movable range of the door (step S04). At this time, as described above, if the recognition accuracy of the door information is lower than the threshold value or if it is unrecognizable, the movable range calculation unit 12 assumes that the target door corresponds to all opening/closing mechanisms. to calculate the range of motion.
  • the setting unit 13 sets a range including the movable range calculated by the movable range calculating unit 12 as a prohibited range into which the drone 10 is prohibited from entering (step S05). Further, the setting unit 13 sets a position within a predetermined distance from the outer edge of the prohibited area as a storage location for the cargo to be delivered by the drone 10.
  • the flight control unit 14 controls the flight drive mechanism 1009 and the luggage loading mechanism 1010 to land the drone 10 at the set storage location (step S06), and performs unloading to separate the luggage from the drone 10 (step S07). .
  • the flight control unit 14 performs flight control so that the door and the drone 10 do not come into contact when the drone 10 is flying or landing to place the luggage.
  • the flight control unit 14 controls the drone 10 so that at least part of the drone 10 or the cargo does not enter the prohibited area during the period when the drone 10 is flying or landing to place the cargo. Control.
  • the drone 10 moves to a process for returning to the departure and landing place (or moving to the next destination) (step S08).
  • the invention is not limited to the embodiments described above.
  • the embodiment described above may be modified as follows. Furthermore, two or more of the following modifications may be implemented in combination.
  • the movable range calculation unit 12 recognizes door information regarding the door from the result of detecting the appearance or shape of the door based on image data captured by the image sensor, and calculates the movable range of the door.
  • the data for detecting the appearance or shape of the door is not limited to image data, but can be data obtained by various detection techniques such as, for example, Lidar (Light Detection And Ranging).
  • the movable range calculation unit 12 recognized the door information regarding the door from the result of detecting the appearance or shape of the door based on the image data captured by the image sensor.
  • the method of specifying door information is not limited to the example of the above embodiment.
  • a wireless device may be provided at a predetermined position of a door provided at the destination, and the wireless device may transmit door information regarding the door, and the drone 10 may receive and acquire the door information. .
  • the position of the door may be estimated from the received electric field strength when the drone 10 receives the radio signal.
  • the movable range calculation unit 12 may calculate the movable range of the door based on the door information regarding the door that is provided wirelessly at the destination. In this way, it is possible to obtain more accurate door information (particularly door information regarding the opening/closing mechanism) than when obtaining door information from the appearance or shape of the door.
  • FIG. 12 is a diagram illustrating door information stored by the server device 50.
  • the server device 50 reads the door information corresponding to the destination of the drone 10 or the ID of the door of the destination and transmits it to the drone 10 via the wireless communication network 40, so that the drone 10 acquires the door information and controls the door. Calculate the range of motion.
  • the movable range calculation unit 12 may calculate the movable range of the door based on the information about the door that is stored in association with the destination or the identification information of the door. In this way, it is possible to obtain more accurate door information (particularly door information regarding the opening/closing mechanism) than when obtaining door information from the appearance or shape of the door.
  • the control of the drone 10 is realized by so-called edge computing (control by the drone), cloud computing (control by the server device), or the cooperation of both (control by the drone and the server device), as described in the embodiment. Good too. Therefore, the control device of the present invention may be included in the server device 50 disclosed in the embodiment.
  • the flying object in the present invention is not limited to an unmanned flying object called a drone, but may have any structure or form as long as it is a flying object. Further, although the drone 10 lands at the destination and unloads the cargo, the cargo may be delivered to the destination by a method other than landing (for example, dropping or hanging the cargo).
  • each functional block may be realized by one physically and/or logically coupled device, or may be realized by directly and/or indirectly two or more physically and/or logically separated devices. (for example, wired and/or wireless) and may be realized by these multiple devices.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 5G
  • FRA Full Radio Access
  • W-CDMA Wideband Code Division Multiple Access
  • GSM Global System for Mobile Communications
  • CDMA2000 Code Division Multiple Access 2000
  • UMB Universal Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 UWB (Ultra-WideBand)
  • Bluetooth registered trademark
  • the information or parameters described in this specification may be expressed as absolute values, relative values from a predetermined value, or other corresponding information.
  • determining may encompass a wide variety of operations.
  • “Judgment” and “decision” are, for example, judging, calculating, computing, processing, deriving, investigating, looking up (e.g., table , searching in a database or another data structure), and regarding confirmation (ascertaining) as a “judgment” or “decision.”
  • judgment and “decision” refer to receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, and access.
  • accessing may include regarding it as a “judgment” or “decision.”
  • judgment and “decision” mean that things such as resolving, selecting, choosing, establishing, and comparing are considered to have been “determined” or “determined.” may be included.
  • determination and “determination” may include considering that some action has been “determined” or “determined.”
  • the present invention may be provided as an information processing method or as a program.
  • Such programs may be provided in the form recorded on a recording medium such as an optical disk, or may be provided in the form of being downloaded onto a computer via a network such as the Internet, and being installed and made available for use. It is possible.
  • Software, instructions, etc. may be sent and received via a transmission medium.
  • a transmission medium For example, if the software uses wired technologies such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and/or wireless technologies such as infrared, radio and microwave to When transmitted from a remote source, these wired and/or wireless technologies are included within the definition of transmission medium.
  • wired technologies such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and/or wireless technologies such as infrared, radio and microwave
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
  • any reference to elements using the designations "first,” “second,” etc. does not generally limit the amount or order of those elements. These designations may be used herein as a convenient way of distinguishing between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed therein or that the first element must precede the second element in any way.
  • Drone control system 10: Drone, 11: Acquisition unit, 12: Mobility range calculation unit, 13: Setting unit, 14: Flight control unit, 30: User terminal, 40: Wireless communication network, 50: Server device, 1001 : Processor, 1002: Memory, 1003: Storage, 1004: Communication device, 1005: Input device, 1006: Output device, 1007: Positioning device, 1008: Sensor, 1009: Flight drive mechanism, 1010: Baggage loading mechanism, 50: Server Device, 5001: Processor, 5002: Memory, 5003: Storage, 5004: Communication device, D, D': Door, H: Hinge, W: Wall, O: Direction, A: Movable range line, B: No entry line, M: Margin.

Abstract

A movable range calculation unit (12) calculates a movable range of a opening/closing door, which is provided to a destination of a drone (10). Specifically, the movable range calculation unit (12) detects the appearance or the shape of the door by using an analysis method such as pattern matching or feature amount recognition for image data acquired by an acquisition unit (11), recognizes door information regarding the door from the detection result, and calculates the movable range of the door. A setting unit (13) sets a range including the movable range calculated by the movable range calculation unit (12) as an entry prohibition region where the drone (10) is prohibited from entering.

Description

制御装置Control device
 本発明は、飛行体によって目的地に荷物を配送するための技術に関する。 The present invention relates to a technology for delivering cargo to a destination by means of a flying vehicle.
 ドローンと呼ばれる無人飛行体の普及に伴い、ドローンを荷物の配達に利用する仕組みが種々提案されている。例えば特許文献1には、ドローンの配達目的地の着陸ゾーンに着陸パッドを設け、視覚支援装置、光学支援装置又は無線支援装置によりドローンをその着陸パッドに案内する仕組みが記載されている。 With the spread of unmanned flying vehicles called drones, various mechanisms have been proposed for using drones to deliver packages. For example, Patent Document 1 describes a mechanism in which a landing pad is provided in a landing zone of a delivery destination of a drone, and the drone is guided to the landing pad using a visual support device, an optical support device, or a radio support device.
特許第6622291号公報Patent No. 6622291
 特許文献1に記載の仕組みでは、荷物の配送先となる目的地の全てに、着陸パッドという専用設備を設けなければならないという問題がある。 The system described in Patent Document 1 has a problem in that dedicated equipment called landing pads must be provided at all destinations to which packages are delivered.
 そこで、例えば玄関や出入り口の前の空きスペースを認識してそのスペースに荷物を配送できるようにすれば便利である。 Therefore, it would be convenient if, for example, the empty space in front of the entrance or exit could be recognized and packages could be delivered to that space.
 しかしながら、これらのスペースに荷物を置く場合には、玄関や出入り口に設けられたドアが開かれたときにその荷物と接触する危険性がある。 However, when placing luggage in these spaces, there is a risk that the luggage may come into contact with the luggage when the door provided at the entrance or exit is opened.
 本発明は、上述した背景に鑑みてなされたものであり、飛行体又はその飛行体によって配送される荷物が、目的地に設けられたドアと接触しないようにすることを目的とする。 The present invention was made in view of the above-mentioned background, and an object of the present invention is to prevent a flying vehicle or baggage delivered by the flying vehicle from coming into contact with a door provided at a destination.
 本発明は、飛行体の目的地に設けられたドアが開閉するときの可動範囲を算出する可動範囲算出部と、算出された前記可動範囲を含む範囲を、前記飛行体の進入を禁止する進入禁止範囲として設定する設定部とを備えることを特徴とする制御装置を提供する。 The present invention includes a movable range calculation unit that calculates a movable range when a door provided at a destination of an aircraft opens and closes, and a range that includes the calculated movable range to prohibit entry of the aircraft. A control device is provided, comprising: a setting section for setting a prohibited range.
 本発明によれば、飛行体又はその飛行体によって配送される荷物が、目的地に設けられたドアと接触しないようにすることが可能となる。 According to the present invention, it is possible to prevent a flying vehicle or baggage delivered by the flying vehicle from coming into contact with a door provided at the destination.
本発明の一実施形態に係るドローン制御システム1の構成の一例を示すブロック図である。1 is a block diagram showing an example of the configuration of a drone control system 1 according to an embodiment of the present invention. 同実施形態に係るドローン10のハードウェア構成の一例を示すブロック図である。It is a block diagram showing an example of the hardware configuration of drone 10 concerning the same embodiment. 同実施形態に係るサーバ装置50のハードウェア構成の一例を示すブロック図である。It is a block diagram showing an example of the hardware configuration of server device 50 concerning the same embodiment. 同実施形態に係るドローン10の機能構成の一例を示すブロック図である。It is a block diagram showing an example of the functional composition of drone 10 concerning the same embodiment. ドアが引き戸の場合の可動範囲を例示する図である。It is a figure which illustrates the movable range when a door is a sliding door. ドアが内開きの場合の可動範囲を例示する図である。It is a figure which illustrates the movable range when a door opens inward. ドアが外開きで右開きの場合の可動範囲を例示する図である。It is a figure which illustrates the movable range when a door opens outward and opens to the right. ドアが外開きで左開きの場合の可動範囲を例示する図である。It is a figure which illustrates the movable range when a door opens outward and opens to the left. ドアが外開きで両開きの場合の可動範囲を例示する図である。FIG. 3 is a diagram illustrating a movable range when the door opens outward and opens both ways. ドアの可動範囲とドローンの進入禁止範囲との関係を例示する図である。FIG. 3 is a diagram illustrating a relationship between a door movable range and a drone-prohibited range. 同実施形態に係るドローン10による処理の手順を例示するフローチャートである。It is a flowchart illustrating the procedure of processing by the drone 10 according to the embodiment. 変形例においてサーバ装置50が記憶するドア情報を例示する図である。It is a figure which illustrates the door information which the server apparatus 50 memorize|stores in a modification.
[構成]
 図1は、本発明の一実施形態に係るドローン制御システム1の構成の一例を示すブロック図である。ドローン制御システム1は、空中を飛行して荷物を目的地に配送するドローン10と、荷物の宛名となるユーザによって利用されるユーザ端末30と、無線通信網40と、無線通信網40に接続されたサーバ装置50とを備える。無線通信網40は、無線通信を実現するシステムであり、例えば第4世代移動通信システムに準拠する設備であってもよいし、第5世代移動通信システムに準拠する設備であってもよい。なお、図1においては、ドローン10、ユーザ端末30、無線通信網40、及びサーバ装置50を1つずつ図示しているが、これらはそれぞれ複数あってもよい。
[composition]
FIG. 1 is a block diagram showing an example of the configuration of a drone control system 1 according to an embodiment of the present invention. The drone control system 1 is connected to a drone 10 that flies in the air and delivers a package to a destination, a user terminal 30 used by a user who is the destination of the package, a wireless communication network 40, and a wireless communication network 40. and a server device 50. The wireless communication network 40 is a system that implements wireless communication, and may be, for example, equipment compliant with a 4th generation mobile communication system or equipment compliant with a 5th generation mobile communication system. Although FIG. 1 shows one drone 10, one user terminal 30, one wireless communication network 40, and one server device 50, there may be a plurality of each.
 ドローン10は、空中を飛行する無人の飛行体である。ドローン10は、基地や拠点などと呼ばれる発着地から荷物を搭載した状態で目的地まで飛行し、その目的地に着陸することにより、その目的地に荷物を配送する。 The drone 10 is an unmanned flying object that flies in the air. The drone 10 flies from a departure/arrival point called a base or hub to a destination with a load loaded thereon, and then delivers the load to the destination by landing at the destination.
 ユーザ端末30は、例えばスマートフォンやタブレット、又はパーソナルコンピュータ等の通信可能なコンピュータである。本実施形態において、ユーザ端末30はスマートフォンであり、荷物を受け取るユーザが無線通信網40経由でサーバ装置50にアクセスするための通信端末として機能する。 The user terminal 30 is, for example, a communicable computer such as a smartphone, a tablet, or a personal computer. In this embodiment, the user terminal 30 is a smartphone, and functions as a communication terminal for a user receiving the package to access the server device 50 via the wireless communication network 40.
 サーバ装置50は、ドローン10の飛行日時、飛行経路及び飛行高度に関する飛行計画情報や、ドローン10が配送する荷物に関する荷物情報等を記憶しており、飛行計画情報に従ってドローン10を遠隔操縦する。サーバ装置50による遠隔操縦は、主に、前述した発着地とドローン10の目的地上空との間、又は、ドローン10の複数の目的地どうしの間の区間である。目的地上空とドローン10の着陸位置との間の区間は、ドローン自身による自律的な制御下で飛行が行われる。具体的には、ドローン10は、目的地における着陸位置を判断してその着陸位置に着陸して荷物を切り離す荷下ろし動作を行い、再び目的地上空まで上昇する。この後、ドローン10は、サーバ装置50による遠隔操縦により、発着地又は次の目的地へと飛行する。 The server device 50 stores flight plan information regarding the flight date and time, flight route, and flight altitude of the drone 10, and baggage information regarding the baggage to be delivered by the drone 10, and remotely controls the drone 10 according to the flight plan information. The remote control by the server device 50 is mainly carried out between the above-described departure and landing point and the destination area of the drone 10 or between a plurality of destinations of the drone 10. The flight between the destination area and the landing position of the drone 10 is performed under autonomous control by the drone itself. Specifically, the drone 10 determines the landing position at the destination, lands at the landing position, performs an unloading operation to separate the cargo, and rises again to the sky above the destination. Thereafter, the drone 10 is remotely controlled by the server device 50 and flies to the departure and landing place or the next destination.
 なお、本実施形態では、上述したように、ドローン10の発着地及び目的地上空の区間はサーバ装置50による遠隔操縦に依存し、目的地上空とドローン10の着陸位置との間の区間はドローン自身による自律的な飛行で実現するが、この例に限らない。例えば、ドローン10は、サーバ装置50による遠隔操縦に頼らずに、発着地及び目的地の着陸位置の間の全ての区間を自律的に飛行してもよいし、発着地及び目的地の着陸位置の間の全ての区間においてサーバ装置50の遠隔操縦に従って飛行してもよい。 In addition, in this embodiment, as mentioned above, the section above the departure and landing place of the drone 10 and the destination depends on the remote control by the server device 50, and the section between the above destination and the landing position of the drone 10 depends on the section above the destination and the landing position of the drone 10. This is achieved through autonomous flight, but is not limited to this example. For example, the drone 10 may autonomously fly the entire area between the departure and landing points and the destination landing position without relying on remote control by the server device 50, or The flight may be performed under remote control of the server device 50 in all sections between.
 ところで、ユーザが目的地に配送された荷物を回収するときの手間を考えると、目的地の玄関や出入り口に設けられたドアに極力近い位置に荷物を配送することが望ましい。しかしながら、ドアに近接した位置に荷物を配送するようにした場合、そのドアが開かれたときに、配送のために飛行中のドローン10や配送された荷物にドアが接触する可能性がある。 By the way, considering the time and effort required for the user to retrieve the package delivered to the destination, it is desirable to deliver the package as close as possible to the door provided at the entrance or exit of the destination. However, if the package is delivered to a position close to the door, when the door is opened, there is a possibility that the door will come into contact with the drone 10 flying for delivery or the delivered package.
 そこで、本実施形態では、ドローン10の目的地に設けられたドアが開閉するときの、そのドアの可動範囲を含む或る範囲を、ドローン10の進入を禁止する進入禁止範囲として設定する。そして、その進入禁止範囲以外の位置であって且つドアに比較的近い位置を荷物の置き場所とすることで、上記のようなドアとドローン10又は荷物との接触を回避している。 Therefore, in the present embodiment, a certain range that includes the movable range of the door provided at the destination of the drone 10 when the door opens and closes is set as a prohibited range in which the drone 10 is prohibited from entering. By placing the luggage at a position outside the prohibited area and relatively close to the door, contact between the door and the drone 10 or the luggage as described above is avoided.
 図2は、ドローン10のハードウェア構成の一例を示す図である。ドローン10は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、測位装置1007、センサ1008、飛行駆動機構1009、荷物搭載機構1010及びこれらを接続するバスなどを含むコンピュータ装置として構成されている。なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。ドローン10のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 FIG. 2 is a diagram showing an example of the hardware configuration of the drone 10. The drone 10 physically includes a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a positioning device 1007, a sensor 1008, a flight drive mechanism 1009, a luggage loading mechanism 1010, and these are connected. It is configured as a computer device including a bus for In addition, in the following description, the word "apparatus" can be read as a circuit, a device, a unit, etc. The hardware configuration of the drone 10 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
 ドローン10における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したり、測位装置1007、センサ1008、飛行駆動機構1009及び荷物搭載機構1010を制御することによって実現される。 Each function in the drone 10 is performed by loading predetermined software (programs) onto hardware such as the processor 1001 and the memory 1002, so that the processor 1001 performs calculations, controls communication by the communication device 1004, and controls the memory 1002 and the memory 1002. This is realized by controlling at least one of data reading and writing in the storage 1003, and by controlling the positioning device 1007, the sensor 1008, the flight drive mechanism 1009, and the luggage loading mechanism 1010.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。また、例えばベースバンド信号処理部や呼処理部などがプロセッサ1001によって実現されてもよい。 The processor 1001, for example, operates an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) that includes interfaces with peripheral devices, a control device, an arithmetic unit, registers, and the like. Further, for example, a baseband signal processing unit, a call processing unit, etc. may be realized by the processor 1001.
 プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、後述する動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。ドローン10の機能ブロックは、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよい。各種の処理は、1つのプロセッサ1001によって実行されてもよいが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、無線通信網40経由でドローン10に送信されてもよい。 The processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes in accordance with the programs. As the program, a program that causes a computer to execute at least a part of the operations described below is used. The functional blocks of the drone 10 may be realized by a control program stored in the memory 1002 and operated in the processor 1001. Various types of processing may be executed by one processor 1001, or may be executed simultaneously or sequentially by two or more processors 1001. Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted to the drone 10 via the wireless communication network 40.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAMなどの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本実施形態に係る方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and may be configured of at least one of ROM, EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM, etc. Memory 1002 may be called a register, cache, main memory, or the like. The memory 1002 can store executable programs (program codes), software modules, etc. for implementing the method according to the present embodiment.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。ストレージ1003は、各種のプログラムやデータ群を記憶する。 The storage 1003 is a computer-readable recording medium, such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (such as a compact disk, a digital versatile disk, or a Blu-ray disk). (registered trademark disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, etc. Storage 1003 may also be called an auxiliary storage device. Storage 1003 stores various programs and data groups.
 以上のプロセッサ1001、メモリ1002、ストレージ1003は本発明の制御装置の一例として機能する。 The processor 1001, memory 1002, and storage 1003 described above function as an example of the control device of the present invention.
 通信装置1004は、無線通信網40を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、周波数分割複信及び時間分割複信を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されている。送受信アンテナ、アンプ部、送受信部、伝送路インターフェースなどは、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission/reception device) for communicating between computers via the wireless communication network 40, and is also referred to as a network device, network controller, network card, communication module, etc., for example. The communication device 1004 is configured to include a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize frequency division duplexing and time division duplexing. A transmitting/receiving antenna, an amplifier section, a transmitting/receiving section, a transmission path interface, etc. may be realized by the communication device 1004. The transmitting and receiving unit may be physically or logically separated into a transmitting unit and a receiving unit.
 入力装置1005は、外部からの入力を受け付ける入力デバイスであり、例えばキーやスイッチ、マイクなどを含む。出力装置1006は、外部への出力を実施する出力デバイスであり、例えば液晶ディスプレイのような表示装置や、スピーカなどを含む。なお、入力装置1005及び出力装置1006は、一体となった構成であってもよい。 The input device 1005 is an input device that accepts input from the outside, and includes, for example, keys, switches, microphones, and the like. The output device 1006 is an output device that performs output to the outside, and includes, for example, a display device such as a liquid crystal display, a speaker, and the like. Note that the input device 1005 and the output device 1006 may have an integrated configuration.
 測位装置1007は、ドローン10の位置を測定するハードウェアであり、例えばGPS(Global Positioning System)デバイスである。ドローン10は測位装置1007による測位に基づいて、発着地から目的地の上空まで飛行する。 The positioning device 1007 is hardware that measures the position of the drone 10, and is, for example, a GPS (Global Positioning System) device. The drone 10 flies from its departure and landing place to the destination over the sky based on positioning by the positioning device 1007.
 センサ1008は、ドローン10の高度測定手段及び着陸位置の状況確認手段として機能する測距センサ、ドローン10の姿勢測定手段として機能するジャイロセンサ及び方位センサ、撮像手段として機能するイメージセンサ等を備える。 The sensor 1008 includes a distance sensor that functions as an altitude measuring means of the drone 10 and a means for checking the status of the landing position, a gyro sensor and a direction sensor that function as an attitude measuring means of the drone 10, an image sensor that functions as an imaging means, and the like.
 飛行駆動機構1009は、ドローン10が飛行を行うための機構であり、例えばモータ、シャフト、ギア及びプロペラ等のハードウェアを備える。 The flight drive mechanism 1009 is a mechanism for the drone 10 to fly, and includes hardware such as a motor, a shaft, a gear, and a propeller.
 荷物搭載機構1010は、ドローン10が荷物を搭載及び切り離すための機構であり、例えばモータ、ウィンチ、ワイヤ、ギア、ロック機構及びハンギング機構等のハードウェアを備える。 The cargo loading mechanism 1010 is a mechanism for loading and unloading cargo on the drone 10, and includes hardware such as a motor, a winch, wires, gears, a locking mechanism, and a hanging mechanism.
 プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバスによって接続される。バスは、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。また、ドローン10は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Each device such as the processor 1001 and the memory 1002 is connected by a bus for communicating information. The bus may be configured using a single bus, or may be configured using different buses for each device. The drone 10 also includes hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA). A part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented using at least one of these hardwares.
 図3は、サーバ装置50のハードウェア構成を示す図である。サーバ装置50のハードウェア構成は、図3に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。また、それぞれ筐体が異なる複数の装置が通信接続されて、サーバ装置50を構成してもよい。 FIG. 3 is a diagram showing the hardware configuration of the server device 50. The hardware configuration of the server device 50 may be configured to include one or more of each device shown in FIG. 3, or may be configured not to include some of the devices. Further, the server device 50 may be configured by communicatively connecting a plurality of devices each having a different housing.
 サーバ装置50は、物理的には、プロセッサ5001、メモリ5002、ストレージ5003、通信装置5004、及びこれらを接続するバスなどを含むコンピュータ装置として構成されている。サーバ装置50における各機能は、プロセッサ5001、メモリ5002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ5001が演算を行い、通信装置5004による通信を制御したり、メモリ5002及びストレージ5003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。これらの各装置は図示せぬ電源から供給される電力によって動作する。なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。 The server device 50 is physically configured as a computer device including a processor 5001, a memory 5002, a storage 5003, a communication device 5004, a bus connecting these, and the like. Each function in the server device 50 is performed by loading predetermined software (programs) onto hardware such as a processor 5001 and a memory 5002, so that the processor 5001 performs calculations, controls communication by a communication device 5004, and controls communication by a communication device 5004. This is realized by controlling at least one of data reading and writing in the storage 5003. Each of these devices is operated by power supplied from a power source (not shown). In addition, in the following description, the word "apparatus" can be read as a circuit, a device, a unit, etc.
 プロセッサ5001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ5001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。また、例えばベースバンド信号処理部や呼処理部などがプロセッサ5001によって実現されてもよい。 The processor 5001 controls the entire computer by operating an operating system, for example. The processor 5001 may be configured by a central processing unit (CPU) that includes interfaces with peripheral devices, a control device, an arithmetic unit, registers, and the like. Further, for example, a baseband signal processing unit, a call processing unit, etc. may be realized by the processor 5001.
 プロセッサ5001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ5003及び通信装置5004の少なくとも一方からメモリ5002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、後述する動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。サーバ装置50の機能ブロックは、メモリ5002に格納され、プロセッサ5001において動作する制御プログラムによって実現されてもよい。各種の処理は、1つのプロセッサ5001によって実行されてもよいが、2以上のプロセッサ5001により同時又は逐次に実行されてもよい。プロセッサ5001は、1以上のチップによって実装されてもよい。 The processor 5001 reads programs (program codes), software modules, data, etc. from at least one of the storage 5003 and the communication device 5004 to the memory 5002, and executes various processes in accordance with the programs. As the program, a program that causes a computer to execute at least a part of the operations described below is used. The functional blocks of the server device 50 may be realized by a control program stored in the memory 5002 and operated on the processor 5001. Various types of processing may be executed by one processor 5001, or may be executed by two or more processors 5001 simultaneously or sequentially. Processor 5001 may be implemented by one or more chips.
 メモリ5002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM、EPROM、EEPROM、RAMなどの少なくとも1つによって構成されてもよい。メモリ5002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ5002は、本実施形態に係る方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 5002 is a computer-readable recording medium, and may be configured with at least one of ROM, EPROM, EEPROM, RAM, etc., for example. Memory 5002 may be called a register, cache, main memory (main memory), or the like. The memory 5002 can store executable programs (program codes), software modules, etc. to implement the method according to the present embodiment.
 ストレージ5003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROMなどの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ5003は、補助記憶装置と呼ばれてもよい。ストレージ5003は、少なくとも、後述するような各種処理を実行するためのプログラム及びデータ群を記憶している。 The storage 5003 is a computer-readable recording medium, such as an optical disk such as a CD-ROM, a hard disk drive, a flexible disk, or a magneto-optical disk (for example, a compact disk, a digital versatile disk, or a Blu-ray (registered trademark) disk). ), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, etc. Storage 5003 may also be called an auxiliary storage device. The storage 5003 stores at least programs and data groups for executing various processes as described below.
 通信装置5004は、無線通信網40を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。 The communication device 5004 is hardware (transmission/reception device) for communicating between computers via the wireless communication network 40, and is also referred to as a network device, network controller, network card, communication module, etc., for example.
 プロセッサ5001、メモリ5002などの各装置は、情報を通信するためのバスによって接続される。バスは、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Each device such as the processor 5001 and the memory 5002 is connected by a bus for communicating information. The bus may be configured using a single bus, or may be configured using different buses for each device.
 サーバ装置50は、マイクロプロセッサ、デジタル信号プロセッサ、ASIC、PLD、FPGAなどのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ5001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 The server device 50 may be configured to include hardware such as a microprocessor, digital signal processor, ASIC, PLD, FPGA, etc., and a part or all of each functional block may be realized by the hardware. For example, processor 5001 may be implemented using at least one of these hardwares.
 なお、ユーザ端末30のハードウェア構成は、サーバ装置50と同様の構成のほか、ユーザインタフェースとして、ドローン10と同様の入力装置及び出力装置を含む。 Note that the hardware configuration of the user terminal 30 includes not only the same configuration as the server device 50 but also the same input device and output device as the drone 10 as a user interface.
 図4は、ドローン10の機能構成の一例を示す図である。ドローン10においては、取得部11、可動範囲算出部12、設定部13及び飛行制御部14という機能が実現される。 FIG. 4 is a diagram showing an example of the functional configuration of the drone 10. In the drone 10, functions such as an acquisition section 11, a movable range calculation section 12, a setting section 13, and a flight control section 14 are realized.
 取得部11は、測位装置1007、センサ1008又はサーバ装置50等から各種のデータを取得する。取得部11は、例えばドローン10の遠隔操縦に関する指示をサーバ装置50から無線通信網40経由で取得する。また、取得部11は、例えばドローン10が目的地において荷物を配送するときの進入禁止範囲を設定し、さらに着陸位置を決定するためのデータをセンサ1008から取得する。具体的には、このデータは、センサ1008に含まれるイメージセンサによって、目的地に設けられたドアを含む空間が撮像された画像データである。 The acquisition unit 11 acquires various data from the positioning device 1007, the sensor 1008, the server device 50, etc. The acquisition unit 11 acquires, for example, instructions regarding remote control of the drone 10 from the server device 50 via the wireless communication network 40. Further, the acquisition unit 11 sets a prohibited area for the drone 10 to deliver cargo at a destination, for example, and acquires data from the sensor 1008 for determining a landing position. Specifically, this data is image data obtained by capturing an image of a space including a door provided at the destination by an image sensor included in sensor 1008.
 可動範囲算出部12は、ドローン10の目的地に設けられたドアが開閉するときの可動範囲を算出する。具体的には、可動範囲算出部12は、取得部11によって取得された画像データに対して例えばパターンマッチングや特徴量認識等の解析手法を用いてドアの外観又は形状を検出し、その検出結果からドアに関するドア情報を認識して、そのドアの可動範囲を算出する。 The movable range calculation unit 12 calculates the movable range when the door provided at the destination of the drone 10 opens and closes. Specifically, the movable range calculation unit 12 detects the appearance or shape of the door using analysis techniques such as pattern matching and feature amount recognition on the image data acquired by the acquisition unit 11, and calculates the detection result. The door information about the door is recognized from the , and the movable range of the door is calculated.
 ここでいうドア情報は、ドアの位置、ドアのサイズ、又は、ドアの開閉機構に関する情報を含む。ドアの位置とは、3次元空間におけるドアの位置である。ドアのサイズとは、3次元空間におけるドアの各辺の長さである。これらドアの位置及びドアのサイズは、3次元空間の座標値を計算することで特定可能である。 The door information here includes information regarding the position of the door, the size of the door, or the opening/closing mechanism of the door. The door position is the position of the door in three-dimensional space. The door size is the length of each side of the door in three-dimensional space. The positions and sizes of these doors can be specified by calculating coordinate values in a three-dimensional space.
 ドアの開閉機構とは、ドアが引き戸であるか開き戸であるか、開き戸の場合に内開きであるか外開きであるか又は自在戸であるか、外開きである場合に右開きであるか左開きであるか又は両開きであるか、という機構の種別である。このようなドアの開閉機構は、ドアの取っ手の形状が引き戸に対応したものであるか開き戸に対応したものであるか、ドアの取っ手の形状が外開きに対応したものであるか内開きに対応したものであるか、ドアの取っ手の位置が右開きに対応したものであるか左開きに対応したものであるか又は両開きに対応したものであるか、ドアの一辺に沿って設けられた蝶番が建物の外部から観察できるか否か(つまり観察できれば外開き)、また、その蝶番の位置が右開きに対応したものであるか左開きに対応したものであるか又は両開きに対応したものであるか、といった解析を行うことで特定可能である。 The opening/closing mechanism of the door refers to whether the door is a sliding door or a swinging door, and if it is a swinging door, whether it opens inward or outward, or whether it is a swinging door, and if it is a door that swings outward, whether it swings to the right. The type of mechanism, whether it is left-handed or double-sided. The opening/closing mechanism of such a door depends on whether the shape of the door handle is compatible with a sliding door or a swinging door, and whether the shape of the door handle is compatible with an outward opening or an inward opening. Is the position of the door handle suitable for opening to the right, left, or both sides? Whether the hinge can be observed from the outside of the building (in other words, if it can be observed, it opens outward), and whether the hinge position corresponds to opening to the right, to the left, or to opening on both sides. It can be identified by analyzing whether the
 設定部13は、可動範囲算出部12により算出された可動範囲を含む範囲をドローン10の進入を禁止する進入禁止範囲として設定する。 The setting unit 13 sets a range including the movable range calculated by the movable range calculation unit 12 as a prohibited range in which the drone 10 is prohibited from entering.
 ここで、図5~9は、ドアの開閉構造ごとにどのドアの可動範囲を例示する図である。図5は、ドアが引き戸の場合の可動範囲を例示する図であり、ドアD及び壁Wを含む空間を上方から観察したときの平面図である。図5において、閉まっていたドアDが矢印O方向にドアD’の位置まで開かれたとしても、ドアDの可動範囲は直線状であるから、ドアDの近辺を飛行するドローン10やそのドアDの前に置かれた荷物とドアDとが接触する可能性は極めて小さい。従って、この場合は、ドローン10の進入禁止範囲は特に設定されない。 Here, FIGS. 5 to 9 are diagrams illustrating the movable range of each door for each door opening/closing structure. FIG. 5 is a diagram illustrating a movable range when the door is a sliding door, and is a plan view when a space including the door D and the wall W is observed from above. In FIG. 5, even if the closed door D is opened to the position of the door D' in the direction of the arrow O, the movable range of the door D is linear, so the drone 10 flying near the door D and its door The possibility that door D will come into contact with luggage placed in front of door D is extremely small. Therefore, in this case, a prohibited range for the drone 10 is not particularly set.
 図6は、ドアが内開きの場合の可動範囲を例示する図であり、ドアD及び壁Wを含む空間を上方から観察したときの平面図である。図6において、閉まっていたドアDが矢印O方向にドアD’の位置まで開かれたとしても、ドアDの可動範囲は建物の内側であるから、ドアDの近辺を飛行するドローン10やそのドアDの前に置かれた荷物とドアDとが接触する可能性は極めて小さい。従って、この場合は、ドローン10の進入禁止範囲は特に設定されない。 FIG. 6 is a diagram illustrating the movable range when the door opens inward, and is a plan view when the space including the door D and the wall W is observed from above. In FIG. 6, even if the closed door D is opened to the position of the door D' in the direction of the arrow O, the movable range of the door D is inside the building. The possibility that door D will come into contact with luggage placed in front of door D is extremely small. Therefore, in this case, a prohibited range for the drone 10 is not particularly set.
 図7は、ドアが外開きで右開きの場合の可動範囲を例示する図であり、ドアD及び壁Wを含む空間を上方から観察したときの平面図である。図7において、閉まっていたドアDが矢印O方向にドアD’の位置まで開かれた場合、ドアDの蝶番Hの位置を中心としてドアの水平方向の長さを半径とした半円状の可動範囲ラインAの内側がドアDの可動範囲となる。この可動範囲においては、ドアDの近辺を飛行するドローン10やそのドアDの前に置かれた荷物とドアDとが接触する可能性がある。そこで、ドアの可動範囲を含む範囲が、ドローン10の進入禁止範囲として設定される。 FIG. 7 is a diagram illustrating the movable range when the door opens outward and to the right, and is a plan view when the space including the door D and the wall W is observed from above. In Fig. 7, when the closed door D is opened in the direction of the arrow O to the position of the door D', a semicircular shape with the hinge H of the door D as the center and the horizontal length of the door as the radius The inside of the movable range line A is the movable range of the door D. In this movable range, there is a possibility that the door D will come into contact with the drone 10 flying near the door D or the luggage placed in front of the door D. Therefore, a range including the movable range of the door is set as a prohibited range for the drone 10.
 このとき、図10に示すように、半円状の可動範囲ラインAに対して或るマージンMだけ離れた進入禁止ラインBの内側がドローン10の進入禁止範囲として設定される。例えばドアの可動範囲のすぐ外側にドローン10が飛行したり荷物を置いたりした場合には、ドアを開いて建物の外側に出てきたユーザが勢いで、ドローン10や荷物と接触する可能性があるため、このようなマージンMを設けることが望ましい。設定部13は、進入禁止範囲の外縁(進入禁止ラインB)から所定距離以内(例えば数十センチ等)の位置を、ドローン10が配送する荷物の置き場所として設定する。ユーザが荷物を回収する手間を考慮すると、ドアの可動範囲外で、且つ、ドアからできるだけ近い位置が荷物の置き場所としては適切だからである。 At this time, as shown in FIG. 10, the area inside the no-entry line B, which is separated by a certain margin M from the semicircular movable range line A, is set as the no-entry range for the drone 10. For example, if the drone 10 flies or leaves luggage just outside the movable range of the door, there is a possibility that the user who opens the door and comes out of the building will come into contact with the drone 10 or the luggage. Therefore, it is desirable to provide such a margin M. The setting unit 13 sets a position within a predetermined distance (for example, several tens of centimeters) from the outer edge of the prohibited area (prohibited line B) as a storage location for the package to be delivered by the drone 10. This is because, considering the effort required by the user to retrieve the luggage, a location outside the movable range of the door and as close to the door as possible is appropriate as a place to store the luggage.
 図8は、ドアが外開きで左開きの場合の可動範囲を例示する図であり、ドアD及び壁Wを含む空間を上方から観察したときの平面図である。図8において、閉まっていたドアDが矢印O方向にドアD’の位置まで開かれた場合、ドアDの蝶番Hの位置を中心としてドアの水平方向の長さを半径とした半円状の可動範囲ラインAの内側がドアDの可動範囲となる。この可動範囲においては、ドアDの近辺を飛行するドローン10やそのドアDの前に置かれた荷物とドアDとが接触する可能性がある。そこで、ドアの可動範囲を含む範囲が、ドローン10の進入禁止範囲として設定される。このときも、図10に示すように、半円状の可動範囲ラインAに対して或るマージンMだけ離れた進入禁止ラインBの内側がドローン10の進入禁止範囲として設定される。 FIG. 8 is a diagram illustrating the movable range when the door opens outward and to the left, and is a plan view when the space including the door D and the wall W is observed from above. In FIG. 8, when the closed door D is opened to the position of the door D' in the direction of the arrow O, a semicircular shape with the hinge H of the door D as the center and the horizontal length of the door as the radius The inside of the movable range line A is the movable range of the door D. In this movable range, there is a possibility that the door D will come into contact with the drone 10 flying near the door D or the luggage placed in front of the door D. Therefore, a range including the movable range of the door is set as a prohibited range for the drone 10. Also at this time, as shown in FIG. 10, the area inside the no-entry line B, which is separated by a certain margin M from the semicircular movable range line A, is set as the no-entry range for the drone 10.
 図9は、ドアが外開きで両開きの場合の可動範囲を例示する図であり、ドアD及び壁Wを含む空間を上方から観察したときの平面図である。図9において、閉まっていた各ドアDが矢印O方向に各ドアD’の位置まで開かれた場合、各ドアDの蝶番Hの位置を中心としてドアの水平方向の長さを半径とした2つの半円状の可動範囲ラインAの内側がドアDの可動範囲となる。この可動範囲においては、各ドアDの近辺を飛行するドローン10やそのドアDの前に置かれた荷物と各ドアDとが接触する可能性がある。そこで、各ドアの可動範囲を含む範囲が、ドローン10の進入禁止範囲として設定される。このときも、図10に示すように、半円状の可動範囲ラインAに対して或るマージンMだけ離れた進入禁止ラインBの内側がドローン10の進入禁止範囲として設定される。 FIG. 9 is a diagram illustrating the movable range when the door opens outward and opens both ways, and is a plan view of the space including the door D and the wall W observed from above. In FIG. 9, when each closed door D is opened to the position of each door D' in the direction of arrow O, the horizontal length of the door is set as a radius of 2 with the position of the hinge H of each door D as the center. The inside of the two semicircular movable range lines A is the movable range of the door D. In this movable range, each door D may come into contact with the drone 10 flying near each door D or with luggage placed in front of the door D. Therefore, a range including the movable range of each door is set as a prohibited range for the drone 10. Also at this time, as shown in FIG. 10, the area inside the no-entry line B, which is separated by a certain margin M from the semicircular movable range line A, is set as the no-entry range for the drone 10.
 なお、可動範囲算出部12は、取得部11によって取得された画像データからドアの外観又は形状を検出し、その検出結果からドアに関するドア情報(特に開閉機構に関するドア情報)を認識するから、そのドア情報の認識精度が低い場合があり得る。そこで、このようにドア情報の認識精度が閾値よりも低い場合又は認識不能である場合には、可動範囲算出部12は、対象となるドアが全ての開閉機構に該当するものと仮定して可動範囲を算出する。このようにすれば、ドアの開閉機構がどのようなものであっても、少なくともそのドアの可動範囲になり得る可能性がある範囲を算出することができる。 Note that the movable range calculation unit 12 detects the appearance or shape of the door from the image data acquired by the acquisition unit 11, and recognizes door information regarding the door (particularly door information regarding the opening/closing mechanism) from the detection result. There may be cases where the recognition accuracy of door information is low. Therefore, when the recognition accuracy of the door information is lower than the threshold value or when it is unrecognizable, the movable range calculation unit 12 assumes that the target door corresponds to all the opening/closing mechanisms and calculates the movable Calculate the range. In this way, no matter what kind of door opening/closing mechanism there is, at least the possible movable range of the door can be calculated.
 図4の説明に戻り、飛行制御部14は、設定部13により設定された荷物の置き場所に対し、飛行駆動機構1009を制御してドローン10を着陸させ、その着陸後に、荷物搭載機構1010を制御してドローン10から荷物を切り離す、つまり、いわゆる荷下ろしを行う。 Returning to the explanation of FIG. 4, the flight control unit 14 controls the flight drive mechanism 1009 to land the drone 10 at the luggage storage location set by the setting unit 13, and after landing, the flight control unit 14 controls the flight drive mechanism 1009 to land the drone 10. The cargo is controlled and separated from the drone 10, that is, so-called unloading is performed.
[動作]
 次に、図11に示すフローチャートを参照して、ドローン10の飛行時の処理について説明する。図11において、ドローン10は発着地から目的に向けて飛行を開始し、サーバ装置50の遠隔操縦に従い飛行制御を行う(ステップS01)。ドローン10は、サーバ装置50による制御の下で、荷物の配送依頼時に指定された目的地の住所の上空まで飛行する。
[motion]
Next, with reference to the flowchart shown in FIG. 11, processing performed when the drone 10 flies will be described. In FIG. 11, the drone 10 starts flying toward its destination from its departure and landing locations, and performs flight control according to remote control from the server device 50 (step S01). Under the control of the server device 50, the drone 10 flies over the destination address specified at the time of requesting delivery of the package.
 ドローン10が目的地の上空に到達すると、徐々に下降しながら、例えばイメージセンサによって撮像された画像データに対して画像認識を行うことで、その目的地に設けられたドアを探索する。そして、ドローン10は、ドアの前に到達すると(ステップS02;YES)、可動範囲算出部12は、イメージセンサによって撮像された画像データを例えばパターンマッチングや特徴量認識等の解析手法によって解析する(ステップS03)。 When the drone 10 reaches the sky above the destination, it searches for a door provided at the destination by performing image recognition on image data captured by an image sensor, for example, while gradually descending. When the drone 10 arrives in front of the door (step S02; YES), the movable range calculation unit 12 analyzes the image data captured by the image sensor using an analysis method such as pattern matching or feature recognition ( Step S03).
 そして、可動範囲算出部12は、画像データに含まれるドアの外観又は形状を検出し、その検出結果からドアに関するドア情報を認識して、そのドアの可動範囲を算出する(ステップS04)。このとき、前述したように、ドア情報の認識精度が閾値よりも低い場合又は認識不能である場合には、可動範囲算出部12は、対象となるドアが全ての開閉機構に該当するものと仮定して可動範囲を算出する。 Then, the movable range calculation unit 12 detects the appearance or shape of the door included in the image data, recognizes door information regarding the door from the detection result, and calculates the movable range of the door (step S04). At this time, as described above, if the recognition accuracy of the door information is lower than the threshold value or if it is unrecognizable, the movable range calculation unit 12 assumes that the target door corresponds to all opening/closing mechanisms. to calculate the range of motion.
 次に、設定部13は、可動範囲算出部12により算出された可動範囲を含む範囲をドローン10の進入を禁止する進入禁止範囲として設定する(ステップS05)。さらに、設定部13は、進入禁止範囲の外縁から所定距離以内の位置を、ドローン10が配送する荷物の置き場所として設定する。 Next, the setting unit 13 sets a range including the movable range calculated by the movable range calculating unit 12 as a prohibited range into which the drone 10 is prohibited from entering (step S05). Further, the setting unit 13 sets a position within a predetermined distance from the outer edge of the prohibited area as a storage location for the cargo to be delivered by the drone 10.
 飛行制御部14は、飛行駆動機構1009及び荷物搭載機構1010を制御して、設定された置き場所にドローン10を着陸させ(ステップS06)、ドローン10から荷物を切り離す荷下ろしを行う(ステップS07)。このとき、飛行制御部14は、ドローン10が荷物を置くために飛行又は着陸しているときに、ドアとドローン10が接触しないように飛行制御を行う。つまり、飛行制御部14は、ドローン10が荷物を置くために飛行又は着陸を行っている期間において、そのドローン10又は荷物の少なくとも一部が進入禁止範囲内に進入しないように、そのドローン10を制御する。荷下ろしが完了すると、ドローン10は発着地に帰還する(又は次の目的地に移動する)ための処理に移行する(ステップS08)。 The flight control unit 14 controls the flight drive mechanism 1009 and the luggage loading mechanism 1010 to land the drone 10 at the set storage location (step S06), and performs unloading to separate the luggage from the drone 10 (step S07). . At this time, the flight control unit 14 performs flight control so that the door and the drone 10 do not come into contact when the drone 10 is flying or landing to place the luggage. In other words, the flight control unit 14 controls the drone 10 so that at least part of the drone 10 or the cargo does not enter the prohibited area during the period when the drone 10 is flying or landing to place the cargo. Control. When the unloading is completed, the drone 10 moves to a process for returning to the departure and landing place (or moving to the next destination) (step S08).
 以上説明した実施形態によれば、ドローン10又はそのドローン10によって配送される荷物が、目的地に設けられたドアと接触しないようにすることが可能となる。 According to the embodiment described above, it is possible to prevent the drone 10 or the cargo delivered by the drone 10 from coming into contact with the door provided at the destination.
[変形例]
 本発明は、上述した実施形態に限定されない。上述した実施形態を以下のように変形してもよい。また、以下の2つ以上の変形例を組み合わせて実施してもよい。
[変形例1]
 上述した実施形態において、可動範囲算出部12は、イメージセンサによって撮像された画像データに基づいて、ドアの外観又は形状を検出した結果からドアに関するドア情報を認識し、当該ドアの可動範囲を算出していた。ドアの外観又は形状を検出するためのデータは、画像データに限らず、例えばLidar(Light Detection And Ranging)と呼ばれるような、様々な検出技術で得られたデータを用いることができる。
[Modified example]
The invention is not limited to the embodiments described above. The embodiment described above may be modified as follows. Furthermore, two or more of the following modifications may be implemented in combination.
[Modification 1]
In the embodiment described above, the movable range calculation unit 12 recognizes door information regarding the door from the result of detecting the appearance or shape of the door based on image data captured by the image sensor, and calculates the movable range of the door. Was. The data for detecting the appearance or shape of the door is not limited to image data, but can be data obtained by various detection techniques such as, for example, Lidar (Light Detection And Ranging).
[変形例2]
 上述した実施形態において、可動範囲算出部12は、イメージセンサによって撮像された画像データに基づいて、ドアの外観又は形状を検出した結果からドアに関するドア情報を認識していた。ただし、ドア情報の特定方法は、上記実施形態の例に限らない。例えば目的地に設けられたドアの所定の位置に無線装置を設けておき、その無線装置がそのドアに関するドア情報を発信し、そのドア情報をドローン10が受信して取得するようにしてもよい。このとき、ドアの位置は、ドローン10が無線を受信したときの受信電界強度から推定してもよい。例えばUWB(Ultra Wide Band)と呼ばれる無線技術によれば、無線を発信する無線装置の位置を、その無線を受信する無線装置との相対位置として、比較的高精度に割り出すことが可能である。このように、可動範囲算出部12は、目的地において無線で提供される、ドアに関するドア情報に基づいて、そのドアの可動範囲を算出するようにしてもよい。このようにすれば、ドアの外観又は形状からドア情報を求める場合に比べて、より正確なドア情報(特に開閉機構に関するドア情報)を得ることが可能となる。
[Modification 2]
In the embodiment described above, the movable range calculation unit 12 recognized the door information regarding the door from the result of detecting the appearance or shape of the door based on the image data captured by the image sensor. However, the method of specifying door information is not limited to the example of the above embodiment. For example, a wireless device may be provided at a predetermined position of a door provided at the destination, and the wireless device may transmit door information regarding the door, and the drone 10 may receive and acquire the door information. . At this time, the position of the door may be estimated from the received electric field strength when the drone 10 receives the radio signal. For example, according to a wireless technology called UWB (Ultra Wide Band), it is possible to determine the position of a wireless device that transmits radio signals with relatively high accuracy as the relative position of a wireless device that receives the radio signals. In this way, the movable range calculation unit 12 may calculate the movable range of the door based on the door information regarding the door that is provided wirelessly at the destination. In this way, it is possible to obtain more accurate door information (particularly door information regarding the opening/closing mechanism) than when obtaining door information from the appearance or shape of the door.
[変形例3]
 また、目的地又はドアの識別情報に対応付けてドア情報を予め記憶しておき、その記憶内容を参照してドア情報を特定するようにしてもよい。図12は、サーバ装置50が記憶するドア情報を例示する図である。サーバ装置50がドローン10の目的地又はその目的地のドアのIDに対応するドア情報を読み出して無線通信網40経由でドローン10に送信することで、ドローン10はドア情報を取得してドアの可動範囲を算出する。このように、可動範囲算出部12は、目的地又はドアの識別情報に対応付けて記憶されているドアに関する情報に基づいて、そのドアの可動範囲を算出するようにしてもよい。このようにすれば、ドアの外観又は形状からドア情報を求める場合に比べて、より正確なドア情報(特に開閉機構に関するドア情報)を得ることが可能となる。
[Modification 3]
Alternatively, door information may be stored in advance in association with destination or door identification information, and the door information may be specified by referring to the stored contents. FIG. 12 is a diagram illustrating door information stored by the server device 50. The server device 50 reads the door information corresponding to the destination of the drone 10 or the ID of the door of the destination and transmits it to the drone 10 via the wireless communication network 40, so that the drone 10 acquires the door information and controls the door. Calculate the range of motion. In this way, the movable range calculation unit 12 may calculate the movable range of the door based on the information about the door that is stored in association with the destination or the identification information of the door. In this way, it is possible to obtain more accurate door information (particularly door information regarding the opening/closing mechanism) than when obtaining door information from the appearance or shape of the door.
[変形例4]
 ドローン10の制御は、実施形態で説明した、いわゆるエッジコンピューティング(ドローンによる制御)、クラウドコンピューティング(サーバ装置による制御)、又は、その双方の連携(ドローン及びサーバ装置による制御)で実現してもよい。従って、本発明の制御装置は実施形態に開示したサーバ装置50に備えられていてもよい。
[Modification 4]
The control of the drone 10 is realized by so-called edge computing (control by the drone), cloud computing (control by the server device), or the cooperation of both (control by the drone and the server device), as described in the embodiment. Good too. Therefore, the control device of the present invention may be included in the server device 50 disclosed in the embodiment.
[変形例5]
 本発明における飛行体は、ドローンと呼ばれる無人飛行体に限らず、飛行体であればどのような構造や形態のものであってもよい。また、ドローン10は目的地に着陸して荷下ろしをしていたが、着陸以外の方法(例えば荷物の投下や吊り下げ)により目的地に荷物を配送するようにしてもよい。
[Modification 5]
The flying object in the present invention is not limited to an unmanned flying object called a drone, but may have any structure or form as long as it is a flying object. Further, although the drone 10 lands at the destination and unloads the cargo, the cargo may be delivered to the destination by a method other than landing (for example, dropping or hanging the cargo).
[そのほかの変形例]
 上記実施の形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
[Other variations]
The block diagram used to explain the above embodiment shows blocks in functional units. These functional blocks (components) are realized by any combination of hardware and/or software. Further, the means for realizing each functional block is not particularly limited. That is, each functional block may be realized by one physically and/or logically coupled device, or may be realized by directly and/or indirectly two or more physically and/or logically separated devices. (for example, wired and/or wireless) and may be realized by these multiple devices.
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。 Each aspect/embodiment described in this specification is applicable to LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA. (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), other suitable systems, and/or next-generation systems expanded based on these.
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this specification may be changed as long as there is no contradiction. For example, the methods described herein present elements of the various steps in an exemplary order and are not limited to the particular order presented. Each aspect/embodiment described in this specification may be used alone, may be used in combination, or may be switched and used in accordance with execution. In addition, notification of prescribed information (for example, notification of "X") is not limited to being done explicitly, but may also be done implicitly (for example, not notifying the prescribed information). Good too.
 本明細書で説明した情報又はパラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。 The information or parameters described in this specification may be expressed as absolute values, relative values from a predetermined value, or other corresponding information.
 本明細書で使用する「判定(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判定」、「決定」は、例えば、判断(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判定」「決定」したとみなす事などを含み得る。また、「判定」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判定」「決定」したとみなす事などを含み得る。また、「判定」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判定」「決定」したとみなす事を含み得る。つまり、「判定」「決定」は、何らかの動作を「判定」「決定」したとみなす事を含み得る。 As used herein, the terms "determining" and "determining" may encompass a wide variety of operations. "Judgment" and "decision" are, for example, judging, calculating, computing, processing, deriving, investigating, looking up (e.g., table , searching in a database or another data structure), and regarding confirmation (ascertaining) as a "judgment" or "decision." Also, "judgment" and "decision" refer to receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, and access. (accessing) (for example, accessing data in memory) may include regarding it as a "judgment" or "decision." In addition, "judgment" and "decision" mean that things such as resolving, selecting, choosing, establishing, and comparing are considered to have been "determined" or "determined." may be included. In other words, "determination" and "determination" may include considering that some action has been "determined" or "determined."
 本発明は、情報処理方法として提供されてもよいし、プログラムとして提供されてもよい。かかるプログラムは、光ディスク等の記録媒体に記録した形態で提供されたり、インターネット等のネットワークを介して、コンピュータにダウンロードさせ、これをインストールして利用可能にするなどの形態で提供されたりすることが可能である。 The present invention may be provided as an information processing method or as a program. Such programs may be provided in the form recorded on a recording medium such as an optical disk, or may be provided in the form of being downloaded onto a computer via a network such as the Internet, and being installed and made available for use. It is possible.
 ソフトウェア、命令などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)などの有線技術及び/又は赤外線、無線及びマイクロ波などの無線技術を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。 Software, instructions, etc. may be sent and received via a transmission medium. For example, if the software uses wired technologies such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and/or wireless technologies such as infrared, radio and microwave to When transmitted from a remote source, these wired and/or wireless technologies are included within the definition of transmission medium.
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described herein may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc., which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
 本明細書で使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 As used herein, any reference to elements using the designations "first," "second," etc. does not generally limit the amount or order of those elements. These designations may be used herein as a convenient way of distinguishing between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed therein or that the first element must precede the second element in any way.
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 "Means" in the configurations of each of the above devices may be replaced with "unit", "circuit", "device", etc.
 「含む(including)」、「含んでいる(comprising)」、及びそれらの変形が、本明細書或いは特許請求の範囲で使用されている限り、これら用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書或いは特許請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 To the extent that the words "including," "comprising," and variations thereof are used in this specification or in the claims, these terms, like the term "comprising," are inclusive. intended to be accurate. Furthermore, the term "or" as used in this specification or in the claims is not intended to be exclusive or.
 本開示の全体において、例えば、英語でのa、an、及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含むものとする。 Throughout this disclosure, where articles have been added by translation, such as in English a, an, and the, these articles shall be used unless the context clearly indicates otherwise. It shall include multiple items.
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。 Although the present invention has been described in detail above, it is clear to those skilled in the art that the present invention is not limited to the embodiments described in this specification. The present invention can be implemented as modifications and variations without departing from the spirit and scope of the present invention as defined by the claims. Therefore, the description in this specification is for the purpose of illustrative explanation and does not have any limiting meaning on the present invention.
1:ドローン制御システム、10:ドローン、11:取得部、12:可動範囲算出部、13:設定部、14:飛行制御部、30:ユーザ端末、40:無線通信網、50:サーバ装置、1001:プロセッサ、1002:メモリ、1003:ストレージ、1004:通信装置、1005:入力装置、1006:出力装置、1007:測位装置、1008:センサ、1009:飛行駆動機構、1010:荷物搭載機構、50:サーバ装置、5001:プロセッサ、5002:メモリ、5003:ストレージ、5004:通信装置、D,D’:ドア、H:蝶番、W:壁、O:方向、A:可動範囲ライン、B:進入禁止ライン、M:マージン。 1: Drone control system, 10: Drone, 11: Acquisition unit, 12: Mobility range calculation unit, 13: Setting unit, 14: Flight control unit, 30: User terminal, 40: Wireless communication network, 50: Server device, 1001 : Processor, 1002: Memory, 1003: Storage, 1004: Communication device, 1005: Input device, 1006: Output device, 1007: Positioning device, 1008: Sensor, 1009: Flight drive mechanism, 1010: Baggage loading mechanism, 50: Server Device, 5001: Processor, 5002: Memory, 5003: Storage, 5004: Communication device, D, D': Door, H: Hinge, W: Wall, O: Direction, A: Movable range line, B: No entry line, M: Margin.

Claims (7)

  1.  飛行体の目的地に設けられたドアが開閉するときの可動範囲を算出する可動範囲算出部と、
     算出された前記可動範囲を含む範囲を、前記飛行体の進入を禁止する進入禁止範囲として設定する設定部と
     を備えることを特徴とする制御装置。
    a movable range calculation unit that calculates a movable range when a door provided at a destination of the aircraft opens and closes;
    A control device comprising: a setting unit that sets a range including the calculated movable range as a prohibited range in which entry of the flying object is prohibited.
  2.  前記可動範囲算出部は、前記ドアの外観又は形状を検出した結果から前記ドアに関する情報を認識して、当該ドアの可動範囲を算出する
     ことを特徴とする請求項1記載の制御装置。
    The control device according to claim 1, wherein the movable range calculation unit calculates the movable range of the door by recognizing information regarding the door from a result of detecting the appearance or shape of the door.
  3.  前記可動範囲算出部は、前記目的地において無線で提供される、前記ドアに関する情報に基づいて、当該ドアの可動範囲を算出する
     ことを特徴とする請求項1記載の制御装置。
    The control device according to claim 1, wherein the movable range calculation unit calculates the movable range of the door based on information regarding the door that is provided wirelessly at the destination.
  4.  前記可動範囲算出部は、前記目的地又は前記ドアの識別情報に対応付けて記憶されている前記ドアに関する情報に基づいて、当該ドアの可動範囲を算出する
     ことを特徴とする請求項1記載の制御装置。
    The movable range calculation unit calculates the movable range of the door based on information regarding the door stored in association with the destination or identification information of the door. Control device.
  5.  前記ドアに関する情報は、前記ドアの位置、前記ドアのサイズ、又は、前記ドアの開閉機構に関する情報を含む
     ことを特徴とする請求項2~4のいずれか1項に記載の制御装置。
    The control device according to any one of claims 2 to 4, wherein the information regarding the door includes information regarding the position of the door, the size of the door, or the opening/closing mechanism of the door.
  6.  前記設定部は、前記進入禁止範囲の外縁から所定距離以内の位置を、前記飛行体が配送する荷物の置き場所として設定する
     ことを特徴とする請求項1に記載の制御装置。
    The control device according to claim 1, wherein the setting unit sets a position within a predetermined distance from an outer edge of the prohibited area as a storage location for luggage to be delivered by the flying object.
  7.  前記飛行体が前記荷物を置くために飛行又は着陸を行っている期間において、当該飛行体又は前記荷物の少なくとも一部が前記進入禁止範囲内に進入しないように、当該飛行体を制御する飛行制御部を備える
     ことを特徴とする請求項6に記載の制御装置。
    Flight control that controls the flying object so that at least a part of the flying object or the cargo does not enter the prohibited area during the period when the flying object is flying or landing to place the baggage. The control device according to claim 6, further comprising a portion.
PCT/JP2023/016249 2022-05-20 2023-04-25 Control device WO2023223781A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-083122 2022-05-20
JP2022083122 2022-05-20

Publications (1)

Publication Number Publication Date
WO2023223781A1 true WO2023223781A1 (en) 2023-11-23

Family

ID=88835022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016249 WO2023223781A1 (en) 2022-05-20 2023-04-25 Control device

Country Status (1)

Country Link
WO (1) WO2023223781A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019154983A (en) * 2018-03-16 2019-09-19 パナソニックIpマネジメント株式会社 Self-control movable type cleanup robot, cleanup system and control device
JP2019200734A (en) * 2018-05-18 2019-11-21 富士通株式会社 Information processing program, information processing method, and information processing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019154983A (en) * 2018-03-16 2019-09-19 パナソニックIpマネジメント株式会社 Self-control movable type cleanup robot, cleanup system and control device
JP2019200734A (en) * 2018-05-18 2019-11-21 富士通株式会社 Information processing program, information processing method, and information processing device

Similar Documents

Publication Publication Date Title
JP7159822B2 (en) Delivery system and processing server
JP6789425B1 (en) Luggage receiving device and baggage receiving method
JP6983903B2 (en) Flight control device and flight control system
CN107024209B (en) System and method for tracking smart luggage
US11432534B2 (en) Monitoring apparatus and program
US20190207959A1 (en) System and method for detecting remote intrusion of an autonomous vehicle based on flightpath deviations
JP7167327B2 (en) Control device, program and control method
CN111273683A (en) Distribution system
WO2023223781A1 (en) Control device
JP6857250B2 (en) Flight control device and flight control system
WO2019087891A1 (en) Information processing device and flight control system
JPWO2019054027A1 (en) Flight control system and flight control device
WO2023233870A1 (en) Control device
JP6945004B2 (en) Information processing device
WO2023042601A1 (en) Information processing device
WO2023282124A1 (en) Control device
WO2023189613A1 (en) Information processing device
WO2020262528A1 (en) Information processing device, and information processing method
US20200387180A1 (en) Flight control apparatus and flight control system
WO2023042551A1 (en) Information processing device
JP6903535B2 (en) Information processing device
JP7060616B2 (en) Information processing equipment
WO2023021948A1 (en) Control device and program
WO2023145762A1 (en) Control device
US11891176B2 (en) Determination of position sending interval for flying vehicle dependent upon ground surface below vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807393

Country of ref document: EP

Kind code of ref document: A1