WO2023223725A1 - Health management system and health management method - Google Patents

Health management system and health management method Download PDF

Info

Publication number
WO2023223725A1
WO2023223725A1 PCT/JP2023/014962 JP2023014962W WO2023223725A1 WO 2023223725 A1 WO2023223725 A1 WO 2023223725A1 JP 2023014962 W JP2023014962 W JP 2023014962W WO 2023223725 A1 WO2023223725 A1 WO 2023223725A1
Authority
WO
WIPO (PCT)
Prior art keywords
risk
degree
user
value
health management
Prior art date
Application number
PCT/JP2023/014962
Other languages
French (fr)
Japanese (ja)
Inventor
秋憲 松本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023223725A1 publication Critical patent/WO2023223725A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/26Bioelectric electrodes therefor maintaining contact between the body and the electrodes by the action of the subjects, e.g. by placing the body on the electrodes or by grasping the electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/352Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval

Definitions

  • the present invention relates to a health management system.
  • Patent Document 1 discloses a system that collects biological information according to a user's daily activities and optimally utilizes the data for health checkups, health management, and the like.
  • the present invention provides a health management system and the like that can present information regarding health risks.
  • a health management system includes an acquisition unit that acquires an electrocardiogram signal of a user measured using the electrode by a toilet seat device including an electrode, and a part of the acquired electrocardiogram signal.
  • an analysis unit that calculates an RR interval for a plurality of times, the analysis unit that calculates a plurality of RR intervals by changing the interval; and an analysis unit that calculates a plurality of RR intervals by changing the interval;
  • an estimating unit that calculates a 3H risk estimate that is an estimated value of the risk corresponding to at least one of hyperglycemia and hyperlipidemia for a plurality of times; Based on the 3H risk estimation value, a degree of vascular regulation indicating a function of regulating heart rate due to contraction of blood vessels is estimated, and information for presenting the estimated degree of vascular regulation is output.
  • a health management method is a health management method executed by a computer, and includes a first acquisition step of acquiring an electrocardiogram signal of a user measured using the electrode by a toilet seat device including the electrode. , an analysis step of calculating an RR interval for a part of the section of the acquired electrocardiogram signal, the analysis step of changing the section and calculating the RR interval for a plurality of times; A first estimation step of calculating a plurality of 3H risk estimates, which are estimated values of the risk that the user falls under at least one of hypertension, hyperglycemia, and hyperlipidemia, based on the RR interval of and a second estimation step of estimating a degree of vascular adjustment indicating a function of adjusting heart rate due to contraction of blood vessels based on the calculated 3H risk estimate values for a plurality of times, and presenting the estimated degree of vascular adjustment. and a first output step of outputting information for.
  • a program according to one aspect of the present invention is a program for causing a computer to execute the health management method.
  • the health management system etc. of the present invention can present information regarding health risks.
  • FIG. 1 is a diagram showing the configuration of a health management system according to the first embodiment.
  • FIG. 2 is an external view of the toilet seat device according to the first embodiment.
  • FIG. 3 is an external view of a toilet seat device in which electrodes are provided on a handrail.
  • FIG. 4 is a flowchart of an example of the operation of the health management system according to the first embodiment.
  • FIG. 5 is a diagram showing a determination result of 3H risk by the health management system according to the first embodiment.
  • FIG. 6 is a diagram showing an example of a display screen of the estimation result of the degree of blood vessel adjustment.
  • FIG. 7 is a diagram showing the configuration of a health management system according to the second embodiment.
  • FIG. 1 is a diagram showing the configuration of a health management system according to the first embodiment.
  • FIG. 2 is an external view of the toilet seat device according to the first embodiment.
  • FIG. 3 is an external view of a toilet seat device in which electrodes are provided on a handrail.
  • FIG. 8 is a flowchart of an example of the operation of the health management system according to the second embodiment.
  • FIG. 9 is a diagram showing an estimation formula for blood pressure contribution.
  • FIG. 10 is a diagram showing an example of estimating blood pressure contribution and carbohydrate excess.
  • FIG. 11 is a diagram showing an example of a display screen of the estimation result of the degree of carbohydrate excess.
  • FIG. 12 is a diagram showing the configuration of a health management system according to the third embodiment.
  • FIG. 13 is a flowchart of an example of the operation of the health management system according to the third embodiment.
  • FIG. 14 is a diagram showing an example of a display screen of the estimation result of the degree of metabolic abnormality.
  • each figure is a schematic diagram and is not necessarily strictly illustrated. Furthermore, in each figure, substantially the same configurations are denoted by the same reference numerals, and overlapping explanations may be omitted or simplified.
  • FIG. 1 is a diagram showing the configuration of a health management system according to the first embodiment.
  • the health management system 100 simply estimates and estimates the 3H risk of the user based on an electrocardiogram signal (ECG Signal) measured while the user (person) is sitting on the toilet seat device 10. This is a system that can display the results on the information terminal 40.
  • ECG Signal electrocardiogram signal
  • the 3H risk is a comprehensive definition of the user's risk of at least one of hypertension, hyperglycemia, and hyperlipidemia (dyslipidemia).
  • the 3H risk estimate is useful as an index (measure) of whether a user has a tendency to develop a lifestyle-related disease.
  • the health management system 100 includes a toilet seat device 10, a server device 30, and an information terminal 40.
  • the toilet seat device 10 will be explained with reference to FIG. 2 in addition to FIG. 1.
  • FIG. 2 is an external view of the toilet seat device 10.
  • the toilet seat device 10 measures an electrocardiogram signal of a user sitting on the toilet seat device 10. The user can unconsciously receive an electrocardiogram signal measurement simply by sitting on the toilet seat device 10.
  • the electrocardiogram signal here refers to an electrical signal from the heart.
  • the toilet seat device 10 includes, for example, a toilet seat 20, a first electrode 21, a second electrode 22, and a body ground electrode 23.
  • the toilet seat device 10 may be a device that is attached to an existing toilet bowl by replacing the toilet seat attached to the existing toilet bowl, or it may be a device that is formed integrally with the toilet bowl.
  • the toilet seat 20 is the part of the toilet seat device 10 that the user sits on when he relieves himself.
  • the toilet seat 20 is a member formed of a white resin material, and also functions as a holding member that holds other components.
  • a first electrode 21, a second electrode 22, and a body earth electrode 23 are provided on the surface of the toilet seat 20.
  • the first electrode 21 is an electrode provided on the surface of the toilet seat 20, and functions as a measurement electrode for measuring electrocardiogram signals. Specifically, the first electrode 21 is formed of a metal material such as silver. The first electrode 21 is preferably a silver-silver chloride electrode. As shown in FIG. 2, the first electrode 21 is provided at a portion of the toilet seat 20 where the left thigh of a user sitting on the toilet seat 20 is located, and comes into contact with the left thigh.
  • the second electrode 22 is an electrode provided on the surface of the toilet seat 20, and functions as a reference electrode for measuring electrocardiogram signals.
  • the second electrode 22 is specifically formed of a metal material such as silver.
  • Second electrode 22 is preferably a silver-silver chloride electrode. As shown in FIG. 2, the second electrode 22 is provided at a portion of the toilet seat 20 where the right thigh of a user sitting on the toilet seat 20 is located, and comes into contact with the right thigh.
  • the body earth electrode 23 is an electrode for applying a body earth potential to the user sitting on the toilet seat 20. At least a portion of the body ground electrode 23 is provided on the surface of the toilet seat 20 and comes into contact with the right thigh of the user sitting on the toilet seat 20.
  • Body ground electrode 23 is formed of a metal material such as silver, for example.
  • Body earth electrode 23 is preferably a silver-silver chloride electrode.
  • FIG. 2 is an external view of the toilet seat device 10 in which the first electrode 21, the second electrode 22, and the body earth electrode 23 are provided on the handrail.
  • the server device 30 is a cloud server that estimates the 3H risk of the user based on the user's electrocardiogram signal measured by the toilet seat device 10.
  • the server device 30 can acquire (receive) the electrocardiogram signal measured by the toilet seat device 10 from the toilet seat device 10 by communicating with the toilet seat device 10 via a wide area communication network such as the Internet.
  • the server device 30 acquires (receives) user attribute information input to the information terminal 40 by communicating with the information terminal 40 via a wide area communication network such as the Internet, and presents the information to the information terminal 40. can be output (sent).
  • the presentation information is information for presenting (visualizing) the 3H risk determination result and various estimation results described below to the user.
  • the server device 30 includes an acquisition unit 31, a preprocessing unit 32, a storage unit 33, an analysis unit 34, a 3H risk estimation unit 35, a determination unit 36, and a vascular adjustment degree estimation unit 37.
  • Each of the acquisition unit 31, preprocessing unit 32, analysis unit 34, 3H risk estimation unit 35, determination unit 36, and vascular adjustment degree estimation unit 37 is one or more processors (hardware) included in the server device 30.
  • processors is a functional component realized by executing a computer program (software) stored in a memory such as the storage unit 33.
  • the acquisition unit 31 acquires the user's electrocardiogram signal measured by the toilet seat device 10 using the first electrode 21, the second electrode 22, and the body earth electrode 23.
  • the acquisition unit 31 also acquires user attribute information.
  • the preprocessing unit 32 performs preprocessing on the electrocardiogram signal acquired by the acquisition unit 31.
  • the preprocessing includes a process of limiting the frequency band of the electrocardiogram signal, a process of excluding a period in which the amplitude of the electrocardiogram signal is greater than or equal to a predetermined value, and a process of dividing the electrocardiogram signal into predetermined time units and storing it in the storage unit 33. This includes processing, etc.
  • the electrocardiogram signal is stored in the storage unit 33 by the preprocessing unit 32 for each predetermined time unit.
  • the storage unit 33 is realized by a HDD (Hard Disk Drive) or a semiconductor memory.
  • the analysis unit 34 reads the electrocardiogram signal acquired by the acquisition unit 31 and preprocessed by the preprocessing unit 32 from the storage unit 33, and calculates RR intervals (RR Intervals) from the read electrocardiogram signal. do.
  • the RR interval is the interval from one QRS wave to the next QRS wave in the waveform of an electrocardiogram signal.
  • the analysis unit 34 calculates the RR interval for a partial section of the electrocardiogram signal, and when the 3H risk estimate is calculated for multiple times, changes the above-mentioned section and calculates the RR interval for the multiple times.
  • the 3H risk estimating unit 35 generates a 3H risk estimation which is an estimated value of the risk that the user has at least one of hypertension, hyperglycemia, and hyperlipidemia, based on the calculated RR intervals for the plurality of times. Calculate the value multiple times. More specifically, the 3H risk estimating unit 35 calculates the 3H risk estimate for multiple times based on the calculated RR intervals for multiple times and the attribute information acquired by the acquiring unit 31, but if the attribute information is It is not required that it be used.
  • the determining unit 36 determines whether the user has a 3H risk based on the multiple 3H risk estimates calculated by the 3H risk estimating unit 35.
  • the determination unit 36 defines the maximum value of the multiple calculated 3H risk estimated values as a representative estimated value.
  • the determining unit 36 determines that the user has a 3H risk when the representative estimated value is greater than the threshold, and determines that the user does not have a 3H risk when the representative estimated value is less than or equal to the threshold. Further, the determination unit 36 outputs information (hereinafter also referred to as presentation information) for presenting the determination result of the presence or absence of 3H risk.
  • the vascular adjustment degree estimation unit 37 estimates the user's vascular adjustment degree based on the multiple 3H risk estimates calculated by the 3H risk estimation unit 35. Specifically, the vascular adjustment degree estimating unit 37 estimates the user's vascular adjustment degree based on the difference between the maximum value and the minimum value of the 3H risk estimation values for multiple times. Further, the blood vessel adjustment degree estimating unit 37 outputs information (hereinafter also referred to as presentation information) for presenting the estimated blood vessel adjustment degree.
  • presentation information information for presenting the estimated blood vessel adjustment degree.
  • the information terminal 40 receives the presentation information from the server device 30 and displays the content of the presentation information on the display unit 41 based on the received presentation information.
  • the information terminal 40 is, for example, a portable information terminal such as a smartphone or a tablet terminal, but may also be a stationary information terminal such as a personal computer.
  • the information terminal 40 is realized by installing a dedicated application program for the health management system 100 on a general-purpose device, it may be a dedicated device for the health management system 100.
  • the display unit 41 included in the information terminal 40 is realized by, for example, a display panel such as a liquid crystal panel or an organic EL (Electro Luminescence) panel.
  • FIG. 4 is a flowchart of an example of the operation of the health management system 100.
  • the acquisition unit 31 of the server device 30 acquires the user's electrocardiogram signal and the user's attribute information (S11).
  • the user's electrocardiogram signal is measured by the toilet seat device 10 using the first electrode 21, the second electrode 22, and the body ground electrode 23, and is transmitted from the toilet seat device 10 to the server device 30.
  • the user's attribute information is, for example, input into the information terminal 40 and transmitted from the information terminal 40 to the server device 30.
  • the user attribute information is, for example, information indicating the user's gender, the user's height, and the user's weight.
  • the acquisition route of attribute information is not particularly limited.
  • the user's attribute information may be transmitted from the remote controller or the toilet seat device 10 to the server device 30 and acquired by the acquisition unit 31. good.
  • the preprocessing unit 32 performs preprocessing on the electrocardiogram signal acquired in step S11 (S12). Preprocessing is processing to make the electrocardiogram signal suitable for calculating the RR interval.
  • the preprocessing unit 32 limits the frequency band of the electrocardiogram signal to a band of 5 Hz or more and 30 Hz or less, for example, by applying a filter to the electrocardiogram signal acquired in step S11. Further, as shown in FIG. 3, in the case of the toilet seat device 10 in which electrodes are provided on the handrail, the frequency band of the electrocardiogram signal is limited to a band of 1 Hz or more and 20 Hz or less.
  • the preprocessing unit 32 excludes a period in which the amplitude of the electrocardiogram signal is equal to or greater than a predetermined value. Exclusion here means not considering it as valid data. Through this processing, periods in which the electrocardiogram signal would have been appropriately measured due to the user's body movements, straining during defecation, etc. are excluded.
  • the predetermined value is, for example, 150 ⁇ V, but may be appropriately determined empirically or experimentally according to the specifications of the toilet seat device 10.
  • the predetermined value is, for example, 2 mV.
  • the preprocessing section divides the two types of preprocessed electrocardiogram signals into predetermined time units and stores (stores) them in the storage section 33.
  • the predetermined time unit is, for example, a time unit equivalent to 10 seconds.
  • the analysis unit 34 detects the R wave of the electrocardiogram signal using a predetermined peak detection algorithm (for example, Hamilton algorithm) in order to calculate the RR interval, and calculates the RR based on the detected R wave. Calculate the interval. Further, the calculated RR interval is in the range of 0.4 seconds or more and 2 seconds or less (30 to 150 bpm when converted to heart rate).
  • a predetermined peak detection algorithm for example, Hamilton algorithm
  • the analysis unit 34 determines whether the total RR interval (total time) calculated in step S15 is 60 seconds or more (S16). This determination is made to improve the accuracy of the 3H risk estimate. If the analysis unit 34 determines that the total RR interval (total time) is less than 60 seconds (No in S16), it supplements the electrocardiogram signal (S17). For example, by extracting one or more units of the electrocardiogram signal immediately after the seven units extracted in step S14 from the storage unit 33 and calculating the RR interval in the extracted one or more units of electrocardiogram signal, the total RR interval can be set to 60. Make it more than seconds.
  • the method for replenishing the electrocardiogram signal in step S17 is not particularly limited, and among the seven units extracted in step S14, a unit with a smaller subtotal (subtotal time) of the calculated RR intervals (for example, 80% of 10 seconds, (units of less than 8 seconds) may be excluded and the electrocardiogram signal may be supplemented.
  • a unit with a smaller subtotal (subtotal time) of the calculated RR intervals for example, 80% of 10 seconds, (units of less than 8 seconds
  • the electrocardiogram signal may be supplemented.
  • the analysis unit 34 determines that the total RR interval (total time) is 60 seconds or more (Yes in S16) and if the electrocardiogram signal is supplemented (S17), 3H risk estimation is performed.
  • the unit 35 calculates a feature amount related to heart rate fluctuation based on the RR interval of 60 seconds or more in total (S18).
  • the feature amount related to heart rate variability is sometimes called a heart rate variability parameter.
  • Features related to heart rate variability include the average of RR intervals for a total of 60 seconds or more, variance of RR intervals for a total of 60 seconds or more, standard deviation, LF, HF, LF/HF, RMSSD (Root Mean Square of Successive Differences). , Shannon Entropy, Fisher Information, and the like.
  • LF is an abbreviation for Low Frequency, and corresponds to a power spectrum of 0.05 Hz to 0.15 Hz.
  • HF is an abbreviation for High Frequency, and corresponds to a power spectrum of frequency components from 0.15 Hz to 0.40 Hz.
  • the 3H risk estimation unit 35 calculates the 3H risk estimate (S19).
  • the 3H risk estimation unit 35 calculates a 3H risk estimate using, for example, a machine learning model.
  • This machine learning model is a model to which, for example, logistic regression is applied, and the results of a doctor's judgment of the presence or absence of 3H risk (risk: 1, This is a trained model that was constructed using data associated with ⁇ no risk: 0'' as learning data (teacher data).
  • the machine learning model receives the attribute information acquired in step S11 and the feature amount related to heart rate variability calculated in step S18, it outputs a numerical value between 0 and 1 as a 3H risk estimate. For example, the higher the 3H risk, the closer the 3H risk estimate is to 1, and the lower the 3H risk, the closer to 0.
  • n is a numerical value corresponding to the number of calculations of the 3H risk estimate.
  • steps S14 to S20 are performed once again.
  • an electrocardiogram signal corresponding to the interval from 0 seconds to 70 seconds of the entire electrocardiogram signal is extracted in the first step S14, in the second step S14, for example, one unit of time (10 seconds) is extracted.
  • the determination unit 36 determines whether the user has a 3H risk (S22). For example, the determination unit 36 sets the maximum value of the n calculated 3H risk estimates as the representative estimate, determines that the user has a 3H risk when the representative estimate is larger than the threshold, and determines that the representative estimate is If it is below the threshold value, it is determined that the user does not have a 3H risk.
  • the threshold value is, for example, 0.6, but may be appropriately determined empirically or experimentally.
  • the representative estimated value may be a statistic (eg, minimum value, average value, median value, etc.) of the n calculated 3H risk estimated values.
  • FIG. 5 is a diagram showing the determination results of 3H risk by the health management system 100.
  • the horizontal axis of FIG. Subjects 5 to 7 are subjects who have been determined in advance by a doctor or testing organization to have no 3H risk.
  • FIG. 5 shows the 3H risk estimate calculated based on the operations in FIG. 4.
  • subjects 1 to 4 with 3H risk all have the maximum value (representative estimate) of the 3H risk estimate exceeding the threshold (0.6), and subject 5 with no 3H risk -7, the maximum value (representative estimate) of the 3H risk estimate is all below the threshold (0.6).
  • the determination unit 36 can determine whether the user has a 3H risk.
  • the vascular adjustment degree estimation unit 37 estimates the user's vascular adjustment degree based on the multiple 3H risk estimation values calculated by the 3H risk estimation unit 35 (S23).
  • the degree of vascular regulation is a parameter that indicates the ability to adjust the heart rate through constriction of blood vessels. If the blood vessels are soft (the blood vessels are flexible and easily contract), the value will be large, indicating that the ability to adjust the heart rate through constriction of the blood vessels is high. means.
  • the degree of vascular regulation becomes a small value when the blood vessels are hard (close to the arterial effect), which means that the ability to regulate the heart rate due to the contraction of the blood vessels is low.
  • the degree of vascular adjustment is a concept similar to the so-called vascular age (the flexibility of the outside of the blood vessel), but it is a concept that includes not only the vascular age but also the smoothness of blood flow inside the blood vessel.
  • the feature amount related to heart rate variability calculated in step S18 is likely to change due to the influence of breathing, etc., and as a result, the 3H risk estimate is considered to be likely to vary. If the degree of vascular adjustment of the subject is low (the ability to adjust heart rate due to vascular contraction is low), the feature amount related to heart rate fluctuation calculated in step S18 is difficult to change due to the influence of breathing, etc., and as a result, the 3H risk estimate is considered to be less likely to vary.
  • the vascular adjustment degree estimating unit 37 calculates the difference between the maximum value and the minimum value (corresponding to the two-way arrow in FIG. 5) of the 3H risk estimation values for multiple times to the numerical value of the user's vascular adjustment degree. (measure of relative change). For example, subject No. in FIG. 2, the maximum value of the 3H risk estimate is 0.74 and the minimum value is 0.66, so the degree of blood vessel adjustment is 0.08. Subject no. 3, the maximum value of the 3H risk estimate is 0.98 and the minimum value is 0.95, so the degree of blood vessel adjustment is 0.03.
  • the determination unit 36 outputs information for presenting the determination result of the presence or absence of 3H risk in step S22, and the vascular adjustment degree estimating unit 37 presents the estimated vascular adjustment degree in step S23. Output information for. As a result, presentation information including these two pieces of information is output from the server device 30 (S24).
  • the presentation information is transmitted from the server device 30 to the information terminal 40, and the information terminal 40 (display unit 41) determines the presence or absence of 3H risk in step S22 and the blood vessel risk in step S23 based on the received presentation information.
  • a display screen showing the adjustment degree estimation result is displayed.
  • FIG. 6 is a diagram showing an example of such a display screen. As shown in FIG. 6, the degree of blood vessel adjustment is displayed after being qualified in stages according to the numerical value of the degree of blood vessel adjustment, for example.
  • the degree of blood vessel regulation is, for example, qualified into three levels: good, fair, and poor.
  • the health management system 100 can determine whether the user has a 3H risk and can estimate the user's degree of vascular adjustment.
  • FIG. 7 is a diagram showing the configuration of a health management system according to the second embodiment.
  • the health management system 100a includes a toilet seat device 10, a server device 30a, and an information terminal 40.
  • the difference from the health management system 100 according to the first embodiment is the functional components of the server device 30a.
  • the server device 30a includes, in addition to an acquisition unit 31, a preprocessing unit 32, a storage unit 33, an analysis unit 34, a 3H risk estimation unit 35, a determination unit 36, and a blood vessel regulation degree estimation unit 37, It includes a contribution estimation section 38 and a carbohydrate excess estimation section 39a.
  • Each of the blood pressure contribution estimating unit 38 and the carbohydrate excess estimating unit 39a is configured by one or more processors (hardware) included in the server device 30a using a computer program (software) stored in a memory such as the storage unit 33. ) is a functional component realized by executing
  • the acquisition unit 31 acquires the user's blood pressure value in addition to the user's electrocardiogram signal and the user's attribute information.
  • the blood pressure contribution estimating unit 38 calculates a blood pressure that indicates the extent to which the blood pressure contributes to the representative estimated value of the user's 3H risk (the maximum value of the 3H risk estimated values for multiple times). Estimate the contribution.
  • the sugar excess degree estimating unit 39a estimates the sugar excess degree based on the difference between the representative estimated value of the user's 3H risk and the estimated blood pressure contribution. Furthermore, the carbohydrate excess degree estimating unit 39a outputs information for presenting the estimated carbohydrate excess degree.
  • FIG. 8 is a flowchart of an example of the operation of the health management system 100a.
  • the acquisition unit 31 of the server device 30a acquires the user's blood pressure value in addition to the user's electrocardiogram signal and the user's attribute information (S11a).
  • the user's blood pressure values include a systolic blood pressure value (so-called upper blood pressure value) and a diastolic blood pressure value (so-called lower blood pressure value).
  • the user's blood pressure value is, for example, input into the information terminal 40 and transmitted from the information terminal 40 to the server device 30a.
  • the acquisition route of the user's blood pressure value is not particularly limited.
  • the user's blood pressure value may be transmitted to the server device 30a from a blood pressure sensor or a server device that manages the user's blood pressure value, and may be acquired by the acquisition unit 31.
  • steps S12 to S23 is similar to the operation example of the first embodiment (FIG. 4).
  • the blood pressure contribution estimating unit 38 determines whether the blood pressure is higher than the representative estimated value of the user's 3H risk (the maximum value of the multiple 3H risk estimated values) based on the acquired blood pressure value of the user.
  • the degree of blood pressure contribution indicating the degree of contribution is estimated (S25).
  • the blood pressure contribution degree is a numerical value corresponding to a part of the representative estimated value of the user's 3H risk, and is a parameter indicating how much risk there is due to vascular factors in the representative estimated value.
  • the blood pressure contribution degree has a correlation with the average blood pressure value [mmHg], which is the average of the acquired blood pressure values (systolic blood pressure value [mmHg]/diastolic blood pressure value [mmHg]), and the average blood pressure value The higher the value, the higher the contribution to blood pressure.
  • the normal blood pressure value is 120/80 (average blood pressure value 100 [mmHg])
  • the blood pressure value in the guidance area is 130/85 (average blood pressure value 107.5 [mmHg]).
  • an estimation formula regression formula
  • FIG. 9 is a diagram showing an estimation formula for blood pressure contribution. Note that such an estimation formula is an example, and the estimation formula may be appropriately determined empirically or experimentally.
  • the blood pressure contribution estimating unit 38 estimates the blood pressure contribution by substituting the average blood pressure value determined by the blood pressure value acquired in step S11a into such an estimation formula.
  • subject No. in FIG. 3's blood pressure value is 126/91.
  • the blood pressure contribution estimating unit 38 uses subject no. 3 can be estimated to be 0.62 (square mark on the right side of FIG. 9).
  • subject No. in FIG. 4's blood pressure value is 117/70.
  • the blood pressure contribution estimating unit 38 uses subject no. 4 can be estimated to be 0.41 (square mark on the left side of FIG. 9).
  • the sugar excess degree estimating unit 39a estimates the sugar excess degree based on the difference between the representative estimated value of the user's 3H risk and the estimated blood pressure contribution (S26a).
  • the sugar excess degree is a numerical value corresponding to another part of the representative estimated value of the user's 3H risk. While the blood pressure contribution is a parameter that indicates the risk of blood vessel factors in the representative estimated value, the carbohydrate excess degree is a parameter that indicates the risk of blood factors in the representative estimated value.
  • the degree of carbohydrate excess is a parameter that indicates how much risk there is due to excessive carbohydrate (glucose) in the blood in the representative estimated value.
  • the degree of carbohydrate excess can also be said to indicate the degree of excess of blood sugar and glycogen in the user's body when the user ingests carbohydrates from food.
  • the degree of carbohydrate excess can also be considered to be a parameter indicating the viscosity (stickiness) of blood.
  • sugar excess can be considered a concept that indicates a condition common to both hyperglycemia and hyperlipidemia. can.
  • the sugar excess degree estimating unit 39a estimates the difference between the representative estimated value of the user's 3H risk and the estimated blood pressure contribution as a numerical value of the sugar excess degree. For example, subject No. in FIG. 3, and subject no. 4, blood pressure contribution and carbohydrate excess are estimated as shown in FIG. FIG. 10 is a diagram showing an example of estimating blood pressure contribution and carbohydrate excess.
  • the determination unit 36 outputs information for presenting the determination result of the presence or absence of 3H risk in step S22, and the vascular adjustment degree estimating unit 37 presents the estimated vascular adjustment degree in step S23. Output information for. Furthermore, the carbohydrate excess degree estimating unit 39a outputs information for presenting the carbohydrate excess degree estimated in step S26a. As a result, presentation information including these three pieces of information is output from the server device 30a (S27a).
  • the presentation information is transmitted from the server device 30a to the information terminal 40, and the information terminal 40 (display unit 41) displays the determination result of the presence or absence of 3H risk in step S22 and the degree of vascular adjustment in step S23 based on the received presentation information.
  • a display screen is displayed that shows the estimation result of , and the estimation result of the carbohydrate excess degree in step S26a.
  • FIG. 11 is a diagram showing an example of such a display screen. As shown in FIG. 11, the degree of carbohydrate excess is displayed after being qualified in stages according to the numerical value of the degree of carbohydrate excess, for example.
  • the degree of carbohydrate excess is determined, for example, by categorizing carbohydrate intake into three levels: excessive, slightly high, and normal.
  • the health management system 100a can provide an opportunity to prevent the user from unconsciously ingesting excessive amounts of carbohydrates.
  • the information terminal 40 may display a display screen that prompts the user to take specific improvement actions according to the estimation results.
  • the information terminal 40 may display a display screen that prompts the user to change the carbohydrates consumed at lunch to vegetables (such as broccoli).
  • the health management system 100a can estimate the user's degree of carbohydrate excess.
  • FIG. 12 is a diagram showing the configuration of a health management system according to the third embodiment.
  • the health management system 100b includes a toilet seat device 10, a server device 30b, and an information terminal 40.
  • the difference from the health management system 100a according to the second embodiment is the functional components of the server device 30b.
  • the server device 30b includes a metabolic abnormality degree estimating unit 39b in place of the carbohydrate excess degree estimating unit 39a included in the server device 30a.
  • the metabolic abnormality degree estimation unit 39b is a functional It is a constituent element.
  • the metabolic abnormality degree estimating unit 39b estimates the metabolic abnormality degree based on the difference between the representative estimated value of the user's 3H risk and the estimated blood pressure contribution. Further, the metabolic abnormality degree estimating unit 39b outputs information for presenting the estimated metabolic abnormality degree.
  • FIG. 13 is a flowchart of an example of the operation of the health management system 100b.
  • step S11a steps S12 to S23, and step S25 are similar to the operation example of the second embodiment (FIG. 8).
  • the metabolic abnormality degree estimating unit 39b estimates the metabolic abnormality degree based on the difference between the representative estimated value of the user's 3H risk and the estimated blood pressure contribution (S26b).
  • the degree of metabolic abnormality is a numerical value corresponding to another part of the representative estimated value of the user's 3H risk. While the blood pressure contribution degree is a parameter indicating the risk of vascular factors in the representative estimated value, the degree of metabolic abnormality is a parameter indicating the risk of blood factors in the representative estimated value.
  • the state in which sugar (glucose) in the blood is excessive as described in Embodiment 2 is considered to reflect a state in which there is an abnormality in metabolism (metabolic function is inferior to that of a healthy person).
  • the degree of carbohydrate excess in Embodiment 2 can also be considered as the degree of metabolic abnormality. Therefore, the metabolic abnormality degree estimation unit 39b estimates the metabolic abnormality degree.
  • the method for estimating the degree of metabolic abnormality is the same as the method for estimating the degree of carbohydrate excess. Specifically, the metabolic abnormality degree estimation unit 39b estimates the difference between the representative estimated value of the user's 3H risk and the estimated blood pressure contribution degree as a numerical value of the metabolic abnormality degree.
  • the determination unit 36 outputs information for presenting the determination result of the presence or absence of 3H risk in step S22, and the vascular adjustment degree estimating unit 37 presents the estimated vascular adjustment degree in step S23. Output information for. Further, the metabolic abnormality degree estimating unit 39b outputs information for presenting the metabolic abnormality degree estimated in step S26b. As a result, presentation information including these three pieces of information is output from the server device 30b (S27b).
  • the presentation information is transmitted from the server device 30b to the information terminal 40, and the information terminal 40 (display unit 41) displays the determination result of the presence or absence of 3H risk in step S22 and the degree of vascular adjustment in step S23 based on the received presentation information. , and a display screen showing the estimation results of the degree of metabolic abnormality in step S26b.
  • FIG. 14 is a diagram showing an example of such a display screen. As shown in FIG. 14, the degree of metabolic abnormality is displayed after being qualified in stages according to the numerical value of the degree of metabolic abnormality, for example. The degree of metabolic abnormality is determined, for example, by categorizing the metabolic state into three levels: poor, somewhat poor, and normal. Thereby, the health management system 100b can provide an opportunity to improve the user's metabolism.
  • the information terminal 40 may display a display screen that prompts the user to take specific improvement actions according to the estimation results.
  • the information terminal 40 may display a display screen that encourages the user to increase the number of steps per day by 2,000, or may prompt the user to do a simple muscle training indoors (such as 7-second squats).
  • a display screen may be displayed to prompt the user.
  • the health management system 100b can estimate the degree of metabolic abnormality of the user.
  • the health management system 100 includes the acquisition unit 31 that acquires the user's electrocardiogram signal measured using the electrode by the toilet seat device 10 equipped with the electrode, and the acquisition unit 31 that acquires the electrocardiogram signal of the user measured using the electrode.
  • the analysis unit 34 calculates the RR interval for a plurality of times by changing the interval, and the analysis unit 34 calculates the RR interval for a plurality of times by changing the interval. and an estimating unit that calculates a plurality of 3H risk estimated values that are estimated values of risks corresponding to at least one of hyperlipidemia and hyperlipidemia.
  • the estimating unit estimates a degree of vascular adjustment that indicates the adjustment function of heart rate due to contraction of blood vessels based on the calculated multiple 3H risk estimates, and outputs information for presenting the estimated degree of vascular adjustment. do.
  • the estimating section here corresponds to the 3H risk estimating section 35 and the vascular adjustment degree estimating section 37 of the above embodiment.
  • Such a health management system 100 can present information regarding health risks. Specifically, the health management system 100 can present information regarding the degree of vascular regulation.
  • the estimating unit estimates the user's degree of vascular adjustment based on the difference between the maximum value and the minimum value of the 3H risk estimation values for a plurality of times.
  • Such a health management system 100 can present information regarding the degree of blood vessel regulation.
  • the acquisition unit 31 further acquires the user's blood pressure value.
  • the estimating unit takes the maximum value of the multiple 3H risk estimates as a representative estimate of the user's 3H risk, and based on the acquired blood pressure value, calculates a blood pressure that indicates the extent to which blood pressure contributes to the representative estimate. Estimate the contribution.
  • the estimation section here corresponds to the blood pressure contribution estimation section 38 of the above embodiment.
  • Such a health management system 100a can estimate blood pressure contribution.
  • the estimating unit further estimates the degree of carbohydrate excess based on the difference between the representative estimate and the estimated blood pressure contribution, and relates to the estimated degree of carbohydrate excess.
  • the estimating section here corresponds to the sugar excess degree estimating section 39a of the above embodiment.
  • Such a health management system 100a can present information regarding the degree of carbohydrate excess.
  • the estimating unit further estimates the degree of metabolic abnormality based on the difference between the representative estimate and the estimated blood pressure contribution, and provides a presentation regarding the estimated degree of metabolic abnormality. Output information to do so.
  • the estimating section here corresponds to the metabolic abnormality degree estimating section 39b of the above embodiment.
  • Such a health management system 100b can present information regarding the degree of metabolic abnormality.
  • the health management system 100 further includes a preprocessing unit 32 that performs preprocessing on the acquired electrocardiogram signal.
  • the analysis unit 34 calculates the RR interval for a part of the acquired electrocardiogram signal that has undergone preprocessing.
  • the preprocessing includes a process of limiting the frequency band and a process of excluding a period in which the amplitude is equal to or greater than a predetermined value.
  • Such a health management system 100 can improve the estimation accuracy of the 3H risk estimate by performing preprocessing on the electrocardiogram signal.
  • the health management system 100 further determines that the user has a 3H risk when the maximum value of the calculated 3H risk estimates for the plurality of doses is larger than the threshold, and determines that the user has a 3H risk for the calculated multiple doses.
  • a determination unit 36 is provided that determines that the user does not have a 3H risk when the maximum value of the estimated risk value is less than or equal to a threshold value.
  • the determination unit 36 outputs information for presenting the determination result of the presence or absence of 3H risk.
  • Such a health management system 100 can present information regarding the determination result of the presence or absence of 3H risk.
  • the acquisition unit 31 further acquires user attribute information.
  • the estimation unit calculates 3H risk estimates for multiple times based on the calculated RR intervals for multiple times and the acquired attribute information.
  • the estimating section here corresponds to the 3H risk estimating section 35 of the above embodiment.
  • Such a health management system 100 can calculate a 3H risk estimate in consideration of the user's attribute information.
  • the health management system 100 further includes the toilet seat device 10 and a display unit 41 that displays an image based on the output information for presenting the degree of blood vessel adjustment.
  • Such a health management system 100 can present images related to the degree of blood vessel regulation.
  • the health management method executed by a computer such as the health management system 100 includes a first acquisition step S11 of acquiring an electrocardiogram signal of the user measured using the electrode by the toilet seat device 10 provided with the electrode, and the acquired electrocardiogram signal.
  • An analysis step S15 for calculating an RR interval for a part of the signal section an analysis step S15 for calculating an RR interval for a plurality of times by changing the section, and an analysis step S15 for calculating an RR interval for a plurality of times based on the calculated RR interval for a plurality of times.
  • a first estimation step S19 in which the user calculates a 3H risk estimate, which is an estimated value of the risk corresponding to at least one of hypertension, hyperglycemia, and hyperlipidemia, for multiple times, and for the calculated multiple times;
  • Such a health management method can present information regarding the degree of vascular regulation.
  • the health management method further includes a second acquisition step S11a of acquiring the user's blood pressure value, and setting the maximum value of the plurality of 3H risk estimates as a representative estimate of the 3H risk of the user.
  • Such a health management method can present information regarding the degree of carbohydrate excess.
  • the electrocardiogram signal is measured by the toilet seat device, but it may be measured by another device such as an electrocardiograph. That is, the health management system may estimate the 3H risk etc. based on the electrocardiogram signal measured by a device other than the toilet seat device.
  • the health management system is realized by a plurality of devices.
  • the functional components included in the health care system described in the above embodiments may be distributed to the plurality of devices in any manner.
  • the preprocessing section may be provided by the toilet seat device instead of the server device, and the acquisition section of the server device may acquire the preprocessed electrocardiogram signal from the toilet seat device.
  • the processing executed by a specific processing unit may be executed by another processing unit.
  • the order of the plurality of processes may be changed, or the plurality of processes may be executed in parallel. For example, estimation of the degree of vascular regulation and estimation of the degree of carbohydrate excess (or degree of metabolic abnormality) may be performed sequentially or in parallel.
  • the general or specific aspects of the present invention may be implemented in a system, device, method, integrated circuit, computer program, or computer-readable recording medium such as a CD-ROM. Further, the present invention may be realized by any combination of a system, an apparatus, a method, an integrated circuit, a computer program, and a recording medium.
  • the present invention may be realized as a server device according to the above embodiment.
  • the present invention may be realized as a health management method executed by a computer such as a health management system.
  • the present invention may be realized as a program for causing a computer to execute such a health management method, or may be realized as a computer-readable non-temporary recording medium in which such a program is recorded. Good too.

Abstract

A health management system (100) comprises: an acquisition unit (31) that acquires an electrocardiogram signal of a user which was measured using an electrode of a toilet seat device (10); an analysis unit (34) that calculates an RR interval with respect to a section of part of the acquired electrocardiogram signal, said analysis unit (34) changing the section and calculating a plurality of RR intervals; a 3H risk estimation unit (35) that, on the basis of the plurality of calculated RR intervals, calculates a plurality of 3H risk estimation values, each of which is an estimation value of the risk that the user has at least one of hypertension, hyperglycemia, and hyperlipidemia; and a blood vessel adjustment degree estimation unit (37) that, on the basis of the plurality of calculated 3H risk estimation values, estimates a blood vessel adjustment degree which indicates a heart rate adjustment function by blood vessel contraction, and that outputs information for a presentation relating to the estimated blood vessel adjustment degree.

Description

健康管理システム、及び、健康管理方法Health management system and health management method
 本発明は、健康管理システムに関する。 The present invention relates to a health management system.
 健康管理に関する様々な技術が提案されている。特許文献1には、使用者の生活行動に合わせて生体情報を収集し、それらのデータを最適に健康診断・健康管理等に活用するシステムが開示されている。 Various technologies related to health management have been proposed. Patent Document 1 discloses a system that collects biological information according to a user's daily activities and optimally utilizes the data for health checkups, health management, and the like.
特開2000-126138号公報Japanese Patent Application Publication No. 2000-126138
 本発明は、健康リスクに関する情報を提示することができる健康管理システム等を提供する。 The present invention provides a health management system and the like that can present information regarding health risks.
 本発明の一態様に係る健康管理システムは、電極を備える便座装置により前記電極を用いて計測されたユーザの心電図信号を取得する取得部と、取得された前記心電図信号の一部の区間を対象にRR間隔を算出する解析部であって、前記区間を変更して複数回分のRR間隔を算出する前記解析部と、算出された複数回分の前記RR間隔に基づいて、前記ユーザが高血圧症、高血糖症、及び、高脂血症の少なくとも1つに該当するリスクの推定値である3Hリスク推定値を複数回分算出する推定部とを備え、前記推定部は、算出された複数回分の前記3Hリスク推定値に基づいて、血管の収縮による心拍の調整機能を示す血管調整度を推定し、推定された前記血管調整度に関する提示を行うための情報を出力する。 A health management system according to one aspect of the present invention includes an acquisition unit that acquires an electrocardiogram signal of a user measured using the electrode by a toilet seat device including an electrode, and a part of the acquired electrocardiogram signal. an analysis unit that calculates an RR interval for a plurality of times, the analysis unit that calculates a plurality of RR intervals by changing the interval; and an analysis unit that calculates a plurality of RR intervals by changing the interval; an estimating unit that calculates a 3H risk estimate that is an estimated value of the risk corresponding to at least one of hyperglycemia and hyperlipidemia for a plurality of times; Based on the 3H risk estimation value, a degree of vascular regulation indicating a function of regulating heart rate due to contraction of blood vessels is estimated, and information for presenting the estimated degree of vascular regulation is output.
 本発明の一態様に係る健康管理方法は、コンピュータによって実行される健康管理方法であって、電極を備える便座装置により前記電極を用いて計測されたユーザの心電図信号を取得する第1取得ステップと、取得された前記心電図信号の一部の区間を対象にRR間隔を算出する解析ステップであって、前記区間を変更して複数回分のRR間隔を算出する前記解析ステップと、算出された複数回分の前記RR間隔に基づいて、前記ユーザが高血圧症、高血糖症、及び、高脂血症の少なくとも1つに該当するリスクの推定値である3Hリスク推定値を複数回分算出する第1推定ステップと、算出された複数回分の前記3Hリスク推定値に基づいて、血管の収縮による心拍の調整機能を示す血管調整度を推定する第2推定ステップと、推定された前記血管調整度に関する提示を行うための情報を出力する第1出力ステップとを含む。 A health management method according to one aspect of the present invention is a health management method executed by a computer, and includes a first acquisition step of acquiring an electrocardiogram signal of a user measured using the electrode by a toilet seat device including the electrode. , an analysis step of calculating an RR interval for a part of the section of the acquired electrocardiogram signal, the analysis step of changing the section and calculating the RR interval for a plurality of times; A first estimation step of calculating a plurality of 3H risk estimates, which are estimated values of the risk that the user falls under at least one of hypertension, hyperglycemia, and hyperlipidemia, based on the RR interval of and a second estimation step of estimating a degree of vascular adjustment indicating a function of adjusting heart rate due to contraction of blood vessels based on the calculated 3H risk estimate values for a plurality of times, and presenting the estimated degree of vascular adjustment. and a first output step of outputting information for.
 本発明の一態様に係るプログラムは、前記健康管理方法をコンピュータに実行させるためのプログラムである。 A program according to one aspect of the present invention is a program for causing a computer to execute the health management method.
 本発明の健康管理システム等は、健康リスクに関する情報を提示することができる。 The health management system etc. of the present invention can present information regarding health risks.
図1は、実施の形態1に係る健康管理システムの構成を示す図である。FIG. 1 is a diagram showing the configuration of a health management system according to the first embodiment. 図2は、実施の形態1に係る便座装置の外観図である。FIG. 2 is an external view of the toilet seat device according to the first embodiment. 図3は、電極が手すりに設けられた便座装置の外観図であるFIG. 3 is an external view of a toilet seat device in which electrodes are provided on a handrail. 図4は、実施の形態1に係る健康管理システムの動作例のフローチャートである。FIG. 4 is a flowchart of an example of the operation of the health management system according to the first embodiment. 図5は、実施の形態1に係る健康管理システムによる3Hリスクの判定結果を示す図である。FIG. 5 is a diagram showing a determination result of 3H risk by the health management system according to the first embodiment. 図6は、血管調整度の推定結果の表示画面の一例を示す図である。FIG. 6 is a diagram showing an example of a display screen of the estimation result of the degree of blood vessel adjustment. 図7は、実施の形態2に係る健康管理システムの構成を示す図である。FIG. 7 is a diagram showing the configuration of a health management system according to the second embodiment. 図8は、実施の形態2に係る健康管理システムの動作例のフローチャートである。FIG. 8 is a flowchart of an example of the operation of the health management system according to the second embodiment. 図9は、血圧寄与度の推定式を示す図である。FIG. 9 is a diagram showing an estimation formula for blood pressure contribution. 図10は、血圧寄与度及び糖質過剰度の推定例を示す図である。FIG. 10 is a diagram showing an example of estimating blood pressure contribution and carbohydrate excess. 図11は、糖質過剰度の推定結果の表示画面の一例を示す図である。FIG. 11 is a diagram showing an example of a display screen of the estimation result of the degree of carbohydrate excess. 図12は、実施の形態3に係る健康管理システムの構成を示す図である。FIG. 12 is a diagram showing the configuration of a health management system according to the third embodiment. 図13は、実施の形態3に係る健康管理システムの動作例のフローチャートである。FIG. 13 is a flowchart of an example of the operation of the health management system according to the third embodiment. 図14は、代謝異常度の推定結果の表示画面の一例を示す図である。FIG. 14 is a diagram showing an example of a display screen of the estimation result of the degree of metabolic abnormality.
 以下、実施の形態について、図面を参照しながら具体的に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, embodiments will be specifically described with reference to the drawings. Note that the embodiments described below are all inclusive or specific examples. The numerical values, shapes, materials, components, arrangement positions and connection forms of the components, steps, order of steps, etc. shown in the following embodiments are merely examples, and do not limit the present invention. Further, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims will be described as arbitrary constituent elements.
 なお、各図は模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付し、重複する説明は省略または簡略化される場合がある。 Note that each figure is a schematic diagram and is not necessarily strictly illustrated. Furthermore, in each figure, substantially the same configurations are denoted by the same reference numerals, and overlapping explanations may be omitted or simplified.
 (実施の形態1)
 [構成]
 以下、実施の形態1に係る健康管理システムの構成について説明する。図1は、実施の形態1に係る健康管理システムの構成を示す図である。健康管理システム100は、ユーザ(人)が便座装置10に座っている間に計測される心電図信号(ECG Signal:Electrocardiogram Signal)に基づいて、当該ユーザの3Hリスク等を簡易的に推定し、推定結果を情報端末40に表示することができるシステムである。3Hリスクは、ユーザが高血圧症、高血糖症、及び、高脂血症(脂質異常症)の少なくとも1つに該当するリスクを包括的に定義したものである。3Hリスク推定値は、ユーザに生活習慣病に陥る傾向があるか否かの指標(目安)として有用である。
(Embodiment 1)
[composition]
The configuration of the health management system according to the first embodiment will be described below. FIG. 1 is a diagram showing the configuration of a health management system according to the first embodiment. The health management system 100 simply estimates and estimates the 3H risk of the user based on an electrocardiogram signal (ECG Signal) measured while the user (person) is sitting on the toilet seat device 10. This is a system that can display the results on the information terminal 40. The 3H risk is a comprehensive definition of the user's risk of at least one of hypertension, hyperglycemia, and hyperlipidemia (dyslipidemia). The 3H risk estimate is useful as an index (measure) of whether a user has a tendency to develop a lifestyle-related disease.
 図1に示されるように、健康管理システム100は、便座装置10と、サーバ装置30と、情報端末40とを備える。まず、便座装置10について、図1に加えて図2を参照しながら説明する。図2は、便座装置10の外観図である。便座装置10は、便座装置10に座るユーザの心電図信号を計測する。ユーザは、便座装置10に座るだけで無意識的に心電図信号の計測を受けることができる。ここで心電図信号とは、心臓からの電気的な信号のことをいう。 As shown in FIG. 1, the health management system 100 includes a toilet seat device 10, a server device 30, and an information terminal 40. First, the toilet seat device 10 will be explained with reference to FIG. 2 in addition to FIG. 1. FIG. 2 is an external view of the toilet seat device 10. The toilet seat device 10 measures an electrocardiogram signal of a user sitting on the toilet seat device 10. The user can unconsciously receive an electrocardiogram signal measurement simply by sitting on the toilet seat device 10. The electrocardiogram signal here refers to an electrical signal from the heart.
 図2に示されるように、便座装置10は、例えば、便座20と、第1電極21と、第2電極22と、ボディアース電極23とを備える。便座装置10は、既存の便器に取り付けられた便座と交換されて既存の便器に取り付けられる装置であってもよいし、便器と一体的に形成される装置であってもよい。 As shown in FIG. 2, the toilet seat device 10 includes, for example, a toilet seat 20, a first electrode 21, a second electrode 22, and a body ground electrode 23. The toilet seat device 10 may be a device that is attached to an existing toilet bowl by replacing the toilet seat attached to the existing toilet bowl, or it may be a device that is formed integrally with the toilet bowl.
 便座20は、便座装置10のうちユーザが用を足す際に着座する部分である。便座20は、白色の樹脂材料によって形成される部材であり、他の構成要素を保持する保持部材としても機能する。便座20の表面には、第1電極21、第2電極22、及び、ボディアース電極23が設けられる。 The toilet seat 20 is the part of the toilet seat device 10 that the user sits on when he relieves himself. The toilet seat 20 is a member formed of a white resin material, and also functions as a holding member that holds other components. A first electrode 21, a second electrode 22, and a body earth electrode 23 are provided on the surface of the toilet seat 20.
 第1電極21は、便座20の表面に設けられた電極であり、心電図信号を計測するための計測電極として機能する。第1電極21は、具体的には、銀などの金属材料によって形成される。第1電極21は、好ましくは銀-塩化銀電極である。図2に示されるように、第1電極21は、便座20のうち、便座20に座るユーザの左大腿部が位置する部分に設けられ、左大腿部に接触する。 The first electrode 21 is an electrode provided on the surface of the toilet seat 20, and functions as a measurement electrode for measuring electrocardiogram signals. Specifically, the first electrode 21 is formed of a metal material such as silver. The first electrode 21 is preferably a silver-silver chloride electrode. As shown in FIG. 2, the first electrode 21 is provided at a portion of the toilet seat 20 where the left thigh of a user sitting on the toilet seat 20 is located, and comes into contact with the left thigh.
 第2電極22は、便座20の表面に設けられた電極であり、心電図信号を計測するための参照電極として機能する。第2電極22は、具体的には、銀などの金属材料によって形成される。第2電極22は、好ましくは銀-塩化銀電極である。図2に示されるように、第2電極22は、便座20のうち、便座20に座るユーザの右大腿部が位置する部分に設けられ、右大腿部に接触する。 The second electrode 22 is an electrode provided on the surface of the toilet seat 20, and functions as a reference electrode for measuring electrocardiogram signals. The second electrode 22 is specifically formed of a metal material such as silver. Second electrode 22 is preferably a silver-silver chloride electrode. As shown in FIG. 2, the second electrode 22 is provided at a portion of the toilet seat 20 where the right thigh of a user sitting on the toilet seat 20 is located, and comes into contact with the right thigh.
 ボディアース電極23は、ボディアース電位を便座20に座るユーザに印加するための電極である。ボディアース電極23は、少なくとも一部が便座20の表面に設けられ、便座20に座るユーザの右大腿部に接触する。ボディアース電極23は、例えば、銀などの金属材料によって形成される。ボディアース電極23は、好ましくは銀-塩化銀電極である。 The body earth electrode 23 is an electrode for applying a body earth potential to the user sitting on the toilet seat 20. At least a portion of the body ground electrode 23 is provided on the surface of the toilet seat 20 and comes into contact with the right thigh of the user sitting on the toilet seat 20. Body ground electrode 23 is formed of a metal material such as silver, for example. Body earth electrode 23 is preferably a silver-silver chloride electrode.
 なお、図2の例では、第1電極21、第2電極22、及び、ボディアース電極23は、便座20に設けられているが、便座装置10が手すりを備えるような場合には、第1電極21、第2電極22、及び、ボディアース電極23は、手すりに設けられていてもよい。図3は、第1電極21、第2電極22、及び、ボディアース電極23が手すりに設けられた便座装置10の外観図である。 In the example of FIG. 2, the first electrode 21, the second electrode 22, and the body earth electrode 23 are provided on the toilet seat 20, but if the toilet seat device 10 is provided with a handrail, the first electrode 21, the second electrode 22, and the body earth electrode 23 are provided on the toilet seat 20. The electrode 21, the second electrode 22, and the body earth electrode 23 may be provided on the handrail. FIG. 3 is an external view of the toilet seat device 10 in which the first electrode 21, the second electrode 22, and the body earth electrode 23 are provided on the handrail.
 次に、図1のサーバ装置30について説明する。サーバ装置30は、便座装置10により計測されたユーザの心電図信号に基づいて、当該ユーザの3Hリスク等を推定するクラウドサーバである。 Next, the server device 30 in FIG. 1 will be explained. The server device 30 is a cloud server that estimates the 3H risk of the user based on the user's electrocardiogram signal measured by the toilet seat device 10.
 サーバ装置30は、便座装置10とインターネットなどの広域通信ネットワークを介して通信を行うことにより、便座装置10によって計測された心電図信号を便座装置10から取得(受信)することができる。また、サーバ装置30は、情報端末40とインターネットなどの広域通信ネットワークを介して通信を行うことにより、情報端末40に入力されたユーザの属性情報を取得(受信)し、情報端末40へ提示情報を出力(送信)することができる。なお、提示情報は、3Hリスクの判定結果、及び、後述の各種推定結果をユーザに提示する(可視化する)ための情報である。 The server device 30 can acquire (receive) the electrocardiogram signal measured by the toilet seat device 10 from the toilet seat device 10 by communicating with the toilet seat device 10 via a wide area communication network such as the Internet. In addition, the server device 30 acquires (receives) user attribute information input to the information terminal 40 by communicating with the information terminal 40 via a wide area communication network such as the Internet, and presents the information to the information terminal 40. can be output (sent). Note that the presentation information is information for presenting (visualizing) the 3H risk determination result and various estimation results described below to the user.
 サーバ装置30は、具体的には、取得部31、前処理部32、記憶部33、解析部34、3Hリスク推定部35、判定部36、及び、血管調整度推定部37を備える。取得部31、前処理部32、解析部34、3Hリスク推定部35、判定部36、及び、血管調整度推定部37のそれぞれは、サーバ装置30が備える1つまたは複数のプロセッサ(ハードウェア)が記憶部33などのメモリに記憶されたコンピュータプログラム(ソフトウェア)を実行することによって実現される機能的な構成要素である。 Specifically, the server device 30 includes an acquisition unit 31, a preprocessing unit 32, a storage unit 33, an analysis unit 34, a 3H risk estimation unit 35, a determination unit 36, and a vascular adjustment degree estimation unit 37. Each of the acquisition unit 31, preprocessing unit 32, analysis unit 34, 3H risk estimation unit 35, determination unit 36, and vascular adjustment degree estimation unit 37 is one or more processors (hardware) included in the server device 30. is a functional component realized by executing a computer program (software) stored in a memory such as the storage unit 33.
 取得部31は、便座装置10により第1電極21、第2電極22、及び、ボディアース電極23を用いて計測されたユーザの心電図信号を取得する。また、取得部31は、ユーザの属性情報を取得する。属性情報には、例えば、ユーザの性別、ユーザの身長、及び、ユーザの体重を示す情報が含まれる。なお、属性情報には、ユーザの身長、及び、ユーザの体重を示す情報の代わりに、BMI(Body Mass Index:BMI=体重[kg]/(身長[m])^2)の値が含まれてもよい。 The acquisition unit 31 acquires the user's electrocardiogram signal measured by the toilet seat device 10 using the first electrode 21, the second electrode 22, and the body earth electrode 23. The acquisition unit 31 also acquires user attribute information. The attribute information includes, for example, information indicating the user's gender, user's height, and user's weight. Note that the attribute information includes the value of BMI (Body Mass Index: BMI = weight [kg] / (height [m])^2) instead of information indicating the user's height and weight. It's okay.
 前処理部32は、取得部31によって取得された心電図信号に前処理を行う。前処理には、心電図信号の周波数帯域を制限する処理、心電図信号の振幅が所定値以上となる期間を除外する処理、及び、心電図信号を所定の時間単位ずつ分割して記憶部33に記憶する処理などが含まれる。 The preprocessing unit 32 performs preprocessing on the electrocardiogram signal acquired by the acquisition unit 31. The preprocessing includes a process of limiting the frequency band of the electrocardiogram signal, a process of excluding a period in which the amplitude of the electrocardiogram signal is greater than or equal to a predetermined value, and a process of dividing the electrocardiogram signal into predetermined time units and storing it in the storage unit 33. This includes processing, etc.
 記憶部33には、前処理部32によって心電図信号が所定の時間単位ごとに記憶される。記憶部33は、具体的には、HDD(Hard Disk Drive)または半導体メモリによって実現される。 The electrocardiogram signal is stored in the storage unit 33 by the preprocessing unit 32 for each predetermined time unit. Specifically, the storage unit 33 is realized by a HDD (Hard Disk Drive) or a semiconductor memory.
 解析部34は、取得部31によって取得された心電図信号であって前処理部32によって前処理が行われた心電図信号を記憶部33から読み出し、読み出した心電図信号からRR間隔(RR Intervals)を算出する。RR間隔は、心電図信号の波形におけるQRS波から次のQRS波までの間隔である。解析部34は、心電図信号の一部の区間を対象にRR間隔を算出し、3Hリスク推定値が複数回分算出される場合には、上記区間を変更して複数回分のRR間隔を算出する。 The analysis unit 34 reads the electrocardiogram signal acquired by the acquisition unit 31 and preprocessed by the preprocessing unit 32 from the storage unit 33, and calculates RR intervals (RR Intervals) from the read electrocardiogram signal. do. The RR interval is the interval from one QRS wave to the next QRS wave in the waveform of an electrocardiogram signal. The analysis unit 34 calculates the RR interval for a partial section of the electrocardiogram signal, and when the 3H risk estimate is calculated for multiple times, changes the above-mentioned section and calculates the RR interval for the multiple times.
 3Hリスク推定部35は、算出された複数回分のRR間隔に基づいて、ユーザが高血圧症、高血糖症、及び、高脂血症の少なくとも1つに該当するリスクの推定値である3Hリスク推定値を複数回分算出する。3Hリスク推定部35は、より具体的には、算出された複数回分のRR間隔、及び、取得部31によって取得された属性情報に基づいて3Hリスク推定値を複数回分算出するが、属性情報が使用されることは必須ではない。 The 3H risk estimating unit 35 generates a 3H risk estimation which is an estimated value of the risk that the user has at least one of hypertension, hyperglycemia, and hyperlipidemia, based on the calculated RR intervals for the plurality of times. Calculate the value multiple times. More specifically, the 3H risk estimating unit 35 calculates the 3H risk estimate for multiple times based on the calculated RR intervals for multiple times and the attribute information acquired by the acquiring unit 31, but if the attribute information is It is not required that it be used.
 判定部36は、3Hリスク推定部35によって算出された複数回分の3Hリスク推定値に基づいて、ユーザが3Hリスクを有するか否かを判定する。判定部36は、算出された複数回分の3Hリスク推定値の最大値を代表推定値と定義する。判定部36は、代表推定値が閾値よりも大きい場合にユーザが3Hリスクを有すると判定し、代表推定値が閾値以下である場合にユーザが3Hリスクを有しないと判定する。また、判定部36は、3Hリスクの有無の判定結果に関する提示を行うための情報(以下、提示情報とも記載される)を出力する。 The determining unit 36 determines whether the user has a 3H risk based on the multiple 3H risk estimates calculated by the 3H risk estimating unit 35. The determination unit 36 defines the maximum value of the multiple calculated 3H risk estimated values as a representative estimated value. The determining unit 36 determines that the user has a 3H risk when the representative estimated value is greater than the threshold, and determines that the user does not have a 3H risk when the representative estimated value is less than or equal to the threshold. Further, the determination unit 36 outputs information (hereinafter also referred to as presentation information) for presenting the determination result of the presence or absence of 3H risk.
 血管調整度推定部37は、3Hリスク推定部35によって算出された複数回分の3Hリスク推定値に基づいてユーザの血管調整度を推定する。血管調整度推定部37は、具体的には、複数回分の3Hリスク推定値の最大値と最小値との差に基づいて、ユーザの血管調整度を推定する。また、血管調整度推定部37は、推定された血管調整度に関する提示を行うための情報(以下、提示情報とも記載される)を出力する。 The vascular adjustment degree estimation unit 37 estimates the user's vascular adjustment degree based on the multiple 3H risk estimates calculated by the 3H risk estimation unit 35. Specifically, the vascular adjustment degree estimating unit 37 estimates the user's vascular adjustment degree based on the difference between the maximum value and the minimum value of the 3H risk estimation values for multiple times. Further, the blood vessel adjustment degree estimating unit 37 outputs information (hereinafter also referred to as presentation information) for presenting the estimated blood vessel adjustment degree.
 次に、情報端末40について説明する。情報端末40は、サーバ装置30から提示情報を受信し、受信した提示情報に基づいて、提示情報の内容を表示部41に表示する。情報端末40は、例えば、スマートフォンまたはタブレット端末などの携帯型の情報端末であるが、パーソナルコンピュータなどの据え置き型の情報端末であってもよい。また、情報端末40は、汎用装置に健康管理システム100の専用アプリケーションプログラムがインストールされることにより実現されるが、健康管理システム100の専用装置であってもよい。情報端末40が備える表示部41は、例えば、液晶パネルまたは有機EL(Electro Luminescence)パネルなどの表示パネルによって実現される。 Next, the information terminal 40 will be explained. The information terminal 40 receives the presentation information from the server device 30 and displays the content of the presentation information on the display unit 41 based on the received presentation information. The information terminal 40 is, for example, a portable information terminal such as a smartphone or a tablet terminal, but may also be a stationary information terminal such as a personal computer. Furthermore, although the information terminal 40 is realized by installing a dedicated application program for the health management system 100 on a general-purpose device, it may be a dedicated device for the health management system 100. The display unit 41 included in the information terminal 40 is realized by, for example, a display panel such as a liquid crystal panel or an organic EL (Electro Luminescence) panel.
 [動作例]
 次に、健康管理システム100の動作例について説明する。図4は、健康管理システム100の動作例のフローチャートである。
[Operation example]
Next, an example of the operation of the health management system 100 will be described. FIG. 4 is a flowchart of an example of the operation of the health management system 100.
 まず、サーバ装置30の取得部31は、ユーザの心電図信号、及び、ユーザの属性情報を取得する(S11)。ユーザの心電図信号は、便座装置10により第1電極21、第2電極22、及び、ボディアース電極23を用いて計測されたものであり、便座装置10からサーバ装置30へ送信される。ユーザの属性情報は、例えば、情報端末40へ入力されたものであり、情報端末40からサーバ装置30へ送信される。ユーザの属性情報は、例えば、ユーザの性別、ユーザの身長、及び、ユーザの体重を示す情報である。 First, the acquisition unit 31 of the server device 30 acquires the user's electrocardiogram signal and the user's attribute information (S11). The user's electrocardiogram signal is measured by the toilet seat device 10 using the first electrode 21, the second electrode 22, and the body ground electrode 23, and is transmitted from the toilet seat device 10 to the server device 30. The user's attribute information is, for example, input into the information terminal 40 and transmitted from the information terminal 40 to the server device 30. The user attribute information is, for example, information indicating the user's gender, the user's height, and the user's weight.
 なお、属性情報の取得経路は特に限定されない。例えば、便座装置10のリモートコントローラにユーザの属性情報が登録されているような場合、ユーザの属性情報は、リモートコントローラまたは便座装置10からサーバ装置30へ送信され、取得部31によって取得されてもよい。 Note that the acquisition route of attribute information is not particularly limited. For example, if the user's attribute information is registered in the remote controller of the toilet seat device 10, the user's attribute information may be transmitted from the remote controller or the toilet seat device 10 to the server device 30 and acquired by the acquisition unit 31. good.
 次に、前処理部32は、ステップS11において取得された心電図信号に前処理を行う(S12)。前処理は、心電図信号をRR間隔の算出に適した状態にする処理である。前処理部32は、例えば、ステップS11において取得された心電図信号にフィルタを適用することにより、心電図信号の周波数帯域を5Hz以上30Hz以下の帯域に制限する。また、図3のように、手すりに電極が設けられた便座装置10の場合は、心電図信号の周波数帯域を1Hz以上20Hz以下の帯域に制限する。 Next, the preprocessing unit 32 performs preprocessing on the electrocardiogram signal acquired in step S11 (S12). Preprocessing is processing to make the electrocardiogram signal suitable for calculating the RR interval. The preprocessing unit 32 limits the frequency band of the electrocardiogram signal to a band of 5 Hz or more and 30 Hz or less, for example, by applying a filter to the electrocardiogram signal acquired in step S11. Further, as shown in FIG. 3, in the case of the toilet seat device 10 in which electrodes are provided on the handrail, the frequency band of the electrocardiogram signal is limited to a band of 1 Hz or more and 20 Hz or less.
 また、前処理部32は、心電図信号の振幅が所定値以上となる期間を除外する。ここでの除外とは、有効なデータとみなさないことを意味する。この処理により、ユーザの体動、または、排便時のいきみ等により心電図信号が適切に計測されたかった期間が除外される。図2のように便座20に電極が設けられる場合、所定値は、例えば、150μVであるが、便座装置10の仕様に合わせて経験的または実験的に適宜定められればよい。図3のように手すりに電極が設けられる場合には、所定値は、例えば、2mVなどである。 Additionally, the preprocessing unit 32 excludes a period in which the amplitude of the electrocardiogram signal is equal to or greater than a predetermined value. Exclusion here means not considering it as valid data. Through this processing, periods in which the electrocardiogram signal would have been appropriately measured due to the user's body movements, straining during defecation, etc. are excluded. When the toilet seat 20 is provided with electrodes as shown in FIG. 2, the predetermined value is, for example, 150 μV, but may be appropriately determined empirically or experimentally according to the specifications of the toilet seat device 10. When electrodes are provided on the handrail as shown in FIG. 3, the predetermined value is, for example, 2 mV.
 また、ステップS12において、前処理部は、上記2種類の前処理後の心電図信号を所定の時間単位ずつ分割して記憶部33に記憶(格納)する。所定の時間単位は、例えば、10秒に相当する時間単位である。 Furthermore, in step S12, the preprocessing section divides the two types of preprocessed electrocardiogram signals into predetermined time units and stores (stores) them in the storage section 33. The predetermined time unit is, for example, a time unit equivalent to 10 seconds.
 次に、解析部34は、3Hリスク推定値の算出回数を管理するためのカウント値iをi=0に設定し、初期化する(S13)。解析部34は、記憶部33に記憶された心電図信号を、時間的に連続する7単位(10秒×7=70秒分)抽出し(S14)、抽出した7単位の心電図信号それぞれにおいてRR間隔を算出する(S15)。心電図信号が正しく計測できている場合には、1単位(10秒)から8~10個程度のRR間隔が算出される。 Next, the analysis unit 34 sets a count value i for managing the number of calculations of the 3H risk estimate to i=0 and initializes it (S13). The analysis unit 34 extracts seven temporally continuous units (10 seconds x 7 = 70 seconds) from the electrocardiogram signal stored in the storage unit 33 (S14), and calculates the RR interval in each of the seven extracted units of the electrocardiogram signal. is calculated (S15). If the electrocardiogram signal is measured correctly, about 8 to 10 RR intervals are calculated from one unit (10 seconds).
 なお、ステップS15において、解析部34は、RR間隔を算出するために、所定のピーク検出アルゴリズム(例えば、Hamiltonアルゴリズム)を用いて心電図信号のR波を検出し、検出したR波に基づいてRR間隔を算出する。さらに、算出できたRR間隔は、0.4秒以上2秒以下の範囲のもの(心拍数に換算すると、30~150bpm)が採用される。 Note that in step S15, the analysis unit 34 detects the R wave of the electrocardiogram signal using a predetermined peak detection algorithm (for example, Hamilton algorithm) in order to calculate the RR interval, and calculates the RR based on the detected R wave. Calculate the interval. Further, the calculated RR interval is in the range of 0.4 seconds or more and 2 seconds or less (30 to 150 bpm when converted to heart rate).
 次に、解析部34は、ステップS15において算出したRR間隔の合計(合計時間)が60秒以上であるか否かを判定する(S16)。この判定は、3Hリスク推定値の精度を向上するために行われる。解析部34は、RR間隔の合計(合計時間)が60秒未満であると判定した場合には(S16でNo)、心電図信号を補充する(S17)。例えば、ステップS14で抽出された7単位の直後の心電図信号を1単位以上、記憶部33から抽出し、抽出した1単位以上の心電図信号においてRR間隔を算出することで、RR間隔の合計を60秒以上にする。 Next, the analysis unit 34 determines whether the total RR interval (total time) calculated in step S15 is 60 seconds or more (S16). This determination is made to improve the accuracy of the 3H risk estimate. If the analysis unit 34 determines that the total RR interval (total time) is less than 60 seconds (No in S16), it supplements the electrocardiogram signal (S17). For example, by extracting one or more units of the electrocardiogram signal immediately after the seven units extracted in step S14 from the storage unit 33 and calculating the RR interval in the extracted one or more units of electrocardiogram signal, the total RR interval can be set to 60. Make it more than seconds.
 なお、ステップS17における心電図信号の補充方法は特に限定されず、ステップS14で抽出された7単位のうち、算出できたRR間隔の小計(小計時間)が少ない単位(例えば、10秒の80%、8秒未満の単位)が除外された上で、心電図信号が補充されてもよい。 Note that the method for replenishing the electrocardiogram signal in step S17 is not particularly limited, and among the seven units extracted in step S14, a unit with a smaller subtotal (subtotal time) of the calculated RR intervals (for example, 80% of 10 seconds, (units of less than 8 seconds) may be excluded and the electrocardiogram signal may be supplemented.
 解析部34により、RR間隔の合計(合計時間)が60秒以上であると判定された場合(S16でYes)、及び、心電図信号の補充が行われた場合(S17)には、3Hリスク推定部35は、合計60秒分以上のRR間隔に基づいて、心拍変動に関する特徴量を算出する(S18)。心拍変動に関する特徴量は、心拍変動パラメータなどと呼ばれる場合もある。心拍変動に関する特徴量には、合計60秒分以上のRR間隔の平均、合計60秒分以上のRR間隔の分散、標準偏差、LF、HF、LF/HF、RMSSD(Root Mean Square of Successive Differences)、シャノン・エントロピー(Shannon Entropy)、及び、フィッシャー情報量(Fisher Information)などの少なくとも1つが含まれる。なお、LFは、Low Frequencyの略であり、0.05Hz~0.15Hzのパワースペクトルに相当する。HFは、High Frequencyの略であり、0.15Hz~0.40Hzの周波数成分のパワースペクトルに相当する。 If the analysis unit 34 determines that the total RR interval (total time) is 60 seconds or more (Yes in S16) and if the electrocardiogram signal is supplemented (S17), 3H risk estimation is performed. The unit 35 calculates a feature amount related to heart rate fluctuation based on the RR interval of 60 seconds or more in total (S18). The feature amount related to heart rate variability is sometimes called a heart rate variability parameter. Features related to heart rate variability include the average of RR intervals for a total of 60 seconds or more, variance of RR intervals for a total of 60 seconds or more, standard deviation, LF, HF, LF/HF, RMSSD (Root Mean Square of Successive Differences). , Shannon Entropy, Fisher Information, and the like. Note that LF is an abbreviation for Low Frequency, and corresponds to a power spectrum of 0.05 Hz to 0.15 Hz. HF is an abbreviation for High Frequency, and corresponds to a power spectrum of frequency components from 0.15 Hz to 0.40 Hz.
 次に、3Hリスク推定部35は、3Hリスク推定値を算出する(S19)。3Hリスク推定部35は、例えば、機械学習モデルを用いて3Hリスク推定値を算出する。この機械学習モデルは、例えば、ロジスティック回帰が適用されたモデルであり、多数の被験者の、属性情報及び心電変動に関する特徴量に、医師等による3Hリスクの有無の判断結果(リスクあり:1、リスクなし:0)を対応付けたデータを学習データ(教師データ)として構築された学習済みモデルである。機械学習モデルは、ステップS11において取得された属性情報、及び、ステップS18で算出された心拍変動に関する特徴量を入力すると、0以上1以下の数値を3Hリスク推定値として出力する。3Hリスク推定値は、例えば、3Hリスクが高いほど1に近づき、3Hリスクが低いほど0に近づく。 Next, the 3H risk estimation unit 35 calculates the 3H risk estimate (S19). The 3H risk estimation unit 35 calculates a 3H risk estimate using, for example, a machine learning model. This machine learning model is a model to which, for example, logistic regression is applied, and the results of a doctor's judgment of the presence or absence of 3H risk (risk: 1, This is a trained model that was constructed using data associated with ``no risk: 0'' as learning data (teacher data). When the machine learning model receives the attribute information acquired in step S11 and the feature amount related to heart rate variability calculated in step S18, it outputs a numerical value between 0 and 1 as a 3H risk estimate. For example, the higher the 3H risk, the closer the 3H risk estimate is to 1, and the lower the 3H risk, the closer to 0.
 次に、解析部34は、カウント値iをインクリメント(i=i+1)し(S20)、インクリメント後のカウント値がn(nは2以上の自然数)に達したか否かを判定する(S21)。nは、3Hリスク推定値の算出回数に相当する数値である。 Next, the analysis unit 34 increments the count value i (i=i+1) (S20), and determines whether the count value after the increment reaches n (n is a natural number of 2 or more) (S21) . n is a numerical value corresponding to the number of calculations of the 3H risk estimate.
 解析部34によりインクリメント後のカウント値がnに達していないと判定されると(S21でNo)、ステップS14~S20の処理がもう一度行われる。ここで、1回目のステップS14において心電図信号全体の0秒から70秒までの区間に相当する心電図信号が抽出されたとすると、2回目のステップS14においては、例えば、1単位の時間(10秒)が後ろにシフトされた、心電図信号全体の10秒から80秒までの区間に相当する心電図信号が抽出される。つまり、解析部34は、複数回分の3Hリスク推定値を算出するために、心電図信号の区間を変更して複数回分のRR間隔を算出する。便座装置10によって計測される心電図信号の時間長には限りがある(心電図信号を十分に長い時間計測できるケースは少ない)ことから、1回目の区間と2回目の区間との間に重複する区間を設ける構成手段は有用である。 If the analysis unit 34 determines that the count value after incrementing has not reached n (No in S21), the processes of steps S14 to S20 are performed once again. Here, if an electrocardiogram signal corresponding to the interval from 0 seconds to 70 seconds of the entire electrocardiogram signal is extracted in the first step S14, in the second step S14, for example, one unit of time (10 seconds) is extracted. An electrocardiogram signal corresponding to the interval from 10 seconds to 80 seconds of the entire electrocardiogram signal, in which the ECG signal is shifted backward, is extracted. That is, the analysis unit 34 changes the section of the electrocardiogram signal and calculates the RR interval for the plurality of times in order to calculate the 3H risk estimate for the plurality of times. Since the time length of the electrocardiogram signal measured by the toilet seat device 10 is limited (there are few cases in which the electrocardiogram signal can be measured for a sufficiently long time), there is an overlap between the first section and the second section. A configuration means that provides the following is useful.
 解析部34によりインクリメント後のカウント値がnに達したと判定されると(S21でYes)、判定部36は、3Hリスク推定部35によって算出されたn回分の3Hリスク推定値に基づいて、ユーザが3Hリスクを有するか否かを判定する(S22)。判定部36は、例えば、算出されたn回分の3Hリスク推定値の最大値を代表推定値とし、代表推定値が閾値よりも大きい場合にユーザが3Hリスクを有すると判定し、代表推定値が閾値以下である場合にユーザが3Hリスクを有しないと判定する。閾値は、例えば、0.6であるが、経験的または実験的に適宜定められればよい。代表推定値は、算出されたn回分の3Hリスク推定値の統計量(例えば、最小値、平均値、または、中央値など)であってもよい。 When the analysis unit 34 determines that the count value after incrementing has reached n (Yes in S21), the determination unit 36, based on the n times of 3H risk estimation values calculated by the 3H risk estimation unit 35, It is determined whether the user has a 3H risk (S22). For example, the determination unit 36 sets the maximum value of the n calculated 3H risk estimates as the representative estimate, determines that the user has a 3H risk when the representative estimate is larger than the threshold, and determines that the representative estimate is If it is below the threshold value, it is determined that the user does not have a 3H risk. The threshold value is, for example, 0.6, but may be appropriately determined empirically or experimentally. The representative estimated value may be a statistic (eg, minimum value, average value, median value, etc.) of the n calculated 3H risk estimated values.
 図5は、健康管理システム100による3Hリスクの判定結果を示す図であり、図5の横軸は、被験者の番号を示し、被験者1~4は、3Hリスクがあると医師、または検査機関等によってあらかじめ判断された被験者であり、被験者5~7は、3Hリスクがないと医師、または検査機関等によってあらかじめ判断された被験者である。 FIG. 5 is a diagram showing the determination results of 3H risk by the health management system 100. The horizontal axis of FIG. Subjects 5 to 7 are subjects who have been determined in advance by a doctor or testing organization to have no 3H risk.
 図5における1つの点は、図4の動作に基づいて算出された3Hリスク推定値を示す。1人の被験者に対して複数の点がプロットされている場合、当該被験者については、図4の動作に基づいて3Hリスク推定値が複数回分算出されたことを意味する。 One point in FIG. 5 shows the 3H risk estimate calculated based on the operations in FIG. 4. When multiple points are plotted for one subject, it means that the 3H risk estimate has been calculated multiple times for that subject based on the operation in FIG. 4 .
 図5に示されるように、3Hリスクがある被験者1~4は、3Hリスク推定値の最大値(代表推定値)がいずれも閾値(0.6)を超えており、3Hリスクがない被験者5~7は、3Hリスク推定値の最大値(代表推定値)がいずれも閾値(0.6)以下となっている。このように、判定部36は、ユーザが3Hリスクを有するか否かを判定することができる。 As shown in Figure 5, subjects 1 to 4 with 3H risk all have the maximum value (representative estimate) of the 3H risk estimate exceeding the threshold (0.6), and subject 5 with no 3H risk -7, the maximum value (representative estimate) of the 3H risk estimate is all below the threshold (0.6). In this way, the determination unit 36 can determine whether the user has a 3H risk.
 次に、血管調整度推定部37は、3Hリスク推定部35によって算出された複数回分の3Hリスク推定値に基づいてユーザの血管調整度を推定する(S23)。血管調整度は、血管の収縮による心拍の調整機能を示すパラメータであり、血管がやわらかい(血管がしなやかで収縮しやすい)場合には大きい数値となり、血管の収縮による心拍の調整機能が高いことを意味する。また、血管調整度は、血管が硬い(動脈効果に近い)場合には小さい数値となり、血管の収縮による心拍の調整機能が低いことを意味する。血管調整度は、いわゆる血管年齢(血管の外側のしなやかさ)に近い概念であるが、血管年齢だけでなく血管の内側の血流のなめらかさを含む概念である。 Next, the vascular adjustment degree estimation unit 37 estimates the user's vascular adjustment degree based on the multiple 3H risk estimation values calculated by the 3H risk estimation unit 35 (S23). The degree of vascular regulation is a parameter that indicates the ability to adjust the heart rate through constriction of blood vessels.If the blood vessels are soft (the blood vessels are flexible and easily contract), the value will be large, indicating that the ability to adjust the heart rate through constriction of the blood vessels is high. means. In addition, the degree of vascular regulation becomes a small value when the blood vessels are hard (close to the arterial effect), which means that the ability to regulate the heart rate due to the contraction of the blood vessels is low. The degree of vascular adjustment is a concept similar to the so-called vascular age (the flexibility of the outside of the blood vessel), but it is a concept that includes not only the vascular age but also the smoothness of blood flow inside the blood vessel.
 被験者の血管調整度が高い(血管の収縮による心拍の調整機能が高い)場合には、呼吸の影響等によりステップS18において算出される心拍変動に関する特徴量が変化しやすく、結果として3Hリスク推定値がばらつきやすいと考えられる。被験者の血管調整度が低い(血管の収縮による心拍の調整機能が低い)場合には、呼吸の影響等によりステップS18において算出される心拍変動に関する特徴量が変化しにくく、結果として3Hリスク推定値がばらつきにくいと考えられる。 When the degree of vascular regulation of the subject is high (high ability to regulate heart rate due to constriction of blood vessels), the feature amount related to heart rate variability calculated in step S18 is likely to change due to the influence of breathing, etc., and as a result, the 3H risk estimate is considered to be likely to vary. If the degree of vascular adjustment of the subject is low (the ability to adjust heart rate due to vascular contraction is low), the feature amount related to heart rate fluctuation calculated in step S18 is difficult to change due to the influence of breathing, etc., and as a result, the 3H risk estimate is considered to be less likely to vary.
 そこで、血管調整度推定部37は、具体的には、複数回分の3Hリスク推定値の最大値と最小値との差(図5の双方向矢印に相当)を、ユーザの血管調整度の数値(相対変化の尺度)とする。例えば、図5の被験者No.2は、3Hリスク推定値の最大値が0.74、最小値が0.66であるので血管調整度は、0.08となる。被験者No.3は、3Hリスク推定値の最大値が0.98、最小値が0.95であるので血管調整度は、0.03となる。 Therefore, specifically, the vascular adjustment degree estimating unit 37 calculates the difference between the maximum value and the minimum value (corresponding to the two-way arrow in FIG. 5) of the 3H risk estimation values for multiple times to the numerical value of the user's vascular adjustment degree. (measure of relative change). For example, subject No. in FIG. 2, the maximum value of the 3H risk estimate is 0.74 and the minimum value is 0.66, so the degree of blood vessel adjustment is 0.08. Subject no. 3, the maximum value of the 3H risk estimate is 0.98 and the minimum value is 0.95, so the degree of blood vessel adjustment is 0.03.
 図5の被験者No.5は、3Hリスク推定値の最大値が0.53、最小値が0.50であるので血管調整度は、0.03となる。被験者No.7は、3Hリスク推定値の最大値が0.58、最小値が0.48であるので血管調整度は、0.10となる。 Subject No. in Figure 5. 5, the maximum value of the 3H risk estimate is 0.53 and the minimum value is 0.50, so the degree of blood vessel adjustment is 0.03. Subject no. 7, the maximum value of the 3H risk estimate is 0.58 and the minimum value is 0.48, so the degree of blood vessel adjustment is 0.10.
 次に、判定部36は、ステップS22における3Hリスクの有無の判定結果に関する提示を行うための情報を出力し、血管調整度推定部37は、ステップS23において推定された血管調整度に関する提示を行うための情報を出力する。この結果、サーバ装置30からは、これら2つの情報を含む提示情報が出力される(S24)。 Next, the determination unit 36 outputs information for presenting the determination result of the presence or absence of 3H risk in step S22, and the vascular adjustment degree estimating unit 37 presents the estimated vascular adjustment degree in step S23. Output information for. As a result, presentation information including these two pieces of information is output from the server device 30 (S24).
 提示情報は、サーバ装置30から情報端末40へ送信され、情報端末40(表示部41)は、受信した提示情報に基づいて、ステップS22における3Hリスクの有無の判定結果、及び、ステップS23における血管調整度の推定結果を示す表示画面を表示する。図6は、このような表示画面の一例を示す図である。図6に示されるように、血管調整度は、例えば、血管調整度の数値に応じて段階的に定性化された上で表示される。血管調整度は、例えば、血管調整度が良い、普通、悪いの3段階に定性化される。 The presentation information is transmitted from the server device 30 to the information terminal 40, and the information terminal 40 (display unit 41) determines the presence or absence of 3H risk in step S22 and the blood vessel risk in step S23 based on the received presentation information. A display screen showing the adjustment degree estimation result is displayed. FIG. 6 is a diagram showing an example of such a display screen. As shown in FIG. 6, the degree of blood vessel adjustment is displayed after being qualified in stages according to the numerical value of the degree of blood vessel adjustment, for example. The degree of blood vessel regulation is, for example, qualified into three levels: good, fair, and poor.
 以上説明したように、健康管理システム100は、ユーザの3Hリスクの有無を判定し、かつ、ユーザの血管調整度を推定することができる。 As described above, the health management system 100 can determine whether the user has a 3H risk and can estimate the user's degree of vascular adjustment.
 (実施の形態2)
 [構成]
 以下、実施の形態2に係る健康管理システムの構成について説明する。図7は、実施の形態2に係る健康管理システムの構成を示す図である。健康管理システム100aは、便座装置10と、サーバ装置30aと、情報端末40とを備える。実施の形態1に係る健康管理システム100との相違点は、サーバ装置30aの機能的な構成要素である。
(Embodiment 2)
[composition]
The configuration of the health management system according to the second embodiment will be described below. FIG. 7 is a diagram showing the configuration of a health management system according to the second embodiment. The health management system 100a includes a toilet seat device 10, a server device 30a, and an information terminal 40. The difference from the health management system 100 according to the first embodiment is the functional components of the server device 30a.
 サーバ装置30aは、具体的には、取得部31、前処理部32、記憶部33、解析部34、3Hリスク推定部35、判定部36、及び、血管調整度推定部37に加えて、血圧寄与度推定部38と、糖質過剰度推定部39aとを備える。血圧寄与度推定部38、及び、糖質過剰度推定部39aのそれぞれは、サーバ装置30aが備える1つまたは複数のプロセッサ(ハードウェア)が記憶部33などのメモリに記憶されたコンピュータプログラム(ソフトウェア)を実行することによって実現される機能的な構成要素である。 Specifically, the server device 30a includes, in addition to an acquisition unit 31, a preprocessing unit 32, a storage unit 33, an analysis unit 34, a 3H risk estimation unit 35, a determination unit 36, and a blood vessel regulation degree estimation unit 37, It includes a contribution estimation section 38 and a carbohydrate excess estimation section 39a. Each of the blood pressure contribution estimating unit 38 and the carbohydrate excess estimating unit 39a is configured by one or more processors (hardware) included in the server device 30a using a computer program (software) stored in a memory such as the storage unit 33. ) is a functional component realized by executing
 健康管理システム100aにおいて、取得部31は、ユーザの心電図信号、及び、ユーザの属性情報に加えて、ユーザの血圧値を取得する。 In the health management system 100a, the acquisition unit 31 acquires the user's blood pressure value in addition to the user's electrocardiogram signal and the user's attribute information.
 血圧寄与度推定部38は、取得されたユーザの血圧値に基づいて、ユーザの3Hリスクの代表推定値(複数回分の3Hリスク推定値の最大値)に対して血圧が寄与する程度を示す血圧寄与度を推定する。 Based on the acquired blood pressure value of the user, the blood pressure contribution estimating unit 38 calculates a blood pressure that indicates the extent to which the blood pressure contributes to the representative estimated value of the user's 3H risk (the maximum value of the 3H risk estimated values for multiple times). Estimate the contribution.
 糖質過剰度推定部39aは、ユーザの3Hリスクの代表推定値と、推定された血圧寄与度との差に基づいて糖質過剰度を推定する。また、糖質過剰度推定部39aは、推定された糖質過剰度に関する提示を行うための情報を出力する。 The sugar excess degree estimating unit 39a estimates the sugar excess degree based on the difference between the representative estimated value of the user's 3H risk and the estimated blood pressure contribution. Furthermore, the carbohydrate excess degree estimating unit 39a outputs information for presenting the estimated carbohydrate excess degree.
 [動作例]
 次に、健康管理システム100aの動作例について説明する。図8は、健康管理システム100aの動作例のフローチャートである。
[Operation example]
Next, an example of the operation of the health management system 100a will be described. FIG. 8 is a flowchart of an example of the operation of the health management system 100a.
 まず、サーバ装置30aの取得部31は、ユーザの心電図信号、及び、ユーザの属性情報に加えて、ユーザの血圧値を取得する(S11a)。ユーザの血圧値には、収縮期の血圧値(いわゆる上の血圧値)と、拡張期の血圧値(いわゆる下の血圧値)とが含まれる。ユーザの血圧値は、例えば、情報端末40へ入力されたものであり、情報端末40からサーバ装置30aへ送信される。ユーザの血圧値の取得経路は特に限定されない。ユーザの血圧値は、ユーザの血圧値を管理する、血圧センサまたはサーバ装置などからサーバ装置30aへ送信され、取得部31によって取得されてもよい。 First, the acquisition unit 31 of the server device 30a acquires the user's blood pressure value in addition to the user's electrocardiogram signal and the user's attribute information (S11a). The user's blood pressure values include a systolic blood pressure value (so-called upper blood pressure value) and a diastolic blood pressure value (so-called lower blood pressure value). The user's blood pressure value is, for example, input into the information terminal 40 and transmitted from the information terminal 40 to the server device 30a. The acquisition route of the user's blood pressure value is not particularly limited. The user's blood pressure value may be transmitted to the server device 30a from a blood pressure sensor or a server device that manages the user's blood pressure value, and may be acquired by the acquisition unit 31.
 ステップS12~ステップS23の処理は、実施の形態1の動作例(図4)と同様である。 The processing of steps S12 to S23 is similar to the operation example of the first embodiment (FIG. 4).
 ステップS23の次に、血圧寄与度推定部38は、取得されたユーザの血圧値に基づいて、ユーザの3Hリスクの代表推定値(複数回分の3Hリスク推定値の最大値)に対して血圧が寄与する程度を示す血圧寄与度を推定する(S25)。血圧寄与度は、ユーザの3Hリスクの代表推定値の一部に相当する数値であり、代表推定値において血管要因のリスクがどの程度あるかを示すパラメータである。血圧寄与度は、取得された血圧値(収縮期の血圧値[mmHg]/拡張期の血圧値[mmHg])の平均である平均血圧値[mmHg]と相関関係を有し、平均血圧値が高いほど血圧寄与度が高くなる。 Next to step S23, the blood pressure contribution estimating unit 38 determines whether the blood pressure is higher than the representative estimated value of the user's 3H risk (the maximum value of the multiple 3H risk estimated values) based on the acquired blood pressure value of the user. The degree of blood pressure contribution indicating the degree of contribution is estimated (S25). The blood pressure contribution degree is a numerical value corresponding to a part of the representative estimated value of the user's 3H risk, and is a parameter indicating how much risk there is due to vascular factors in the representative estimated value. The blood pressure contribution degree has a correlation with the average blood pressure value [mmHg], which is the average of the acquired blood pressure values (systolic blood pressure value [mmHg]/diastolic blood pressure value [mmHg]), and the average blood pressure value The higher the value, the higher the contribution to blood pressure.
 発明者は、機械学習モデルを用いた3Hリスク推定値の算出の性質から、ユーザの平均血圧値(後述)と3Hリスク(図10)との順序関係を鑑みた。血圧寄与度を平均血圧値の一次関数であると考え、正常血圧値120/80(平均血圧値100[mmHg])、要指導域の血圧値130/85(平均血圧値107.5[mmHg])、診断基準の血圧値140/90(平均血圧値115[mmHg])に対して血圧寄与度を設定することで図9のような推定式(回帰式)y=0.0133x-0.8333を得た。図9は、血圧寄与度の推定式を示す図である。なお、このような推定式は一例であり、推定式は、経験的または実験的に適宜定められればよい。 The inventor considered the order relationship between the user's average blood pressure value (described later) and the 3H risk (FIG. 10) from the nature of calculating the 3H risk estimate using a machine learning model. Considering the blood pressure contribution as a linear function of the average blood pressure value, the normal blood pressure value is 120/80 (average blood pressure value 100 [mmHg]), and the blood pressure value in the guidance area is 130/85 (average blood pressure value 107.5 [mmHg]). ), by setting the blood pressure contribution degree for the diagnostic standard blood pressure value 140/90 (average blood pressure value 115 [mmHg]), an estimation formula (regression formula) as shown in Fig. 9 y = 0.0133x - 0.8333 I got it. FIG. 9 is a diagram showing an estimation formula for blood pressure contribution. Note that such an estimation formula is an example, and the estimation formula may be appropriately determined empirically or experimentally.
 血圧寄与度推定部38は、このような推定式に、ステップS11aにおいて取得された血圧値によって定まる平均血圧値を代入することで、血圧寄与度を推定する。例えば、図5の被験者No.3の血圧値は126/91である。血圧寄与度推定部38は、被験者No.3の血圧寄与度を0.62(図9の右側の四角印)と推定することができる。また、図5の被験者No.4の血圧値は117/70である。血圧寄与度推定部38は、被験者No.4の血圧寄与度を0.41(図9の左側の四角印)と推定することができる。 The blood pressure contribution estimating unit 38 estimates the blood pressure contribution by substituting the average blood pressure value determined by the blood pressure value acquired in step S11a into such an estimation formula. For example, subject No. in FIG. 3's blood pressure value is 126/91. The blood pressure contribution estimating unit 38 uses subject no. 3 can be estimated to be 0.62 (square mark on the right side of FIG. 9). Furthermore, subject No. in FIG. 4's blood pressure value is 117/70. The blood pressure contribution estimating unit 38 uses subject no. 4 can be estimated to be 0.41 (square mark on the left side of FIG. 9).
 次に、糖質過剰度推定部39aは、ユーザの3Hリスクの代表推定値と、推定された血圧寄与度との差に基づいて糖質過剰度を推定する(S26a)。糖質過剰度は、ユーザの3Hリスクの代表推定値の他の一部に相当する数値である。上記血圧寄与度が代表推定値における血管要因のリスクを示すパラメータであるのに対し、糖質過剰度は代表推定値における血液要因のリスクを示すパラメータである。 Next, the sugar excess degree estimating unit 39a estimates the sugar excess degree based on the difference between the representative estimated value of the user's 3H risk and the estimated blood pressure contribution (S26a). The sugar excess degree is a numerical value corresponding to another part of the representative estimated value of the user's 3H risk. While the blood pressure contribution is a parameter that indicates the risk of blood vessel factors in the representative estimated value, the carbohydrate excess degree is a parameter that indicates the risk of blood factors in the representative estimated value.
 糖質過剰度は、より具体的には、代表推定値において血液中の糖質(ブドウ糖)が過剰であることに起因するリスクがどの程度あるかを示すパラメータである。糖質過剰度は、ユーザが食物から糖質を摂取したときの、ユーザの体内における血糖及びグリコーゲンの過剰度合いを示すともいえる。また、糖質過剰度は、血液の粘性(ねばねば度)を示すパラメータであると考えることもできる。なお、血液中の糖はグリコーゲンを経て、余った分は中性脂肪に変わることから、糖質過剰度は、高血糖及び高脂血の両方に共通する状態を示す概念であると考えることもできる。 More specifically, the degree of carbohydrate excess is a parameter that indicates how much risk there is due to excessive carbohydrate (glucose) in the blood in the representative estimated value. The degree of carbohydrate excess can also be said to indicate the degree of excess of blood sugar and glycogen in the user's body when the user ingests carbohydrates from food. Furthermore, the degree of carbohydrate excess can also be considered to be a parameter indicating the viscosity (stickiness) of blood. Furthermore, since sugar in the blood passes through glycogen and the excess is converted to neutral fat, sugar excess can be considered a concept that indicates a condition common to both hyperglycemia and hyperlipidemia. can.
 糖質過剰度推定部39aは、具体的には、ユーザの3Hリスクの代表推定値と、推定された血圧寄与度との差を糖質過剰度の数値として推定する。例えば、図5の被験者No.3、及び被験者No.4の、血圧寄与度及び糖質過剰度は、図10のように推定される。図10は、血圧寄与度及び糖質過剰度の推定例を示す図である。 Specifically, the sugar excess degree estimating unit 39a estimates the difference between the representative estimated value of the user's 3H risk and the estimated blood pressure contribution as a numerical value of the sugar excess degree. For example, subject No. in FIG. 3, and subject no. 4, blood pressure contribution and carbohydrate excess are estimated as shown in FIG. FIG. 10 is a diagram showing an example of estimating blood pressure contribution and carbohydrate excess.
 図10に示されるように、被験者No.3の3Hリスクの代表推定値は0.97であり、血圧寄与度は0.62である。そうすると、被験者No.3の糖質過剰度は、0.97-0.62=0.35となる。また、被験者No.5の3Hリスクの代表推定値は0.72であり、血圧寄与度は0.41である。そうすると、被験者No.3の糖質過剰度は、0.72-0.41=0.31となる。 As shown in FIG. 10, subject No. The representative estimate of the 3H risk for 3 is 0.97, and the blood pressure contribution is 0.62. Then, subject no. The degree of carbohydrate excess in No. 3 is 0.97-0.62=0.35. Also, subject no. The representative estimate of the 3H risk for 5 is 0.72, and the blood pressure contribution is 0.41. Then, subject no. The degree of carbohydrate excess in No. 3 is 0.72-0.41=0.31.
 次に、判定部36は、ステップS22における3Hリスクの有無の判定結果に関する提示を行うための情報を出力し、血管調整度推定部37は、ステップS23において推定された血管調整度に関する提示を行うための情報を出力する。また、糖質過剰度推定部39aは、ステップS26aにおいて推定された糖質過剰度に関する提示を行うための情報を出力する。この結果、サーバ装置30aからは、これら3つの情報を含む提示情報が出力される(S27a)。 Next, the determination unit 36 outputs information for presenting the determination result of the presence or absence of 3H risk in step S22, and the vascular adjustment degree estimating unit 37 presents the estimated vascular adjustment degree in step S23. Output information for. Furthermore, the carbohydrate excess degree estimating unit 39a outputs information for presenting the carbohydrate excess degree estimated in step S26a. As a result, presentation information including these three pieces of information is output from the server device 30a (S27a).
 提示情報は、サーバ装置30aから情報端末40へ送信され、情報端末40(表示部41)は、受信した提示情報に基づいて、ステップS22における3Hリスクの有無の判定結果、ステップS23における血管調整度の推定結果、及び、ステップS26aにおける糖質過剰度の推定結果を示す表示画面を表示する。図11は、このような表示画面の一例を示す図である。図11に示されるように、糖質過剰度は、例えば、糖質過剰度の数値に応じて段階的に定性化された上で表示される。糖質過剰度は、例えば、糖質の摂取が、過剰、やや多い、通常の3段階に定性化される。これにより、健康管理システム100aは、ユーザが無意識に糖質を過剰に摂取することを抑止するきっかけを与えることができる。なお、情報端末40は、推定結果に応じた具体的な改善行動をユーザに促す表示画面を表示してもよい。例えば、情報端末40は、昼食時に摂取する糖質を野菜(ブロッコリー等)に変更することを促す表示画面を表示してもよい。 The presentation information is transmitted from the server device 30a to the information terminal 40, and the information terminal 40 (display unit 41) displays the determination result of the presence or absence of 3H risk in step S22 and the degree of vascular adjustment in step S23 based on the received presentation information. A display screen is displayed that shows the estimation result of , and the estimation result of the carbohydrate excess degree in step S26a. FIG. 11 is a diagram showing an example of such a display screen. As shown in FIG. 11, the degree of carbohydrate excess is displayed after being qualified in stages according to the numerical value of the degree of carbohydrate excess, for example. The degree of carbohydrate excess is determined, for example, by categorizing carbohydrate intake into three levels: excessive, slightly high, and normal. Thereby, the health management system 100a can provide an opportunity to prevent the user from unconsciously ingesting excessive amounts of carbohydrates. Note that the information terminal 40 may display a display screen that prompts the user to take specific improvement actions according to the estimation results. For example, the information terminal 40 may display a display screen that prompts the user to change the carbohydrates consumed at lunch to vegetables (such as broccoli).
 以上説明したように、健康管理システム100aは、ユーザの糖質過剰度を推定することができる。 As explained above, the health management system 100a can estimate the user's degree of carbohydrate excess.
 (実施の形態3)
 [構成]
 以下、実施の形態3に係る健康管理システムの構成について説明する。図12は、実施の形態3に係る健康管理システムの構成を示す図である。健康管理システム100bは、便座装置10と、サーバ装置30bと、情報端末40とを備える。実施の形態2に係る健康管理システム100aとの相違点は、サーバ装置30bの機能的な構成要素である。
(Embodiment 3)
[composition]
The configuration of the health management system according to Embodiment 3 will be described below. FIG. 12 is a diagram showing the configuration of a health management system according to the third embodiment. The health management system 100b includes a toilet seat device 10, a server device 30b, and an information terminal 40. The difference from the health management system 100a according to the second embodiment is the functional components of the server device 30b.
 サーバ装置30bは、サーバ装置30aが備える糖質過剰度推定部39aに代えて、代謝異常度推定部39bを備える。代謝異常度推定部39bは、サーバ装置30bが備える1つまたは複数のプロセッサ(ハードウェア)が記憶部33などのメモリに記憶されたコンピュータプログラム(ソフトウェア)を実行することによって実現される機能的な構成要素である。 The server device 30b includes a metabolic abnormality degree estimating unit 39b in place of the carbohydrate excess degree estimating unit 39a included in the server device 30a. The metabolic abnormality degree estimation unit 39b is a functional It is a constituent element.
 代謝異常度推定部39bは、ユーザの3Hリスクの代表推定値と、推定された血圧寄与度との差に基づいて代謝異常度を推定する。また、代謝異常度推定部39bは、推定された代謝異常度に関する提示を行うための情報を出力する。 The metabolic abnormality degree estimating unit 39b estimates the metabolic abnormality degree based on the difference between the representative estimated value of the user's 3H risk and the estimated blood pressure contribution. Further, the metabolic abnormality degree estimating unit 39b outputs information for presenting the estimated metabolic abnormality degree.
 [動作例]
 次に、健康管理システム100bの動作例について説明する。図13は、健康管理システム100bの動作例のフローチャートである。
[Operation example]
Next, an example of the operation of the health management system 100b will be described. FIG. 13 is a flowchart of an example of the operation of the health management system 100b.
 ステップS11a、ステップS12~ステップS23、及び、ステップS25の処理は、実施の形態2の動作例(図8)と同様である。 The processes in step S11a, steps S12 to S23, and step S25 are similar to the operation example of the second embodiment (FIG. 8).
 ステップS25の次に、代謝異常度推定部39bは、ユーザの3Hリスクの代表推定値と、推定された血圧寄与度との差に基づいて代謝異常度を推定する(S26b)。代謝異常度は、ユーザの3Hリスクの代表推定値の他の一部に相当する数値である。上記血圧寄与度が代表推定値における血管要因のリスクを示すパラメータであるのに対し、代謝異常度は代表推定値における血液要因のリスクを示すパラメータである。 Next to step S25, the metabolic abnormality degree estimating unit 39b estimates the metabolic abnormality degree based on the difference between the representative estimated value of the user's 3H risk and the estimated blood pressure contribution (S26b). The degree of metabolic abnormality is a numerical value corresponding to another part of the representative estimated value of the user's 3H risk. While the blood pressure contribution degree is a parameter indicating the risk of vascular factors in the representative estimated value, the degree of metabolic abnormality is a parameter indicating the risk of blood factors in the representative estimated value.
 実施の形態2で説明した血液中の糖質(ブドウ糖)が過剰である状態は、代謝に異常がある(健康な人よりも代謝機能が劣っている)状態を反映していると考えられる。つまり、実施の形態2の糖質過剰度は、代謝異常度と考えることもできる。そこで、代謝異常度推定部39bは、代謝異常度を推定する。 The state in which sugar (glucose) in the blood is excessive as described in Embodiment 2 is considered to reflect a state in which there is an abnormality in metabolism (metabolic function is inferior to that of a healthy person). In other words, the degree of carbohydrate excess in Embodiment 2 can also be considered as the degree of metabolic abnormality. Therefore, the metabolic abnormality degree estimation unit 39b estimates the metabolic abnormality degree.
 代謝異常度の推定方法は、糖質過剰度の推定方法と同様である。代謝異常度推定部39bは、具体的には、ユーザの3Hリスクの代表推定値と、推定された血圧寄与度との差を代謝異常度の数値として推定する。 The method for estimating the degree of metabolic abnormality is the same as the method for estimating the degree of carbohydrate excess. Specifically, the metabolic abnormality degree estimation unit 39b estimates the difference between the representative estimated value of the user's 3H risk and the estimated blood pressure contribution degree as a numerical value of the metabolic abnormality degree.
 次に、判定部36は、ステップS22における3Hリスクの有無の判定結果に関する提示を行うための情報を出力し、血管調整度推定部37は、ステップS23において推定された血管調整度に関する提示を行うための情報を出力する。また、代謝異常度推定部39bは、ステップS26bにおいて推定された代謝異常度に関する提示を行うための情報を出力する。この結果、サーバ装置30bからは、これら3つの情報を含む提示情報が出力される(S27b)。 Next, the determination unit 36 outputs information for presenting the determination result of the presence or absence of 3H risk in step S22, and the vascular adjustment degree estimating unit 37 presents the estimated vascular adjustment degree in step S23. Output information for. Further, the metabolic abnormality degree estimating unit 39b outputs information for presenting the metabolic abnormality degree estimated in step S26b. As a result, presentation information including these three pieces of information is output from the server device 30b (S27b).
 提示情報は、サーバ装置30bから情報端末40へ送信され、情報端末40(表示部41)は、受信した提示情報に基づいて、ステップS22における3Hリスクの有無の判定結果、ステップS23における血管調整度の推定結果、及び、ステップS26bにおける代謝異常度の推定結果を示す表示画面を表示する。図14は、このような表示画面の一例を示す図である。図14に示されるように、代謝異常度は、例えば、代謝異常度の数値に応じて段階的に定性化された上で表示される。代謝異常度は、例えば、代謝の状態が、悪い、やや悪い、通常の3段階に定性化される。これにより、健康管理システム100bは、ユーザの代謝を改善するきっかけを与えることができる。なお、情報端末40は、推定結果に応じた具体的な改善行動をユーザに促す表示画面を表示してもよい。例えば、情報端末40は、一日の歩数を2000歩多くすることをユーザに促す表示画面を表示してもよいし、室内で簡易的な筋トレ(7秒スクワット等)を行うことをユーザに促す表示画面を表示してもよい。 The presentation information is transmitted from the server device 30b to the information terminal 40, and the information terminal 40 (display unit 41) displays the determination result of the presence or absence of 3H risk in step S22 and the degree of vascular adjustment in step S23 based on the received presentation information. , and a display screen showing the estimation results of the degree of metabolic abnormality in step S26b. FIG. 14 is a diagram showing an example of such a display screen. As shown in FIG. 14, the degree of metabolic abnormality is displayed after being qualified in stages according to the numerical value of the degree of metabolic abnormality, for example. The degree of metabolic abnormality is determined, for example, by categorizing the metabolic state into three levels: poor, somewhat poor, and normal. Thereby, the health management system 100b can provide an opportunity to improve the user's metabolism. Note that the information terminal 40 may display a display screen that prompts the user to take specific improvement actions according to the estimation results. For example, the information terminal 40 may display a display screen that encourages the user to increase the number of steps per day by 2,000, or may prompt the user to do a simple muscle training indoors (such as 7-second squats). A display screen may be displayed to prompt the user.
 以上説明したように、健康管理システム100bは、ユーザの代謝異常度を推定することができる。 As explained above, the health management system 100b can estimate the degree of metabolic abnormality of the user.
 (効果等)
 以上説明したように、健康管理システム100は、電極を備える便座装置10により電極を用いて計測されたユーザの心電図信号を取得する取得部31と、取得された心電図信号の一部の区間を対象にRR間隔を算出する解析部34であって、区間を変更して複数回分のRR間隔を算出する解析部34と、算出された複数回分のRR間隔に基づいて、ユーザが高血圧症、高血糖症、及び、高脂血症の少なくとも1つに該当するリスクの推定値である3Hリスク推定値を複数回分算出する推定部とを備える。推定部は、算出された複数回分の3Hリスク推定値に基づいて、血管の収縮による心拍の調整機能を示す血管調整度を推定し、推定された血管調整度に関する提示を行うための情報を出力する。ここでの推定部は、上記実施の形態の3Hリスク推定部35、及び、血管調整度推定部37に相当する。
(Effects, etc.)
As described above, the health management system 100 includes the acquisition unit 31 that acquires the user's electrocardiogram signal measured using the electrode by the toilet seat device 10 equipped with the electrode, and the acquisition unit 31 that acquires the electrocardiogram signal of the user measured using the electrode. The analysis unit 34 calculates the RR interval for a plurality of times by changing the interval, and the analysis unit 34 calculates the RR interval for a plurality of times by changing the interval. and an estimating unit that calculates a plurality of 3H risk estimated values that are estimated values of risks corresponding to at least one of hyperlipidemia and hyperlipidemia. The estimating unit estimates a degree of vascular adjustment that indicates the adjustment function of heart rate due to contraction of blood vessels based on the calculated multiple 3H risk estimates, and outputs information for presenting the estimated degree of vascular adjustment. do. The estimating section here corresponds to the 3H risk estimating section 35 and the vascular adjustment degree estimating section 37 of the above embodiment.
 このような健康管理システム100は、健康リスクに関する情報を提示することができる。具体的には、健康管理システム100は、血管調整度に関する情報を提示することができる。 Such a health management system 100 can present information regarding health risks. Specifically, the health management system 100 can present information regarding the degree of vascular regulation.
 また、例えば、推定部は、複数回分の前記3Hリスク推定値の最大値と最小値との差に基づいて、ユーザの血管調整度を推定する。 Also, for example, the estimating unit estimates the user's degree of vascular adjustment based on the difference between the maximum value and the minimum value of the 3H risk estimation values for a plurality of times.
 このような健康管理システム100は、血管調整度に関する情報を提示することができる。 Such a health management system 100 can present information regarding the degree of blood vessel regulation.
 また、例えば、健康管理システム100aまたは健康管理システム100bにおいては、取得部31は、さらに、ユーザの血圧値を取得する。推定部は、複数回分の3Hリスク推定値の最大値をユーザの3Hリスクの代表推定値とし、取得された前記血圧値に基づいて、前記代表推定値に対して血圧が寄与する程度を示す血圧寄与度を推定する。ここでの推定部は、上記実施の形態の血圧寄与度推定部38に相当する。 Furthermore, for example, in the health management system 100a or the health management system 100b, the acquisition unit 31 further acquires the user's blood pressure value. The estimating unit takes the maximum value of the multiple 3H risk estimates as a representative estimate of the user's 3H risk, and based on the acquired blood pressure value, calculates a blood pressure that indicates the extent to which blood pressure contributes to the representative estimate. Estimate the contribution. The estimation section here corresponds to the blood pressure contribution estimation section 38 of the above embodiment.
 このような健康管理システム100aは、血圧寄与度を推定することができる。 Such a health management system 100a can estimate blood pressure contribution.
 また、例えば、健康管理システム100aにおいては、推定部は、さらに、代表推定値と、推定された血圧寄与度との差に基づいて糖質過剰度を推定し、推定された糖質過剰度に関する提示を行うための情報を出力する。ここでの推定部は、上記実施の形態の糖質過剰度推定部39aに相当する。 For example, in the health management system 100a, the estimating unit further estimates the degree of carbohydrate excess based on the difference between the representative estimate and the estimated blood pressure contribution, and relates to the estimated degree of carbohydrate excess. Output information for presentation. The estimating section here corresponds to the sugar excess degree estimating section 39a of the above embodiment.
 このような健康管理システム100aは、糖質過剰度に関する情報を提示することができる。 Such a health management system 100a can present information regarding the degree of carbohydrate excess.
 また、例えば、健康管理システム100bにおいては、推定部は、さらに、代表推定値と、推定された血圧寄与度との差に基づいて代謝異常度を推定し、推定された代謝異常度に関する提示を行うための情報を出力する。ここでの推定部は、上記実施の形態の代謝異常度推定部39bに相当する。 For example, in the health management system 100b, the estimating unit further estimates the degree of metabolic abnormality based on the difference between the representative estimate and the estimated blood pressure contribution, and provides a presentation regarding the estimated degree of metabolic abnormality. Output information to do so. The estimating section here corresponds to the metabolic abnormality degree estimating section 39b of the above embodiment.
 このような健康管理システム100bは、代謝異常度に関する情報を提示することができる。 Such a health management system 100b can present information regarding the degree of metabolic abnormality.
 また、例えば、健康管理システム100は、さらに、取得された心電図信号に前処理を行う前処理部32を備える。解析部34は、取得された心電図信号であって前処理が行われた心電図信号の一部の区間を対象にRR間隔を算出する。前処理には、周波数帯域を制限する処理、及び、振幅が所定値以上となる期間を除外する処理が含まれる。 For example, the health management system 100 further includes a preprocessing unit 32 that performs preprocessing on the acquired electrocardiogram signal. The analysis unit 34 calculates the RR interval for a part of the acquired electrocardiogram signal that has undergone preprocessing. The preprocessing includes a process of limiting the frequency band and a process of excluding a period in which the amplitude is equal to or greater than a predetermined value.
 このような健康管理システム100は、心電図信号に前処理を行うことで、3Hリスク推定値の推定精度の向上を図ることができる。 Such a health management system 100 can improve the estimation accuracy of the 3H risk estimate by performing preprocessing on the electrocardiogram signal.
 また、例えば、健康管理システム100は、さらに、算出された複数回分の3Hリスク推定値の最大値が閾値よりも大きい場合にユーザが3Hリスクを有すると判定し、算出された複数回分の前記3Hリスク推定値の最大値が閾値以下である場合に前記ユーザが3Hリスクを有しないと判定する判定部36を備える。判定部36は、3Hリスクの有無の判定結果に関する提示を行うための情報を出力する。 For example, the health management system 100 further determines that the user has a 3H risk when the maximum value of the calculated 3H risk estimates for the plurality of doses is larger than the threshold, and determines that the user has a 3H risk for the calculated multiple doses. A determination unit 36 is provided that determines that the user does not have a 3H risk when the maximum value of the estimated risk value is less than or equal to a threshold value. The determination unit 36 outputs information for presenting the determination result of the presence or absence of 3H risk.
 このような健康管理システム100は、3Hリスクの有無の判定結果に関する情報を提示することができる。 Such a health management system 100 can present information regarding the determination result of the presence or absence of 3H risk.
 また、例えば、取得部31は、さらに、ユーザの属性情報を取得する。推定部は、算出された複数回分のRR間隔、及び、取得された属性情報に基づいて、複数回分の3Hリスク推定値を算出する。ここでの推定部は、上記実施の形態の3Hリスク推定部35に相当する。 For example, the acquisition unit 31 further acquires user attribute information. The estimation unit calculates 3H risk estimates for multiple times based on the calculated RR intervals for multiple times and the acquired attribute information. The estimating section here corresponds to the 3H risk estimating section 35 of the above embodiment.
 このような健康管理システム100は、ユーザの属性情報を考慮して3Hリスク推定値を算出することができる。 Such a health management system 100 can calculate a 3H risk estimate in consideration of the user's attribute information.
 また、例えば、健康管理システム100は、さらに、便座装置10と、出力された血管調整度に関する提示を行うための情報に基づいて画像を表示する表示部41とを備える。 For example, the health management system 100 further includes the toilet seat device 10 and a display unit 41 that displays an image based on the output information for presenting the degree of blood vessel adjustment.
 このような健康管理システム100は、血管調整度に関する画像を提示することができる。 Such a health management system 100 can present images related to the degree of blood vessel regulation.
 また、健康管理システム100などのコンピュータによって実行される健康管理方法は、電極を備える便座装置10により電極を用いて計測されたユーザの心電図信号を取得する第1取得ステップS11と、取得された心電図信号の一部の区間を対象にRR間隔を算出する解析ステップS15であって、区間を変更して複数回分のRR間隔を算出する解析ステップS15と、算出された複数回分のRR間隔に基づいて、ユーザが高血圧症、高血糖症、及び、高脂血症の少なくとも1つに該当するリスクの推定値である3Hリスク推定値を複数回分算出する第1推定ステップS19と、算出された複数回分の3Hリスク推定値に基づいて、血管の収縮による心拍の調整機能を示す血管調整度を推定する第2推定ステップS23と、推定された血管調整度に関する提示を行うための情報を出力する第1出力ステップS24とを含む。 In addition, the health management method executed by a computer such as the health management system 100 includes a first acquisition step S11 of acquiring an electrocardiogram signal of the user measured using the electrode by the toilet seat device 10 provided with the electrode, and the acquired electrocardiogram signal. An analysis step S15 for calculating an RR interval for a part of the signal section, an analysis step S15 for calculating an RR interval for a plurality of times by changing the section, and an analysis step S15 for calculating an RR interval for a plurality of times based on the calculated RR interval for a plurality of times. , a first estimation step S19 in which the user calculates a 3H risk estimate, which is an estimated value of the risk corresponding to at least one of hypertension, hyperglycemia, and hyperlipidemia, for multiple times, and for the calculated multiple times; A second estimation step S23 of estimating the degree of vascular adjustment indicating the adjustment function of heart rate due to contraction of the blood vessels based on the 3H risk estimation value of and an output step S24.
 このような健康管理方法は、血管調整度に関する情報を提示することができる。 Such a health management method can present information regarding the degree of vascular regulation.
 また、例えば、健康管理方法は、さらに、ユーザの血圧値を取得する第2取得ステップS11aと、複数回分の3Hリスク推定値の最大値を前記ユーザの3Hリスクの代表推定値とし、取得された血圧値に基づいて、代表推定値に対して血圧が寄与する程度を示す血圧寄与度を推定する第3推定ステップS25と、代表推定値と、推定された血圧寄与度との差に基づいて糖質過剰度を推定する第4推定ステップS26aと、推定された糖質過剰度に関する提示を行うための情報を出力する第2出力ステップS27aとを含む。 For example, the health management method further includes a second acquisition step S11a of acquiring the user's blood pressure value, and setting the maximum value of the plurality of 3H risk estimates as a representative estimate of the 3H risk of the user. A third estimation step S25 of estimating a blood pressure contribution indicating the extent to which blood pressure contributes to the representative estimated value based on the blood pressure value; It includes a fourth estimation step S26a for estimating the sugar excess degree, and a second output step S27a for outputting information for presenting the estimated sugar excess degree.
 このような健康管理方法は、糖質過剰度に関する情報を提示することができる。 Such a health management method can present information regarding the degree of carbohydrate excess.
 (その他の実施の形態)
 以上、実施の形態について説明したが、本発明は、このような実施の形態に限定されるものではない。
(Other embodiments)
Although the embodiments have been described above, the present invention is not limited to such embodiments.
 例えば、上記実施の形態では、心電図信号は便座装置によって計測されたが、心電計などの他の装置によって計測されてもよい。つまり、健康管理システムは、便座装置以外の装置によって計測された心電図信号に基づいて、3Hリスク等を推定してもよい。 For example, in the above embodiment, the electrocardiogram signal is measured by the toilet seat device, but it may be measured by another device such as an electrocardiograph. That is, the health management system may estimate the 3H risk etc. based on the electrocardiogram signal measured by a device other than the toilet seat device.
 また、上記実施の形態では、健康管理システムは、複数の装置によって実現された。この場合、上記実施の形態で説明された健康管理システムが備える機能的な構成要素は、複数の装置にどのように振り分けられてもよい。例えば、前処理部は、サーバ装置に代えて便座装置によって備えられてもよく、サーバ装置の取得部は、前処理済みの心電図信号を便座装置から取得してもよい。 Furthermore, in the above embodiments, the health management system is realized by a plurality of devices. In this case, the functional components included in the health care system described in the above embodiments may be distributed to the plurality of devices in any manner. For example, the preprocessing section may be provided by the toilet seat device instead of the server device, and the acquisition section of the server device may acquire the preprocessed electrocardiogram signal from the toilet seat device.
 また、上記実施の形態において、特定の処理部が実行する処理を別の処理部が実行してもよい。また、複数の処理の順序が変更されてもよいし、複数の処理が並行して実行されてもよい。例えば、血管調整度の推定、及び、糖質過剰度(または代謝異常度)の推定は、順次行われてもよいし、並行して行われてもよい。 Furthermore, in the above embodiments, the processing executed by a specific processing unit may be executed by another processing unit. Further, the order of the plurality of processes may be changed, or the plurality of processes may be executed in parallel. For example, estimation of the degree of vascular regulation and estimation of the degree of carbohydrate excess (or degree of metabolic abnormality) may be performed sequentially or in parallel.
 また、本発明の全般的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよい。また、システム、装置、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。 Furthermore, the general or specific aspects of the present invention may be implemented in a system, device, method, integrated circuit, computer program, or computer-readable recording medium such as a CD-ROM. Further, the present invention may be realized by any combination of a system, an apparatus, a method, an integrated circuit, a computer program, and a recording medium.
 例えば、本発明は、上記実施の形態に係るサーバ装置として実現されてもよい。本発明は、健康管理システムなどのコンピュータによって実行される健康管理方法として実現されてもよい。また、本発明は、このような健康管理方法をコンピュータに実行させるためのプログラムとして実現されてもよいし、このようなプログラムが記録されたコンピュータ読み取り可能な非一時的な記録媒体として実現されてもよい。 For example, the present invention may be realized as a server device according to the above embodiment. The present invention may be realized as a health management method executed by a computer such as a health management system. Further, the present invention may be realized as a program for causing a computer to execute such a health management method, or may be realized as a computer-readable non-temporary recording medium in which such a program is recorded. Good too.
 その他、本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、一つまたは複数の態様の範囲内に含まれてもよい。 In addition, without departing from the spirit of the present invention, various modifications that can be thought of by those skilled in the art may be made to this embodiment, and embodiments constructed by combining components of different embodiments may also be incorporated into one or more embodiments. may be included within the range.
 10 便座装置
 20 便座
 21 第1電極
 22 第2電極
 23 ボディアース電極
 30、30a、30b サーバ装置
 31 取得部
 32 前処理部
 33 記憶部
 34 解析部
 35 3Hリスク推定部
 36 判定部
 37 血管調整度推定部
 38 血圧寄与度推定部
 39a 糖質過剰度推定部
 39b 代謝異常度推定部
 40 情報端末
 41 表示部
 100、100a、100b 健康管理システム
10 Toilet seat device 20 Toilet seat 21 First electrode 22 Second electrode 23 Body earth electrode 30, 30a, 30b Server device 31 Acquisition unit 32 Preprocessing unit 33 Storage unit 34 Analysis unit 35 3H risk estimation unit 36 Judgment unit 37 Estimation of vascular adjustment degree Section 38 Blood pressure contribution estimation section 39a Carbohydrate excess estimation section 39b Metabolic abnormality estimation section 40 Information terminal 41 Display section 100, 100a, 100b Health management system

Claims (12)

  1.  電極を備える便座装置により前記電極を用いて計測されたユーザの心電図信号を取得する取得部と、
     取得された前記心電図信号の一部の区間を対象にRR間隔を算出する解析部であって、前記区間を変更して複数回分のRR間隔を算出する前記解析部と、
     算出された複数回分の前記RR間隔に基づいて、前記ユーザが高血圧症、高血糖症、及び、高脂血症の少なくとも1つに該当するリスクの推定値である3Hリスク推定値を複数回分算出する推定部とを備え、
     前記推定部は、算出された複数回分の前記3Hリスク推定値に基づいて、血管の収縮による心拍の調整機能を示す血管調整度を推定し、推定された前記血管調整度に関する提示を行うための情報を出力する
     健康管理システム。
    an acquisition unit that acquires a user's electrocardiogram signal measured using the electrode by a toilet seat device including the electrode;
    an analysis unit that calculates an RR interval for a partial section of the acquired electrocardiogram signal, the analysis unit that calculates a plurality of RR intervals by changing the section;
    Based on the calculated RR interval for multiple times, calculate a 3H risk estimate value for multiple times, which is an estimated value of the risk that the user falls under at least one of hypertension, hyperglycemia, and hyperlipidemia. and an estimator to
    The estimating unit is configured to estimate a degree of vascular adjustment indicating a function of adjusting heart rate due to contraction of blood vessels based on the calculated 3H risk estimate values for a plurality of times, and to provide a presentation regarding the estimated degree of vascular adjustment. A health management system that outputs information.
  2.  前記推定部は、複数回分の前記3Hリスク推定値の最大値と最小値との差に基づいて、前記ユーザの前記血管調整度を推定する
     請求項1に記載の健康管理システム。
    The health management system according to claim 1, wherein the estimator estimates the vascular adjustment degree of the user based on a difference between a maximum value and a minimum value of the 3H risk estimation values for a plurality of times.
  3.  前記取得部は、さらに、前記ユーザの血圧値を取得し、
     前記推定部は、
     複数回分の前記3Hリスク推定値の最大値を前記ユーザの3Hリスクの代表推定値とし、
     取得された前記血圧値に基づいて、前記代表推定値に対して血圧が寄与する程度を示す血圧寄与度を推定する
     請求項1または2に記載の健康管理システム。
    The acquisition unit further acquires the blood pressure value of the user,
    The estimation unit is
    The maximum value of the 3H risk estimates for multiple times is set as a representative estimate of the 3H risk of the user,
    The health management system according to claim 1 or 2, wherein a blood pressure contribution degree indicating a degree of contribution of blood pressure to the representative estimated value is estimated based on the acquired blood pressure value.
  4.  前記推定部は、さらに、
     前記代表推定値と、推定された前記血圧寄与度との差に基づいて糖質過剰度を推定し、
     推定された前記糖質過剰度に関する提示を行うための情報を出力する
     請求項3に記載の健康管理システム。
    The estimation unit further includes:
    estimating the degree of carbohydrate excess based on the difference between the representative estimate and the estimated blood pressure contribution;
    The health management system according to claim 3, wherein information for presenting the estimated degree of carbohydrate excess is output.
  5.  前記推定部は、さらに、
     前記代表推定値と、推定された前記血圧寄与度との差に基づいて代謝異常度を推定し、
     推定された前記代謝異常度に関する提示を行うための情報を出力する
     請求項3に記載の健康管理システム。
    The estimation unit further includes:
    Estimating the degree of metabolic abnormality based on the difference between the representative estimated value and the estimated blood pressure contribution degree,
    The health management system according to claim 3, wherein information for presenting the estimated degree of metabolic abnormality is output.
  6.  さらに、取得された前記心電図信号に前処理を行う前処理部を備え、
     前記解析部は、取得された前記心電図信号であって前記前処理が行われた前記心電図信号の一部の区間を対象に前記RR間隔を算出し、
     前記前処理には、周波数帯域を制限する処理、及び、振幅が所定値以上となる期間を除外する処理が含まれる
     請求項1に記載の健康管理システム。
    Furthermore, a preprocessing unit that performs preprocessing on the acquired electrocardiogram signal,
    The analysis unit calculates the RR interval for a part of the acquired electrocardiogram signal that has undergone the preprocessing,
    The health care system according to claim 1, wherein the preprocessing includes processing to limit a frequency band and processing to exclude a period in which the amplitude is equal to or greater than a predetermined value.
  7.  さらに、算出された複数回分の前記3Hリスク推定値の最大値が閾値よりも大きい場合に前記ユーザが3Hリスクを有すると判定し、算出された複数回分の前記3Hリスク推定値の最大値が前記閾値以下である場合に前記ユーザが3Hリスクを有しないと判定する判定部を備え、
     前記判定部は、3Hリスクの有無の判定結果に関する提示を行うための情報を出力する
     請求項1に記載の健康管理システム。
    Furthermore, it is determined that the user has a 3H risk when the maximum value of the calculated 3H risk estimation value for the plurality of times is larger than a threshold value, and the maximum value of the calculated 3H risk estimation value for the plurality of times is greater than the threshold value. comprising a determination unit that determines that the user does not have a 3H risk when the value is below a threshold;
    The health management system according to claim 1, wherein the determination unit outputs information for presenting the determination result of the presence or absence of 3H risk.
  8.  前記取得部は、さらに、前記ユーザの属性情報を取得し、
     前記推定部は、算出された複数回分の前記RR間隔、及び、取得された前記属性情報に基づいて、複数回分の前記3Hリスク推定値を算出する
     請求項1に記載の健康管理システム。
    The acquisition unit further acquires attribute information of the user,
    The health management system according to claim 1, wherein the estimation unit calculates the 3H risk estimate for multiple times based on the calculated RR interval for multiple times and the acquired attribute information.
  9.  さらに、
     前記便座装置と、
     前記出力された前記血管調整度に関する提示を行うための情報に基づいて画像を表示する表示部とを備える
     請求項1に記載の健康管理システム。
    moreover,
    The toilet seat device;
    The health management system according to claim 1, further comprising a display unit that displays an image based on the output information for presenting the degree of blood vessel adjustment.
  10.  コンピュータによって実行される健康管理方法であって、
     電極を備える便座装置により前記電極を用いて計測されたユーザの心電図信号を取得する第1取得ステップと、
     取得された前記心電図信号の一部の区間を対象にRR間隔を算出する解析ステップであって、前記区間を変更して複数回分のRR間隔を算出する前記解析ステップと、
     算出された複数回分の前記RR間隔に基づいて、前記ユーザが高血圧症、高血糖症、及び、高脂血症の少なくとも1つに該当するリスクの推定値である3Hリスク推定値を複数回分算出する第1推定ステップと、
     算出された複数回分の前記3Hリスク推定値に基づいて、血管の収縮による心拍の調整機能を示す血管調整度を推定する第2推定ステップと、
     推定された前記血管調整度に関する提示を行うための情報を出力する第1出力ステップとを含む
     健康管理方法。
    A health management method performed by a computer, the method comprising:
    a first acquisition step of acquiring a user's electrocardiogram signal measured using the electrode by a toilet seat device including the electrode;
    an analysis step of calculating an RR interval for a partial section of the acquired electrocardiogram signal, the analysis step of calculating a plurality of RR intervals by changing the section;
    Based on the calculated RR interval for multiple times, calculate a 3H risk estimate value for multiple times, which is an estimated value of the risk that the user falls under at least one of hypertension, hyperglycemia, and hyperlipidemia. a first estimation step of
    a second estimation step of estimating a degree of vascular adjustment indicating a heart rate adjustment function due to vascular contraction, based on the calculated 3H risk estimate values for a plurality of times;
    a first output step of outputting information for presenting the estimated degree of blood vessel regulation.
  11.  さらに、前記ユーザの血圧値を取得する第2取得ステップと、
     複数回分の前記3Hリスク推定値の最大値を前記ユーザの3Hリスクの代表推定値とし、取得された前記血圧値に基づいて、前記代表推定値に対して血圧が寄与する程度を示す血圧寄与度を推定する第3推定ステップと、
     前記代表推定値と、推定された前記血圧寄与度との差に基づいて糖質過剰度を推定する第4推定ステップと、
     推定された前記糖質過剰度に関する提示を行うための情報を出力する第2出力ステップとを含む
     請求項10に記載の健康管理方法。
    Furthermore, a second acquisition step of acquiring the blood pressure value of the user;
    The maximum value of the 3H risk estimates for a plurality of times is taken as a representative estimate of the 3H risk of the user, and a blood pressure contribution degree indicating the extent to which blood pressure contributes to the representative estimate based on the acquired blood pressure value. a third estimation step of estimating
    a fourth estimation step of estimating the degree of carbohydrate excess based on the difference between the representative estimated value and the estimated blood pressure contribution;
    The health management method according to claim 10, further comprising: a second output step of outputting information for presenting the estimated degree of carbohydrate excess.
  12.  請求項10または11に記載の健康管理方法をコンピュータに実行させるためのプログラム。 A program for causing a computer to execute the health management method according to claim 10 or 11.
PCT/JP2023/014962 2022-05-17 2023-04-13 Health management system and health management method WO2023223725A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-081040 2022-05-17
JP2022081040 2022-05-17

Publications (1)

Publication Number Publication Date
WO2023223725A1 true WO2023223725A1 (en) 2023-11-23

Family

ID=88835347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014962 WO2023223725A1 (en) 2022-05-17 2023-04-13 Health management system and health management method

Country Status (1)

Country Link
WO (1) WO2023223725A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002102247A1 (en) * 2001-06-14 2002-12-27 Dainippon Pharmaceutical Co., Ltd. Organism signal data transmitting/receiving system and its method
WO2016006250A1 (en) * 2014-07-11 2016-01-14 パナソニックIpマネジメント株式会社 Biological information measurement device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002102247A1 (en) * 2001-06-14 2002-12-27 Dainippon Pharmaceutical Co., Ltd. Organism signal data transmitting/receiving system and its method
WO2016006250A1 (en) * 2014-07-11 2016-01-14 パナソニックIpマネジメント株式会社 Biological information measurement device

Similar Documents

Publication Publication Date Title
JP6047346B2 (en) Biological information processing system, wearable device, server system, and program
US8529457B2 (en) System and kit for stress and relaxation management
US8668649B2 (en) System for cardiac status determination
WO2017008138A1 (en) Device for measuring biological signals
Grossman et al. Accuracy of ventilatory measurement employing ambulatory inductive plethysmography during tasks of everyday life
US10595776B1 (en) Determining energy expenditure using a wearable device
US10307100B2 (en) Methods and systems of controlling a subject's body feature having a periodic wave function
EP3801227B1 (en) Method and apparatus for estimating a trend in a blood pressure surrogate
Bellia et al. Exercise individualized by TRIMPi method reduces arterial stiffness in early onset type 2 diabetic patients: a randomized controlled trial with aerobic interval training
Subramanian et al. Comparison of baroreflex sensitivity and cardiac autonomic function between adolescent athlete and non-athlete boys–a cross-sectional study
Kos et al. Can accelerometry data improve estimates of heart rate variability from wrist pulse PPG sensors?
KR20200099248A (en) Estimation method of blood vessel elasticity and arrhythmia using skin image
WO2023223725A1 (en) Health management system and health management method
Naschitz et al. Patterns of cardiovascular reactivity in disease diagnosis
Małek et al. Accuracy of impedance cardiography for hemodynamic assessment during rest and exercise in wheelchair rugby players
WO2009138927A1 (en) A method and apparatus for monitoring blood pressure
CA3141123C (en) Portable dehydration monitoring system
Hoevenaars et al. Accuracy of heart rate measurement by the fitbit charge 2 During wheelchair activities in people With spinal cord injury: Instrument validation study
Spartano et al. Accelerometer-determined physical activity and the cardiovascular response to mental stress in children
KR102418338B1 (en) Apparatus for measuring fasting blood glucose using continuous blood glucose data and method thereof
US20240008813A1 (en) Smart wearable device and method for estimating traditional medicine system parameters
Luo et al. Quantitative analysis of heart rate variability parameter and mental stress index
KR101989684B1 (en) System for healthy lifestyle for schizophrenia patients using application on smart device
Hailla The Challenges and Possibilities of Long-term Self-monitoring of Health
Resnick Determinining clinically relevant measures for evaluating recovery in collegiate athletes using heart rate variability and the RESTQ-Sport

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807338

Country of ref document: EP

Kind code of ref document: A1