WO2023223656A1 - Actuator - Google Patents

Actuator Download PDF

Info

Publication number
WO2023223656A1
WO2023223656A1 PCT/JP2023/010834 JP2023010834W WO2023223656A1 WO 2023223656 A1 WO2023223656 A1 WO 2023223656A1 JP 2023010834 W JP2023010834 W JP 2023010834W WO 2023223656 A1 WO2023223656 A1 WO 2023223656A1
Authority
WO
WIPO (PCT)
Prior art keywords
load side
space
air
load
rotating shaft
Prior art date
Application number
PCT/JP2023/010834
Other languages
French (fr)
Japanese (ja)
Inventor
セバスチャン マーカート
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Publication of WO2023223656A1 publication Critical patent/WO2023223656A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine

Definitions

  • the present disclosure relates to an actuator.
  • Patent Document 1 discloses an actuator that includes a rotating shaft and a motor that rotates the rotating shaft.
  • One of the objectives of the present disclosure is to provide a technology that can cool internal parts of a motor.
  • An actuator of the present disclosure includes a rotating shaft and a motor that rotates the rotating shaft, and the motor includes a rotor disposed on the rotating shaft and a rotor provided between the rotating shaft and the rotor. a first air passage that communicates a load side space on the load side with respect to the rotor and an anti-load side space on the anti-load side with respect to the rotor, the first air passage Air can be guided from the load side space to the counter load side space through the first air passage.
  • FIG. 3 is a side sectional view of the actuator of the first embodiment.
  • FIG. 2 is an enlarged view of FIG. 1;
  • FIG. 3 is a perspective view of the rotating shaft of the first embodiment. 2 is a sectional view taken along line AA in FIG. 1.
  • FIG. FIG. 3 is an explanatory diagram of the operation of the actuator of the first embodiment.
  • (A) is a diagram showing the results of fluid analysis, and
  • (B) is another diagram showing the results of fluid analysis.
  • FIG. 7 is an explanatory diagram of the operation of the actuator of the second embodiment.
  • FIG. 5 is a cross-sectional view of the actuator of the third embodiment viewed from the same viewpoint as FIG. 4; It is a side sectional view showing a part of actuator of a 4th embodiment. It is a perspective view showing a fan of a 4th embodiment.
  • the actuator 10 includes a rotating shaft 12, a motor 14 that rotates the rotating shaft 12, a reducer 16 connected to the load side of the motor 14, and a load-side cover 18 that covers the reducer 16 from the load side.
  • the direction along the rotation center line C12 of the rotating shaft 12 will be referred to as the axial direction .
  • the load side refers to one side in the axial direction X (the left side in FIG. 1)
  • the anti-load side refers to the other side in the axial direction X (the right side in FIG. 1).
  • the actuator 10 is supported by a support member 20 located outside the actuator 10, and drives a driven member 22 located outside the actuator 10.
  • a specific example of the driven member 22 is not particularly limited.
  • the driven member 22 is, for example, a part of a driven machine such as a conveyor, a wheel, a machine tool, or a robot (industrial robot, service robot, etc.).
  • the support member 20 of this embodiment is fixed to the reducer housing 28 of the reducer 16, and the driven member 22 is fixed to the load side cover 18.
  • the support member 20 may be fixed to the load-side cover 18 and the driven member 22 may be fixed to the reducer housing 28.
  • the speed reducer 16 includes an input shaft 24 which also serves as the rotating shaft 12, a speed reducer mechanism 26 to which input rotation is transmitted from the input shaft 24, and a speed reducer housing 28 that houses the speed reducer mechanism 26.
  • the speed reduction mechanism 26 of this embodiment is a flexural mesh gear mechanism that includes an external gear 30 and internal gears 32A and 32B that mesh with each other, one of which is a flexural gear (here, the external gear 30).
  • the deceleration mechanism 26 flexibly deforms the flexural gear so as to change the meshing position with other gears in the rotational direction of the input shaft 24.
  • the deceleration mechanism 26 rotates the external gear 30 and one of the internal gears 32A and 32B (in this case, the external gear 30) by the flexural deformation of the flexural gear, and uses the rotational component as an output rotation to drive the driven member 22. Output to.
  • the speed reduction mechanism 26 of this embodiment is a cylindrical flexible gear having a first internal gear 32A disposed on the anti-load side and a second internal gear 32B disposed on the load side as internal gears 32A and 32B. It is a meshing gear mechanism. Since the principle of operation of this type of speed reduction mechanism 26 is well known, the explanation thereof will be omitted here. An example will be described in which the speed reduction mechanism 26 of this embodiment outputs output rotation to the driven member 22 via the load side cover 18. In addition to this, the output rotation may be output to the driven member 22 via the reducer housing 28 instead of the load side cover 18.
  • a gear bearing 36 that rotatably supports the external gear 30 is arranged between the input shaft 24 and the external gear 30.
  • the reducer housing 28 of this embodiment includes a plurality of housing members 28a and 28b that are integrated with each other.
  • the plurality of housing members 28a, 28b include a first housing member 28a that also serves as the first internal gear 32A, and a second housing member 28b that is disposed radially outward with respect to the second internal gear 32B.
  • the reducer housing 28 is connected to the motor housing 66 of the motor 14 by bolts or the like.
  • a main bearing 38 is arranged between the reducer housing 28 and the second internal gear 32B.
  • the load-side cover 18 covers the speed reduction mechanism 26 and the input shaft 24, which also serves as the rotating shaft 12, from the load side as part of the speed reducer 16.
  • the load-side cover 18 functions as a synchronizing member that can synchronize with the rotation component of the external gear 30.
  • the load side cover 18 has a cylindrical shape as a whole.
  • the load-side cover 18 is overlapped with the first protrusion 32Ba that protrudes from the second internal gear 32B toward the load side, and is fixed to the second internal gear 32B using bolts (not shown) or the like.
  • the load-side cover 18 includes a second protrusion 18a that protrudes toward the opposite load side and engages with the first protrusion 32Ba of the second internal gear 32B through a spigot.
  • a load-side bearing 40 that rotatably supports a rotating shaft is arranged on the second protrusion 18a of the load-side cover 18.
  • the actuator 10 includes a pipe member 42 disposed within a hollow portion 12a (described later) of the rotating shaft 12.
  • the pipe member 42 passes through the hollow portion 12a of the rotating shaft 12 in the axial direction X.
  • the load side portion of the pipe member 42 is fixed to the load side cover 18 and is provided so as to be rotatable integrally with the load side cover 18.
  • the load side portion of the pipe member 42 of this embodiment is fixed to the load side cover 18 by tightly fitting into the through hole 18b formed in the load side cover 18.
  • This fixing mode is not particularly limited, and bolts or the like may be used.
  • the anti-load side portion of the pipe member 42 is rotatably supported by the rotating shaft 12 via an internal bearing 44 disposed between the pipe member 42 and the rotating shaft 12.
  • the actuator 10 includes a first rotation detector 46A that detects the rotation of the rotating shaft 12 and a second rotation detector 46B that detects the rotation of the pipe member 42.
  • the first rotation detector 46A includes a first detected part 46Aa that is provided to be rotatable integrally with the rotating shaft 12, and a first detection part 46Ab that faces the first detected part 46Aa.
  • the second rotation detector 46B includes a second detected part 46Ba that is provided to be rotatable integrally with the pipe member 42, and a second detection part 46Bb that faces the second detected part 46Ba.
  • the detected parts 46Aa and 46Ba are, for example, scales such as optical scales and magnetic scales.
  • the detection units 46Ab and 46Bb are, for example, sensors such as optical sensors and magnetic sensors.
  • the detection units 46Ab and 46Bb can detect the rotation of the rotating body (rotation shaft 12, pipe member 42) by detecting changes in predetermined physical quantities (light amount, magnetic field, etc.) accompanying the rotation of the detected units 46Aa and 46Ba. be.
  • the first detection section 46Ab and the second detection section 46Bb are mounted on a common sensor board 48.
  • Sensor board 48 is attached to a mount 50 that is secured to motor housing 66.
  • a driver board 52 equipped with a driver IC (not shown) used to control the motor 14 is attached to the mount 50 .
  • a rotor shaft 60 on which a rotor 62 of a motor 14 is arranged and an input shaft 24 of a reducer 16 to which rotation of the rotor shaft 60 is input are integrated.
  • the rotor shaft 60 and the input shaft 24 are made of the same member.
  • the rotor shaft 60 and the input shaft 24 of the rotating shaft 12 may be constructed from different members.
  • the rotating shaft 12 includes a hollow portion 12a that penetrates the rotating shaft 12 in the axial direction A flange portion 12d provided at the opposite end of the load side.
  • the rotor arrangement portion 12b is provided on the outer circumference of the rotating shaft 12.
  • the rotor 62 is fixed to the rotor placement portion 12b using an adhesive or the like.
  • the rotor facing portion 12c is arranged on the opposite load side with respect to the rotor 62.
  • the rotor facing portion 12c is a stepped portion having an outer diameter larger than that of the rotor placement portion 12b toward the opposite load side.
  • the flange portion 12d has a larger outer diameter than the rotor placement portion 12b and the rotor facing portion 12c.
  • the rotor facing portion 12c is in contact with the rotor 62 from the anti-load side, and restricts the axial movement of the rotor 62 toward the anti-load side.
  • the rotor facing portion 12c of this embodiment includes a protrusion 12e that protrudes toward the load side, and the protrusion 12e is in contact with the rotor 62.
  • the motor 14 includes a rotor 62 disposed on the rotating shaft 12, a stator 64 that cooperates with the rotor 62 to generate a rotating magnetic field that rotates the rotating shaft 12, and a motor housing 66 that houses the rotor 62, stator 64, etc. , is provided.
  • the rotor 62 has a cylindrical shape as a whole.
  • the rotor 62 is, for example, a permanent magnet rotor including a rotor core 68 and a magnet (not shown) incorporated in the rotor core 68.
  • the type of rotor 62 is not particularly limited, and may be a squirrel cage rotor, a wire-wound rotor, a coreless rotor, or the like.
  • the rotor 62 may include a metal bush instead of the rotor core 68.
  • the stator 64 includes, for example, a stator core 70 and a coil (not shown) built into the stator core 70.
  • the stator 64 is a slotted stator in which a slot (not shown) is formed in the stator core 70.
  • the coil is wound around the teeth of stator core 70 so as to pass through the slot of stator core 70.
  • illustration of the slots of the stator core 70 is omitted, and the outline of the entire stator 64 is schematically shown.
  • the type of stator 64 is not particularly limited, and may be a coreless stator in addition to a cored stator as in this embodiment. Further, the type of stator 64 may be a slotless stator or the like in addition to the slotted stator as in this embodiment.
  • An annular gap 72 is provided between the stator 64 and the rotor 62.
  • the motor housing 66 includes a stator placement portion 66a in which the stator 64 is placed, an inner flange portion 66b provided on the load side of the stator placement portion 66a, and an anti-load side opening portion 66c that opens toward the anti-load side. .
  • the stator 64 is fixed to the stator placement portion 66a using an interference fit (shrink fit), an adhesive, or the like.
  • the inner flange portion 66b protrudes radially inward at the inner peripheral portion of the motor housing 66.
  • An anti-load side bearing 74 that rotatably supports the rotary shaft 12 is arranged on the inner circumference of the inner flange portion 66b.
  • a hollow space 76 is provided within the hollow portion 12a of the rotating shaft 12.
  • the hollow space 76 extends not only into the hollow portion 12a but also into the space between the rotating shaft 12 and the load-side cover 18.
  • the load-side cover 18 separates a load-side external space 78 and a hollow space 76 on the load side of the actuator 10 in the axial direction X.
  • the hollow space 76 of this embodiment is constituted by a radially outer space 80 provided between the hollow portion 12a of the rotating shaft 12 and the pipe member 42.
  • the radially outer space 80 is separated from the counter-load-side external space 82 on the counter-load side of the actuator 10 by an internal seal member 84 disposed between the rotating shaft 12 and the pipe member 42 .
  • the radially outer space 80 (hollow space 76) does not directly communicate with the anti-load side external space 82.
  • the internal seal member 84 of this embodiment is incorporated into the internal bearing 44. In addition, the internal seal member 84 may be provided separately from the internal bearing 44.
  • a radially inner space 86 is provided inside the pipe member 42.
  • the radial inner space 86 penetrates the inside of the pipe member 42 in the axial direction X, and communicates with the load side outer space 78 and the counter-load side outer space 82 .
  • the motor 14 includes a motor interior space 88 that accommodates the stator 64 and rotor 62.
  • the motor internal space 88 includes a load side space 90 provided on the load side with respect to the rotor 62 and an anti-load side space 92 provided on the counter load side with respect to the rotor 62.
  • the load side space 90 is provided between the motor housing 66 and the rotating shaft 12.
  • the load side space 90 is provided between the inner flange portion 66b of the motor housing 66 and the rotor 62 and stator 64.
  • the counter-load side space 92 is provided between the motor housing 66 and the rotating shaft 12.
  • the counter-load side space 92 of this embodiment is provided at a position overlapping the stator 64 in the axial direction X on the counter-load side with respect to the stator 64.
  • the counter-load side space 92 communicates with an external space through a discharge portion 112 (described later) of the actuator 10.
  • the speed reducer 16 includes a speed reducer internal space 96 sealed by a plurality of seal members 94A to 94C.
  • a lubricant (not shown) used to lubricate the speed reduction mechanism 26 is sealed in the speed reducer internal space 96 .
  • the seal members 94A to 94C of this embodiment include a first seal member 94A that separates the motor internal space 88 and the reducer internal space 96, a second seal member 94B that separates the reducer internal space 96 and the hollow space 76, and a reducer It includes a third seal member 94C that separates the internal space 96 and the load side external space 78.
  • the reducer internal space 96 does not directly communicate with the motor internal space 88 and the hollow space 76, respectively.
  • the first seal member 94A of this embodiment is incorporated into the anti-load side bearing 74, and the second seal member 94B is incorporated into the load side bearing 40.
  • the first seal member 94A and the second seal member 94B may be provided separately from the bearings 40, 74 as oil seals or the like.
  • the motor 14 includes a first air passage 100 provided between the rotating shaft 12 and the rotor 62.
  • the first air passage 100 communicates the load side space 90 and the anti-load side space 92.
  • the first air passage 100 is provided to guide air from the load side space 90 to the anti-load side space 92, as will be described later.
  • the first air passage 100 of this embodiment directly communicates with the counter-load side space 92.
  • the first air passage 100 may communicate with the counter-load side space 92 through another space (for example, the gap 72).
  • the first air passage 100 includes an axial passage part 100a that extends in the axial direction, and a radial passage part 100b that is provided on the anti-load side space 92 side of the axial passage part 100a and extends in the radial direction.
  • the axial passage portion 100a is open toward the load side, and the radial passage portion 100b is open toward the outside in the radial direction.
  • a plurality of first air passages 100 are provided at intervals in the circumferential direction.
  • At least one of the rotating shaft 12 and the rotor 62 includes a first passage forming portion 102 that forms a first air passage 100 inside.
  • the first passage forming part 102 of this embodiment is a groove, and is provided in the rotating shaft 12.
  • the first passage forming portion 102 is provided in the rotor placement portion 12b and the rotor facing portion 12c of the rotating shaft 12.
  • the first passage forming part 102 forms an axial passage part 100a in the rotor arrangement part 12b, and a radial passage part 100b in the rotor facing part 12c. This means that the rotor 62 does not have the first passage forming portion 102 (groove) formed therein.
  • a second air passage 104 is provided between the inner circumference of the motor housing 66 and the outer circumference of the stator 64.
  • the second air passage 104 communicates the load side space 90 and the anti-load side space 92 and extends in the axial direction X.
  • the second air passage 104 is provided to circulate air between the load side space 90 and the anti-load side space 92.
  • a plurality of second air passages 104 are provided at intervals in the circumferential direction.
  • At least one of the motor housing 66 and the stator 64 includes a second passage forming portion 106 that forms a second air passage 104 inside.
  • the second passage forming portion 106 of this embodiment is a groove portion, and is provided in the inner peripheral portion of the motor housing 66.
  • the second passage forming portion 106 of the motor housing 66 extends further toward the load side than the load side end of the stator 64 and extends toward the opposite load side from the opposite end of the stator 64 .
  • the rotating shaft 12 includes a first air supply hole 108 that communicates the load-side space 90 within the motor 14 with the hollow portion 12a of the rotating shaft 12.
  • the first air supply hole 108 is provided to supply air from the external space to the load side space 90 through the hollow space 76 within the rotating shaft 12 when guiding air through the first air passage 100 .
  • the first air supply hole 108 penetrates the rotating shaft 12 in the radial direction.
  • a plurality of first air supply holes 108 are provided at intervals in the circumferential direction of the rotating shaft 12.
  • the first air supply hole 108 is provided individually corresponding to each of the plurality of first air passages 100.
  • the first air supply hole 108 is provided on an axial extension of the first air passage 100 in the vicinity of the first air passage 100 corresponding to the first air supply hole 108 when viewed from the outside in the radial direction.
  • the load-side cover 18 includes a second air supply hole 110 that communicates the hollow space 76 (radially outer space 80) in the rotating shaft 12 with the load-side external space 78.
  • the second air supply hole 110 is provided to supply air from the load-side external space 78 to the hollow space 76 within the rotating shaft 12 when air is guided through the first air passage 100 .
  • the second air supply hole 110 penetrates the load side cover 18.
  • a plurality of second air supply holes 110 are provided at intervals in the circumferential direction of the rotating shaft 12.
  • the hollow space 76 does not communicate directly with the load-side external space 78, but communicates through the second air supply hole 110.
  • the actuator 10 includes a discharge section 112 provided on the opposite load side of the rotor 62.
  • the discharge part 112 is used to discharge the air guided into the anti-load side space 92 by the first air passage 100 to the external space.
  • the discharge portion 112 of this embodiment is constituted by the anti-load side opening 66c of the motor housing 66. In this case, the discharge section 112 discharges the air guided into the counter-load side space 92 to the counter-load side external space 82 .
  • FIG. 5 the direction of air flow is indicated by an arrow.
  • centrifugal force acts on the air within the radial passage portion 100b of the first air passage 100. Due to this centrifugal force, the air in the radial passage portion 100b of the first air passage 100 is pushed outward in the radial direction and is supplied to the counter-load side space 92. Accordingly, the inside of the radial passage portion 100b of the first air passage 100 becomes negative pressure, and air is sucked into the first air passage 100 from the load side space 90.
  • the first air passage 100 can guide air from the load side space 90 to the anti-load side space 92 through the first air passage 100 as the rotating shaft 12 rotates.
  • the first air passage 100 can guide air in this way regardless of the rotational direction of the rotating shaft 12.
  • the load side space 90 When air is sucked into the first air passage 100 from the load side space 90, the load side space 90 becomes a negative pressure, and air from the external space is supplied to the load side space 90 via the inside of the actuator 10.
  • air is supplied to the load side space 90 via the load side external space 78 ⁇ second air supply hole 110 ⁇ hollow space 76 (radially outer space 80) ⁇ first air supply hole 108 in this order.
  • the air supplied to the counter-load side space 92 is discharged to the external space (here, the counter-load-side external space 82) through the discharge section 112.
  • the number and size of the plurality of first air supply holes 108 are adjusted so that a sufficient amount of air can be supplied to the load side space 90 inside the motor 14 through the first air supply holes 108. It is preferable that .
  • the number and size of the first air supply holes 108 are preferably set so that when the rotating shaft 12 rotates, the load side space 90 has a predetermined allowable negative pressure or more.
  • the number and size of the plurality of second air supply holes 110 are adjusted so that a sufficient amount of air can be supplied to the hollow space 76 in the rotating shaft 12 through the second air supply holes 110 in the process of generating forced convection. It is preferable that this is set.
  • the number and size of the second air supply holes 110 are preferably set so that when the rotating shaft 12 rotates, the hollow space 76 has a predetermined allowable negative pressure or more. Thereby, it is possible to prevent a reduction in transmission efficiency due to excessively negative pressure in the load-side space 90 in the motor 14 and the hollow space 76 in the rotating shaft 12.
  • the number of first air supply holes 108 and second air supply holes 110 is not particularly limited, and may be one.
  • the first air passage 100 is capable of guiding air from the load side space 90 to the anti-load side space 92 through the first air passage 100 as the rotating shaft 12 rotates. Thereby, forced convection can be generated in which air flows in the order of load side space 90 ⁇ first air passage 100 ⁇ anti-load side space 92.
  • the internal parts of the motor 14 can be cooled by dissipating the heat of the internal parts of the motor 14 (such as the rotor 62) to the forced convection air.
  • the rotor 62 can be effectively cooled by directly dissipating the heat of the rotor 62, which is a heat source, to the air flowing through the first air passage 100.
  • forced convection is generated to discharge air taken in from the external space outside the actuator 10 into the external space. Therefore, the heat of the motor 14 can be released to the cold air taken in from the outside space, and the internal parts of the motor 14 can be effectively cooled.
  • the frequency of derating control that suppresses the motor supply current when the temperature exceeds an allowable temperature can be reduced, and the actuator 10 can continuously output large torque.
  • the output (rotational speed) of the motor 14 can be increased by increasing the motor supply current while suppressing the temperature rise of the internal parts of the motor 14. Accordingly, by increasing the reduction ratio of the reducer 16, it becomes possible to output even larger torque from the actuator 10 while maintaining the rotational speed of the output rotation of the actuator 10.
  • a dedicated power source, a coolant circulation circuit, a fan, and other dedicated components for cooling can be eliminated, and an increase in the size of the actuator 10 can be avoided.
  • the rotating shaft 12 includes a first passage forming portion 102 that forms a first air passage 100 inside. Therefore, when providing the first air passage 100, it is not necessary to form the first passage forming part 102 in the rotor 62.
  • the actuator 10 includes a discharge section 112 that discharges the air guided into the counter-load side space 92 by the first air passage 100 to the external space. Therefore, the air heated by cooling the internal parts of the motor 14 can be released from the anti-load side space 92 to the outside space, and new air can be easily introduced into the load side space 90.
  • the rotating shaft 12 includes a first air supply hole 108 that communicates the load-side space 90 within the motor 14 with the hollow portion 12a of the rotating shaft 12. Therefore, when the rotating shaft 12 rotates, air can be supplied to the load side space 90 through the hollow portion 12a of the rotating shaft 12.
  • the load-side cover 18 includes a second air supply hole 110 that communicates the hollow space 76 in the hollow portion 12a of the rotating shaft 12 with the load-side external space 78.
  • the load-side external space 78 is in a high-temperature environment because it is located near heat sources such as the motor 14 and the driver board 52.
  • the counter-load-side external space 82 is usually in a lower temperature environment than the load-side external space 78 because there is often no heat source nearby like the load-side external space 78 .
  • the air in the load-side external space 78 which is colder than the counter-load-side external space 82, can be supplied to the load-side space 90 inside the motor 14 through the second air supply hole 110 and the first air supply hole 108. As a result, the internal parts of the motor 14 can be effectively cooled using cold air.
  • a second air passage 104 is provided between the motor housing 66 and the stator 64, which communicates the load side space 90 and the counter-load side space 92. Therefore, when air is guided from the load side space 90 to the anti-load side space 92 by the first air passage 100, the air can be circulated through the second air passage 104. Furthermore, the stator 64 can be effectively cooled by directly dissipating the heat of the stator 64, which is a heat source, to the air flowing through the second air passage 104.
  • the first air passage 100 includes a slope 120 whose outer diameter gradually increases toward the anti-load side.
  • the slope 120 constitutes the bottom of the first passage forming portion 102 of the first air passage 100.
  • the slope 120 includes a first region 120a provided on the radially inner side of the rotor 62.
  • a first region 120a provided on the slope 120.
  • the cross-sectional area of the first air passage 100 (axial passage portion 100a) can be gradually reduced toward the anti-load side. Therefore, the air can be gradually accelerated in the process of flowing through the axial passage portion 100a of the first air passage 100. Further, in this case, air can be rectified during the process of flowing through the axial passage portion 100a of the first air passage 100, and air at a high flow rate can be stably supplied to the counter-load side space 92. As will be described later, this is new knowledge obtained as a result of fluid analysis performed by the inventor of the present application.
  • the slope 120 includes a second region 120b provided on the opposite load side from the rotor 62.
  • the rate of change in the outer diameter of the second region 120b is greater than the rate of change in the outer diameter of the first region 120a.
  • the rate of change here refers to the amount of change (%) in the outer diameter per unit axial dimension, that is, the slope.
  • the slope 120 of this embodiment includes, from the load side toward the anti-load side, a first constant slope portion 120c, a slope changing portion 120d, and a second constant slope portion 120e.
  • the slopes of the first constant slope portion 120c and the second constant slope portion 120e are constant, and the slope of the slope changing portion 120d gradually increases toward the anti-load side.
  • a boundary 120f between the first region 120a and the second region 120b is provided at the gradient changing portion 120d.
  • the second region 120b of the slope 120 continues beyond the opposite end 100c of the first air passage 100 to the outer circumference of the flange 12d of the rotating shaft 12.
  • the outer diameter R120 of the anti-load side end 120g of the second region 120b of the slope 120 is larger than the outer diameter R62 of the rotor 62.
  • This outer diameter R120 is larger than the inner diameter R64-1 of the stator 64 and smaller than the outer diameter R64-2 of the stator 64.
  • This outer diameter R120 has a size that matches the outer diameter R12 (maximum outer diameter of the rotating shaft 12) of the flange portion 12d of the rotating shaft 12.
  • the outer diameter R120 of the slope 120 may be greater than or equal to the outer diameter R64-2 of the stator 64.
  • the presence of the slope 120 in the first air passage 100 makes it possible to supply air with high flow velocity and momentum to the anti-load side space 92 and then release it from the release part 112.
  • the first air passage 100 so that the minimum cross-sectional area is small, the amount of air from the first air passage 100 to the counter-load side space 92 is reduced relative to the amount of air released from the counter-load side space 92.
  • the amount of supply can be reduced. Accordingly, the air pressure in the anti-load side space 92 can be lowered with respect to the load side space 90 while increasing the pressure difference, and air can be supplied from the load side space 90 to the anti-load side space 92 through locations other than the first air passage 100. It will be possible to distribute it.
  • the minimum cross-sectional area of the first air passage 100 here refers to the cross-sectional area at a point where the cross-sectional area orthogonal to the air flow direction within the first air passage 100 is minimum, and here, the axial passage section Refers to the cross-sectional area of the opposite end of 100a.
  • a location other than the first air passage 100 herein refers to the second air passage 104 located between the motor housing 66 and the stator 64.
  • the structure (number, minimum cross-sectional area, etc.) of the first air passage 100 is designed (configured) so that when the rotating shaft 12 rotates, air flows through the second air passage 104 from the load side to the anti-load side. It can be said that Thereby, the stator 64 can be effectively cooled by directly dissipating the heat of the stator 64 to the air flowing through the second air passage 104.
  • the structure (number, minimum cross-sectional area, etc.) of the first air passage 100 suitable for satisfying such conditions may be determined by experiment, analysis, or the like.
  • the "location other than the first air passage 100" here refers to the gap 72 between the rotor 62 and the stator 64.
  • the structure (number, minimum cross-sectional area, etc.) of the first air passage 100 is designed (configured) so that when the rotating shaft 12 rotates, air flows through the gap 72 from the load side to the anti-load side. I can say that. Thereby, the heat of the stator 64 and rotor 62 can be directly released to the air flowing through the gap 72, thereby making it possible to effectively cool them.
  • the structure (number, minimum cross-sectional area, etc.) of the first air passage 100 suitable for satisfying such conditions may be determined by experiment, analysis, or the like.
  • FIGS. 6A and 6B show the results of a fluid analysis performed on a model having a shape similar to that of the actuator 10 described in the first embodiment. This fluid analysis was performed under the condition that the rotating shaft 12 was rotated.
  • FIG. 6(A) the direction of air flow is indicated by an arrow.
  • FIG. 6(A) hatched areas are shown where air flows at a high flow rate.
  • the hatched locations are locations where the flow velocity is several times (for example, 3 or 4 times) higher than the non-hatched locations with arrows.
  • FIG. 6(B) schematically shows the flow direction of air within the first air passage 100.
  • the slope 120 when the slope 120 is provided in the first air passage 100, the air within the first air passage 100 can be greatly accelerated. At this time, although turbulence occurred in the air in the region R1 immediately after the air entered the first air passage 100, the turbulence in the air stopped as it moved toward the opposite load side. Further, in the axial passage portion 100a of the first air passage 100, the slope 120 has the first region 120a, so that the air flow rate is gradually accelerated to become higher. Furthermore, in the region R2 of the radial passage portion 100b immediately after passing through the axial passage portion 100a of the first air passage 100, even if the axial cross-sectional area is expanded due to the second region 120b in the slope 120.
  • air was flowing at a maximum flow velocity that was faster than that immediately before. Further, after passing through the region R2 of the radial passage portion 100b of the first air passage 100, the air was flowing along the slope 120 while maintaining a relatively high flow velocity, although the flow velocity was gradually lowered. . In addition to this, air was flowing through the gap 72 and the second air passage 104 from the load side to the anti-load side.
  • the actuator 10 of this embodiment is different from the actuator 10 of the first embodiment in the pipe member 42.
  • the pipe member 42 of this embodiment includes a third air supply hole 130 that communicates between a radially outer space 80 on the outside and a radially inner space 86 on the inside.
  • the third air supply hole 130 penetrates the pipe member 42 in the radial direction.
  • a plurality of third air supply holes 130 are provided at intervals in the circumferential direction of the rotating shaft 12.
  • the third air supply hole 130 directs air from the load-side external space 78 and the counter-load-side external space 82 to the radially outer space 80 within the hollow portion 12a of the rotating shaft 12.
  • the load-side external space 78 and the counter-load-side external space 82 ⁇ the radially inner space 86 ⁇ the third air supply hole 130 ⁇ the radially outer space 80 ⁇ the third Air that has passed through the air supply holes 108 in order is supplied to the load side space 90 within the motor 14.
  • the load side cover 18 of this embodiment does not include the second air supply hole 110.
  • air in the counter-load side external space 82 and the load side space 90 can be supplied to the load side space 90 inside the motor 14 through the third air supply hole 130 and the first air supply hole 108.
  • the actuator 10 of this embodiment can obtain the same effects as the first embodiment in other respects.
  • the actuator 10 of this embodiment differs from the first embodiment in the second air passage 104.
  • the second passage forming portion 106 that forms the second air passage 104 of this embodiment is provided on the outer periphery of the stator 64 (the outer periphery of the stator core 70) instead of the motor housing 66.
  • the second passage forming portion 106 may be provided in both the motor housing 66 and the stator 64.
  • the actuator 10 of this embodiment can also provide the same effects as the first embodiment.
  • the actuator 10 of this embodiment is different from the first embodiment in that it includes a plurality of blades 140 arranged in the load side space 90.
  • the plurality of blades 140 protrude radially outward from the outer peripheral portion of the rotating shaft 12 and are integrated with the rotating shaft 12 .
  • the plurality of blades 140 of this embodiment are fixed to a hub 142 fixed to the outer circumference of the rotating shaft 12 by interference fit or the like.
  • the actuator 10 can also be said to include a fan 144 having blades 140 and a hub 142.
  • the hub 142 includes a through hole 142a that penetrates in the radial direction at a position overlapping with the first air supply hole 108.
  • the through hole 142a communicates the load side space 90 and the hollow space 76 through the first air supply hole 108.
  • the plurality of blades 140 may be integrally formed as part of the rotating shaft 12.
  • the plurality of blades 140 can guide air in the hollow space 76 within the rotating shaft 12 to the load-side space 90 through the first air supply hole 108. Thereby, the amount of air supplied from the external space through the hollow space 76 of the rotary shaft 12 into the load side space 90 can be increased. As a result, the internal parts of the motor 14 can be cooled more effectively.
  • the actuator 10 of this embodiment can obtain the same effects as the first embodiment in other respects.
  • the reducer 16 is not essential in the actuator 10, and it is sufficient if the actuator 10 is provided with the motor 14.
  • a specific example of the speed reduction mechanism 26 of the speed reducer 16 is not particularly limited.
  • the speed reduction mechanism 26 may be, for example, a simple planetary gear mechanism, an eccentric oscillating gear mechanism, an orthogonal axis gear mechanism, a parallel axis gear mechanism, or the like.
  • the speed reduction mechanism 26 is an eccentric rocking type gear mechanism, the specific example of the type thereof is not particularly limited. This type may include a center crank type in which the crankshaft is arranged on the axis of the internal gear, or a distributed type in which a plurality of crankshafts are arranged at positions offset from the axis of the internal gear.
  • the specific example of the type thereof is not particularly limited.
  • This type may be a cylindrical type having two internal gears 32A, 32B as in this embodiment, or a cup type or top hat type having one internal gear, for example.
  • the first air passage 100 only needs to be able to guide air from the load side space 90 to the anti-load side space 92 through the first air passage 100 along with the rotating shaft 12, and its specific shape is not particularly limited.
  • the first air passage 100 may include only an axial passage portion 100a extending spirally. In this case, air can be guided from the load side space 90 to the anti-load side space 92 by rotating it toward the anti-load side in a direction opposite to the spiral winding direction formed by the first air passage 100.
  • the motor internal space 88 does not need to communicate with the external space.
  • the air when air is guided through the first air passage 100, the air may be circulated in the order of the load side space 90 ⁇ first air passage 100 ⁇ counter-load side space 92 ⁇ load side space 90. Even in this case, the effect of cooling the internal parts of the motor 14 can be expected due to forced air convection and heat conduction.
  • Heat conduction here refers to heat conduction between the motor interior space 88 and the exterior space through the motor housing 66.
  • the first passage forming portion 102 may be provided on the rotor 62 instead of the rotating shaft 12. In addition to this, the first passage forming portion 102 may be provided on both the rotating shaft 12 and the rotor 62.
  • the slope 120 is not essential in the first air passage 100.
  • the slope 120 may include at least one of a second region 120b and a first region 120a.
  • the rate of change in the outer diameters of the second region 120b and the first region 120a is not particularly limited.
  • the rate of change in both regions may be the same, or the rate of change in the second region 120b may be smaller than the rate of change in the first region 120a.
  • the specific example of the discharge section 112 is not particularly limited. This may be, for example, in addition to the anti-load side opening 66c of the motor housing 66, a through hole formed in the motor housing 66, an exhaust pipe attached to the motor housing 66, or the like.
  • the specific route for supplying air to the load-side space 90 in the motor 14 through the first air supply hole 108 is not particularly limited. As this route, the following (1) was explained in the first embodiment, and the following (2) was explained in the second embodiment. In addition to this, this route may be realized by, for example, the following (3) and (4). Furthermore, two or more of (1) to (3) may be combined.
  • the second air passage 104 is not essential in the actuator 10. In order to circulate the air through the second air passage 104, when the air is guided through the first air passage 100, the air may circulate from the counter-load side space 92 to the load side space 90. It is not essential that the first air passage 100 be designed so that air flows through the second air passage 104 and the gap 72.
  • any combination of the above components is also effective.
  • an embodiment may be combined with any description of another embodiment, or a modified form may be combined with any description of the embodiment and other modified forms.
  • a component made up of a single member may be made up of a plurality of members.
  • a component configured with multiple members in an embodiment may be configured with a single member.
  • the present disclosure relates to an actuator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

An actuator provided with a rotating shaft 12 and a motor 14 for rotating the rotating shaft 12, wherein the motor 14 is provided with a rotor 62 disposed on the rotating shaft 12 and a first air passage 100 which is provided between the rotating shaft 12 and the rotor 62 and which causes a load-side space 90 on a load side and a counter-load-side space 92 on a counter load side with respect to the rotor 62 to communicate to and from each other and, as the rotating shaft 12 rotates, the air can be guided from the load-side space 90 to the counter-load-side space 92 through the first air passage 100.

Description

アクチュエータactuator
 本開示は、アクチュエータに関する。 The present disclosure relates to an actuator.
 特許文献1は、回転軸と、回転軸を回転させるモータとを備えるアクチュエータを開示する。 Patent Document 1 discloses an actuator that includes a rotating shaft and a motor that rotates the rotating shaft.
特開2021-097430号公報JP2021-097430A
 モータの内部部品(ロータ等)の温度が過度に高くなると、アクチュエータの出力に悪影響を及ぼすため、その冷却のための工夫が必要となる。本願発明者は、モータの内部部品を冷却するための新たなアイデアを見出した。 If the temperature of the internal parts of the motor (rotor, etc.) becomes excessively high, it will have a negative effect on the output of the actuator, so it is necessary to take measures to cool them. The inventor of the present application has discovered a new idea for cooling the internal parts of a motor.
 本開示の目的の1つは、モータの内部部品を冷却できる技術を提供することにある。 One of the objectives of the present disclosure is to provide a technology that can cool internal parts of a motor.
 本開示のアクチュエータは、回転軸と、前記回転軸を回転させるモータとを備えるアクチュエータであって、前記モータは、前記回転軸に配置されるロータと、前記回転軸と前記ロータとの間に設けられ前記ロータに対して負荷側にある負荷側空間と反負荷側にある反負荷側空間とを連通する第1エア通路と、を備え、前記第1エア通路は、前記回転軸の回転に伴って、前記第1エア通路を通して前記負荷側空間から前記反負荷側空間にエアを誘導可能である。 An actuator of the present disclosure includes a rotating shaft and a motor that rotates the rotating shaft, and the motor includes a rotor disposed on the rotating shaft and a rotor provided between the rotating shaft and the rotor. a first air passage that communicates a load side space on the load side with respect to the rotor and an anti-load side space on the anti-load side with respect to the rotor, the first air passage Air can be guided from the load side space to the counter load side space through the first air passage.
 本開示によれば、モータの内部部品を冷却できるようになる。 According to the present disclosure, it becomes possible to cool the internal parts of the motor.
第1実施形態のアクチュエータの側面断面図である。FIG. 3 is a side sectional view of the actuator of the first embodiment. 図1の拡大図である。FIG. 2 is an enlarged view of FIG. 1; 第1実施形態の回転軸の斜視図である。FIG. 3 is a perspective view of the rotating shaft of the first embodiment. 図1のA-A断面図である。2 is a sectional view taken along line AA in FIG. 1. FIG. 第1実施形態のアクチューエータの動作説明図である。FIG. 3 is an explanatory diagram of the operation of the actuator of the first embodiment. (A)は流体解析の結果を示す図であり、(B)は流体解析の結果を示す他の図である。(A) is a diagram showing the results of fluid analysis, and (B) is another diagram showing the results of fluid analysis. 第2実施形態のアクチュエータの動作説明図である。FIG. 7 is an explanatory diagram of the operation of the actuator of the second embodiment. 第3実施形態のアクチュエータを図4と同じ視点から見た断面図である。FIG. 5 is a cross-sectional view of the actuator of the third embodiment viewed from the same viewpoint as FIG. 4; 第4実施形態のアクチュエータの一部を示す側面断面図である。It is a side sectional view showing a part of actuator of a 4th embodiment. 第4実施形態のファンを示す斜視図である。It is a perspective view showing a fan of a 4th embodiment.
 以下、実施形態を説明する。同一の構成要素には同一の符号を付し、重複する説明を省略する。各図面では、説明の便宜のため、適宜、構成要素を省略、拡大、縮小する。図面は符号の向きに合わせて見るものとする。本明細書での「連通」とは、特に明示がない限り、言及する条件を二者が直接的に満たす場合の他に、他の要素を介して間接的に満たす場合も含む。 Embodiments will be described below. Identical components are given the same reference numerals and redundant explanations will be omitted. In each drawing, constituent elements are omitted, enlarged, or reduced as appropriate for convenience of explanation. The drawings should be viewed according to the direction of the symbols. Unless otherwise specified, "communication" as used herein includes not only the case where two parties directly satisfy the mentioned conditions, but also the case where the two parties satisfy the mentioned condition indirectly through another element.
(第1実施形態)図1を参照する。アクチュエータ10は、回転軸12と、回転軸12を回転させるモータ14と、モータ14の負荷側に連結される減速機16と、減速機16を負荷側から覆う負荷側カバー18と、を備える。以下、回転軸12の回転中心線C12に沿った方向を軸方向Xといい、その回転中心線C12を中心とする円の円周方向、半径方向をそれぞれ「周方向」、「径方向」という。また、本明細書では、負荷側は軸方向Xの一方側(図1では左側)をいい、反負荷側は軸方向Xの他方側(図1では右側)をいう。 (First Embodiment) Refer to FIG. 1. The actuator 10 includes a rotating shaft 12, a motor 14 that rotates the rotating shaft 12, a reducer 16 connected to the load side of the motor 14, and a load-side cover 18 that covers the reducer 16 from the load side. Hereinafter, the direction along the rotation center line C12 of the rotating shaft 12 will be referred to as the axial direction . Furthermore, in this specification, the load side refers to one side in the axial direction X (the left side in FIG. 1), and the anti-load side refers to the other side in the axial direction X (the right side in FIG. 1).
 アクチュエータ10は、アクチュエータ10の外部にある支持部材20により支持され、アクチュエータ10の外部にある被駆動部材22を駆動する。被駆動部材22の具体例は特に限定されない。被駆動部材22は、例えば、コンベア、車輪、工作機械、ロボット(産業用ロボット、サービスロボット等)の被駆動機械の一部である。本実施形態の支持部材20は減速機16の減速機ハウジング28に固定され、被駆動部材22は負荷側カバー18に固定される。この他にも、支持部材20は負荷側カバー18に固定され、被駆動部材22は減速機ハウジング28に固定されてもよい。 The actuator 10 is supported by a support member 20 located outside the actuator 10, and drives a driven member 22 located outside the actuator 10. A specific example of the driven member 22 is not particularly limited. The driven member 22 is, for example, a part of a driven machine such as a conveyor, a wheel, a machine tool, or a robot (industrial robot, service robot, etc.). The support member 20 of this embodiment is fixed to the reducer housing 28 of the reducer 16, and the driven member 22 is fixed to the load side cover 18. In addition to this, the support member 20 may be fixed to the load-side cover 18 and the driven member 22 may be fixed to the reducer housing 28.
 減速機16は、回転軸12が兼ねる入力軸24と、入力軸24から入力回転が伝達される減速機構26と、減速機構26を収容する減速機ハウジング28と、を備える。 The speed reducer 16 includes an input shaft 24 which also serves as the rotating shaft 12, a speed reducer mechanism 26 to which input rotation is transmitted from the input shaft 24, and a speed reducer housing 28 that houses the speed reducer mechanism 26.
 本実施形態の減速機構26は、互いに噛み合う外歯歯車30及び内歯歯車32A、32Bを備え、一方が撓み歯車(ここでは外歯歯車30)となる撓み噛合い型歯車機構である。この減速機構26は、入力軸24から入力回転が伝達されると、他の歯車との噛合位置を入力軸24の回転方向に変化させるように撓み歯車を撓み変形させる。この減速機構26は、この撓み歯車の撓み変形により、外歯歯車30及び内歯歯車32A、32Bの一方(ここでは外歯歯車30)を自転させ、その自転成分を出力回転として被駆動部材22に出力する。本実施形態の減速機構26は、内歯歯車32A、32Bとして、反負荷側に配置される第1内歯歯車32Aと負荷側に配置される第2内歯歯車32Bとを有する筒型の撓み噛合い型歯車機構である。この種の減速機構26の動作原理は周知のため、ここでは説明を省略する。本実施形態の減速機構26は、負荷側カバー18を介して被駆動部材22に出力回転を出力する例を説明する。この他にも、負荷側カバー18に替えて減速機ハウジング28を介して被駆動部材22に出力回転を出力してもよい。入力軸24と外歯歯車30との間には外歯歯車30を回転自在に支持する歯車軸受36が配置される。 The speed reduction mechanism 26 of this embodiment is a flexural mesh gear mechanism that includes an external gear 30 and internal gears 32A and 32B that mesh with each other, one of which is a flexural gear (here, the external gear 30). When the input rotation is transmitted from the input shaft 24, the deceleration mechanism 26 flexibly deforms the flexural gear so as to change the meshing position with other gears in the rotational direction of the input shaft 24. The deceleration mechanism 26 rotates the external gear 30 and one of the internal gears 32A and 32B (in this case, the external gear 30) by the flexural deformation of the flexural gear, and uses the rotational component as an output rotation to drive the driven member 22. Output to. The speed reduction mechanism 26 of this embodiment is a cylindrical flexible gear having a first internal gear 32A disposed on the anti-load side and a second internal gear 32B disposed on the load side as internal gears 32A and 32B. It is a meshing gear mechanism. Since the principle of operation of this type of speed reduction mechanism 26 is well known, the explanation thereof will be omitted here. An example will be described in which the speed reduction mechanism 26 of this embodiment outputs output rotation to the driven member 22 via the load side cover 18. In addition to this, the output rotation may be output to the driven member 22 via the reducer housing 28 instead of the load side cover 18. A gear bearing 36 that rotatably supports the external gear 30 is arranged between the input shaft 24 and the external gear 30.
 本実施形態の減速機ハウジング28は、互いに一体化される複数のハウジング部材28a、28bを備える。複数のハウジング部材28a、28bは、第1内歯歯車32Aを兼ねる第1ハウジング部材28aと、第2内歯歯車32Bに対して径方向外側に配置される第2ハウジング部材28bと、を含む。減速機ハウジング28は、ボルト等によって、モータ14のモータハウジング66に連結される。減速機ハウジング28と第2内歯歯車32Bとの間には主軸受38が配置される。 The reducer housing 28 of this embodiment includes a plurality of housing members 28a and 28b that are integrated with each other. The plurality of housing members 28a, 28b include a first housing member 28a that also serves as the first internal gear 32A, and a second housing member 28b that is disposed radially outward with respect to the second internal gear 32B. The reducer housing 28 is connected to the motor housing 66 of the motor 14 by bolts or the like. A main bearing 38 is arranged between the reducer housing 28 and the second internal gear 32B.
 負荷側カバー18は、減速機16の一部として、減速機構26と、回転軸12を兼ねる入力軸24を負荷側から覆っている。負荷側カバー18は、外歯歯車30の自転成分と同期可能な同期部材として機能する。負荷側カバー18は全体として筒状をなす。負荷側カバー18は、第2内歯歯車32Bから負荷側に突き出る第1突出部32Baに重ね合わせられ、不図示のボルト等を用いて第2内歯歯車32Bに固定される。負荷側カバー18は、反負荷側に突き出るとともに第2内歯歯車32Bの第1突出部32Baとインロー嵌合する第2突出部18aを備える。負荷側カバー18の第2突出部18aには回転軸を回転自在に支持する負荷側軸受40が配置される。 The load-side cover 18 covers the speed reduction mechanism 26 and the input shaft 24, which also serves as the rotating shaft 12, from the load side as part of the speed reducer 16. The load-side cover 18 functions as a synchronizing member that can synchronize with the rotation component of the external gear 30. The load side cover 18 has a cylindrical shape as a whole. The load-side cover 18 is overlapped with the first protrusion 32Ba that protrudes from the second internal gear 32B toward the load side, and is fixed to the second internal gear 32B using bolts (not shown) or the like. The load-side cover 18 includes a second protrusion 18a that protrudes toward the opposite load side and engages with the first protrusion 32Ba of the second internal gear 32B through a spigot. A load-side bearing 40 that rotatably supports a rotating shaft is arranged on the second protrusion 18a of the load-side cover 18.
 アクチュエータ10は、回転軸12の中空部12a(後述する)内に配置されるパイプ部材42を備える。パイプ部材42は、回転軸12の中空部12aを軸方向Xに貫通している。パイプ部材42の負荷側部分は、負荷側カバー18に固定されており、負荷側カバー18と一体的に回転可能に設けられる。本実施形態のパイプ部材42の負荷側部分は、負荷側カバー18に形成される貫通孔18bに締まり嵌めされることで、負荷側カバー18に固定される。この固定態様は特に限定されず、ボルト等を用いてもよい。パイプ部材42の反負荷側部分は、パイプ部材42と回転軸12との間に配置される内部軸受44を介して回転軸12に回転自在に支持される。 The actuator 10 includes a pipe member 42 disposed within a hollow portion 12a (described later) of the rotating shaft 12. The pipe member 42 passes through the hollow portion 12a of the rotating shaft 12 in the axial direction X. The load side portion of the pipe member 42 is fixed to the load side cover 18 and is provided so as to be rotatable integrally with the load side cover 18. The load side portion of the pipe member 42 of this embodiment is fixed to the load side cover 18 by tightly fitting into the through hole 18b formed in the load side cover 18. This fixing mode is not particularly limited, and bolts or the like may be used. The anti-load side portion of the pipe member 42 is rotatably supported by the rotating shaft 12 via an internal bearing 44 disposed between the pipe member 42 and the rotating shaft 12.
 アクチュエータ10は、回転軸12の回転を検出する第1回転検出器46Aと、パイプ部材42の回転を検出する第2回転検出器46Bとを備える。第1回転検出器46Aは、回転軸12と一体回転可能に設けられる第1被検出部46Aaと、第1被検出部46Aaと対向する第1検出部46Abとを備える。第2回転検出器46Bは、パイプ部材42と一体回転可能に設けられる第2被検出部46Baと、第2被検出部46Baと対向する第2検出部46Bbと、を備える。被検出部46Aa、46Baは、例えば、光学スケール、磁気スケール等のスケールである。検出部46Ab、46Bbは、例えば、光学センサ、磁気センサ等のセンサである。検出部46Ab、46Bbは、被検出部46Aa、46Baの回転に伴う所定の物理量(光量、磁場等)の変化を検出することで回転体(回転軸12、パイプ部材42)の回転を検出可能である。第1検出部46Abと第2検出部46Bbは共通のセンサ基板48に実装される。センサ基板48は、モータハウジング66に固定されるマウント50に取り付けられる。マウント50には、モータ14の制御に用いられるドライバIC(不図示)を搭載したドライバ基板52が取り付けられる。 The actuator 10 includes a first rotation detector 46A that detects the rotation of the rotating shaft 12 and a second rotation detector 46B that detects the rotation of the pipe member 42. The first rotation detector 46A includes a first detected part 46Aa that is provided to be rotatable integrally with the rotating shaft 12, and a first detection part 46Ab that faces the first detected part 46Aa. The second rotation detector 46B includes a second detected part 46Ba that is provided to be rotatable integrally with the pipe member 42, and a second detection part 46Bb that faces the second detected part 46Ba. The detected parts 46Aa and 46Ba are, for example, scales such as optical scales and magnetic scales. The detection units 46Ab and 46Bb are, for example, sensors such as optical sensors and magnetic sensors. The detection units 46Ab and 46Bb can detect the rotation of the rotating body (rotation shaft 12, pipe member 42) by detecting changes in predetermined physical quantities (light amount, magnetic field, etc.) accompanying the rotation of the detected units 46Aa and 46Ba. be. The first detection section 46Ab and the second detection section 46Bb are mounted on a common sensor board 48. Sensor board 48 is attached to a mount 50 that is secured to motor housing 66. A driver board 52 equipped with a driver IC (not shown) used to control the motor 14 is attached to the mount 50 .
 図2、図3を参照する。本実施形態の回転軸12は、モータ14のロータ62が配置されるロータ軸60と、ロータ軸60の回転が入力される減速機16の入力軸24とが一体化されている。本実施形態の回転軸12は、ロータ軸60と入力軸24が同じ部材によって構成される。この他にも、回転軸12は、ロータ軸60と入力軸24が別の部材によって構成されてもよい。 Please refer to FIGS. 2 and 3. In the rotating shaft 12 of this embodiment, a rotor shaft 60 on which a rotor 62 of a motor 14 is arranged and an input shaft 24 of a reducer 16 to which rotation of the rotor shaft 60 is input are integrated. In the rotating shaft 12 of this embodiment, the rotor shaft 60 and the input shaft 24 are made of the same member. In addition to this, the rotor shaft 60 and the input shaft 24 of the rotating shaft 12 may be constructed from different members.
 回転軸12は、回転軸12を軸方向Xに貫通する中空部12aと、ロータ62を配置するロータ配置部12bと、ロータ62と軸方向Xに対向するロータ対向部12cと、回転軸12の反負荷側端部に設けられるフランジ部12dと、を備える。ロータ配置部12bは、回転軸12の外周部に設けられる。ロータ62は、接着剤等を用いてロータ配置部12bに固定される。ロータ対向部12cは、ロータ62に対して反負荷側に配置される。ロータ対向部12cは、反負荷側に向かってロータ配置部12bよりも外径を大きくする段部である。フランジ部12dは、ロータ配置部12b及びロータ対向部12cよりも外径を大きくしている。ロータ対向部12cは、ロータ62に対して反負荷側から接触しており、ロータ62の反負荷側に向かう軸方向移動を規制する。本実施形態のロータ対向部12cは負荷側に向けて突き出る突部12eを備え、その突部12eがロータ62に対して接触している。 The rotating shaft 12 includes a hollow portion 12a that penetrates the rotating shaft 12 in the axial direction A flange portion 12d provided at the opposite end of the load side. The rotor arrangement portion 12b is provided on the outer circumference of the rotating shaft 12. The rotor 62 is fixed to the rotor placement portion 12b using an adhesive or the like. The rotor facing portion 12c is arranged on the opposite load side with respect to the rotor 62. The rotor facing portion 12c is a stepped portion having an outer diameter larger than that of the rotor placement portion 12b toward the opposite load side. The flange portion 12d has a larger outer diameter than the rotor placement portion 12b and the rotor facing portion 12c. The rotor facing portion 12c is in contact with the rotor 62 from the anti-load side, and restricts the axial movement of the rotor 62 toward the anti-load side. The rotor facing portion 12c of this embodiment includes a protrusion 12e that protrudes toward the load side, and the protrusion 12e is in contact with the rotor 62.
 モータ14は、回転軸12に配置されるロータ62と、ロータ62と協働して回転軸12を回転させる回転磁界を生成するステータ64と、ロータ62、ステータ64等を収容するモータハウジング66と、を備える。 The motor 14 includes a rotor 62 disposed on the rotating shaft 12, a stator 64 that cooperates with the rotor 62 to generate a rotating magnetic field that rotates the rotating shaft 12, and a motor housing 66 that houses the rotor 62, stator 64, etc. , is provided.
 ロータ62は、全体として筒状をなす。ロータ62は、例えば、ロータコア68と、ロータコア68に組み込まれる不図示の磁石とを備える永久磁石ロータである。ロータ62の種類は特に限定されず、かご型ロータ、巻線ロータ、コアレスロータ等でもよい。また、ロータ62は、ロータコア68に替えて金属製ブッシュを備えてもよい。 The rotor 62 has a cylindrical shape as a whole. The rotor 62 is, for example, a permanent magnet rotor including a rotor core 68 and a magnet (not shown) incorporated in the rotor core 68. The type of rotor 62 is not particularly limited, and may be a squirrel cage rotor, a wire-wound rotor, a coreless rotor, or the like. Furthermore, the rotor 62 may include a metal bush instead of the rotor core 68.
 ステータ64は、例えば、ステータコア70と、ステータコア70に組み込まれる不図示のコイルとを備える。ステータ64は、ステータコア70にスロット(不図示)が形成されたスロット付きステータである。コイルは、ステータコア70のスロット内を通るようにステータコア70のティースに巻き回される。ここではステータコア70のスロットの図示を省略し、ステータ64全体の外形を模式的に示す。ステータ64の種類は特に限定されず、本実施形態のようなコア付きステータの他に、コアレスステータでもよい。また、ステータ64の種類は、本実施形態のようなスロット付きステータの他に、スロットレスステータ等でもよい。ステータ64とロータ62との間には環状に広がるギャップ72が設けられる。 The stator 64 includes, for example, a stator core 70 and a coil (not shown) built into the stator core 70. The stator 64 is a slotted stator in which a slot (not shown) is formed in the stator core 70. The coil is wound around the teeth of stator core 70 so as to pass through the slot of stator core 70. Here, illustration of the slots of the stator core 70 is omitted, and the outline of the entire stator 64 is schematically shown. The type of stator 64 is not particularly limited, and may be a coreless stator in addition to a cored stator as in this embodiment. Further, the type of stator 64 may be a slotless stator or the like in addition to the slotted stator as in this embodiment. An annular gap 72 is provided between the stator 64 and the rotor 62.
 モータハウジング66は、ステータ64を配置するステータ配置部66aと、ステータ配置部66aよりも負荷側に設けられる内フランジ部66bと、反負荷側に向かって開く反負荷側開口部66cと、を備える。ステータ64は、締まり嵌め(焼き嵌め)、接着剤等を用いて、ステータ配置部66aに固定される。内フランジ部66bは、モータハウジング66の内周部において径方向内側に突き出ている。内フランジ部66bの内周部には回転軸12を回転自在に支持する反負荷側軸受74が配置される。 The motor housing 66 includes a stator placement portion 66a in which the stator 64 is placed, an inner flange portion 66b provided on the load side of the stator placement portion 66a, and an anti-load side opening portion 66c that opens toward the anti-load side. . The stator 64 is fixed to the stator placement portion 66a using an interference fit (shrink fit), an adhesive, or the like. The inner flange portion 66b protrudes radially inward at the inner peripheral portion of the motor housing 66. An anti-load side bearing 74 that rotatably supports the rotary shaft 12 is arranged on the inner circumference of the inner flange portion 66b.
 回転軸12の中空部12a内には中空空間76が設けられる。中空空間76は、中空部12a内の他に、回転軸12と負荷側カバー18の間の空間まで広がっている。負荷側カバー18は、アクチュエータ10の負荷側にある負荷側外部空間78と中空空間76とを軸方向Xに隔てている。本実施形態の中空空間76は、回転軸12の中空部12aとパイプ部材42の間に設けられる径方向外側空間80によって構成される。径方向外側空間80は、回転軸12とパイプ部材42との間に配置される内部シール部材84によって、アクチュエータ10の反負荷側にある反負荷側外部空間82に対して隔てられている。径方向外側空間80(中空空間76)は、反負荷側外部空間82に直接は連通していないことになる。本実施形態の内部シール部材84は内部軸受44に組み込まれている。この他にも、内部シール部材84は内部軸受44とは別に設けられてもよい。 A hollow space 76 is provided within the hollow portion 12a of the rotating shaft 12. The hollow space 76 extends not only into the hollow portion 12a but also into the space between the rotating shaft 12 and the load-side cover 18. The load-side cover 18 separates a load-side external space 78 and a hollow space 76 on the load side of the actuator 10 in the axial direction X. The hollow space 76 of this embodiment is constituted by a radially outer space 80 provided between the hollow portion 12a of the rotating shaft 12 and the pipe member 42. The radially outer space 80 is separated from the counter-load-side external space 82 on the counter-load side of the actuator 10 by an internal seal member 84 disposed between the rotating shaft 12 and the pipe member 42 . The radially outer space 80 (hollow space 76) does not directly communicate with the anti-load side external space 82. The internal seal member 84 of this embodiment is incorporated into the internal bearing 44. In addition, the internal seal member 84 may be provided separately from the internal bearing 44.
 パイプ部材42の内側には径方向内側空間86が設けられる。径方向内側空間86は、パイプ部材42の内部を軸方向Xに貫通しており、負荷側外部空間78と反負荷側外部空間82とに連通している。 A radially inner space 86 is provided inside the pipe member 42. The radial inner space 86 penetrates the inside of the pipe member 42 in the axial direction X, and communicates with the load side outer space 78 and the counter-load side outer space 82 .
 モータ14は、ステータ64及びロータ62を収容するモータ内部空間88を備える。モータ内部空間88は、ロータ62に対して負荷側に設けられる負荷側空間90と、ロータ62に対して反負荷側に設けられる反負荷側空間92とを備える。 The motor 14 includes a motor interior space 88 that accommodates the stator 64 and rotor 62. The motor internal space 88 includes a load side space 90 provided on the load side with respect to the rotor 62 and an anti-load side space 92 provided on the counter load side with respect to the rotor 62.
 負荷側空間90は、モータハウジング66と回転軸12との間に設けられる。負荷側空間90は、モータハウジング66の内フランジ部66bとロータ62及びステータ64との間に設けられる。 The load side space 90 is provided between the motor housing 66 and the rotating shaft 12. The load side space 90 is provided between the inner flange portion 66b of the motor housing 66 and the rotor 62 and stator 64.
 反負荷側空間92は、モータハウジング66と回転軸12との間に設けられる。本実施形態の反負荷側空間92は、ステータ64に対して反負荷側においてステータ64と軸方向Xに重なる位置に設けられる。反負荷側空間92は、アクチュエータ10の放出部112(後述する)を通して外部空間に連通している。 The counter-load side space 92 is provided between the motor housing 66 and the rotating shaft 12. The counter-load side space 92 of this embodiment is provided at a position overlapping the stator 64 in the axial direction X on the counter-load side with respect to the stator 64. The counter-load side space 92 communicates with an external space through a discharge portion 112 (described later) of the actuator 10.
 減速機16は、複数のシール部材94A~94Cにより封止された減速機内部空間96を備える。減速機内部空間96には減速機構26の潤滑に用いられる潤滑剤(不図示)が封入されている。本実施形態のシール部材94A~94Cは、モータ内部空間88と減速機内部空間96を隔てる第1シール部材94Aと、減速機内部空間96と中空空間76を隔てる第2シール部材94Bと、減速機内部空間96と負荷側外部空間78を隔てる第3シール部材94Cとを含む。減速機内部空間96は、モータ内部空間88、中空空間76のそれぞれに直接に連通していないことになる。本実施形態の第1シール部材94Aは反負荷側軸受74に組み込まれ、第2シール部材94Bは負荷側軸受40に組み込まれている。この他にも、第1シール部材94A、第2シール部材94Bは、オイルシール等として、軸受40、74とは別に設けられてもよい。 The speed reducer 16 includes a speed reducer internal space 96 sealed by a plurality of seal members 94A to 94C. A lubricant (not shown) used to lubricate the speed reduction mechanism 26 is sealed in the speed reducer internal space 96 . The seal members 94A to 94C of this embodiment include a first seal member 94A that separates the motor internal space 88 and the reducer internal space 96, a second seal member 94B that separates the reducer internal space 96 and the hollow space 76, and a reducer It includes a third seal member 94C that separates the internal space 96 and the load side external space 78. The reducer internal space 96 does not directly communicate with the motor internal space 88 and the hollow space 76, respectively. The first seal member 94A of this embodiment is incorporated into the anti-load side bearing 74, and the second seal member 94B is incorporated into the load side bearing 40. In addition, the first seal member 94A and the second seal member 94B may be provided separately from the bearings 40, 74 as oil seals or the like.
 図2~図4を参照する。モータ14は、回転軸12とロータ62との間に設けられる第1エア通路100を備える。第1エア通路100は、負荷側空間90と反負荷側空間92を連通する。第1エア通路100は、後述のように、負荷側空間90から反負荷側空間92にエアを誘導するために設けられる。本実施形態の第1エア通路100は反負荷側空間92に直接に連通している。この他にも、第1エア通路100は、他の空間(例えば、ギャップ72)を通して反負荷側空間92に連通していてもよい。第1エア通路100は、軸方向に延びる軸方向通路部100aと、軸方向通路部100aよりも反負荷側空間92側に設けられ径方向に延びる径方向通路部100bとを備える。軸方向通路部100aは、負荷側に向かって開いており、径方向通路部100bは、径方向外側に向かって開いている。第1エア通路100は、周方向に間隔を空けて複数設けられる。 Refer to Figures 2 to 4. The motor 14 includes a first air passage 100 provided between the rotating shaft 12 and the rotor 62. The first air passage 100 communicates the load side space 90 and the anti-load side space 92. The first air passage 100 is provided to guide air from the load side space 90 to the anti-load side space 92, as will be described later. The first air passage 100 of this embodiment directly communicates with the counter-load side space 92. In addition to this, the first air passage 100 may communicate with the counter-load side space 92 through another space (for example, the gap 72). The first air passage 100 includes an axial passage part 100a that extends in the axial direction, and a radial passage part 100b that is provided on the anti-load side space 92 side of the axial passage part 100a and extends in the radial direction. The axial passage portion 100a is open toward the load side, and the radial passage portion 100b is open toward the outside in the radial direction. A plurality of first air passages 100 are provided at intervals in the circumferential direction.
 回転軸12及びロータ62の少なくとも一方は第1エア通路100を内側に形成する第1通路形成部102を備える。本実施形態の第1通路形成部102は溝部であり、回転軸12に設けられる。詳しくは、第1通路形成部102は、回転軸12のロータ配置部12b及びロータ対向部12cに設けられる。第1通路形成部102は、ロータ配置部12bにおいて軸方向通路部100aを形成し、ロータ対向部12cにおいて径方向通路部100bを形成する。ロータ62には、第1通路形成部102(溝部)が形成されていないことになる。 At least one of the rotating shaft 12 and the rotor 62 includes a first passage forming portion 102 that forms a first air passage 100 inside. The first passage forming part 102 of this embodiment is a groove, and is provided in the rotating shaft 12. Specifically, the first passage forming portion 102 is provided in the rotor placement portion 12b and the rotor facing portion 12c of the rotating shaft 12. The first passage forming part 102 forms an axial passage part 100a in the rotor arrangement part 12b, and a radial passage part 100b in the rotor facing part 12c. This means that the rotor 62 does not have the first passage forming portion 102 (groove) formed therein.
 モータハウジング66の内周部とステータ64の外周部との間には第2エア通路104が設けられる。第2エア通路104は、負荷側空間90と反負荷側空間92を連通しており軸方向Xに延びている。第2エア通路104は、負荷側空間90と反負荷側空間92との間でエアを流通させるために設けられる。第2エア通路104は、周方向に間隔を空けて複数設けられる。モータハウジング66及びステータ64の少なくとも一方は第2エア通路104を内側に形成する第2通路形成部106を備える。本実施形態の第2通路形成部106は溝部であり、モータハウジング66の内周部に設けられる。モータハウジング66の第2通路形成部106は、ステータ64の負荷側端部よりも負荷側に延びており、かつ、ステータ64の反負荷側端部よりも反負荷側に延びている。 A second air passage 104 is provided between the inner circumference of the motor housing 66 and the outer circumference of the stator 64. The second air passage 104 communicates the load side space 90 and the anti-load side space 92 and extends in the axial direction X. The second air passage 104 is provided to circulate air between the load side space 90 and the anti-load side space 92. A plurality of second air passages 104 are provided at intervals in the circumferential direction. At least one of the motor housing 66 and the stator 64 includes a second passage forming portion 106 that forms a second air passage 104 inside. The second passage forming portion 106 of this embodiment is a groove portion, and is provided in the inner peripheral portion of the motor housing 66. The second passage forming portion 106 of the motor housing 66 extends further toward the load side than the load side end of the stator 64 and extends toward the opposite load side from the opposite end of the stator 64 .
 回転軸12は、モータ14内の負荷側空間90と回転軸12の中空部12aとを連通する第1エア供給孔108を備える。第1エア供給孔108は、第1エア通路100によりエアを誘導するとき、回転軸12内の中空空間76を通して外部空間のエアを負荷側空間90に供給するために設けられる。第1エア供給孔108は、回転軸12を径方向に貫通している。第1エア供給孔108は、回転軸12の周方向に間隔を空けて複数設けられる。第1エア供給孔108は、複数の第1エア通路100のそれぞれに対応して個別に設けられる。第1エア供給孔108は、径方向外側から見たときに、第1エア供給孔108に対応する第1エア通路100の近傍において、第1エア通路100の軸方向延長上に設けられる。 The rotating shaft 12 includes a first air supply hole 108 that communicates the load-side space 90 within the motor 14 with the hollow portion 12a of the rotating shaft 12. The first air supply hole 108 is provided to supply air from the external space to the load side space 90 through the hollow space 76 within the rotating shaft 12 when guiding air through the first air passage 100 . The first air supply hole 108 penetrates the rotating shaft 12 in the radial direction. A plurality of first air supply holes 108 are provided at intervals in the circumferential direction of the rotating shaft 12. The first air supply hole 108 is provided individually corresponding to each of the plurality of first air passages 100. The first air supply hole 108 is provided on an axial extension of the first air passage 100 in the vicinity of the first air passage 100 corresponding to the first air supply hole 108 when viewed from the outside in the radial direction.
 負荷側カバー18は、回転軸12内の中空空間76(径方向外側空間80)と負荷側外部空間78を連通する第2エア供給孔110を備える。第2エア供給孔110は、第1エア通路100によりエアを誘導するとき、負荷側外部空間78のエアを回転軸12内の中空空間76に供給するために設けられる。第2エア供給孔110は、負荷側カバー18を貫通している。第2エア供給孔110は、回転軸12の周方向に間隔を空けて複数設けられる。中空空間76は、負荷側外部空間78に直接は連通せずに、第2エア供給孔110を通して連通する。 The load-side cover 18 includes a second air supply hole 110 that communicates the hollow space 76 (radially outer space 80) in the rotating shaft 12 with the load-side external space 78. The second air supply hole 110 is provided to supply air from the load-side external space 78 to the hollow space 76 within the rotating shaft 12 when air is guided through the first air passage 100 . The second air supply hole 110 penetrates the load side cover 18. A plurality of second air supply holes 110 are provided at intervals in the circumferential direction of the rotating shaft 12. The hollow space 76 does not communicate directly with the load-side external space 78, but communicates through the second air supply hole 110.
 アクチュエータ10は、ロータ62よりも反負荷側に設けられる放出部112を備える。放出部112は、第1エア通路100により反負荷側空間92に誘導されたエアを外部空間に放出するために用いられる。本実施形態の放出部112は、モータハウジング66の反負荷側開口部66cによって構成される。この場合、放出部112は、反負荷側空間92に誘導されたエアを反負荷側外部空間82に放出する。 The actuator 10 includes a discharge section 112 provided on the opposite load side of the rotor 62. The discharge part 112 is used to discharge the air guided into the anti-load side space 92 by the first air passage 100 to the external space. The discharge portion 112 of this embodiment is constituted by the anti-load side opening 66c of the motor housing 66. In this case, the discharge section 112 discharges the air guided into the counter-load side space 92 to the counter-load side external space 82 .
 以上のアクチュエータ10の動作を説明する。図5を参照する。本図では、エアの流れ方向に矢印を付して示す。回転軸12が回転したとき、第1エア通路100の径方向通路部100b内のエアに遠心力が作用する。この遠心力により、第1エア通路100の径方向通路部100b内のエアが径方向外側に押し出され、反負荷側空間92に供給される。これに伴い、第1エア通路100の径方向通路部100b内が負圧となり、負荷側空間90から第1エア通路100内にエアが吸引される。この結果、第1エア通路100は、回転軸12の回転に伴って、第1エア通路100を通して負荷側空間90から反負荷側空間92にエアを誘導可能となる。第1エア通路100は、回転軸12の回転方向によらず、このようにエアを誘導可能である。 The operation of the above actuator 10 will be explained. See FIG. 5. In this figure, the direction of air flow is indicated by an arrow. When the rotating shaft 12 rotates, centrifugal force acts on the air within the radial passage portion 100b of the first air passage 100. Due to this centrifugal force, the air in the radial passage portion 100b of the first air passage 100 is pushed outward in the radial direction and is supplied to the counter-load side space 92. Accordingly, the inside of the radial passage portion 100b of the first air passage 100 becomes negative pressure, and air is sucked into the first air passage 100 from the load side space 90. As a result, the first air passage 100 can guide air from the load side space 90 to the anti-load side space 92 through the first air passage 100 as the rotating shaft 12 rotates. The first air passage 100 can guide air in this way regardless of the rotational direction of the rotating shaft 12.
 第1エア通路100内に負荷側空間90からエアが吸引されると、負荷側空間90が負圧となり、アクチュエータ10の内部を経由して外部空間のエアが負荷側空間90まで供給される。本実施形態では、負荷側外部空間78→第2エア供給孔110→中空空間76(径方向外側空間80)→第1エア供給孔108を順に経由したエアが負荷側空間90まで供給される。反負荷側空間92に供給されたエアは、放出部112を通して外部空間(ここでは反負荷側外部空間82)に放出される。この結果、外部空間(ここでは負荷側外部空間78)→負荷側空間90→第1エア通路100→反負荷側空間92→外部空間(ここでは反負荷側外部空間82)の順でエアが流通する強制対流を発生させることができる。 When air is sucked into the first air passage 100 from the load side space 90, the load side space 90 becomes a negative pressure, and air from the external space is supplied to the load side space 90 via the inside of the actuator 10. In this embodiment, air is supplied to the load side space 90 via the load side external space 78 → second air supply hole 110 → hollow space 76 (radially outer space 80) → first air supply hole 108 in this order. The air supplied to the counter-load side space 92 is discharged to the external space (here, the counter-load-side external space 82) through the discharge section 112. As a result, air flows in the order of external space (here, load-side external space 78) → load-side space 90 → first air passage 100 → counter-load-side space 92 → external space (here, counter-load-side external space 82). It is possible to generate forced convection.
 このような強制対流を発生させる過程で、モータ14内の負荷側空間90に第1エア供給孔108を通して十分量のエアを供給できるように、複数の第1エア供給孔108の個数及び大きさが設定されていると好ましい。言い換えると、第1エア供給孔108の個数及び大きさは、回転軸12が回転したときに、負荷側空間90が予め定められた許容負圧以上となるように設定されていると好ましい。また、強制対流を発生させる過程で、第2エア供給孔110を通して回転軸12内の中空空間76に十分量のエアを供給できるように、複数の第2エア供給孔110の個数及び大きさが設定されていると好ましい。言い換えると、第2エア供給孔110の個数及び大きさは、回転軸12が回転したときに、中空空間76が予め定められた許容負圧以上となるように設定されていると好ましい。これにより、モータ14内の負荷側空間90、回転軸12内の中空空間76が過度に負圧になることによる伝達効率の低下を防止できる。なお、第1エア供給孔108、第2エア供給孔110の個数は特に限定されず、単数でもよい。 In the process of generating such forced convection, the number and size of the plurality of first air supply holes 108 are adjusted so that a sufficient amount of air can be supplied to the load side space 90 inside the motor 14 through the first air supply holes 108. It is preferable that . In other words, the number and size of the first air supply holes 108 are preferably set so that when the rotating shaft 12 rotates, the load side space 90 has a predetermined allowable negative pressure or more. In addition, the number and size of the plurality of second air supply holes 110 are adjusted so that a sufficient amount of air can be supplied to the hollow space 76 in the rotating shaft 12 through the second air supply holes 110 in the process of generating forced convection. It is preferable that this is set. In other words, the number and size of the second air supply holes 110 are preferably set so that when the rotating shaft 12 rotates, the hollow space 76 has a predetermined allowable negative pressure or more. Thereby, it is possible to prevent a reduction in transmission efficiency due to excessively negative pressure in the load-side space 90 in the motor 14 and the hollow space 76 in the rotating shaft 12. Note that the number of first air supply holes 108 and second air supply holes 110 is not particularly limited, and may be one.
 以上のアクチュエータ10の効果を説明する。 The effects of the above actuator 10 will be explained.
 第1エア通路100は、回転軸12の回転に伴って、第1エア通路100を通して負荷側空間90から反負荷側空間92にエアを誘導可能である。これにより、負荷側空間90→第1エア通路100→反負荷側空間92の順でエアが流通する強制対流を発生させることができる。これにより、モータ14の内部部品(ロータ62等)の熱を強制対流するエアに逃がすことで、モータ14の内部部品を冷却することができる。特に、熱源となるロータ62の熱を第1エア通路100を流通するエアに直接に逃がすことで、ロータ62を効果的に冷却することができる。 The first air passage 100 is capable of guiding air from the load side space 90 to the anti-load side space 92 through the first air passage 100 as the rotating shaft 12 rotates. Thereby, forced convection can be generated in which air flows in the order of load side space 90 → first air passage 100 → anti-load side space 92. Thereby, the internal parts of the motor 14 can be cooled by dissipating the heat of the internal parts of the motor 14 (such as the rotor 62) to the forced convection air. In particular, the rotor 62 can be effectively cooled by directly dissipating the heat of the rotor 62, which is a heat source, to the air flowing through the first air passage 100.
 本実施形態では、アクチュエータ10の外部にある外部空間から取り込んだエアを外部空間に放出する強制対流を発生させている。よって、外部空間から取り込んだ冷たいエアにモータ14の熱を逃がすことができ、モータ14の内部部品を効果的に冷却することができる。 In this embodiment, forced convection is generated to discharge air taken in from the external space outside the actuator 10 into the external space. Therefore, the heat of the motor 14 can be released to the cold air taken in from the outside space, and the internal parts of the motor 14 can be effectively cooled.
 また、モータ14の内部部品を冷却できるため、許容温度を超えたときにモータ供給電流を抑制するディレーティング制御の頻度を低減でき、アクチュエータ10から継続的に大トルクを出力できるようになる。また、モータ14の内部部品を冷却できるため、モータ14の内部部品の温度上昇を抑制しつつ、モータ供給電流の増大によりモータ14の出力(回転速度)を高速にできる。これに伴い、減速機16の減速比を大きくすることで、アクチュエータ10の出力回転の回転速度を維持したまま、アクチュエータ10から更に大きいトルクを出力できるようになる。また、モータ14を冷却するにあたって、専用動力源、クーラント循環回路、ファン等の冷却のための専用品を不要にでき、アクチュエータ10の大型化を回避できる。 Furthermore, since the internal parts of the motor 14 can be cooled, the frequency of derating control that suppresses the motor supply current when the temperature exceeds an allowable temperature can be reduced, and the actuator 10 can continuously output large torque. Further, since the internal parts of the motor 14 can be cooled, the output (rotational speed) of the motor 14 can be increased by increasing the motor supply current while suppressing the temperature rise of the internal parts of the motor 14. Accordingly, by increasing the reduction ratio of the reducer 16, it becomes possible to output even larger torque from the actuator 10 while maintaining the rotational speed of the output rotation of the actuator 10. Further, when cooling the motor 14, a dedicated power source, a coolant circulation circuit, a fan, and other dedicated components for cooling can be eliminated, and an increase in the size of the actuator 10 can be avoided.
 回転軸12は、第1エア通路100を内側に形成する第1通路形成部102を備える。よって、第1エア通路100を設けるにあたってロータ62に第1通路形成部102を形成せずに済ませることができる。 The rotating shaft 12 includes a first passage forming portion 102 that forms a first air passage 100 inside. Therefore, when providing the first air passage 100, it is not necessary to form the first passage forming part 102 in the rotor 62.
 アクチュエータ10は、第1エア通路100により反負荷側空間92に誘導されたエアを外部空間に放出する放出部112を備える。よって、モータ14の内部部品の冷却により加熱されたエアを反負荷側空間92から外部空間に放出でき、新しいエアを負荷側空間90に容易に取り込めるようになる。 The actuator 10 includes a discharge section 112 that discharges the air guided into the counter-load side space 92 by the first air passage 100 to the external space. Therefore, the air heated by cooling the internal parts of the motor 14 can be released from the anti-load side space 92 to the outside space, and new air can be easily introduced into the load side space 90.
 回転軸12は、モータ14内の負荷側空間90と回転軸12の中空部12aとを連通する第1エア供給孔108を備える。よって、回転軸12が回転したときに、回転軸12の中空部12a内を通して負荷側空間90にエアを供給できるようになる。 The rotating shaft 12 includes a first air supply hole 108 that communicates the load-side space 90 within the motor 14 with the hollow portion 12a of the rotating shaft 12. Therefore, when the rotating shaft 12 rotates, air can be supplied to the load side space 90 through the hollow portion 12a of the rotating shaft 12.
 負荷側カバー18は、回転軸12の中空部12a内の中空空間76と負荷側外部空間78とを連通する第2エア供給孔110を備える。通常、負荷側外部空間78は、モータ14、ドライバ基板52等の熱源の近傍にあるため高温環境下にある。これに対して、通常、反負荷側外部空間82は、負荷側外部空間78のような熱源が近傍にないことが多いため、負荷側外部空間78よりも低温環境下にある。このような反負荷側外部空間82と比べて冷たい負荷側外部空間78のエアを第2エア供給孔110、第1エア供給孔108を通してモータ14内の負荷側空間90に供給できるようになる。ひいては、冷たいエアを用いてモータ14の内部部品を効果的に冷却できるようになる。 The load-side cover 18 includes a second air supply hole 110 that communicates the hollow space 76 in the hollow portion 12a of the rotating shaft 12 with the load-side external space 78. Normally, the load-side external space 78 is in a high-temperature environment because it is located near heat sources such as the motor 14 and the driver board 52. On the other hand, the counter-load-side external space 82 is usually in a lower temperature environment than the load-side external space 78 because there is often no heat source nearby like the load-side external space 78 . The air in the load-side external space 78, which is colder than the counter-load-side external space 82, can be supplied to the load-side space 90 inside the motor 14 through the second air supply hole 110 and the first air supply hole 108. As a result, the internal parts of the motor 14 can be effectively cooled using cold air.
 モータハウジング66とステータ64との間には負荷側空間90と反負荷側空間92を連通する第2エア通路104が設けられる。よって、第1エア通路100により負荷側空間90から反負荷側空間92にエアが誘導されたとき、第2エア通路104を通してエアを流通させることができる。ひいては、熱源となるステータ64の熱を第2エア通路104を流通するエアに直接に逃がすことで、ステータ64を効果的に冷却することができる。 A second air passage 104 is provided between the motor housing 66 and the stator 64, which communicates the load side space 90 and the counter-load side space 92. Therefore, when air is guided from the load side space 90 to the anti-load side space 92 by the first air passage 100, the air can be circulated through the second air passage 104. Furthermore, the stator 64 can be effectively cooled by directly dissipating the heat of the stator 64, which is a heat source, to the air flowing through the second air passage 104.
 次に、第1エア通路100の他の特徴を説明する。図2を参照する。第1エア通路100は、反負荷側に向かうに連れて外径を徐々に大きくするスロープ120を備える。スロープ120は、第1エア通路100の第1通路形成部102における底部を構成する。第1エア通路100にスロープ120を設けることで、第1エア通路100によりエアを誘導するときに、第1エア通路100内のエアを大きく加速できるようになる。また、第1エア通路100にスロープ120を設けることで、エアの高い流速を維持したままスロープ120に沿ってエアを流通させることができるようになる。これは、後述のように、本願発明者の行った流体解析の結果として新たに得られた知見となる。これにより、反負荷側空間92に高流速のエアを供給できるようになり、反負荷側空間92から外部空間に放出されるエアの放出量を増やすことができる。これに伴い、アクチュエータ10内に外部空間から取り込まれるエアの供給量を増やすことができ、モータ14の内部部品を効果的に冷却できるようになる。 Next, other features of the first air passage 100 will be explained. See FIG. 2. The first air passage 100 includes a slope 120 whose outer diameter gradually increases toward the anti-load side. The slope 120 constitutes the bottom of the first passage forming portion 102 of the first air passage 100. By providing the slope 120 in the first air passage 100, the air in the first air passage 100 can be greatly accelerated when the air is guided through the first air passage 100. Further, by providing the slope 120 in the first air passage 100, air can be circulated along the slope 120 while maintaining a high air flow velocity. As will be described later, this is new knowledge obtained as a result of fluid analysis performed by the inventor of the present application. Thereby, it becomes possible to supply air at a high flow rate to the counter-load side space 92, and the amount of air released from the counter-load side space 92 to the external space can be increased. Accordingly, the supply amount of air taken into the actuator 10 from the external space can be increased, and the internal parts of the motor 14 can be effectively cooled.
 スロープ120は、ロータ62の径方向内側に設けられる第1領域120aを備える。このような第1領域120aをスロープ120に設けることで、反負荷側に向かうに連れて徐々に第1エア通路100(軸方向通路部100a)の断面積を小さくすることができる。このため、第1エア通路100の軸方向通路部100aを流通させる過程でエアを徐々に加速できるようになる。また、この場合、第1エア通路100の軸方向通路部100aを流通させる過程でエアを整流でき、安定して高流速のエアを反負荷側空間92に供給できるようになる。これは、後述のように、本願発明者の行った流体解析の結果として新たに得られた知見となる。 The slope 120 includes a first region 120a provided on the radially inner side of the rotor 62. By providing such a first region 120a on the slope 120, the cross-sectional area of the first air passage 100 (axial passage portion 100a) can be gradually reduced toward the anti-load side. Therefore, the air can be gradually accelerated in the process of flowing through the axial passage portion 100a of the first air passage 100. Further, in this case, air can be rectified during the process of flowing through the axial passage portion 100a of the first air passage 100, and air at a high flow rate can be stably supplied to the counter-load side space 92. As will be described later, this is new knowledge obtained as a result of fluid analysis performed by the inventor of the present application.
 スロープ120は、ロータ62よりも反負荷側に設けられる第2領域120bを備える。第2領域120bの外径の変化率は、第1領域120aの外径の変化率よりも大きくなる。ここでの変化率とは、単位軸方向寸法あたりの外径の変化量(%)、つまり勾配である。本実施形態のスロープ120は、負荷側から反負荷側に向かって、第1定勾配部分120c、勾配変化部分120d、第2定勾配部分120eを備える。第1定勾配部分120c、第2定勾配部分120eの勾配は一定となり、勾配変化部分120dの勾配は、反負荷側に向かって徐々に大きくなる。第1領域120aと第2領域120bとの境界120fは勾配変化部分120dに設けられる。 The slope 120 includes a second region 120b provided on the opposite load side from the rotor 62. The rate of change in the outer diameter of the second region 120b is greater than the rate of change in the outer diameter of the first region 120a. The rate of change here refers to the amount of change (%) in the outer diameter per unit axial dimension, that is, the slope. The slope 120 of this embodiment includes, from the load side toward the anti-load side, a first constant slope portion 120c, a slope changing portion 120d, and a second constant slope portion 120e. The slopes of the first constant slope portion 120c and the second constant slope portion 120e are constant, and the slope of the slope changing portion 120d gradually increases toward the anti-load side. A boundary 120f between the first region 120a and the second region 120b is provided at the gradient changing portion 120d.
 このようにスロープ120の第2領域120bを設けた場合、第1エア通路100の軸方向通路部100aを通過した直後、軸方向断面積が広がったとしても、その軸方向通路部100aを通過する直前よりもエアを加速できるようになる(図6(B)の領域R2)。特に、第2領域120bの外径の変化率を第1領域120aの外径の変化率よりも大きくした場合に、軸方向通路部100aを通過した直後に大きくエアを加速できる傾向が見られる。これも、後述のように、本願発明者の行った流体解析の結果として新たに得られた知見となる。 When the second region 120b of the slope 120 is provided in this way, even if the axial cross-sectional area increases immediately after passing through the axial passage portion 100a of the first air passage 100, the air passes through the axial passage portion 100a. The air can now be accelerated more than immediately before (region R2 in FIG. 6(B)). In particular, when the rate of change in the outer diameter of the second region 120b is made larger than the rate of change in the outer diameter of the first region 120a, there is a tendency that the air can be greatly accelerated immediately after passing through the axial passage portion 100a. As will be described later, this is also new knowledge obtained as a result of fluid analysis conducted by the inventor of the present application.
 スロープ120の第2領域120bは、第1エア通路100の反負荷側端部100cを超えて回転軸12のフランジ部12dの外周部まで連続している。スロープ120の第2領域120bの反負荷側端部120gの外径R120は、ロータ62の外径R62よりも大きくなる。この外径R120は、ステータ64の内径R64-1よりも大きく、ステータ64の外径R64-2よりも小さくなる。この外径R120は、回転軸12のフランジ部12dの外径R12(回転軸12の最大外径)と合致する大きさとなる。このように、スロープ120の外径R120をロータ62の外径R62よりも大きくすることで、エアの高い流速を維持したまま反負荷側空間92において外部空間の近くまでエアを流通させ易くなる。ひいては、外部空間に放出されるエアの放出量を増やすことで、外部空間から取り込まれるエアの供給量を増やし易くなり、モータ14の内部部品を更に効果的に冷却できるようになる。なお、スロープ120の外径R120は、ステータ64の外径R64-2以上であってもよい。 The second region 120b of the slope 120 continues beyond the opposite end 100c of the first air passage 100 to the outer circumference of the flange 12d of the rotating shaft 12. The outer diameter R120 of the anti-load side end 120g of the second region 120b of the slope 120 is larger than the outer diameter R62 of the rotor 62. This outer diameter R120 is larger than the inner diameter R64-1 of the stator 64 and smaller than the outer diameter R64-2 of the stator 64. This outer diameter R120 has a size that matches the outer diameter R12 (maximum outer diameter of the rotating shaft 12) of the flange portion 12d of the rotating shaft 12. In this way, by making the outer diameter R120 of the slope 120 larger than the outer diameter R62 of the rotor 62, it becomes easier to circulate the air close to the external space in the anti-load side space 92 while maintaining a high air flow velocity. Furthermore, by increasing the amount of air released into the external space, it becomes easier to increase the amount of air taken in from the external space, and the internal parts of the motor 14 can be cooled more effectively. Note that the outer diameter R120 of the slope 120 may be greater than or equal to the outer diameter R64-2 of the stator 64.
 前述のように、第1エア通路100にスロープ120があることで、高流速の勢いを持ったエアを反負荷側空間92に供給したうえで放出部112から放出できるようになる。このとき、第1エア通路100の最小断面積が小さくなるように設計することで、反負荷側空間92からのエアの放出量に対して第1エア通路100から反負荷側空間92へのエアの供給量を小さくできる。これに伴い、負荷側空間90に対して反負荷側空間92の気圧を低くしつつ気圧差を大きくでき、第1エア通路100以外の箇所を通して負荷側空間90から反負荷側空間92にエアを流通させることができるようになる。この効果は、第1エア通路100の個数を多くするほど効果的に得ることができる。ここでの第1エア通路100の最小断面積とは、第1エア通路100内でのエアの流れ方向に直交する断面積が最小となる箇所での断面積をいい、ここでは軸方向通路部100aの反負荷側端部の断面積をいう。 As described above, the presence of the slope 120 in the first air passage 100 makes it possible to supply air with high flow velocity and momentum to the anti-load side space 92 and then release it from the release part 112. At this time, by designing the first air passage 100 so that the minimum cross-sectional area is small, the amount of air from the first air passage 100 to the counter-load side space 92 is reduced relative to the amount of air released from the counter-load side space 92. The amount of supply can be reduced. Accordingly, the air pressure in the anti-load side space 92 can be lowered with respect to the load side space 90 while increasing the pressure difference, and air can be supplied from the load side space 90 to the anti-load side space 92 through locations other than the first air passage 100. It will be possible to distribute it. This effect can be obtained more effectively as the number of first air passages 100 increases. The minimum cross-sectional area of the first air passage 100 here refers to the cross-sectional area at a point where the cross-sectional area orthogonal to the air flow direction within the first air passage 100 is minimum, and here, the axial passage section Refers to the cross-sectional area of the opposite end of 100a.
 ここでの「第1エア通路100以外の箇所」は、本実施形態では、モータハウジング66とステータ64の間にある第2エア通路104をいう。回転軸12が回転したとき、第2エア通路104を負荷側から反負荷側に向けてエアが流通するように第1エア通路100の構造(個数、最小断面積等)が設計(構成)されているともいえる。これにより、ステータ64の熱を第2エア通路104を流通するエアに直接に逃がすことで、ステータ64を効果的に冷却できるようになる。このような条件を満たすうえで適した第1エア通路100の構造(個数、最小断面積等)は、実験、解析等により求めればよい。 In this embodiment, "a location other than the first air passage 100" herein refers to the second air passage 104 located between the motor housing 66 and the stator 64. The structure (number, minimum cross-sectional area, etc.) of the first air passage 100 is designed (configured) so that when the rotating shaft 12 rotates, air flows through the second air passage 104 from the load side to the anti-load side. It can be said that Thereby, the stator 64 can be effectively cooled by directly dissipating the heat of the stator 64 to the air flowing through the second air passage 104. The structure (number, minimum cross-sectional area, etc.) of the first air passage 100 suitable for satisfying such conditions may be determined by experiment, analysis, or the like.
 また、ここでの「第1エア通路100以外の箇所」は、ロータ62とステータ64の間にあるギャップ72をいう。回転軸12が回転したとき、ギャップ72を負荷側から反負荷側に向けてエアが流通するように第1エア通路100の構造(個数、最小断面積等)が設計(構成)されているともいえる。これにより、ステータ64及びロータ62の熱をギャップ72を流通するエアに直接に逃がすことで、これらを効果的に冷却できるようになる。このような条件を満たすうえで適した第1エア通路100の構造(個数、最小断面積等)は、実験、解析等により求めればよい。 Furthermore, the "location other than the first air passage 100" here refers to the gap 72 between the rotor 62 and the stator 64. The structure (number, minimum cross-sectional area, etc.) of the first air passage 100 is designed (configured) so that when the rotating shaft 12 rotates, air flows through the gap 72 from the load side to the anti-load side. I can say that. Thereby, the heat of the stator 64 and rotor 62 can be directly released to the air flowing through the gap 72, thereby making it possible to effectively cool them. The structure (number, minimum cross-sectional area, etc.) of the first air passage 100 suitable for satisfying such conditions may be determined by experiment, analysis, or the like.
 次に、スロープ120を設けた場合のエアの流れ方を確認するために行った流体解析の結果の一例を説明する。図6(A)、(B)は、第1実施形態で説明したアクチュエータ10と同様の形状を持つモデルを対象として行った流体解析の結果を示す。この流体解析は、回転軸12を回転させた条件のもとで行った。図6(A)では、エアの流れ方向に矢印を付して示す。また、図6(A)では、エアが高流速で流通する箇所にハッチングを付して示す。ハッチングを付した箇所はハッチングを付さずに矢印を付した箇所と比べて数倍(例えば、3,4倍)以上の流速となる箇所である。また、図6(B)は、第1エア通路100内でのエアの流れ方向を模式的に示す。 Next, an example of the results of fluid analysis performed to confirm the flow of air when the slope 120 is provided will be described. FIGS. 6A and 6B show the results of a fluid analysis performed on a model having a shape similar to that of the actuator 10 described in the first embodiment. This fluid analysis was performed under the condition that the rotating shaft 12 was rotated. In FIG. 6(A), the direction of air flow is indicated by an arrow. Further, in FIG. 6(A), hatched areas are shown where air flows at a high flow rate. The hatched locations are locations where the flow velocity is several times (for example, 3 or 4 times) higher than the non-hatched locations with arrows. Moreover, FIG. 6(B) schematically shows the flow direction of air within the first air passage 100.
 このように、第1エア通路100にスロープ120を設けた場合、第1エア通路100内においてエアを大きく加速できるようになる。このとき、第1エア通路100内にエアが流入した直後の領域R1ではエアに乱れが生じていたものの、反負荷側に向かうに連れてエアの乱れが発生しなくなった。また、第1エア通路100の軸方向通路部100aでは、スロープ120に第1領域120aがあることで、徐々にエアの流速が高くなるよう加速されていた。また、第1エア通路100の軸方向通路部100aを通過した直後にある径方向通路部100bの領域R2では、スロープ120に第2領域120bがあることで、軸方向断面積が広がったとしても、その直前よりも加速された最大流速のエアが流通していた。また、第1エア通路100の径方向通路部100bの領域R2を通過した後、流速を徐々に低くしつつも、比較的に高い流速を維持したままスロープ120に沿ってエアが流通していた。また、この他にも、ギャップ72、第2エア通路104を負荷側から反負荷側に向けてエアが流通していた。 In this way, when the slope 120 is provided in the first air passage 100, the air within the first air passage 100 can be greatly accelerated. At this time, although turbulence occurred in the air in the region R1 immediately after the air entered the first air passage 100, the turbulence in the air stopped as it moved toward the opposite load side. Further, in the axial passage portion 100a of the first air passage 100, the slope 120 has the first region 120a, so that the air flow rate is gradually accelerated to become higher. Furthermore, in the region R2 of the radial passage portion 100b immediately after passing through the axial passage portion 100a of the first air passage 100, even if the axial cross-sectional area is expanded due to the second region 120b in the slope 120. , air was flowing at a maximum flow velocity that was faster than that immediately before. Further, after passing through the region R2 of the radial passage portion 100b of the first air passage 100, the air was flowing along the slope 120 while maintaining a relatively high flow velocity, although the flow velocity was gradually lowered. . In addition to this, air was flowing through the gap 72 and the second air passage 104 from the load side to the anti-load side.
(第2実施形態)図7を参照する。本図でも、エアの流れ方向に矢印を付して示す。本実施形態のアクチュエータ10は、第1実施形態のアクチュエータ10と比べて、パイプ部材42において相違する。本実施形態のパイプ部材42は、外側にある径方向外側空間80と内側にある径方向内側空間86とを連通する第3エア供給孔130を備える。第3エア供給孔130は、パイプ部材42を径方向に貫通している。第3エア供給孔130は、回転軸12の周方向に間隔を空けて複数設けられる。 (Second Embodiment) Refer to FIG. 7. In this figure as well, the direction of air flow is indicated by an arrow. The actuator 10 of this embodiment is different from the actuator 10 of the first embodiment in the pipe member 42. The pipe member 42 of this embodiment includes a third air supply hole 130 that communicates between a radially outer space 80 on the outside and a radially inner space 86 on the inside. The third air supply hole 130 penetrates the pipe member 42 in the radial direction. A plurality of third air supply holes 130 are provided at intervals in the circumferential direction of the rotating shaft 12.
 第3エア供給孔130は、第1エア通路100によりエアを誘導するとき、負荷側外部空間78及び反負荷側外部空間82のエアを回転軸12の中空部12a内にある径方向外側空間80に供給するために用いられる。本実施形態では、第1エア通路100によりエアを誘導するとき、負荷側外部空間78及び反負荷側外部空間82→径方向内側空間86→第3エア供給孔130→径方向外側空間80→第1エア供給孔108を順に経由したエアがモータ14内の負荷側空間90に供給される。なお、本実施形態の負荷側カバー18は第2エア供給孔110を備えていない。 When guiding air through the first air passage 100, the third air supply hole 130 directs air from the load-side external space 78 and the counter-load-side external space 82 to the radially outer space 80 within the hollow portion 12a of the rotating shaft 12. used to supply In this embodiment, when guiding air through the first air passage 100, the load-side external space 78 and the counter-load-side external space 82 → the radially inner space 86 → the third air supply hole 130 → the radially outer space 80 → the third Air that has passed through the air supply holes 108 in order is supplied to the load side space 90 within the motor 14. Note that the load side cover 18 of this embodiment does not include the second air supply hole 110.
 本実施形態によれば、反負荷側外部空間82及び負荷側空間90のエアを第3エア供給孔130、第1エア供給孔108を通してモータ14内の負荷側空間90に供給できるようになる。本実施形態のアクチュエータ10は、この他の点において、第1実施形態と同様の効果を得ることができる。 According to this embodiment, air in the counter-load side external space 82 and the load side space 90 can be supplied to the load side space 90 inside the motor 14 through the third air supply hole 130 and the first air supply hole 108. The actuator 10 of this embodiment can obtain the same effects as the first embodiment in other respects.
(第3実施形態)図8を参照する。本実施形態のアクチュエータ10は、第1実施形態と比べて、第2エア通路104において相違する。詳しくは、本実施形態の第2エア通路104を形成する第2通路形成部106は、モータハウジング66に替えて、ステータ64の外周部(ステータコア70の外周部)に設けられる。この他にも、第2通路形成部106は、モータハウジング66及びステータ64の両方に設けられてもよい。本実施形態のアクチュエータ10によっても、第1実施形態と同様の効果を得ることができる。 (Third Embodiment) Refer to FIG. 8. The actuator 10 of this embodiment differs from the first embodiment in the second air passage 104. Specifically, the second passage forming portion 106 that forms the second air passage 104 of this embodiment is provided on the outer periphery of the stator 64 (the outer periphery of the stator core 70) instead of the motor housing 66. In addition to this, the second passage forming portion 106 may be provided in both the motor housing 66 and the stator 64. The actuator 10 of this embodiment can also provide the same effects as the first embodiment.
(第4実施形態)図9、図10を参照する。本実施形態のアクチュエータ10は、第1実施形態と比べて、負荷側空間90に配置される複数の羽根140を備える点で相違する。複数の羽根140は、回転軸12の外周部に対して径方向外側に突き出ており、回転軸12と一体化されている。本実施形態の複数の羽根140は、締まり嵌め等により回転軸12の外周部に固定されるハブ142に固定されている。アクチュエータ10は、羽根140とハブ142を有するファン144を備えているともいえる。ハブ142は、第1エア供給孔108と重なる位置に径方向に貫通する貫通孔142aを備える。貫通孔142aは、第1エア供給孔108を通して負荷側空間90と中空空間76を連通している。この他にも、複数の羽根140は、回転軸12の一部として一体成形されていてもよい。 (Fourth Embodiment) Refer to FIGS. 9 and 10. The actuator 10 of this embodiment is different from the first embodiment in that it includes a plurality of blades 140 arranged in the load side space 90. The plurality of blades 140 protrude radially outward from the outer peripheral portion of the rotating shaft 12 and are integrated with the rotating shaft 12 . The plurality of blades 140 of this embodiment are fixed to a hub 142 fixed to the outer circumference of the rotating shaft 12 by interference fit or the like. The actuator 10 can also be said to include a fan 144 having blades 140 and a hub 142. The hub 142 includes a through hole 142a that penetrates in the radial direction at a position overlapping with the first air supply hole 108. The through hole 142a communicates the load side space 90 and the hollow space 76 through the first air supply hole 108. In addition to this, the plurality of blades 140 may be integrally formed as part of the rotating shaft 12.
 複数の羽根140は、回転軸12とともに回転することで、回転軸12内にある中空空間76のエアを第1エア供給孔108を通して負荷側空間90に誘導可能である。これにより、外部空間から回転軸12の中空空間76を通して負荷側空間90に取り込まれるエアの供給量を増やすことができる。ひいては、モータ14の内部部品を更に効果的に冷却できるようになる。本実施形態のアクチュエータ10は、この他の点において、第1実施形態と同様の効果を得ることができる。 By rotating together with the rotating shaft 12, the plurality of blades 140 can guide air in the hollow space 76 within the rotating shaft 12 to the load-side space 90 through the first air supply hole 108. Thereby, the amount of air supplied from the external space through the hollow space 76 of the rotary shaft 12 into the load side space 90 can be increased. As a result, the internal parts of the motor 14 can be cooled more effectively. The actuator 10 of this embodiment can obtain the same effects as the first embodiment in other respects.
 次に、ここまで説明した各構成要素の変形形態を説明する。 Next, modifications of each component explained so far will be explained.
 アクチュエータ10において減速機16は必須ではなく、モータ14を備えていればよい。減速機16の減速機構26の具体例は特に限定されない。減速機構26は、例えば、単純遊星歯車機構、偏心揺動型歯車機構、直交軸歯車機構、平行軸歯車機構等の何れかでもよい。減速機構26が偏心揺動型歯車機構の場合、その種類の具体例は特に限定されない。この種類は、内歯歯車の軸心上にクランク軸が配置されるセンタークランクタイプの他にも、内歯歯車の軸心からオフセットした位置に複数のクランク軸が配置される振り分けタイプでもよい。減速機構26が撓み噛合い型歯車機構の場合、その種類の具体例は特に限定されない。この種類は、本実施形態のように二つの内歯歯車32A、32Bを備える筒型の他に、例えば、一つの内歯歯車を備えるカップ型、シルクハット型でもよい。 The reducer 16 is not essential in the actuator 10, and it is sufficient if the actuator 10 is provided with the motor 14. A specific example of the speed reduction mechanism 26 of the speed reducer 16 is not particularly limited. The speed reduction mechanism 26 may be, for example, a simple planetary gear mechanism, an eccentric oscillating gear mechanism, an orthogonal axis gear mechanism, a parallel axis gear mechanism, or the like. When the speed reduction mechanism 26 is an eccentric rocking type gear mechanism, the specific example of the type thereof is not particularly limited. This type may include a center crank type in which the crankshaft is arranged on the axis of the internal gear, or a distributed type in which a plurality of crankshafts are arranged at positions offset from the axis of the internal gear. When the speed reduction mechanism 26 is a flexible mesh gear mechanism, the specific example of the type thereof is not particularly limited. This type may be a cylindrical type having two internal gears 32A, 32B as in this embodiment, or a cup type or top hat type having one internal gear, for example.
 第1エア通路100は、回転軸12に伴って、第1エア通路100を通して負荷側空間90から反負荷側空間92にエアを誘導可能であればよく、そのための具体的形状は特に限定されない。例えば、第1エア通路100は螺旋状に延びる軸方向通路部100aのみを備えていてもよい。この場合、反負荷側に向かって第1エア通路100のなす螺旋の巻き方向と逆向きに回転させることで、負荷側空間90から反負荷側空間92にエアを誘導可能となる。 The first air passage 100 only needs to be able to guide air from the load side space 90 to the anti-load side space 92 through the first air passage 100 along with the rotating shaft 12, and its specific shape is not particularly limited. For example, the first air passage 100 may include only an axial passage portion 100a extending spirally. In this case, air can be guided from the load side space 90 to the anti-load side space 92 by rotating it toward the anti-load side in a direction opposite to the spiral winding direction formed by the first air passage 100.
 モータ内部空間88は外部空間に連通していなくともよい。この場合、第1エア通路100によってエアを誘導したときに、負荷側空間90→第1エア通路100→反負荷側空間92→負荷側空間90の順でエアが循環するようにしてもよい。この場合でも、エアの強制対流と熱伝導とによって、モータ14の内部部品の冷却効果を期待できる。ここでの熱伝導とは、モータ内部空間88と外部空間との間でのモータハウジング66を通した熱伝導をいう。 The motor internal space 88 does not need to communicate with the external space. In this case, when air is guided through the first air passage 100, the air may be circulated in the order of the load side space 90→first air passage 100→counter-load side space 92→load side space 90. Even in this case, the effect of cooling the internal parts of the motor 14 can be expected due to forced air convection and heat conduction. Heat conduction here refers to heat conduction between the motor interior space 88 and the exterior space through the motor housing 66.
 第1通路形成部102は、回転軸12に替えて、ロータ62に設けられてもよい。この他にも、第1通路形成部102は、回転軸12とロータ62の両方に設けられてもよい。 The first passage forming portion 102 may be provided on the rotor 62 instead of the rotating shaft 12. In addition to this, the first passage forming portion 102 may be provided on both the rotating shaft 12 and the rotor 62.
 第1エア通路100においてスロープ120は必須ではない。スロープ120は第2領域120b及び第1領域120aの少なくとも一方を備えていてもよい。第2領域120b及び第1領域120aの外径の変化率は特に限定されない。両者の変化率は同じでもよいし、第2領域120bの変化率が第1領域120aの変化率より小さくともよい。 The slope 120 is not essential in the first air passage 100. The slope 120 may include at least one of a second region 120b and a first region 120a. The rate of change in the outer diameters of the second region 120b and the first region 120a is not particularly limited. The rate of change in both regions may be the same, or the rate of change in the second region 120b may be smaller than the rate of change in the first region 120a.
 放出部112の具体例は特に限定されない。これは、例えば、モータハウジング66の反負荷側開口部66cの他にも、モータハウジング66に形成された貫通孔、モータハウジング66に取り付けられた排気パイプ等でもよい。 The specific example of the discharge section 112 is not particularly limited. This may be, for example, in addition to the anti-load side opening 66c of the motor housing 66, a through hole formed in the motor housing 66, an exhaust pipe attached to the motor housing 66, or the like.
 モータ14内の負荷側空間90に第1エア供給孔108を通してエアを供給するうえで、その具体的な経路は特に限定されない。この経路として、第1実施形態では以下の(1)、第2実施形態では以下の(2)を説明した。この他にも、この経路は、例えば、次の(3)、(4)によって実現されてもよい。また、(1)~(3)のうちの二つ以上を組み合わせてもよい。
(1)負荷側外部空間78→第2エア供給孔110→中空空間76(径方向外側空間80)→第1エア供給孔108
(2)負荷側外部空間78及び反負荷側外部空間82の少なくとも一方→径方向内側空間86→第3エア供給孔130→中空空間76(径方向外側空間80)→第1エア供給孔108
(3)(回転軸12とパイプ部材42の間に第3シール部材94Cが配置されない場合)反負荷側外部空間82→中空空間76(径方向外側空間80)→第1エア供給孔108
(4)(回転軸12の中空部12a内にパイプ部材42が配置されない場合)負荷側外部空間78及び反負荷側外部空間82の少なくとも一方→中空空間76→第1エア供給孔108
The specific route for supplying air to the load-side space 90 in the motor 14 through the first air supply hole 108 is not particularly limited. As this route, the following (1) was explained in the first embodiment, and the following (2) was explained in the second embodiment. In addition to this, this route may be realized by, for example, the following (3) and (4). Furthermore, two or more of (1) to (3) may be combined.
(1) Load side external space 78 → second air supply hole 110 → hollow space 76 (radially outer space 80) → first air supply hole 108
(2) At least one of the load side external space 78 and the counter-load side external space 82 → radially inner space 86 → third air supply hole 130 → hollow space 76 (radially outer space 80) → first air supply hole 108
(3) (When the third seal member 94C is not arranged between the rotating shaft 12 and the pipe member 42) Anti-load side external space 82 → hollow space 76 (radially outer space 80) → first air supply hole 108
(4) (When the pipe member 42 is not arranged in the hollow part 12a of the rotating shaft 12) At least one of the load side external space 78 and the counter-load side external space 82 → hollow space 76 → first air supply hole 108
 アクチュエータ10において第2エア通路104は必須ではない。第2エア通路104を通してエアを流通させるうえでは、第1エア通路100によりエアを誘導したときに、反負荷側空間92から負荷側空間90にエアが流通してもよい。第2エア通路104、ギャップ72においてエアが流通するように第1エア通路100が設計されることは必須ではない。 The second air passage 104 is not essential in the actuator 10. In order to circulate the air through the second air passage 104, when the air is guided through the first air passage 100, the air may circulate from the counter-load side space 92 to the load side space 90. It is not essential that the first air passage 100 be designed so that air flows through the second air passage 104 and the gap 72.
 以上の実施形態及び変形形態は例示である。これらを抽象化した技術的思想は、実施形態及び変形形態の内容に限定的に解釈されるべきではない。実施形態及び変形形態の内容は、構成要素の変更、追加、削除等の多くの設計変更が可能である。前述の実施形態では、このような設計変更が可能な内容に関して、「実施形態」との表記を付して強調している。しかしながら、そのような表記のない内容でも設計変更が許容される。図面の断面に付したハッチングは、ハッチングを付した対象の材質を限定するものではない。実施形態及び変形形態において言及している構造には、寸法誤差、組立誤差等を考慮すると同一とみなすことができるものも当然に含まれる。 The above embodiments and modifications are merely examples. These abstracted technical ideas should not be interpreted as being limited to the contents of the embodiments and modified forms. The contents of the embodiments and modified forms may be subject to many design changes such as changes, additions, and deletions of constituent elements. In the embodiments described above, the content that allows such design changes is emphasized by adding the notation "embodiment". However, design changes are allowed even if there is no such notation. The hatching added to the cross section of the drawing does not limit the material of the hatched object. The structures referred to in the embodiments and modified embodiments naturally include structures that can be considered to be the same considering dimensional errors, assembly errors, and the like.
 以上の構成要素の任意の組み合わせも有効である。例えば、実施形態に対して他の実施形態の任意の説明事項を組み合わせてもよいし、変形形態に対して実施形態及び他の変形形態の任意の説明事項を組み合わせてもよい。また、実施形態において単数部材により構成された構成要素は複数部材で構成されてもよい。同様に、実施形態において複数部材により構成された構成要素は単数部材で構成されてもよい。 Any combination of the above components is also effective. For example, an embodiment may be combined with any description of another embodiment, or a modified form may be combined with any description of the embodiment and other modified forms. Further, in the embodiment, a component made up of a single member may be made up of a plurality of members. Similarly, a component configured with multiple members in an embodiment may be configured with a single member.
 本開示は、アクチュエータに関する。 The present disclosure relates to an actuator.
10…アクチュエータ、12…回転軸、12a…中空部、14…モータ、16…減速機、18…負荷側カバー、42…パイプ部材、62…ロータ、64…ステータ、66…モータハウジング、72…ギャップ、76…中空空間、78…負荷側外部空間、80…径方向外側空間、86…径方向内側空間、90…負荷側空間、92…反負荷側空間、100…第1エア通路、104…第2エア通路、108…第1エア供給孔、110…第2エア供給孔、112…放出部、120…スロープ、120a…第1領域、120b…第2領域、130…第3エア供給孔。 DESCRIPTION OF SYMBOLS 10...Actuator, 12...Rotating shaft, 12a...Hollow part, 14...Motor, 16...Reducer, 18...Load side cover, 42...Pipe member, 62...Rotor, 64...Stator, 66...Motor housing, 72...Gap , 76...Hollow space, 78...Load side external space, 80...Radially outer space, 86...Radially inner space, 90...Load side space, 92...Counter load side space, 100...First air passage, 104...Nth 2 air passage, 108...first air supply hole, 110...second air supply hole, 112...discharge part, 120...slope, 120a...first region, 120b...second region, 130...third air supply hole.

Claims (14)

  1.  回転軸と、前記回転軸を回転させるモータとを備えるアクチュエータであって、
     前記モータは、前記回転軸に配置されるロータと、前記回転軸と前記ロータとの間に設けられ前記ロータに対して負荷側にある負荷側空間と反負荷側にある反負荷側空間とを連通する第1エア通路と、を備え、
     前記第1エア通路は、前記回転軸の回転に伴って、前記第1エア通路を通して前記負荷側空間から前記反負荷側空間にエアを誘導可能であるアクチュエータ。
    An actuator comprising a rotating shaft and a motor that rotates the rotating shaft,
    The motor includes a rotor disposed on the rotating shaft, a load-side space provided between the rotating shaft and the rotor, and a load-side space located on a load side with respect to the rotor, and an anti-load-side space located on a counter-load side with respect to the rotor. A first air passage communicating with each other,
    The first air passage is an actuator capable of guiding air from the load side space to the counter-load side space through the first air passage as the rotating shaft rotates.
  2.  前記回転軸は、前記第1エア通路を内側に形成する通路形成部を備える請求項1に記載のアクチュエータ。 The actuator according to claim 1, wherein the rotating shaft includes a passage forming part that forms the first air passage inside.
  3.  前記第1エア通路は、反負荷側に向かうに連れて外径を徐々に大きくするスロープを備える請求項1または2に記載のアクチュエータ。 The actuator according to claim 1 or 2, wherein the first air passage includes a slope whose outer diameter gradually increases toward the anti-load side.
  4.  前記スロープは、前記ロータの径方向内側に設けられる第1領域を備える請求項3に記載のアクチュエータ。 The actuator according to claim 3, wherein the slope includes a first region provided radially inside the rotor.
  5.  前記スロープは、前記ロータよりも反負荷側に設けられる第2領域を備える請求項3または4に記載のアクチュエータ。 The actuator according to claim 3 or 4, wherein the slope includes a second region provided on a side opposite to the load from the rotor.
  6.  前記第2領域の反負荷側端部の外径は前記ロータの外径よりも大きい請求項5に記載のアクチュエータ。 The actuator according to claim 5, wherein the outer diameter of the opposite end of the second region is larger than the outer diameter of the rotor.
  7.  前記スロープは、前記ロータよりも反負荷側に設けられる第2領域を備え、
     前記第2領域の外径の変化率は、前記第1領域の外径の変化率よりも大きい請求項4に記載のアクチュエータ。
    The slope includes a second region provided on the opposite load side of the rotor,
    The actuator according to claim 4, wherein a rate of change in the outer diameter of the second region is greater than a rate of change in the outer diameter of the first region.
  8.  前記ロータよりも反負荷側に設けられ前記第1エア通路により前記反負荷側空間に誘導されたエアを外部空間に放出する放出部を備える請求項1から7のいずれかに記載のアクチュエータ。 The actuator according to any one of claims 1 to 7, further comprising a discharge section that is provided on a side opposite to the load side of the rotor and discharges the air guided into the space on the opposite load side by the first air passage to an external space.
  9.  前記回転軸は、中空部と、前記負荷側空間と前記中空部とを連通する第1エア供給孔とを備える請求項1から8のいずれかに記載のアクチュエータ。 The actuator according to any one of claims 1 to 8, wherein the rotating shaft includes a hollow portion and a first air supply hole that communicates the load-side space with the hollow portion.
  10.  モータの負荷側に連結される減速機と、
     前記減速機を負荷側から覆う負荷側カバーと、を備え、
     前記負荷側カバーは、前記中空部内にある中空空間と負荷側外部空間とを連通する第2エア供給孔を備える請求項9に記載のアクチュエータ。
    a reducer connected to the load side of the motor;
    a load side cover that covers the reduction gear from the load side,
    The actuator according to claim 9, wherein the load-side cover includes a second air supply hole that communicates a hollow space in the hollow portion with a load-side external space.
  11.  前記中空部内に配置されるパイプ部材を備え、
     前記パイプ部材は、前記中空部と前記パイプ部材の間にある径方向外側空間と前記パイプ部材の内側にある径方向内側空間とを連通する第3エア供給孔を備える請求項9に記載のアクチュエータ。
    comprising a pipe member disposed within the hollow part,
    The actuator according to claim 9, wherein the pipe member includes a third air supply hole that communicates a radially outer space between the hollow portion and the pipe member and a radially inner space inside the pipe member. .
  12.  前記モータは、モータハウジングと、前記モータハウジングの内周部に固定されるステータと、を備え、
     前記モータハウジングと前記ステータとの間には、前記負荷側空間と前記反負荷側空間とを連通する第2エア通路が設けられる請求項1から11のいずれかに記載のアクチュエータ。
    The motor includes a motor housing and a stator fixed to an inner peripheral portion of the motor housing,
    The actuator according to any one of claims 1 to 11, wherein a second air passage is provided between the motor housing and the stator to communicate the load side space and the counter-load side space.
  13.  前記回転軸が回転したときに、前記第2エア通路を負荷側から反負荷側に向けてエアが流通するように前記第1エア通路が設計されている請求項12に記載のアクチュエータ。 The actuator according to claim 12, wherein the first air passage is designed so that when the rotating shaft rotates, air flows through the second air passage from the load side toward the anti-load side.
  14.  前記回転軸が回転したときに、前記ロータと前記ステータの間のギャップを負荷側から反負荷側に向けてエアが流通するように前記第1エア通路が設計されている請求項12または13に記載のアクチュエータ。 Claim 12 or 13, wherein the first air passage is designed such that when the rotating shaft rotates, air flows through the gap between the rotor and the stator from the load side to the opposite load side. Actuator as described.
PCT/JP2023/010834 2022-05-18 2023-03-20 Actuator WO2023223656A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022081765A JP2023170203A (en) 2022-05-18 2022-05-18 actuator
JP2022-081765 2022-05-18

Publications (1)

Publication Number Publication Date
WO2023223656A1 true WO2023223656A1 (en) 2023-11-23

Family

ID=88835222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010834 WO2023223656A1 (en) 2022-05-18 2023-03-20 Actuator

Country Status (2)

Country Link
JP (1) JP2023170203A (en)
WO (1) WO2023223656A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006031916A1 (en) * 2004-09-13 2006-03-23 Siemens Energy & Automation, Inc. System and method for managing air flow in a motor
JP2006271081A (en) * 2005-03-23 2006-10-05 Toshiba Corp Totally enclosed external fan motor
CN102769356A (en) * 2011-05-05 2012-11-07 株洲南车时代电气股份有限公司 Permanent magnet synchronous traction motor with air cooling structure and air cooling method of permanent magnet synchronous traction motor
DE102013006857A1 (en) * 2013-04-22 2014-10-23 Volkswagen Aktiengesellschaft Electric machine, in particular for a hybrid drive arrangement of a motor vehicle
KR20200082285A (en) * 2018-12-28 2020-07-08 엘지전자 주식회사 Rotating electric machine
JP2022006209A (en) * 2020-06-24 2022-01-13 住友重機械工業株式会社 Actuator and brake

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006031916A1 (en) * 2004-09-13 2006-03-23 Siemens Energy & Automation, Inc. System and method for managing air flow in a motor
JP2006271081A (en) * 2005-03-23 2006-10-05 Toshiba Corp Totally enclosed external fan motor
CN102769356A (en) * 2011-05-05 2012-11-07 株洲南车时代电气股份有限公司 Permanent magnet synchronous traction motor with air cooling structure and air cooling method of permanent magnet synchronous traction motor
DE102013006857A1 (en) * 2013-04-22 2014-10-23 Volkswagen Aktiengesellschaft Electric machine, in particular for a hybrid drive arrangement of a motor vehicle
KR20200082285A (en) * 2018-12-28 2020-07-08 엘지전자 주식회사 Rotating electric machine
JP2022006209A (en) * 2020-06-24 2022-01-13 住友重機械工業株式会社 Actuator and brake

Also Published As

Publication number Publication date
JP2023170203A (en) 2023-12-01

Similar Documents

Publication Publication Date Title
JP5440227B2 (en) Hollow reducer built-in actuator
JP5297758B2 (en) In-wheel motor drive device
US7160086B2 (en) Rotary machine cooling system
US8598755B2 (en) Electric rotary actuator
JP2016041938A (en) Electric coolant pump
EP3429070A1 (en) Drive device for vehicles
JP2007100926A (en) Automatic transmission
US7629715B1 (en) Systems, devices and methods for driving machinery
JP2011188542A (en) Driving motor for electric vehicle
EP3065273A1 (en) In-wheel motor and in-wheel motor driving device
CN209255853U (en) Axle sleeve, electro spindle and lathe
WO2014102949A1 (en) Wheel oil supply device and wheel driving device
EP1768234A1 (en) Totally-enclosed fancooled type motor
US20120293027A1 (en) Rotating electrical machine and housing for rotating electrical machine
JP2020014285A (en) Rotary electric machine
JP2018014857A (en) Cooling structure of electric motor
JP2015116900A (en) Wheel drive device
JP2008215550A (en) Gear shifting mechanism and wheel driving device
WO2023223656A1 (en) Actuator
US2196952A (en) Extended bearing motor
JP2019193395A (en) Rotary machine
CN114174100A (en) Electric drive unit for a motor vehicle
CN109590488A (en) Axle sleeve, electro spindle and lathe
US10700577B2 (en) Cooling structure of power transmission device
WO2021182011A1 (en) In-wheel motor drive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807271

Country of ref document: EP

Kind code of ref document: A1