WO2023223528A1 - Three-dimensional printing device - Google Patents

Three-dimensional printing device Download PDF

Info

Publication number
WO2023223528A1
WO2023223528A1 PCT/JP2022/020918 JP2022020918W WO2023223528A1 WO 2023223528 A1 WO2023223528 A1 WO 2023223528A1 JP 2022020918 W JP2022020918 W JP 2022020918W WO 2023223528 A1 WO2023223528 A1 WO 2023223528A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
hollow
inner diameter
downstream
dimensional printing
Prior art date
Application number
PCT/JP2022/020918
Other languages
French (fr)
Japanese (ja)
Inventor
辰巳 菱川
裕規 伊藤
亮 水谷
洋太 佐藤
土井原 美桜 田口
Original Assignee
スターテクノ株式会社
鹿島建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スターテクノ株式会社, 鹿島建設株式会社 filed Critical スターテクノ株式会社
Priority to PCT/JP2022/020918 priority Critical patent/WO2023223528A1/en
Priority to JP2022545842A priority patent/JP7370026B1/en
Publication of WO2023223528A1 publication Critical patent/WO2023223528A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/30Producing shaped prefabricated articles from the material by applying the material on to a core or other moulding surface to form a layer thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Definitions

  • the present invention relates to a three-dimensional printing apparatus that manufactures a three-dimensional structure by stacking fluid objects while protruding them from a nozzle.
  • Patent Document 1 the material P supplied into the working chamber 41 is conveyed to the downstream side of the working chamber 41 by rotating the screw 5, and heated and melted by a heater H on the downstream side of the working chamber 41.
  • a 3D printer A is described that produces a three-dimensional object P1 (hereinafter referred to as a "three-dimensional object") by ejecting from the ejection nozzle 43 (see FIG. 1, etc.).
  • a molten material P is linearly extruded from the discharge nozzle 43 and layered to produce a three-dimensional structure (see paragraph "0042", etc.).
  • Patent Document 1 since the 3D printer A described in Patent Document 1 manufactures three-dimensional objects using a linear material P, it is difficult to support large-sized three-dimensional objects, and even if it were able to do so, it would be difficult to manufacture three-dimensional objects. There was a problem in that it took a lot of time.
  • the fluid material be evenly layered in the 3D object to be manufactured, especially if the 3D object has a complex shape. Even if there is such a problem, it is desirable that the fluid product be manufactured by being evenly layered.
  • the present invention has been made in response to the above-mentioned problems of the prior art, and even when manufacturing a three-dimensional model with a large and complex shape, unevenness of fluid can be prevented and the three-dimensional model can be manufactured.
  • a 3D printing device that can easily manufacture 3D objects even if they are large and have complex shapes, and also allows fluid to flow out from the nozzle when the device is stopped. It is an object of the present invention to provide a three-dimensional printing device that can prevent leakage, and furthermore, a three-dimensional printing device that can smoothly discharge fluid from a nozzle during operation of the device.
  • a first aspect of the present invention includes an articulated robot, a hollow casing connected to the tip of the articulated robot and having a first hollow part, and a hollow casing of the hollow casing.
  • a nozzle connected to the tip and having an opening and a second hollow part communicating with the first hollow part, the nozzle having the A three-dimensional modeling apparatus that manufactures a three-dimensional object by discharging a fluid from the opening of a nozzle is characterized by comprising a nozzle rotation mechanism that rotates the nozzle with respect to the hollow housing.
  • the nozzle rotation mechanism rotates the nozzle to vary the width of the fluid material discharged from the opening. It is characterized by what it did.
  • a third aspect of the present invention is characterized in that, in the three-dimensional modeling apparatus of the second aspect, the cross section of the nozzle opening is approximately rectangular.
  • a fourth aspect of the present invention is the three-dimensional modeling apparatus according to the third aspect, characterized in that the cross section of the nozzle opening is approximately rectangular.
  • the nozzle and/or the hollow housing cross the first hollow part and/or the second hollow part. It is characterized by being equipped with a fluid regulating section.
  • the nozzle and/or the hollow housing cross the first hollow part and/or the second hollow part. It is characterized by being equipped with a fluid regulating section.
  • the nozzle and/or the hollow housing cross the first hollow part and/or the second hollow part. It is characterized by being equipped with a fluid regulating section.
  • an eighth aspect of the present invention is the three-dimensional printing apparatus according to the fourth aspect, in which the nozzle and/or the hollow casing cross the first hollow part and/or the second hollow part. It is characterized by being equipped with a fluid regulating section.
  • a ninth aspect of the present invention is the three-dimensional printing apparatus according to the eighth aspect, wherein the fluid regulating section is provided in parallel to a long side of the rectangle of the opening.
  • the second hollow portion of the nozzle main body has an inner diameter that gradually decreases from upstream to downstream on the nozzle side.
  • the second hollow portion of the nozzle tip has an inner diameter that gradually becomes thinner from upstream on the hollow housing side to downstream on the opening side, and and the nozzle tip, the inner diameter of the most upstream part of the nozzle tip is made larger than the inner diameter of the most downstream part of the nozzle body.
  • the second hollow part of the nozzle main body has an inner diameter that gradually decreases from upstream to downstream on the nozzle side.
  • the second hollow portion of the nozzle tip has an inner diameter that gradually becomes thinner from upstream on the hollow housing side to downstream on the opening side, and and the nozzle tip, the inner diameter of the most upstream part of the nozzle tip is made larger than the inner diameter of the most downstream part of the nozzle body.
  • the second hollow portion of the nozzle main body has an inner diameter that gradually decreases from upstream to downstream on the nozzle side.
  • the second hollow portion of the nozzle tip has an inner diameter that gradually becomes thinner from upstream on the hollow housing side to downstream on the opening side, and and the nozzle tip, the inner diameter of the most upstream part of the nozzle tip is made larger than the inner diameter of the most downstream part of the nozzle body.
  • the second hollow part of the nozzle main body has an inner diameter that gradually decreases from upstream to downstream on the nozzle side.
  • the second hollow portion of the nozzle tip has an inner diameter that gradually becomes thinner from upstream on the hollow housing side to downstream on the opening side, and and the nozzle tip, the inner diameter of the most upstream part of the nozzle tip is made larger than the inner diameter of the most downstream part of the nozzle body.
  • the second hollow portion of the nozzle main body has an inner diameter that gradually decreases from upstream to downstream on the nozzle side.
  • the second hollow portion of the nozzle tip has an inner diameter that gradually becomes thinner from upstream on the hollow housing side to downstream on the opening side, and and the nozzle tip, the inner diameter of the most upstream part of the nozzle tip is made larger than the inner diameter of the most downstream part of the nozzle body.
  • the second hollow portion of the nozzle main body has an inner diameter that gradually decreases from upstream to downstream on the nozzle side.
  • the second hollow portion of the nozzle tip has an inner diameter that gradually becomes thinner from upstream on the hollow housing side to downstream on the opening side, and and the nozzle tip, the inner diameter of the most upstream part of the nozzle tip is made larger than the inner diameter of the most downstream part of the nozzle body.
  • the vertical cross-sectional shape of the second hollow part of the nozzle main body has a bulge part in the middle. It is characterized by exhibiting a streamlined shape.
  • an articulated robot a hollow housing connected to the distal end of the articulated robot and having a first hollow part, and an opening connected to the distal end of the hollow housing. and a second hollow part communicating with the first hollow part, and discharging a fluid from an opening of the nozzle through the first hollow part and the second hollow part.
  • 3D printing equipment that manufactures 3D objects is equipped with a nozzle rotation mechanism that rotates the nozzle relative to the hollow housing, so even when manufacturing 3D objects with large and complex shapes, the nozzle By adjusting the rotation angle of the three-dimensional structure, it is possible to manufacture a three-dimensional structure that prevents unevenness of the fluid.
  • the nozzle rotation mechanism rotates the nozzle to make the width of the fluid discharged from the opening variable.
  • the cross section of the nozzle opening is approximately rectangular, so that the effect of the three-dimensional printing apparatus of the second aspect is improved.
  • the fluid discharged from the nozzle can be easily stacked.
  • the cross section of the nozzle opening is approximately rectangular, so that the fluid discharged from the nozzle can be layered more easily. be able to.
  • the nozzle and/or the hollow casing are arranged in the first hollow part and/or the second hollow part.
  • the fluid regulating part that crosses the nozzle is provided, it is possible to prevent the fluid from leaking from the nozzle when the apparatus is stopped.
  • the nozzle and/or the hollow casing are arranged in the first hollow part and/or the second hollow part.
  • the fluid regulating part that crosses the nozzle is provided, it is possible to prevent the fluid from leaking from the nozzle when the apparatus is stopped.
  • the nozzle and/or the hollow casing are arranged in the first hollow part and/or the second hollow part.
  • the fluid regulating part that crosses the three-dimensional printing apparatus is provided, it is possible to prevent the fluid from leaking out of the nozzle when the apparatus is stopped.
  • the nozzle and/or the hollow casing are arranged in the first hollow part and/or the second hollow part.
  • the fluid regulating part that crosses the nozzle is provided, it is possible to prevent the fluid from leaking from the nozzle when the apparatus is stopped.
  • the fluid regulating section is provided parallel to the long side of the rectangle of the opening.
  • the second hollow portion of the nozzle body has an inner diameter that gradually decreases from upstream to downstream on the nozzle side.
  • the inner diameter of the second hollow part at the nozzle tip gradually becomes narrower from upstream on the hollow housing side to downstream on the opening side, and the inner diameter of the second hollow part at the nozzle tip gradually becomes thinner.
  • the inner diameter of the most upstream part of the nozzle tip is made larger than the inner diameter of the most downstream part of the nozzle body, so in addition to the effect of the three-dimensional printing apparatus of the first aspect, the discharge of fluid from the nozzle is improved. It can be done smoothly.
  • the second hollow portion of the nozzle main body has an inner diameter that gradually decreases from upstream to downstream on the nozzle side.
  • the inner diameter of the second hollow part at the nozzle tip gradually becomes narrower from upstream on the hollow housing side to downstream on the opening side, and the inner diameter of the second hollow part at the nozzle tip gradually becomes thinner.
  • the inner diameter of the most upstream part of the nozzle tip is made larger than the inner diameter of the most downstream part of the nozzle body, so in addition to the effect of the three-dimensional printing apparatus of the second aspect, the discharge of fluid from the nozzle is also improved. It can be done smoothly.
  • the second hollow portion of the nozzle body has an inner diameter that gradually decreases from upstream to downstream on the nozzle side.
  • the inner diameter of the second hollow part at the nozzle tip gradually becomes narrower from upstream on the hollow housing side to downstream on the opening side, and the inner diameter of the second hollow part at the nozzle tip gradually becomes thinner.
  • the inner diameter of the most upstream part of the nozzle tip is made larger than the inner diameter of the most downstream part of the nozzle body, so in addition to the effect of the three-dimensional printing apparatus of the third aspect, the discharge of fluid from the nozzle is improved. It can be done smoothly.
  • the second hollow portion of the nozzle main body has an inner diameter that gradually decreases from upstream to downstream on the nozzle side.
  • the inner diameter of the second hollow part at the nozzle tip gradually becomes narrower from upstream on the hollow housing side to downstream on the opening side, and the inner diameter of the second hollow part at the nozzle tip gradually becomes thinner.
  • the inner diameter of the most upstream part of the nozzle tip is made larger than the inner diameter of the most downstream part of the nozzle body, so in addition to the effect of the three-dimensional printing apparatus of the fourth aspect, the discharge of fluid from the nozzle is improved. It can be done smoothly.
  • the second hollow portion of the nozzle body has an inner diameter that gradually decreases from upstream to downstream on the nozzle side.
  • the inner diameter of the second hollow part at the nozzle tip gradually becomes narrower from upstream on the hollow housing side to downstream on the opening side, and the inner diameter of the second hollow part at the nozzle tip gradually becomes thinner.
  • the inner diameter of the most upstream part of the nozzle tip is made larger than the inner diameter of the most downstream part of the nozzle body, so in addition to the effect of the three-dimensional modeling apparatus of the fifth aspect, the discharge of fluid from the nozzle is improved. It can be done smoothly.
  • the second hollow portion of the nozzle body has an inner diameter that gradually decreases from upstream to downstream on the nozzle side.
  • the inner diameter of the second hollow part at the nozzle tip gradually becomes narrower from upstream on the hollow housing side to downstream on the opening side, and the inner diameter of the second hollow part at the nozzle tip gradually becomes thinner.
  • the inner diameter of the most upstream part of the nozzle tip is made larger than the inner diameter of the most downstream part of the nozzle body, so in addition to the effect of the three-dimensional printing apparatus of the ninth aspect, the discharge of fluid from the nozzle is improved. It can be done smoothly.
  • the vertical cross-sectional shape of the second hollow part of the nozzle main body has a bulge in the middle.
  • the fluid material can be discharged from the nozzle more smoothly.
  • FIG. 1 is an overall perspective view of a three-dimensional printing apparatus according to a first embodiment of the present invention.
  • FIG. 1 is an overall plan view of a three-dimensional printing apparatus according to a first embodiment.
  • FIG. 1 is an overall front view of a three-dimensional printing apparatus according to a first embodiment.
  • FIG. 3 is a diagram showing a state in which the articulated robot 3 has been moved in the +Y direction from the state in FIG. 2 by the robot slide mechanism 7 that constitutes the three-dimensional modeling apparatus of the first embodiment.
  • FIG. 2 is a front view of a pump that constitutes the three-dimensional printing apparatus of the first embodiment. It is a partially cutaway front view of a pump that constitutes the three-dimensional printing apparatus of the first embodiment.
  • FIG. 1 is an overall perspective view of a three-dimensional printing apparatus according to a first embodiment of the present invention.
  • FIG. 1 is an overall plan view of a three-dimensional printing apparatus according to a first embodiment.
  • FIG. 1 is an overall front view of a
  • FIG. 2 is a right side view of a fluid ejection head that constitutes the three-dimensional printing apparatus of the first embodiment.
  • FIG. 2 is a right side view with a portion of the fluid ejection head constituting the three-dimensional printing apparatus of the first embodiment cut away.
  • FIG. 2 is a perspective view of a nozzle that constitutes the three-dimensional modeling apparatus of the first embodiment.
  • FIG. 2 is a plan view of a nozzle that constitutes the three-dimensional modeling apparatus of the first embodiment.
  • FIG. 11 is a perspective view of a section taken along the line XX in FIG. 10;
  • FIG. 2 is a longitudinal cross-sectional view of a nozzle that constitutes the three-dimensional modeling apparatus of the first embodiment.
  • FIG. 12 is a perspective view similar to FIG.
  • FIG. 1 is a block diagram of a three-dimensional printing apparatus according to a first embodiment.
  • FIG. 2 is a block diagram of a main controller of the three-dimensional printing apparatus according to the first embodiment. It is a flowchart of the three-dimensional printing program in the three-dimensional printing apparatus of the first embodiment. It is a flowchart of the N layer coating program in the three-dimensional modeling apparatus of the first embodiment.
  • FIG. 2 is an explanatory diagram showing a coating state of the three-dimensional modeling apparatus according to the first embodiment when coating is started.
  • FIG. 2 is an explanatory diagram showing a coating state in a normal state of the three-dimensional printing apparatus of the first embodiment. It is a 1st explanatory view explaining the relationship between a nozzle angle and application width in a three-dimensional modeling device of a 1st embodiment.
  • FIG. 7 is a second explanatory diagram illustrating the relationship between the nozzle angle and the application width in the three-dimensional modeling apparatus of the first embodiment.
  • FIG. 7 is a third explanatory diagram illustrating the relationship between the nozzle angle and the application width in the three-dimensional modeling apparatus of the first embodiment.
  • FIG. 7 is a fourth explanatory diagram illustrating the relationship between the nozzle angle and the application width in the three-dimensional modeling apparatus of the first embodiment. It is a 1st explanatory view explaining the application form of the three-dimensional modeling device of a 1st embodiment. It is a 2nd explanatory view explaining the application form of the three-dimensional modeling device of a 1st embodiment.
  • FIG. 2 is a first explanatory diagram showing a coating state during thin film coating by the three-dimensional modeling apparatus of the first embodiment.
  • FIG. 7 is a second explanatory diagram showing a coating state during thin film coating by the three-dimensional modeling apparatus of the first embodiment.
  • FIG. 2 is an explanatory diagram illustrating detection timing of a first pressure sensor and detection timing of a second pressure sensor in the three-dimensional modeling apparatus of the first embodiment. It is a flowchart of the 1st discharge control program in the three-dimensional printing apparatus of 1st Embodiment. It is a flowchart of the 2nd discharge control program in the three-dimensional printing apparatus of 1st Embodiment. It is a flowchart of the instruction value calculation program in the three-dimensional modeling apparatus of the first embodiment. It is a flowchart of the maintenance processing program in the three-dimensional printing apparatus of the first embodiment.
  • FIG. 2 is a front view showing the state of the three-dimensional printing apparatus of the first embodiment before disassembly during maintenance.
  • FIG. 2 is an explanatory diagram showing the state of the three-dimensional printing apparatus of the first embodiment after it is disassembled during maintenance.
  • the three-dimensional printing apparatus of the present embodiment will be described as manufacturing an object P to be installed outdoors as an example of a three-dimensional model, the three-dimensional printing apparatus of the present invention is limited to objects. Rather, any three-dimensional three-dimensional object can be manufactured.
  • FIG. 1 is an overall perspective view of a three-dimensional printing apparatus according to a first embodiment of the present invention
  • FIG. 2 is an overall plan view of the three-dimensional printing apparatus
  • FIG. 3 is an overall perspective view of the three-dimensional printing apparatus. It is a front view.
  • the three-dimensional printing apparatus 1 of this embodiment includes a first layer P1, a second layer P2, a third layer P3, a fourth layer P4, .
  • This is to manufacture a three-dimensional object P consisting of N layers (N is a natural number) of layers PN (not shown), and to move an articulated robot 3 and the articulated robot 3 in the +Y direction and the -Y direction.
  • the pump 5, the fluid discharge head 10, and a long transport pipe 61 (corresponding to the "tubular body” of the present invention), which will be described later, constitute the "fluid discharge device” of the present invention.
  • FIGS. 1 to 3. a mixer 9 for producing mortar M by kneading cement, sand, and water is shown in FIGS. 1 to 3. .
  • the mortar M used in this embodiment is made of a material that has fluidity before being ejected from the fluid ejecting head 10 and hardens after being ejected from the fluid ejecting head 10, such as cement, sand, and water. ing.
  • the articulated robot 3 is a general 7-axis articulated robot that operates according to commands from the robot controller 4 (see FIG. 17) placed in the control panel 20, and can freely change the position and angle to
  • the fluid ejection head 10 connected to is moved in all three-dimensional directions, including +X and -X directions, +Y and -Y directions, +Z and -Z directions, and combinations of these directions.
  • the articulated robot 3 includes a first base 31, a second base 33 that rotates with respect to the first base 31, and a lower base that rotates back and forth with respect to the second base 33.
  • the articulated robot 3 is electrically connected to the robot controller 4 (see FIG. 17) in the control panel 20 by a cable 77, and the robot controller 4 is connected to the main controller 2 (see FIG. 17) also arranged in the control panel 20. 17)).
  • the robot slide mechanism 7 includes a movable base 73 on which the articulated robot 3 is placed, a long movable rail 75 on which the movable base 73 is movably arranged, and a movable base 73 arranged on the movable base 73.
  • a robot slide motor 79 that moves the robot along the moving rail 75 in the +Y direction and the -Y direction, and seven moving rail covers 71 (71a, 71b, 71c, 71d, 71e, 71f, 71g).
  • the robot slide mechanism 7 has a motor gear (pinion, not shown) fitted to the motor shaft of the robot slide motor 79 that meshes with a rack (not shown) formed inside the moving rail 75.
  • the articulated robot 3 is configured to move on the rack of the moving rail 75 in the +Y direction and the -Y direction by rotating the motor gear of the robot slide motor 79.
  • FIG. 4 is a diagram showing a state in which the articulated robot 3 has been moved in the +Y direction from the state in FIG. 2 by the robot slide mechanism 7 constituting the three-dimensional modeling apparatus of the first embodiment.
  • the three-dimensional modeling apparatus 1 of the present embodiment is configured such that the articulated robot 3 moves in the linear +Y direction and -Y direction on the movement rail 75 from the cover 71a to the cover 71g.
  • the robot slide mechanism 7 can be modified in various ways depending on the specifications of the three-dimensional printing apparatus, and it goes without saying that the length of the moving rail 45 can be changed.
  • the multi-joint robot 3 is not limited to being arranged so that it moves in a straight line direction, but it is also possible to arrange it so that the multi-joint robot 3 moves in a curved direction. It is also possible to arrange them as follows.
  • FIG. 5 is a front view of a pump that constitutes the three-dimensional printing apparatus of the first embodiment
  • FIG. 6 is a front view with a portion of the pump cut away.
  • the pump 5 includes a pump body 51, a mortar inlet port for charging the mortar M mixed in the mixer 9, and the upper surface of the pump body 51 is covered with a grid-like net. 59, a screw pipe 55 for sending the mortar M introduced from the mortar input port 59 to a long transport pipe 61 on the downstream side, and a pump-side rotor drive motor 53 for driving the screw pipe 55. , a first pressure sensor 57 arranged at a connection position between the screw pipe 55 and the transport pipe 61 to detect the pressure within the transport pipe 61 of the mortar M, and a control panel 20 attached to the first pump main body 51. and an operation panel 8 provided on the control panel 20.
  • the screw pipe 55 includes a first stator 55a constituting an outer pipe of the screw pipe 55, and is rotatably disposed inside the first stator 55a, and transports the mortar M into the pipe by rotation of the pump-side rotor drive motor 53.
  • a first rotor 55b is provided with a spiral protrusion for feeding the rotor to the 61 side.
  • FIG. 7 is a right side view of the fluid ejection head that constitutes the three-dimensional modeling apparatus of the first embodiment
  • FIG. 8 is a right side view with a portion of the fluid ejection head cut away.
  • a fluid ejection head main body 11 (corresponding to the "hollow casing" of the present invention) for sending the mortar M delivered to the downstream side, and a head side rotor drive motor 27 for driving the fluid ejection head main body 11.
  • a nozzle portion 13 rotatably connected to the tip of the fluid ejection head main body 11; a nozzle rotation motor 17 for rotating the nozzle portion 13; and a nozzle rotation motor 17 disposed at a connection position between the fluid ejection head 11 and the transport pipe 61.
  • a second pressure sensor 63 for detecting the pressure within the transport pipe 61 of the mortar M
  • a fluid ejection head cover 80 (shown by a dotted line) that covers the fluid ejection head main body 11 and the head side rotor drive motor 27. Be prepared.
  • the fluid ejection head main body 11 has a first hollow portion 11d, and is rotatably disposed inside the second stator 11a that constitutes the outer tube of the fluid ejection head main body 11,
  • a second rotor 11b is provided for sending the mortar M to the nozzle section 13 by rotation of the head-side rotor drive motor 27 and for discharging it from an opening 13b of the nozzle section 13, which will be described later.
  • the nozzle part 13 is provided with a nozzle gear part 15 to be described later on its outer periphery, and when the nozzle rotation motor 17 rotates, a motor gear part 19 inserted into the motor shaft of the nozzle rotation motor 17 rotates, and the motor gear part 19 The nozzle gear section 15 that meshes with the nozzle gear section 15 rotates, and as a result, the nozzle section 13 rotates.
  • nozzle rotation motor 17, the motor gear section 19, and the nozzle gear section 15 constitute the "nozzle rotation mechanism" of the present invention.
  • the fluid ejection head main body 11 of this embodiment constitutes a rotary displacement type single-axis eccentric screw pump as a whole, and is formed by a second stator 11a corresponding to a female thread and a second rotor 11b corresponding to a male thread.
  • the cavity 11c which is a sealed space, forward, the mortar M is transported forward and discharged from the opening 13b of the nozzle portion 13.
  • the second stator 11a which corresponds to a female thread, has a cylindrical outer shape, a ridged inner cross section, and a spirally extending inner surface as a whole.
  • the second rotor 11b which corresponds to a male screw, has a spirally extending shape so as to contact the inner surface of the second stator 11a, and when the second rotor 11b rotates with respect to the second stator 11a, The cavity 11c containing the mortar M is moved forward, and the mortar M is discharged from the opening 13b of the nozzle portion 13.
  • FIG. 9 is a perspective view of a nozzle section constituting the three-dimensional printing apparatus of the first embodiment
  • FIG. 10 is a plan view of the nozzle section
  • FIG. 11 shows a section taken along line XX in FIG. 12 is a cutaway perspective view
  • FIG. 12 is a longitudinal sectional view of the nozzle portion.
  • the nozzle portion 13 includes a nozzle body portion 13a, a nozzle gear portion 15 formed on the outer periphery of the nozzle body portion 13a, and a nozzle tip portion connected to the tip of the nozzle body portion 13a. 13e, and an opening 13b formed at the tip of the nozzle tip 13e.
  • the opening 13b of this embodiment has a substantially rectangular shape with a long side V1 and a short side H1 (V1>H1) in plan view, and therefore, the cross section of the mortar M discharged from the opening 13b has a substantially rectangular shape.
  • the nozzle main body 13a has a hollow cylindrical shape, and its inner cavity 13d (corresponding to the "second hollow part” of the present invention) has a cylindrical shape that tapers toward the tip, and the nozzle tip 13e has a cylindrical shape. It has a hollow substantially conical shape, and its inner cavity 13f (corresponding to the "second hollow part” of the present invention) is tapered toward the tip, but there is a gap between the nozzle main body 13a and the nozzle tip 13e.
  • the inner diameter D2 at the base end of the nozzle tip 13e is set to be larger than the inner diameter D1 at the tip of the nozzle main body 13a.
  • the inner diameter D2 of the base end of the nozzle tip 13e larger than the inner diameter D1 of the tip of the nozzle body 13a, when the mortar M flows from the nozzle body 13a to the nozzle tip 13e and is discharged from the opening 13b.
  • the pressure of the mortar M at the opening 13b can be dispersed, and the mortar M can be continuously and smoothly discharged from the opening 13b of the nozzle tip 13e.
  • the nozzle portion 13 includes a restriction bar 13c (corresponding to the “fluid restriction portion” of the present invention) having a circular cross section that crosses the inner cavity 13f of the nozzle tip portion 13e in parallel along the long side of the rectangle of the opening portion 13b. According to the regulating bar 13c, it is possible to prevent the mortar M from leaking out from the opening 13b of the nozzle tip 13e when the three-dimensional modeling apparatus 1 is stopped.
  • a restriction bar 13c (corresponding to the “fluid restriction portion” of the present invention) having a circular cross section that crosses the inner cavity 13f of the nozzle tip portion 13e in parallel along the long side of the rectangle of the opening portion 13b.
  • FIG. 13 is a perspective view similar to FIG. 11 of the nozzle portion of the second embodiment
  • FIG. 14 is a longitudinal cross-sectional view of the nozzle portion of the second embodiment.
  • the nozzle portion 23 includes a nozzle body portion 23a, a nozzle gear portion 25 formed on the outer periphery of the nozzle body portion 23a, and a nozzle tip portion connected to the tip of the nozzle body portion 23a. 23e, and an opening 23b formed at the tip of the nozzle tip 23e.
  • the opening 23b of this embodiment also has a substantially rectangular shape with a long side of V1 and a short side of H1 (V1>H1) in plan view, and therefore, from the opening 23b
  • the discharged mortar M has a substantially rectangular cross section.
  • the nozzle main body 23a has a hollow cylindrical shape
  • the inner cavity 23d (corresponding to the "second hollow part” of the present invention) has a cylindrical shape that tapers toward the tip (D5>D3).
  • a bulge 23g with an inner diameter D6 (D6>D5>D3) is provided in the middle of the nozzle, and the nozzle tip 23e has a hollow, substantially conical shape.
  • the inner diameter D4 of the base end of the nozzle tip 23e is equal to the diameter D4 of the base of the nozzle tip 23e. It is set to be larger than the inner diameter D3.
  • the longitudinal section of the inner cavity 23d has a streamlined shape.
  • the bulge 23g when the mortar M flows from the nozzle main body 23a to the nozzle tip 23e and is discharged from the opening 23b, the pressure of the mortar M at the opening 23b can be dispersed by the bulge 23g. This allows the mortar M to be continuously and smoothly discharged from the opening 23b of the nozzle tip 23e.
  • the pressure of the mortar M at the opening 23b can be gradually dispersed due to the streamlined shape.
  • the liquid can be continuously and smoothly discharged from the opening 23b of 23e.
  • the mortar M at the opening 23b is The pressure can be further dispersed, and the mortar M can be continuously and more smoothly discharged from the opening 23b of the nozzle tip 23e.
  • the nozzle portion 23 includes a regulating bar 23c (corresponding to the "fluid regulating section" of the present invention) having a circular cross section that crosses the inner cavity 23f of the nozzle tip 23e in parallel along the long side of the rectangle of the opening 23b. According to this regulation bar 23c, it is possible to prevent the mortar M from leaking out from the opening 23b of the nozzle tip 23e when the three-dimensional modeling apparatus 1 is stopped.
  • a regulating bar 23c (corresponding to the "fluid regulating section" of the present invention) having a circular cross section that crosses the inner cavity 23f of the nozzle tip 23e in parallel along the long side of the rectangle of the opening 23b.
  • FIG. 15 is a perspective view similar to FIG. 11 of the nozzle portion of the third embodiment.
  • the nozzle part 83 includes a nozzle body part 83a, a nozzle gear part 85 formed on the outer periphery of the nozzle body part 83a, and a nozzle tip part 83e connected to the tip of the nozzle body part 83a. and an opening 83b formed at the tip of the nozzle tip 83e.
  • the opening 83b of this embodiment also has a substantially rectangular shape with a long side of V1 and a short side of H1 (V1>H1) in plan view.
  • the discharged mortar M has a substantially rectangular cross section.
  • the nozzle main body 83a has a hollow cylindrical shape
  • the inner cavity 83d (corresponding to the "second hollow part” of the present invention) has a cylindrical shape that tapers toward the tip
  • the nozzle tip 83e has a hollow cylindrical shape. It has a conical shape, and its inner cavity 83f (corresponding to the "second hollow part” of the present invention) is tapered toward the tip, but the boundary between the nozzle main body 83a and the nozzle tip 83e
  • the inner diameter of the base end of the nozzle tip portion 83e is set to be larger than the inner diameter of the tip of the nozzle body portion 83a.
  • the pressure of the mortar M at the opening 83b is dispersed when the mortar M is discharged from the opening 83b. This allows the mortar M to be continuously and smoothly discharged from the opening 83b of the nozzle tip 83e.
  • the nozzle portion 83 includes a restriction bar 83c (corresponding to the "fluid restriction portion” of the present invention) having a circular cross section that crosses the inner cavity 83f of the nozzle tip 83e in parallel along the long side of the rectangle of the opening 83b. and a regulation bar 83g (corresponding to the "fluid regulation section” of the present invention) having a circular cross section that crosses the inner cavity 83d of the nozzle main body 83a, and these regulation bars 83c and 83g.
  • this method it is possible to further prevent the mortar M from leaking from the opening 83b of the nozzle tip 83e when the three-dimensional modeling apparatus 1 is stopped.
  • a restriction bar (in accordance with the present invention) having a circular cross section that crosses the inner cavity of the nozzle tip in parallel along the long side of the rectangle of the opening is used.
  • the nozzle body is configured to include two regulation bars: a regulation bar with a circular cross section (corresponding to the "fluid regulation part" of the present invention) that crosses the inner cavity of the nozzle body. In some cases, three or more regulating bars may be provided.
  • these restriction bars can further prevent the mortar M from leaking from the opening at the nozzle tip when the three-dimensional modeling apparatus 1 is stopped.
  • FIG. 16 is a perspective view similar to FIG. 11 of the nozzle section of the fourth embodiment.
  • the nozzle portion 93 includes a nozzle body portion 93a, a nozzle gear portion 95 formed on the outer periphery of the nozzle body portion 93a, and a nozzle tip portion 93e connected to the tip of the nozzle body portion 93a. and an opening 93b formed at the tip of the nozzle tip 93e.
  • the opening 93b of this embodiment also has a substantially rectangular shape with a long side of V1 and a short side of H1 (V1>H1) in plan view.
  • the discharged mortar M has a substantially rectangular cross section.
  • the nozzle main body 93a has a hollow cylindrical shape
  • the inner cavity 93d (corresponding to the "second hollow part” of the present invention) has a cylindrical shape that tapers toward the tip
  • the nozzle tip 93e has a hollow cylindrical shape. It has a conical shape, and its inner cavity 93f (corresponding to the "second hollow part” of the present invention) is tapered toward the tip, but the boundary between the nozzle main body 93a and the nozzle tip 93e
  • the inner diameter of the base end of the nozzle tip portion 93e is set to be larger than the inner diameter of the tip of the nozzle body portion 93a.
  • the pressure of the mortar M at the opening 93b is dispersed when the mortar M is discharged from the opening 93b. This allows the mortar M to be continuously and smoothly discharged from the opening 93b of the nozzle tip 93e.
  • the nozzle portion 93 includes a restriction bar 93c (corresponding to the “fluid restriction portion” of the present invention) having a circular cross section that crosses the inner cavity 93d of the nozzle body portion 93a in parallel along the short side of the rectangle of the opening 93b. According to this regulation bar 93c, it is possible to prevent the mortar M from leaking out from the opening 93b of the nozzle tip 93e when the three-dimensional modeling apparatus 1 is stopped.
  • a restriction bar 93c (corresponding to the “fluid restriction portion” of the present invention) having a circular cross section that crosses the inner cavity 93d of the nozzle body portion 93a in parallel along the short side of the rectangle of the opening 93b.
  • the shape of the opening is rectangular in plan view, it is better to provide the regulation bar parallel to the long side of the rectangle of the opening, or to provide the regulation bar parallel to the short side of the rectangle of the opening. It is possible to more effectively prevent leakage from the opening of the mortar M.
  • the restriction bar has been described as being provided so as to cross the inner cavity of the nozzle part, but it does not cross the inner cavity of the nozzle part and does not interfere with the operation of the second rotor 11b.
  • a regulating bar may be provided on the second stator 11a of the outflow discharge head main body 11 at a position downstream of the second rotor 11b so as to cross the first hollow portion 11d.
  • the mortar M leaks from the opening of the nozzle when the three-dimensional modeling apparatus 1 is stopped. can be prevented from coming out.
  • the regulating bar in the above embodiment has a circular cross-sectional shape
  • the cross-sectional shape is not limited to a circular shape, and may have a curved shape along the direction in which the mortar M flows. For example, leakage of the mortar M can be prevented without any trouble when discharging the mortar M.
  • the support section 21 is for connecting the fluid ejection head 10 to the distal end of the articulated robot 3, as described above, and extends in the longitudinal direction of the fluid ejection head 10. It is formed into a long shape along the
  • the support part 21 is connected to the rotating part 43 at the tip of the articulated robot 3 and supports the base end side of the fluid ejection head 10, and includes an upper support part 21a of a right triangle in side view and a tip end of the fluid ejection head 10.
  • a lower support part 21b that supports the side and is disposed adjacent to the lower part of the upper support part 21a and has a right triangular shape in side view.
  • the support part 21 includes a protrusion part 21c that protrudes in a direction intersecting the longitudinal direction of the fluid ejection head 10 (in the present embodiment, a direction perpendicular to the longitudinal direction of the fluid ejection head 10). is connected to the protrusion 21c.
  • the attitude of the fluid ejection head 10 can be easily changed in a narrow area, and in addition, the posture of the fluid ejection head 10 can be easily changed without hindering the operation of the three-dimensional printing apparatus 1. Maintenance processing, which will be described later, can be performed smoothly.
  • FIG. 17 is a block diagram of the three-dimensional printing apparatus of the first embodiment
  • FIG. 18 is a block diagram of the main controller of the three-dimensional printing apparatus of the first embodiment.
  • the control panel 20 is operated by an external power source 6, and includes a main controller 2 electrically connected to a first pressure sensor 57 and a second pressure sensor 63, and a main controller 2 that is electrically connected to a first pressure sensor 57 and a second pressure sensor 63.
  • a robot controller 4 is electrically connected to the main controller 2 to drive the articulated robot 3, and is electrically connected to the pump-side rotor drive motor 53, the head-side rotor drive motor 27, the nozzle rotation motor 17, and the robot slide. It includes a driver circuit 12 for driving a motor 79 and an operation panel 8 for receiving input from users of the device.
  • the robot controller 4 In addition to controlling the motion of the articulated robot 3, the robot controller 4 also detects the moving speed of the fluid ejection head 10 when the fluid ejection head 10 produces the object P by ejecting the mortar M from the nozzle part. It outputs the head speed to the CPU 14, which is used when calculating an instruction value 2, which will be described later.
  • the main controller 2 includes a CPU (Central Processing Unit) 14, a RAM (Random Access Memory) 16 connected to the CPU 14 in an input/output manner, and a ROM connected to the CPU 14 in an input/output manner. (Read Only Memory) 18.
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • the RAM 16 includes a three-dimensional modeling data table 16a that stores modeling data for a three-dimensional object to be manufactured, a pump-side rotor instruction value table 16b that stores instruction values for the pump-side rotor drive motor 53, and a head-side rotor drive motor 53.
  • the ROM 18 includes a head-side rotor instruction value table 16c that stores instruction values to be instructed to the motor 27, and a 3D printing program 18a that controls the overall operation of the 3D printing apparatus 1 of this embodiment, and The N layer coating program 18b that controls the coating operation for each layer of the three-dimensional modeling apparatus 1, the first discharge control program 18c and the second discharge control program 18d that control a part of the operation of the pump of this embodiment, and the present embodiment It includes an instruction value calculation program 18e that controls the operation of the pump, and a maintenance processing program 18f that maintains the three-dimensional printing apparatus 1 of this embodiment.
  • FIG. 19 is a flowchart of a three-dimensional printing program in the three-dimensional printing apparatus of the first embodiment
  • FIG. 20 is a flowchart of an N-layer application program in the three-dimensional printing apparatus of the first embodiment.
  • the user of the three-dimensional printing apparatus turns on the power switch of the apparatus, selects the object P using the operation buttons on the operation panel 8, and presses the start button. , is set to an initial state (S1), and obtains three-dimensional printing data corresponding to the object P stored in the three-dimensional printing data table 16a of the RAM 16 (S3).
  • the articulated robot 3 is set at the right end of the moving rail 75 in the ⁇ Y direction in the drawing, and the fluid ejection head main body 11 is in a state where it is retracted upward from the position where the three-dimensional object is modeled, that is. , is set at the upper end of the drawing on the +Z direction side (states shown in FIGS. 1 to 3).
  • the parameter N indicating the layer to be modeled by the articulated robot 3 is set to "1" ("1" means the first layer P1) (S5), and the mortar is The coating of M is started (S7), and the N layer coating program 18b is executed (S9).
  • the three-dimensional modeling apparatus 1 of this embodiment is configured to start applying the mortar M with the fluid ejection head 10 tilted, there is no problem due to the material of the fluid such as the mortar M. If so, the application of the mortar M may be started in a vertical position without tilting the fluid ejection head 10.
  • the tilted fluid ejection head 10 is returned vertically (S31), and the object P is placed at a predetermined position of the articulated robot 3 moved by the robot slide mechanism 7. It is determined whether the object P can be modeled within the movable range of the articulated robot 3 (S33), and if it is determined that the object P cannot be modeled within the movable range of the articulated robot 3 (S33: Yes), After the articulated robot 3 is moved by the robot slide mechanism 7 (S35), S37 is executed, and if it is determined that the object P can be modeled within the movable range of the articulated robot 3 (S33: No), the process continues as is. Execute S37.
  • S37 it is determined whether or not it is necessary to rotate the opening 13b of the nozzle section 13 (S37), and if it is determined that it is necessary to rotate the opening 13b of the nozzle section 13 (S37: Yes). ), after adjusting the application width of mortar M by rotating the opening 13b of the nozzle part 13, application of the mortar M is executed by the fluid ejection head 10 (S41), and it is necessary to rotate the opening 13b of the nozzle part 13. If it is determined that there is no mortar (S37: No), application of the mortar M is executed by the fluid ejection head 10 without rotating the opening 13b (S41).
  • FIG. 22 shows how the sixth layer P6 is applied instead of the first layer P1, the same applies to the first layer P1 in that the fluid ejection head 10 is applied vertically. be.
  • N is a natural number
  • the thickness of the mortar M discharged from the nozzle part 13 of the fluid discharge head 10 is as shown in FIGS. 21 and 22.
  • the mortar M ejected from the nozzle part of the fluid ejection head 10 is placed on the lowermost installation surface (for example, when the object P is It is applied so as to be pressed against a reference surface (such as the ground surface to be manufactured) or the surface of the mortar M that has already been applied in the lower layer.
  • the mortar M ejected from the nozzle part of the fluid ejection head 10 is placed so that the thickness is slightly shorter than the thickness to be applied (Z1 ⁇ H1).
  • the adhesive between each layer can be improved by applying the product by pressing it onto a reference surface (such as the ground) or the surface of the mortar M that has already been applied in the first layer below.
  • the rigidity of the three-dimensional structure to be manufactured can be increased.
  • the mortar M discharged from the nozzle portion of the fluid discharge head 10 is placed on the lowest installation surface (for example, the ground surface on which the object P is manufactured, etc.) so that the thickness is slightly shorter than the thickness to be applied.
  • the lowest installation surface for example, the ground surface on which the object P is manufactured, etc.
  • the thickness is slightly shorter than the thickness to be applied.
  • the mortar M discharged from the nozzle part is placed on the lowest installation surface (for example, a reference surface such as the ground on which the object P is manufactured) or By applying it by pressing it onto the surface of the applied mortar M in the lower layer, it is possible to increase the degree of adhesion between each layer when manufacturing a three-dimensional structure in multiple layers, and as a result, the degree of adhesion between each layer can be increased. , the rigidity of the three-dimensional structure to be manufactured can be increased.
  • FIG. 23 is a first explanatory diagram illustrating the relationship between the nozzle angle and the coating width in the three-dimensional modeling apparatus of the first embodiment
  • FIG. 24 is a second explanatory diagram illustrating the relationship between the nozzle angle and the coating width
  • 25 is a third explanatory diagram illustrating the relationship between the nozzle angle and the coating width
  • FIG. 26 is a fourth explanatory diagram illustrating the relationship between the nozzle angle and the coating width.
  • the nozzle portion 13 includes a substantially rectangular opening 13b with a long side of V1 and a short side of H1 (V1>H1) in plan view.
  • the diagonal line D of the opening 13b is at an angle ⁇ 1 with respect to the direction perpendicular to the traveling direction F of the fluid ejecting head 10 ( ⁇ 1 is the angle ⁇ 1 when the long side of the opening 13b is in the traveling direction F of the fluid ejecting head 10.
  • the application width W of the mortar M is the square root of (H1 2 +V1 2 ), and can be made longer than the long side V1 of the opening 13b.
  • the fluid ejection head 10 when the diagonal line D of the opening 13b forms an angle ⁇ 3 (cos ⁇ 2 ⁇ 1) with respect to the direction perpendicular to the traveling direction F of the fluid ejection head 10, the fluid ejection head 10
  • the application width W of the mortar M is the square root of (H1 2 +V1 2 ) x cos ⁇ 3, and can be made shorter than the long side V1 of the opening 13b.
  • the application process of the mortar M is executed by the fluid ejection head 10 (S41). Specifically, first, a predetermined portion of the first layer P1 of the object P (the range where the fluid ejection head 10 writes with one stroke) is applied by scanning with the determined application width of the mortar M. .
  • the mortar M is applied by the method described above with reference to FIGS. 23 to 26. Apply.
  • FIG. 27 is a first explanatory diagram illustrating the application form of the three-dimensional printing apparatus of the first embodiment
  • FIG. 28 is a second explanatory diagram illustrating the application form of the three-dimensional printing apparatus.
  • the three-dimensional printing apparatus 1 of this embodiment manufactures a three-dimensional object by moving the fluid ejection head 10 in a curved direction (for example, in the circumferential direction of radius R), as shown in FIG.
  • the mortar M is applied by operating the articulated robot 3 while rotating the nozzle part 13 by the nozzle rotation motor 17 so that the forward direction of the movement direction of the part 13 is always along the movement direction F of the fluid ejection head 10.
  • FIG. 29 is a first explanatory diagram showing a coating state during thin film coating by the three-dimensional modeling apparatus of the first embodiment. It shows how mortar M is applied with Z2 ⁇ H1 (the length of the short side of the opening 13b of the nozzle part 13).
  • FIG. 30 is a second explanatory view showing the application state during thin film application by the three-dimensional modeling apparatus of the first embodiment, in which while the fluid ejection head 10 is moved in the traveling direction F in an inclined state, It shows how mortar M with a thickness Z3 ⁇ H1 (the length of the short side of the opening 13b of the nozzle part 13) is applied.
  • the mortar M when applying the fluid with the fluid ejection head 10 tilted, the mortar M can be smoothly ejected from the opening 13b of the nozzle 13, and as a result, the end surface of the object P can be smoothly ejected. Finish quality can be improved.
  • the fluid ejection head 10 controls the rotation of the head-side rotor drive motor 27 based on the head-side rotor instruction value stored in the head-side rotor instruction value table 16c of the RAM 16, and controls the rotation of the head-side rotor drive motor 27, and the mortar M fed from the transport pipe 61. is sent to the nozzle 13 and discharged to the outside from the opening 13b of the nozzle 13.
  • the three-dimensional modeling apparatus 1 of this embodiment adjusts the height of the fluid ejection head 10 when applying mortar M with a thickness less than the application width using the nozzle section 13 or the like. Accordingly, the amount of mortar M discharged from the fluid discharge head 10 is adjusted based on the head-side rotor instruction value stored in advance in the head-side rotor instruction value table 16c of the RAM 16. It is something that
  • the detection value of second pressure sensor 63 decreases, and the amount of mortar M applied is larger than the amount of mortar M supplied from pump 5.
  • the detection value of the second pressure sensor 63 increases, so the pump 5 appropriately applies the mortar M to the fluid ejection head 10, taking into consideration the detection value of the second pressure sensor 63. It will be supplied.
  • the N layer application program 18b is repeated until the application of the first layer P1 is completed, and if it is determined that the application of the first layer P1 is completed (S11: Yes), N is increased by 1 and ( S13: means setting from the first layer P1 to the second layer P2), and moves the fluid ejection head 10 upward by one layer (S15).
  • the N layer application program 18b of S9 is executed for the second layer P2 to the Nth layer PN, and if it is determined that the application has been completed for all three-dimensional modeling data (S17 : Yes), after setting N to "1" ("1" means the first layer P1) (S19), move the articulated robot 3 and fluid ejection head 10 to the initial position (S21), The modeling process for the object P is completed (S23).
  • the three-dimensional printing apparatus 1 of this embodiment is shown in FIGS. 1 to 4 because the articulated robot 3 moves in the +Y direction and the ⁇ Y direction on the movement rail 75 of the robot slide mechanism 7, as described above.
  • the pump 5 and the fluid discharge head 10 are connected by a long transport pipe 61, and the fluid discharge head 10 that discharges the mortar M to the outside is located far from the pump 5 that supplies the mortar M. .
  • the three-dimensional modeling apparatus 1 of the present embodiment prevents over-supply and under-supply of the mortar M even when the fluid ejection head 10 is disposed far from the pump 5.
  • the pump 5 is controlled so that the ejection operation of the fluid ejection head 10 is not hindered.
  • FIG. 31 is an explanatory diagram illustrating the detection timing of the first pressure sensor and the detection timing of the second pressure sensor in the three-dimensional modeling apparatus of the first embodiment
  • FIG. 33 is a flowchart of the first ejection control program in the three-dimensional printing apparatus of the first embodiment
  • FIG. 34 is a flowchart of the second ejection control program in the three-dimensional printing apparatus of the first embodiment. It is a flowchart of the instruction value calculation program in .
  • one of the first discharge control program 18c and the second discharge control program 18d is selectively executed, and is executed by interrupt processing executed every predetermined time t0 (msec).
  • t0 predetermined time
  • instruction value calculation program 18e will also be explained as being executed by an interrupt process executed every predetermined time t0 (msec).
  • the three-dimensional modeling apparatus 1 of the present embodiment includes a first pressure sensor that is arranged at the connection position between the screw pipe 55 and the transport pipe 61, and for detecting the pressure within the transport pipe 61 of the mortar M. 57, and a second pressure sensor 63 arranged at a connection position between the fluid ejection head 11 and the transport pipe 61 and for detecting the pressure within the transport pipe 61 of the mortar M.
  • the pump 5 controls the rotation of the pump-side rotor drive motor 53 based on the pump-side rotor instruction value stored in the pump-side rotor instruction value table 16b of the RAM 16, and controls the mortar M fed into the screw pipe 55. is sent to the transport pipe 61 on the downstream side.
  • the pump side rotor instruction value stored in the pump side rotor instruction value table 16b is based on the detection value detected by the first pressure sensor 57 and the detection value detected by the second pressure sensor 63, as described later.
  • the instruction value 1 is determined based on the instruction value 1 calculated based on the above, and the instruction value 2 corresponding to the amount of mortar M discharged from the opening 13b of the nozzle portion 13 by the fluid ejection head 10 to the outside.
  • the pump 5 operates the pump-side rotor drive motor 53 so as to deliver the same amount of mortar M to the transport pipe 61 as the amount of mortar M that is discharged to the outside from the opening 13b of the nozzle portion 13 by the fluid discharge head 10.
  • the mortar M is appropriately delivered to the fluid discharge head 10. This allows mortar M to be discharged appropriately from the fluid discharge head 10.
  • the first pressure sensor 57 detects the pressure in the transport pipe 61 of the mortar M at the connection position between the screw pipe 55 and the transport pipe 61 (S51, upper part of FIG. 31). "S1" indicates the detection timing), and an instruction value 1 is calculated based on the detected value (S53).
  • the pump-side rotor drive motor 53 receives the instruction value 1 calculated in S53 or S59, which will be described later, and the instruction value calculated by an instruction value calculation program 18e, which will be described later, and which is executed separately from the first discharge control program 18c.
  • the rotation is controlled so as to match the pump side rotor instruction value calculated by 2 and stored in the pump side rotor instruction value table 16b of the RAM 16 (S54).
  • time t1 time t1 is longer than time t0, for example, N times time t0 (N is a natural number of 2 or more)
  • N is a natural number of 2 or more
  • the second pressure sensor 63 detects the pressure within the transport pipe 61 of the mortar M at the connection position between the fluid ejection head 11 and the transport pipe 61 (S57, "S2" in FIG. 31 indicates the detection timing ), and after calculating the instruction value 1 based on the detected value (S59), the interrupt processing is completed (S61).
  • FIG. 31 shows the detection timing of the first discharge control program 18c, and as shown in FIG. 31, in the three-dimensional printing apparatus 1 of this embodiment, the time t1 is about 10 times the time t0. It is set.
  • the first pressure sensor 57 detects the pressure within the transport pipe 61 of the mortar M at the connection position between the screw pipe 55 and the transport pipe 61 (S71), and It is determined whether or not a time t1 (time t1 is N times the time t0 (N is a natural number of 2 or more)) has elapsed since the detection of the second pressure sensor 63 (S73), and it is determined whether the time t1 has elapsed. If it is determined that there is no such thing (S73: No), the process waits until the time t1 has elapsed, and if it is determined that the time t1 has elapsed (S73: Yes), S75 is executed.
  • the second pressure sensor 63 detects the pressure within the transport pipe 61 of the mortar M at the connection position between the fluid ejection head 11 and the transport pipe 61 (S75), and the detected value by the first pressure sensor 57 and The instruction value 1 is calculated based on the detected value by the second pressure sensor 63 after time t1 (S77).
  • the pump-side rotor drive motor 53 is driven by the instruction value 1 calculated in S77 and the instruction value 2 calculated by an instruction value calculation program 18e, which will be described later, and which is executed separately from the first discharge control program 18c.
  • the rotation is controlled so as to match the calculated pump-side rotor instruction value stored in the pump-side rotor instruction value table 16b of the RAM 16 (S79), and the interrupt processing is completed (S81).
  • the instruction value calculation program 18e will be explained.
  • the application speed of the fluid ejection head 11 is obtained from the robot controller 4 (S83), and the obtained application speed and the height of the mortar ejected from the fluid ejection head 11 (S85).
  • the instruction value 2 is a value corresponding to the amount of mortar M discharged from the fluid discharge head 10, and when the coating speed of the fluid discharge head 10 is fast, or the height of the mortar discharged from the fluid discharge head 11. (thickness), the value of the instruction value 2 increases, and when the application speed of the fluid ejection head 10 is slow or the height (thickness) of the mortar ejected from the fluid ejection head 11 is small, the value of the instruction value 2 increases. , the value of instruction value 2 decreases.
  • the instruction value 2 calculated in S85 is added to the instruction value 1 calculated by the first discharge control program 18c or the second discharge control program 18d to calculate the instruction value, and the pump side rotor instruction value is stored in the RAM 16. After storing it in the table 16b (S87), the interrupt processing is completed (S89).
  • the pump 5 is connected to the fluid discharge head 10 by a long transport pipe 61, and the fluid discharge head Even when the mortar M is disposed far from the fluid ejection head 10, the mortar M can be appropriately supplied to the fluid ejection head 10, and the mortar M can be appropriately ejected from the fluid ejection head 10.
  • the amount of mortar M supplied from the pump 5 is equal to the amount of mortar M discharged to the outside from the opening 13b by the fluid discharge head 10, and the predetermined amount.
  • the length of the transport pipe 61 is determined based on the detection value detected by the first pressure sensor 57 at the specified time and the detection value detected by the second pressure sensor 63 after the elapse of time t1 from the predetermined time.
  • the fluid ejection head 10 controls the rotation of the head-side rotor drive motor 27 based on the head-side rotor instruction value stored in the head-side rotor instruction value table 16 c of the RAM 16 , and controls the rotation of the head-side rotor drive motor 27 .
  • the mortar M is delivered to the nozzle 13 and discharged from the opening 13b of the nozzle 13 to the outside.
  • the three-dimensional modeling apparatus 1 of this embodiment controls the rotation of the head-side rotor drive motor 27 according to the width, thickness, and application speed of the mortar M to be applied.
  • the detection value of the second pressure sensor 63 decreases, and the amount of mortar M applied is larger than the amount of mortar M supplied from pump 5.
  • the detected value of the second pressure sensor 63 increases.
  • the mortar M can be appropriately supplied to the fluid ejection head 10, and in turn, the mortar M can be appropriately ejected from the fluid ejection head 10.
  • the three-dimensional modeling apparatus 1 of this embodiment discharges the mortar M from the tip of the fluid discharge head 10 to manufacture an object P, which is a three-dimensional model. If the mortar M is left as is after use, there is a possibility that the mortar M will solidify inside the fluid ejection head 10 and become unusable next time.
  • the fluid ejection head 10 should be periodically disassembled to remove the internal mortar M and the parts that make up the fluid ejection head 10 should be cleaned. There is a need.
  • the three-dimensional printing apparatus of this embodiment is large and heavy, and the fluid ejection head 10 itself is also large and heavy. Safety needs to be considered.
  • FIG. 35 is a flowchart of a maintenance processing program in the three-dimensional printing apparatus of the first embodiment
  • FIG. 36 is a front view showing the state of the three-dimensional printing apparatus before disassembly during maintenance
  • FIG. FIG. 38 is a bottom view showing the state of the three-dimensional printing apparatus before disassembly during maintenance
  • FIG. 38 is an explanatory view showing the state after disassembly during maintenance of the three-dimensional printing apparatus.
  • the three-dimensional modeling apparatus 1 of this embodiment includes an articulated robot 3, a fluid ejection head 10 connected to the tip of the articulated robot 3 for discharging mortar M to the outside, and a fluid discharging head 10 for discharging mortar M to the outside.
  • a support part 21 for connecting the ejection head 10 to the tip of the articulated robot 3 is provided.
  • the three-dimensional printing apparatus 1 of the present embodiment has the fluid ejection head 10 oriented vertically by the articulated robot 3 (the fluid ejection head 10 is oriented vertically or in an inclined direction).
  • the mortar M is discharged downward to produce an object P which is a three-dimensional structure.
  • the user of the three-dimensional printing apparatus 1 turns on the power switch of the apparatus, selects maintenance processing using the operation buttons on the operation panel 8, and presses the start button.
  • the three-dimensional printing apparatus 1 retreats the fluid ejection head 10 to the maintenance position (S91), and changes the fluid ejection head 10 from the vertical state during operation (the state where the fluid ejection head 10 is oriented vertically or in an inclined direction). It is rotated to a horizontal state (S93), and the horizontal state is maintained (S95).
  • FIG. 36 is a front view of the fluid ejection head 10 in a horizontal state by the articulated robot 3
  • FIG. 37 is a bottom view of the state.
  • the articulated robot 3 holds the fluid ejection head 10 in a horizontal state by being connected to the protrusion 21c of the support portion 21, and the fluid ejection head 10 , it is suspended by four supports of the support section 21: the first support section 21d, the second support section 21e, the third support section 21f, and the fourth support section 21g.
  • the second stator 11a and the nozzle part 13 that constitute the outer pipe of the fluid ejection head main body 11 are removed, and the head-side rotor drive motor 27 and the second rotor 11b are removed. , the nozzle rotation motor 17 and the motor gear part 19 remain on the support part 21.
  • the three-dimensional modeling apparatus of this embodiment it is possible to remove all parts of the fluid ejection head 10, but if at least the second stator 11a and the nozzle section 13 are removed, the second stator 11a and the nozzle section can be removed. 13 can be washed individually, and the second rotor 11b remaining on the support part 12 is also exposed, so it can be washed.
  • the articulated robot 3 is connected to the protruding part 21c of the support part 21, the attitude of the fluid ejection head 10 can be easily changed in a narrow area, without hindering the operation of the three-dimensional printing apparatus 1. , maintenance of the three-dimensional printing apparatus 1 can be performed smoothly.
  • the mortar M can be moved smoothly after maintenance, and the mortar M can be moved to the application position. can be applied smoothly.
  • the articulated robot 3, the fluid ejection head body 11 connected to the tip of the articulated robot 3 and having the first hollow portion 11d, and the fluid ejection head main body 11 Nozzle parts 13, 23, 83 connected to the tip of 11 and having an opening 13b, lumens 13d, 23d, 83d93d communicating with the first hollow part 11d, and lumens 13f, 23f, 83f, 93f. . , 23b, 83b, and 93b to manufacture an object P, which is a three-dimensional structure, by discharging mortar M from , 23b, 83b, and 93b. Since it is equipped with a nozzle rotation mechanism, the rotation angle of the nozzle parts 13, 23, 83, and 93 can be adjusted to prevent unevenness of the mortar M even when manufacturing large, complex-shaped three-dimensional objects. It is possible to manufacture three-dimensional objects.
  • the nozzle rotation mechanism rotates the nozzle parts 13, 23, 83, and 93, thereby causing the mortar M to be discharged from the openings 13b, 23b, 83b, and 93b. Since the width is made variable, even if the three-dimensional structure is large and has a complicated shape, it is possible to easily manufacture the three-dimensional structure.
  • the cross sections of the openings 13b, 23b, 83b, and 93b are approximately rectangular, so that the mortar M discharged from the nozzle portions 13, 23, 83, and 93 can be easily stacked.
  • the mortar M discharged from the nozzle portions 13, 23, 83, and 93 is It can also be laminated more easily.
  • the nozzle parts 13, 23, 83, and 93 include the nozzle main parts 13a, 23a, 83a, and 93a;
  • the nozzle tips 13e, 23e, 83e, 93e are connected to the ends of the control bars 13c, 23c, 83c that cross the inner cavities 13f, 23f, 83f, 93f. , 93c, it is possible to prevent the mortar M from leaking out from the nozzle parts 13, 23, 83, and 93 when the three-dimensional modeling apparatus 1 is stopped.
  • the nozzle section 83 includes a nozzle body section 83a and a nozzle tip section 83e connected to the tip of the nozzle body section 83a. Since the control bar 83g is provided across the inner cavity 83d, it is possible to prevent the mortar M from leaking from the nozzle portion 83 when the three-dimensional modeling apparatus 1 is stopped.
  • the cross sections of the nozzle openings 13b, 23b, and 83b are approximately rectangular, and the regulating bars 13c, 23c, and 83c are arranged in the rectangular shape of the nozzle openings 13b, 23b, and 83b. Since the mortar M is provided parallel to the long side of the nozzle, it is possible to further prevent the mortar M from leaking out from the nozzle parts 13, 23, 83 when the three-dimensional modeling apparatus 1 is stopped.
  • the inner cavities 13d, 23d, 83d93d of the nozzle main bodies 13a, 23a, 83a, 93a are arranged from the upstream side to the downstream side of the nozzle tips 13e, 23e, 83e, 93e.
  • the inner diameters of the nozzle tips 13e, 23e, 83e, and 93e gradually become narrower toward the end, and the inner cavities 13f, 23f, 83f, and 93f of the nozzle tips 13e, 23e, 83e, and 93e are formed from the upstream side of the nozzle body portions 13a, 23a, 83a, and 93a.
  • the inner diameter gradually decreases toward the downstream side of the openings 13b, 23b, 83b, and 93b, and the boundary between the nozzle body portions 13a, 23a, 83a, and 93a and the nozzle tip portions 13e, 23e, 83e, and 93e.
  • the inner diameter of the most upstream part of the nozzle tip part 13e, 23e, 83e, 93e is made larger than the inner diameter of the most downstream part of the nozzle body part 13a, 23a, 83a, 93a, so that the nozzle part 13, 23, 83, 93
  • the mortar M can be smoothly discharged from the container.
  • the vertical cross-sectional shape of the inner cavity 23d of the nozzle main body 23a has a streamlined shape with the bulge 23g in the middle, so that the mortar from the nozzle 23 M can be discharged more smoothly.
  • the shape of the opening of the nozzle section in plan view has been described as approximately rectangular, but the shape of the nozzle opening in plan view is limited to approximately rectangular. Instead, it may be approximately circular, approximately elliptical, approximately square, approximately parallelogram, or approximately rhombic.
  • the shape of the opening of the nozzle section in plan view is approximately elliptical or approximately rectangular.
  • the shape of the opening of the nozzle part in plan view is approximately rectangular.
  • the nozzle opening substantially rectangular in plan view in terms of coating width and stability in lamination.

Abstract

[Problem] To provide a three-dimensional printing device that prevents irregularities in a fluid material and makes it possible to easily produce a three-dimensionally printed object, even when the three-dimensionally printed object has a large, complex shape. [Solution] A three-dimensional printing device 1 comprises an articulated robot 3, a fluid discharge head body 11 that is connected to a tip end of the articulated robot 3 and has a first hollow part 11d, and a nozzle 13 that is connected to a tip end of the fluid discharge head body 11 and has an opening 13b and internal cavities 13d, 13f that communicate with the first hollow part 11d. The three-dimensional printing device 1 produces three-dimensionally printed objects P by discharging mortar M from the opening 13b of the nozzle 13 via the first hollow part 11d and the internal cavities 13d, 13f. The three-dimensional printing device 1 also comprises a nozzle rotation mechanism that rotates the nozzle 13 relative to the fluid discharge head body 11.

Description

三次元造形装置3D printing equipment
本発明は、ノズルから流体物を突出しながら積層して、三次元造形物を製造する三次元造形装置に関する。 The present invention relates to a three-dimensional printing apparatus that manufactures a three-dimensional structure by stacking fluid objects while protruding them from a nozzle.
従来から、流体物を突出しながら積層して、三次元造形物を製造する三次元造形装置が知られている。 2. Description of the Related Art Conventionally, three-dimensional modeling apparatuses have been known that manufacture three-dimensional objects by stacking fluid objects while protruding from each other.
例えば、特許文献1には、作動室41内に供給された材料Pを、スクリュー5を回転させることにより作動室41の下流側に搬送し、作動室41の下流側でヒータHによって加熱溶融した後、吐出ノズル43から吐出して、立体造形物P1(以下、「三次元造形物」を記す)を製造する3DプリンタAが記載されていると認められる(図1等参照)。 For example, in Patent Document 1, the material P supplied into the working chamber 41 is conveyed to the downstream side of the working chamber 41 by rotating the screw 5, and heated and melted by a heater H on the downstream side of the working chamber 41. It is recognized that a 3D printer A is described that produces a three-dimensional object P1 (hereinafter referred to as a "three-dimensional object") by ejecting from the ejection nozzle 43 (see FIG. 1, etc.).
特開2021-30445号公報JP 2021-30445 Publication
特許文献1に記載の3DプリンタAによれば、吐出ノズル43から溶融状態の材料Pが線状に押し出され、積層されて三次元造形物が製造される(「0042」段落等参照)。 According to the 3D printer A described in Patent Document 1, a molten material P is linearly extruded from the discharge nozzle 43 and layered to produce a three-dimensional structure (see paragraph "0042", etc.).
しかしながら、特許文献1に記載の3DプリンタAは、線状の材料Pによって三次元造形物を製造することから、大型の三次元造形物に対応することが難しく、対応したとしても、製造されるまでに多大の時間を要するという問題があった。 However, since the 3D printer A described in Patent Document 1 manufactures three-dimensional objects using a linear material P, it is difficult to support large-sized three-dimensional objects, and even if it were able to do so, it would be difficult to manufacture three-dimensional objects. There was a problem in that it took a lot of time.
一方、大型の三次元造形物を製造する場合においても、製造される三次元造形物において、流体物はムラなく積層されて製造されることが望ましく、特に、三次元造形物が複雑な形状であっても、流体物はムラなく積層されて製造されることが望ましい。 On the other hand, even when manufacturing large 3D objects, it is desirable that the fluid material be evenly layered in the 3D object to be manufactured, especially if the 3D object has a complex shape. Even if there is such a problem, it is desirable that the fluid product be manufactured by being evenly layered.
また、大型の三次元造形物を製造する場合において発生する新たな問題についても対応することが望まれる。 It is also desirable to deal with new problems that arise when manufacturing large three-dimensional objects.
本発明は、従来技術が有する上述した問題に対応してなされたものであり、大型で複雑な形状の三次元造形物を製造する場合においても、流体物のムラを防止して三次元造形物を製造することができ、大型で複雑な形状の三次元造形物であっても、三次元造形物を容易に製造することができる三次元造形装置、また、装置の停止時には流体物がノズルから漏れ出すことを防止することができる三次元造形装置、さらには、装置の動作時にはノズルからの流体物の吐出をスムーズに行うことができる三次元造形装置を提供することを目的とする。 The present invention has been made in response to the above-mentioned problems of the prior art, and even when manufacturing a three-dimensional model with a large and complex shape, unevenness of fluid can be prevented and the three-dimensional model can be manufactured. A 3D printing device that can easily manufacture 3D objects even if they are large and have complex shapes, and also allows fluid to flow out from the nozzle when the device is stopped. It is an object of the present invention to provide a three-dimensional printing device that can prevent leakage, and furthermore, a three-dimensional printing device that can smoothly discharge fluid from a nozzle during operation of the device.
上述した課題を解決するために、本発明の第1の態様は、多関節ロボットと、その多関節ロボットの先端に接続され、第1の中空部を有する中空筐体と、その中空筐体の先端に接続され、開口部と、前記第1の中空部に連通する第2の中空部と、を有するノズルと、を備え、前記第1の中空部及び前記第2の中空部を介して前記ノズルの前記開口部から流体物を吐出して三次元造形物を製造する三次元造形装置において、前記ノズルを前記中空筐体に対して回転させるノズル回転機構を備えたことを特徴とする。 In order to solve the above-mentioned problems, a first aspect of the present invention includes an articulated robot, a hollow casing connected to the tip of the articulated robot and having a first hollow part, and a hollow casing of the hollow casing. a nozzle connected to the tip and having an opening and a second hollow part communicating with the first hollow part, the nozzle having the A three-dimensional modeling apparatus that manufactures a three-dimensional object by discharging a fluid from the opening of a nozzle is characterized by comprising a nozzle rotation mechanism that rotates the nozzle with respect to the hollow housing.
また、本発明の第2の態様は、第1の態様の三次元造形装置において、前記ノズル回転機構が前記ノズルを回転させることによって、前記開口部から吐出される前記流体物の幅を可変としたことを特徴とする。 Further, in a second aspect of the present invention, in the three-dimensional printing apparatus of the first aspect, the nozzle rotation mechanism rotates the nozzle to vary the width of the fluid material discharged from the opening. It is characterized by what it did.
また、本発明の第3の態様は、第2の態様の三次元造形装置において、ノズル開口部の横断面を略矩形状としたことを特徴とする。 Further, a third aspect of the present invention is characterized in that, in the three-dimensional modeling apparatus of the second aspect, the cross section of the nozzle opening is approximately rectangular.
また、本発明の第4の態様は、第3の態様の三次元造形装置において、前記ノズル開口部の横断面を略長方形としたことを特徴とする。 Furthermore, a fourth aspect of the present invention is the three-dimensional modeling apparatus according to the third aspect, characterized in that the cross section of the nozzle opening is approximately rectangular.
また、本発明の第5の態様は、第1の態様の三次元造形装置において、前記ノズル及び/または前記中空筐体は、前記第1の中空部及び/または前記第2の中空部を横切る流体物規制部を備えたことを特徴とする。 Further, in a fifth aspect of the present invention, in the three-dimensional printing apparatus of the first aspect, the nozzle and/or the hollow housing cross the first hollow part and/or the second hollow part. It is characterized by being equipped with a fluid regulating section.
また、本発明の第6の態様は、第2の態様の三次元造形装置において、前記ノズル及び/または前記中空筐体は、前記第1の中空部及び/または前記第2の中空部を横切る流体物規制部を備えたことを特徴とする。 Further, in a sixth aspect of the present invention, in the three-dimensional printing apparatus according to the second aspect, the nozzle and/or the hollow housing cross the first hollow part and/or the second hollow part. It is characterized by being equipped with a fluid regulating section.
また、本発明の第7の態様は、第3の態様の三次元造形装置において、前記ノズル及び/または前記中空筐体は、前記第1の中空部及び/または前記第2の中空部を横切る流体物規制部を備えたことを特徴とする。 Furthermore, in a seventh aspect of the present invention, in the three-dimensional printing apparatus according to the third aspect, the nozzle and/or the hollow housing cross the first hollow part and/or the second hollow part. It is characterized by being equipped with a fluid regulating section.
また、本発明の第8の態様は、第4の態様の三次元造形装置において、前記ノズル及び/または前記中空筐体は、前記第1の中空部及び/または前記第2の中空部を横切る流体物規制部を備えたことを特徴とする。 Further, an eighth aspect of the present invention is the three-dimensional printing apparatus according to the fourth aspect, in which the nozzle and/or the hollow casing cross the first hollow part and/or the second hollow part. It is characterized by being equipped with a fluid regulating section.
また、本発明の第9の態様は、第8の態様の三次元造形装置において、前記流体物規制部は、前記開口部の長方形の長辺に平行に設けられていることを特徴とする。 Further, a ninth aspect of the present invention is the three-dimensional printing apparatus according to the eighth aspect, wherein the fluid regulating section is provided in parallel to a long side of the rectangle of the opening.
また、本発明の第10の態様は、第1の態様の三次元造形装置において、前記ノズル本体部の前記第2の中空部は、上流から前記ノズル側の下流に向かって、その内径が徐々に細くなっており、前記ノズル先端部の前記第2の中空部は、前記中空筐体側の上流から前記開口部側の下流に向かって、その内径が徐々に細くなっており、前記ノズル本体部と前記ノズル先端部との境界部において、前記ノズル先端部の最上流の内径を、前記ノズル本体部の最下流の内径よりも大きくしたことを特徴とする。 Further, in a tenth aspect of the present invention, in the three-dimensional printing apparatus of the first aspect, the second hollow portion of the nozzle main body has an inner diameter that gradually decreases from upstream to downstream on the nozzle side. The second hollow portion of the nozzle tip has an inner diameter that gradually becomes thinner from upstream on the hollow housing side to downstream on the opening side, and and the nozzle tip, the inner diameter of the most upstream part of the nozzle tip is made larger than the inner diameter of the most downstream part of the nozzle body.
また、本発明の第11の態様は、第2の態様の三次元造形装置において、前記ノズル本体部の前記第2の中空部は、上流から前記ノズル側の下流に向かって、その内径が徐々に細くなっており、前記ノズル先端部の前記第2の中空部は、前記中空筐体側の上流から前記開口部側の下流に向かって、その内径が徐々に細くなっており、前記ノズル本体部と前記ノズル先端部との境界部において、前記ノズル先端部の最上流の内径を、前記ノズル本体部の最下流の内径よりも大きくしたことを特徴とする。 Furthermore, in an eleventh aspect of the present invention, in the three-dimensional printing apparatus according to the second aspect, the second hollow part of the nozzle main body has an inner diameter that gradually decreases from upstream to downstream on the nozzle side. The second hollow portion of the nozzle tip has an inner diameter that gradually becomes thinner from upstream on the hollow housing side to downstream on the opening side, and and the nozzle tip, the inner diameter of the most upstream part of the nozzle tip is made larger than the inner diameter of the most downstream part of the nozzle body.
また、本発明の第12の態様は、第3の態様の三次元造形装置において、前記ノズル本体部の前記第2の中空部は、上流から前記ノズル側の下流に向かって、その内径が徐々に細くなっており、前記ノズル先端部の前記第2の中空部は、前記中空筐体側の上流から前記開口部側の下流に向かって、その内径が徐々に細くなっており、前記ノズル本体部と前記ノズル先端部との境界部において、前記ノズル先端部の最上流の内径を、前記ノズル本体部の最下流の内径よりも大きくしたことを特徴とする。 Further, in a twelfth aspect of the present invention, in the three-dimensional printing apparatus according to the third aspect, the second hollow portion of the nozzle main body has an inner diameter that gradually decreases from upstream to downstream on the nozzle side. The second hollow portion of the nozzle tip has an inner diameter that gradually becomes thinner from upstream on the hollow housing side to downstream on the opening side, and and the nozzle tip, the inner diameter of the most upstream part of the nozzle tip is made larger than the inner diameter of the most downstream part of the nozzle body.
また、本発明の第13の態様は、第4の態様の三次元造形装置において、前記ノズル本体部の前記第2の中空部は、上流から前記ノズル側の下流に向かって、その内径が徐々に細くなっており、前記ノズル先端部の前記第2の中空部は、前記中空筐体側の上流から前記開口部側の下流に向かって、その内径が徐々に細くなっており、前記ノズル本体部と前記ノズル先端部との境界部において、前記ノズル先端部の最上流の内径を、前記ノズル本体部の最下流の内径よりも大きくしたことを特徴とする。 In a thirteenth aspect of the present invention, in the three-dimensional printing apparatus according to the fourth aspect, the second hollow part of the nozzle main body has an inner diameter that gradually decreases from upstream to downstream on the nozzle side. The second hollow portion of the nozzle tip has an inner diameter that gradually becomes thinner from upstream on the hollow housing side to downstream on the opening side, and and the nozzle tip, the inner diameter of the most upstream part of the nozzle tip is made larger than the inner diameter of the most downstream part of the nozzle body.
また、本発明の第14の態様は、第5の態様の三次元造形装置において、前記ノズル本体部の前記第2の中空部は、上流から前記ノズル側の下流に向かって、その内径が徐々に細くなっており、前記ノズル先端部の前記第2の中空部は、前記中空筐体側の上流から前記開口部側の下流に向かって、その内径が徐々に細くなっており、前記ノズル本体部と前記ノズル先端部との境界部において、前記ノズル先端部の最上流の内径を、前記ノズル本体部の最下流の内径よりも大きくしたことを特徴とする。 Furthermore, in a fourteenth aspect of the present invention, in the three-dimensional printing apparatus according to the fifth aspect, the second hollow portion of the nozzle main body has an inner diameter that gradually decreases from upstream to downstream on the nozzle side. The second hollow portion of the nozzle tip has an inner diameter that gradually becomes thinner from upstream on the hollow housing side to downstream on the opening side, and and the nozzle tip, the inner diameter of the most upstream part of the nozzle tip is made larger than the inner diameter of the most downstream part of the nozzle body.
また、本発明の第15の態様は、第9の態様の三次元造形装置において、前記ノズル本体部の前記第2の中空部は、上流から前記ノズル側の下流に向かって、その内径が徐々に細くなっており、前記ノズル先端部の前記第2の中空部は、前記中空筐体側の上流から前記開口部側の下流に向かって、その内径が徐々に細くなっており、前記ノズル本体部と前記ノズル先端部との境界部において、前記ノズル先端部の最上流の内径を、前記ノズル本体部の最下流の内径よりも大きくしたことを特徴とする。 In a fifteenth aspect of the present invention, in the three-dimensional printing apparatus according to the ninth aspect, the second hollow portion of the nozzle main body has an inner diameter that gradually decreases from upstream to downstream on the nozzle side. The second hollow portion of the nozzle tip has an inner diameter that gradually becomes thinner from upstream on the hollow housing side to downstream on the opening side, and and the nozzle tip, the inner diameter of the most upstream part of the nozzle tip is made larger than the inner diameter of the most downstream part of the nozzle body.
さらに、本発明の第16の態様は、第10の態様乃至第15の態様の何れかの三次元造形装置において、前記ノズル本体部の第2の中空部の縦断面形状は、途中に膨隆部を有する流線形状を呈していることを特徴とする。 Furthermore, in a 16th aspect of the present invention, in the three-dimensional printing apparatus according to any one of the 10th to 15th aspects, the vertical cross-sectional shape of the second hollow part of the nozzle main body has a bulge part in the middle. It is characterized by exhibiting a streamlined shape.
本発明の第1の態様によれば、多関節ロボットと、その多関節ロボットの先端に接続され、第1の中空部を有する中空筐体と、その中空筐体の先端に接続され、開口部と、第1の中空部に連通する第2の中空部と、を有するノズルと、を備え、第1の中空部及び第2の中空部を介してノズルの開口部から流体物を吐出して三次元造形物を製造する三次元造形装置において、ノズルを中空筐体に対して回転させるノズル回転機構を備えているので、大型で複雑な形状の三次元造形物を製造する場合においても、ノズルの回転角を調整して、流体物のムラを防止した三次元造形物を製造することができる。 According to a first aspect of the present invention, an articulated robot, a hollow housing connected to the distal end of the articulated robot and having a first hollow part, and an opening connected to the distal end of the hollow housing. and a second hollow part communicating with the first hollow part, and discharging a fluid from an opening of the nozzle through the first hollow part and the second hollow part. 3D printing equipment that manufactures 3D objects is equipped with a nozzle rotation mechanism that rotates the nozzle relative to the hollow housing, so even when manufacturing 3D objects with large and complex shapes, the nozzle By adjusting the rotation angle of the three-dimensional structure, it is possible to manufacture a three-dimensional structure that prevents unevenness of the fluid.
また、本発明の第2の態様によれば、第1の態様の三次元造形装置において、ノズル回転機構がノズルを回転させることによって、開口部から吐出される流体物の幅を可変としたので、第1の態様の三次元造形装置の効果に加え、大型で複雑な形状の三次元造形物であっても、三次元造形物を容易に製造することができる。 According to the second aspect of the present invention, in the three-dimensional printing apparatus of the first aspect, the nozzle rotation mechanism rotates the nozzle to make the width of the fluid discharged from the opening variable. In addition to the effects of the three-dimensional printing apparatus of the first aspect, it is possible to easily manufacture a three-dimensional structure, even if it is large and has a complicated shape.
また、本発明の第3の態様によれば、第2の態様の三次元造形装置において、ノズル開口部の横断面を略矩形状としたので、第2の態様の三次元造形装置の効果に加え、ノズルから吐出された流体物を簡単に積層することができる。 Further, according to the third aspect of the present invention, in the three-dimensional printing apparatus of the second aspect, the cross section of the nozzle opening is approximately rectangular, so that the effect of the three-dimensional printing apparatus of the second aspect is improved. In addition, the fluid discharged from the nozzle can be easily stacked.
また、本発明の第4の態様によれば、第3の態様の三次元造形装置において、ノズル開口部の横断面を略長方形としたので、ノズルから吐出された流体物をさらに簡単に積層することができる。 Further, according to the fourth aspect of the present invention, in the three-dimensional printing apparatus of the third aspect, the cross section of the nozzle opening is approximately rectangular, so that the fluid discharged from the nozzle can be layered more easily. be able to.
また、本発明の第5の態様によれば、第1の態様の三次元造形装置において、前記ノズル及び/または前記中空筐体は、前記第1の中空部及び/または前記第2の中空部を横切る流体物規制部を備えているので、第1の態様の三次元造形装置の効果に加え、装置の停止時に流体物がノズルから漏れ出すことを防止することができる。 Further, according to a fifth aspect of the present invention, in the three-dimensional printing apparatus of the first aspect, the nozzle and/or the hollow casing are arranged in the first hollow part and/or the second hollow part. In addition to the effects of the three-dimensional printing apparatus of the first aspect, since the fluid regulating part that crosses the nozzle is provided, it is possible to prevent the fluid from leaking from the nozzle when the apparatus is stopped.
また、本発明の第6の態様によれば、第2の態様の三次元造形装置において、前記ノズル及び/または前記中空筐体は、前記第1の中空部及び/または前記第2の中空部を横切る流体物規制部を備えているので、第2の態様の三次元造形装置の効果に加え、装置の停止時に流体物がノズルから漏れ出すことを防止することができる。 Further, according to a sixth aspect of the present invention, in the three-dimensional printing apparatus of the second aspect, the nozzle and/or the hollow casing are arranged in the first hollow part and/or the second hollow part. In addition to the effect of the three-dimensional printing apparatus of the second aspect, since the fluid regulating part that crosses the nozzle is provided, it is possible to prevent the fluid from leaking from the nozzle when the apparatus is stopped.
また、本発明の第7の態様によれば、第3の態様の三次元造形装置において、前記ノズル及び/または前記中空筐体は、前記第1の中空部及び/または前記第2の中空部を横切る流体物規制部を備えているので、第3の態様の三次元造形装置の効果に加え、装置の停止時に流体物がノズルから漏れ出すことを防止することができる。 Further, according to a seventh aspect of the present invention, in the three-dimensional printing apparatus of the third aspect, the nozzle and/or the hollow casing are arranged in the first hollow part and/or the second hollow part. In addition to the effect of the three-dimensional printing apparatus of the third aspect, since the fluid regulating part that crosses the three-dimensional printing apparatus is provided, it is possible to prevent the fluid from leaking out of the nozzle when the apparatus is stopped.
また、本発明の第8の態様によれば、第4の態様の三次元造形装置において、前記ノズル及び/または前記中空筐体は、前記第1の中空部及び/または前記第2の中空部を横切る流体物規制部を備えているので、第4の態様の三次元造形装置の効果に加え、装置の停止時に流体物がノズルから漏れ出すことを防止することができる。 According to an eighth aspect of the present invention, in the three-dimensional printing apparatus of the fourth aspect, the nozzle and/or the hollow casing are arranged in the first hollow part and/or the second hollow part. In addition to the effect of the three-dimensional printing apparatus of the fourth aspect, since the fluid regulating part that crosses the nozzle is provided, it is possible to prevent the fluid from leaking from the nozzle when the apparatus is stopped.
また、本発明の第9の態様によれば、第8の態様の三次元造形装置において、前記流体物規制部は、前記開口部の長方形の長辺に平行に設けられているので、第8の態様の三次元造形装置の効果に加え、装置の停止時に流体物がノズルから漏れ出すことをさらに防止することができる。 According to a ninth aspect of the present invention, in the three-dimensional modeling apparatus of the eighth aspect, the fluid regulating section is provided parallel to the long side of the rectangle of the opening. In addition to the effects of the three-dimensional printing apparatus according to the above embodiment, it is possible to further prevent fluid from leaking from the nozzle when the apparatus is stopped.
また、本発明の第10の態様によれば、第1の態様の三次元造形装置において、ノズル本体部の第2の中空部は、上流からノズル側の下流に向かって、その内径が徐々に細くなっており、ノズル先端部の第2の中空部は、中空筐体側の上流から開口部側の下流に向かって、その内径が徐々に細くなっており、ノズル本体部とノズル先端部との境界部において、ノズル先端部の最上流の内径を、ノズル本体部の最下流の内径よりも大きくしたので、第1の態様の三次元造形装置の効果に加え、ノズルからの流体物の吐出をスムーズに行うことができる。 According to a tenth aspect of the present invention, in the three-dimensional printing apparatus of the first aspect, the second hollow portion of the nozzle body has an inner diameter that gradually decreases from upstream to downstream on the nozzle side. The inner diameter of the second hollow part at the nozzle tip gradually becomes narrower from upstream on the hollow housing side to downstream on the opening side, and the inner diameter of the second hollow part at the nozzle tip gradually becomes thinner. At the boundary, the inner diameter of the most upstream part of the nozzle tip is made larger than the inner diameter of the most downstream part of the nozzle body, so in addition to the effect of the three-dimensional printing apparatus of the first aspect, the discharge of fluid from the nozzle is improved. It can be done smoothly.
また、本発明の第11の態様によれば、第2の態様の三次元造形装置において、ノズル本体部の第2の中空部は、上流からノズル側の下流に向かって、その内径が徐々に細くなっており、ノズル先端部の第2の中空部は、中空筐体側の上流から開口部側の下流に向かって、その内径が徐々に細くなっており、ノズル本体部とノズル先端部との境界部において、ノズル先端部の最上流の内径を、ノズル本体部の最下流の内径よりも大きくしたので、第2の態様の三次元造形装置の効果に加え、ノズルからの流体物の吐出をスムーズに行うことができる。 Further, according to the eleventh aspect of the present invention, in the three-dimensional printing apparatus of the second aspect, the second hollow portion of the nozzle main body has an inner diameter that gradually decreases from upstream to downstream on the nozzle side. The inner diameter of the second hollow part at the nozzle tip gradually becomes narrower from upstream on the hollow housing side to downstream on the opening side, and the inner diameter of the second hollow part at the nozzle tip gradually becomes thinner. At the boundary, the inner diameter of the most upstream part of the nozzle tip is made larger than the inner diameter of the most downstream part of the nozzle body, so in addition to the effect of the three-dimensional printing apparatus of the second aspect, the discharge of fluid from the nozzle is also improved. It can be done smoothly.
また、本発明の第12の態様によれば、第3の態様の三次元造形装置において、ノズル本体部の第2の中空部は、上流からノズル側の下流に向かって、その内径が徐々に細くなっており、ノズル先端部の第2の中空部は、中空筐体側の上流から開口部側の下流に向かって、その内径が徐々に細くなっており、ノズル本体部とノズル先端部との境界部において、ノズル先端部の最上流の内径を、ノズル本体部の最下流の内径よりも大きくしたので、第3の態様の三次元造形装置の効果に加え、ノズルからの流体物の吐出をスムーズに行うことができる。 According to the twelfth aspect of the present invention, in the three-dimensional printing apparatus of the third aspect, the second hollow portion of the nozzle body has an inner diameter that gradually decreases from upstream to downstream on the nozzle side. The inner diameter of the second hollow part at the nozzle tip gradually becomes narrower from upstream on the hollow housing side to downstream on the opening side, and the inner diameter of the second hollow part at the nozzle tip gradually becomes thinner. In the boundary part, the inner diameter of the most upstream part of the nozzle tip is made larger than the inner diameter of the most downstream part of the nozzle body, so in addition to the effect of the three-dimensional printing apparatus of the third aspect, the discharge of fluid from the nozzle is improved. It can be done smoothly.
また、本発明の第13の態様によれば、第4の態様の三次元造形装置において、ノズル本体部の第2の中空部は、上流からノズル側の下流に向かって、その内径が徐々に細くなっており、ノズル先端部の第2の中空部は、中空筐体側の上流から開口部側の下流に向かって、その内径が徐々に細くなっており、ノズル本体部とノズル先端部との境界部において、ノズル先端部の最上流の内径を、ノズル本体部の最下流の内径よりも大きくしたので、第4の態様の三次元造形装置の効果に加え、ノズルからの流体物の吐出をスムーズに行うことができる。 According to the thirteenth aspect of the present invention, in the three-dimensional printing apparatus of the fourth aspect, the second hollow portion of the nozzle main body has an inner diameter that gradually decreases from upstream to downstream on the nozzle side. The inner diameter of the second hollow part at the nozzle tip gradually becomes narrower from upstream on the hollow housing side to downstream on the opening side, and the inner diameter of the second hollow part at the nozzle tip gradually becomes thinner. At the boundary, the inner diameter of the most upstream part of the nozzle tip is made larger than the inner diameter of the most downstream part of the nozzle body, so in addition to the effect of the three-dimensional printing apparatus of the fourth aspect, the discharge of fluid from the nozzle is improved. It can be done smoothly.
また、本発明の第14の態様によれば、第5の態様の三次元造形装置において、ノズル本体部の第2の中空部は、上流からノズル側の下流に向かって、その内径が徐々に細くなっており、ノズル先端部の第2の中空部は、中空筐体側の上流から開口部側の下流に向かって、その内径が徐々に細くなっており、ノズル本体部とノズル先端部との境界部において、ノズル先端部の最上流の内径を、ノズル本体部の最下流の内径よりも大きくしたので、第5の態様の三次元造形装置の効果に加え、ノズルからの流体物の吐出をスムーズに行うことができる。 According to the fourteenth aspect of the present invention, in the three-dimensional printing apparatus of the fifth aspect, the second hollow portion of the nozzle body has an inner diameter that gradually decreases from upstream to downstream on the nozzle side. The inner diameter of the second hollow part at the nozzle tip gradually becomes narrower from upstream on the hollow housing side to downstream on the opening side, and the inner diameter of the second hollow part at the nozzle tip gradually becomes thinner. In the boundary part, the inner diameter of the most upstream part of the nozzle tip is made larger than the inner diameter of the most downstream part of the nozzle body, so in addition to the effect of the three-dimensional modeling apparatus of the fifth aspect, the discharge of fluid from the nozzle is improved. It can be done smoothly.
また、本発明の第15の態様によれば、第9の態様の三次元造形装置において、ノズル本体部の第2の中空部は、上流からノズル側の下流に向かって、その内径が徐々に細くなっており、ノズル先端部の第2の中空部は、中空筐体側の上流から開口部側の下流に向かって、その内径が徐々に細くなっており、ノズル本体部とノズル先端部との境界部において、ノズル先端部の最上流の内径を、ノズル本体部の最下流の内径よりも大きくしたので、第9の態様の三次元造形装置の効果に加え、ノズルからの流体物の吐出をスムーズに行うことができる。 According to the fifteenth aspect of the present invention, in the three-dimensional printing apparatus of the ninth aspect, the second hollow portion of the nozzle body has an inner diameter that gradually decreases from upstream to downstream on the nozzle side. The inner diameter of the second hollow part at the nozzle tip gradually becomes narrower from upstream on the hollow housing side to downstream on the opening side, and the inner diameter of the second hollow part at the nozzle tip gradually becomes thinner. In the boundary part, the inner diameter of the most upstream part of the nozzle tip is made larger than the inner diameter of the most downstream part of the nozzle body, so in addition to the effect of the three-dimensional printing apparatus of the ninth aspect, the discharge of fluid from the nozzle is improved. It can be done smoothly.
さらに、本発明の第16の態様によれば、第10の態様乃至第15の態様の何れかの三次元造形装置において、ノズル本体部の第2の中空部の縦断面形状は、途中に膨隆部を有する流線形状を呈しているので、第10の態様乃至第15の態様の何れかの三次元造形装置の効果に加え、ノズルからの流体物の吐出をさらにスムーズに行うことができる。 Further, according to a sixteenth aspect of the present invention, in the three-dimensional printing apparatus according to any one of the tenth to fifteenth aspects, the vertical cross-sectional shape of the second hollow part of the nozzle main body has a bulge in the middle. In addition to the effects of the three-dimensional modeling apparatus according to any of the tenth to fifteenth aspects, the fluid material can be discharged from the nozzle more smoothly.
本発明の第1実施形態の三次元造形装置の全体斜視図である。1 is an overall perspective view of a three-dimensional printing apparatus according to a first embodiment of the present invention. 第1実施形態の三次元造形装置の全体平面図である。FIG. 1 is an overall plan view of a three-dimensional printing apparatus according to a first embodiment. 第1実施形態の三次元造形装置の全体正面図である。FIG. 1 is an overall front view of a three-dimensional printing apparatus according to a first embodiment. 第1実施形態の三次元造形装置を構成するロボットスライド機構7によって、多関節ロボット3が図2の状態から+Y方向に移動した状態を示した図である。FIG. 3 is a diagram showing a state in which the articulated robot 3 has been moved in the +Y direction from the state in FIG. 2 by the robot slide mechanism 7 that constitutes the three-dimensional modeling apparatus of the first embodiment. 第1実施形態の三次元造形装置を構成するポンプの正面図である。FIG. 2 is a front view of a pump that constitutes the three-dimensional printing apparatus of the first embodiment. 第1実施形態の三次元造形装置を構成するポンプの一部を切り欠いた正面図である。It is a partially cutaway front view of a pump that constitutes the three-dimensional printing apparatus of the first embodiment. 第1実施形態の三次元造形装置を構成する流体吐出ヘッドの右側面図である。FIG. 2 is a right side view of a fluid ejection head that constitutes the three-dimensional printing apparatus of the first embodiment. 第1実施形態の三次元造形装置を構成する流体吐出ヘッドの一部を切り欠いた右側面図である。FIG. 2 is a right side view with a portion of the fluid ejection head constituting the three-dimensional printing apparatus of the first embodiment cut away. 第1実施形態の三次元造形装置を構成するノズルの斜視図である。FIG. 2 is a perspective view of a nozzle that constitutes the three-dimensional modeling apparatus of the first embodiment. 第1実施形態の三次元造形装置を構成するノズルの平面図である。FIG. 2 is a plan view of a nozzle that constitutes the three-dimensional modeling apparatus of the first embodiment. 図10において、X-X部を切り欠いた斜視図である。FIG. 11 is a perspective view of a section taken along the line XX in FIG. 10; 第1実施形態の三次元造形装置を構成するノズルの縦断面図である。FIG. 2 is a longitudinal cross-sectional view of a nozzle that constitutes the three-dimensional modeling apparatus of the first embodiment. 第2実施形態のノズルの図11と同様の斜視図である。FIG. 12 is a perspective view similar to FIG. 11 of the nozzle of the second embodiment. 第2実施形態のノズルの縦断面図である。FIG. 7 is a longitudinal cross-sectional view of a nozzle according to a second embodiment. 第3実施形態のノズルの図11と同様の斜視図である。FIG. 12 is a perspective view similar to FIG. 11 of the nozzle of the third embodiment. 第4実施形態のノズルの図11と同様の斜視図である。FIG. 12 is a perspective view similar to FIG. 11 of the nozzle of the fourth embodiment. 第1実施形態の三次元造形装置のブロック図である。FIG. 1 is a block diagram of a three-dimensional printing apparatus according to a first embodiment. 第1実施形態の三次元造形装置のメインコントローラのブロック図である。FIG. 2 is a block diagram of a main controller of the three-dimensional printing apparatus according to the first embodiment. 第1実施形態の三次元造形装置における三次元造形プログラムのフローチャートである。It is a flowchart of the three-dimensional printing program in the three-dimensional printing apparatus of the first embodiment. 第1実施形態の三次元造形装置におけるN層塗布プログラムのフローチャートである。It is a flowchart of the N layer coating program in the three-dimensional modeling apparatus of the first embodiment. 第1実施形態の三次元造形装置の塗布開示時における塗布状態を示した説明図である。FIG. 2 is an explanatory diagram showing a coating state of the three-dimensional modeling apparatus according to the first embodiment when coating is started. 第1実施形態の三次元造形装置の通常時における塗布状態を示した説明図である。FIG. 2 is an explanatory diagram showing a coating state in a normal state of the three-dimensional printing apparatus of the first embodiment. 第1実施形態の三次元造形装置におけるノズル角度と塗布幅との関係を説明する第1説明図である。It is a 1st explanatory view explaining the relationship between a nozzle angle and application width in a three-dimensional modeling device of a 1st embodiment. 第1実施形態の三次元造形装置におけるノズル角度と塗布幅との関係を説明する第2説明図である。FIG. 7 is a second explanatory diagram illustrating the relationship between the nozzle angle and the application width in the three-dimensional modeling apparatus of the first embodiment. 第1実施形態の三次元造形装置におけるノズル角度と塗布幅との関係を説明する第3説明図である。FIG. 7 is a third explanatory diagram illustrating the relationship between the nozzle angle and the application width in the three-dimensional modeling apparatus of the first embodiment. 第1実施形態の三次元造形装置におけるノズル角度と塗布幅との関係を説明する第4説明図である。FIG. 7 is a fourth explanatory diagram illustrating the relationship between the nozzle angle and the application width in the three-dimensional modeling apparatus of the first embodiment. 第1実施形態の三次元造形装置の塗布形態を説明する第1説明図である。It is a 1st explanatory view explaining the application form of the three-dimensional modeling device of a 1st embodiment. 第1実施形態の三次元造形装置の塗布形態を説明する第2説明図である。It is a 2nd explanatory view explaining the application form of the three-dimensional modeling device of a 1st embodiment. 第1実施形態の三次元造形装置の薄膜塗布時における塗布状態を示した第1説明図である。FIG. 2 is a first explanatory diagram showing a coating state during thin film coating by the three-dimensional modeling apparatus of the first embodiment. 第1実施形態の三次元造形装置の薄膜塗布時における塗布状態を示した第2説明図である。FIG. 7 is a second explanatory diagram showing a coating state during thin film coating by the three-dimensional modeling apparatus of the first embodiment. 第1実施形態の三次元造形装置における第1圧力センサーの検出タイミングと、第2圧力センサーの検出タイミングとを説明した説明図である。FIG. 2 is an explanatory diagram illustrating detection timing of a first pressure sensor and detection timing of a second pressure sensor in the three-dimensional modeling apparatus of the first embodiment. 第1実施形態の三次元造形装置における第1吐出制御プログラムのフローチャートである。It is a flowchart of the 1st discharge control program in the three-dimensional printing apparatus of 1st Embodiment. 第1実施形態の三次元造形装置における第2吐出制御プログラムのフローチャートである。It is a flowchart of the 2nd discharge control program in the three-dimensional printing apparatus of 1st Embodiment. 第1実施形態の三次元造形装置における指示値算出プログラムのフローチャートである。It is a flowchart of the instruction value calculation program in the three-dimensional modeling apparatus of the first embodiment. 第1実施形態の三次元造形装置におけるメンテナンス処理プログラムのフローチャートである。It is a flowchart of the maintenance processing program in the three-dimensional printing apparatus of the first embodiment. 第1実施形態の三次元造形装置のメンテナンス時の分解前の状態を示した正面図である。FIG. 2 is a front view showing the state of the three-dimensional printing apparatus of the first embodiment before disassembly during maintenance. 第1実施形態の三次元造形装置のメンテナンス時の分解前の状態を示した底面図である。It is a bottom view showing the state before disassembly at the time of maintenance of the three-dimensional printing device of a 1st embodiment. 第1実施形態の三次元造形装置のメンテナンス時の分解後の状態を示した説明図である。FIG. 2 is an explanatory diagram showing the state of the three-dimensional printing apparatus of the first embodiment after it is disassembled during maintenance.
以下、本発明の実施形態について、図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.
なお、本実施形態の三次元造形装置は、三次元造形物の例として、屋外に設置するオブジェPを製造するものとして説明するが、本発明の三次元造形装置は、オブジェに限定されるものではなく、立体化された三次元造形物であれば何れの物であっても製造可能である。 Although the three-dimensional printing apparatus of the present embodiment will be described as manufacturing an object P to be installed outdoors as an example of a three-dimensional model, the three-dimensional printing apparatus of the present invention is limited to objects. Rather, any three-dimensional three-dimensional object can be manufactured.
(実施形態)
先ず、本実施形態の三次元造形装置の構成について説明する。
(Embodiment)
First, the configuration of the three-dimensional printing apparatus of this embodiment will be explained.
図1は、本発明の第1実施形態の三次元造形装置の全体斜視図であり、図2は、その三次元造形装置の全体平面図であり、図3は、その三次元造形装置の全体正面図である。 FIG. 1 is an overall perspective view of a three-dimensional printing apparatus according to a first embodiment of the present invention, FIG. 2 is an overall plan view of the three-dimensional printing apparatus, and FIG. 3 is an overall perspective view of the three-dimensional printing apparatus. It is a front view.
図1乃至図3に示すように、本実施形態の三次元造形装置1は、屋外に設置する、第1層P1、第2層P2、第3層P3、第4層P4・・・第N層PN(図示せず)のN層(Nは自然数)からなる立体のオブジェPを製造するものであり、多関節ロボット3と、その多関節ロボット3を+Y方向及び-Y方向に移動させるためのロボットスライド機構7と、モルタルM(本発明の「流体物」に相当)を後述する流体吐出ヘッド10に供給するためのポンプ5と、多関節ロボット3の先端に接続され、モルタルMを外部へ吐出するための流体吐出ヘッド10と、その流体吐出ヘッド10を多関節ロボット3の先端に接続するための支持部21と、から構成されている。 As shown in FIGS. 1 to 3, the three-dimensional printing apparatus 1 of this embodiment includes a first layer P1, a second layer P2, a third layer P3, a fourth layer P4, . This is to manufacture a three-dimensional object P consisting of N layers (N is a natural number) of layers PN (not shown), and to move an articulated robot 3 and the articulated robot 3 in the +Y direction and the -Y direction. A robot slide mechanism 7, a pump 5 for supplying mortar M (corresponding to the "fluid material" of the present invention) to a fluid ejection head 10, which will be described later, and a pump 5 connected to the tip of the articulated robot 3, It is composed of a fluid ejection head 10 for ejecting fluid to the robot 3, and a support section 21 for connecting the fluid ejection head 10 to the distal end of the articulated robot 3.
なお、ポンプ5、流体吐出ヘッド10及び後述する長尺の輸送管61(本発明の「管状体」に相当)が本発明の「流体物吐出装置」を構成する。 The pump 5, the fluid discharge head 10, and a long transport pipe 61 (corresponding to the "tubular body" of the present invention), which will be described later, constitute the "fluid discharge device" of the present invention.
また、図1乃至図3には、本実施形態の三次元造形装置1には含まれないものの、セメント、砂及び水を混錬してモルタルMを製造するためのミキサー9が記載されている。 Further, although not included in the three-dimensional modeling apparatus 1 of this embodiment, a mixer 9 for producing mortar M by kneading cement, sand, and water is shown in FIGS. 1 to 3. .
また、本実施形態に使用するモルタルMは、流体吐出ヘッド10から吐出前は流動性を有し、流体吐出ヘッド10から吐出後は硬化する材料からなり、例えば、セメント、砂及び水から構成されている。 Furthermore, the mortar M used in this embodiment is made of a material that has fluidity before being ejected from the fluid ejecting head 10 and hardens after being ejected from the fluid ejecting head 10, such as cement, sand, and water. ing.
多関節ロボット3は、制御盤20内に配置されたロボットコントローラ4(図17参照)からの指令によって動作する一般の7軸の多関節ロボットであり、位置及び角度を自在に変更して、先端に接続された流体吐出ヘッド10を+X方向及び-X方向、+Y方向及び-Y方向、+Z方向及び-Z方向、並びにそれらの方向を組み合わせた三次元のあらゆる方向に移動させるものである。 The articulated robot 3 is a general 7-axis articulated robot that operates according to commands from the robot controller 4 (see FIG. 17) placed in the control panel 20, and can freely change the position and angle to The fluid ejection head 10 connected to is moved in all three-dimensional directions, including +X and -X directions, +Y and -Y directions, +Z and -Z directions, and combinations of these directions.
多関節ロボット3は、第1の基台31と、その第1の基台31に対して旋回する第2の基台33と、その第2の基台33に対して前後に回動する下腕部(下アーム部)35と、その下腕部35に対して上下に回動する中下腕部(中下アーム部)37と、その中下腕部37に対して上下に回動する中上腕部(中上アーム部)39と、その中上腕部39に対して上下に回動する上腕部(上アーム部)41と、その上腕部41に対して同軸に回転する回転部43と、を備える。 The articulated robot 3 includes a first base 31, a second base 33 that rotates with respect to the first base 31, and a lower base that rotates back and forth with respect to the second base 33. An arm portion (lower arm portion) 35, a middle lower arm portion (middle lower arm portion) 37 that rotates vertically with respect to the lower arm portion 35, and a middle lower arm portion (lower middle arm portion) 37 that rotates vertically with respect to the lower middle arm portion 37. A middle upper arm part (middle upper arm part) 39, an upper arm part (upper arm part) 41 that rotates up and down with respect to the middle upper arm part 39, and a rotating part 43 that rotates coaxially with respect to the upper arm part 41. , is provided.
多関節ロボット3は、ケーブル77によって制御盤20内のロボットコントローラ4(図17参照)に電気的に接続されており、ロボットコントローラ4は、同じく制御盤20内に配置されたメインコントーラ2(図17参照)に電気的に接続されている。 The articulated robot 3 is electrically connected to the robot controller 4 (see FIG. 17) in the control panel 20 by a cable 77, and the robot controller 4 is connected to the main controller 2 (see FIG. 17) also arranged in the control panel 20. 17)).
また、ロボットスライド機構7は、多関節ロボット3を載置する移動台73と、移動台73が移動可能に配置された長尺の移動レール75と、移動台73に配置され、多関節ロボット3を移動レール75に沿って+Y方向及び-Y方向に移動させるロボットスライドモータ79と、移動レール75の前表面を覆う7枚の移動レールカバー71(71a,71b,71c,71d,71e,71f,71g)と、を備える。 Further, the robot slide mechanism 7 includes a movable base 73 on which the articulated robot 3 is placed, a long movable rail 75 on which the movable base 73 is movably arranged, and a movable base 73 arranged on the movable base 73. a robot slide motor 79 that moves the robot along the moving rail 75 in the +Y direction and the -Y direction, and seven moving rail covers 71 (71a, 71b, 71c, 71d, 71e, 71f, 71g).
また、ロボットスライド機構7は、ロボットスライドモータ79のモータ軸に嵌合されたモータギア(ピニオン・図示せず)が移動レール75の内部に形成されたラック(図示せず)に噛み合っており、多関節ロボット3は、ロボットスライドモータ79のモータギアが回転することにより、移動レール75のラック上を+Y方向及び-Y方向に移動するように構成されている。 In addition, the robot slide mechanism 7 has a motor gear (pinion, not shown) fitted to the motor shaft of the robot slide motor 79 that meshes with a rack (not shown) formed inside the moving rail 75. The articulated robot 3 is configured to move on the rack of the moving rail 75 in the +Y direction and the -Y direction by rotating the motor gear of the robot slide motor 79.
図4は、第1実施形態の三次元造形装置を構成するロボットスライド機構7によって、多関節ロボット3が図2の状態から+Y方向に移動した状態を示した図である。 FIG. 4 is a diagram showing a state in which the articulated robot 3 has been moved in the +Y direction from the state in FIG. 2 by the robot slide mechanism 7 constituting the three-dimensional modeling apparatus of the first embodiment.
なお、本実施形態の三次元造形装置1は、多関節ロボット3がカバー71aからカバー71gまでの移動レール75上を直線方向の+Y方向及び-Y方向に移動するように構成されているが、ロボットスライド機構7は、三次元造形装置の仕様によって種々変更することが可能であり、移動レール45の長さを変更することは当然として、移動レール75を本実施形態のように多関節ロボット3が直線方向に移動するように配置することに限らず、多関節ロボット3が曲線方向に移動するように配置することも可能であり、また、多関節ロボット3が直線方向及び曲線方向に移動するように配置することも可能である。 Note that the three-dimensional modeling apparatus 1 of the present embodiment is configured such that the articulated robot 3 moves in the linear +Y direction and -Y direction on the movement rail 75 from the cover 71a to the cover 71g. The robot slide mechanism 7 can be modified in various ways depending on the specifications of the three-dimensional printing apparatus, and it goes without saying that the length of the moving rail 45 can be changed. The multi-joint robot 3 is not limited to being arranged so that it moves in a straight line direction, but it is also possible to arrange it so that the multi-joint robot 3 moves in a curved direction. It is also possible to arrange them as follows.
図5は、第1実施形態の三次元造形装置を構成するポンプの正面図であり、図6は、ポンプの一部を切り欠いた正面図である。 FIG. 5 is a front view of a pump that constitutes the three-dimensional printing apparatus of the first embodiment, and FIG. 6 is a front view with a portion of the pump cut away.
図1乃至図6に示すように、ポンプ5は、ポンプ本体51と、そのポンプ本体51の上面を格子状の網で覆い、ミキサー9で混錬されたモルタルMを投入するためのモルタル投入口59と、そのモルタル投入口59から投入されたモルタルMを下流側の長尺の輸送管61に送出するためのスクリュー管55と、そのスクリュー管55を駆動するためのポンプ側ローター駆動モータ53と、スクリュー管55と輸送管61との接続位置に配置され、モルタルMの輸送管61内での圧力を検出するための第1圧力センサー57と、第1ポンプ本体51に取り付けられた制御盤20と、その制御盤20に備えられた操作パネル8と、を備える。 As shown in FIGS. 1 to 6, the pump 5 includes a pump body 51, a mortar inlet port for charging the mortar M mixed in the mixer 9, and the upper surface of the pump body 51 is covered with a grid-like net. 59, a screw pipe 55 for sending the mortar M introduced from the mortar input port 59 to a long transport pipe 61 on the downstream side, and a pump-side rotor drive motor 53 for driving the screw pipe 55. , a first pressure sensor 57 arranged at a connection position between the screw pipe 55 and the transport pipe 61 to detect the pressure within the transport pipe 61 of the mortar M, and a control panel 20 attached to the first pump main body 51. and an operation panel 8 provided on the control panel 20.
また、スクリュー管55は、スクリュー管55の外管を構成する第1ステータ55aと、その第1ステータ55aの内部に回転可能に配置され、ポンプ側ローター駆動モータ53の回転によってモルタルMを輸送管61側へ送出するために螺旋状の突起が形成された第1ローター55bと、を備える。 Further, the screw pipe 55 includes a first stator 55a constituting an outer pipe of the screw pipe 55, and is rotatably disposed inside the first stator 55a, and transports the mortar M into the pipe by rotation of the pump-side rotor drive motor 53. A first rotor 55b is provided with a spiral protrusion for feeding the rotor to the 61 side.
図7は、第1実施形態の三次元造形装置を構成する流体吐出ヘッドの右側面図であり、図8は、流体吐出ヘッドの一部を切り欠いた右側面図である。 FIG. 7 is a right side view of the fluid ejection head that constitutes the three-dimensional modeling apparatus of the first embodiment, and FIG. 8 is a right side view with a portion of the fluid ejection head cut away.
図1乃至図3、図7及び図8に示すように、流体吐出ヘッド10は、輸送管61から輸送されたモルタルMを流体吐出ヘッド10へ送出するための供給口29と、その供給口29へ送出されたモルタルMを下流側に送出するための流体吐出ヘッド本体11(本発明の「中空筐体」に相当)と、その流体吐出ヘッド本体11を駆動するためのヘッド側ローター駆動モータ27と、流体吐出ヘッド本体11の先端に回転可能に接続されたノズル部13と、そのノズル部13を回転させるためのノズル回転モータ17と、流体吐出ヘッド11と輸送管61との接続位置に配置され、モルタルMの輸送管61内での圧力を検出するための第2圧力センサー63と、流体吐出ヘッド本体11及びヘッド側ローター駆動モータ27を覆う流体吐出ヘッドカバー80(点線で図示)と、を備える。 As shown in FIGS. 1 to 3, FIG. 7, and FIG. A fluid ejection head main body 11 (corresponding to the "hollow casing" of the present invention) for sending the mortar M delivered to the downstream side, and a head side rotor drive motor 27 for driving the fluid ejection head main body 11. a nozzle portion 13 rotatably connected to the tip of the fluid ejection head main body 11; a nozzle rotation motor 17 for rotating the nozzle portion 13; and a nozzle rotation motor 17 disposed at a connection position between the fluid ejection head 11 and the transport pipe 61. and a second pressure sensor 63 for detecting the pressure within the transport pipe 61 of the mortar M, and a fluid ejection head cover 80 (shown by a dotted line) that covers the fluid ejection head main body 11 and the head side rotor drive motor 27. Be prepared.
また、流体吐出ヘッド本体11は、第1の中空部11dを有し、流体吐出ヘッド本体11の外管を構成する第2ステータ11aと、その第2ステータ11aの内部に回転可能に配置され、ヘッド側ローター駆動モータ27の回転によってモルタルMをノズル部13へ送出し、かつ後述するノズル部13の開口部13bから吐出させるための第2ローター11bと、を備える。 Further, the fluid ejection head main body 11 has a first hollow portion 11d, and is rotatably disposed inside the second stator 11a that constitutes the outer tube of the fluid ejection head main body 11, A second rotor 11b is provided for sending the mortar M to the nozzle section 13 by rotation of the head-side rotor drive motor 27 and for discharging it from an opening 13b of the nozzle section 13, which will be described later.
 また、ノズル部13は、その外周に後述するノズルギア部15を備え、ノズル回転モータ17が回転することによって、ノズル回転モータ17のモータ軸に挿入されたモータギア部19が回転し、そのモータギア部19に噛み合うノズルギア部15が回転し、結果的にノズル部13が回転するように構成されている。 Further, the nozzle part 13 is provided with a nozzle gear part 15 to be described later on its outer periphery, and when the nozzle rotation motor 17 rotates, a motor gear part 19 inserted into the motor shaft of the nozzle rotation motor 17 rotates, and the motor gear part 19 The nozzle gear section 15 that meshes with the nozzle gear section 15 rotates, and as a result, the nozzle section 13 rotates.
なお、ノズル回転モータ17、モータギア部19及びノズルギア部15が本発明の「ノズル回転機構」を構成する。 Note that the nozzle rotation motor 17, the motor gear section 19, and the nozzle gear section 15 constitute the "nozzle rotation mechanism" of the present invention.
 また、本実施形態の流体吐出ヘッド本体11は、全体として回転容積式1軸偏心ねじポンプを構成しており、雌ねじに相当する第2ステータ11aと、雄ねじに相当する第2ローター11bとによって形成された密閉空間であるキャビティー11cの前方への移動によって、モルタルMを前方へ輸送し、かつノズル部13の開口部13bから吐出するように構成されている。 Furthermore, the fluid ejection head main body 11 of this embodiment constitutes a rotary displacement type single-axis eccentric screw pump as a whole, and is formed by a second stator 11a corresponding to a female thread and a second rotor 11b corresponding to a male thread. By moving the cavity 11c, which is a sealed space, forward, the mortar M is transported forward and discharged from the opening 13b of the nozzle portion 13.
さらに詳細に説明すると、図8に示すように、雌ねじに相当する第2ステータ11aは、外形が円筒形状であって、内面断面が畝状、かつ内面が全体として螺旋状に延びた形状を呈しており、雄ねじに相当する第2ローター11bは、第2ステータ11aの内面に接触するように螺旋状に延びた形状を呈しており、第2ローター11bが第2ステータ11aに対して回転すると、モルタルMを含むキャビティー11cを前方へ移動させ、モルタルMをノズル部13の開口部13bから吐出させるようになっている。 More specifically, as shown in FIG. 8, the second stator 11a, which corresponds to a female thread, has a cylindrical outer shape, a ridged inner cross section, and a spirally extending inner surface as a whole. The second rotor 11b, which corresponds to a male screw, has a spirally extending shape so as to contact the inner surface of the second stator 11a, and when the second rotor 11b rotates with respect to the second stator 11a, The cavity 11c containing the mortar M is moved forward, and the mortar M is discharged from the opening 13b of the nozzle portion 13.
図9は、第1実施形態の三次元造形装置を構成するノズル部の斜視図であり、図10は、そのノズル部の平面図であり、図11は、図10において、X-X部を切り欠いた斜視図であり、図12は、そのノズル部の縦断面図である。 FIG. 9 is a perspective view of a nozzle section constituting the three-dimensional printing apparatus of the first embodiment, FIG. 10 is a plan view of the nozzle section, and FIG. 11 shows a section taken along line XX in FIG. 12 is a cutaway perspective view, and FIG. 12 is a longitudinal sectional view of the nozzle portion.
図9乃至図12に示すように、ノズル部13は、ノズル本体部13aと、そのノズル本体部13aの外周に形成されたノズルギア部15と、ノズル本体部13aの先端に接続されたノズル先端部13eと、ノズル先端部13eの先端に形成された開口部13bと、から構成されている。 As shown in FIGS. 9 to 12, the nozzle portion 13 includes a nozzle body portion 13a, a nozzle gear portion 15 formed on the outer periphery of the nozzle body portion 13a, and a nozzle tip portion connected to the tip of the nozzle body portion 13a. 13e, and an opening 13b formed at the tip of the nozzle tip 13e.
なお、本実施形態の開口部13bは、平面視において、長辺がV1、短辺がH1(V1>H1)の略長方形を呈しており、したがって、開口部13bから吐出されるモルタルMの断面は、その略長方形を呈することとなる。 Note that the opening 13b of this embodiment has a substantially rectangular shape with a long side V1 and a short side H1 (V1>H1) in plan view, and therefore, the cross section of the mortar M discharged from the opening 13b has a substantially rectangular shape.
 ノズル本体部13aは、中空円筒形状であって、その内腔13d(本発明の「第2の中空部」に相当)は先端に向かって先細り円筒形状を呈しており、ノズル先端部13eは、中空略円錐形状であって、その内腔13f(本発明の「第2の中空部」に相当)は先端に向かって先細り形状を呈しているが、ノズル本体部13aとノズル先端部13eとの境界部において、ノズル先端部13eの基端の内径D2は、ノズル本体部13aの先端の内径D1よりも大きくなるように設定されている。 The nozzle main body 13a has a hollow cylindrical shape, and its inner cavity 13d (corresponding to the "second hollow part" of the present invention) has a cylindrical shape that tapers toward the tip, and the nozzle tip 13e has a cylindrical shape. It has a hollow substantially conical shape, and its inner cavity 13f (corresponding to the "second hollow part" of the present invention) is tapered toward the tip, but there is a gap between the nozzle main body 13a and the nozzle tip 13e. At the boundary, the inner diameter D2 at the base end of the nozzle tip 13e is set to be larger than the inner diameter D1 at the tip of the nozzle main body 13a.
 ノズル先端部13eの基端の内径D2を、ノズル本体部13aの先端の内径D1よりも大きくすることによって、モルタルMがノズル本体部13aからノズル先端部13eに流れ、開口部13bから吐出する際に、開口部13bでのモルタルMの圧力を分散させることができ、延いては、モルタルMをノズル先端部13eの開口部13bから連続してスムーズに吐出させることができる。 By making the inner diameter D2 of the base end of the nozzle tip 13e larger than the inner diameter D1 of the tip of the nozzle body 13a, when the mortar M flows from the nozzle body 13a to the nozzle tip 13e and is discharged from the opening 13b. In addition, the pressure of the mortar M at the opening 13b can be dispersed, and the mortar M can be continuously and smoothly discharged from the opening 13b of the nozzle tip 13e.
また、ノズル部13は、ノズル先端部13eの内腔13fを、開口部13bの長方形の長辺に沿って平行に横切る断面円形の規制バー13c(本発明の「流体物規制部」に相当)を備えており、この規制バー13cによれば、モルタルMが三次元造形装置1の停止時にノズル先端部13eの開口部13bから漏れ出すことを防止することができる。 Further, the nozzle portion 13 includes a restriction bar 13c (corresponding to the “fluid restriction portion” of the present invention) having a circular cross section that crosses the inner cavity 13f of the nozzle tip portion 13e in parallel along the long side of the rectangle of the opening portion 13b. According to the regulating bar 13c, it is possible to prevent the mortar M from leaking out from the opening 13b of the nozzle tip 13e when the three-dimensional modeling apparatus 1 is stopped.
 次に、本実施形態の三次元造形装置1に使用されるノズル部の変形例について説明する。 Next, a modification of the nozzle section used in the three-dimensional printing apparatus 1 of this embodiment will be described.
図13は、第2実施形態のノズル部の図11と同様の斜視図であり、図14は、第2実施形態のノズル部の縦断面図である。 FIG. 13 is a perspective view similar to FIG. 11 of the nozzle portion of the second embodiment, and FIG. 14 is a longitudinal cross-sectional view of the nozzle portion of the second embodiment.
図13及び図14に示すように、ノズル部23は、ノズル本体部23aと、そのノズル本体部23aの外周に形成されたノズルギア部25と、ノズル本体部23aの先端に接続されたノズル先端部23eと、ノズル先端部23eの先端に形成された開口部23bと、から構成されている。 As shown in FIGS. 13 and 14, the nozzle portion 23 includes a nozzle body portion 23a, a nozzle gear portion 25 formed on the outer periphery of the nozzle body portion 23a, and a nozzle tip portion connected to the tip of the nozzle body portion 23a. 23e, and an opening 23b formed at the tip of the nozzle tip 23e.
なお、本実施形態の開口部23bも、開口部13bと同様に、平面視において、長辺がV1、短辺がH1(V1>H1)の略長方形を呈しており、したがって、開口部23bから吐出されるモルタルMの断面は、その略長方形を呈することとなる。 Note that, similarly to the opening 13b, the opening 23b of this embodiment also has a substantially rectangular shape with a long side of V1 and a short side of H1 (V1>H1) in plan view, and therefore, from the opening 23b The discharged mortar M has a substantially rectangular cross section.
 ノズル本体部23aは、中空円筒形状であって、その内腔23d(本発明の「第2の中空部」に相当)は先端に向かって先細り円筒形状(D5>D3)であることに加え、その途中に内径D6(D6>D5>D3)の膨隆部23gを備えており、ノズル先端部23eは、中空略円錐形状であって、その内腔23f(本発明の「第2の中空部」に相当)は先端に向かって先細り形状を呈しているが、ノズル本体部23aとノズル先端部23eとの境界部において、ノズル先端部23eの基端の内径D4は、ノズル本体部23aの先端の内径D3よりも大きくなるように設定されている。 The nozzle main body 23a has a hollow cylindrical shape, and the inner cavity 23d (corresponding to the "second hollow part" of the present invention) has a cylindrical shape that tapers toward the tip (D5>D3). A bulge 23g with an inner diameter D6 (D6>D5>D3) is provided in the middle of the nozzle, and the nozzle tip 23e has a hollow, substantially conical shape. ) has a tapered shape toward the tip, but at the boundary between the nozzle body 23a and the nozzle tip 23e, the inner diameter D4 of the base end of the nozzle tip 23e is equal to the diameter D4 of the base of the nozzle tip 23e. It is set to be larger than the inner diameter D3.
 また、内腔23dの縦断面は、流線形状を呈している。 Furthermore, the longitudinal section of the inner cavity 23d has a streamlined shape.
膨隆部23gを設けることによって、モルタルMがノズル本体部23aからノズル先端部23eに流れ、開口部23bから吐出する際に、開口部23bでのモルタルMの圧力を膨隆部23gによって分散させることができ、延いては、モルタルMをノズル先端部23eの開口部23bから連続してスムーズに吐出させることができる。 By providing the bulge 23g, when the mortar M flows from the nozzle main body 23a to the nozzle tip 23e and is discharged from the opening 23b, the pressure of the mortar M at the opening 23b can be dispersed by the bulge 23g. This allows the mortar M to be continuously and smoothly discharged from the opening 23b of the nozzle tip 23e.
また、内腔23dの縦断面を流線形状に形成することによって、開口部23bでのモルタルMの圧力を流線形状によって徐々に分散させることができ、延いては、モルタルMをノズル先端部23eの開口部23bから連続してさらにスムーズに吐出させることができる。 Furthermore, by forming the longitudinal section of the inner cavity 23d into a streamlined shape, the pressure of the mortar M at the opening 23b can be gradually dispersed due to the streamlined shape. The liquid can be continuously and smoothly discharged from the opening 23b of 23e.
 また、ノズル先端部23eの基端の内径D4を、ノズル本体部23aの先端の内径D3よりも大きくすることによって、モルタルMが開口部23bから吐出する際に、開口部23bでのモルタルMの圧力をさらに分散させることができ、延いては、モルタルMをノズル先端部23eの開口部23bから連続してさらにスムーズに吐出させることができる。 Furthermore, by making the inner diameter D4 at the base end of the nozzle tip 23e larger than the inner diameter D3 at the tip of the nozzle main body 23a, when the mortar M is discharged from the opening 23b, the mortar M at the opening 23b is The pressure can be further dispersed, and the mortar M can be continuously and more smoothly discharged from the opening 23b of the nozzle tip 23e.
また、ノズル部23は、ノズル先端部23eの内腔23fを、開口部23bの長方形の長辺に沿って平行に横切る断面円形の規制バー23c(本発明の「流体物規制部」に相当)を備えており、この規制バー23cによれば、モルタルMが三次元造形装置1の停止時にノズル先端部23eの開口部23bから漏れ出すことを防止することができる。 In addition, the nozzle portion 23 includes a regulating bar 23c (corresponding to the "fluid regulating section" of the present invention) having a circular cross section that crosses the inner cavity 23f of the nozzle tip 23e in parallel along the long side of the rectangle of the opening 23b. According to this regulation bar 23c, it is possible to prevent the mortar M from leaking out from the opening 23b of the nozzle tip 23e when the three-dimensional modeling apparatus 1 is stopped.
図15は、第3実施形態のノズル部の図11と同様の斜視図である。 FIG. 15 is a perspective view similar to FIG. 11 of the nozzle portion of the third embodiment.
図15に示すように、ノズル部83は、ノズル本体部83aと、そのノズル本体部83aの外周に形成されたノズルギア部85と、ノズル本体部83aの先端に接続されたノズル先端部83eと、ノズル先端部83eの先端に形成された開口部83bと、から構成されている。 As shown in FIG. 15, the nozzle part 83 includes a nozzle body part 83a, a nozzle gear part 85 formed on the outer periphery of the nozzle body part 83a, and a nozzle tip part 83e connected to the tip of the nozzle body part 83a. and an opening 83b formed at the tip of the nozzle tip 83e.
なお、本実施形態の開口部83bも、開口部13bと同様に、平面視において、長辺がV1、短辺がH1(V1>H1)の略長方形を呈しており、したがって、開口部83bから吐出されるモルタルMの断面は、その略長方形を呈することとなる。 Note that, like the opening 13b, the opening 83b of this embodiment also has a substantially rectangular shape with a long side of V1 and a short side of H1 (V1>H1) in plan view. The discharged mortar M has a substantially rectangular cross section.
 ノズル本体部83aは、中空円筒形状であって、その内腔83d(本発明の「第2の中空部」に相当)は先端に向かって先細り円筒形状であり、ノズル先端部83eは、中空略円錐形状であって、その内腔83f(本発明の「第2の中空部」に相当)は先端に向かって先細り形状を呈しているが、ノズル本体部83aとノズル先端部83eとの境界部において、ノズル先端部83eの基端の内径は、ノズル本体部83aの先端の内径よりも大きくなるように設定されている。 The nozzle main body 83a has a hollow cylindrical shape, the inner cavity 83d (corresponding to the "second hollow part" of the present invention) has a cylindrical shape that tapers toward the tip, and the nozzle tip 83e has a hollow cylindrical shape. It has a conical shape, and its inner cavity 83f (corresponding to the "second hollow part" of the present invention) is tapered toward the tip, but the boundary between the nozzle main body 83a and the nozzle tip 83e In this case, the inner diameter of the base end of the nozzle tip portion 83e is set to be larger than the inner diameter of the tip of the nozzle body portion 83a.
 ノズル先端部83eの基端の内径を、ノズル本体部83aの先端の内径よりも大きくすることによって、モルタルMが開口部83bから吐出する際に、開口部83bでのモルタルMの圧力を分散させることができ、延いては、モルタルMをノズル先端部83eの開口部83bから連続してスムーズに吐出させることができる。 By making the inner diameter of the base end of the nozzle tip 83e larger than the inner diameter of the tip of the nozzle body 83a, the pressure of the mortar M at the opening 83b is dispersed when the mortar M is discharged from the opening 83b. This allows the mortar M to be continuously and smoothly discharged from the opening 83b of the nozzle tip 83e.
また、ノズル部83は、ノズル先端部83eの内腔83fを、開口部83bの長方形の長辺に沿って平行に横切る断面円形の規制バー83c(本発明の「流体物規制部」に相当)と、ノズル本体部83aの内腔83dを横切る断面円形の規制バー83g(本発明の「流体物規制部」に相当)と、の2つの規制バーを備えており、これらの規制バー83c及び83gによれば、モルタルMが三次元造形装置1の停止時にノズル先端部83eの開口部83bから漏れ出すことをさらに防止することができる。 In addition, the nozzle portion 83 includes a restriction bar 83c (corresponding to the "fluid restriction portion" of the present invention) having a circular cross section that crosses the inner cavity 83f of the nozzle tip 83e in parallel along the long side of the rectangle of the opening 83b. and a regulation bar 83g (corresponding to the "fluid regulation section" of the present invention) having a circular cross section that crosses the inner cavity 83d of the nozzle main body 83a, and these regulation bars 83c and 83g. According to this method, it is possible to further prevent the mortar M from leaking from the opening 83b of the nozzle tip 83e when the three-dimensional modeling apparatus 1 is stopped.
なお、上述のノズル部13、ノズル部23、及び後述するノズル部93においても、ノズル先端部の内腔を、開口部の長方形の長辺に沿って平行に横切る断面円形の規制バー(本発明の「流体物規制部」に相当)と、ノズル本体部の内腔を横切る断面円形の規制バー(本発明の「流体物規制部」に相当)と、の2つの規制バーを備えるように構成しても良く、場合によっては、3つ以上の規制バーを備えるように構成しても良い。 In addition, in the above-mentioned nozzle part 13, nozzle part 23, and nozzle part 93 to be described later, a restriction bar (in accordance with the present invention) having a circular cross section that crosses the inner cavity of the nozzle tip in parallel along the long side of the rectangle of the opening is used. The nozzle body is configured to include two regulation bars: a regulation bar with a circular cross section (corresponding to the "fluid regulation part" of the present invention) that crosses the inner cavity of the nozzle body. In some cases, three or more regulating bars may be provided.
ノズル部に複数の規制バーを備えることにより、これらの規制バーによってモルタルMが三次元造形装置1の停止時にノズル先端部の開口部から漏れ出すことをさらに防止することができる。 By providing the nozzle portion with a plurality of restriction bars, these restriction bars can further prevent the mortar M from leaking from the opening at the nozzle tip when the three-dimensional modeling apparatus 1 is stopped.
図16は、第4実施形態のノズル部の図11と同様の斜視図である。 FIG. 16 is a perspective view similar to FIG. 11 of the nozzle section of the fourth embodiment.
図16に示すように、ノズル部93は、ノズル本体部93aと、そのノズル本体部93aの外周に形成されたノズルギア部95と、ノズル本体部93aの先端に接続されたノズル先端部93eと、ノズル先端部93eの先端に形成された開口部93bと、から構成されている。 As shown in FIG. 16, the nozzle portion 93 includes a nozzle body portion 93a, a nozzle gear portion 95 formed on the outer periphery of the nozzle body portion 93a, and a nozzle tip portion 93e connected to the tip of the nozzle body portion 93a. and an opening 93b formed at the tip of the nozzle tip 93e.
なお、本実施形態の開口部93bも、開口部13bと同様に、平面視において、長辺がV1、短辺がH1(V1>H1)の略長方形を呈しており、したがって、開口部93bから吐出されるモルタルMの断面は、その略長方形を呈することとなる。 Note that, similarly to the opening 13b, the opening 93b of this embodiment also has a substantially rectangular shape with a long side of V1 and a short side of H1 (V1>H1) in plan view. The discharged mortar M has a substantially rectangular cross section.
 ノズル本体部93aは、中空円筒形状であって、その内腔93d(本発明の「第2の中空部」に相当)は先端に向かって先細り円筒形状であり、ノズル先端部93eは、中空略円錐形状であって、その内腔93f(本発明の「第2の中空部」に相当)は先端に向かって先細り形状を呈しているが、ノズル本体部93aとノズル先端部93eとの境界部において、ノズル先端部93eの基端の内径は、ノズル本体部93aの先端の内径よりも大きくなるように設定されている。 The nozzle main body 93a has a hollow cylindrical shape, the inner cavity 93d (corresponding to the "second hollow part" of the present invention) has a cylindrical shape that tapers toward the tip, and the nozzle tip 93e has a hollow cylindrical shape. It has a conical shape, and its inner cavity 93f (corresponding to the "second hollow part" of the present invention) is tapered toward the tip, but the boundary between the nozzle main body 93a and the nozzle tip 93e In this case, the inner diameter of the base end of the nozzle tip portion 93e is set to be larger than the inner diameter of the tip of the nozzle body portion 93a.
 ノズル先端部93eの基端の内径を、ノズル本体部93aの先端の内径よりも大きくすることによって、モルタルMが開口部93bから吐出する際に、開口部93bでのモルタルMの圧力を分散させることができ、延いては、モルタルMをノズル先端部93eの開口部93bから連続してスムーズに吐出させることができる。 By making the inner diameter of the base end of the nozzle tip 93e larger than the inner diameter of the tip of the nozzle body 93a, the pressure of the mortar M at the opening 93b is dispersed when the mortar M is discharged from the opening 93b. This allows the mortar M to be continuously and smoothly discharged from the opening 93b of the nozzle tip 93e.
また、ノズル部93は、ノズル本体部93aの内腔93dを、開口部93bの長方形の短辺に沿って平行に横切る断面円形の規制バー93c(本発明の「流体物規制部」に相当)を備えており、この規制バー93cによれば、モルタルMが三次元造形装置1の停止時にノズル先端部93eの開口部93bから漏れ出すことを防止することができる。 In addition, the nozzle portion 93 includes a restriction bar 93c (corresponding to the “fluid restriction portion” of the present invention) having a circular cross section that crosses the inner cavity 93d of the nozzle body portion 93a in parallel along the short side of the rectangle of the opening 93b. According to this regulation bar 93c, it is possible to prevent the mortar M from leaking out from the opening 93b of the nozzle tip 93e when the three-dimensional modeling apparatus 1 is stopped.
なお、開口部の形状が平面視長方形の場合には、開口部の長方形の長辺に沿って平行に規制バーを設ける方が、開口部の長方形の短辺に沿って平行に規制バーを設けるよりも、モルタルMの開口部から漏れをより効果的に防止することができる。 Note that if the shape of the opening is rectangular in plan view, it is better to provide the regulation bar parallel to the long side of the rectangle of the opening, or to provide the regulation bar parallel to the short side of the rectangle of the opening. It is possible to more effectively prevent leakage from the opening of the mortar M.
また、上述の実施形態においては、規制バーをノズル部の内腔を横切るように設けるものとして説明してきたが、ノズル部の内腔を横切るのではなく、第2ローター11bの動作に支障がない位置、例えば、第2ローター11bの下流部において、流出吐出ヘッド本体11の第2ステータ11aに第1の中空部11dを横切るように規制バーを設けても良い。 Further, in the above embodiment, the restriction bar has been described as being provided so as to cross the inner cavity of the nozzle part, but it does not cross the inner cavity of the nozzle part and does not interfere with the operation of the second rotor 11b. For example, a regulating bar may be provided on the second stator 11a of the outflow discharge head main body 11 at a position downstream of the second rotor 11b so as to cross the first hollow portion 11d.
第2ステータ11aに第1の中空部11dを横切るように規制バーを設けた場合においても、三次元造形装置1の停止時にノズルの開口部からモルタルMが漏れ出すことを防止することができる。 Even when a regulating bar is provided on the second stator 11a so as to cross the first hollow portion 11d, it is possible to prevent the mortar M from leaking from the nozzle opening when the three-dimensional modeling apparatus 1 is stopped.
但し、ノズルが回転することを考慮すれば、開口部の形状の関係から、ノズル部の内腔を横切るように規制バーを設けた方が、三次元造形装置1の停止時にモルタルMがノズルの開口部から漏れ出すことをより効果的に防止することができる。 However, considering that the nozzle rotates, it is better to provide a regulating bar across the inner cavity of the nozzle part due to the shape of the opening, so that the mortar M will not reach the nozzle when the three-dimensional modeling apparatus 1 is stopped. It is possible to more effectively prevent leakage from the opening.
さらに、ノズル部の内腔及び第2ステータ11bの第1の中空部11dを横切るように規制バーを複数設けた場合においても、三次元造形装置1の停止時にモルタルMがノズルの開口部から漏れ出すことを防止することができる。 Furthermore, even when a plurality of regulating bars are provided across the inner cavity of the nozzle part and the first hollow part 11d of the second stator 11b, the mortar M leaks from the opening of the nozzle when the three-dimensional modeling apparatus 1 is stopped. can be prevented from coming out.
また、上述の実施形態における規制バーは、その断面形状を円形としてきたが、特に、断面形状が円形に限定されるものではなく、モルタルMが流れる方向に沿って、湾曲形状を呈するものであれば、モルタルMの吐出時に支障なく、モルタルMの漏れを防止することができる。 Further, although the regulating bar in the above embodiment has a circular cross-sectional shape, the cross-sectional shape is not limited to a circular shape, and may have a curved shape along the direction in which the mortar M flows. For example, leakage of the mortar M can be prevented without any trouble when discharging the mortar M.
 図1、図7及び図8に示すように、支持部21は、上述のように、流体吐出ヘッド10を多関節ロボット3の先端に接続するためのものであり、流体吐出ヘッド10の長手方向に沿って長尺状に形成されている。 As shown in FIGS. 1, 7, and 8, the support section 21 is for connecting the fluid ejection head 10 to the distal end of the articulated robot 3, as described above, and extends in the longitudinal direction of the fluid ejection head 10. It is formed into a long shape along the
また、支持部21は、多関節ロボット3の先端の回転部43に接続され、流体吐出ヘッド10の基端側を支持し、側面視直角三角形の上支持部21aと、流体吐出ヘッド10の先端側を支持し、上支持部21aの下部に隣接して配置された、側面視直角三角形の下支持部21bと、を備える。 Further, the support part 21 is connected to the rotating part 43 at the tip of the articulated robot 3 and supports the base end side of the fluid ejection head 10, and includes an upper support part 21a of a right triangle in side view and a tip end of the fluid ejection head 10. A lower support part 21b that supports the side and is disposed adjacent to the lower part of the upper support part 21a and has a right triangular shape in side view.
 また、支持部21は、流体吐出ヘッド10の長手方向に交差する方向(本実施形態では流体吐出ヘッド10の長手方向に対して直角の方向)に突出した突出部21cを備え、多関節ロボット3は、その突出部21cに接続されている。 Further, the support part 21 includes a protrusion part 21c that protrudes in a direction intersecting the longitudinal direction of the fluid ejection head 10 (in the present embodiment, a direction perpendicular to the longitudinal direction of the fluid ejection head 10). is connected to the protrusion 21c.
多関節ロボット3を突出部21cに接続することにより、流体吐出ヘッド10の態勢を狭い領域で簡単に変更することができることに加え、三次元造形装置1の動作に支障なく、三次元造形装置1の後述するメンテナンス処理をスムーズ行うことができる。 By connecting the articulated robot 3 to the protruding portion 21c, the attitude of the fluid ejection head 10 can be easily changed in a narrow area, and in addition, the posture of the fluid ejection head 10 can be easily changed without hindering the operation of the three-dimensional printing apparatus 1. Maintenance processing, which will be described later, can be performed smoothly.
 次に、制御盤20について説明する。図17は、第1実施形態の三次元造形装置のブロック図であり、図18は、第1実施形態の三次元造形装置のメインコントローラのブロック図である。 Next, the control panel 20 will be explained. FIG. 17 is a block diagram of the three-dimensional printing apparatus of the first embodiment, and FIG. 18 is a block diagram of the main controller of the three-dimensional printing apparatus of the first embodiment.
図17において、制御盤20は、外部からの電源6によって動作するものであり、第1圧力センサー57及び第2圧力センサー63に電気的に接続されたメインコントローラ2と、そのメインコントローラ2に電気的に接続され、多関節ロボット3を駆動するためのロボットコントローラ4と、メインコントローラ2に電気的に接続され、ポンプ側ローター駆動モータ53、ヘッド側ローター駆動モータ27、ノズル回転モータ17及びロボットスライドモータ79を駆動するためのドライバー回路12と、装置の使用者らの入力を受け付ける操作パネル8と、を備える。 In FIG. 17, the control panel 20 is operated by an external power source 6, and includes a main controller 2 electrically connected to a first pressure sensor 57 and a second pressure sensor 63, and a main controller 2 that is electrically connected to a first pressure sensor 57 and a second pressure sensor 63. A robot controller 4 is electrically connected to the main controller 2 to drive the articulated robot 3, and is electrically connected to the pump-side rotor drive motor 53, the head-side rotor drive motor 27, the nozzle rotation motor 17, and the robot slide. It includes a driver circuit 12 for driving a motor 79 and an operation panel 8 for receiving input from users of the device.
 なお、ロボットコントローラ4は、多関節ロボット3の動作の制御に加えて、流体吐出ヘッド10がノズル部からモルタルMを吐出してオブジェPを製造する際の流体吐出ヘッド10の移動速度も検出しており、後述する指示値2を算出する際に使用されるヘッド速度をCPU14に出力する。 In addition to controlling the motion of the articulated robot 3, the robot controller 4 also detects the moving speed of the fluid ejection head 10 when the fluid ejection head 10 produces the object P by ejecting the mortar M from the nozzle part. It outputs the head speed to the CPU 14, which is used when calculating an instruction value 2, which will be described later.
また、図18において、メインコントローラ2は、CPU(中央演算処理装置)14と、そのCPU14に入出力可能に接続されたRAM(Random Access Memory)16と、CPU14に入出力可能に接続されたROM(Read Only Memory)18とを備える。 In FIG. 18, the main controller 2 includes a CPU (Central Processing Unit) 14, a RAM (Random Access Memory) 16 connected to the CPU 14 in an input/output manner, and a ROM connected to the CPU 14 in an input/output manner. (Read Only Memory) 18.
RAM16は、製造する三次元造形物の造形データを記憶した三次元造形データテーブル16aと、ポンプ側ローター駆動モータ53に指示する指示値を記憶したポンプ側ローター指示値テーブル16bと、ヘッド側ローター駆動モータ27に指示する指示値を記憶したヘッド側ローター指示値テーブル16cと、を備え、ROM18は、本実施形態の三次元造形装置1全体の動作を司る三次元造形プログラム18aと、本実施形態の三次元造形装置1の一層ごとの塗布動作を司るN層塗布プログラム18bと、本実施形態のポンプの動作の一部を司る第1吐出制御プログラム18c及び第2吐出制御プログラム18dと、本実施形態のポンプの動作を司る指示値算出プログラム18eと、本実施形態の三次元造形装置1をメンテナンスするためのメンテナンス処理プログラム18fと、を備える。 The RAM 16 includes a three-dimensional modeling data table 16a that stores modeling data for a three-dimensional object to be manufactured, a pump-side rotor instruction value table 16b that stores instruction values for the pump-side rotor drive motor 53, and a head-side rotor drive motor 53. The ROM 18 includes a head-side rotor instruction value table 16c that stores instruction values to be instructed to the motor 27, and a 3D printing program 18a that controls the overall operation of the 3D printing apparatus 1 of this embodiment, and The N layer coating program 18b that controls the coating operation for each layer of the three-dimensional modeling apparatus 1, the first discharge control program 18c and the second discharge control program 18d that control a part of the operation of the pump of this embodiment, and the present embodiment It includes an instruction value calculation program 18e that controls the operation of the pump, and a maintenance processing program 18f that maintains the three-dimensional printing apparatus 1 of this embodiment.
次に、上述した構成の三次元造形装置1の動作について説明する。図19は、第1実施形態の三次元造形装置における三次元造形プログラムのフローチャートであり、図20は、第1実施形態の三次元造形装置におけるN層塗布プログラムのフローチャートである。 Next, the operation of the three-dimensional printing apparatus 1 having the above-described configuration will be explained. FIG. 19 is a flowchart of a three-dimensional printing program in the three-dimensional printing apparatus of the first embodiment, and FIG. 20 is a flowchart of an N-layer application program in the three-dimensional printing apparatus of the first embodiment.
図19において、先ず、三次元造形装置の使用者が装置の電源スイッチを入れた後、操作パネル8上の操作ボタンによってオブジェPを選択して、スタートボタンを押下すると、三次元造形装置1は、初期状態にセットされ(S1)、RAM16の三次元造形データテーブル16aに記憶されたオブジェPに対応する三次元造形データを取得する(S3)。 In FIG. 19, first, the user of the three-dimensional printing apparatus turns on the power switch of the apparatus, selects the object P using the operation buttons on the operation panel 8, and presses the start button. , is set to an initial state (S1), and obtains three-dimensional printing data corresponding to the object P stored in the three-dimensional printing data table 16a of the RAM 16 (S3).
なお、初期状態において、多関節ロボット3は、移動レール75の-Y方向側図面上右端にセットされ、流体吐出ヘッド本体11は、三次元造形物を造形する位置から上方に退避した状態、すなわち、+Z方向側図面上上端にセットされる(図1乃至図3の状態)。 In the initial state, the articulated robot 3 is set at the right end of the moving rail 75 in the −Y direction in the drawing, and the fluid ejection head main body 11 is in a state where it is retracted upward from the position where the three-dimensional object is modeled, that is. , is set at the upper end of the drawing on the +Z direction side (states shown in FIGS. 1 to 3).
そして、多関節ロボット3が造形する層を示すパラメータNに「1」(「1」は、第1層P1を意味する)をセットし(S5)、流体吐出ヘッド10を傾斜させた状態でモルタルMの塗布を開始し(S7)、N層塗布プログラム18bを実行する(S9)。 Then, the parameter N indicating the layer to be modeled by the articulated robot 3 is set to "1" ("1" means the first layer P1) (S5), and the mortar is The coating of M is started (S7), and the N layer coating program 18b is executed (S9).
図21は、第1実施形態の三次元造形装置の塗布開示時における塗布状態を示した説明図であり、三次元造形装置1が進行方向Fへの塗布開示時に流体吐出ヘッド10を傾斜させて厚さZ1=H1(ノズル部13の開口部13b短辺の長さ)のモルタルMを塗布する様子を示している。 FIG. 21 is an explanatory diagram showing the application state of the three-dimensional printing apparatus according to the first embodiment when the application is started, and the three-dimensional printing apparatus 1 tilts the fluid ejection head 10 when starting the application in the traveling direction F. It shows how mortar M with a thickness Z1=H1 (the length of the short side of the opening 13b of the nozzle part 13) is applied.
このように、流体吐出ヘッド10を傾斜させて、下方に向かってモルタルMを吐出させれば、モルタルMを塗布位置にスムーズに塗布することができる。 In this way, by tilting the fluid ejection head 10 and ejecting the mortar M downward, the mortar M can be smoothly applied to the application position.
なお、本実施形態の三次元造形装置1においては、流体吐出ヘッド10を傾斜させた状態でモルタルMの塗布を開始するように構成したが、モルタルM等の流体物の材質の関係上問題無いのであれば、流体吐出ヘッド10を傾斜させずに、垂直状態でモルタルMの塗布を開始するように構成しても良い。 Note that although the three-dimensional modeling apparatus 1 of this embodiment is configured to start applying the mortar M with the fluid ejection head 10 tilted, there is no problem due to the material of the fluid such as the mortar M. If so, the application of the mortar M may be started in a vertical position without tilting the fluid ejection head 10.
図20に示すように、N層プログラムでは、先ず、傾斜させた状態の流体吐出ヘッド10を垂直に戻し(S31)、ロボットスライド機構7によって移動された多関節ロボット3の所定位置において、オブジェPが多関節ロボット3の可動範囲内で造形可能か否かが判断され(S33)、オブジェPが多関節ロボット3の可動範囲内で造形できないと判断された場合には(S33:Yes)、多関節ロボット3をロボットスライド機構7によって移動させた後(S35)、S37を実行し、オブジェPが多関節ロボット3の可動範囲内で造形できると判断された場合には(S33:No)、そのままS37を実行する。 As shown in FIG. 20, in the N-layer program, first, the tilted fluid ejection head 10 is returned vertically (S31), and the object P is placed at a predetermined position of the articulated robot 3 moved by the robot slide mechanism 7. It is determined whether the object P can be modeled within the movable range of the articulated robot 3 (S33), and if it is determined that the object P cannot be modeled within the movable range of the articulated robot 3 (S33: Yes), After the articulated robot 3 is moved by the robot slide mechanism 7 (S35), S37 is executed, and if it is determined that the object P can be modeled within the movable range of the articulated robot 3 (S33: No), the process continues as is. Execute S37.
S37では、ノズル部13の開口部13bを回転させる必要があるか否かが判断され(S37)、ノズル部13の開口部13bを回転させる必要があると判断された場合には(S37:Yes)、ノズル部13の開口部13bを回転させてモルタルMの塗布幅を調整した後、流体吐出ヘッド10によってモルタルMの塗布が実行され(S41)、ノズル部13の開口部13bを回転させる必要がないと判断された場合には(S37:No)、開口部13bを回転させることなく流体吐出ヘッド10によってモルタルMの塗布が実行される(S41)。 In S37, it is determined whether or not it is necessary to rotate the opening 13b of the nozzle section 13 (S37), and if it is determined that it is necessary to rotate the opening 13b of the nozzle section 13 (S37: Yes). ), after adjusting the application width of mortar M by rotating the opening 13b of the nozzle part 13, application of the mortar M is executed by the fluid ejection head 10 (S41), and it is necessary to rotate the opening 13b of the nozzle part 13. If it is determined that there is no mortar (S37: No), application of the mortar M is executed by the fluid ejection head 10 without rotating the opening 13b (S41).
図22は、第1実施形態の三次元造形装置の通常時における塗布状態を示した説明図であり、流体吐出ヘッド10を垂直にした状態で進行方向Fに移動させながら、厚さZ1=H1(ノズル部13の開口部13b短辺の長さ)のモルタルMを塗布する様子を示している。 FIG. 22 is an explanatory diagram showing a normal application state of the three-dimensional printing apparatus of the first embodiment, in which the fluid ejection head 10 is vertically moved in the traveling direction F, and the thickness Z1=H1 is It shows how mortar M is applied (the length of the short side of the opening 13b of the nozzle part 13).
なお、図22は、第1層P1ではなく、第6層P6を塗布する様子を示しているが、流体吐出ヘッド10を垂直にした状態で塗布する点は、第1層P1においても同様である。 Although FIG. 22 shows how the sixth layer P6 is applied instead of the first layer P1, the same applies to the first layer P1 in that the fluid ejection head 10 is applied vertically. be.
また、本実施形態の三次元造形装置1においては、第1層P1、第2層P2、第3層P3、第4層P4・・・第N層PN(図示せず)のN層(Nは自然数)からなる立体のオブジェPを製造する際の、流体吐出ヘッド10のノズル部13から吐出されるモルタルMの厚みは、図21及び図22に示すように、厚さZ1=H1(ノズル部13の開口部13b短辺の長さ)であるとして説明したが、それは、説明の都合上、理解し易いようにしたためであって、具体的には、以下のように塗布するのが良い。 In addition, in the three-dimensional printing apparatus 1 of the present embodiment, N layers (N is a natural number), the thickness of the mortar M discharged from the nozzle part 13 of the fluid discharge head 10 is as shown in FIGS. 21 and 22. Although the length of the short side of the opening 13b of the portion 13 has been explained, this is for the convenience of explanation and to make it easier to understand.Specifically, it is recommended to apply as follows. .
すなわち、流体吐出ヘッド10のノズル部を、塗布しようとする厚さよりも若干短くなるように(Z1≒H1)、ノズル部から吐出されるモルタルMを、最下層の設置面(例えば、オブジェPが製造される地面等の基準面)、または、既に塗布された1段下層のモルタルMの表面に押し付けるように塗布する。 That is, the mortar M ejected from the nozzle part of the fluid ejection head 10 is placed on the lowermost installation surface (for example, when the object P is It is applied so as to be pressed against a reference surface (such as the ground surface to be manufactured) or the surface of the mortar M that has already been applied in the lower layer.
流体吐出ヘッド10のノズル部を、塗布しようとする厚さよりも若干短くなるように(Z1≒H1)、ノズル部から吐出されるモルタルMを、最下層の設置面(例えば、オブジェPが製造される地面等の基準面)、または、既に塗布された1段下層のモルタルMの表面に押し付けるようにてして塗布することにより、三次元造形物を多層に製造する場合に、各層間の密着度合いを増大させることができ、延いては、製造する三次元造形物の剛性を増大させることができる。 The mortar M ejected from the nozzle part of the fluid ejection head 10 is placed so that the thickness is slightly shorter than the thickness to be applied (Z1≒H1). When manufacturing a multi-layered three-dimensional object, the adhesive between each layer can be improved by applying the product by pressing it onto a reference surface (such as the ground) or the surface of the mortar M that has already been applied in the first layer below. The rigidity of the three-dimensional structure to be manufactured can be increased.
なお、流体吐出ヘッド10のノズル部を、塗布しようとする厚さよりも若干短くなるように、ノズル部から吐出されるモルタルMを、最下層の設置面(例えば、オブジェPが製造される地面等の基準面)、または、既に塗布された1段下層のモルタルMの表面に押し付けるようにてして塗布する点は、後述する図29及び図30に示すような、薄膜塗布時においても同様に行うのが良い。 Note that the mortar M discharged from the nozzle portion of the fluid discharge head 10 is placed on the lowest installation surface (for example, the ground surface on which the object P is manufactured, etc.) so that the thickness is slightly shorter than the thickness to be applied. The same applies to thin film coating as shown in FIGS. 29 and 30, which will be described later. Good to do.
図29及び図30に示すような、薄膜塗布時においても、ノズル部から吐出されるモルタルMを、最下層の設置面(例えば、オブジェPが製造される地面等の基準面)、または、既に塗布された1段下層のモルタルMの表面に押し付けるようにてして塗布することにより、三次元造形物を多層に製造する場合に、各層間の密着度合いを増大させることができ、延いては、製造する三次元造形物の剛性を増大させることができる。 Even when applying a thin film as shown in FIGS. 29 and 30, the mortar M discharged from the nozzle part is placed on the lowest installation surface (for example, a reference surface such as the ground on which the object P is manufactured) or By applying it by pressing it onto the surface of the applied mortar M in the lower layer, it is possible to increase the degree of adhesion between each layer when manufacturing a three-dimensional structure in multiple layers, and as a result, the degree of adhesion between each layer can be increased. , the rigidity of the three-dimensional structure to be manufactured can be increased.
ここで、ノズル部13の回転角とモルタルMの塗布幅について説明する。 Here, the rotation angle of the nozzle portion 13 and the application width of the mortar M will be explained.
図23は、第1実施形態の三次元造形装置におけるノズル角度と塗布幅との関係を説明する第1説明図であり、図24は、ノズル角度と塗布幅との関係を説明する第2説明図であり、図25は、ノズル角度と塗布幅との関係を説明する第3説明図であり、図26は、ノズル角度と塗布幅との関係を説明する第4説明図である。 FIG. 23 is a first explanatory diagram illustrating the relationship between the nozzle angle and the coating width in the three-dimensional modeling apparatus of the first embodiment, and FIG. 24 is a second explanatory diagram illustrating the relationship between the nozzle angle and the coating width. 25 is a third explanatory diagram illustrating the relationship between the nozzle angle and the coating width, and FIG. 26 is a fourth explanatory diagram illustrating the relationship between the nozzle angle and the coating width.
上述の通り、ノズル部13は、図9及び図10に示すように、平面視において、長辺がV1、短辺がH1(V1>H1)の略長方形の開口部13bを備えており、図23に示すように、開口部13bの対角線Dが流体吐出ヘッド10の進行方向Fに直交する方向に対して角度θ1(θ1は、開口部13bの長辺が流体吐出ヘッド10の進行方向Fに対して直交する角度とする)をなす場合には、流体吐出ヘッド10によるモルタルMの塗布幅Wは、(H1+V1)の平方根×cosθ1=V1となる。 As described above, as shown in FIGS. 9 and 10, the nozzle portion 13 includes a substantially rectangular opening 13b with a long side of V1 and a short side of H1 (V1>H1) in plan view. 23, the diagonal line D of the opening 13b is at an angle θ1 with respect to the direction perpendicular to the traveling direction F of the fluid ejecting head 10 (θ1 is the angle θ1 when the long side of the opening 13b is in the traveling direction F of the fluid ejecting head 10. In the case where the width W of mortar M applied by the fluid ejection head 10 is the square root of (H1 2 +V1 2 )×cos θ1=V1.
また、図24に示すように、開口部13bの対角線Dが流体吐出ヘッド10の進行方向Fに直交する方向に対して角度θ2(cosθ2=1とする)をなす場合には、流体吐出ヘッド10によるモルタルMの塗布幅Wは、(H1+V1)の平方根となり、開口部13bの長辺V1よりも長くすることができる。 Further, as shown in FIG. 24, when the diagonal line D of the opening 13b forms an angle θ2 (cos θ2=1) with respect to the direction perpendicular to the traveling direction F of the fluid ejection head 10, the fluid ejection head 10 The application width W of the mortar M is the square root of (H1 2 +V1 2 ), and can be made longer than the long side V1 of the opening 13b.
また、図25に示すように、開口部13bの対角線Dが流体吐出ヘッド10の進行方向Fに直交する方向に対して角度θ3(cosθ2<1とする)をなす場合には、流体吐出ヘッド10によるモルタルMの塗布幅Wは、(H1+V1)の平方根×cosθ3となり、開口部13bの長辺V1よりも短くすることができる。 Further, as shown in FIG. 25, when the diagonal line D of the opening 13b forms an angle θ3 (cos θ2<1) with respect to the direction perpendicular to the traveling direction F of the fluid ejection head 10, the fluid ejection head 10 The application width W of the mortar M is the square root of (H1 2 +V1 2 ) x cos θ3, and can be made shorter than the long side V1 of the opening 13b.
さらに、図26に示すように、開口部13bの対角線Dが流体吐出ヘッド10の進行方向Fに直交する方向に対して角度θ4(θ4は、開口部13bの短辺が流体吐出ヘッド10の進行方向Fに対して直交する角度とする)をなす場合には、流体吐出ヘッド10によるモルタルMの塗布幅Wは、(H1+V1)の平方根×cosθ4=H1となる。 Furthermore, as shown in FIG. 26, the diagonal line D of the opening 13b is at an angle θ4 with respect to the direction perpendicular to the traveling direction F of the fluid ejection head 10 (θ4 means that the short side of the opening 13b is When the angle is perpendicular to the direction F), the application width W of the mortar M by the fluid ejection head 10 is the square root of (H1 2 +V1 2 )×cos θ4=H1.
モルタルMの塗布幅が決定されると、流体吐出ヘッド10によってモルタルMの塗布処理が実行される(S41)。具体的には、先ず、オブジェPの第1層P1の所定箇所(流体吐出ヘッド10が一筆書きする範囲)が、決定されたモルタルMの塗布幅で走査されることによって塗布されることとなる。 Once the application width of the mortar M is determined, the application process of the mortar M is executed by the fluid ejection head 10 (S41). Specifically, first, a predetermined portion of the first layer P1 of the object P (the range where the fluid ejection head 10 writes with one stroke) is applied by scanning with the determined application width of the mortar M. .
次に、本実施形態の三次元造形装置1の塗布形態について説明する。 Next, the application form of the three-dimensional modeling apparatus 1 of this embodiment will be explained.
本実施形態の三次元造形装置1が流体吐出ヘッド10を直線方向に移動させて三次元造形物を製造する場合には、図23乃至図26を参照して上述したような方法でモルタルMを塗布する。 When the three-dimensional modeling apparatus 1 of this embodiment moves the fluid ejection head 10 in a linear direction to manufacture a three-dimensional model, the mortar M is applied by the method described above with reference to FIGS. 23 to 26. Apply.
図27は、第1実施形態の三次元造形装置の塗布形態を説明する第1説明図であり、図28は、三次元造形装置の塗布形態を説明する第2説明図である。 FIG. 27 is a first explanatory diagram illustrating the application form of the three-dimensional printing apparatus of the first embodiment, and FIG. 28 is a second explanatory diagram illustrating the application form of the three-dimensional printing apparatus.
本実施形態の三次元造形装置1が流体吐出ヘッド10を曲線方向(例えば、半径Rの円周方向)に移動させて三次元造形物を製造する場合には、図27に示すように、ノズル部13の進行方向前方が流体吐出ヘッド10の進行方向Fに常に沿うようにノズル部13をノズル回転モータ17によって回転させながら、多関節ロボット3を動作させてモルタルMを塗布する。 When the three-dimensional printing apparatus 1 of this embodiment manufactures a three-dimensional object by moving the fluid ejection head 10 in a curved direction (for example, in the circumferential direction of radius R), as shown in FIG. The mortar M is applied by operating the articulated robot 3 while rotating the nozzle part 13 by the nozzle rotation motor 17 so that the forward direction of the movement direction of the part 13 is always along the movement direction F of the fluid ejection head 10.
なお、図27では、ノズル部13の進行方向前方が流体吐出ヘッド10の進行方向Fに常に沿うように制御して、塗布幅W=V1のモルタルMを塗布する場合を図示しているが、この形態に限らず、上述の図23乃至図26に示されるような塗布幅WのモルタルMを塗布する場合においても、同様に、ノズル部13の進行方向前方を流体吐出ヘッド10の進行方向Fに常に沿うように制御すれば、それぞれの塗布幅で曲線方向の塗布が可能となる。 Note that although FIG. 27 shows a case where the mortar M with the application width W=V1 is applied by controlling the nozzle portion 13 so that the forward direction in the traveling direction is always along the traveling direction F of the fluid ejection head 10, Not limited to this form, even when applying mortar M having a coating width W as shown in FIGS. If the coating is controlled to always follow the curve, coating in the curved direction is possible with each coating width.
 また、複雑な輪郭形状の輪郭部分を塗布する場合には、図28に示すように、ノズル部13の頂点部A1部、A2部、A3部、またはA4部(以下、「頂点部A」と記す)を使用して、頂点部Aを輪郭部分の形状に合わせ、ノズル部13をノズル回転モータ17によって回転させながら、多関節ロボット3を動作させてモルタルMを塗布することも可能である。 In addition, when coating an outline part with a complicated outline shape, as shown in FIG. It is also possible to apply the mortar M by adjusting the apex part A to the shape of the contour part and operating the articulated robot 3 while rotating the nozzle part 13 by the nozzle rotation motor 17.
 N層塗布プログラム18bの説明に戻り、流体吐出ヘッド10によって第1層P1の所定箇所のモルタルMの塗布が終了すると、オブジェPの残り高さが開口部13bの塗布幅H1よりも小さいか否かが判断され(S43)、オブジェPの残り高さが開口部13bの塗布幅H1よりも小さいと判断された場合には(S43:Yes)、次層を塗布する場合の流体吐出ヘッド10の移動高さ(後述する高さ「Z2」または「Z3」)をセットし(S45)、三次元造形プログラム18aに戻り(S47)、オブジェPの残り高さが開口部13bの塗布幅H1よりも小さくないと判断された場合には(S43:No)、そのまま三次元造形プログラム18aに戻る(S47)。 Returning to the explanation of the N layer coating program 18b, when the fluid ejection head 10 finishes coating the mortar M at a predetermined location on the first layer P1, it is determined whether the remaining height of the object P is smaller than the coating width H1 of the opening 13b. (S43), and if it is determined that the remaining height of the object P is smaller than the application width H1 of the opening 13b (S43: Yes), the height of the fluid ejection head 10 when applying the next layer is determined. Set the movement height (height "Z2" or "Z3" described later) (S45), return to the three-dimensional modeling program 18a (S47), and confirm that the remaining height of the object P is greater than the application width H1 of the opening 13b. If it is determined that it is not small (S43: No), the process directly returns to the three-dimensional modeling program 18a (S47).
図29は、第1実施形態の三次元造形装置の薄膜塗布時における塗布状態を示した第1説明図であり、流体吐出ヘッド10を垂直にした状態で進行方向Fに移動させながら、厚さZ2<H1(ノズル部13の開口部13b短辺の長さ)のモルタルMを塗布する様子を示している。 FIG. 29 is a first explanatory diagram showing a coating state during thin film coating by the three-dimensional modeling apparatus of the first embodiment. It shows how mortar M is applied with Z2<H1 (the length of the short side of the opening 13b of the nozzle part 13).
また、図30は、第1実施形態の三次元造形装置の薄膜塗布時における塗布状態を示した第2説明図であり、流体吐出ヘッド10を傾斜させた状態で進行方向Fに移動させながら、厚さZ3<H1(ノズル部13の開口部13b短辺の長さ)のモルタルMを塗布する様子を示している。 Further, FIG. 30 is a second explanatory view showing the application state during thin film application by the three-dimensional modeling apparatus of the first embodiment, in which while the fluid ejection head 10 is moved in the traveling direction F in an inclined state, It shows how mortar M with a thickness Z3<H1 (the length of the short side of the opening 13b of the nozzle part 13) is applied.
なお、図30に示すように、流体吐出ヘッド10を傾斜させて塗布する場合には、ノズル13自体も傾斜するため、Z3の高さは、ノズル13の進行方向Fの反対側の開口部13bの辺の高さ(図30では、開口部13bの進行方向Fの反対側の長辺の高さ)に合わせることを基本とする。 Note that, as shown in FIG. 30, when applying fluid with the fluid ejection head 10 tilted, the nozzle 13 itself is also tilted, so the height of Z3 is equal to the opening 13b on the opposite side of the traveling direction F of the nozzle 13. (in FIG. 30, the height of the long side on the opposite side of the opening 13b in the direction of movement F).
また、図30に示すように、流体吐出ヘッド10を傾斜させて塗布する場合には、モルタルMをノズル13の開口部13bからスムーズに吐出させることができ、結果的に、オブジェPの端面の仕上がり具合を向上させることができる。 Further, as shown in FIG. 30, when applying the fluid with the fluid ejection head 10 tilted, the mortar M can be smoothly ejected from the opening 13b of the nozzle 13, and as a result, the end surface of the object P can be smoothly ejected. Finish quality can be improved.
流体吐出ヘッド10は、RAM16のヘッド側ローター指示値テーブル16cに格納されたヘッド側ローター指示値に基づいて、ヘッド側ローター駆動モータ27の回転を制御し、輸送管61から送入されたモルタルMをノズル13に送出し、ノズル13の開口部13bから外部へ吐出するものである。 The fluid ejection head 10 controls the rotation of the head-side rotor drive motor 27 based on the head-side rotor instruction value stored in the head-side rotor instruction value table 16c of the RAM 16, and controls the rotation of the head-side rotor drive motor 27, and the mortar M fed from the transport pipe 61. is sent to the nozzle 13 and discharged to the outside from the opening 13b of the nozzle 13.
本実施形態の三次元造形装置1は、図29及び図30に示すように、ノズル部13等による塗布幅未満の厚みのモルタルMを塗布する場合には、流体吐出ヘッド10の高さを調整して塗布するものであるが、それに合わせ、流体吐出ヘッド10から吐出されるモルタルMの量も、予めRAM16のヘッド側ローター指示値テーブル16cに格納されたヘッド側ローター指示値に基づいて調整されるものである。 As shown in FIGS. 29 and 30, the three-dimensional modeling apparatus 1 of this embodiment adjusts the height of the fluid ejection head 10 when applying mortar M with a thickness less than the application width using the nozzle section 13 or the like. Accordingly, the amount of mortar M discharged from the fluid discharge head 10 is adjusted based on the head-side rotor instruction value stored in advance in the head-side rotor instruction value table 16c of the RAM 16. It is something that
また、ポンプ5からのモルタルMの供給量に対してモルタルMの塗布量が多い場合には、第2圧力センサー63の検出値が下降し、ポンプ5からのモルタルMの供給量に対してモルタルMの塗布量が少ない場合には、第2圧力センサー63の検出値が上昇するため、ポンプ5は、第2圧力センサー63の検出値も加味して、流体吐出ヘッド10にモルタルMを適切に供給することとなる。 Further, when the amount of applied mortar M is large compared to the amount of mortar M supplied from pump 5, the detection value of second pressure sensor 63 decreases, and the amount of mortar M applied is larger than the amount of mortar M supplied from pump 5. When the applied amount of M is small, the detection value of the second pressure sensor 63 increases, so the pump 5 appropriately applies the mortar M to the fluid ejection head 10, taking into consideration the detection value of the second pressure sensor 63. It will be supplied.
 三次元造形プログラム18aに戻り、次に、第1層の塗布が完了したか否かが判断され(S11)、第1層P1の塗布が完了していないと判断された場合には(S11:No)、N層塗布プログラム18bを第1層P1の塗布が完了するまで繰り返し、第1層P1の塗布が完了したと判断された場合には(S11:Yes)、Nを1増加させるとともに(S13:第1層P1から第2層P2にセットされることを意味する)、流体吐出ヘッド10を1層分上方へ移動させる(S15)。 Returning to the three-dimensional modeling program 18a, it is then determined whether the application of the first layer is completed (S11), and if it is determined that the application of the first layer P1 is not completed (S11: No), the N layer application program 18b is repeated until the application of the first layer P1 is completed, and if it is determined that the application of the first layer P1 is completed (S11: Yes), N is increased by 1 and ( S13: means setting from the first layer P1 to the second layer P2), and moves the fluid ejection head 10 upward by one layer (S15).
 なお、N層塗布プログラム18bが第1層P1の塗布が完了するまで繰り返されることによって、第1層P1の上記所定箇所が変更されながら、第1層P1全体の面積がモルタルMによって塗布されることとなる。 Note that by repeating the N layer coating program 18b until the coating of the first layer P1 is completed, the entire area of the first layer P1 is coated with the mortar M while changing the predetermined portions of the first layer P1. That will happen.
そして、RAM16の三次元造形データテーブル16aから取得した全三次元造形データについて塗布が完了したか否かが判断され(S17)、全三次元造形データについて塗布が完了していないと判断された場合には(S17:No)、第2層P2~第N層PNについてS9のN層塗布プログラム18bを実行し、全三次元造形データについて塗布が完了していると判断された場合には(S17:Yes)、Nに「1」(「1」は、第1層P1を意味する)をセットした後(S19)、多関節ロボット3及び流体吐出ヘッド10を初期位置へ移動させ(S21)、オブジェPの造形処理を完了する(S23)。 Then, it is determined whether coating has been completed for all 3D printing data acquired from the 3D printing data table 16a of the RAM 16 (S17), and if it is determined that coating has not been completed for all 3D printing data. (S17: No), the N layer application program 18b of S9 is executed for the second layer P2 to the Nth layer PN, and if it is determined that the application has been completed for all three-dimensional modeling data (S17 : Yes), after setting N to "1" ("1" means the first layer P1) (S19), move the articulated robot 3 and fluid ejection head 10 to the initial position (S21), The modeling process for the object P is completed (S23).
 次に、第1実施形態の三次元造形装置1を構成するポンプ5の制御について説明する。 Next, control of the pump 5 that constitutes the three-dimensional printing apparatus 1 of the first embodiment will be explained.
 本実施形態の三次元造形装置1は、上述のように、多関節ロボット3がロボットスライド機構7の移動レール75上を+Y方向及び-Y方向に移動することから、図1乃至図4に示すように、ポンプ5と、流体吐出ヘッド10とが長尺の輸送管61によって接続され、モルタルMを外部へ吐出する流体吐出ヘッド10が、モルタルMを供給するポンプ5から遠方に配置されている。 The three-dimensional printing apparatus 1 of this embodiment is shown in FIGS. 1 to 4 because the articulated robot 3 moves in the +Y direction and the −Y direction on the movement rail 75 of the robot slide mechanism 7, as described above. As shown, the pump 5 and the fluid discharge head 10 are connected by a long transport pipe 61, and the fluid discharge head 10 that discharges the mortar M to the outside is located far from the pump 5 that supplies the mortar M. .
本実施形態の三次元造形装置1は、このように、流体吐出ヘッド10が、ポンプ5から遠方に配置されている場合においても、モルタルMの供給過多及び供給不足が生じないように、また、流体吐出ヘッド10の吐出動作に支障がないように、ポンプ5を制御している。 In this way, the three-dimensional modeling apparatus 1 of the present embodiment prevents over-supply and under-supply of the mortar M even when the fluid ejection head 10 is disposed far from the pump 5. The pump 5 is controlled so that the ejection operation of the fluid ejection head 10 is not hindered.
図31は、第1実施形態の三次元造形装置における第1圧力センサーの検出タイミングと、第2圧力センサーの検出タイミングとを説明した説明図であり、図32は、第1実施形態の三次元造形装置における第1吐出制御プログラムのフローチャートであり、図33は、第1実施形態の三次元造形装置における第2吐出制御プログラムのフローチャートであり、図34は、第1実施形態の三次元造形装置における指示値算出プログラムのフローチャートである。 FIG. 31 is an explanatory diagram illustrating the detection timing of the first pressure sensor and the detection timing of the second pressure sensor in the three-dimensional modeling apparatus of the first embodiment, and FIG. 33 is a flowchart of the first ejection control program in the three-dimensional printing apparatus of the first embodiment, and FIG. 34 is a flowchart of the second ejection control program in the three-dimensional printing apparatus of the first embodiment. It is a flowchart of the instruction value calculation program in .
なお、第1吐出制御プログラム18c及び第2吐出制御プログラム18dは、何れか1つのプログラムが選択的に実行されるものであり、所定時間t0(msec)毎に実行される割り込み処理によって実行されるものとして説明する。 Note that one of the first discharge control program 18c and the second discharge control program 18d is selectively executed, and is executed by interrupt processing executed every predetermined time t0 (msec). Explain as a thing.
また、指示値算出プログラム18eも、所定時間t0(msec)毎に実行される割り込み処理によって実行されるものとして説明する。 Further, the instruction value calculation program 18e will also be explained as being executed by an interrupt process executed every predetermined time t0 (msec).
上述のように、本実施形態の三次元造形装置1は、スクリュー管55と輸送管61との接続位置に配置され、モルタルMの輸送管61内での圧力を検出するための第1圧力センサー57と、流体吐出ヘッド11と輸送管61との接続位置に配置され、モルタルMの輸送管61内での圧力を検出するための第2圧力センサー63と、を備える。 As described above, the three-dimensional modeling apparatus 1 of the present embodiment includes a first pressure sensor that is arranged at the connection position between the screw pipe 55 and the transport pipe 61, and for detecting the pressure within the transport pipe 61 of the mortar M. 57, and a second pressure sensor 63 arranged at a connection position between the fluid ejection head 11 and the transport pipe 61 and for detecting the pressure within the transport pipe 61 of the mortar M.
そして、ポンプ5は、RAM16のポンプ側ローター指示値テーブル16bに格納されたポンプ側ローター指示値に基づいて、ポンプ側ローター駆動モータ53の回転を制御し、スクリュー管55に送入されたモルタルMを下流側の輸送管61に送出する。 Then, the pump 5 controls the rotation of the pump-side rotor drive motor 53 based on the pump-side rotor instruction value stored in the pump-side rotor instruction value table 16b of the RAM 16, and controls the mortar M fed into the screw pipe 55. is sent to the transport pipe 61 on the downstream side.
なお、ポンプ側ローター指示値テーブル16bに格納されたポンプ側ローター指示値は、後述するように、第1圧力センサー57のよって検出された検出値及び第2圧力センサー63によって検出された検出値に基づいて算出された指示値1と、流体吐出ヘッド10によってノズル部13の開口部13bから外部へ吐出されるモルタルMの量に対応する指示値2と、に基づいて決定されるものである。 The pump side rotor instruction value stored in the pump side rotor instruction value table 16b is based on the detection value detected by the first pressure sensor 57 and the detection value detected by the second pressure sensor 63, as described later. The instruction value 1 is determined based on the instruction value 1 calculated based on the above, and the instruction value 2 corresponding to the amount of mortar M discharged from the opening 13b of the nozzle portion 13 by the fluid ejection head 10 to the outside.
すなわち、ポンプ5は、流体吐出ヘッド10によってノズル部13の開口部13bから外部へ吐出されるモルタルMの量と同一の量のモルタルMを輸送管61に送出するようにポンプ側ローター駆動モータ53の回転を制御するのではなく、第1圧力センサー57及び第2圧力センサー63による検出値を補填してポンプ側ローター駆動モータ53の回転を制御して、モルタルMを流体吐出ヘッド10に適切に送出することができ、延いては、モルタルMを流体吐出ヘッド10から適切に吐出させることができるものである。 That is, the pump 5 operates the pump-side rotor drive motor 53 so as to deliver the same amount of mortar M to the transport pipe 61 as the amount of mortar M that is discharged to the outside from the opening 13b of the nozzle portion 13 by the fluid discharge head 10. Rather than controlling the rotation of the rotor drive motor 53 on the pump side by supplementing the detection values from the first pressure sensor 57 and the second pressure sensor 63, the mortar M is appropriately delivered to the fluid discharge head 10. This allows mortar M to be discharged appropriately from the fluid discharge head 10.
先ず、第1吐出制御プログラム18cについて説明すると、第1圧力センサー57によって、スクリュー管55と輸送管61との接続位置におけるモルタルMの輸送管61内での圧力を検出し(S51、図31上「S1」は検出タイミングを示す)、その検出値に基づいて指示値1を算出する(S53)。 First, the first discharge control program 18c will be described. The first pressure sensor 57 detects the pressure in the transport pipe 61 of the mortar M at the connection position between the screw pipe 55 and the transport pipe 61 (S51, upper part of FIG. 31). "S1" indicates the detection timing), and an instruction value 1 is calculated based on the detected value (S53).
一方、ポンプ側ローター駆動モータ53は、S53または後述するS59で算出された指示値1と、第1吐出制御プログラム18cとは別途に実行される後述する指示値算出プログラム18eによって算出された指示値2と、によって算出され、RAM16のポンプ側ローター指示値テーブル16bに格納されたポンプ側ローター指示値に一致するように、その回転を制御する(S54)。 On the other hand, the pump-side rotor drive motor 53 receives the instruction value 1 calculated in S53 or S59, which will be described later, and the instruction value calculated by an instruction value calculation program 18e, which will be described later, and which is executed separately from the first discharge control program 18c. The rotation is controlled so as to match the pump side rotor instruction value calculated by 2 and stored in the pump side rotor instruction value table 16b of the RAM 16 (S54).
そして、前回の第2圧力センサー検出時から時間t1(時間t1は、時間t0よりも長い時間であり、例えば、時間t0のN倍(Nは2以上の自然数))が経過したか否かが判断され(S55)、時間t1が経過していないと判断された場合には(S55:No)、割り込み処理を完了し(S61)、時間t1が経過していると判断された場合には(S55:Yes)、S57を実行する。 Then, it is determined whether time t1 (time t1 is longer than time t0, for example, N times time t0 (N is a natural number of 2 or more)) has elapsed since the previous detection of the second pressure sensor. (S55), and if it is determined that the time t1 has not elapsed (S55: No), the interrupt processing is completed (S61), and if it is determined that the time t1 has elapsed ( S55: Yes), execute S57.
S57では、第2圧力センサー63によって、流体吐出ヘッド11と輸送管61との接続位置におけるモルタルMの輸送管61内での圧力を検出し(S57、図31上「S2」は検出タイミングを示す)、その検出値に基づいて指示値1を算出した後(S59)、割り込み処理を完了する(S61)。 In S57, the second pressure sensor 63 detects the pressure within the transport pipe 61 of the mortar M at the connection position between the fluid ejection head 11 and the transport pipe 61 (S57, "S2" in FIG. 31 indicates the detection timing ), and after calculating the instruction value 1 based on the detected value (S59), the interrupt processing is completed (S61).
なお、図31は、第1吐出制御プログラム18cの検出タイミングを示すものであり、図31に示すように、本実施形態の三次元造形装置1において、時間t1は、時間t0の約10倍に設定されている。 Note that FIG. 31 shows the detection timing of the first discharge control program 18c, and as shown in FIG. 31, in the three-dimensional printing apparatus 1 of this embodiment, the time t1 is about 10 times the time t0. It is set.
次に、第2吐出制御プログラム18dについて説明すると、第1圧力センサー57によって、スクリュー管55と輸送管61との接続位置におけるモルタルMの輸送管61内での圧力を検出し(S71)、前回の第2圧力センサー63の検出時から時間t1(時間t1は、時間t0のN倍(Nは2以上の自然数))が経過したか否かが判断され(S73)、時間t1が経過していないと判断された場合には(S73:No)、時間t1が経過するまで待ち、時間t1が経過していると判断された場合には(S73:Yes)、S75を実行する。 Next, explaining the second discharge control program 18d, the first pressure sensor 57 detects the pressure within the transport pipe 61 of the mortar M at the connection position between the screw pipe 55 and the transport pipe 61 (S71), and It is determined whether or not a time t1 (time t1 is N times the time t0 (N is a natural number of 2 or more)) has elapsed since the detection of the second pressure sensor 63 (S73), and it is determined whether the time t1 has elapsed. If it is determined that there is no such thing (S73: No), the process waits until the time t1 has elapsed, and if it is determined that the time t1 has elapsed (S73: Yes), S75 is executed.
S75では、第2圧力センサー63によって、流体吐出ヘッド11と輸送管61との接続位置におけるモルタルMの輸送管61内での圧力を検出し(S75)、第1圧力センサー57による検出値と、時間t1後の第2圧力センサー63による検出値とに基づいて指示値1を算出する(S77)。 In S75, the second pressure sensor 63 detects the pressure within the transport pipe 61 of the mortar M at the connection position between the fluid ejection head 11 and the transport pipe 61 (S75), and the detected value by the first pressure sensor 57 and The instruction value 1 is calculated based on the detected value by the second pressure sensor 63 after time t1 (S77).
一方、ポンプ側ローター駆動モータ53は、S77で算出された指示値1と、第1吐出制御プログラム18cとは別途に実行される後述する指示値算出プログラム18eによって算出された指示値2と、によって算出され、RAM16のポンプ側ローター指示値テーブル16bに格納されたポンプ側ローター指示値に一致するように、その回転を制御して(S79)、割り込み処理を完了する(S81)。 On the other hand, the pump-side rotor drive motor 53 is driven by the instruction value 1 calculated in S77 and the instruction value 2 calculated by an instruction value calculation program 18e, which will be described later, and which is executed separately from the first discharge control program 18c. The rotation is controlled so as to match the calculated pump-side rotor instruction value stored in the pump-side rotor instruction value table 16b of the RAM 16 (S79), and the interrupt processing is completed (S81).
次に、指示値算出プログラム18eについて説明すると、先ず、ロボットコントローラ4から流体吐出ヘッド11の塗布速度を取得し(S83)、取得した塗布速度及び流体吐出ヘッド11から吐出されるモルタルの高さ(厚み)に基づいて指示値2を算出する(S85)。 Next, the instruction value calculation program 18e will be explained. First, the application speed of the fluid ejection head 11 is obtained from the robot controller 4 (S83), and the obtained application speed and the height of the mortar ejected from the fluid ejection head 11 ( An instruction value 2 is calculated based on the thickness (S85).
なお、指示値2は、流体吐出ヘッド10から吐出されるモルタルMの量に対応した値であり、流体吐出ヘッド10の塗布速度が速い場合、または流体吐出ヘッド11から吐出されるモルタルの高さ(厚み)が厚い場合には、指示値2の値は増加し、流体吐出ヘッド10の塗布速度が遅い場合、または流体吐出ヘッド11から吐出されるモルタルの高さ(厚み)が薄い場合には、指示値2の値は減少する。 Note that the instruction value 2 is a value corresponding to the amount of mortar M discharged from the fluid discharge head 10, and when the coating speed of the fluid discharge head 10 is fast, or the height of the mortar discharged from the fluid discharge head 11. (thickness), the value of the instruction value 2 increases, and when the application speed of the fluid ejection head 10 is slow or the height (thickness) of the mortar ejected from the fluid ejection head 11 is small, the value of the instruction value 2 increases. , the value of instruction value 2 decreases.
そして、第1吐出制御プログラム18cまたは第2吐出制御プログラム18dで算出された指示値1に、S85で算出された指示値2を加算して、指示値を算出し、RAM16のポンプ側ローター指示値テーブル16bに格納した後(S87)、割り込み処理を完了する(S89)。 Then, the instruction value 2 calculated in S85 is added to the instruction value 1 calculated by the first discharge control program 18c or the second discharge control program 18d to calculate the instruction value, and the pump side rotor instruction value is stored in the RAM 16. After storing it in the table 16b (S87), the interrupt processing is completed (S89).
第1吐出制御プログラム18c及び指示値算出プログラム18eによれば、ポンプ5からのモルタルMの供給量は、流体吐出ヘッド10によって開口部13bから外部へ吐出されるモルタルMの吐出量と、第1圧力センサー57が時間t0の間隔で検出した検出値と、第2圧力センサー63が時間t0よりも長い時間t1(例えば、時間t1=時間t0のN倍の時間)で検出した検出値と、に基づいて決定されるので、流体吐出ヘッド10へ供給されるモルタルMの量の変動を少なくすることができ、ポンプ5が、長尺の輸送管61によって流体吐出ヘッド10に接続され、流体吐出ヘッド10から遠方に配置された場合においても、モルタルMを流体吐出ヘッド10に適切に供給することができ、延いては、モルタルMを流体吐出ヘッド10から適切に吐出させることができる。 According to the first discharge control program 18c and the instruction value calculation program 18e, the amount of mortar M supplied from the pump 5 is equal to the amount of mortar M discharged to the outside from the opening 13b by the fluid discharge head 10, and the first The detection value detected by the pressure sensor 57 at an interval of time t0 and the detection value detected by the second pressure sensor 63 at a time t1 longer than time t0 (for example, time t1 = time N times time t0). Since the amount of mortar M supplied to the fluid discharge head 10 can be reduced, the pump 5 is connected to the fluid discharge head 10 by a long transport pipe 61, and the fluid discharge head Even when the mortar M is disposed far from the fluid ejection head 10, the mortar M can be appropriately supplied to the fluid ejection head 10, and the mortar M can be appropriately ejected from the fluid ejection head 10.
第2吐出制御プログラム18d及び指示値算出プログラム18eによれば、ポンプ5からのモルタルMの供給量は、流体吐出ヘッド10によって開口部13bから外部へ吐出されるモルタルMの吐出量と、所定の時間に第1圧力センサー57で検出された検出値と、その所定時間からt1時間経過後の第2圧力センサー63で検出された検出値と、に基づいて決定されるので、輸送管61の長さによる検出値の遅れを補填して、流体吐出ヘッド10へ供給されるモルタルMの量の変動を少なくすることができ、ポンプ5が、長尺の輸送管61によって流体吐出ヘッド10に接続され、流体吐出ヘッド10から遠方に配置された場合においても、モルタルMを流体吐出ヘッド10に適切に供給することができ、延いては、モルタルMを流体吐出ヘッド10から適切に吐出させることができる。 According to the second discharge control program 18d and the instruction value calculation program 18e, the amount of mortar M supplied from the pump 5 is equal to the amount of mortar M discharged to the outside from the opening 13b by the fluid discharge head 10, and the predetermined amount. The length of the transport pipe 61 is determined based on the detection value detected by the first pressure sensor 57 at the specified time and the detection value detected by the second pressure sensor 63 after the elapse of time t1 from the predetermined time. By compensating for the delay in the detected value due to , Even when the mortar M is disposed far from the fluid ejection head 10, the mortar M can be appropriately supplied to the fluid ejection head 10, and the mortar M can be appropriately ejected from the fluid ejection head 10. .
一方、流体吐出ヘッド10は、RAM16のヘッド側ローター指示値テーブル16cに格納されたヘッド側ローター指示値に基づいて、ヘッド側ローター駆動モータ27の回転を制御し、輸送管61から送入されたモルタルMをノズル13に送出し、ノズル13の開口部13bから外部へ吐出するものである。 On the other hand, the fluid ejection head 10 controls the rotation of the head-side rotor drive motor 27 based on the head-side rotor instruction value stored in the head-side rotor instruction value table 16 c of the RAM 16 , and controls the rotation of the head-side rotor drive motor 27 . The mortar M is delivered to the nozzle 13 and discharged from the opening 13b of the nozzle 13 to the outside.
具体的には、本実施形態の三次元造形装置1は、塗布するモルタルMの幅、厚み、及び塗布速度に応じてヘッド側ローター駆動モータ27の回転を制御するものであるが、一般に、ポンプ5からのモルタルMの供給量に対してモルタルMの塗布量が多い場合には、第2圧力センサー63の検出値が下降し、ポンプ5からのモルタルMの供給量に対してモルタルMの塗布量が少ない場合には、第2圧力センサー63の検出値が上昇する。 Specifically, the three-dimensional modeling apparatus 1 of this embodiment controls the rotation of the head-side rotor drive motor 27 according to the width, thickness, and application speed of the mortar M to be applied. When the amount of mortar M applied is large compared to the amount of mortar M supplied from pump 5, the detection value of the second pressure sensor 63 decreases, and the amount of mortar M applied is larger than the amount of mortar M supplied from pump 5. When the amount is small, the detected value of the second pressure sensor 63 increases.
しかしながら、ポンプ5を上述のように制御することにより、モルタルMを流体吐出ヘッド10に適切に供給することができ、延いては、モルタルMを流体吐出ヘッド10から適切に吐出させることができる。 However, by controlling the pump 5 as described above, the mortar M can be appropriately supplied to the fluid ejection head 10, and in turn, the mortar M can be appropriately ejected from the fluid ejection head 10.
次に、第1実施形態の三次元造形装置1のメンテナンス処理について説明する。 Next, maintenance processing of the three-dimensional printing apparatus 1 of the first embodiment will be explained.
本実施形態の三次元造形装置1は、上述のように、流体吐出ヘッド10の先端からモルタルMを吐出して、三次元造形物であるオブジェPを製造するものであるが、流体吐出ヘッド10を使用後にそのまま放置すると、モルタルMが流体吐出ヘッド10の内部で固化してしまい、次回に使用できなくなってしまう可能性がある。 As described above, the three-dimensional modeling apparatus 1 of this embodiment discharges the mortar M from the tip of the fluid discharge head 10 to manufacture an object P, which is a three-dimensional model. If the mortar M is left as is after use, there is a possibility that the mortar M will solidify inside the fluid ejection head 10 and become unusable next time.
したがって、三次元造形装置1を継続的に使用するためには、流体吐出ヘッド10を定期的に分解して内部のモルタルMを除去するとともに、流体吐出ヘッド10を構成する部品を清掃しておく必要がある。 Therefore, in order to continuously use the three-dimensional printing apparatus 1, the fluid ejection head 10 should be periodically disassembled to remove the internal mortar M and the parts that make up the fluid ejection head 10 should be cleaned. There is a need.
一方で、本実施形態の三次元造形装置は大型であって、かつ重量も重く、流体吐出ヘッド10自体も大型であって、かつ重量も重いものであるため、メンテナンス作業には、使用者の安全を考慮する必要がある。 On the other hand, the three-dimensional printing apparatus of this embodiment is large and heavy, and the fluid ejection head 10 itself is also large and heavy. Safety needs to be considered.
図35は、第1実施形態の三次元造形装置におけるメンテナンス処理プログラムのフローチャートであり、図36は、三次元造形装置のメンテナンス時の分解前の状態を示した正面図であり、図37は、三次元造形装置のメンテナンス時の分解前の状態を示した底面図であり、図38は、三次元造形装置のメンテナンス時の分解後の状態を示した説明図である。 FIG. 35 is a flowchart of a maintenance processing program in the three-dimensional printing apparatus of the first embodiment, FIG. 36 is a front view showing the state of the three-dimensional printing apparatus before disassembly during maintenance, and FIG. FIG. 38 is a bottom view showing the state of the three-dimensional printing apparatus before disassembly during maintenance, and FIG. 38 is an explanatory view showing the state after disassembly during maintenance of the three-dimensional printing apparatus.
本実施形態の三次元造形装置1は、上述のように、多関節ロボット3と、その多関節ロボット3の先端に接続され、モルタルMを外部へ吐出するための流体吐出ヘッド10と、その流体吐出ヘッド10を多関節ロボット3の先端に接続するための支持部21と、を備える。 As described above, the three-dimensional modeling apparatus 1 of this embodiment includes an articulated robot 3, a fluid ejection head 10 connected to the tip of the articulated robot 3 for discharging mortar M to the outside, and a fluid discharging head 10 for discharging mortar M to the outside. A support part 21 for connecting the ejection head 10 to the tip of the articulated robot 3 is provided.
そして、本実施形態の三次元造形装置1は、上述したように、流体吐出ヘッド10を、多関節ロボット3によって縦向きにした状態(流体吐出ヘッド10を垂直方向または傾斜方向に向けた状態)で、下方に向かってモルタルMを吐出して、三次元造形物であるオブジェPを製造するものである。 As described above, the three-dimensional printing apparatus 1 of the present embodiment has the fluid ejection head 10 oriented vertically by the articulated robot 3 (the fluid ejection head 10 is oriented vertically or in an inclined direction). The mortar M is discharged downward to produce an object P which is a three-dimensional structure.
図35のメンテナンス処理プログラム18fにおいて、先ず、三次元造形装置1の使用者が装置の電源スイッチを入れた後、操作パネル8上の操作ボタンによってメンテナンス処理を選択して、スタートボタンを押下すると、三次元造形装置1は、流体吐出ヘッド10をメンテナンス位置に退避させ(S91)、流体吐出ヘッド10を動作時の縦向きの状態(流体吐出ヘッド10を垂直方向または傾斜方向に向けた状態)から水平向きの状態に回転させて(S93)、水平向きの状態を保持する(S95)。 In the maintenance processing program 18f in FIG. 35, first, the user of the three-dimensional printing apparatus 1 turns on the power switch of the apparatus, selects maintenance processing using the operation buttons on the operation panel 8, and presses the start button. The three-dimensional printing apparatus 1 retreats the fluid ejection head 10 to the maintenance position (S91), and changes the fluid ejection head 10 from the vertical state during operation (the state where the fluid ejection head 10 is oriented vertically or in an inclined direction). It is rotated to a horizontal state (S93), and the horizontal state is maintained (S95).
なお、図36は、流体吐出ヘッド10を多関節ロボット3によって水平向きの状態にした正面図であり、図37は、その状態の底面図である。 Note that FIG. 36 is a front view of the fluid ejection head 10 in a horizontal state by the articulated robot 3, and FIG. 37 is a bottom view of the state.
図36及び図37に示すように、多関節ロボット3は、支持部21の突出部21cに接続されることによって、流体吐出ヘッド10を水平向きの状態に保持しており、流体吐出ヘッド10は、支持部21の第1支持部21d、第2支持部21e、第3支持部21f、第4支持部21gの4つの支持部によって吊るされた状態である。 As shown in FIGS. 36 and 37, the articulated robot 3 holds the fluid ejection head 10 in a horizontal state by being connected to the protrusion 21c of the support portion 21, and the fluid ejection head 10 , it is suspended by four supports of the support section 21: the first support section 21d, the second support section 21e, the third support section 21f, and the fourth support section 21g.
 流体吐出ヘッド10が多関節ロボット3によって水平向きの状態に保持されると(S95)、三次元造形装置1の使用者は、所定のボルト、ネジ等の固定具を解除して、流体吐出ヘッド10を分解する。 When the fluid ejection head 10 is held in a horizontal state by the articulated robot 3 (S95), the user of the three-dimensional printing apparatus 1 releases the fixing devices such as predetermined bolts and screws, and removes the fluid ejection head. Decompose 10.
なお、本実施形態の三次元造形装置1においては、流体吐出ヘッド本体11の外管を構成する第2ステータ11aと、ノズル部13とが取り外され、ヘッド側ローター駆動モータ27、第2ローター11b、ノズル回転モータ17及びモータギア部19は支持部21に残ったままの状態になっている。 In the three-dimensional modeling apparatus 1 of this embodiment, the second stator 11a and the nozzle part 13 that constitute the outer pipe of the fluid ejection head main body 11 are removed, and the head-side rotor drive motor 27 and the second rotor 11b are removed. , the nozzle rotation motor 17 and the motor gear part 19 remain on the support part 21.
 本実施形態の三次元造形装置においては、流体吐出ヘッド10の全部品を取り外すことも可能であるが、少なくとも、第2ステータ11aと、ノズル部13とを取り外せば、第2ステータ11a及びノズル部13を個別に洗浄可能であり、支持部12に残った第2ローター11bも露出しているため、洗浄することができる。 In the three-dimensional modeling apparatus of this embodiment, it is possible to remove all parts of the fluid ejection head 10, but if at least the second stator 11a and the nozzle section 13 are removed, the second stator 11a and the nozzle section can be removed. 13 can be washed individually, and the second rotor 11b remaining on the support part 12 is also exposed, so it can be washed.
また、多関節ロボット3は、支持部21の突出部21cに接続されているので、流体吐出ヘッド10の態勢を狭い領域で簡単に変更することができ、三次元造形装置1の動作に支障なく、三次元造形装置1のメンテナンスをスムーズに行うことができる。 Furthermore, since the articulated robot 3 is connected to the protruding part 21c of the support part 21, the attitude of the fluid ejection head 10 can be easily changed in a narrow area, without hindering the operation of the three-dimensional printing apparatus 1. , maintenance of the three-dimensional printing apparatus 1 can be performed smoothly.
また、流体吐出ヘッド10を、少なくとも吐出開始時において、多関節ロボット3によって傾斜させた状態で下方に向かってモルタルMを吐出すれば、メンテナンス後にモルタルMをスムーズに移動させ、モルタルMを塗布位置にスムーズに塗布させることができる。 Furthermore, if the fluid ejection head 10 is tilted by the articulated robot 3 and ejects the mortar M downward at least when starting ejection, the mortar M can be moved smoothly after maintenance, and the mortar M can be moved to the application position. can be applied smoothly.
本実施形態の三次元造形装置1によれば、多関節ロボット3と、その多関節ロボット3の先端に接続され、第1の中空部11dを有する流体吐出ヘッド本体11と、その流体吐出ヘッド本体11の先端に接続され、開口部13bと、第1の中空部11dに連通する内腔13d、23d、83d93d、及び内腔13f、23f、83f、93fと、を有するノズル部13、23、83、93と、を備え、第1の中空部11d、内腔13d、23d、83d、93d、及び内腔13f、23f、83f、93fを介してノズル部13、23、83、93の開口部13b、23b、83b、93bからモルタルMを吐出して三次元造形物であるオブジェPを製造するものを対象として、特に、ノズル部13、23、83、93を流体吐出ヘッド本体11に対して回転させるノズル回転機構を備えているので、大型で複雑な形状の三次元造形物を製造する場合においても、ノズル部13、23、83、93の回転角を調整して、モルタルMのムラを防止した三次元造形物を製造することができる。 According to the three-dimensional modeling apparatus 1 of this embodiment, the articulated robot 3, the fluid ejection head body 11 connected to the tip of the articulated robot 3 and having the first hollow portion 11d, and the fluid ejection head main body 11 Nozzle parts 13, 23, 83 connected to the tip of 11 and having an opening 13b, lumens 13d, 23d, 83d93d communicating with the first hollow part 11d, and lumens 13f, 23f, 83f, 93f. . , 23b, 83b, and 93b to manufacture an object P, which is a three-dimensional structure, by discharging mortar M from , 23b, 83b, and 93b. Since it is equipped with a nozzle rotation mechanism, the rotation angle of the nozzle parts 13, 23, 83, and 93 can be adjusted to prevent unevenness of the mortar M even when manufacturing large, complex-shaped three-dimensional objects. It is possible to manufacture three-dimensional objects.
また、本実施形態の三次元造形装置1によれば、ノズル回転機構がノズル部13、23、83、93を回転させることによって、開口部13b、23b、83b、93bから吐出されるモルタルMの幅を可変としたので、大型で複雑な形状の三次元造形物であっても、三次元造形物を容易に製造することができる。 Further, according to the three-dimensional modeling apparatus 1 of the present embodiment, the nozzle rotation mechanism rotates the nozzle parts 13, 23, 83, and 93, thereby causing the mortar M to be discharged from the openings 13b, 23b, 83b, and 93b. Since the width is made variable, even if the three-dimensional structure is large and has a complicated shape, it is possible to easily manufacture the three-dimensional structure.
また、本実施形態の三次元造形装置1によれば、開口部13b、23b、83b、93bの横断面を略矩形状としたので、ノズル部13、23、83、93から吐出されたモルタルMを簡単に積層することができる。 Further, according to the three-dimensional modeling apparatus 1 of the present embodiment, the cross sections of the openings 13b, 23b, 83b, and 93b are approximately rectangular, so that the mortar M discharged from the nozzle portions 13, 23, 83, and 93 can be easily stacked.
また、本実施形態の三次元造形装置1によれば、開口部13b、23b、83b、93bの横断面を略長方形としたので、ノズル部13、23、83、93から吐出されたモルタルMをさらに簡単に積層することができる。 Moreover, according to the three-dimensional modeling apparatus 1 of this embodiment, since the cross sections of the openings 13b, 23b, 83b, and 93b are approximately rectangular, the mortar M discharged from the nozzle portions 13, 23, 83, and 93 is It can also be laminated more easily.
また、本実施形態の三次元造形装置1によれば、ノズル部13、23、83、93は、ノズル本体部13a、23a、83a、93aと、そのノズル本体部13a、23a、83a、93aの先端に接続されたノズル先端部13e、23e、83e、93eと、を備え、ノズル先端部13e、23e、83e、93eは、内腔13f、23f、83f、93fを横切る規制バー13c、23c、83c、93cを備えているので、三次元造形装置1の停止時にモルタルMがノズル部13、23、83、93から漏れ出すことを防止することができる。 Further, according to the three-dimensional modeling apparatus 1 of the present embodiment, the nozzle parts 13, 23, 83, and 93 include the nozzle main parts 13a, 23a, 83a, and 93a; The nozzle tips 13e, 23e, 83e, 93e are connected to the ends of the control bars 13c, 23c, 83c that cross the inner cavities 13f, 23f, 83f, 93f. , 93c, it is possible to prevent the mortar M from leaking out from the nozzle parts 13, 23, 83, and 93 when the three-dimensional modeling apparatus 1 is stopped.
また、本実施形態の三次元造形装置1によれば、ノズル部83は、ノズル本体部83aと、そのノズル本体部83aの先端に接続されたノズル先端部83eと、を備え、ノズル本体部83aは、内腔83dを横切る規制バー83gを備えているので、三次元造形装置1の停止時にモルタルMがノズル部83から漏れ出すことを防止することができる。 Further, according to the three-dimensional modeling apparatus 1 of the present embodiment, the nozzle section 83 includes a nozzle body section 83a and a nozzle tip section 83e connected to the tip of the nozzle body section 83a. Since the control bar 83g is provided across the inner cavity 83d, it is possible to prevent the mortar M from leaking from the nozzle portion 83 when the three-dimensional modeling apparatus 1 is stopped.
また、本実施形態の三次元造形装置1によれば、ノズル開口部13b、23b、83bの横断面を略長方形とし、規制バー13c、23c、83cは、ノズル開口部13b、23b、83bの長方形の長辺に平行に設けられているので、三次元造形装置1の停止時にモルタルMがノズル部13、23、83から漏れ出すことをさらに防止することができる。 Further, according to the three-dimensional modeling apparatus 1 of the present embodiment, the cross sections of the nozzle openings 13b, 23b, and 83b are approximately rectangular, and the regulating bars 13c, 23c, and 83c are arranged in the rectangular shape of the nozzle openings 13b, 23b, and 83b. Since the mortar M is provided parallel to the long side of the nozzle, it is possible to further prevent the mortar M from leaking out from the nozzle parts 13, 23, 83 when the three-dimensional modeling apparatus 1 is stopped.
また、本実施形態の三次元造形装置1によれば、ノズル本体部13a、23a、83a、93aの内腔13d、23d、83d93dは、上流からノズル先端部13e、23e、83e、93e側の下流に向かって、その内径が徐々に細くなっており、ノズル先端部13e、23e、83e、93eの内腔13f、23f、83f、93fは、ノズル本体部13a、23a、83a、93a側の上流から開口部13b、23b、83b、93b側の下流に向かって、その内径が徐々に細くなっており、ノズル本体部13a、23a、83a、93aとノズル先端部13e、23e、83e、93eとの境界部において、ノズル先端部13e、23e、83e、93eの最上流の内径を、ノズル本体部13a、23a、83a、93aの最下流の内径よりも大きくしたので、ノズル部13、23、83、93からのモルタルMの吐出をスムーズに行うことができる。 Further, according to the three-dimensional modeling apparatus 1 of the present embodiment, the inner cavities 13d, 23d, 83d93d of the nozzle main bodies 13a, 23a, 83a, 93a are arranged from the upstream side to the downstream side of the nozzle tips 13e, 23e, 83e, 93e. The inner diameters of the nozzle tips 13e, 23e, 83e, and 93e gradually become narrower toward the end, and the inner cavities 13f, 23f, 83f, and 93f of the nozzle tips 13e, 23e, 83e, and 93e are formed from the upstream side of the nozzle body portions 13a, 23a, 83a, and 93a. The inner diameter gradually decreases toward the downstream side of the openings 13b, 23b, 83b, and 93b, and the boundary between the nozzle body portions 13a, 23a, 83a, and 93a and the nozzle tip portions 13e, 23e, 83e, and 93e. In the part, the inner diameter of the most upstream part of the nozzle tip part 13e, 23e, 83e, 93e is made larger than the inner diameter of the most downstream part of the nozzle body part 13a, 23a, 83a, 93a, so that the nozzle part 13, 23, 83, 93 The mortar M can be smoothly discharged from the container.
さらに、本実施形態の三次元造形装置1によれば、ノズル本体部23aの内腔23dの縦断面形状は、途中に膨隆部23gを有する流線形状を呈しているので、ノズル23からのモルタルMの吐出をさらにスムーズに行うことができる。 Furthermore, according to the three-dimensional modeling apparatus 1 of the present embodiment, the vertical cross-sectional shape of the inner cavity 23d of the nozzle main body 23a has a streamlined shape with the bulge 23g in the middle, so that the mortar from the nozzle 23 M can be discharged more smoothly.
以上、本発明の実施形態における三次元造形について説明してきたが、本発明は上記実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々変更して実施することが可能である。 Although three-dimensional modeling in the embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and can be implemented with various changes without departing from the gist thereof.
例えば、上述の実施形態の三次元造形装置においては、ノズル部の開口部の平面視における形状を略長方形として説明してきたが、ノズルの開口部の平面視における形状は、略長方形に限られるものではなく、略円形、略楕円形、略正方形、略平行四辺形、略菱形であっても良い。 For example, in the three-dimensional printing apparatus of the above-described embodiment, the shape of the opening of the nozzle section in plan view has been described as approximately rectangular, but the shape of the nozzle opening in plan view is limited to approximately rectangular. Instead, it may be approximately circular, approximately elliptical, approximately square, approximately parallelogram, or approximately rhombic.
但し、塗布幅をノズル部の回転によって変更させたいのであれば、ノズル部の開口部の平面視における形状を、略楕円形または略矩形状とするのが良い。 However, if it is desired to change the coating width by rotating the nozzle section, it is preferable that the shape of the opening of the nozzle section in plan view is approximately elliptical or approximately rectangular.
また、三次元造形物を、流体物を積層して構成したいのであれば、ノズル部の開口部の平面視における形状を略矩形状とするのが良い。 Moreover, if it is desired to construct a three-dimensional structure by laminating fluid objects, it is preferable that the shape of the opening of the nozzle part in plan view is approximately rectangular.
しかしながら、ノズルの開口部の平面視における形状を略長方形とした方が、塗布幅、積層する場合の安定性の点で有利である。 However, it is advantageous to make the nozzle opening substantially rectangular in plan view in terms of coating width and stability in lamination.
1・・・三次元造形装置
2・・・メインコントローラ
3・・・多関節ロボット
4・・・ロボットコントローラ
5・・・ポンプ
6・・・電源
7・・・ロボットスライド機構
8・・・操作パネル
9・・・ミキサー
10・・・流体吐出ヘッド
11・・・流体吐出ヘッド本体
11a・・・第2ステータ
11b・・・第2ローター
11c・・・キャビティー
11d・・・第1の中空部
12・・・ドライバー回路
13、23、83、93・・・ノズル部
13a、23a、83a、93a・・・ノズル本体部
13b、23b、83b、93b・・・開口部
13c、23c、83c、83g、93c・・・規制バー
13d、23d、83d、93d・・・ノズル本体部内腔
13e、23e、83e、93e・・・ノズル先端部
13f、23f、83f、93f・・・ノズル先端部内腔
15、25、85、95・・・ノズルギア部(ノズル回転機構)
16・・・RAM
17・・・ノズル回転モータ(ノズル回転機構)
18・・・ROM
19・・・モータギア部(ノズル回転機構)
20・・・制御盤
21・・・支持部
21a・・・上支持部
21b・・・下支持部
21c・・・突出部
21d・・・第1支持部
21e・・・第2支持部
21f・・・第3支持部
21g・・・第4支持部
27・・・ヘッド側ローター駆動モータ
29・・・供給口
31・・・第1の基台(多関節ロボット)
33・・・第2の基台(多関節ロボット)
35・・・下腕部(多関節ロボット)
37・・・中下腕部(多関節ロボット)
39・・・中上腕部(多関節ロボット)
41・・・上腕部(多関節ロボット)
43・・・回転部(多関節ロボット)
51・・・ポンプ本体
53・・・ポンプ側ローター駆動モータ
55・・・スクリュー管
55a・・・第1ステータ
55b・・・第1ローター
57・・・第1圧力センサー
59・・・モルタル投入口
61・・・輸送管
63・・・第2圧力センサー
71・・・移動レールカバー
73・・・移動台
75・・・移動レール
77・・・ケーブル
79・・・ロボットスライドモータ
80・・・流体吐出ヘッドカバー
M・・・モルタル
P・・・オブジェ
 
1... Three-dimensional modeling device 2... Main controller 3... Articulated robot 4... Robot controller 5... Pump 6... Power supply 7... Robot slide mechanism 8... Operation panel 9... Mixer 10... Fluid ejection head 11... Fluid ejection head main body 11a... Second stator 11b... Second rotor 11c... Cavity 11d... First hollow part 12 ... Driver circuits 13, 23, 83, 93... Nozzle parts 13a, 23a, 83a, 93a... Nozzle body parts 13b, 23b, 83b, 93b... Openings 13c, 23c, 83c, 83g, 93c... Restriction bars 13d, 23d, 83d, 93d...Nozzle body inner cavity 13e, 23e, 83e, 93e... Nozzle tip 13f, 23f, 83f, 93f...Nozzle tip inner cavity 15, 25 , 85, 95... Nozzle gear section (nozzle rotation mechanism)
16...RAM
17... Nozzle rotation motor (nozzle rotation mechanism)
18...ROM
19...Motor gear section (nozzle rotation mechanism)
20... Control panel 21... Support part 21a... Upper support part 21b... Lower support part 21c... Projection part 21d... First support part 21e... Second support part 21f. ...Third support part 21g...Fourth support part 27...Head side rotor drive motor 29...Supply port 31...First base (articulated robot)
33...Second base (articulated robot)
35...Lower arm (multi-jointed robot)
37...Middle and lower arm (multi-jointed robot)
39... Middle upper arm (articulated robot)
41... Upper arm (articulated robot)
43...Rotating part (articulated robot)
51... Pump body 53... Pump side rotor drive motor 55... Screw pipe 55a... First stator 55b... First rotor 57... First pressure sensor 59... Mortar inlet 61... Transport pipe 63... Second pressure sensor 71... Moving rail cover 73... Moving platform 75... Moving rail 77... Cable 79... Robot slide motor 80... Fluid Discharge head cover M... Mortar P... Object

Claims (16)

  1. 多関節ロボットと、
    その多関節ロボットの先端に接続され、第1の中空部を有する中空筐体と、
    その中空筐体の先端に接続され、開口部と、前記第1の中空部に連通する第2の中空部と、を有するノズルと、
    を備え、
    前記第1の中空部及び前記第2の中空部を介して前記ノズルの前記開口部から流体物を吐出して三次元造形物を製造する三次元造形装置において、
    前記ノズルを前記中空筐体に対して回転させるノズル回転機構を備えたことを特徴とする三次元造形装置。
    articulated robot,
    a hollow casing connected to the tip of the articulated robot and having a first hollow part;
    A nozzle connected to the tip of the hollow casing and having an opening and a second hollow part communicating with the first hollow part;
    Equipped with
    In a three-dimensional printing apparatus that manufactures a three-dimensional object by discharging a fluid from the opening of the nozzle through the first hollow part and the second hollow part,
    A three-dimensional modeling apparatus comprising a nozzle rotation mechanism that rotates the nozzle with respect to the hollow casing.
  2. 前記ノズル回転機構が前記ノズルを回転させることによって、前記開口部から吐出される前記流体物の幅を可変としたことを特徴とする請求項1に記載の三次元造形装置。 The three-dimensional modeling apparatus according to claim 1, wherein the nozzle rotation mechanism rotates the nozzle to vary the width of the fluid discharged from the opening.
  3. ノズル開口部の横断面を略矩形状としたことを特徴とする請求項2に記載の三次元造形装置。 3. The three-dimensional modeling apparatus according to claim 2, wherein the nozzle opening has a substantially rectangular cross section.
  4. 前記ノズル開口部の横断面を略長方形としたことを特徴とする請求項3に記載の三次元造形装置。 4. The three-dimensional modeling apparatus according to claim 3, wherein the nozzle opening has a substantially rectangular cross section.
  5. 前記ノズル及び/または前記中空筐体は、前記第1の中空部及び/または前記第2の中空部を横切る流体物規制部を備えたことを特徴とする請求項1に記載の三次元造形装置。 The three-dimensional printing apparatus according to claim 1, wherein the nozzle and/or the hollow housing includes a fluid regulating section that crosses the first hollow section and/or the second hollow section. .
  6. 前記ノズル及び/または前記中空筐体は、前記第1の中空部及び/または前記第2の中空部を横切る流体物規制部を備えたことを特徴とする請求項2に記載の三次元造形装置。 The three-dimensional printing apparatus according to claim 2, wherein the nozzle and/or the hollow casing includes a fluid regulating section that crosses the first hollow section and/or the second hollow section. .
  7. 前記ノズル及び/または前記中空筐体は、前記第1の中空部及び/または前記第2の中空部を横切る流体物規制部を備えたことを特徴とする請求項3に記載の三次元造形装置。 The three-dimensional printing apparatus according to claim 3, wherein the nozzle and/or the hollow housing includes a fluid regulating section that crosses the first hollow section and/or the second hollow section. .
  8. 前記ノズル及び/または前記中空筐体は、前記第1の中空部及び/または前記第2の中空部を横切る流体物規制部を備えたことを特徴とする請求項4に記載の三次元造形装置。 5. The three-dimensional printing apparatus according to claim 4, wherein the nozzle and/or the hollow housing includes a fluid regulating section that crosses the first hollow section and/or the second hollow section. .
  9. 前記流体物規制部は、前記開口部の長方形の長辺に平行に設けられていることを特徴とする請求項8に記載の三次元造形装置。 The three-dimensional printing apparatus according to claim 8, wherein the fluid regulating section is provided in parallel to a long side of the rectangle of the opening.
  10. 前記ノズル本体部の前記第2の中空部は、上流から前記ノズル側の下流に向かって、その内径が徐々に細くなっており、
    前記ノズル先端部の前記第2の中空部は、前記中空筐体側の上流から前記開口部側の下流に向かって、その内径が徐々に細くなっており、
    前記ノズル本体部と前記ノズル先端部との境界部において、前記ノズル先端部の最上流の内径を、前記ノズル本体部の最下流の内径よりも大きくしたことを特徴とする請求項1に記載の三次元造形装置。
    The second hollow part of the nozzle main body has an inner diameter that gradually becomes smaller from upstream to downstream on the nozzle side,
    The second hollow portion of the nozzle tip has an inner diameter that gradually becomes narrower from upstream on the hollow housing side to downstream on the opening side,
    2. The inner diameter of the most upstream portion of the nozzle tip portion is larger than the inner diameter of the most downstream portion of the nozzle body portion at the boundary portion between the nozzle body portion and the nozzle tip portion. Three-dimensional printing equipment.
  11. 前記ノズル本体部の前記第2の中空部は、上流から前記ノズル側の下流に向かって、その内径が徐々に細くなっており、
    前記ノズル先端部の前記第2の中空部は、前記中空筐体側の上流から前記開口部側の下流に向かって、その内径が徐々に細くなっており、
    前記ノズル本体部と前記ノズル先端部との境界部において、前記ノズル先端部の最上流の内径を、前記ノズル本体部の最下流の内径よりも大きくしたことを特徴とする請求項2に記載の三次元造形装置。
    The second hollow part of the nozzle main body has an inner diameter that gradually becomes smaller from upstream to downstream on the nozzle side,
    The second hollow portion of the nozzle tip has an inner diameter that gradually becomes narrower from upstream on the hollow housing side to downstream on the opening side,
    3. The inner diameter of the most upstream portion of the nozzle tip portion is larger than the inner diameter of the most downstream portion of the nozzle body portion at the boundary portion between the nozzle body portion and the nozzle tip portion. Three-dimensional printing equipment.
  12. 前記ノズル本体部の前記第2の中空部は、上流から前記ノズル側の下流に向かって、その内径が徐々に細くなっており、
    前記ノズル先端部の前記第2の中空部は、前記中空筐体側の上流から前記開口部側の下流に向かって、その内径が徐々に細くなっており、
    前記ノズル本体部と前記ノズル先端部との境界部において、前記ノズル先端部の最上流の内径を、前記ノズル本体部の最下流の内径よりも大きくしたことを特徴とする請求項3に記載の三次元造形装置。
    The second hollow part of the nozzle main body has an inner diameter that gradually becomes smaller from upstream to downstream on the nozzle side,
    The second hollow portion of the nozzle tip has an inner diameter that gradually becomes narrower from upstream on the hollow housing side to downstream on the opening side,
    4. The inner diameter of the most upstream portion of the nozzle tip portion is larger than the inner diameter of the most downstream portion of the nozzle body portion at the boundary portion between the nozzle body portion and the nozzle tip portion. Three-dimensional printing equipment.
  13. 前記ノズル本体部の前記第2の中空部は、上流から前記ノズル側の下流に向かって、その内径が徐々に細くなっており、
    前記ノズル先端部の前記第2の中空部は、前記中空筐体側の上流から前記開口部側の下流に向かって、その内径が徐々に細くなっており、
    前記ノズル本体部と前記ノズル先端部との境界部において、前記ノズル先端部の最上流の内径を、前記ノズル本体部の最下流の内径よりも大きくしたことを特徴とする請求項4に記載の三次元造形装置。
    The second hollow part of the nozzle main body has an inner diameter that gradually becomes smaller from upstream to downstream on the nozzle side,
    The second hollow portion of the nozzle tip has an inner diameter that gradually becomes narrower from upstream on the hollow housing side to downstream on the opening side,
    5. The inner diameter of the most upstream part of the nozzle tip part is made larger than the inner diameter of the most downstream part of the nozzle body part at the boundary part between the nozzle body part and the nozzle tip part. Three-dimensional printing equipment.
  14. 前記ノズル本体部の前記第2の中空部は、上流から前記ノズル側の下流に向かって、その内径が徐々に細くなっており、
    前記ノズル先端部の前記第2の中空部は、前記中空筐体側の上流から前記開口部側の下流に向かって、その内径が徐々に細くなっており、
    前記ノズル本体部と前記ノズル先端部との境界部において、前記ノズル先端部の最上流の内径を、前記ノズル本体部の最下流の内径よりも大きくしたことを特徴とする請求項5に記載の三次元造形装置。
    The second hollow part of the nozzle main body has an inner diameter that gradually becomes smaller from upstream to downstream on the nozzle side,
    The second hollow portion of the nozzle tip has an inner diameter that gradually becomes narrower from upstream on the hollow housing side to downstream on the opening side,
    6. The inner diameter of the most upstream portion of the nozzle tip portion is larger than the inner diameter of the most downstream portion of the nozzle body portion at the boundary portion between the nozzle body portion and the nozzle tip portion. Three-dimensional printing equipment.
  15. 前記ノズル本体部の前記第2の中空部は、上流から前記ノズル側の下流に向かって、その内径が徐々に細くなっており、
    前記ノズル先端部の前記第2の中空部は、前記中空筐体側の上流から前記開口部側の下流に向かって、その内径が徐々に細くなっており、
    前記ノズル本体部と前記ノズル先端部との境界部において、前記ノズル先端部の最上流の内径を、前記ノズル本体部の最下流の内径よりも大きくしたことを特徴とする請求項9に記載の三次元造形装置。
    The second hollow part of the nozzle main body has an inner diameter that gradually becomes smaller from upstream to downstream on the nozzle side,
    The second hollow portion of the nozzle tip has an inner diameter that gradually becomes narrower from upstream on the hollow housing side to downstream on the opening side,
    10. The inner diameter of the most upstream part of the nozzle tip part is made larger than the inner diameter of the most downstream part of the nozzle body part at the boundary part between the nozzle body part and the nozzle tip part. Three-dimensional printing equipment.
  16. 前記ノズル本体部の第2の中空部の縦断面形状は、途中に膨隆部を有する流線形状を呈していることを特徴とする請求項10乃至請求項15の何れかに記載の三次元造形装置。 The three-dimensional structure according to any one of claims 10 to 15, wherein a vertical cross-sectional shape of the second hollow part of the nozzle main body has a streamlined shape with a bulge in the middle. Device.
PCT/JP2022/020918 2022-05-20 2022-05-20 Three-dimensional printing device WO2023223528A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/020918 WO2023223528A1 (en) 2022-05-20 2022-05-20 Three-dimensional printing device
JP2022545842A JP7370026B1 (en) 2022-05-20 2022-05-20 3D printing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/020918 WO2023223528A1 (en) 2022-05-20 2022-05-20 Three-dimensional printing device

Publications (1)

Publication Number Publication Date
WO2023223528A1 true WO2023223528A1 (en) 2023-11-23

Family

ID=88469006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020918 WO2023223528A1 (en) 2022-05-20 2022-05-20 Three-dimensional printing device

Country Status (2)

Country Link
JP (1) JP7370026B1 (en)
WO (1) WO2023223528A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015502870A (en) * 2011-11-01 2015-01-29 ローボロー・ユニヴァーシティー Cement material transport method and transport device
JP2017509514A (en) * 2014-03-21 2017-04-06 レイン オルーク オーストラリア ピーティーワイ リミテッド Method and apparatus for molding composite objects
JP2021045906A (en) * 2019-09-19 2021-03-25 大成建設株式会社 Three-dimensional modeling system
JP2021055395A (en) * 2019-09-30 2021-04-08 株式会社北川鉄工所 Apparatus for manufacturing reinforced concrete column

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7117692B2 (en) * 2018-02-28 2022-08-15 大成建設株式会社 Nozzle device for 3D printer, 3D printer device, building construction method using the same, viscous material supply method, and product construction device
JP2021183715A (en) * 2020-05-22 2021-12-02 芝浦機械株式会社 Lamination molding system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015502870A (en) * 2011-11-01 2015-01-29 ローボロー・ユニヴァーシティー Cement material transport method and transport device
JP2017509514A (en) * 2014-03-21 2017-04-06 レイン オルーク オーストラリア ピーティーワイ リミテッド Method and apparatus for molding composite objects
JP2021045906A (en) * 2019-09-19 2021-03-25 大成建設株式会社 Three-dimensional modeling system
JP2021055395A (en) * 2019-09-30 2021-04-08 株式会社北川鉄工所 Apparatus for manufacturing reinforced concrete column

Also Published As

Publication number Publication date
JPWO2023223528A1 (en) 2023-11-23
JP7370026B1 (en) 2023-10-27

Similar Documents

Publication Publication Date Title
US11344909B2 (en) System and method for active adhesive recirculation control
KR102434623B1 (en) Method and system for rotational 3d printing
CN101639316B (en) Air knife device
JP4427059B2 (en) Cross-reference of applications and methods related to conditioning bowling lanes using high precision feed injectors
US20180071984A1 (en) Printing apparatus for building three-dimensional object
JP6567001B2 (en) Three-dimensional structure manufacturing method and three-dimensional structure apparatus
KR102016686B1 (en) 3D Printer for Construction Materials
WO2023223528A1 (en) Three-dimensional printing device
JP2009517195A (en) Liquid product supply / mixing apparatus and operation method thereof
WO2021040578A1 (en) Building mixture extruder for 3d printer
JP7458041B1 (en) Fluid discharge device and three-dimensional printing device equipped with the fluid discharge device
JP7370027B1 (en) 3D printing equipment
JP6142268B2 (en) Discharge width variable device and discharge device
JP7220446B2 (en) discharge system
JP5885679B2 (en) Seed coating agent supply equipment
JP2022040690A (en) Liquid discharge machine and 3d printer
JP2005113576A (en) Spraying method of coating material
RU2717274C1 (en) Method of articles manufacturing by means of additive technologies and device for implementation thereof
JP6254201B2 (en) Seed coating agent supply device or seed coating system
JP2011147900A (en) Liquid discharge structure of liquid constant delivery apparatus
JP2023019527A (en) Molding data formation method
JP2020022939A (en) Cohesive material coating system, cohesive material coating device, cartridge, and control method for cohesive material coating system
RU2782021C1 (en) Construction printer extruder
JP2023113245A (en) Method of manufacturing three-dimensional molded article
JP2023112318A (en) Three-dimensional molding device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942732

Country of ref document: EP

Kind code of ref document: A1