WO2023223496A1 - Ultraviolet light irradiation device and air conditioning device including same - Google Patents

Ultraviolet light irradiation device and air conditioning device including same Download PDF

Info

Publication number
WO2023223496A1
WO2023223496A1 PCT/JP2022/020818 JP2022020818W WO2023223496A1 WO 2023223496 A1 WO2023223496 A1 WO 2023223496A1 JP 2022020818 W JP2022020818 W JP 2022020818W WO 2023223496 A1 WO2023223496 A1 WO 2023223496A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitting element
light emitting
led element
ultraviolet light
wavelength led
Prior art date
Application number
PCT/JP2022/020818
Other languages
French (fr)
Japanese (ja)
Inventor
彰 守川
典亮 勝又
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022561552A priority Critical patent/JP7286034B1/en
Priority to PCT/JP2022/020818 priority patent/WO2023223496A1/en
Publication of WO2023223496A1 publication Critical patent/WO2023223496A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultraviolet radiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • F24F1/0076Indoor units, e.g. fan coil units with means for purifying supplied air by electric means, e.g. ionisers or electrostatic separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • F24F8/22Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using UV light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/30Velocity

Definitions

  • the present disclosure relates to an ultraviolet light irradiation device that treats microorganisms such as bacteria, mold, and viruses, and an air conditioner using the same.
  • Ultraviolet light with a wavelength of 200 to 350 nm not only acts on nucleic acids, which are the protoplasm of bacteria, inhibiting DNA replication and depriving them of their ability to proliferate, but also destroys the cytoplasm and proteins that form the cell membrane. It is known to have the effect of killing bacteria and viruses.
  • Ultraviolet light irradiation devices have been put into practical use that utilize the action of such ultraviolet light to sterilize microorganisms such as bacteria, mold, and viruses, or to inactivate viruses (sterilization and inactivation treatment).
  • an ultraviolet light irradiation device disclosed in Japanese Patent Application Publication No. 2018-069029 (Patent Document 1) includes a UV light assembly that irradiates a structure with ultraviolet light and a control unit that controls the UV light assembly. .
  • the control unit controls the UV light assembly to separately irradiate the structure with ultraviolet light of a first band and ultraviolet light of a second band different from the first band.
  • the ultraviolet light irradiation device disclosed in Japanese Patent Application Laid-open No. 2010-275841 includes a plurality of ultraviolet light LEDs that irradiate ultraviolet light into the interior of a drainage section that discharges water, and a plurality of ultraviolet light a lighting circuit unit that pulse-lights the LED; a control circuit unit that controls the lighting circuit unit so as to reduce the amount of ultraviolet light irradiation from the ultraviolet LED within a predetermined time as the number of times the ultraviolet LED is lit increases; It is equipped with
  • light-emitting elements that can emit ultraviolet light with a short wavelength (for example, 280 nm or less) that efficiently sterilizes microorganisms or inactivates viruses have a short lifespan. Therefore, in an ultraviolet light irradiation device that employs the light emitting element, the light emitting element needs to be replaced frequently due to its lifespan, which may increase the maintenance cost of the device.
  • a short wavelength for example, 280 nm or less
  • the present disclosure is intended to solve the above-mentioned problems, and provides an ultraviolet light irradiation device that reduces the frequency of replacement of light emitting elements that emit ultraviolet light and can be used for a long period of time, and an air conditioner using the same. is intended to provide.
  • the ultraviolet light irradiation device is an ultraviolet light irradiation device that treats microorganisms such as bacteria, mold, and viruses.
  • the ultraviolet light irradiation device includes a first light emitting element that emits ultraviolet light of a first wavelength, a second light emitting element that emits ultraviolet light of a second wavelength different from the first wavelength, and a first light emitting element that emits ultraviolet light of a second wavelength different from the first wavelength.
  • the device includes a power supply circuit that supplies current to the element and the second light emitting element, and a control circuit that controls the power supply circuit and adjusts the lighting timing and lighting time of the first light emitting element and the second light emitting element.
  • the control circuit lights up the second light emitting element after lighting the first light emitting element, and makes the lighting time of the first light emitting element longer than the lighting time of the second light emitting element.
  • the ultraviolet light irradiation device lights up the second light emitting element after lighting the first light emitting element, and makes the lighting time of the first light emitting element longer than the lighting time of the second light emitting element. Therefore, while microorganisms such as bacteria, mold, and viruses are sterilized and inactivated, the frequency of replacing the second light emitting element that emits ultraviolet light can be reduced, and it can be used for a long period of time.
  • FIG. 1 is a side sectional view of an indoor unit of an air conditioner according to Embodiment 1.
  • FIG. 1 is a block diagram showing the configuration of an ultraviolet light irradiation device according to Embodiment 1.
  • FIG. 3 is a diagram for explaining sterilization and inactivation processing of the ultraviolet light irradiation device in the indoor unit of the air conditioner according to the first embodiment. It is a figure for explaining an example of the lighting pattern of an ultraviolet light irradiation device. It is a graph showing experimental results when irradiating light from a long wavelength LED element. It is a graph showing experimental results when irradiating light from a short wavelength LED element.
  • FIG. 3 is a side cross-sectional view of an indoor unit of an air conditioner according to a second embodiment.
  • FIG. 7 is a side sectional view of an indoor unit of an air conditioner according to Embodiment 3;
  • FIG. 1 is a side sectional view of an indoor unit 1 of an air conditioner according to a first embodiment.
  • the air conditioner is composed of an indoor unit 1 and an outdoor unit (not shown), and refrigerant is exchanged between the heat exchangers 8, 9, 10 of the indoor unit 1 and the heat exchanger of the outdoor unit via piping. Flowing.
  • the heat exchangers 8, 9, and 10 of the indoor unit 1 function as an evaporator when performing a cooling operation, and function as a condenser when performing a heating operation.
  • the indoor unit 1 includes a suction port 2, a filter 3, a rotating gear 4, an ultraviolet light irradiation device 5, heat exchangers 8, 9, and 10, a blower fan 11, a drain pan 12, and an air outlet 13. , and a brush 15.
  • the suction port 2 sucks indoor air as shown by the arrow.
  • the filter 3 cleans the sucked air.
  • Heat exchangers 8, 9, and 10 cool or heat the sucked air.
  • the air outlet 13 discharges cooled or heated air into the room as shown by the arrow.
  • the blower fan 11 creates a flow of air from the inlet 2 to the outlet 13.
  • the rotating gear 4 and the brush 15 are provided to clean the filter 3, and by winding up the filter 3 with the rotating gear 4, the brush 15 removes deposits on the filter 3.
  • Drain pan 12 receives condensed water from heat exchanger 8 .
  • the air conditioner adjusts the temperature of the air blown out from the outlet 13 by cooling or heating the heat exchangers 8, 9, and 10 to maintain an appropriate indoor temperature. It is kept in
  • the filter 3 employs a mesh structure made of polypropylene resin, for example. When air passes through this filter 3, bacteria, mold, viruses, floating particles, etc. in the air are captured and become deposits on the filter 3.
  • the indoor unit 1 of the air conditioner according to the first embodiment is provided with an ultraviolet light irradiation device 5 that treats microorganisms such as bacteria, mold, and viruses contained in the deposits on the filter 3.
  • the ultraviolet light irradiation device 5 includes a long wavelength LED element 6 with a center wavelength of 370 nm and a short wavelength LED element 7 with a center wavelength of 260 nm.
  • the ultraviolet light irradiation device 5 sterilizes microorganisms such as bacteria, mold, and viruses or inactivates viruses by irradiating the object to be treated with ultraviolet light from a long wavelength LED element 6 and a short wavelength LED element 7.
  • the process of sterilizing microorganisms such as bacteria, molds, and viruses or inactivating viruses is also referred to as sterilization and inactivation treatment.
  • the ultraviolet light irradiation device 5 employs an LED (Light Emitting Diode) element as a light emitting element that emits ultraviolet light.
  • LED Light Emitting Diode
  • the present invention is not limited thereto, and other light emitting elements such as semiconductor lasers may be employed in the ultraviolet light irradiation device 5 as long as they emit ultraviolet light.
  • a long wavelength LED element 6 is installed on the left side of the figure, and a short wavelength LED element 7 is installed on the right side of the figure.
  • the ultraviolet light irradiation device 5 is not limited to this, and the short wavelength LED element 7 may be installed on the left side of the figure, and the long wavelength LED element 6 may be installed on the right side of the figure.
  • one long wavelength LED element 6 and one short wavelength LED element 7 are each installed in FIG. 1, a plurality of each may be installed.
  • the filter 3 has a flat plate shape, a plurality of long wavelength LED elements 6 and short wavelength LED elements 7 are provided in the short side direction of the filter 3 so that light can be irradiated along the short side direction of the filter 3. Install.
  • the long wavelength LED element 6 is a first light emitting element that emits ultraviolet light (UV-A) with a center wavelength (first wavelength) of 370 nm. Note that although the long wavelength LED element 6 emits ultraviolet light at the center wavelength, the wavelength range in which it emits light may include visible light.
  • the short wavelength LED element 7 is a second light emitting element that emits ultraviolet light (UV-C) with a center wavelength (second wavelength) of 260 nm. Although the short wavelength LED element 7 emits ultraviolet light at the center wavelength, the wavelength range in which it emits light may include visible light. Further, the center wavelength (second wavelength) of the short wavelength LED element 7 is shorter than the center wavelength (first wavelength) of the long wavelength LED element 6.
  • a light-emitting element that emits light at a shorter wavelength has a shorter lifespan than a light-emitting element that emits light at a longer wavelength. Therefore, the lifespan of the short wavelength LED element 7 (second light emitting element) is shorter than that of the long wavelength LED element 6 (first light emitting element).
  • the short wavelength LED element 7 and the long wavelength LED element 6 are turned on for the same period of time, the short wavelength LED element 7 reaches the end of its life first and needs to be replaced. Therefore, in the ultraviolet light irradiation device 5 according to the present disclosure, as will be described later, the lighting timing and lighting time of the long wavelength LED element 6 and the short wavelength LED element 7 are devised to reduce the frequency of replacing the short wavelength LED element 7. It is designed to be used for a long period of time.
  • FIG. 1 shows the indoor unit 1 in a normal state where the filter 3 is not being cleaned by the rotating gear 4 and the brush 15 and the ultraviolet light irradiation device 5 is not being driven.
  • FIG. 2 is a block diagram showing the configuration of the ultraviolet light irradiation device 5 according to the first embodiment.
  • the ultraviolet light irradiation device includes a long wavelength LED element 6, a short wavelength LED element 7, a power supply circuit 51, and a control circuit 52.
  • the power supply circuit 51 supplies current to the long wavelength LED element 6 and the short wavelength LED element 7.
  • the control circuit 52 controls the power supply circuit 51 and adjusts the lighting timing and lighting time of the long wavelength LED element 6 and the short wavelength LED element 7.
  • the control circuit 52 is communicably connected to the control section 100 of the indoor unit 1. Therefore, the control circuit 52 can acquire the operating status of the indoor unit 1 from the control unit 100 of the indoor unit 1, and can also provide the driving status of the ultraviolet light irradiation device 5 to the control unit 100.
  • the ultraviolet light irradiation device 5 can appropriately drive the ultraviolet light irradiation device 5 according to the operating status of the indoor unit 1.
  • the ultraviolet light irradiation device 5 further includes a memory circuit 53.
  • the storage circuit 53 stores a lighting pattern that defines the lighting timing and lighting time of the long wavelength LED element 6 and the short wavelength LED element 7. Note that the ultraviolet light irradiation device 5 may have a configuration that does not include the storage circuit 53 if there is no need to store the lighting pattern.
  • FIG. 3 is a diagram for explaining sterilization and inactivation processing of the ultraviolet light irradiation device 5 in the indoor unit 1 of the air conditioner according to the first embodiment.
  • the indoor unit 1 performs cooling operation or heating operation for a set period of time (for example, 10 hours)
  • the indoor unit 1 performs cleaning of the filter 3 (sterilization and inactivation treatment of lighting up the long wavelength LED element 6 and short wavelength LED element 7). including).
  • the control unit 100 of the indoor unit 1 operates the rotation gear 4 to move the filter 3 toward the brush 15.
  • the filter 3 By moving the filter 3 toward the brush 15, the filter 3 is rubbed by the brush 15, and bacteria, mold, viruses, and fine particles adhering to the filter 3 are removed. Bacteria, mold, viruses, and particulates that could not be removed by the brush 15 remain in the filter 3.
  • the ultraviolet light irradiation device 5 In order to sterilize microorganisms such as bacteria, mold, and viruses remaining in the filter 3 or to inactivate viruses, the ultraviolet light irradiation device 5 is driven.
  • the ultraviolet light irradiation device 5 starts the sterilization and inactivation process when one end of the filter 3 reaches above the long wavelength LED element 6 in the figure.
  • the rotation gear 4 does not rotate continuously, but rotates in steps. Therefore, each time the rotation gear 4 is rotated by a predetermined angle, the range of the filter 3 located above the long wavelength LED element 6 and the short wavelength LED element 7 moves.
  • the long wavelength LED element 6 and the short wavelength LED element 7 are fixed to the indoor unit 1 at an irradiation angle that is equal to or higher than an appropriate irradiation intensity for the range of the filter 3 located above. That is, the positions of the long wavelength LED element 6 and the short wavelength LED element 7 are fixed so that they can irradiate the range (solid surface) of the filter 3 with ultraviolet light.
  • the ultraviolet light irradiation device 5 performs a sterilization and inactivation process on the filter 3 within a predetermined range from one end.
  • the lighting pattern for the sterilization and inactivation process is stored in advance in the memory circuit 53.
  • FIG. 4 is a diagram for explaining an example of a lighting pattern of the ultraviolet light irradiation device 5. As shown in FIG. The lighting pattern in FIG. 4 shows the lighting timing and lighting time of the long wavelength LED element 6 and the short wavelength LED element 7.
  • the control circuit 52 turns on the long wavelength LED element 6 at the start time t1 , turns off the long wavelength LED element 6 after the elapse of time Ta, and turns on the short wavelength LED element 7.
  • the control circuit 52 turns on the short wavelength LED element 7 for a time Tc, and then turns off the light at end time t2 .
  • the rotation gear 4 rotates counterclockwise by a predetermined angle to send the filter 3 to the range where the filter 3 has newly moved to a position above the long wavelength LED element 6 and the short wavelength LED element 7.
  • sterilization and inactivation treatment is performed using the lighting pattern shown in FIG.
  • the ultraviolet light irradiation device 5 repeats the sterilization and inactivation process in the lighting pattern shown in FIG. 4 until the other end of the filter 3 reaches the upper part of the long wavelength LED element 6 in the figure.
  • the total lighting time T of the lighting pattern is time Ta + time Tc, which is less than or equal to the time from when the rotating gear 4 rotates at a predetermined angle in the counterclockwise direction to when it rotates at the next predetermined angle. It is. Furthermore, the total lighting time T of the lighting pattern is not the same as the time Ta during which the long wavelength LED element 6 is lit and the time Tc during which the short wavelength LED element 7 is lit; It is shorter than the lighting time T. That is, the long wavelength LED element 6 and the short wavelength LED element 7 are each intermittently lit within the total lighting time T. Note that the long wavelength LED element 6 may be lit continuously within the total lighting time T, and if the short wavelength LED element 7 is lit at least intermittently, the frequency of replacement of the short wavelength LED element 7 can be suppressed. can.
  • the rotation gear 4 rotates clockwise to return the filter 3 to the state shown in FIG. 1 and cleans the filter 3.
  • the ultraviolet light irradiation device 5 then ends the sterilization and inactivation process.
  • the indoor unit 1 can perform cooling operation or heating operation.
  • FIG. 5 is a graph showing experimental results when light from the long wavelength LED element 6 was irradiated.
  • the horizontal axis represents the elapsed time when only the long wavelength LED element 6 is continuously lit, and the vertical axis represents the virus inactivation rate.
  • the long wavelength LED element 6 was prepared in two cases, one with a center wavelength of 370 nm and the other with a center wavelength of 410 nm.
  • the virus to be treated was ⁇ X174, which is a phage that infects Escherichia coli, and the experiment was conducted by attaching it to the filter 3 in advance.
  • the virus inactivation rate was determined by washing the filter 3 with sterilized water after the experiment, diluting the washing water appropriately and quantifying it using the plaque method, and the number of virus reductions from the elapsed time of 0 seconds is shown as a logarithm.
  • the results of the background without irradiation with the light of the long wavelength LED element 6 are shown with a cross mark (x), and the results of irradiation with the light of the long wavelength LED element 6 with a center wavelength of 370 nm are shown with the triangle mark ( ⁇ ). ), and the results of irradiation with light from the long wavelength LED element 6 having a center wavelength of 410 nm are indicated by circles ( ⁇ ).
  • Such a phenomenon is known as the photorecovery effect of ultraviolet light, and is known to occur not only in LED elements but also in other light sources such as UV lamps.
  • the mechanism is thought to be based on a repair mechanism possessed by microorganisms, but the mechanism has not yet been clearly elucidated.
  • FIG. 6 is a graph showing experimental results when light from a short wavelength LED element is irradiated.
  • the horizontal axis represents the elapsed time when only the short wavelength LED element 7 is continuously lit, and the vertical axis represents the virus inactivation rate.
  • the short wavelength LED element 7 has a center wavelength of 260 nm.
  • the virus to be treated was ⁇ X174, which is a phage that infects Escherichia coli, and the experiment was conducted by attaching it to the filter 3 in advance.
  • the virus inactivation rate was determined by washing the filter 3 with sterilized water after the experiment, diluting the washing water appropriately, and quantifying it using the plaque method, and the number of decreases from the elapsed time of 0 seconds is shown as a logarithm.
  • FIG. 6 the results of irradiation with light from the short wavelength LED element 7 having a center wavelength of 260 nm are indicated by square marks ( ⁇ ).
  • the experiment was conducted using a phage that infects Escherichia coli as the object to be treated, but when the target is a different type of virus, bacteria, mold, etc., the virus inactivation rate is It is conceivable that the time required to reduce by more than two orders of magnitude may differ. Therefore, the ultraviolet light irradiation device 5 conducts experiments in advance and sets the lighting times (Ta, Tc) of the long wavelength LED element 6 and the short wavelength LED element 7 depending on the type of the object to be treated.
  • LED elements elements that can emit light from infrared light to ultraviolet light have been put into practical use. Historically, development has progressed from elements that can emit long-wavelength infrared light to elements that can emit short-wavelength ultraviolet light. Therefore, when we compare the lifespan of LED elements of each wavelength by continuously irradiating them, we find that elements that can emit long-wavelength infrared light are more durable than elements that can emit short-wavelength ultraviolet light. It is generally known to have a long lifespan.
  • the virus inactivation rate can be reduced by making the time Ta for lighting the long wavelength LED element 6 shown in FIG. 4 longer than the time Tc for lighting the short wavelength LED element 7.
  • the time Ta is the elapsed time (e.g., 3000 seconds) when the long wavelength LED element 6 is turned on and the virus inactivation rate decreases to 99%, and the short wavelength LED element 7 is turned on and the virus inactivation rate is decreased to 99%.
  • the elapsed time (for example, 10 seconds) at which the amount decreases to 99.9% is set as time Tc.
  • the life of the ultraviolet light irradiation device 5 as a whole becomes longer, and the frequency of maintenance for replacing the LED elements can be reduced. If you want to shorten the time it takes to reduce the virus inactivation rate to 99.9%, you can achieve this by setting a lighting pattern that shortens the time Ta and lengthens the time Tc. In this case, since the load on the short wavelength LED element 7 increases, the life of the short wavelength LED element 7 is slightly shortened, and the life of the ultraviolet light irradiation device 5 itself is also shortened.
  • the rotation gear 4 rotates in a stepwise manner, it may be rotated continuously.
  • the ultraviolet light irradiation device 5 needs to adjust the lighting time of the long wavelength LED element 6 and the short wavelength LED element 7 in advance so that the filter 3 can be sufficiently sterilized and inactivated.
  • the ultraviolet light irradiation device 5 performs sterilization and inactivation processing on the filter 3 when the rotation gear 4 is rotating counterclockwise, but when returning the filter 3 to the normal state, that is, when the rotation gear 4 rotates counterclockwise, When the rotation gear 4 is rotating clockwise, the filter 3 may be subjected to sterilization and inactivation treatment.
  • the ultraviolet light irradiation device 5 instead of installing the long wavelength LED element 6 on the left side of the figure and the short wavelength LED element 7 on the right side of the figure as shown in FIG. 1, the ultraviolet light irradiation device 5 should be installed in the opposite position. can perform sterilization and inactivation treatment efficiently.
  • the ultraviolet light irradiation device 5 treats microorganisms such as bacteria, mold, and viruses.
  • the ultraviolet light irradiation device 5 includes a long wavelength LED element 6 that emits ultraviolet light of a first wavelength, and a short wavelength LED element 7 that emits ultraviolet light of a second wavelength that is different from the long wavelength LED element 6.
  • a power supply circuit 51 that supplies current to the long wavelength LED element 6 and the short wavelength LED element 7, and a control circuit that controls the power supply circuit 51 and adjusts the lighting timing and lighting time of the long wavelength LED element 6 and the short wavelength LED element 7. 52.
  • the control circuit 52 turns on the short wavelength LED element 7 after turning on the long wavelength LED element 6, and makes the lighting time of the long wavelength LED element 6 longer than the lighting time of the short wavelength LED element 7.
  • the ultraviolet light irradiation device 5 lights up the short wavelength LED element 7 after lighting the long wavelength LED element 6, and changes the lighting time of the long wavelength LED element 6 to the lighting time of the short wavelength LED element 7. Since the time is longer than the time, it is possible to sterilize and inactivate microorganisms such as bacteria, mold, and viruses, while reducing the frequency of replacement of the short wavelength LED element 7 that emits ultraviolet light, and allowing it to be used for a long period of time.
  • the second wavelength of the ultraviolet light emitted by the short wavelength LED element 7 is preferably shorter than the first wavelength of the light emitted by the long wavelength LED element 6. Thereby, the lighting time of the short wavelength LED element 7, which has a short life span, can be reduced, and the frequency of replacement can be reduced.
  • control circuit 52 lights up the short wavelength LED element 7 at least intermittently. Thereby, the lighting time of the short wavelength LED element 7, which has a short life span, can be reduced, and the frequency of replacement can be reduced.
  • the long wavelength LED element 6 and the short wavelength LED element 7 are fixed in position so that they can irradiate light onto the solid surface.
  • microorganisms such as bacteria, mold, and viruses attached to the solid surface can be sterilized and inactivated.
  • the ultraviolet light irradiation device 5 further includes a memory circuit 53 that stores a lighting pattern that defines the lighting timing and lighting time of the long wavelength LED element 6 and the short wavelength LED element 7. It is preferable to change the lighting timing and lighting time of the long wavelength LED element 6 and the short wavelength LED element 7 based on the lighting pattern. Thereby, it is possible to change the lighting timing and lighting time so that the long-wavelength LED element 6 and the short-wavelength LED element 7 can have longer lives while performing sterilization and inactivation treatment.
  • the air conditioner includes a filter 3 through which air passes, heat exchangers 8, 9, and 10 that exchange heat between the air and a refrigerant, a drain pan 12 that receives water, and an ultraviolet light irradiation device 5.
  • the light irradiation device 5 fixes the positions of the long wavelength LED element 6 and the short wavelength LED element 7 so that the light can be irradiated toward at least one of the filter 3, the heat exchangers 8, 9, and 10, and the drain pan 12. It is preferable that the Thereby, microorganisms such as bacteria, mold, and viruses attached to at least one of the filter 3, the heat exchangers 8, 9, and 10, and the drain pan 12 can be sterilized and inactivated.
  • control circuit 52 starts the control of lighting up the long wavelength LED element 6 and the short wavelength LED element 7 after performing the cooling operation or the heating operation for a set time. Thereby, sterilization and inactivation processing can be performed periodically.
  • Embodiment 2 It has been explained that the ultraviolet light irradiation device 5 according to the first embodiment sterilizes and inactivates microorganisms such as bacteria, mold, and viruses that adhere to the filter 3.
  • the ultraviolet light irradiation device according to the second embodiment a configuration for sterilizing and inactivating microorganisms such as bacteria, mold, and viruses attached not only to the filter but also to the drain pan will be described.
  • FIG. 7 is a side sectional view of the indoor unit 1 of the air conditioner according to the second embodiment.
  • the same components as the indoor unit 1 according to the first embodiment are given the same reference numerals, and detailed description thereof will not be repeated.
  • a long wavelength LED element 6a and a short wavelength LED element 7a are added so that light can be irradiated toward the drain pan 12.
  • the long wavelength LED element 6a emits ultraviolet light having the same center wavelength as the long wavelength LED element 6 at 370 nm
  • the short wavelength LED element 7a emits ultraviolet light having the same center wavelength as the short wavelength LED element 7 at 260 nm. Since the drain pan 12 has a long shape in the depth direction in the figure, a plurality of long wavelength LED elements 6a and a plurality of short wavelength LED elements 7a are provided in this direction. Thereby, the entire drain pan 12 can be irradiated with ultraviolet light from the long wavelength LED element 6a and the short wavelength LED element 7a.
  • the heat exchanger 8 condenses, and the condensed water flows down to the drain pan 12 and stays at the bottom of the drain pan 12.
  • the ultraviolet light irradiation device 5 the long wavelength LED element 6a and the short wavelength LED element 7a are fixed to the indoor unit 1 at an irradiation angle that is equal to or higher than the appropriate irradiation intensity with respect to the bottom surface of the drain pan 12.
  • the ultraviolet light irradiation device 5 irradiates the bottom part of the drain pan 12 with ultraviolet light from the long wavelength LED element 6a and the short wavelength LED element 7a to sterilize microorganisms such as bacteria, mold, and viruses, or to eliminate viruses. Activation treatment can be performed.
  • the ultraviolet light irradiation device 5 may perform the sterilization and inactivation treatment on the drain pan 12 at the same time as the sterilization and inactivation treatment on the filter 3 described in the first embodiment. Alternatively, the ultraviolet light irradiation device 5 may perform a sterilization and inactivation process on the drain pan 12 periodically, for example, once a day, in addition to the sterilization and inactivation process on the filter 3.
  • the ultraviolet light irradiation device 5 lights up the short wavelength LED element 7a after lighting the long wavelength LED element 6a.
  • the lighting time of the long wavelength LED element 6a is made longer than the lighting time of the short wavelength LED element 7a.
  • the control circuit 52 first turns on the long wavelength LED element 6a for a period of time until the virus inactivation rate decreases by two digits (for example, 3000 seconds), then turns off the light, and then turns on the short wavelength LED element 7a.
  • the light is turned on for a period of time (for example, 15 seconds) until the virus inactivation rate decreases to three digits or less, and then the light is turned off.
  • the ultraviolet light irradiation device 5 can remove microorganisms such as bacteria, mold, and viruses in the drain pan 12 by lighting the long wavelength LED element 6a and the short wavelength LED element 7a as described above. While performing sterilization and inactivation treatment, the frequency of replacement of the short wavelength LED element 7a that emits ultraviolet light can be reduced, and it can be used for a long period of time.
  • FIG. 8 is a side sectional view of an indoor unit of an air conditioner according to Embodiment 3.
  • the same components as the indoor unit 1 according to the first embodiment are given the same reference numerals, and detailed description thereof will not be repeated.
  • a long wavelength LED element 6b and a short wavelength LED element 7b are provided integrally with the heat exchanger 8 and a long wavelength LED element 6c and a short wavelength LED element 7b are provided integrally with the heat exchanger 9.
  • An LED element 7c is provided, and integrated with the heat exchanger 10, a long wavelength LED element 6d and a short wavelength LED element 7d are provided.
  • the long wavelength LED elements 6b to 6d emit ultraviolet light having the same center wavelength as the long wavelength LED element 6 of 370 nm
  • the short wavelength LED elements 7b to 7d emit ultraviolet light having the same center wavelength as the short wavelength LED element 7 of 260 nm. emits light.
  • the heat exchangers 8, 9, and 10 have a long shape in the depth direction in the figure, a plurality of long wavelength LED elements 6b to 6d and a plurality of short wavelength LED elements 7b to 7d are provided in this direction.
  • the heat exchangers 8, 9, and 10 are made of a highly thermally conductive metal material such as aluminum or iron.
  • Wavelength LED elements 6b to 6d and short wavelength LED elements 7b to 7d are attached.
  • the long wavelength LED elements 6b to 6d and the short wavelength LED elements 7b to 7d are fixed to the heat exchangers 8, 9, and 10 so that the entire heat exchangers 8, 9, and 10 can be irradiated with ultraviolet light. ing.
  • the ultraviolet light irradiation device 5 may perform the sterilization and inactivation treatment on the heat exchangers 8, 9, and 10 at the same time as the sterilization and inactivation treatment on the filter 3 described in the first embodiment. Alternatively, the ultraviolet light irradiation device 5 may perform sterilization and inactivation processing on the heat exchangers 8, 9, and 10 periodically, for example, once a day, in addition to the sterilization and inactivation processing on the filter 3.
  • the ultraviolet light irradiation device 5 also uses the long wavelength LED elements 6b to 6d and the short wavelength LED elements 7b to 7d to sterilize and inactivate the heat exchangers 8, 9, and 10. 6d are turned on, the short wavelength LED elements 7b to 7d are turned on, and the lighting time of the long wavelength LED elements 6b to 6d is made longer than the lighting time of the short wavelength LED elements 7b to 7d.
  • the control circuit 52 first turns on the long wavelength LED elements 6b to 6d for a period of time until the virus inactivation rate decreases by two digits (for example, 3000 seconds), then turns them off, and then turns on the short wavelength LED elements 6b to 6d. 7b to 7d are turned on for a period of time (for example, 15 seconds) until the virus inactivation rate decreases to three digits or less, and then turned off.
  • the ultraviolet light irradiation device 5 performs sterilization and inactivation treatment on the heat exchangers 8, 9, and 10, it is preferable to cool the heat exchangers 8, 9, and 10 in advance.
  • the integrated long wavelength LED elements 6b to 6d and short wavelength LED elements 7b to 7d are also cooled.
  • the long wavelength LED elements 6b to 6d and the short wavelength LED elements 7b to 7d generate heat by emitting light, and the heat exchangers 8, 9, and 10 generate heat.
  • the lifetimes of the long wavelength LED elements 6b to 6d and the short wavelength LED elements 7b to 7d can be extended.
  • the ultraviolet light irradiation device 5 lights up the heat exchangers 8, 9,
  • the long wavelength LED elements 6b to 6d and the short wavelength LED elements 7b to 7d are also cooled while sterilizing and inactivating microorganisms such as bacteria, molds, and viruses as described in 10 above.
  • the frequency of replacement of the elements 7b to 7d can be reduced and they can be used for a long period of time.
  • the ultraviolet light irradiation device 5 shown in FIG. 8 has a configuration in which the long wavelength LED elements 6b to 6d and the short wavelength LED elements 7b to 7d are integrated into the heat exchangers 8, 9, and 10.
  • the long wavelength LED elements 6b to 6d and the short wavelength LED elements 7b to 7d are not integrated into the heat exchangers 8, 9, and 10
  • at least one of the long wavelength LED elements 6b to 6d and the short wavelength LED elements 7b to 7d One may be integrated into the heat exchangers 8, 9, and 10.
  • Embodiment 4 It has been explained that in the ultraviolet light irradiation device 5 according to the first embodiment, microorganisms such as bacteria, mold, and viruses adhering to the filter 3 are sterilized and inactivated while the heat exchangers 8, 9, and 10 are stopped.
  • the ultraviolet light irradiation device according to the fourth embodiment sterilizes microorganisms such as bacteria, mold, and viruses attached to the filter 3 while heating the heat exchanger, focusing on the fact that viruses are sensitive to heat of 50° C. or higher. Inactivate. Note that the configuration of the indoor unit according to Embodiment 4 is the same as the indoor unit 1 shown in FIG. 1, so detailed description will not be repeated.
  • the ultraviolet light irradiation device 5 When performing sterilization and inactivation treatment, the ultraviolet light irradiation device 5 according to the fourth embodiment heats the heat exchangers 8, 9, and 10 to raise the temperature inside the indoor unit 1 to 50° C. or higher, and then irradiates with long wavelength light.
  • the LED element 6 and the short wavelength LED element 7 are turned on to sterilize and inactivate microorganisms such as bacteria, mold, and viruses attached to the filter 3.
  • the long wavelength LED element 6 and the short wavelength LED element 7 have a short lifespan when driven in a high temperature state, so it is desirable to suppress the temperature inside the indoor unit 1 to 60° C. or less.
  • the ultraviolet light irradiation device 5 performs sterilization and inactivation treatment on the filter 3 using the long wavelength LED element 6 and the short wavelength LED element 7 while the heat exchangers 8, 9, and 10 are heated.
  • the short wavelength LED element 7 is turned on after the long wavelength LED element 6 is turned on, and the lighting time of the long wavelength LED element 6 is made longer than the lighting time of the short wavelength LED element 7.
  • the control circuit 52 first turns on the long wavelength LED element 6 for a period of time until the virus inactivation rate decreases by two digits (for example, 3000 seconds), then turns off the light, and then turns on the short wavelength LED element 7.
  • the light is turned on for a period of time (for example, 15 seconds) until the virus inactivation rate decreases to three digits or less, and then the light is turned off.
  • the ultraviolet light irradiation device 5 heats the heat exchangers 8, 9, and 10 by lighting the long wavelength LED element 6a and the short wavelength LED element 7a as described above. Therefore, the time required to sterilize and inactivate microorganisms such as bacteria, mold, and viruses can be shortened, and the frequency of replacing the short wavelength LED element 7a that emits ultraviolet light can be reduced, allowing long-term use.
  • the filter 3 is irradiated with the ultraviolet light of the LED element
  • the filter 3 and the drain pan 12 are only irradiated with the ultraviolet light of the LED element
  • the filter 3 and the heat exchanger 8 A configuration in which only LED elements 9 and 10 are irradiated with ultraviolet light has been described.
  • the present invention is not limited to this, and the ultraviolet light irradiation device 5 may be configured to irradiate at least one of the filter 3, the drain pan 12, and the heat exchangers 8, 9, and 10 with ultraviolet light from an LED element. .
  • 1 Indoor unit 2 Suction port, 3 Filter, 4 Rotating gear, 5 Ultraviolet light irradiation device, 6, 6a to 6d Long wavelength LED element, 7, 7a to 7d Short wavelength LED element, 8, 9, 10 Heat exchanger , 11 blower fan, 12 drain pan, 13 air outlet, 15 brush, 51 power supply circuit, 52 control circuit, 53 memory circuit, 100 control unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Physical Water Treatments (AREA)

Abstract

Provided are an ultraviolet light irradiation device that achieves a reduction in the frequency of replacement of light emitting elements that emit ultraviolet light, and thus is usable for a long period of time, and an air conditioning device including the ultraviolet light irradiation device. An ultraviolet light irradiation device (5) comprises: a long-wavelength LED element (6) that emits ultraviolet light having a first wavelength; a short-wavelength LED element (7) that emits ultraviolet light having a second wavelength different from that of the long-wavelength LED element (6); a power supply circuit (51) that supplies current to the long-wavelength LED element (6) and the short-wavelength LED element (7); and a control circuit (52) that controls the power supply circuit (51), and adjusts the lighting timing and the lighting duration of the long-wavelength LED element (6) and the short-wavelength LED element (7). The control circuit (52) lights the short-wavelength LED element (7) after lighting the long-wavelength LED element (6), so that the lighting duration of the long-wavelength LED element (6) is longer than the lighting duration of the short-wavelength LED element (7).

Description

紫外光照射装置、およびこれを用いた空気調和装置Ultraviolet light irradiation device and air conditioner using the same
 本開示は、細菌、カビ、ウイルスなどの微生物を処理対象物とする紫外光照射装置、およびこれを用いた空気調和装置に関する。 The present disclosure relates to an ultraviolet light irradiation device that treats microorganisms such as bacteria, mold, and viruses, and an air conditioner using the same.
 200~350nmの波長を有する紫外光は、細菌の原形質である核酸に作用してDNAの複製を阻害し、増殖能力を奪うだけでなく、細胞質、細胞膜の形成物質であるタンパク質などを破壊して細菌、ウイルスを死滅させる作用を有することが知られている。このような紫外光の作用を利用して、細菌、カビ、ウイルスなどの微生物を殺菌、またはウイルスを不活化させる処理(殺菌不活化処理)を行う紫外光照射装置が実用化されている。 Ultraviolet light with a wavelength of 200 to 350 nm not only acts on nucleic acids, which are the protoplasm of bacteria, inhibiting DNA replication and depriving them of their ability to proliferate, but also destroys the cytoplasm and proteins that form the cell membrane. It is known to have the effect of killing bacteria and viruses. Ultraviolet light irradiation devices have been put into practical use that utilize the action of such ultraviolet light to sterilize microorganisms such as bacteria, mold, and viruses, or to inactivate viruses (sterilization and inactivation treatment).
 たとえば、特開2018-069029号公報(特許文献1)に示されている紫外光照射装置では、構造物へ紫外光を照射するUV光アセンブリと、当該UV光アセンブリを制御する制御ユニットとを含む。制御ユニットは、UV光アセンブリを制御して、第一のバンドの紫外光と、第一のバンドと異なる第2のバンドの紫外光とを別々に構造物に照射する。 For example, an ultraviolet light irradiation device disclosed in Japanese Patent Application Publication No. 2018-069029 (Patent Document 1) includes a UV light assembly that irradiates a structure with ultraviolet light and a control unit that controls the UV light assembly. . The control unit controls the UV light assembly to separately irradiate the structure with ultraviolet light of a first band and ultraviolet light of a second band different from the first band.
 また、特開2010-275841号公報(特許文献2)に示されている紫外光照射装置では、水を排出する排水部の内部に紫外光を照射する複数の紫外光LEDと、複数の紫外光LEDをパルス点灯させる点灯回路部と、紫外光LEDの点灯回数が増加するにつれあらかじめ定めた時間内における紫外光LEDの紫外光照射量を減少させるように点灯回路部を制御する制御回路部と、を備えている。 In addition, the ultraviolet light irradiation device disclosed in Japanese Patent Application Laid-open No. 2010-275841 (Patent Document 2) includes a plurality of ultraviolet light LEDs that irradiate ultraviolet light into the interior of a drainage section that discharges water, and a plurality of ultraviolet light a lighting circuit unit that pulse-lights the LED; a control circuit unit that controls the lighting circuit unit so as to reduce the amount of ultraviolet light irradiation from the ultraviolet LED within a predetermined time as the number of times the ultraviolet LED is lit increases; It is equipped with
特開2018-069029号公報Japanese Patent Application Publication No. 2018-069029 特開2010-275841号公報JP2010-275841A
 しかし、効率的に微生物を殺菌、またはウイルスを不活化させる短波長(たとえば、280nm以下)の紫外光を発光できる発光素子は寿命が短い。そのため、当該発光素子を採用した紫外光照射装置では、寿命により発光素子を頻繁に交換する必要があり、装置のメンテナンスコストが増加する場合があった。 However, light-emitting elements that can emit ultraviolet light with a short wavelength (for example, 280 nm or less) that efficiently sterilizes microorganisms or inactivates viruses have a short lifespan. Therefore, in an ultraviolet light irradiation device that employs the light emitting element, the light emitting element needs to be replaced frequently due to its lifespan, which may increase the maintenance cost of the device.
 そこで、本開示は、上述した課題を解決するためのものであり、紫外光を発光する発光素子の交換頻度を減らし、長期間使用可能な紫外光照射装置、およびこれを用いた空気調和装置を提供することを目的としている。 Therefore, the present disclosure is intended to solve the above-mentioned problems, and provides an ultraviolet light irradiation device that reduces the frequency of replacement of light emitting elements that emit ultraviolet light and can be used for a long period of time, and an air conditioner using the same. is intended to provide.
 本開示に係る紫外光照射装置は、細菌、カビ、ウイルスなどの微生物を処理対象物とする紫外光照射装置である。紫外光照射装置は、第1の波長の紫外光を発光する第1の発光素子と、第1の波長と異なる第2の波長の紫外光を発光する第2の発光素子と、第1の発光素子および第2の発光素子に電流を供給する電源回路と、電源回路を制御し、第1の発光素子および第2の発光素子の点灯タイミングおよび点灯時間を調整する制御回路と、を備える。制御回路は、第1の発光素子を点灯後に第2の発光素子を点灯し、第1の発光素子の点灯時間を、第2の発光素子の点灯時間よりも長くする。 The ultraviolet light irradiation device according to the present disclosure is an ultraviolet light irradiation device that treats microorganisms such as bacteria, mold, and viruses. The ultraviolet light irradiation device includes a first light emitting element that emits ultraviolet light of a first wavelength, a second light emitting element that emits ultraviolet light of a second wavelength different from the first wavelength, and a first light emitting element that emits ultraviolet light of a second wavelength different from the first wavelength. The device includes a power supply circuit that supplies current to the element and the second light emitting element, and a control circuit that controls the power supply circuit and adjusts the lighting timing and lighting time of the first light emitting element and the second light emitting element. The control circuit lights up the second light emitting element after lighting the first light emitting element, and makes the lighting time of the first light emitting element longer than the lighting time of the second light emitting element.
 本開示によれば、紫外光照射装置は、第1の発光素子を点灯後に第2の発光素子を点灯し、第1の発光素子の点灯時間を、第2の発光素子の点灯時間よりも長くするので、細菌、カビ、ウイルスなどの微生物を殺菌不活化処理しつつ、紫外光を発光する第2の発光素子の交換頻度を減らし、長期間使用することができる。 According to the present disclosure, the ultraviolet light irradiation device lights up the second light emitting element after lighting the first light emitting element, and makes the lighting time of the first light emitting element longer than the lighting time of the second light emitting element. Therefore, while microorganisms such as bacteria, mold, and viruses are sterilized and inactivated, the frequency of replacing the second light emitting element that emits ultraviolet light can be reduced, and it can be used for a long period of time.
実施の形態1に係る空気調和装置の室内機の側面断面図である。1 is a side sectional view of an indoor unit of an air conditioner according to Embodiment 1. FIG. 実施の形態1に係る紫外光照射装置の構成を示すブロック図である。1 is a block diagram showing the configuration of an ultraviolet light irradiation device according to Embodiment 1. FIG. 実施の形態1に係る空気調和装置の室内機において、紫外光照射装置の殺菌不活化処理を説明するための図である。FIG. 3 is a diagram for explaining sterilization and inactivation processing of the ultraviolet light irradiation device in the indoor unit of the air conditioner according to the first embodiment. 紫外光照射装置の点灯パターンの一例を説明するための図である。It is a figure for explaining an example of the lighting pattern of an ultraviolet light irradiation device. 長波長LED素子の光を照射した場合の実験結果を示すグラフである。It is a graph showing experimental results when irradiating light from a long wavelength LED element. 短波長LED素子の光を照射した場合の実験結果を示すグラフである。It is a graph showing experimental results when irradiating light from a short wavelength LED element. 実施の形態2に係る空気調和装置の室内機の側面断面図である。FIG. 3 is a side cross-sectional view of an indoor unit of an air conditioner according to a second embodiment. 実施の形態3に係る空気調和装置の室内機の側面断面図である。FIG. 7 is a side sectional view of an indoor unit of an air conditioner according to Embodiment 3;
 実施の形態1.
 <空気調和装置の室内機の構成>
 図1は、実施の形態1に係る空気調和装置の室内機1の側面断面図である。空気調和装置は、室内機1と、図示していない室外機とで構成され、室内機1の熱交換器8,9,10と室外機の熱交換器との間で配管を介して冷媒が流れている。室内機1の熱交換器8,9,10は、冷房運転を行う場合に蒸発器として機能し、暖房運転を行う場合に凝縮器として機能する。
Embodiment 1.
<Configuration of indoor unit of air conditioner>
FIG. 1 is a side sectional view of an indoor unit 1 of an air conditioner according to a first embodiment. The air conditioner is composed of an indoor unit 1 and an outdoor unit (not shown), and refrigerant is exchanged between the heat exchangers 8, 9, 10 of the indoor unit 1 and the heat exchanger of the outdoor unit via piping. Flowing. The heat exchangers 8, 9, and 10 of the indoor unit 1 function as an evaporator when performing a cooling operation, and function as a condenser when performing a heating operation.
 室内機1は、吸い込み口2と、フィルタ3と、回転用歯車4と、紫外光照射装置5と、熱交換器8,9,10と、送風ファン11と、ドレンパン12と、吹き出し口13と、ブラシ15と、を含む。吸い込み口2は、矢印のように室内の空気を吸い込む。フィルタ3は、吸い込んだ空気を清浄化する。熱交換器8,9,10は、吸い込んだ空気を冷却または加熱する。吹き出し口13は、矢印のように冷却または加熱された空気を室内に放出する。送風ファン11は、吸い込み口2から吹き出し口13への空気の流れを作り出す。 The indoor unit 1 includes a suction port 2, a filter 3, a rotating gear 4, an ultraviolet light irradiation device 5, heat exchangers 8, 9, and 10, a blower fan 11, a drain pan 12, and an air outlet 13. , and a brush 15. The suction port 2 sucks indoor air as shown by the arrow. The filter 3 cleans the sucked air. Heat exchangers 8, 9, and 10 cool or heat the sucked air. The air outlet 13 discharges cooled or heated air into the room as shown by the arrow. The blower fan 11 creates a flow of air from the inlet 2 to the outlet 13.
 回転用歯車4およびブラシ15は、フィルタ3を清掃するために設けられており、フィルタ3を回転用歯車4で巻き取ることで、フィルタ3の付着物をブラシ15で除去している。ドレンパン12は、熱交換器8からの結露水を受ける。空気調和装置は、冷房運転または暖房運転を行う場合、熱交換器8,9,10を冷却または加熱することで、吹き出し口13から吹き出される空気の温度を調節して、室内の温度が適切に保っている。 The rotating gear 4 and the brush 15 are provided to clean the filter 3, and by winding up the filter 3 with the rotating gear 4, the brush 15 removes deposits on the filter 3. Drain pan 12 receives condensed water from heat exchanger 8 . When performing cooling operation or heating operation, the air conditioner adjusts the temperature of the air blown out from the outlet 13 by cooling or heating the heat exchangers 8, 9, and 10 to maintain an appropriate indoor temperature. It is kept in
 フィルタ3には、たとえばポリプロピレンの樹脂の網目状の構造が採用される。このフィルタ3に空気が通過する際、空気中の細菌、カビ、ウイルス、浮遊粒子などが捕捉され、フィルタ3の付着物となる。 The filter 3 employs a mesh structure made of polypropylene resin, for example. When air passes through this filter 3, bacteria, mold, viruses, floating particles, etc. in the air are captured and become deposits on the filter 3.
 実施の形態1に係る空気調和装置の室内機1には、フィルタ3の付着物に含まれる細菌、カビ、ウイルスなどの微生物を処理対象物とする紫外光照射装置5が設けられている。紫外光照射装置5は、中心波長を370nmとする長波長LED素子6と、中心波長を260nmとする短波長LED素子7と、を有している。紫外光照射装置5は、長波長LED素子6および短波長LED素子7からの紫外光を処理対象物に対して照射することで、細菌、カビ、ウイルスなどの微生物を殺菌、またはウイルスを不活化させる。なお、本開示では、細菌、カビ、ウイルスなどの微生物を殺菌、またはウイルスを不活化させる処理を、殺菌不活化処理とも言う。 The indoor unit 1 of the air conditioner according to the first embodiment is provided with an ultraviolet light irradiation device 5 that treats microorganisms such as bacteria, mold, and viruses contained in the deposits on the filter 3. The ultraviolet light irradiation device 5 includes a long wavelength LED element 6 with a center wavelength of 370 nm and a short wavelength LED element 7 with a center wavelength of 260 nm. The ultraviolet light irradiation device 5 sterilizes microorganisms such as bacteria, mold, and viruses or inactivates viruses by irradiating the object to be treated with ultraviolet light from a long wavelength LED element 6 and a short wavelength LED element 7. let In addition, in this disclosure, the process of sterilizing microorganisms such as bacteria, molds, and viruses or inactivating viruses is also referred to as sterilization and inactivation treatment.
 紫外光照射装置5では、紫外光を発光する発光素子としてLED(Light Emitting Diode)素子を採用している。しかし、これに限られず、紫外光を発光する発光素子であれば、たとえば半導体レーザなどの他の発光素子を紫外光照射装置5に採用してもよい。 The ultraviolet light irradiation device 5 employs an LED (Light Emitting Diode) element as a light emitting element that emits ultraviolet light. However, the present invention is not limited thereto, and other light emitting elements such as semiconductor lasers may be employed in the ultraviolet light irradiation device 5 as long as they emit ultraviolet light.
 図1に示す紫外光照射装置5では、図中左側に長波長LED素子6を、図中右側に短波長LED素子7をそれぞれ設置している。しかし、紫外光照射装置5は、これに限られず、図中左側に短波長LED素子7を、図中右側に長波長LED素子6をそれぞれ設置してもよい。また、図1に示す長波長LED素子6および短波長LED素子7は、それぞれ1個設置されているが、それぞれ複数個設置してもよい。たとえばフィルタ3が平板形状である場合、フィルタ3の短辺方向に沿って光を照射することができるように、長波長LED素子6および短波長LED素子7をフィルタ3の短辺方向に複数個設置する。 In the ultraviolet light irradiation device 5 shown in FIG. 1, a long wavelength LED element 6 is installed on the left side of the figure, and a short wavelength LED element 7 is installed on the right side of the figure. However, the ultraviolet light irradiation device 5 is not limited to this, and the short wavelength LED element 7 may be installed on the left side of the figure, and the long wavelength LED element 6 may be installed on the right side of the figure. Further, although one long wavelength LED element 6 and one short wavelength LED element 7 are each installed in FIG. 1, a plurality of each may be installed. For example, when the filter 3 has a flat plate shape, a plurality of long wavelength LED elements 6 and short wavelength LED elements 7 are provided in the short side direction of the filter 3 so that light can be irradiated along the short side direction of the filter 3. Install.
 長波長LED素子6は、中心波長(第1の波長)として370nmの紫外光(UV-A)を発光する第1の発光素子である。なお、長波長LED素子6は、中心波長において紫外光を発光しているが、発光する波長域の中に可視光を含んでもよい。短波長LED素子7は、中心波長(第2の波長)として260nmの紫外光(UV-C)を発光する第2の発光素子である。なお、短波長LED素子7は、中心波長において紫外光を発光しているが、発光する波長域の中に可視光を含んでもよい。また、短波長LED素子7の中心波長(第2の波長)は、長波長LED素子6の中心波長(第1の波長)より波長が短い。 The long wavelength LED element 6 is a first light emitting element that emits ultraviolet light (UV-A) with a center wavelength (first wavelength) of 370 nm. Note that although the long wavelength LED element 6 emits ultraviolet light at the center wavelength, the wavelength range in which it emits light may include visible light. The short wavelength LED element 7 is a second light emitting element that emits ultraviolet light (UV-C) with a center wavelength (second wavelength) of 260 nm. Although the short wavelength LED element 7 emits ultraviolet light at the center wavelength, the wavelength range in which it emits light may include visible light. Further, the center wavelength (second wavelength) of the short wavelength LED element 7 is shorter than the center wavelength (first wavelength) of the long wavelength LED element 6.
 一般的に、発光する波長が短い発光素子は、発光する波長が長い発光素子と比べ寿命が短いことが知られている。そのため、短波長LED素子7(第2の発光素子)の寿命は、長波長LED素子6(第1の発光素子)の寿命に比べて短い。短波長LED素子7と長波長LED素子6とを同じ時間点灯した場合、短波長LED素子7が先に寿命となり交換が必要となる。そこで、本開示に係る紫外光照射装置5では、後述するように長波長LED素子6および短波長LED素子7の点灯タイミング、点灯時間を工夫することで短波長LED素子7の交換頻度を減らし、長期間使用することができるようにしてある。 It is generally known that a light-emitting element that emits light at a shorter wavelength has a shorter lifespan than a light-emitting element that emits light at a longer wavelength. Therefore, the lifespan of the short wavelength LED element 7 (second light emitting element) is shorter than that of the long wavelength LED element 6 (first light emitting element). When the short wavelength LED element 7 and the long wavelength LED element 6 are turned on for the same period of time, the short wavelength LED element 7 reaches the end of its life first and needs to be replaced. Therefore, in the ultraviolet light irradiation device 5 according to the present disclosure, as will be described later, the lighting timing and lighting time of the long wavelength LED element 6 and the short wavelength LED element 7 are devised to reduce the frequency of replacing the short wavelength LED element 7. It is designed to be used for a long period of time.
 なお、以下の紫外光照射装置5では、第2の発光素子の第2の波長が第1の発光素子の第1の波長に比べて短いと説明するが、第2の発光素子の寿命が第1の発光素子の寿命に比べて短い関係にあれば、これに限定されず、第1の波長と第2の波長とが異なっていればよい。また、図1では、回転用歯車4およびブラシ15によるフィルタ3の清掃が行われておらず、紫外光照射装置5が駆動していない通常状態の室内機1が図示されている。 In addition, in the following ultraviolet light irradiation device 5, it will be explained that the second wavelength of the second light emitting element is shorter than the first wavelength of the first light emitting element. The first wavelength and the second wavelength may be different as long as they are shorter than the lifetime of the first light emitting element. Further, FIG. 1 shows the indoor unit 1 in a normal state where the filter 3 is not being cleaned by the rotating gear 4 and the brush 15 and the ultraviolet light irradiation device 5 is not being driven.
 <紫外光照射装置>
 次に、紫外光照射装置5の構成について詳しく説明する。図2は、実施の形態1に係る紫外光照射装置5の構成を示すブロック図である。紫外光照射装置は、長波長LED素子6、短波長LED素子7、電源回路51、および制御回路52を含む。電源回路51は、長波長LED素子6および短波長LED素子7に電流を供給する。制御回路52は、電源回路51を制御し、長波長LED素子6および短波長LED素子7の点灯タイミングおよび点灯時間を調整する。
<Ultraviolet light irradiation device>
Next, the configuration of the ultraviolet light irradiation device 5 will be explained in detail. FIG. 2 is a block diagram showing the configuration of the ultraviolet light irradiation device 5 according to the first embodiment. The ultraviolet light irradiation device includes a long wavelength LED element 6, a short wavelength LED element 7, a power supply circuit 51, and a control circuit 52. The power supply circuit 51 supplies current to the long wavelength LED element 6 and the short wavelength LED element 7. The control circuit 52 controls the power supply circuit 51 and adjusts the lighting timing and lighting time of the long wavelength LED element 6 and the short wavelength LED element 7.
 制御回路52は、室内機1の制御部100と通信可能に接続されている。そのため、制御回路52は、室内機1の制御部100から室内機1の運転状況を取得することができるとともに、制御部100に対して紫外光照射装置5の駆動状況を提供することができる。紫外光照射装置5は、室内機1の運転状況に合わせて、紫外光照射装置5を適切に駆動することができる。 The control circuit 52 is communicably connected to the control section 100 of the indoor unit 1. Therefore, the control circuit 52 can acquire the operating status of the indoor unit 1 from the control unit 100 of the indoor unit 1, and can also provide the driving status of the ultraviolet light irradiation device 5 to the control unit 100. The ultraviolet light irradiation device 5 can appropriately drive the ultraviolet light irradiation device 5 according to the operating status of the indoor unit 1.
 紫外光照射装置5は、記憶回路53をさらに含む。記憶回路53は、長波長LED素子6および短波長LED素子7の点灯タイミングおよび点灯時間を規定した点灯パターンを記憶する。なお、紫外光照射装置5は、点灯パターンを記憶する必要がなければ、記憶回路53を含まない構成であってもよい。 The ultraviolet light irradiation device 5 further includes a memory circuit 53. The storage circuit 53 stores a lighting pattern that defines the lighting timing and lighting time of the long wavelength LED element 6 and the short wavelength LED element 7. Note that the ultraviolet light irradiation device 5 may have a configuration that does not include the storage circuit 53 if there is no need to store the lighting pattern.
 <殺菌不活化処理>
 次に、回転用歯車4およびブラシ15によるフィルタ3の清掃が行われ、紫外光照射装置5が行う殺菌不活化処理について説明する。図3は、実施の形態1に係る空気調和装置の室内機1において、紫外光照射装置5の殺菌不活化処理を説明するための図である。まず、室内機1は、冷房運転または暖房運転を設定した時間(たとえば、10時間)行った場合、フィルタ3の清掃(長波長LED素子6および短波長LED素子7を点灯する殺菌不活化処理を含む)を開始する。具体的に、室内機1の制御部100は、回転用歯車4を動作させて、フィルタ3をブラシ15の方に移動させる。フィルタ3をブラシ15の方に移動させることで、ブラシ15にフィルタ3がこすられ、フィルタ3に付着した細菌、カビ、ウイルス、微粒子が除去される。フィルタ3には、ブラシ15で除去できなかった細菌、カビ、ウイルス、微粒子が残存している。
<Sterilization and inactivation treatment>
Next, the filter 3 is cleaned by the rotating gear 4 and the brush 15, and the sterilization and inactivation treatment performed by the ultraviolet light irradiation device 5 will be described. FIG. 3 is a diagram for explaining sterilization and inactivation processing of the ultraviolet light irradiation device 5 in the indoor unit 1 of the air conditioner according to the first embodiment. First, when the indoor unit 1 performs cooling operation or heating operation for a set period of time (for example, 10 hours), the indoor unit 1 performs cleaning of the filter 3 (sterilization and inactivation treatment of lighting up the long wavelength LED element 6 and short wavelength LED element 7). including). Specifically, the control unit 100 of the indoor unit 1 operates the rotation gear 4 to move the filter 3 toward the brush 15. By moving the filter 3 toward the brush 15, the filter 3 is rubbed by the brush 15, and bacteria, mold, viruses, and fine particles adhering to the filter 3 are removed. Bacteria, mold, viruses, and particulates that could not be removed by the brush 15 remain in the filter 3.
 フィルタ3に残存している細菌、カビ、ウイルスなどの微生物を殺菌、またはウイルスを不活化させる処理を行うため、紫外光照射装置5を駆動する。紫外光照射装置5は、フィルタ3の一方の端部が長波長LED素子6の図中上方に到達した場合、殺菌不活化処理を開始する。なお、回転用歯車4は、連続的に回転するのではなく、ステップ状に回転する。そのため、回転用歯車4をあらかじめ定めた角度回転するごとに、長波長LED素子6および短波長LED素子7の上方に位置するフィルタ3の範囲が移動する。長波長LED素子6および短波長LED素子7は、上方に位置するフィルタ3の範囲に対して適正な照射強度以上となる照射角で室内機1に固定されている。つまり、長波長LED素子6および短波長LED素子7は、フィルタ3の範囲(固体表面)に対して紫外光を照射できるように位置が固定されている。 In order to sterilize microorganisms such as bacteria, mold, and viruses remaining in the filter 3 or to inactivate viruses, the ultraviolet light irradiation device 5 is driven. The ultraviolet light irradiation device 5 starts the sterilization and inactivation process when one end of the filter 3 reaches above the long wavelength LED element 6 in the figure. Note that the rotation gear 4 does not rotate continuously, but rotates in steps. Therefore, each time the rotation gear 4 is rotated by a predetermined angle, the range of the filter 3 located above the long wavelength LED element 6 and the short wavelength LED element 7 moves. The long wavelength LED element 6 and the short wavelength LED element 7 are fixed to the indoor unit 1 at an irradiation angle that is equal to or higher than an appropriate irradiation intensity for the range of the filter 3 located above. That is, the positions of the long wavelength LED element 6 and the short wavelength LED element 7 are fixed so that they can irradiate the range (solid surface) of the filter 3 with ultraviolet light.
 まず、紫外光照射装置5は、一方の端部からあらかじめ定めた範囲のフィルタ3に対して殺菌不活化処理を行う。殺菌不活化処理での点灯パターンは記憶回路53にあらかじめ記憶されている。図4は、紫外光照射装置5の点灯パターンの一例を説明するための図である。図4の点灯パターンには、長波長LED素子6および短波長LED素子7の点灯タイミング、点灯時間が示されている。制御回路52は、開始時刻tに長波長LED素子6の点灯し、時間Taが経過した後に長波長LED素子6を消灯し、短波長LED素子7を点灯する。制御回路52は、短波長LED素子7を時間Tcの間点灯させた後、終了時刻tに消灯する。 First, the ultraviolet light irradiation device 5 performs a sterilization and inactivation process on the filter 3 within a predetermined range from one end. The lighting pattern for the sterilization and inactivation process is stored in advance in the memory circuit 53. FIG. 4 is a diagram for explaining an example of a lighting pattern of the ultraviolet light irradiation device 5. As shown in FIG. The lighting pattern in FIG. 4 shows the lighting timing and lighting time of the long wavelength LED element 6 and the short wavelength LED element 7. The control circuit 52 turns on the long wavelength LED element 6 at the start time t1 , turns off the long wavelength LED element 6 after the elapse of time Ta, and turns on the short wavelength LED element 7. The control circuit 52 turns on the short wavelength LED element 7 for a time Tc, and then turns off the light at end time t2 .
 その後、回転用歯車4が、反時計方向にあらかじめ定めた角度回転してフィルタ3を送り、長波長LED素子6および短波長LED素子7の上方の位置に新たに移動してきたフィルタ3の範囲に対して図4に示す点灯パターンでの殺菌不活化処理を行う。紫外光照射装置5は、フィルタ3の他方の端部が長波長LED素子6の図中上方に到達するまで、図4に示す点灯パターンでの殺菌不活化処理を繰り返す。 Thereafter, the rotation gear 4 rotates counterclockwise by a predetermined angle to send the filter 3 to the range where the filter 3 has newly moved to a position above the long wavelength LED element 6 and the short wavelength LED element 7. On the other hand, sterilization and inactivation treatment is performed using the lighting pattern shown in FIG. The ultraviolet light irradiation device 5 repeats the sterilization and inactivation process in the lighting pattern shown in FIG. 4 until the other end of the filter 3 reaches the upper part of the long wavelength LED element 6 in the figure.
 ここで、点灯パターンの全点灯時間Tは、時間Ta+時間Tcであり、回転用歯車4が、反時計方向にあらかじめ定めた角度回転してから、次にあらかじめ定めた角度回転するまでの時間以下である。また、点灯パターンの全点灯時間Tと、長波長LED素子6が点灯している時間Taおよび短波長LED素子7が点灯している時間Tcとは同じではなく、時間Taおよび時間Tcは、全点灯時間Tよりも短い。つまり、長波長LED素子6および短波長LED素子7は、全点灯時間T内において、それぞれ間欠的に点灯している。なお、長波長LED素子6は、全点灯時間T内において連続的に点灯してもよく、短波長LED素子7が少なくとも間欠的に点灯すれば、短波長LED素子7の交換頻度を抑えることができる。 Here, the total lighting time T of the lighting pattern is time Ta + time Tc, which is less than or equal to the time from when the rotating gear 4 rotates at a predetermined angle in the counterclockwise direction to when it rotates at the next predetermined angle. It is. Furthermore, the total lighting time T of the lighting pattern is not the same as the time Ta during which the long wavelength LED element 6 is lit and the time Tc during which the short wavelength LED element 7 is lit; It is shorter than the lighting time T. That is, the long wavelength LED element 6 and the short wavelength LED element 7 are each intermittently lit within the total lighting time T. Note that the long wavelength LED element 6 may be lit continuously within the total lighting time T, and if the short wavelength LED element 7 is lit at least intermittently, the frequency of replacement of the short wavelength LED element 7 can be suppressed. can.
 その後、フィルタ3の他方の端部が長波長LED素子6の上方に到達した場合、回転用歯車4は、時計回りに回転してフィルタ3を図1の状態になるまで戻してフィルタ3の清掃を終了し、紫外光照射装置5は、殺菌不活化処理を終了する。そして、室内機1は、冷房運転または暖房運転を行うことが可能となる。 Thereafter, when the other end of the filter 3 reaches above the long wavelength LED element 6, the rotation gear 4 rotates clockwise to return the filter 3 to the state shown in FIG. 1 and cleans the filter 3. The ultraviolet light irradiation device 5 then ends the sterilization and inactivation process. Then, the indoor unit 1 can perform cooling operation or heating operation.
 次に、長波長LED素子6のみを処理対象物に照射した場合の効果について説明する。図5は、長波長LED素子6の光を照射した場合の実験結果を示すグラフである。図5では、横軸を長波長LED素子6のみを連続点灯した場合の経過時間、縦軸をウイルスの不活化率としている。長波長LED素子6は、中心波長が370nmの場合と410nmの場合とを用意した。処理対象物のウイルスは、大腸菌に感染するファージであるφX174を用い、あらかじめフィルタ3に付着させて実験を行った。 Next, the effect when the object to be processed is irradiated with only the long wavelength LED element 6 will be explained. FIG. 5 is a graph showing experimental results when light from the long wavelength LED element 6 was irradiated. In FIG. 5, the horizontal axis represents the elapsed time when only the long wavelength LED element 6 is continuously lit, and the vertical axis represents the virus inactivation rate. The long wavelength LED element 6 was prepared in two cases, one with a center wavelength of 370 nm and the other with a center wavelength of 410 nm. The virus to be treated was φX174, which is a phage that infects Escherichia coli, and the experiment was conducted by attaching it to the filter 3 in advance.
 ウイルスの不活化率は、実験終了後に滅菌水でフィルタ3を洗い、洗った水を適宜希釈してプラーク法で定量化して求め、経過時間0sからのウイルスの減少数を対数で示している。図5では、長波長LED素子6の光を照射していないバックグラウンドの結果をバツ印(×)で示し、中心波長が370nmの長波長LED素子6の光を照射した結果を三角印(△)で示し、中心波長が410nmの長波長LED素子6の光を照射した結果を丸印(〇)で示している。 The virus inactivation rate was determined by washing the filter 3 with sterilized water after the experiment, diluting the washing water appropriately and quantifying it using the plaque method, and the number of virus reductions from the elapsed time of 0 seconds is shown as a logarithm. In FIG. 5, the results of the background without irradiation with the light of the long wavelength LED element 6 are shown with a cross mark (x), and the results of irradiation with the light of the long wavelength LED element 6 with a center wavelength of 370 nm are shown with the triangle mark (△). ), and the results of irradiation with light from the long wavelength LED element 6 having a center wavelength of 410 nm are indicated by circles (◯).
 図5に示す結果では、370nmの光を照射した場合、3000秒経過するまでにウイルスの不活化率が2桁、すなわち99%減少しているが、3000秒から更に時間が経過してもウイルスの不活化率にほとんど変化がないことが分かる。また、410nmの光を照射した場合、5000秒経過するまでにウイルスの不活化率が1桁減少しているが、5000秒から更に時間が経過してもウイルスの不活化率にほとんど変化がないことが分かる。 The results shown in Figure 5 show that when irradiated with 370 nm light, the virus inactivation rate decreased by two orders of magnitude, or 99%, by the time 3000 seconds passed, but even after 3000 seconds, the virus inactivation rate decreased by 99%. It can be seen that there is almost no change in the inactivation rate. Furthermore, when irradiated with 410 nm light, the virus inactivation rate decreased by one order of magnitude by the time 5000 seconds passed, but there was almost no change in the virus inactivation rate even after 5000 seconds passed. I understand that.
 このような現象は、紫外光の光回復効果として知られており、LED素子だけではなく、UVランプ等、他の光源でも発生することが知られている。メカニズムとしては微生物が持つ修復機構が働いているとされ、現時点で明確な解明がなされているわけではない。しかし、経過時間が長くなってもウイルスの不活化率を低下させることが困難であることは、図5に示す結果からも明らかである。そのため、さらにウイルスの不活化率を低下させたい場合、長波長LED素子6の光よりも波長の短い光をウイルスに照射する必要があることを示唆している。 Such a phenomenon is known as the photorecovery effect of ultraviolet light, and is known to occur not only in LED elements but also in other light sources such as UV lamps. The mechanism is thought to be based on a repair mechanism possessed by microorganisms, but the mechanism has not yet been clearly elucidated. However, it is clear from the results shown in FIG. 5 that it is difficult to reduce the virus inactivation rate even if the elapsed time becomes long. Therefore, it is suggested that if it is desired to further reduce the inactivation rate of the virus, it is necessary to irradiate the virus with light having a shorter wavelength than the light from the long wavelength LED element 6.
 次に、短波長LED素子7のみを処理対象物に照射した場合の効果について説明する。図6は、短波長LED素子の光を照射した場合の実験結果を示すグラフである。図6では、横軸を短波長LED素子7のみを連続点灯した場合の経過時間、縦軸をウイルスの不活化率としている。短波長LED素子7は、中心波長が260nmである。処理対象物のウイルスは、大腸菌に感染するファージであるφX174を用い、あらかじめフィルタ3に付着させて実験を行った。 Next, the effect when the object to be processed is irradiated with only the short wavelength LED element 7 will be explained. FIG. 6 is a graph showing experimental results when light from a short wavelength LED element is irradiated. In FIG. 6, the horizontal axis represents the elapsed time when only the short wavelength LED element 7 is continuously lit, and the vertical axis represents the virus inactivation rate. The short wavelength LED element 7 has a center wavelength of 260 nm. The virus to be treated was φX174, which is a phage that infects Escherichia coli, and the experiment was conducted by attaching it to the filter 3 in advance.
 ウイルスの不活化率は、実験終了後に滅菌水でフィルタ3を洗い、洗った水を適宜希釈してプラーク法で定量化して求め、経過時間0sからの減少数を対数で示している。図6では、中心波長が260nmの短波長LED素子7の光を照射した結果を四角印(□)で示している。 The virus inactivation rate was determined by washing the filter 3 with sterilized water after the experiment, diluting the washing water appropriately, and quantifying it using the plaque method, and the number of decreases from the elapsed time of 0 seconds is shown as a logarithm. In FIG. 6, the results of irradiation with light from the short wavelength LED element 7 having a center wavelength of 260 nm are indicated by square marks (□).
 図6に示す結果では、260nmの光を照射した場合、経過時間とともに指数関数的にウイルスの不活化率が減少しており、30秒経過するまでにウイルスの不活化率が3桁以上、すなわち99.9%以上減少していることが分かる。つまり、短波長LED素子の光を照射した場合、紫外光の光回復効果は見られるものの、ウイルスの不活化率を2桁以上減少させる効果を得ることができ、短波長LED素子7の点灯時間も短くて済むことが実験結果から分かった。 The results shown in Figure 6 show that when irradiated with 260 nm light, the virus inactivation rate decreases exponentially with the elapsed time, and by the time 30 seconds have passed, the virus inactivation rate has increased by three orders of magnitude or more, i.e. It can be seen that it has decreased by more than 99.9%. In other words, when irradiated with light from a short wavelength LED element, although the photorecovery effect of ultraviolet light is observed, the effect of reducing the virus inactivation rate by more than two orders of magnitude can be obtained, and the lighting time of the short wavelength LED element 7 Experimental results showed that the length can be shortened.
 図5および図6では、処理対象物として大腸菌に感染するファージの場合について実験を行ったが、ウイルスの種類が異なる場合、細菌、カビなどを対象とした場合などには、ウイルスの不活化率を2桁以上減少させるために要する時間が異なることが考えられる。そのため、紫外光照射装置5は、処理対象物の種類に応じて、あらかじめ実験を行い、長波長LED素子6および短波長LED素子7の点灯時間(Ta,Tc)を設定する。 In Figures 5 and 6, the experiment was conducted using a phage that infects Escherichia coli as the object to be treated, but when the target is a different type of virus, bacteria, mold, etc., the virus inactivation rate is It is conceivable that the time required to reduce by more than two orders of magnitude may differ. Therefore, the ultraviolet light irradiation device 5 conducts experiments in advance and sets the lighting times (Ta, Tc) of the long wavelength LED element 6 and the short wavelength LED element 7 depending on the type of the object to be treated.
 LED素子は、赤外光から紫外光までの光を発光できる素子が実用化されている。歴史的には、長波長の赤外光を発光できる素子から短波長の紫外光を発光できる素子へと開発が進んできている。そのため、各波長のLED素子を連続的に照射して寿命を比較すると、長波長の赤外光を発光できる素子の方が、短波長の紫外光を発光できる素子に比べて耐久性が高く、寿命が長いことが一般的に知られている。 As for LED elements, elements that can emit light from infrared light to ultraviolet light have been put into practical use. Historically, development has progressed from elements that can emit long-wavelength infrared light to elements that can emit short-wavelength ultraviolet light. Therefore, when we compare the lifespan of LED elements of each wavelength by continuously irradiating them, we find that elements that can emit long-wavelength infrared light are more durable than elements that can emit short-wavelength ultraviolet light. It is generally known to have a long lifespan.
 図5および図6の実験結果から、図4に示す長波長LED素子6を点灯する時間Taは、短波長LED素子7を点灯する時間Tcよりも長くすることでウイルスの不活化率を減少させることが分かる。たとえば、長波長LED素子6を点灯してウイルスの不活化率が99%まで減少する経過時間(たとえば、3000秒)を時間Taとし、短波長LED素子7を点灯してウイルスの不活化率が99.9%まで減少する経過時間(たとえば、10秒)を時間Tcと設定する。これにより、紫外光照射装置5は、全体として寿命が長くなり、LED素子の交換のためのメンテナンス頻度を少なくできる。ウイルスの不活化率を99.9%まで減少させるまでの時間を短くしたいのであれば、時間Taを短くして時間Tcを長くする点灯パターンを設定すれば実現することができる。この場合、短波長LED素子7の負担が大きくなるため、短波長LED素子7の寿命が若干短くなるので、紫外光照射装置5自体の寿命も短くなる。 From the experimental results shown in FIGS. 5 and 6, the virus inactivation rate can be reduced by making the time Ta for lighting the long wavelength LED element 6 shown in FIG. 4 longer than the time Tc for lighting the short wavelength LED element 7. I understand that. For example, the time Ta is the elapsed time (e.g., 3000 seconds) when the long wavelength LED element 6 is turned on and the virus inactivation rate decreases to 99%, and the short wavelength LED element 7 is turned on and the virus inactivation rate is decreased to 99%. The elapsed time (for example, 10 seconds) at which the amount decreases to 99.9% is set as time Tc. Thereby, the life of the ultraviolet light irradiation device 5 as a whole becomes longer, and the frequency of maintenance for replacing the LED elements can be reduced. If you want to shorten the time it takes to reduce the virus inactivation rate to 99.9%, you can achieve this by setting a lighting pattern that shortens the time Ta and lengthens the time Tc. In this case, since the load on the short wavelength LED element 7 increases, the life of the short wavelength LED element 7 is slightly shortened, and the life of the ultraviolet light irradiation device 5 itself is also shortened.
 なお、殺菌不活化処理において、回転用歯車4がステップ状に回転すると説明したが、連続的に回転させてもよい。この場合、紫外光照射装置5は、フィルタ3に対して殺菌不活化処理を十分行えるように、長波長LED素子6および短波長LED素子7の点灯時間をあらかじめ調整しておく必要がある。また、紫外光照射装置5は、回転用歯車4が反時計回りに回転している場合にフィルタ3に対して殺菌不活化処理を行っているが、フィルタ3を通常状態に戻すとき、すなわち回転用歯車4が時計回りに回転している場合に、フィルタ3に対して殺菌不活化処理を行ってもよい。この場合、紫外光照射装置5は、図1のように図中左側に長波長LED素子6を、図中右側に短波長LED素子7をそれぞれ設置するのではなく、逆の位置に設置した方が効率よく殺菌不活化処理を行うことができる。 In addition, in the sterilization and inactivation treatment, although it has been explained that the rotation gear 4 rotates in a stepwise manner, it may be rotated continuously. In this case, the ultraviolet light irradiation device 5 needs to adjust the lighting time of the long wavelength LED element 6 and the short wavelength LED element 7 in advance so that the filter 3 can be sufficiently sterilized and inactivated. Further, the ultraviolet light irradiation device 5 performs sterilization and inactivation processing on the filter 3 when the rotation gear 4 is rotating counterclockwise, but when returning the filter 3 to the normal state, that is, when the rotation gear 4 rotates counterclockwise, When the rotation gear 4 is rotating clockwise, the filter 3 may be subjected to sterilization and inactivation treatment. In this case, instead of installing the long wavelength LED element 6 on the left side of the figure and the short wavelength LED element 7 on the right side of the figure as shown in FIG. 1, the ultraviolet light irradiation device 5 should be installed in the opposite position. can perform sterilization and inactivation treatment efficiently.
 以上のように、実施の形態1に係る紫外光照射装置5は、細菌、カビ、ウイルスなどの微生物を処理対象物とする。紫外光照射装置5は、第1の波長の紫外光を発光する長波長LED素子6と、長波長LED素子6と異なる波長の第2の波長の紫外光を発光する短波長LED素子7と、長波長LED素子6および短波長LED素子7に電流を供給する電源回路51と、電源回路51を制御し、長波長LED素子6および短波長LED素子7の点灯タイミングおよび点灯時間を調整する制御回路52と、を備える。制御回路52は、長波長LED素子6を点灯後に短波長LED素子7を点灯し、長波長LED素子6の点灯時間を、短波長LED素子7の点灯時間よりも長くする。 As described above, the ultraviolet light irradiation device 5 according to Embodiment 1 treats microorganisms such as bacteria, mold, and viruses. The ultraviolet light irradiation device 5 includes a long wavelength LED element 6 that emits ultraviolet light of a first wavelength, and a short wavelength LED element 7 that emits ultraviolet light of a second wavelength that is different from the long wavelength LED element 6. A power supply circuit 51 that supplies current to the long wavelength LED element 6 and the short wavelength LED element 7, and a control circuit that controls the power supply circuit 51 and adjusts the lighting timing and lighting time of the long wavelength LED element 6 and the short wavelength LED element 7. 52. The control circuit 52 turns on the short wavelength LED element 7 after turning on the long wavelength LED element 6, and makes the lighting time of the long wavelength LED element 6 longer than the lighting time of the short wavelength LED element 7.
 これにより、実施の形態1に係る紫外光照射装置5は、長波長LED素子6を点灯後に短波長LED素子7を点灯し、長波長LED素子6の点灯時間を、短波長LED素子7の点灯時間よりも長くするので、細菌、カビ、ウイルスなどの微生物を殺菌不活化処理しつつ、紫外光を発光する短波長LED素子7の交換頻度を減らし、長期間使用することができる。 Thereby, the ultraviolet light irradiation device 5 according to the first embodiment lights up the short wavelength LED element 7 after lighting the long wavelength LED element 6, and changes the lighting time of the long wavelength LED element 6 to the lighting time of the short wavelength LED element 7. Since the time is longer than the time, it is possible to sterilize and inactivate microorganisms such as bacteria, mold, and viruses, while reducing the frequency of replacement of the short wavelength LED element 7 that emits ultraviolet light, and allowing it to be used for a long period of time.
 短波長LED素子7が発光する紫外光の第2の波長は、長波長LED素子6が発光する光の第1の波長よりも波長が短いことが好ましい。これにより、寿命の短い短波長LED素子7の点灯時間を減らして、交換頻度を減らすことができる。 The second wavelength of the ultraviolet light emitted by the short wavelength LED element 7 is preferably shorter than the first wavelength of the light emitted by the long wavelength LED element 6. Thereby, the lighting time of the short wavelength LED element 7, which has a short life span, can be reduced, and the frequency of replacement can be reduced.
 制御回路52は、短波長LED素子7が、少なくとも間欠的に点灯することが好ましい。これにより、寿命の短い短波長LED素子7の点灯時間を減らして、交換頻度を減らすことができる。 It is preferable that the control circuit 52 lights up the short wavelength LED element 7 at least intermittently. Thereby, the lighting time of the short wavelength LED element 7, which has a short life span, can be reduced, and the frequency of replacement can be reduced.
 長波長LED素子6および短波長LED素子7は、固体表面に対して光を照射できるように位置が固定されていることが好ましい。これにより、固体表面に付着した細菌、カビ、ウイルスなどの微生物を殺菌不活化処理することができる。 Preferably, the long wavelength LED element 6 and the short wavelength LED element 7 are fixed in position so that they can irradiate light onto the solid surface. Thereby, microorganisms such as bacteria, mold, and viruses attached to the solid surface can be sterilized and inactivated.
 紫外光照射装置5は、長波長LED素子6および短波長LED素子7の点灯タイミングおよび点灯時間を規定した点灯パターンを記憶する記憶回路53をさらに備え、制御回路52は、記憶回路53に記憶された点灯パターンに基づき、長波長LED素子6および短波長LED素子7の点灯タイミングおよび点灯時間を変更することが好ましい。これにより、殺菌不活化処理しつつ、長波長LED素子6および短波長LED素子7の長寿命化を実現することができる点灯タイミングおよび点灯時間に変更することができる。 The ultraviolet light irradiation device 5 further includes a memory circuit 53 that stores a lighting pattern that defines the lighting timing and lighting time of the long wavelength LED element 6 and the short wavelength LED element 7. It is preferable to change the lighting timing and lighting time of the long wavelength LED element 6 and the short wavelength LED element 7 based on the lighting pattern. Thereby, it is possible to change the lighting timing and lighting time so that the long-wavelength LED element 6 and the short-wavelength LED element 7 can have longer lives while performing sterilization and inactivation treatment.
 空気調和装置は、空気が通過するフィルタ3と、空気と冷媒との熱交換を行う熱交換器8,9,10と、水を受けるドレンパン12と、紫外光照射装置5と、を備え、紫外光照射装置5は、フィルタ3、熱交換器8,9,10、およびドレンパン12のうち少なくとも1つに向けて光を照射できるように長波長LED素子6および短波長LED素子7の位置を固定してあることが好ましい。これにより、フィルタ3、熱交換器8,9,10、およびドレンパン12のうち少なくとも1つに付着した細菌、カビ、ウイルスなどの微生物を殺菌不活化処理することができる。 The air conditioner includes a filter 3 through which air passes, heat exchangers 8, 9, and 10 that exchange heat between the air and a refrigerant, a drain pan 12 that receives water, and an ultraviolet light irradiation device 5. The light irradiation device 5 fixes the positions of the long wavelength LED element 6 and the short wavelength LED element 7 so that the light can be irradiated toward at least one of the filter 3, the heat exchangers 8, 9, and 10, and the drain pan 12. It is preferable that the Thereby, microorganisms such as bacteria, mold, and viruses attached to at least one of the filter 3, the heat exchangers 8, 9, and 10, and the drain pan 12 can be sterilized and inactivated.
 制御回路52は、設定した時間冷房運転または暖房運転をした後に長波長LED素子6および短波長LED素子7を点灯する制御を開始することが好ましい。これにより、定期的に殺菌不活化処理を実行することができる。 It is preferable that the control circuit 52 starts the control of lighting up the long wavelength LED element 6 and the short wavelength LED element 7 after performing the cooling operation or the heating operation for a set time. Thereby, sterilization and inactivation processing can be performed periodically.
 実施の形態2.
 実施の形態1に係る紫外光照射装置5は、フィルタ3に付着した細菌、カビ、ウイルスなどの微生物を殺菌不活化処理すると説明した。実施の形態2に係る紫外光照射装置では、フィルタだけでなくドレンパンに付着した細菌、カビ、ウイルスなどの微生物を殺菌不活化処理する構成について説明する。図7は、実施の形態2に係る空気調和装置の室内機1の側面断面図である。なお、実施の形態2に係る室内機1において、実施の形態1に係る室内機1と同じ構成については同じ符号を付して詳しい説明を繰り返さない。
Embodiment 2.
It has been explained that the ultraviolet light irradiation device 5 according to the first embodiment sterilizes and inactivates microorganisms such as bacteria, mold, and viruses that adhere to the filter 3. In the ultraviolet light irradiation device according to the second embodiment, a configuration for sterilizing and inactivating microorganisms such as bacteria, mold, and viruses attached not only to the filter but also to the drain pan will be described. FIG. 7 is a side sectional view of the indoor unit 1 of the air conditioner according to the second embodiment. In the indoor unit 1 according to the second embodiment, the same components as the indoor unit 1 according to the first embodiment are given the same reference numerals, and detailed description thereof will not be repeated.
 図7に示す紫外光照射装置5では、ドレンパン12に向けて光を照射できるように長波長LED素子6aおよび短波長LED素子7aが追加されている。長波長LED素子6aは、長波長LED素子6と同じ中心波長が370nmの紫外光を発光し、短波長LED素子7aは、短波長LED素子7と同じ中心波長が260nmの紫外光を発光する。ドレンパン12は、図中の奥行き方向に長い形状であるため、当該方向に長波長LED素子6aおよび短波長LED素子7aを複数個設けてある。これにより、ドレンパン12の全体に対して長波長LED素子6aおよび短波長LED素子7aからの紫外光を照射することができる。 In the ultraviolet light irradiation device 5 shown in FIG. 7, a long wavelength LED element 6a and a short wavelength LED element 7a are added so that light can be irradiated toward the drain pan 12. The long wavelength LED element 6a emits ultraviolet light having the same center wavelength as the long wavelength LED element 6 at 370 nm, and the short wavelength LED element 7a emits ultraviolet light having the same center wavelength as the short wavelength LED element 7 at 260 nm. Since the drain pan 12 has a long shape in the depth direction in the figure, a plurality of long wavelength LED elements 6a and a plurality of short wavelength LED elements 7a are provided in this direction. Thereby, the entire drain pan 12 can be irradiated with ultraviolet light from the long wavelength LED element 6a and the short wavelength LED element 7a.
 空気調和装置が冷房運転を実施している場合、熱交換器8が結露し、結露した水がドレンパン12へ流れ落ちてドレンパン12の底面部分に滞留する。ドレンパン12の底面部分に水が溜まることで細菌、カビなどが増殖したり、ウイルスが堆積したりする。そこで、紫外光照射装置5では、ドレンパン12の底面部分に対して、適正な照射強度以上となる照射角で長波長LED素子6aおよび短波長LED素子7aを室内機1に固定している。そのため、紫外光照射装置5は、ドレンパン12の底面部分に長波長LED素子6aおよび短波長LED素子7aからの紫外光を照射して、細菌、カビ、ウイルスなどの微生物を殺菌、またはウイルスを不活化させる処理を行うことができる。 When the air conditioner is performing cooling operation, the heat exchanger 8 condenses, and the condensed water flows down to the drain pan 12 and stays at the bottom of the drain pan 12. When water accumulates at the bottom of the drain pan 12, bacteria, mold, etc. multiply, and viruses accumulate. Therefore, in the ultraviolet light irradiation device 5, the long wavelength LED element 6a and the short wavelength LED element 7a are fixed to the indoor unit 1 at an irradiation angle that is equal to or higher than the appropriate irradiation intensity with respect to the bottom surface of the drain pan 12. Therefore, the ultraviolet light irradiation device 5 irradiates the bottom part of the drain pan 12 with ultraviolet light from the long wavelength LED element 6a and the short wavelength LED element 7a to sterilize microorganisms such as bacteria, mold, and viruses, or to eliminate viruses. Activation treatment can be performed.
 紫外光照射装置5は、ドレンパン12に対する殺菌不活化処理を、実施の形態1で説明したフィルタ3に対する殺菌不活化処理と同じ時期に実施してもよい。または、紫外光照射装置5は、フィルタ3に対する殺菌不活化処理とは別に、たとえば、一日に一回など定期的にドレンパン12に対する殺菌不活化処理を行ってもよい。 The ultraviolet light irradiation device 5 may perform the sterilization and inactivation treatment on the drain pan 12 at the same time as the sterilization and inactivation treatment on the filter 3 described in the first embodiment. Alternatively, the ultraviolet light irradiation device 5 may perform a sterilization and inactivation process on the drain pan 12 periodically, for example, once a day, in addition to the sterilization and inactivation process on the filter 3.
 紫外光照射装置5は、長波長LED素子6aおよび短波長LED素子7aを用いてドレンパン12に対して殺菌不活化処理を行う場合も、長波長LED素子6aを点灯後に短波長LED素子7aを点灯し、長波長LED素子6aの点灯時間を、短波長LED素子7aの点灯時間よりも長くする。具体的に、制御回路52は、まず長波長LED素子6aをウイルスの不活化率が2桁減少するまでの時間(たとえば、3000秒)点灯し、その後消灯し、次に短波長LED素子7aをウイルスの不活化率が3桁以下に減少するまでの時間(たとえば、15秒)点灯し、その後消灯する。 Even when performing sterilization and inactivation treatment on the drain pan 12 using the long wavelength LED element 6a and the short wavelength LED element 7a, the ultraviolet light irradiation device 5 lights up the short wavelength LED element 7a after lighting the long wavelength LED element 6a. However, the lighting time of the long wavelength LED element 6a is made longer than the lighting time of the short wavelength LED element 7a. Specifically, the control circuit 52 first turns on the long wavelength LED element 6a for a period of time until the virus inactivation rate decreases by two digits (for example, 3000 seconds), then turns off the light, and then turns on the short wavelength LED element 7a. The light is turned on for a period of time (for example, 15 seconds) until the virus inactivation rate decreases to three digits or less, and then the light is turned off.
 以上のように、実施の形態2に係る紫外光照射装置5は、長波長LED素子6aおよび短波長LED素子7aを前述のように点灯させることで、ドレンパン12の細菌、カビ、ウイルスなどの微生物を殺菌不活化処理しつつ、紫外光を発光する短波長LED素子7aの交換頻度を減らし、長期間使用することができる。 As described above, the ultraviolet light irradiation device 5 according to the second embodiment can remove microorganisms such as bacteria, mold, and viruses in the drain pan 12 by lighting the long wavelength LED element 6a and the short wavelength LED element 7a as described above. While performing sterilization and inactivation treatment, the frequency of replacement of the short wavelength LED element 7a that emits ultraviolet light can be reduced, and it can be used for a long period of time.
 実施の形態3.
 実施の形態3に係る紫外光照射装置では、フィルタだけでなく熱交換器に付着した細菌、カビ、ウイルスなどの微生物を殺菌不活化処理する構成について説明する。図8は、実施の形態3に係る空気調和装置の室内機の側面断面図である。なお、実施の形態3に係る室内機1において、実施の形態1に係る室内機1と同じ構成については同じ符号を付して詳しい説明を繰り返さない。
Embodiment 3.
In the ultraviolet light irradiation device according to the third embodiment, a configuration for sterilizing and inactivating microorganisms such as bacteria, mold, and viruses attached not only to the filter but also to the heat exchanger will be described. FIG. 8 is a side sectional view of an indoor unit of an air conditioner according to Embodiment 3. In addition, in the indoor unit 1 according to the third embodiment, the same components as the indoor unit 1 according to the first embodiment are given the same reference numerals, and detailed description thereof will not be repeated.
 図8に示す紫外光照射装置5では、熱交換器8と一体化して長波長LED素子6bおよび短波長LED素子7bが設けられ、熱交換器9と一体化して長波長LED素子6cおよび短波長LED素子7cが設けられ、熱交換器10と一体化して長波長LED素子6dおよび短波長LED素子7dが設けられている。 In the ultraviolet light irradiation device 5 shown in FIG. 8, a long wavelength LED element 6b and a short wavelength LED element 7b are provided integrally with the heat exchanger 8, and a long wavelength LED element 6c and a short wavelength LED element 7b are provided integrally with the heat exchanger 9. An LED element 7c is provided, and integrated with the heat exchanger 10, a long wavelength LED element 6d and a short wavelength LED element 7d are provided.
 長波長LED素子6b~6dは、長波長LED素子6と同じ中心波長が370nmの紫外光を発光し、短波長LED素子7b~7dは、短波長LED素子7と同じ中心波長が260nmの紫外光を発光する。熱交換器8,9,10は、図中の奥行き方向に長い形状であるため、当該方向に長波長LED素子6b~6dおよび短波長LED素子7b~7dを複数個設けてある。また、熱交換器8,9,10は、長波長LED素子6b~6dおよび短波長LED素子7b~7dを一体化するため、たとえばアルミ、鉄などの金属系の熱伝導性の高い材料に長波長LED素子6b~6dおよび短波長LED素子7b~7dを取り付けてある。そして、長波長LED素子6b~6dおよび短波長LED素子7b~7dは、熱交換器8,9,10の全体に対して紫外光を照射できるように熱交換器8,9,10に固定されている。 The long wavelength LED elements 6b to 6d emit ultraviolet light having the same center wavelength as the long wavelength LED element 6 of 370 nm, and the short wavelength LED elements 7b to 7d emit ultraviolet light having the same center wavelength as the short wavelength LED element 7 of 260 nm. emits light. Since the heat exchangers 8, 9, and 10 have a long shape in the depth direction in the figure, a plurality of long wavelength LED elements 6b to 6d and a plurality of short wavelength LED elements 7b to 7d are provided in this direction. Furthermore, in order to integrate the long wavelength LED elements 6b to 6d and the short wavelength LED elements 7b to 7d, the heat exchangers 8, 9, and 10 are made of a highly thermally conductive metal material such as aluminum or iron. Wavelength LED elements 6b to 6d and short wavelength LED elements 7b to 7d are attached. The long wavelength LED elements 6b to 6d and the short wavelength LED elements 7b to 7d are fixed to the heat exchangers 8, 9, and 10 so that the entire heat exchangers 8, 9, and 10 can be irradiated with ultraviolet light. ing.
 紫外光照射装置5は、熱交換器8,9,10に対する殺菌不活化処理を、実施の形態1で説明したフィルタ3に対する殺菌不活化処理と同じ時期に実施してもよい。または、紫外光照射装置5は、フィルタ3に対する殺菌不活化処理とは別に、たとえば、一日に一回など定期的に熱交換器8,9,10に対する殺菌不活化処理を行ってもよい。 The ultraviolet light irradiation device 5 may perform the sterilization and inactivation treatment on the heat exchangers 8, 9, and 10 at the same time as the sterilization and inactivation treatment on the filter 3 described in the first embodiment. Alternatively, the ultraviolet light irradiation device 5 may perform sterilization and inactivation processing on the heat exchangers 8, 9, and 10 periodically, for example, once a day, in addition to the sterilization and inactivation processing on the filter 3.
 紫外光照射装置5は、長波長LED素子6b~6dおよび短波長LED素子7b~7dを用いて熱交換器8,9,10に対して殺菌不活化処理を行う場合も、長波長LED素子6b~6dを点灯後に短波長LED素子7b~7dを点灯し、長波長LED素子6b~6dの点灯時間を、短波長LED素子7b~7dの点灯時間よりも長くする。具体的に、制御回路52は、まず長波長LED素子6b~6dをウイルスの不活化率が2桁減少するまでの時間(たとえば、3000秒)点灯し、その後消灯し、次に短波長LED素子7b~7dをウイルスの不活化率が3桁以下に減少するまでの時間(たとえば、15秒)点灯し、その後消灯する。 The ultraviolet light irradiation device 5 also uses the long wavelength LED elements 6b to 6d and the short wavelength LED elements 7b to 7d to sterilize and inactivate the heat exchangers 8, 9, and 10. 6d are turned on, the short wavelength LED elements 7b to 7d are turned on, and the lighting time of the long wavelength LED elements 6b to 6d is made longer than the lighting time of the short wavelength LED elements 7b to 7d. Specifically, the control circuit 52 first turns on the long wavelength LED elements 6b to 6d for a period of time until the virus inactivation rate decreases by two digits (for example, 3000 seconds), then turns them off, and then turns on the short wavelength LED elements 6b to 6d. 7b to 7d are turned on for a period of time (for example, 15 seconds) until the virus inactivation rate decreases to three digits or less, and then turned off.
 なお、紫外光照射装置5が、熱交換器8,9,10に対して殺菌不活化処理を行う場合、熱交換器8,9,10をあらかじめ冷却しておくことが好ましい。熱交換器8,9,10をあらかじめ冷却しておくことで、一体化してある長波長LED素子6b~6dおよび短波長LED素子7b~7dも冷却される。長波長LED素子6b~6dおよび短波長LED素子7b~7dは光を発光することで発熱するが、熱交換器8,9,10により長波長LED素子6b~6dおよび短波長LED素子7b~7dを冷却することで、長波長LED素子6b~6dおよび短波長LED素子7b~7dの寿命を長くすることができる。 Note that when the ultraviolet light irradiation device 5 performs sterilization and inactivation treatment on the heat exchangers 8, 9, and 10, it is preferable to cool the heat exchangers 8, 9, and 10 in advance. By cooling the heat exchangers 8, 9, and 10 in advance, the integrated long wavelength LED elements 6b to 6d and short wavelength LED elements 7b to 7d are also cooled. The long wavelength LED elements 6b to 6d and the short wavelength LED elements 7b to 7d generate heat by emitting light, and the heat exchangers 8, 9, and 10 generate heat. By cooling, the lifetimes of the long wavelength LED elements 6b to 6d and the short wavelength LED elements 7b to 7d can be extended.
 以上のように、実施の形態3に係る紫外光照射装置5は、長波長LED素子6b~6dおよび短波長LED素子7b~7dを前述のように点灯させることで、熱交換器8,9,10の細菌、カビ、ウイルスなどの微生物を殺菌不活化処理しつつ、長波長LED素子6b~6dおよび短波長LED素子7b~7dも冷却することで、長波長LED素子6b~6dおよび短波長LED素子7b~7dの交換頻度を減らし、長期間使用することができる。なお、図8に示す紫外光照射装置5では、長波長LED素子6b~6dおよび短波長LED素子7b~7dが熱交換器8,9,10に一体化される構成であると説明したが、長波長LED素子6b~6dおよび短波長LED素子7b~7dが熱交換器8,9,10に一体化されない構成でも、また長波長LED素子6b~6dおよび短波長LED素子7b~7dのうち少なくとも一つが熱交換器8,9,10に一体化される構成でもよい。 As described above, the ultraviolet light irradiation device 5 according to the third embodiment lights up the heat exchangers 8, 9, The long wavelength LED elements 6b to 6d and the short wavelength LED elements 7b to 7d are also cooled while sterilizing and inactivating microorganisms such as bacteria, molds, and viruses as described in 10 above. The frequency of replacement of the elements 7b to 7d can be reduced and they can be used for a long period of time. It has been explained that the ultraviolet light irradiation device 5 shown in FIG. 8 has a configuration in which the long wavelength LED elements 6b to 6d and the short wavelength LED elements 7b to 7d are integrated into the heat exchangers 8, 9, and 10. Even in a configuration in which the long wavelength LED elements 6b to 6d and the short wavelength LED elements 7b to 7d are not integrated into the heat exchangers 8, 9, and 10, at least one of the long wavelength LED elements 6b to 6d and the short wavelength LED elements 7b to 7d One may be integrated into the heat exchangers 8, 9, and 10.
 実施の形態4.
 実施の形態1に係る紫外光照射装置5では、熱交換器8,9,10の停止中に、フィルタ3に付着した細菌、カビ、ウイルスなどの微生物を殺菌不活化処理すると説明した。実施の形態4に係る紫外光照射装置では、ウイルスは50℃以上の熱に弱いことに着目して、熱交換器を加熱させつつ、フィルタ3に付着した細菌、カビ、ウイルスなどの微生物を殺菌不活化処理する。なお、実施の形態4に係る室内機の構成は、図1に示す室内機1と同じであるので詳しい説明を繰り返さない。
Embodiment 4.
It has been explained that in the ultraviolet light irradiation device 5 according to the first embodiment, microorganisms such as bacteria, mold, and viruses adhering to the filter 3 are sterilized and inactivated while the heat exchangers 8, 9, and 10 are stopped. The ultraviolet light irradiation device according to the fourth embodiment sterilizes microorganisms such as bacteria, mold, and viruses attached to the filter 3 while heating the heat exchanger, focusing on the fact that viruses are sensitive to heat of 50° C. or higher. Inactivate. Note that the configuration of the indoor unit according to Embodiment 4 is the same as the indoor unit 1 shown in FIG. 1, so detailed description will not be repeated.
 実施の形態4に係る紫外光照射装置5は、殺菌不活化処理を行う場合、熱交換器8,9,10を加熱し、室内機1の内部の温度を50℃以上にした後、長波長LED素子6および短波長LED素子7を点灯してフィルタ3に付着した細菌、カビ、ウイルスなどの微生物を殺菌不活化処理する。なお、長波長LED素子6および短波長LED素子7は、高温状態で駆動することで寿命が短くなるので、室内機1の内部の温度を60℃以下に抑えることが望ましい。 When performing sterilization and inactivation treatment, the ultraviolet light irradiation device 5 according to the fourth embodiment heats the heat exchangers 8, 9, and 10 to raise the temperature inside the indoor unit 1 to 50° C. or higher, and then irradiates with long wavelength light. The LED element 6 and the short wavelength LED element 7 are turned on to sterilize and inactivate microorganisms such as bacteria, mold, and viruses attached to the filter 3. Note that the long wavelength LED element 6 and the short wavelength LED element 7 have a short lifespan when driven in a high temperature state, so it is desirable to suppress the temperature inside the indoor unit 1 to 60° C. or less.
 実施の形態4に係る紫外光照射装置5は、熱交換器8,9,10を加熱した状態で、長波長LED素子6および短波長LED素子7を用いてフィルタ3に対して殺菌不活化処理を行う場合も、長波長LED素子6を点灯後に短波長LED素子7を点灯し、長波長LED素子6の点灯時間を、短波長LED素子7の点灯時間よりも長くする。具体的に、制御回路52は、まず長波長LED素子6をウイルスの不活化率が2桁減少するまでの時間(たとえば、3000秒)点灯し、その後消灯し、次に短波長LED素子7をウイルスの不活化率が3桁以下に減少するまでの時間(たとえば、15秒)点灯し、その後消灯する。 The ultraviolet light irradiation device 5 according to the fourth embodiment performs sterilization and inactivation treatment on the filter 3 using the long wavelength LED element 6 and the short wavelength LED element 7 while the heat exchangers 8, 9, and 10 are heated. In this case, the short wavelength LED element 7 is turned on after the long wavelength LED element 6 is turned on, and the lighting time of the long wavelength LED element 6 is made longer than the lighting time of the short wavelength LED element 7. Specifically, the control circuit 52 first turns on the long wavelength LED element 6 for a period of time until the virus inactivation rate decreases by two digits (for example, 3000 seconds), then turns off the light, and then turns on the short wavelength LED element 7. The light is turned on for a period of time (for example, 15 seconds) until the virus inactivation rate decreases to three digits or less, and then the light is turned off.
 以上のように、実施の形態4に係る紫外光照射装置5は、長波長LED素子6aおよび短波長LED素子7aを前述のように点灯させることで、熱交換器8,9,10を加熱するので、細菌、カビ、ウイルスなどの微生物を殺菌不活化処理する時間を短縮でき、紫外光を発光する短波長LED素子7aの交換頻度を減らし、長期間使用することができる。 As described above, the ultraviolet light irradiation device 5 according to the fourth embodiment heats the heat exchangers 8, 9, and 10 by lighting the long wavelength LED element 6a and the short wavelength LED element 7a as described above. Therefore, the time required to sterilize and inactivate microorganisms such as bacteria, mold, and viruses can be shortened, and the frequency of replacing the short wavelength LED element 7a that emits ultraviolet light can be reduced, allowing long-term use.
 なお、前述の実施の形態では、フィルタ3のみに対しLED素子の紫外光を照射する構成、フィルタ3およびドレンパン12のみに対しLED素子の紫外光を照射する構成、フィルタ3および熱交換器8,9,10のみに対しLED素子の紫外光を照射する構成について説明した。しかし、これに限られず、紫外光照射装置5は、フィルタ3、ドレンパン12、および熱交換器8,9,10のうち少なくとも1つに対しLED素子の紫外光を照射する構成であってもよい。 In the above-described embodiments, only the filter 3 is irradiated with the ultraviolet light of the LED element, the filter 3 and the drain pan 12 are only irradiated with the ultraviolet light of the LED element, the filter 3 and the heat exchanger 8, A configuration in which only LED elements 9 and 10 are irradiated with ultraviolet light has been described. However, the present invention is not limited to this, and the ultraviolet light irradiation device 5 may be configured to irradiate at least one of the filter 3, the drain pan 12, and the heat exchangers 8, 9, and 10 with ultraviolet light from an LED element. .
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be illustrative in all respects and not restrictive. The scope of the present disclosure is indicated by the claims rather than the above description, and it is intended that all changes within the meaning and range equivalent to the claims are included.
 1 室内機、2 吸い込み口、3 フィルタ、4 回転用歯車、5 紫外光照射装置、6,6a~6d 長波長LED素子、7,7a~7d 短波長LED素子、8,9,10 熱交換器、11 送風ファン、12 ドレンパン、13 吹き出し口、15 ブラシ、51 電源回路、52 制御回路、53 記憶回路、100 制御部。 1 Indoor unit, 2 Suction port, 3 Filter, 4 Rotating gear, 5 Ultraviolet light irradiation device, 6, 6a to 6d Long wavelength LED element, 7, 7a to 7d Short wavelength LED element, 8, 9, 10 Heat exchanger , 11 blower fan, 12 drain pan, 13 air outlet, 15 brush, 51 power supply circuit, 52 control circuit, 53 memory circuit, 100 control unit.

Claims (9)

  1.  細菌、カビ、ウイルスなどの微生物を処理対象物とする紫外光照射装置であって、
     第1の波長の紫外光を発光する第1の発光素子と、
     前記第1の波長と異なる波長の第2の波長の紫外光を発光する第2の発光素子と、
     前記第1の発光素子および前記第2の発光素子に電流を供給する電源回路と、
     前記電源回路を制御し、前記第1の発光素子および前記第2の発光素子の点灯タイミングおよび点灯時間を調整する制御回路と、を備え、
     前記制御回路は、
      前記第1の発光素子を点灯後に前記第2の発光素子を点灯し、
      前記第1の発光素子の点灯時間を、前記第2の発光素子の点灯時間よりも長くする、紫外光照射装置。
    An ultraviolet light irradiation device that treats microorganisms such as bacteria, mold, and viruses,
    a first light emitting element that emits ultraviolet light of a first wavelength;
    a second light emitting element that emits ultraviolet light of a second wavelength different from the first wavelength;
    a power supply circuit that supplies current to the first light emitting element and the second light emitting element;
    a control circuit that controls the power supply circuit and adjusts lighting timing and lighting time of the first light emitting element and the second light emitting element,
    The control circuit includes:
    lighting the second light emitting element after lighting the first light emitting element;
    An ultraviolet light irradiation device, wherein the lighting time of the first light emitting element is longer than the lighting time of the second light emitting element.
  2.  前記第2の発光素子が発光する紫外光の前記第2の波長は、前記第1の発光素子が発光する光の前記第1の波長よりも波長が短い、請求項1に記載の紫外光照射装置。 The ultraviolet light irradiation according to claim 1, wherein the second wavelength of the ultraviolet light emitted by the second light emitting element is shorter than the first wavelength of the light emitted by the first light emitting element. Device.
  3.  前記制御回路は、
      前記第2の発光素子が少なくとも間欠的に点灯する、請求項1または請求項2に記載の紫外光照射装置。
    The control circuit includes:
    The ultraviolet light irradiation device according to claim 1 or 2, wherein the second light emitting element lights up at least intermittently.
  4.  前記第1の発光素子および前記第2の発光素子は、固体表面に対して光を照射できるように位置が固定されている、請求項1~請求項3のいずれか1項に記載の紫外光照射装置。 The ultraviolet light according to any one of claims 1 to 3, wherein the first light emitting element and the second light emitting element are fixed in position so that they can irradiate light onto a solid surface. Irradiation device.
  5.  前記第1の発光素子および前記第2の発光素子の点灯タイミングおよび点灯時間を規定した点灯パターンを記憶する記憶回路をさらに備え、
     前記制御回路は、前記記憶回路に記憶された点灯パターンに基づき、前記第1の発光素子および前記第2の発光素子の点灯タイミングおよび点灯時間を変更する、請求項1~請求項4のいずれか1項に記載の紫外光照射装置。
    further comprising a memory circuit that stores a lighting pattern that defines lighting timing and lighting time of the first light emitting element and the second light emitting element,
    Any one of claims 1 to 4, wherein the control circuit changes the lighting timing and lighting time of the first light emitting element and the second light emitting element based on a lighting pattern stored in the storage circuit. The ultraviolet light irradiation device according to item 1.
  6.  空気が通過するフィルタと、
     空気と冷媒との熱交換を行う熱交換器と、
     水を受けるドレンパンと、
     請求項1~請求項5のいずれか1項に記載の前記紫外光照射装置と、を備え、
     前記紫外光照射装置は、
      前記フィルタ、前記熱交換器、および前記ドレンパンのうち少なくとも1つに向けて光を照射できるように前記第1の発光素子および前記第2の発光素子の位置を固定してある、空気調和装置。
    a filter through which air passes;
    A heat exchanger that exchanges heat between air and refrigerant;
    A drain pan to catch water,
    The ultraviolet light irradiation device according to any one of claims 1 to 5,
    The ultraviolet light irradiation device includes:
    An air conditioner, wherein the positions of the first light emitting element and the second light emitting element are fixed so that light can be irradiated toward at least one of the filter, the heat exchanger, and the drain pan.
  7.  前記制御回路は、設定した時間冷房運転または暖房運転をした後に前記第1の発光素子および前記第2の発光素子を点灯する制御を開始する、請求項6に記載の空気調和装置。 The air conditioner according to claim 6, wherein the control circuit starts controlling to light up the first light emitting element and the second light emitting element after performing cooling operation or heating operation for a set time.
  8.  前記第1の発光素子および前記第2の発光素子のうち少なくとも一方は、前記熱交換器と一体化されており、
     前記熱交換器と一体化した発光素子を点灯する場合、前記制御回路は、前記熱交換器により前記発光素子を冷却する、請求項6または請求項7に記載の空気調和装置。
    At least one of the first light emitting element and the second light emitting element is integrated with the heat exchanger,
    8. The air conditioner according to claim 6, wherein when lighting a light emitting element integrated with the heat exchanger, the control circuit cools the light emitting element with the heat exchanger.
  9.  前記フィルタおよび前記ドレンパンの少なくとも一方に対し、前記第1の発光素子および前記第2の発光素子のうち少なくとも一方を点灯する場合、前記熱交換器により加熱する、請求項6~請求項8のいずれか1項に記載の空気調和装置。 Any one of claims 6 to 8, wherein at least one of the filter and the drain pan is heated by the heat exchanger when at least one of the first light emitting element and the second light emitting element is turned on. The air conditioner according to item 1.
PCT/JP2022/020818 2022-05-19 2022-05-19 Ultraviolet light irradiation device and air conditioning device including same WO2023223496A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022561552A JP7286034B1 (en) 2022-05-19 2022-05-19 Ultraviolet light irradiation device and air conditioner using the same
PCT/JP2022/020818 WO2023223496A1 (en) 2022-05-19 2022-05-19 Ultraviolet light irradiation device and air conditioning device including same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/020818 WO2023223496A1 (en) 2022-05-19 2022-05-19 Ultraviolet light irradiation device and air conditioning device including same

Publications (1)

Publication Number Publication Date
WO2023223496A1 true WO2023223496A1 (en) 2023-11-23

Family

ID=86547681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020818 WO2023223496A1 (en) 2022-05-19 2022-05-19 Ultraviolet light irradiation device and air conditioning device including same

Country Status (2)

Country Link
JP (1) JP7286034B1 (en)
WO (1) WO2023223496A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016200290A (en) * 2015-04-07 2016-12-01 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner
JP2018069029A (en) * 2016-08-24 2018-05-10 ザ・ボーイング・カンパニーThe Boeing Company Multi-wavelength ultraviolet light sanitizing systems and methods
JP2021055892A (en) * 2019-09-30 2021-04-08 ダイキン工業株式会社 Air conditioner
WO2021101431A1 (en) * 2019-11-18 2021-05-27 Lightlab Sweden Ab A system for treating a surface comprising an ultraviolet lighting arrangement
JP2022041879A (en) * 2020-09-01 2022-03-11 ウシオ電機株式会社 Illumination device with bacterial or viral inactivation function

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010058607A1 (en) * 2008-11-21 2012-04-19 国立大学法人徳島大学 UV sterilizer for outdoor water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016200290A (en) * 2015-04-07 2016-12-01 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner
JP2018069029A (en) * 2016-08-24 2018-05-10 ザ・ボーイング・カンパニーThe Boeing Company Multi-wavelength ultraviolet light sanitizing systems and methods
JP2021055892A (en) * 2019-09-30 2021-04-08 ダイキン工業株式会社 Air conditioner
WO2021101431A1 (en) * 2019-11-18 2021-05-27 Lightlab Sweden Ab A system for treating a surface comprising an ultraviolet lighting arrangement
JP2022041879A (en) * 2020-09-01 2022-03-11 ウシオ電機株式会社 Illumination device with bacterial or viral inactivation function

Also Published As

Publication number Publication date
JPWO2023223496A1 (en) 2023-11-23
JP7286034B1 (en) 2023-06-02

Similar Documents

Publication Publication Date Title
US20090098014A1 (en) Structure and Method of Air Purification
KR101858806B1 (en) Air conditioner
CN105530965A (en) Photocatalyst apparatus and automobile air conditioning apparatus having same
KR20210104858A (en) Lighting and radiating devices
TW201716336A (en) Sterilization device
US20210318008A1 (en) Uv-c germicidal led strip kits for hvac ducts
KR102455712B1 (en) Filter sterilizer of air conditioner
WO2023223496A1 (en) Ultraviolet light irradiation device and air conditioning device including same
JP2018162898A (en) Air conditioning device
KR102263083B1 (en) Air purification and disinfection apparatus
KR100918708B1 (en) Photosterilizing thermo-hygrostat
TWI835971B (en) Humidifier and humidifier control method
JP7118352B2 (en) water server
KR102068476B1 (en) Sterilization Device For Automobile
KR102346527B1 (en) Air filter apparatus for vehicle and air conditioning system for vehichel using therewith
JP6068577B2 (en) Air conditioner
JP2020133915A (en) Draining unit and indoor unit of air conditioning device
JP2000111076A (en) Air conditioner
JP7367895B1 (en) Sterilization and inactivation equipment, sterilization and inactivation methods
KR200189202Y1 (en) Air sterilizer
KR101313833B1 (en) Water purifier
CN212720027U (en) Air conditioner
RU2778667C1 (en) Bactericidal irradiator
RU212270U1 (en) Germicidal irradiator
JP2006038355A (en) Cleaning device mounted in air conditioner

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022561552

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942701

Country of ref document: EP

Kind code of ref document: A1