WO2023223492A1 - Drum brake device - Google Patents

Drum brake device Download PDF

Info

Publication number
WO2023223492A1
WO2023223492A1 PCT/JP2022/020805 JP2022020805W WO2023223492A1 WO 2023223492 A1 WO2023223492 A1 WO 2023223492A1 JP 2022020805 W JP2022020805 W JP 2022020805W WO 2023223492 A1 WO2023223492 A1 WO 2023223492A1
Authority
WO
WIPO (PCT)
Prior art keywords
sleeve
brake
drive ring
drum
helical teeth
Prior art date
Application number
PCT/JP2022/020805
Other languages
French (fr)
Japanese (ja)
Inventor
建華 唐
尚輝 秋山
Original Assignee
株式会社Tbk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Tbk filed Critical 株式会社Tbk
Priority to PCT/JP2022/020805 priority Critical patent/WO2023223492A1/en
Publication of WO2023223492A1 publication Critical patent/WO2023223492A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/38Slack adjusters
    • F16D65/40Slack adjusters mechanical
    • F16D65/52Slack adjusters mechanical self-acting in one direction for adjusting excessive play
    • F16D65/56Slack adjusters mechanical self-acting in one direction for adjusting excessive play with screw-thread and nut

Definitions

  • the present invention relates to a drum brake device.
  • a drum brake device is installed on a vehicle and includes a cylindrical brake drum that is rotatably attached to an axle, and a cylindrical brake drum that is swingably held by an anchor bracket and arranged along the inner peripheral surface of the brake drum. It has a pair of brake shoes, and by pressing the lining provided on the brake shoes facing the brake drum against the inner peripheral surface of the brake drum, the brake drum (provided on the axle) utilizes the friction generated between the two. This brakes the rotation of the wheels.
  • an expander is attached to the tip of the brake shoe that extends outward in response to brake operation, and the expansion action of the expander moves the brake shoe so that the brake shoe is attached to the brake drum.
  • the expander of this drum brake device includes a sleeve member and a pressing member provided in a housing.
  • the sleeve member is configured to be movable in the moving direction of the brake shoe and rotatable in only one direction around a rotation axis extending in the moving direction, and moves in the moving direction in response to a driving force from the drive mechanism. It looks like this.
  • the pressing member is screwed onto the sleeve member and moves integrally with the sleeve member in the above-mentioned movement direction, thereby moving the brake shoe and pressing it against the brake drum.
  • the drum brake device is equipped with a gap adjustment mechanism that automatically adjusts the gap between the brake shoe and the brake drum to always maintain a constant value by reducing the shoe clearance according to the wear of the brake shoe.
  • the gap adjustment mechanism rotates the sleeve member independently relative to the pressing member (rotating in the above-mentioned one direction) and screws the sleeve member into the sleeve member.
  • the present invention has been made in view of these problems, and it is an object of the present invention to provide a drum brake device that can appropriately adjust the gap while preventing the brake from dragging.
  • a drum brake device includes a cylindrical brake drum that is provided on a rotating member and is rotatable together with the rotating member, and a cylindrical brake drum that is movably provided on a fixed member and that is rotatable with the rotating member.
  • a brake shoe disposed to face an inner circumferential surface, an expander that moves the brake shoe in response to a brake operation and brings it into contact with the inner circumferential surface of the brake drum, and a driving force is applied to the expander.
  • the expander is attached to the fixed member so as to be movable in the movement direction and rotatable about a rotation axis extending in the movement direction, and the expander receives a driving force from the drive mechanism.
  • External helical teeth are formed on the outer periphery of the sleeve member, internal helical teeth that mesh with the external helical teeth are formed on the inner periphery, and the internal helical teeth are in contact with the external helical teeth.
  • a rotational force corresponding to movement transmitted from the sleeve member to the drive ring member is larger than the first rotational resistance force applied to the drive ring member, and a second rotational force acting on the threaded portion of the sleeve member and the pressing member is larger than the first rotational resistance force applied to the drive ring member.
  • the rotational resistance force is smaller than the first rotational resistance force
  • the drive ring member rotates to move the sleeve member in the moving direction without rotating
  • the rotational force corresponding to the movement is smaller than the first rotational resistance force
  • the drive ring member rotates to move the sleeve member in the movement direction without rotating.
  • the rotational resistance force is larger than the second rotational resistance force
  • the sleeve member is configured to rotate and move in the moving direction with respect to the pressing member via the meshing portion.
  • a clutch ring member is fixed to the fixed member and has an abutment receiving surface that faces one end surface of the drive ring member in the direction of the rotating shaft and is brought into contact with the one end surface; a biasing member that is provided on the fixed member and applies a biasing force to the drive ring member to press the one end surface against the abutment receiving surface; A continuous clutch ring-side uneven portion is formed, and a drive ring-side uneven portion is formed on the one end surface, the drive ring side uneven portion is capable of contacting and engaging with the clutch ring-side uneven portion and is continuous in the circumferential direction of the rotating shaft.
  • the drive ring member rotates while moving the contact position of the drive ring side unevenness with respect to the clutch ring side unevenness in the circumferential direction of the rotating shaft, and At this time, it is preferable that the first rotational resistance force is applied to the drive ring member through a contact portion between the clutch ring-side uneven portion and the drive ring-side uneven portion.
  • the clutch ring-side uneven portion and the drive ring-side uneven portion are arranged in a circumferential direction of the rotating shaft and have a triangular cross-sectional shape along the circumferential direction. It is preferable that it is constituted by triangular teeth.
  • each of the triangular teeth has a pair of sloped surfaces, and the pair of sloped surfaces are configured such that their respective slopes are different from each other.
  • the expander includes a transmission member that is provided on the fixed member so as to be movable in the movement direction and that transmits the driving force from the drive mechanism to the sleeve member, It is preferable that the sleeve member is attached to the transmission member so as to be rotatable in one direction and the other direction about the rotation axis.
  • the sleeve member has a sleeve base and a sleeve sub-portion formed separately from the sleeve and fixed to the sleeve base, and the sleeve sub-portion is fixed to the sleeve base.
  • the external helical teeth are formed on the outer periphery.
  • the pressing member can be extended in the direction of the rotation axis relative to the sleeve member.
  • the amount can be adjusted to increase or decrease.
  • the drum brake device According to the drum brake device according to the present invention, as the sleeve member moves, the rotational force corresponding to the movement transmitted from the sleeve member to the drive ring member generated by the meshing of the external helical teeth and the internal helical teeth is transmitted to the drive ring member.
  • the drive ring member When the drive ring member is larger than the first rotational resistance force applied to the ring member and smaller than the second rotational resistance force acting on the threaded portion between the sleeve member and the pressing member, the drive ring member rotates to rotate the sleeve member. Move in the direction of movement without moving. At this time, the amount of delivery of the pressing member relative to the sleeve member does not increase or decrease.
  • the second rotational resistance force acting on the threaded portion of the sleeve member and the pressing member increases, such as during the process of elastic restoration of the brake shoes and the brake drum, the brake shoes and the brake drum Since the sleeve member and the pressing member can be moved integrally in the moving direction without adjusting the gap, it is possible to prevent the brake from dragging. Further, when the rotational force corresponding to the movement is smaller than the first rotational resistance force and larger than the second rotational resistance force, the sleeve member rotates and moves in the movement direction with respect to the pressing member via the engagement portion. At this time, the amount of delivery of the pressing member relative to the sleeve member increases, thereby making it possible to appropriately adjust the gap between the brake shoe and the brake drum.
  • FIG. 2 is a sectional view taken along arrow II-II in FIG. 1, and shows the drum brake device when it is not in operation.
  • FIG. 2 is a sectional view taken along arrow II-II in FIG. 1, and shows the drum brake device when it is in operation.
  • It is a partial sectional view showing the structure of the drive clutch mechanism provided in the expander of the drum brake device.
  • FIG. 3 is a perspective view showing a sleeve in the expander.
  • FIG. 3 is a perspective view showing a drive ring in the expander.
  • FIG. 3 is a perspective view showing a clutch ring in the expander. It is a side view which shows the structure of the connection part of the screw and brake shoe in the said expander.
  • the drum brake device B includes a drum unit 3 including a brake drum 31 provided on an axle 1 and rotatable together with the axle 1, and an anchor bracket 2 fixed to the vehicle body so as to be swingable.
  • a brake shoe unit 4 includes a pair of brake shoes 40, 40 arranged along the inner circumferential surface of the brake drum 31, and a brake shoe unit 4 that swings the brake shoes 40, 40 in response to a brake operation. It is mainly composed of an expander unit 5 that is pressed against the inner circumferential surface of the expander unit 5.
  • the anchor bracket 2 has a circular opening 2a in the center, and is connected to an axle housing (not shown) of the vehicle body through a bolt (not shown) inserted into a bolt hole 2b provided around the opening 2a. Fixed. Further, at the lower part of the anchor bracket 2, there is a support arm part 2c that is divided into two in the thickness direction (direction perpendicular to the plane of the paper in FIG. 1), and the support arm part 2c has a front side in the thickness direction and a rear side in the thickness direction. Circular pin insertion ports 2d, 2d are arranged side by side on the left and right when viewed from the front, respectively.
  • the drum unit 3 has a wheel rim (not shown) attached to a wheel hub (not shown) rotatably attached via a bearing to an axle 1 protruding outward from an opening 2a of an anchor bracket 2. , brake drum 31 are combined. Note that a wheel is attached to the wheel rim, and the brake drum 31 and the wheel rotate together through the wheel hub.
  • the brake shoe unit 4 is configured with two brake shoes 40 arranged on the left and right sides when viewed from the front with the anchor bracket 2 in between.
  • the brake shoe 40 includes a web portion 41 extending in an arc shape, a rim portion 42 attached to the outer peripheral end of the web portion 41, and a lining 43 fixed to the rim portion 42 with rivets or the like.
  • the brake shoe 40 is disposed along the inner circumferential surface of the brake drum 31, and has a lining 43 facing the inner circumferential surface of the brake drum 31.
  • the brake shoe 40 has a base end pivotally fixed to the anchor bracket 2 via an anchor pin 44 inserted into a pin insertion hole 2d of the support arm 2c, and swings from left to right in FIG. It is possible to swing in the direction.
  • a return spring 45 is provided between the tip ends of the pair of brake shoes 40, 40 to connect them to each other.
  • an expander unit 5 fixed to the anchor bracket 2 is arranged between the tips of the brake shoes 40, 40.
  • the expander unit 5 attaches the end portions of the brake shoes 40, 40 to the return spring 45 by the expansion operation of the expanders 70, 70 when the brake is operated (when the brake is activated). Push outward against the force.
  • the brake shoes 40, 40 swing outward around the anchor pins 44, 44, respectively, and the linings 43, 43 are pressed against the inner peripheral surface of the opposing brake drum 31, and due to the frictional force between the two, the brake drum 31 rotation is braked. Thereby, a predetermined braking effect can be obtained on the wheels that rotate integrally with the brake drum 31.
  • the expander unit 5 includes a housing 50 having a wedge accommodating portion 51 in the center and a pair of cylinder portions 52, 52 communicating with the wedge accommodating portion 51 from both sides. , a wedge unit 60 as a drive mechanism which has a wedge 61 that is removably attached to the wedge accommodating part 51, and a wedge unit 60 that is provided in the cylinder parts 52 and 52 and is tensioned in the direction of the axis X (hereinafter also referred to as "axial direction").
  • the expanders 70, 70 are configured to be expandable.
  • a boot 55 that prevents dust from entering the cylinder part 52 is attached to the open end of the cylinder part 52 in the housing 50 via a snap ring 56 (see FIG. 4).
  • the housing 50 is fixed to the anchor bracket 2 and constitutes a fixing member together with the anchor bracket 2.
  • the expander unit 5 is configured symmetrically, and for convenience of explanation, the inner side of the housing 50 in the axial direction ( The wedge accommodating portion 51 side) will be referred to as "one end side,” and the outer side of the housing 50 in the axial direction (brake shoe 40 side) will be referred to as the "other end side.” Note that FIG. 2 shows the state of the expander unit 5 when the brake is not applied, and FIG. 3 shows the state of the expander unit 5 when the brake is applied.
  • the wedge unit 60 applies driving force to the expander 70, and is mainly composed of a wedge 61 and a wedge spring 62.
  • the wedge 61 is formed into a shaft shape and is attached to the housing 50 so that it can be inserted into and removed from the housing 50 in the direction of the axis Y orthogonal to the axial direction (hereinafter also referred to as the "axis orthogonal direction") by the operation of a diaphragm of a chamber (not shown). ing.
  • the brake is not activated (when the brake is released)
  • the wedge 61 is pulled out to the outside of the wedge accommodating portion 51 by the biasing force of the wedge spring 62, as shown in FIG. Ru.
  • the wedge 61 moves in the direction perpendicular to the axis (downward in FIG. 3) within the wedge housing part 51 against the urging force of the wedge spring 62, as shown in FIG. 51.
  • the insertion end 61a which is the end of the wedge 61 that is inserted into the wedge accommodating portion 51, is formed in a wedge shape that points toward the tip, and has inclined surfaces 61b, 61b on both sides in the axial direction.
  • the wedge 61 is provided with a roller holder 61d that supports a pair of rollers 61c, 61c.
  • the pair of rollers 61c, 61c are provided rotatably relative to the roller holder 61d and movable in directions toward and away from each other (axial direction). Further, the roller holder 61d is provided so as to be able to reciprocate along the direction orthogonal to the axis, and is always urged toward the outside of the housing 50 (upward in FIG. 2) together with the wedge 61 by the wedge spring 62. . This roller holder 61d cooperates with the wedge 61 to convert the linear motion of the wedge 61 in the direction orthogonal to the axis into the linear motion of the expander 70 in the axial direction.
  • the expander 70 includes a tappet 71 that is fitted into the cylinder portion 52 and is arranged to be slidable in the axial direction, a sleeve 72 that is disposed on one end side of the tappet 71 in the axial direction, and a sleeve 72 that is disposed in the axial direction.
  • the housing 51 is configured to include a screw 73 as a pressing member which is screwed into the housing 51 and extends outward from the side of the housing 51.
  • the tappet 71 functions as a transmission member that transmits the driving force from the wedge unit 60 to the sleeve 72, and has a main body portion 71a formed at one end in the axial direction with an outer diameter slightly smaller than the inner diameter of the cylinder portion 52. and a cylindrical portion 71b having a smaller outer diameter than the main body portion 71a on the other end side in the axial direction.
  • the sleeve 72 has a cylindrical portion at one end in the axial direction having an outer diameter equal to that of the main body 71a of the tappet 71, and this cylindrical portion covers the cylindrical portion 71b of the tappet 71 so that the axial It is attached to the tappet 71 so as to be rotatable about X.
  • the tappet 71 is formed into a stepped cylindrical shape from a main body part 71a and a cylindrical part 71b having different outer diameters, and the main body part 71a has an inclined surface 71c that is substantially parallel to the inclined surface 61b of the wedge 61. . Furthermore, an O-ring 74 is attached to the outer periphery of the cylindrical portion 71b of the tappet 71 to ensure sealing between the tappet 71 and the sleeve 72.
  • the tappet 71 is fitted into the innermost part of the cylinder part 52 that communicates with the wedge housing part 51, and has an inclined surface 71c in contact with the circumferential surface of the roller 61c. The driving force from the wedge unit 60 causes the cylinder portion 52 to slide in the axial direction.
  • the sleeve 72 is composed of a sleeve main portion 72A and a sleeve sub portion 72B.
  • the sleeve main portion 72A has a base portion 72Aa and an intermediate portion 72Ab that have different outer diameters.
  • the base portion 72Aa has an outer diameter equal to the outer diameter of the main body portion 71a of the tappet 71, and the intermediate portion 72Ab has an outer diameter smaller than the outer diameter of the base portion 72Aa.
  • the sleeve main portion 72A has a tool engaging portion 72Ac formed in an octagonal column shape on the other end side in the axial direction.
  • a through hole 72Ad (see FIG. 5) extending along the axial direction is formed in the sleeve main portion 72A, and a female threaded portion 72Ae into which the screw 73 is screwed is formed on the inner peripheral surface of the through hole 72Ad. has been done.
  • the sleeve sub-portion 72B is formed into a cylindrical shape.
  • the outer diameter of the sleeve sub-portion 72B is formed to be equal to the outer diameter of the base portion 72Aa of the sleeve main portion 72A, and the inner diameter of the sleeve sub-portion 72B is formed to be equal to the outer diameter of the intermediate portion 72Ab of the sleeve main portion 72A.
  • the sleeve sub-portion 72B is press-fitted into the intermediate portion 72Ab of the sleeve main portion 72A, and is integrated with the sleeve main portion 72A.
  • a plurality of concave external helical teeth 72Ba see FIG.
  • the sleeve 72 may be formed by integrally forming the sleeve main portion 72A and the sleeve sub-portion 72B as one member. As in this embodiment, the sleeve main portion 72A and the sleeve sub-portion 72B are formed separately, the external helical teeth 72Ba are formed on the sleeve sub-portion 72B, and then the sleeve sub-portion 72B is press-fitted into the sleeve main portion 72A.
  • This structure has the advantage that it becomes easy to form the external helical teeth 72Ba.
  • the sleeve 72 is inserted into the cylinder portion 52 of the housing 50 so that the axis X becomes the rotation axis, and rotates in one direction around the rotation axis (for example, counterclockwise when viewed from one end in the axial direction) and in the other direction around the rotation axis. (For example, clockwise when viewed from one end in the axial direction).
  • the screw 73 is formed into a rod shape extending in the axial direction and has a male threaded portion 73a on the outer peripheral surface, and the male threaded portion 73a is screwed into the female threaded portion 72Ae of the sleeve 72 and extends outward from the side of the housing 50. It is set up to do so.
  • a brake shoe connecting portion 73b having a pair of connecting surfaces 73c, 73c facing each other with the axis X in between is formed at the other end of the screw 73 in the axial direction. As shown in FIG. 8, the brake shoe 40 is connected to the brake shoe connecting portion 73b via a connecting member 80 fixed to the tip of the brake shoe 40.
  • the connecting member 80 has a connecting portion 81 that protrudes toward the brake shoe connecting portion 73b, and is connected to the brake shoe connecting portion 73b by fitting the connecting portion 81 between the pair of connecting surfaces 73c, 73c. It has become.
  • the brake shoe connecting portion 73b is connected to the brake shoe 40 via the connecting member 80, the screw 73 is in a state in which rotation about the axis X is restricted (non-rotatable state).
  • the expander unit 5 (expander 70) having such a configuration automatically closes the gap (shoe clearance) between the lining 43 and the brake drum 31 to a predetermined gap when the lining 43 of the brake shoe 40 wears out. Equipped with a gap adjustment function to adjust the distance.
  • This gap adjustment function is realized by having the drive clutch mechanism 10 in addition to the tappet 71, sleeve 72, and screw 73. Note that the gap adjustment is performed by rotating the sleeve 72 screwed onto the screw 73 in the other direction (clockwise as described above) around the rotation axis, thereby adjusting the amount by which the screw 73 extends toward the other end in the axial direction relative to the sleeve 72. It is done by increasing.
  • the drive clutch mechanism 10 mainly includes a drive ring 11, a clutch ring 12, and a wave spring 13.
  • the drive ring 11 is formed in an annular shape, and a plurality of convex internal helical teeth 11A are formed on its inner peripheral surface. Furthermore, a drive ring-side uneven portion 11B that continues in the circumferential direction of the axis X is formed on the end surface of the drive ring 11 on one end side in the axial direction.
  • the drive ring side uneven portion 11B is constituted by a plurality of triangular teeth 11Ba having the same shape and arranged in the circumferential direction of the axis X.
  • Each triangular tooth 11Ba has a triangular cross-sectional shape along the circumferential direction of the axis X, and has a pair of inclined surfaces 11Bb and 11Bc.
  • the pair of inclined surfaces 11Bb and 11Bc are configured such that their respective slopes (inclination angles with respect to a plane perpendicular to the axis steep slope).
  • the drive ring 11 having such a configuration is arranged in the housing 50 with each internal helical tooth 11A meshing with each external helical tooth 72Ba of the sleeve 72 (sleeve sub-portion 72B).
  • the drive ring 11 is rotated around the axis X in one direction (for example, counterclockwise when viewed from one end in the axial direction) and in the other direction around the rotation axis (for example, clockwise when viewed from one end in the axial direction). It is possible to rotate.
  • the clutch ring 12 is formed in an annular shape like the drive ring 11.
  • a clutch ring-side uneven portion 12A that continues in the circumferential direction of the axis X is formed on the end surface of the other end of the clutch ring 12 in the axial direction.
  • the clutch ring side uneven portion 12A is constituted by a plurality of triangular teeth 12Aa having the same shape and arranged in the circumferential direction of the axis X.
  • Each triangular tooth 12Aa has a triangular cross-sectional shape along the circumferential direction of the axis X, and has a pair of inclined surfaces 12Ab and 12Ac.
  • the pair of inclined surfaces 12Ab and 12Ac are configured such that their respective slopes (inclination angles with respect to the plane perpendicular to the axis X) are different from each other (in this example, the inclined surface 12Ab is larger than the inclined surface 12Ac. steep slope).
  • the clutch ring side uneven portion 12A has the same shape as the drive ring side uneven portion 11B when the drive ring 11 is reversed about an axis perpendicular to the X-axis. Therefore, when the clutch ring-side uneven portion 12A and the drive ring-side uneven portion 11B are butted against each other, they can be perfectly engaged with each other.
  • the clutch ring 12 having such a configuration is fixed in the housing 50 with the clutch ring side uneven portion 12A facing and abutting against the drive ring side uneven portion 11B.
  • the wave spring 13 is a biasing member that applies a biasing force (referred to as a drive ring biasing force) to the drive ring 11 that presses the drive ring side uneven portion 11B against the clutch ring side uneven portion 12A.
  • the wave spring 13 is held in the housing 50 by a boot 55 attached to the open end of the cylinder portion 52 via a snap ring 56.
  • a rotational resistance force (referred to as a drive ring rotational resistance force) that resists rotation of the drive ring 11 around the rotation axis is applied to the drive ring 11.
  • This drive ring rotational resistance force can be adjusted by changing the slope of the inclined surface of each triangular tooth of the clutch ring side uneven portion 12A and the drive ring side uneven portion 11B. That is, the drive ring 11 rotates while receiving the drive ring biasing force from the wave spring 13 while moving the contact position of the drive ring side uneven portion 11B with respect to the clutch ring side uneven portion 12A in the circumferential direction of the rotating shaft.
  • a drive ring rotational resistance force acts on the drive ring 11 via the contact portion between the clutch ring side uneven portion 12A and the drive ring side uneven portion 11B.
  • This drive ring rotational resistance force increases as the slope of the inclined surface of each triangular tooth 12Aa of the clutch ring side uneven portion 12A and the inclined surface of each triangular tooth 11Ba of the drive ring side uneven portion 11B becomes larger.
  • the relative The sloped surface 11Bc having a gentle slope crosses over the sloped surface 12Ac having a relatively gentle slope among the pair of sloped surfaces 12Ab and 12Ac of each triangular tooth 12Aa of the clutch ring side uneven portion 12A.
  • the relatively steep inclined surface 11Bb of each triangular tooth 11Ba of the drive ring side uneven portion 11B becomes the clutch ring side unevenness. This will overcome the relatively steep inclined surface 12Ab of each triangular tooth 12Aa of the portion 12A.
  • the drive ring rotational resistance force (hereinafter also referred to as “drive ring clockwise rotational resistance force”) that acts on the drive ring 11 when the ring rotational resistance force rotates in the other direction (clockwise as described above) around the rotation axis is larger.
  • the wedge 61 resists the biasing force of the wedge spring 62 and is inserted into the wedge accommodating portion 51 (in the lower part of FIGS. 2 and 3) due to the operation of a diaphragm (service chamber) not shown. direction).
  • This pressing force is converted into a pressing force in the axial direction via the rollers 61c, 61c due to the wedge action between the inclined surfaces 61b, 61b of the wedge 61 and the inclined surfaces 71c, 71c of the tappet 71, and is applied to the sleeve via the tappet 71. 72.
  • the sleeve 72 moves together with the tappet 71 within the cylinder portion 52 from one end to the other end in the axial direction.
  • the sleeve 72 meshes with the drive ring 11 through the meshing portion between the external helical teeth 72Ba of the sleeve 72 and the internal helical teeth 11A of the drive ring 11.
  • a rotational force is applied from the sleeve 72 to the drive ring 11 through their meshing portions to rotate the drive ring 11 in one direction (counterclockwise) around the rotation axis. (hereinafter also referred to as "rotational force corresponding to movement during braking”) acts.
  • rotational force corresponding to movement during braking acts on the other hand, the drive ring counterclockwise rotation resistance force acts on the drive ring 11 due to the action of the drive clutch mechanism 10 .
  • the sleeve 72 is screwed onto the screw 73 via a threaded portion between a female threaded portion 72Ae of the sleeve 72 and a male threaded portion 73a of the screw 73.
  • braking rotational resistance force
  • a sleeve rotation resistance force acts.
  • each triangular tooth of the clutch ring-side uneven portion 12A is arranged so that the rotational force corresponding to the movement during braking is larger than the counterclockwise rotational resistance force of the drive ring and smaller than the sleeve rotational resistance force during braking.
  • the slope of the slope 11Bc at 11Ba and the slope of the slope 12Ac at each triangular tooth 12Aa of the clutch ring side uneven portion 12A are set. Therefore, while the drive ring 11 rotates in one direction around the rotation axis, the sleeve 72 does not rotate and moves within the cylinder portion 52 toward the other end in the axial direction.
  • the screw 73 screwed into the sleeve 72 moves integrally with the sleeve 72 toward the other end in the axial direction. Then, due to the extension of the screws 73, 73 in the axial direction, the pair of brake shoes 40, 40 swing outward around the anchor pins 44, 44, and the lining 43 is pressed against the inner peripheral surface of the brake drum 31. The rotation of the brake drum 31 is braked by the friction between the two. When the lining 43 is pressed against the inner circumferential surface of the brake drum 31 and the brake drum 31 and the brake shoe 40 (lining 43) are elastically deformed, the screw 73 remains integral with the sleeve 72 even in this elastically deformed range. Move to the other end in the axial direction.
  • the wedge 61 moves in the direction of removal from the wedge accommodating portion 51 (upward in FIGS. 3 and 4) due to the biasing force of the wedge spring 62.
  • the pressing force acting on the expander 70 from the wedge 61 toward the other end in the axial direction becomes smaller.
  • the screw 73 and the sleeve 72 are allowed to move toward one end in the axial direction, and the brake drum 31 and the brake shoe 40 are allowed to recover elastically.
  • the rotational force corresponding to the movement at the time of brake release is smaller than the sleeve rotation resistance force at the time of brake release
  • the drive ring counterclockwise rotation resistance force is smaller than the sleeve rotation resistance force at the time of brake release.
  • the slope of the inclined surface 11Bb of each triangular tooth 11Ba of the clutch ring side uneven portion 12A and the slope of the inclined surface 12Ab of each triangular tooth 12Aa of the clutch ring side uneven portion 12A are set so as to be larger than the above. Therefore, while the drive ring 11 rotates in the other direction around the rotation axis, the sleeve 72 moves toward one end in the axial direction within the cylinder portion 52 without rotating.
  • the screw 73 screwed into the sleeve 72 moves integrally with the sleeve 72 toward one end in the axial direction. At this time, since the sleeve 72 does not rotate, the amount of feed of the screw 73 relative to the sleeve 72 does not increase, and therefore no gap adjustment is performed.
  • the sleeve rotational resistance force at the time of brake release and the rotational force corresponding to the movement at the time of brake release are correspondingly increased. becomes smaller.
  • the screw 73 and the sleeve 72 remain in place between the two brake shoes 40 and 40 until they are stored in a predetermined position in the cylinder part 52. Due to the action of the return spring 45, it moves toward one end in the axial direction.
  • the rotational force corresponding to the movement at the time of brake release is greater than the sleeve rotation resistance force at the time of brake release, and is greater than the counterclockwise rotation resistance force of the drive ring.
  • the slope of the inclined surface 11Bb of each triangular tooth 11Ba of the clutch ring side uneven portion 12A and the slope of the inclined surface 12Ab of each triangular tooth 12Aa of the clutch ring side uneven portion 12A are set such that Therefore, while the drive ring 11 does not rotate, the sleeve 72 moves toward one end in the axial direction within the cylinder portion 52 while rotating in the other direction (clockwise as described above) around the rotation axis.
  • the screw 73 screwed into the sleeve 72 is moved toward the other end in the axial direction by an amount corresponding to the rotation angle of the sleeve 72. It is rolled out. This performs gap adjustment.
  • the sleeve 72 does not rotate when the screw 73 moves toward one end in the axial direction during the process of elastically restoring the brake drum 31 and the brake shoes 40. Since gap adjustment is not performed, it is possible to prevent brake drag from occurring. Further, after the elastic restoration of the brake drum 31 and the brake shoes 40 is completed, when the screw 73 moves toward one end in the axial direction, the sleeve 72 rotates to adjust the gap, so that the inner peripheral surface of the brake drum 31 The gap between the brake shoe 40 and the brake shoe 40 can be automatically adjusted appropriately.
  • the gap adjustment is performed manually.
  • a tool such as a spanner
  • the amount of delivery of the screw 73 relative to the sleeve 72 can be adjusted to increase or decrease. It looks like this. Specifically, by rotating the sleeve 72 in one direction (counterclockwise as described above) around the rotation axis, it is possible to reduce the amount of delivery of the screw 73 relative to the sleeve 72. Thereby, the gap between the inner circumferential surface of the brake drum 31 and the brake shoe 40 can be widened.
  • the amount of delivery of the screw 73 relative to the sleeve 72 can be increased. Thereby, the gap between the inner peripheral surface of the brake drum 31 and the brake shoe 40 can be reduced. Note that when the sleeve 72 is rotated, the drive ring 11 rotates together with the sleeve 72.
  • drum brake device B In conventional drum brake devices, the amount of payout of the screw relative to the sleeve is adjusted by manually rotating the screw.
  • the screw is connected to the brake shoe via a clip member that restricts rotation of the screw except during manual adjustment while allowing rotation of the screw during manual adjustment. There is a risk that this clip member may be damaged by vibrations during driving, but drum brake device B does not use such a clip member as described above, so there is no such concern.
  • the drum brake device B is configured as a leading-trailing type drum brake, but it may also be configured as a uni-servo type, duo-servo type, or two-leading type drum brake.
  • Drum brake device 1 Axle (rotating member) 2 Anchor bracket 3 Drum unit 4 Brake shoe unit 5 Expander unit 10 Drive clutch mechanism 11 Drive ring 11B Drive ring side uneven part 11A Internal helical teeth 12 Clutch ring 12A Clutch ring side uneven part 13 Wave spring 31 Brake drum 40 Brake shoe 50 Housing 60 Wedge unit 70 Expander 71 Tappet 72 Sleeve 72Ba External helical teeth 72Ae Female thread part 73 Screw 73a Male thread part

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Braking Arrangements (AREA)

Abstract

A drum brake device (B) according to the present invention is configured such that, when a movement responsive rotation force, which is generated by meshing of external helical teeth (72Ba) and internal helical teeth (11A) in response to movement of a sleeve (72) and transmitted from the sleeve (72) to a drive ring (11), is larger than a first rotation resistance force given to the drive ring (11) and smaller than a second rotation resistance force acting on a screwed portion of the sleeve (72) with a screw (73), the drive ring (11) rotates and moves the sleeve (72) without rotating the sleeve (72), and, when the movement responsive rotation force is smaller than the first rotation resistance force and larger than the second rotation resistance force, the sleeve (72) moves while rotating with respect to the screw (73) through the meshing portion.

Description

ドラムブレーキ装置drum brake device
 本発明は、ドラムブレーキ装置に関する。 The present invention relates to a drum brake device.
 ドラムブレーキ装置は、車両に設けられて、車軸と一体回転可能に取り付けられた円筒状のブレーキドラムと、アンカーブラケットに揺動可能に保持されてブレーキドラムの内周面に沿って配設される一対のブレーキシューとを有し、ブレーキドラムと対向してブレーキシューに設けられるライニングをブレーキドラムの内周面に押し付けることにより、両者間に生じる摩擦を利用してブレーキドラム(車軸に設けられた車輪)の回転を制動するものである。 A drum brake device is installed on a vehicle and includes a cylindrical brake drum that is rotatably attached to an axle, and a cylindrical brake drum that is swingably held by an anchor bracket and arranged along the inner peripheral surface of the brake drum. It has a pair of brake shoes, and by pressing the lining provided on the brake shoes facing the brake drum against the inner peripheral surface of the brake drum, the brake drum (provided on the axle) utilizes the friction generated between the two. This brakes the rotation of the wheels.
 このようなドラムブレーキ装置には、ブレーキシューの先端にブレーキ操作に応じて外方に張出作動するエキスパンダを取り付け、エキスパンダの張出作動によりブレーキシューを移動させてブレーキシューをブレーキドラムの内周面に押し付ける構成のものがある(例えば、特許文献1を参照)。このドラムブレーキ装置のエキスパンダは、ハウジングに設けられたスリーブ部材と押圧部材を有している。スリーブ部材は、ブレーキシューの移動方向に移動可能で且つ上記移動方向に延びる回転軸回りの一方向のみに回転可能に構成されており、駆動機構からの駆動力を受けて上記移動方向に移動するようになっている。押圧部材は、スリーブ部材に螺合して取り付けられ、スリーブ部材と一体的に上記移動方向に移動することにより、ブレーキシューを移動させてブレーキドラムに押し付けるようになっている。 In such a drum brake device, an expander is attached to the tip of the brake shoe that extends outward in response to brake operation, and the expansion action of the expander moves the brake shoe so that the brake shoe is attached to the brake drum. There is one that is configured to be pressed against the inner circumferential surface (for example, see Patent Document 1). The expander of this drum brake device includes a sleeve member and a pressing member provided in a housing. The sleeve member is configured to be movable in the moving direction of the brake shoe and rotatable in only one direction around a rotation axis extending in the moving direction, and moves in the moving direction in response to a driving force from the drive mechanism. It looks like this. The pressing member is screwed onto the sleeve member and moves integrally with the sleeve member in the above-mentioned movement direction, thereby moving the brake shoe and pressing it against the brake drum.
 ブレーキドラムとの摩擦によりブレーキシュー(ブレーキシューのライニング)は摩耗するが、この摩耗によりブレーキシューとブレーキドラムとの間隙(以下、シュークリアランスとも称する)が大きくなると、ブレーキの効きを悪化させる原因ともなる。そのため、ドラムブレーキ装置には、ブレーキシューの摩耗に応じてシュークリアランスを詰めて、ブレーキシューとブレーキドラムとの間隙を常に一定に保持するよう自動的に調整する間隙調整機構が備えられている。間隙調整機構は、ブレーキ作用が解除されて押圧部材がハウジング側に移動する際に、スリーブ部材を押圧部材に対して単独で相対回転(上記一方向へ回転)させて、スリーブ部材に螺合する押圧部材を外方に向けて張り出させる(スリーブ部材に対する押圧部材の上記回転軸方向への繰出量を増大させる)ことによりブレーキシューをブレーキドラム側に移動させてシュークリアランスを詰めるように構成されている。 Brake shoes (brake shoe linings) wear out due to friction with the brake drum, but when this wear increases the gap between the brake shoes and the brake drum (hereinafter also referred to as shoe clearance), it can cause deterioration in brake effectiveness. Become. Therefore, the drum brake device is equipped with a gap adjustment mechanism that automatically adjusts the gap between the brake shoe and the brake drum to always maintain a constant value by reducing the shoe clearance according to the wear of the brake shoe. When the brake action is released and the pressing member moves toward the housing, the gap adjustment mechanism rotates the sleeve member independently relative to the pressing member (rotating in the above-mentioned one direction) and screws the sleeve member into the sleeve member. By projecting the pressing member outward (increasing the amount of movement of the pressing member in the direction of the rotational axis relative to the sleeve member), the brake shoe is moved toward the brake drum and the shoe clearance is reduced. ing.
特許第6382340号公報Patent No. 6382340
 ドラムブレーキ装置において、ブレーキシューをブレーキドラムの内周面に押し付けた際に、ブレーキシューやブレーキドラムが大きく弾性変形する場合がある。このような弾性変形が起きた場合、従来のドラムブレーキ装置では、ブレーキ作用が解除されてブレーキシューやブレーキドラムが弾性復元する過程において押圧部材がハウジング側に移動する際も、間隙調整が行われる場合がある。そのため、過剰に間隙調整が行われ、ブレーキ作用が解除されてもブレーキシューがブレーキドラムの内周面に接触した状態となるブレーキの引きずりが発生し、それにより車両走行時にブレーキドラムが発熱するといった弊害が生じる虞がある。 In a drum brake device, when the brake shoes are pressed against the inner peripheral surface of the brake drum, the brake shoes and the brake drum may undergo large elastic deformations. When such elastic deformation occurs, in conventional drum brake devices, the gap is adjusted even when the pressing member moves toward the housing during the process of the brake shoe and brake drum being elastically restored after the brake action is released. There are cases. As a result, excessive clearance adjustment may occur, causing brake drag in which the brake shoes are in contact with the inner circumferential surface of the brake drum even after the brake action is released, which may cause the brake drum to generate heat while the vehicle is running. There is a possibility that harmful effects may occur.
 本発明は、このような課題に鑑みてなされたものであり、ブレーキの引きずりが発生することを防止しつつ間隙調整を適正に行うことが可能なドラムブレーキ装置を提供することを目的とする。 The present invention has been made in view of these problems, and it is an object of the present invention to provide a drum brake device that can appropriately adjust the gap while preventing the brake from dragging.
 前記課題を解決するために、本発明に係るドラムブレーキ装置は、回転部材に設けられて前記回転部材とともに回転可能な円筒状のブレーキドラムと、固定部材に移動自在に設けられて前記ブレーキドラムの内周面に対向して配設されるブレーキシューと、ブレーキ操作に応じて前記ブレーキシューを移動させて前記ブレーキドラムの内周面に当接させるエキスパンダと、前記エキスパンダに駆動力を付与する駆動機構とを備え、前記エキスパンダは、前記固定部材に前記移動方向に移動自在に且つ前記移動方向に延びる回転軸を中心として回転可能となって取り付けられ、前記駆動機構からの駆動力を受けて前記移動方向に移動されるスリーブ部材と、前記スリーブ部材に前記回転軸を中心とするネジにより螺合して取り付けられ、先端部が前記ブレーキシューを押圧して移動させる押圧部材と、を備え、前記スリーブ部材の外周に外歯はす歯が形成され、内周側に前記外歯はす歯と噛合する内歯はす歯が形成され、前記内歯はす歯が前記外歯はす歯と噛合して前記スリーブ部材の外周に取り付けられるドライブリング部材を有し、前記ドライブリング部材を前記回転軸方向に向かって前記固定部材に押しつけて前記ドライブリング部材に第1の回転抵抗力を付与するように構成され、前記駆動機構からの駆動力を受けて前記スリーブ部材が移動されて前記押圧部材により前記ブレーキシューを前記ブレーキドラムの内周面に当接させてブレーキを作用させたり、前記駆動機構からの駆動力を解除してブレーキ作用を解除したりするときに、前記スリーブ部材の移動に応じて前記外歯はす歯と前記内歯はす歯との噛合により発生する前記スリーブ部材から前記ドライブリング部材に伝わる移動対応回転力が、前記ドライブリング部材に付与される前記第1の回転抵抗力より大きく、前記スリーブ部材と前記押圧部材との螺合部に作用する第2の回転抵抗力より小さいときには、前記ドライブリング部材が回転して前記スリーブ部材を回転することなしに前記移動方向に移動させ、前記移動対応回転力が、前記第1の回転抵抗力より小さく、前記第2の回転抵抗力より大きいときには、前記押圧部材に対して前記噛合部を介して前記スリーブ部材が回転しながら前記移動方向に移動するように構成される。 In order to solve the above problems, a drum brake device according to the present invention includes a cylindrical brake drum that is provided on a rotating member and is rotatable together with the rotating member, and a cylindrical brake drum that is movably provided on a fixed member and that is rotatable with the rotating member. A brake shoe disposed to face an inner circumferential surface, an expander that moves the brake shoe in response to a brake operation and brings it into contact with the inner circumferential surface of the brake drum, and a driving force is applied to the expander. and a drive mechanism, the expander is attached to the fixed member so as to be movable in the movement direction and rotatable about a rotation axis extending in the movement direction, and the expander receives a driving force from the drive mechanism. a sleeve member that is received and moved in the movement direction; and a pressing member that is screwed and attached to the sleeve member by a screw centered on the rotation axis, and whose tip presses and moves the brake shoe. External helical teeth are formed on the outer periphery of the sleeve member, internal helical teeth that mesh with the external helical teeth are formed on the inner periphery, and the internal helical teeth are in contact with the external helical teeth. It has a drive ring member attached to the outer periphery of the sleeve member in mesh with the helical teeth, and the drive ring member is pressed against the fixed member in the direction of the rotation axis to apply a first rotational resistance force to the drive ring member. The sleeve member is moved in response to the driving force from the drive mechanism, and the brake shoe is brought into contact with the inner circumferential surface of the brake drum by the pressing member to apply the brake. , when the driving force from the drive mechanism is released to release the brake action, the above-mentioned helical teeth generated by the meshing of the external helical teeth and the internal helical teeth according to the movement of the sleeve member. A rotational force corresponding to movement transmitted from the sleeve member to the drive ring member is larger than the first rotational resistance force applied to the drive ring member, and a second rotational force acting on the threaded portion of the sleeve member and the pressing member is larger than the first rotational resistance force applied to the drive ring member. When the rotational resistance force is smaller than the first rotational resistance force, the drive ring member rotates to move the sleeve member in the moving direction without rotating, and the rotational force corresponding to the movement is smaller than the first rotational resistance force, and the drive ring member rotates to move the sleeve member in the movement direction without rotating. When the rotational resistance force is larger than the second rotational resistance force, the sleeve member is configured to rotate and move in the moving direction with respect to the pressing member via the meshing portion.
 本発明に係るドラムブレーキ装置において、前記固定部材に固定され、前記ドライブリング部材の前記回転軸方向の一端面と対向し前記一端面が当接される当接受面を有するクラッチリング部材と、前記固定部材に設けられ、前記ドライブリング部材に前記一端面を前記当接受面に押圧する付勢力を作用させる付勢部材と、を有し、前記当接受面には、前記回転軸の周方向に連続するクラッチリング側凹凸部が形成され、前記一端面には、前記クラッチリング側凹凸部と当接して係合可能で、前記回転軸の周方向に連続するドライブリング側凹凸部が形成されており、前記付勢力が作用された状態で前記ドライブリング部材は、前記クラッチリング側凹凸部に対する前記ドライブリング側凹凸部の当接位置を前記回転軸の周方向に移動させながら回転し、当該回転の際に、前記クラッチリング側凹凸部と前記ドライブリング側凹凸部との当接部を介して前記ドライブリング部材に、前記第1の回転抵抗力が作用するように構成されることが好ましい。 In the drum brake device according to the present invention, a clutch ring member is fixed to the fixed member and has an abutment receiving surface that faces one end surface of the drive ring member in the direction of the rotating shaft and is brought into contact with the one end surface; a biasing member that is provided on the fixed member and applies a biasing force to the drive ring member to press the one end surface against the abutment receiving surface; A continuous clutch ring-side uneven portion is formed, and a drive ring-side uneven portion is formed on the one end surface, the drive ring side uneven portion is capable of contacting and engaging with the clutch ring-side uneven portion and is continuous in the circumferential direction of the rotating shaft. With the biasing force being applied, the drive ring member rotates while moving the contact position of the drive ring side unevenness with respect to the clutch ring side unevenness in the circumferential direction of the rotating shaft, and At this time, it is preferable that the first rotational resistance force is applied to the drive ring member through a contact portion between the clutch ring-side uneven portion and the drive ring-side uneven portion.
 また、本発明に係るドラムブレーキ装置において、前記クラッチリング側凹凸部および前記ドライブリング側凹凸部は、前記回転軸の周方向に並び当該周方向に沿った断面形状が三角形状に形成された複数の三角歯により構成されることが好ましい。 Further, in the drum brake device according to the present invention, the clutch ring-side uneven portion and the drive ring-side uneven portion are arranged in a circumferential direction of the rotating shaft and have a triangular cross-sectional shape along the circumferential direction. It is preferable that it is constituted by triangular teeth.
 また、本発明に係るドラムブレーキ装置において、各前記三角歯は一対の傾斜面を有し、前記一対の傾斜面はそれぞれの勾配が互いに異なるように構成されることが好ましい。 Furthermore, in the drum brake device according to the present invention, it is preferable that each of the triangular teeth has a pair of sloped surfaces, and the pair of sloped surfaces are configured such that their respective slopes are different from each other.
 また、本発明に係るドラムブレーキ装置において、前記エキスパンダは、前記固定部材に前記移動方向に移動自在に設けられ、前記駆動機構からの駆動力を前記スリーブ部材に伝達する伝達部材を有し、前記スリーブ部材は、前記回転軸回り一方向および他方向に回転自在に前記伝達部材に取り付けられることが好ましい。 Further, in the drum brake device according to the present invention, the expander includes a transmission member that is provided on the fixed member so as to be movable in the movement direction and that transmits the driving force from the drive mechanism to the sleeve member, It is preferable that the sleeve member is attached to the transmission member so as to be rotatable in one direction and the other direction about the rotation axis.
 また、本発明に係るドラムブレーキ装置において、前記スリーブ部材は、スリーブ基部と、前記スリーブとは別体に形成されて前記スリーブ基部に固定されるスリーブ副部とを有し、前記スリーブ副部の外周に前記外歯はす歯が形成されることが好ましい。 Further, in the drum brake device according to the present invention, the sleeve member has a sleeve base and a sleeve sub-portion formed separately from the sleeve and fixed to the sleeve base, and the sleeve sub-portion is fixed to the sleeve base. Preferably, the external helical teeth are formed on the outer periphery.
 また、本発明に係るドラムブレーキ装置において、前記スリーブ部材の前記回転軸回り一方向および他方向への回転位置を手動調整することにより、前記スリーブ部材に対する前記押圧部材の前記回転軸方向への繰出量を増減調整可能に構成されることが好ましい。 Further, in the drum brake device according to the present invention, by manually adjusting the rotational position of the sleeve member in one direction and the other direction around the rotation axis, the pressing member can be extended in the direction of the rotation axis relative to the sleeve member. Preferably, the amount can be adjusted to increase or decrease.
 本発明に係るドラムブレーキ装置によれば、スリーブ部材の移動に応じて外歯はす歯と内歯はす歯との噛合により発生するスリーブ部材からドライブリング部材に伝わる移動対応回転力が、ドライブリング部材に付与される第1の回転抵抗力より大きく、スリーブ部材と押圧部材との螺合部に作用する第2の回転抵抗力より小さいときには、ドライブリング部材が回転してスリーブ部材を回転することなしに移動方向に移動する。このとき、スリーブ部材に対する押圧部材の繰出量は増減しない。そのため、ブレーキシューやブレーキドラムが弾性復元する過程のように、スリーブ部材と押圧部材との螺合部に作用する第2の回転抵抗力が増大するような場合には、ブレーキシューとブレーキドラムとの間隙調整を行わずに、スリーブ部材と押圧部材を一体的に移動方向に移動させることができるので、ブレーキの引きずりが発生することを防止することができる。また、移動対応回転力が、第1の回転抵抗力より小さく、第2の回転抵抗力より大きいときには、押圧部材に対して噛合部を介してスリーブ部材が回転しながら移動方向に移動する。このときは、スリーブ部材に対する押圧部材の繰出量が増大し、これによりブレーキシューとブレーキドラムとの間隙調整を適正に行うことができる。 According to the drum brake device according to the present invention, as the sleeve member moves, the rotational force corresponding to the movement transmitted from the sleeve member to the drive ring member generated by the meshing of the external helical teeth and the internal helical teeth is transmitted to the drive ring member. When the drive ring member is larger than the first rotational resistance force applied to the ring member and smaller than the second rotational resistance force acting on the threaded portion between the sleeve member and the pressing member, the drive ring member rotates to rotate the sleeve member. Move in the direction of movement without moving. At this time, the amount of delivery of the pressing member relative to the sleeve member does not increase or decrease. Therefore, when the second rotational resistance force acting on the threaded portion of the sleeve member and the pressing member increases, such as during the process of elastic restoration of the brake shoes and the brake drum, the brake shoes and the brake drum Since the sleeve member and the pressing member can be moved integrally in the moving direction without adjusting the gap, it is possible to prevent the brake from dragging. Further, when the rotational force corresponding to the movement is smaller than the first rotational resistance force and larger than the second rotational resistance force, the sleeve member rotates and moves in the movement direction with respect to the pressing member via the engagement portion. At this time, the amount of delivery of the pressing member relative to the sleeve member increases, thereby making it possible to appropriately adjust the gap between the brake shoe and the brake drum.
本実施形態に係るドラムブレーキ装置を示す正面図である。It is a front view showing a drum brake device concerning this embodiment. 図1における矢印II-IIに沿って示す断面図であり、ドラムブレーキ装置の非作動時を示す。FIG. 2 is a sectional view taken along arrow II-II in FIG. 1, and shows the drum brake device when it is not in operation. 図1における矢印II-IIに沿って示す断面図であり、ドラムブレーキ装置の作動時を示す。FIG. 2 is a sectional view taken along arrow II-II in FIG. 1, and shows the drum brake device when it is in operation. 上記ドラムブレーキ装置のエキスパンダに設けられるドライブクラッチ機構の構成を示す部分断面図である。It is a partial sectional view showing the structure of the drive clutch mechanism provided in the expander of the drum brake device. 上記エキスパンダにおけるスリーブを示す斜視図である。FIG. 3 is a perspective view showing a sleeve in the expander. 上記エキスパンダにおけるドライブリングを示す斜視図である。FIG. 3 is a perspective view showing a drive ring in the expander. 上記エキスパンダにおけるクラッチリングを示す斜視図である。FIG. 3 is a perspective view showing a clutch ring in the expander. 上記エキスパンダにおけるスクリューとブレーキシューとの接続部の構成を示す側面図である。It is a side view which shows the structure of the connection part of the screw and brake shoe in the said expander.
 以下、図面を参照して本発明の好ましい実施形態について説明する。まず、本発明の一実施形態に係るドラムブレーキ装置の全体構成について図1~図8を用いて説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. First, the overall configuration of a drum brake device according to an embodiment of the present invention will be described using FIGS. 1 to 8.
 ドラムブレーキ装置Bは、図1に示すように、車軸1に設けられて車軸1とともに回転可能なブレーキドラム31を設けてなるドラムユニット3と、車体に固定されるアンカーブラケット2に揺動可能に設けられてブレーキドラム31の内周面に沿って配設される一対のブレーキシュー40,40を備えたブレーキシューユニット4と、ブレーキ操作に応じてブレーキシュー40,40を揺動させてブレーキドラム31の内周面に押し付けるエキスパンダユニット5とを主体として構成される。 As shown in FIG. 1, the drum brake device B includes a drum unit 3 including a brake drum 31 provided on an axle 1 and rotatable together with the axle 1, and an anchor bracket 2 fixed to the vehicle body so as to be swingable. A brake shoe unit 4 includes a pair of brake shoes 40, 40 arranged along the inner circumferential surface of the brake drum 31, and a brake shoe unit 4 that swings the brake shoes 40, 40 in response to a brake operation. It is mainly composed of an expander unit 5 that is pressed against the inner circumferential surface of the expander unit 5.
 アンカーブラケット2は、中央に円孔状の開口2aを有し、この開口2aの周囲に設けたボルト孔2bに挿入されるボルト(図示せず)を介して車体のアクスルハウジング(図示せず)に固定される。また、アンカーブラケット2の下部に、その厚さ方向(図1紙面直交方向)に二股に分かれた支持アーム部2cを有し、この支持アーム部2cの厚さ方向手前側および厚さ方向奥側のそれぞれに円孔状のピン挿入口2d,2dが正面視左右に並んで開設されている。 The anchor bracket 2 has a circular opening 2a in the center, and is connected to an axle housing (not shown) of the vehicle body through a bolt (not shown) inserted into a bolt hole 2b provided around the opening 2a. Fixed. Further, at the lower part of the anchor bracket 2, there is a support arm part 2c that is divided into two in the thickness direction (direction perpendicular to the plane of the paper in FIG. 1), and the support arm part 2c has a front side in the thickness direction and a rear side in the thickness direction. Circular pin insertion ports 2d, 2d are arranged side by side on the left and right when viewed from the front, respectively.
 ドラムユニット3は、アンカーブラケット2の開口2aから外方へ突出する車軸1上にベアリングを介して回転可能に取り付けられたホイールハブ(図示せず)に、ホイールリム(図示せず)が取り付けられるともに、ブレーキドラム31が結合されて構成されている。なお、ホイールリムには車輪が取り付けられ、ブレーキドラム31と車輪とがホイールハブを介して一体回転するようになっている。 The drum unit 3 has a wheel rim (not shown) attached to a wheel hub (not shown) rotatably attached via a bearing to an axle 1 protruding outward from an opening 2a of an anchor bracket 2. , brake drum 31 are combined. Note that a wheel is attached to the wheel rim, and the brake drum 31 and the wheel rotate together through the wheel hub.
 ブレーキシューユニット4は、アンカーブラケット2を挟んで正面視左右に配設された2つのブレーキシュー40を有して構成される。ブレーキシュー40は、弧状に延びるウェブ部41と、ウェブ部41の外周端に取り付けられるリム部42と、リム部42にリベット等により固着されるライニング43とを有してなる。ブレーキシュー40は、ブレーキドラム31の内周面に沿って配設されており、ライニング43をブレーキドラム31の内周面に対向させている。 The brake shoe unit 4 is configured with two brake shoes 40 arranged on the left and right sides when viewed from the front with the anchor bracket 2 in between. The brake shoe 40 includes a web portion 41 extending in an arc shape, a rim portion 42 attached to the outer peripheral end of the web portion 41, and a lining 43 fixed to the rim portion 42 with rivets or the like. The brake shoe 40 is disposed along the inner circumferential surface of the brake drum 31, and has a lining 43 facing the inner circumferential surface of the brake drum 31.
 ブレーキシュー40は、基端部が支持アーム部2cのピン挿入口2dに挿入されたアンカーピン44を介してアンカーブラケット2に枢止されており、アンカーピン44を揺動中心として図1における左右方向に揺動可能とされる。一対のブレーキシュー40,40の先端部同士の間には、これらを相互に接続するリターンスプリング45が跨設されている。そして、ブレーキ操作がなされていないとき(ブレーキの非作動時)は、ブレーキシュー40,40はリターンスプリング45の付勢力を受けて内方に揺動した位置(すなわち、ブレーキドラム31と離間した位置)に保持される。 The brake shoe 40 has a base end pivotally fixed to the anchor bracket 2 via an anchor pin 44 inserted into a pin insertion hole 2d of the support arm 2c, and swings from left to right in FIG. It is possible to swing in the direction. A return spring 45 is provided between the tip ends of the pair of brake shoes 40, 40 to connect them to each other. When the brakes are not operated (when the brakes are not activated), the brake shoes 40, 40 are in a position where they are swung inward by the biasing force of the return spring 45 (i.e., a position away from the brake drum 31). ) is held.
 また、ブレーキシュー40,40の先端部同士の間には、アンカーブラケット2に固定されたエキスパンダユニット5が配設されている。後に詳述するが、エキスパンダユニット5は、ブレーキ操作がなされたとき(ブレーキの作動時)に、エキスパンダ70,70の張出作動によりブレーキシュー40,40の先端部をリターンスプリング45の付勢力に抗して外方へ押圧する。ブレーキシュー40,40はアンカーピン44,44を中心にそれぞれ外方へ揺動し、ライニング43,43が対向するブレーキドラム31の内周面に押し付けられ、両者の間の摩擦力により、ブレーキドラム31の回転が制動される。これにより、ブレーキドラム31と一体回転する車輪に対して所定のブレーキ作用が得られることになる。 Further, an expander unit 5 fixed to the anchor bracket 2 is arranged between the tips of the brake shoes 40, 40. As will be described in detail later, the expander unit 5 attaches the end portions of the brake shoes 40, 40 to the return spring 45 by the expansion operation of the expanders 70, 70 when the brake is operated (when the brake is activated). Push outward against the force. The brake shoes 40, 40 swing outward around the anchor pins 44, 44, respectively, and the linings 43, 43 are pressed against the inner peripheral surface of the opposing brake drum 31, and due to the frictional force between the two, the brake drum 31 rotation is braked. Thereby, a predetermined braking effect can be obtained on the wheels that rotate integrally with the brake drum 31.
 エキスパンダユニット5は、図2および図3に示すように、中央にウェッジ収容部51を空間形成するとともに両側部からウェッジ収容部51に連通した一対のシリンダ部52,52を形成するハウジング50と、ウェッジ収容部51に挿抜可能に取り付けられるウェッジ61を有する、駆動機構としてのウェッジユニット60と、シリンダ部52,52内に設けられて軸線Xの方向(以下「軸線方向」とも称する)に張出可能に構成されるエキスパンダ70,70とを備えて構成される。ハウジング50におけるシリンダ部52の開口端には、シリンダ部52内への粉塵の混入を防止するブーツ55がスナップリング56を介して取り付けられている(図4を参照)。なお、ハウジング50は、アンカーブラケット2に固定されており、アンカーブラケット2と共に固定部材を構成する。 As shown in FIGS. 2 and 3, the expander unit 5 includes a housing 50 having a wedge accommodating portion 51 in the center and a pair of cylinder portions 52, 52 communicating with the wedge accommodating portion 51 from both sides. , a wedge unit 60 as a drive mechanism which has a wedge 61 that is removably attached to the wedge accommodating part 51, and a wedge unit 60 that is provided in the cylinder parts 52 and 52 and is tensioned in the direction of the axis X (hereinafter also referred to as "axial direction"). The expanders 70, 70 are configured to be expandable. A boot 55 that prevents dust from entering the cylinder part 52 is attached to the open end of the cylinder part 52 in the housing 50 via a snap ring 56 (see FIG. 4). Note that the housing 50 is fixed to the anchor bracket 2 and constitutes a fixing member together with the anchor bracket 2.
 エキスパンダユニット5は、左右対称に構成されており、以下では、説明の便宜上、図2および図3に示すエキスパンダユニット5の配設姿勢を基準として、軸線方向におけるハウジング50の内方側(ウェッジ収容部51側)を「一端側」、軸線方向におけるハウジング50の外方側(ブレーキシュー40側)を「他端側」と称して説明する。なお、図2はブレーキの非作動時におけるエキスパンダユニット5の状態を、図3はブレーキの作動時におけるエキスパンダユニット5の状態を示している。 The expander unit 5 is configured symmetrically, and for convenience of explanation, the inner side of the housing 50 in the axial direction ( The wedge accommodating portion 51 side) will be referred to as "one end side," and the outer side of the housing 50 in the axial direction (brake shoe 40 side) will be referred to as the "other end side." Note that FIG. 2 shows the state of the expander unit 5 when the brake is not applied, and FIG. 3 shows the state of the expander unit 5 when the brake is applied.
 ウェッジユニット60は、エキスパンダ70に駆動力を付与するものであり、ウェッジ61とウェッジスプリング62とを主体として構成されている。ウェッジ61は、シャフト状に形成されて、不図示のチャンバのダイヤフラムの作動によりハウジング50に対して軸線方向と直交する軸線Yの方向(以下「軸線直交方向」とも称する)に挿抜可能に取り付けられている。このウェッジ61は、ブレーキの非作動時(ブレーキの解除時)には、図2に示すように、ウェッジスプリング62の付勢力によりウェッジ収容部51に対して外方へ抜出された状態とされる。一方、ウェッジ61は、ブレーキの作動時には、図3に示すように、ウェッジスプリング62の付勢力に抗してウェッジ収容部51内を軸線直交方向(図3では下方)に移動してウェッジ収容部51に対して挿入された状態とされる。ウェッジ61のウェッジ収容部51に挿入される側の端部である挿入端部61aは、先端に向かって尖る楔状に形成されており、軸線方向の両側に傾斜面61b,61bを有している。また、ウェッジ61には、一対のローラ61c,61cを支持するローラ保持体61dが設けられている。一対のローラ61c,61cは、ローラ保持体61dに対して回転自在且つ互いに近接および離間する方向(軸線方向)に移動可能に設けられている。また、ローラ保持体61dは、軸線直交方向に沿って往復動自在に設けられており、常にはウェッジスプリング62によってウェッジ61とともにハウジング50の外方側(図2では上方)に付勢されている。このローラ保持体61dは、ウェッジ61と協働して、ウェッジ61の軸線直交方向の直線運動を、エキスパンダ70の軸線方向の直線運動に変換する。 The wedge unit 60 applies driving force to the expander 70, and is mainly composed of a wedge 61 and a wedge spring 62. The wedge 61 is formed into a shaft shape and is attached to the housing 50 so that it can be inserted into and removed from the housing 50 in the direction of the axis Y orthogonal to the axial direction (hereinafter also referred to as the "axis orthogonal direction") by the operation of a diaphragm of a chamber (not shown). ing. When the brake is not activated (when the brake is released), the wedge 61 is pulled out to the outside of the wedge accommodating portion 51 by the biasing force of the wedge spring 62, as shown in FIG. Ru. On the other hand, when the brake is activated, the wedge 61 moves in the direction perpendicular to the axis (downward in FIG. 3) within the wedge housing part 51 against the urging force of the wedge spring 62, as shown in FIG. 51. The insertion end 61a, which is the end of the wedge 61 that is inserted into the wedge accommodating portion 51, is formed in a wedge shape that points toward the tip, and has inclined surfaces 61b, 61b on both sides in the axial direction. . Further, the wedge 61 is provided with a roller holder 61d that supports a pair of rollers 61c, 61c. The pair of rollers 61c, 61c are provided rotatably relative to the roller holder 61d and movable in directions toward and away from each other (axial direction). Further, the roller holder 61d is provided so as to be able to reciprocate along the direction orthogonal to the axis, and is always urged toward the outside of the housing 50 (upward in FIG. 2) together with the wedge 61 by the wedge spring 62. . This roller holder 61d cooperates with the wedge 61 to convert the linear motion of the wedge 61 in the direction orthogonal to the axis into the linear motion of the expander 70 in the axial direction.
 エキスパンダ70は、シリンダ部52内に嵌挿されて軸線方向に摺動可能に配設されるタペット71と、タペット71の軸線方向の一端側に配置されたスリーブ72と、スリーブ72と軸線方向に螺合してハウジング51の側部外方へ向けて延出する押圧部材としてのスクリュウ73とを備えて構成される。 The expander 70 includes a tappet 71 that is fitted into the cylinder portion 52 and is arranged to be slidable in the axial direction, a sleeve 72 that is disposed on one end side of the tappet 71 in the axial direction, and a sleeve 72 that is disposed in the axial direction. The housing 51 is configured to include a screw 73 as a pressing member which is screwed into the housing 51 and extends outward from the side of the housing 51.
 タペット71は、ウェッジユニット60からの駆動力をスリーブ72に伝達する伝達部材として機能するものであり、軸線方向の一端側に外径がシリンダ部52の内径より幾分小さく形成された本体部71aと、軸線方向の他端側に本体部71aよりも外径の小さい円筒部71bとを有している。スリーブ72は、軸線方向の一端側の部分がタペット71の本体部71aと外径の等しい円筒状に形成されており、この円筒状の部分がタペット71の円筒部71bを覆うようにして、軸線Xを中心として回転可能にタペット71に取り付けられている。 The tappet 71 functions as a transmission member that transmits the driving force from the wedge unit 60 to the sleeve 72, and has a main body portion 71a formed at one end in the axial direction with an outer diameter slightly smaller than the inner diameter of the cylinder portion 52. and a cylindrical portion 71b having a smaller outer diameter than the main body portion 71a on the other end side in the axial direction. The sleeve 72 has a cylindrical portion at one end in the axial direction having an outer diameter equal to that of the main body 71a of the tappet 71, and this cylindrical portion covers the cylindrical portion 71b of the tappet 71 so that the axial It is attached to the tappet 71 so as to be rotatable about X.
 タペット71は、互いに外径の異なる本体部71aおよび円筒部71bから段付き円筒状に形成されて、本体部71aにはウェッジ61の傾斜面61bと略平行となる傾斜面71cを有している。また、タペット71の円筒部71bの外周には、タペット71とスリーブ72との間のシール性を確保するためのOリング74が取り付けられている。タペット71は、ウェッジ収容部51に連通するシリンダ部52の最内方に嵌挿されて傾斜面71cをローラ61cの周面に当接させており、ウェッジ61の挿抜作動によりローラ61cを介して作用するウェッジユニット60からの駆動力によりシリンダ部52内を軸線方向に摺動する。 The tappet 71 is formed into a stepped cylindrical shape from a main body part 71a and a cylindrical part 71b having different outer diameters, and the main body part 71a has an inclined surface 71c that is substantially parallel to the inclined surface 61b of the wedge 61. . Furthermore, an O-ring 74 is attached to the outer periphery of the cylindrical portion 71b of the tappet 71 to ensure sealing between the tappet 71 and the sleeve 72. The tappet 71 is fitted into the innermost part of the cylinder part 52 that communicates with the wedge housing part 51, and has an inclined surface 71c in contact with the circumferential surface of the roller 61c. The driving force from the wedge unit 60 causes the cylinder portion 52 to slide in the axial direction.
 スリーブ72は、スリーブ主部72Aとスリーブ副部72Bとにより構成されている。スリーブ主部72Aは、互いに外径の異なる基部72Aaおよび中間部72Abを有している。基部72Aaはその外径がタペット71の本体部71aの外径と等しく形成され、中間部72Abはその外径が基部72Aaの外径よりも小さく形成されている。また、スリーブ主部72Aは、軸線方向の他端側に八角柱状に形成された工具係合部72Acを有している。スリーブ主部72Aには、軸線方向に沿って延びる貫通孔72Ad(図5を参照)が形成されており、貫通孔72Adの内周面には、スクリュウ73が螺合される雌ねじ部72Aeが形成されている。 The sleeve 72 is composed of a sleeve main portion 72A and a sleeve sub portion 72B. The sleeve main portion 72A has a base portion 72Aa and an intermediate portion 72Ab that have different outer diameters. The base portion 72Aa has an outer diameter equal to the outer diameter of the main body portion 71a of the tappet 71, and the intermediate portion 72Ab has an outer diameter smaller than the outer diameter of the base portion 72Aa. Further, the sleeve main portion 72A has a tool engaging portion 72Ac formed in an octagonal column shape on the other end side in the axial direction. A through hole 72Ad (see FIG. 5) extending along the axial direction is formed in the sleeve main portion 72A, and a female threaded portion 72Ae into which the screw 73 is screwed is formed on the inner peripheral surface of the through hole 72Ad. has been done.
 スリーブ副部72Bは円筒状に形成されている。スリーブ副部72Bの外径はスリーブ主部72Aの基部72Aaの外径と等しく形成され、スリーブ副部72Bの内径はスリーブ主部72Aの中間部72Abの外径と等しく形成されている。スリーブ副部72Bは、スリーブ主部72Aの中間部72Abに圧入され、スリーブ主部72Aと一体化される。スリーブ副部72Bの外周面には、複数の凹状の外歯はす歯72Ba(図5を参照)が形成されている。なお、スリーブ72は、スリーブ主部72Aとスリーブ副部72Bを1つの部材で一体に形成してもよい。本実施形態のように、スリーブ主部72Aとスリーブ副部72Bを別体形成し、スリーブ副部72Bに外歯はす歯72Baを形成してからスリーブ副部72Bをスリーブ主部72Aに圧入する構成することで、外歯はす歯72Baを形成することが容易になるという利点がある。また、スリーブ主部72Aとスリーブ副部72Bを互いに異なる材料で形成することも可能となる。スリーブ72は、軸線Xが回転軸となるようにハウジング50のシリンダ部52内に挿入配置され、回転軸回り一方向(例えば、軸線方向の一端側から見て左回り)および回転軸回り他方向(例えば、軸線方向の一端側から見て右回り)に回転可能となっている。 The sleeve sub-portion 72B is formed into a cylindrical shape. The outer diameter of the sleeve sub-portion 72B is formed to be equal to the outer diameter of the base portion 72Aa of the sleeve main portion 72A, and the inner diameter of the sleeve sub-portion 72B is formed to be equal to the outer diameter of the intermediate portion 72Ab of the sleeve main portion 72A. The sleeve sub-portion 72B is press-fitted into the intermediate portion 72Ab of the sleeve main portion 72A, and is integrated with the sleeve main portion 72A. A plurality of concave external helical teeth 72Ba (see FIG. 5) are formed on the outer peripheral surface of the sleeve sub-portion 72B. Note that the sleeve 72 may be formed by integrally forming the sleeve main portion 72A and the sleeve sub-portion 72B as one member. As in this embodiment, the sleeve main portion 72A and the sleeve sub-portion 72B are formed separately, the external helical teeth 72Ba are formed on the sleeve sub-portion 72B, and then the sleeve sub-portion 72B is press-fitted into the sleeve main portion 72A. This structure has the advantage that it becomes easy to form the external helical teeth 72Ba. Further, it is also possible to form the sleeve main portion 72A and the sleeve sub-portion 72B from different materials. The sleeve 72 is inserted into the cylinder portion 52 of the housing 50 so that the axis X becomes the rotation axis, and rotates in one direction around the rotation axis (for example, counterclockwise when viewed from one end in the axial direction) and in the other direction around the rotation axis. (For example, clockwise when viewed from one end in the axial direction).
 スクリュウ73は、軸線方向に延びるロッド状に形成されて外周面に雄ねじ部73aを有し、その雄ねじ部73aをスリーブ72の雌ねじ部72Aeに螺合させてハウジング50の側部外方へ延出するように設けられている。スクリュウ73の軸線方向の他端側には、軸線Xを挟んで互いに対向する一対の接続面73c,73cを有するブレーキシュー接続部73bが形成されている。ブレーキシュー接続部73bには、図8に示すように、ブレーキシュー40の先端部に固定された連結部材80を介してブレーキシュー40が接続される。連結部材80は、ブレーキシュー接続部73b側に突出する連結部81を有し、この連結部81を一対の接続面73c,73c間に嵌め込むことにより、ブレーキシュー接続部73bと連結されるようになっている。スクリュウ73は、ブレーキシュー接続部73bが連結部材80を介してブレーキシュー40と接続されることで、軸線Xを中心に回転することが規制された状態(回転不能な状態)となる。 The screw 73 is formed into a rod shape extending in the axial direction and has a male threaded portion 73a on the outer peripheral surface, and the male threaded portion 73a is screwed into the female threaded portion 72Ae of the sleeve 72 and extends outward from the side of the housing 50. It is set up to do so. A brake shoe connecting portion 73b having a pair of connecting surfaces 73c, 73c facing each other with the axis X in between is formed at the other end of the screw 73 in the axial direction. As shown in FIG. 8, the brake shoe 40 is connected to the brake shoe connecting portion 73b via a connecting member 80 fixed to the tip of the brake shoe 40. The connecting member 80 has a connecting portion 81 that protrudes toward the brake shoe connecting portion 73b, and is connected to the brake shoe connecting portion 73b by fitting the connecting portion 81 between the pair of connecting surfaces 73c, 73c. It has become. When the brake shoe connecting portion 73b is connected to the brake shoe 40 via the connecting member 80, the screw 73 is in a state in which rotation about the axis X is restricted (non-rotatable state).
 かかる構成のエキスパンダユニット5(エキスパンダ70)は、ブレーキシュー40のライニング43に摩耗が生じたときに、ライニング43とブレーキドラム31との間隙(シュークリアランス)を自動的に詰めて所定の間隙に調整する間隙調整機能を備えている。この間隙調整機能は、タペット71、スリーブ72、スクリュウ73の他に、ドライブクラッチ機構10を有していることで実現される。なお、間隙調整は、スクリュウ73に螺合されたスリーブ72が回転軸回り他方向(上記右回り)に回転し、これにより、スリーブ72に対するスクリュウ73の軸線方向の他端側への繰出量が増大することにより行われる。ドライブクラッチ機構10は、図5に示すように、ドライブリング11、クラッチリング12およびウェイブスプリング13を主体として構成される。 The expander unit 5 (expander 70) having such a configuration automatically closes the gap (shoe clearance) between the lining 43 and the brake drum 31 to a predetermined gap when the lining 43 of the brake shoe 40 wears out. Equipped with a gap adjustment function to adjust the distance. This gap adjustment function is realized by having the drive clutch mechanism 10 in addition to the tappet 71, sleeve 72, and screw 73. Note that the gap adjustment is performed by rotating the sleeve 72 screwed onto the screw 73 in the other direction (clockwise as described above) around the rotation axis, thereby adjusting the amount by which the screw 73 extends toward the other end in the axial direction relative to the sleeve 72. It is done by increasing. As shown in FIG. 5, the drive clutch mechanism 10 mainly includes a drive ring 11, a clutch ring 12, and a wave spring 13.
 ドライブリング11は円環状に形成され、その内周面には複数の凸状の内歯はす歯11Aが形成されている。また、ドライブリング11の軸線方向の一端側の端面には、軸線Xの周方向に連続するドライブリング側凹凸部11Bが形成されている。このドライブリング側凹凸部11Bは、軸線Xの周方向に並ぶ互いに同一形状の複数の三角歯11Baにより構成されている。各三角歯11Baは、軸線Xの周方向に沿った断面形状が三角形状に形成されているとともに、一対の傾斜面11Bb,11Bcを有している。この一対の傾斜面11Bb,11Bcは、それぞれの勾配(軸線Xに垂直な平面に対する傾斜角)が互いに異なるように構成されている(本例の場合、傾斜面11Bcよりも傾斜面11Bbの方が急勾配)。このような構成のドライブリング11は、各内歯はす歯11Aをスリーブ72(スリーブ副部72B)の各外歯はす歯72Baに噛合させた状態でハウジング50内に配置される。また、ドライブリング11は、軸線Xを回転軸として回転軸回り一方向(例えば、軸線方向一端側から見て左回り)および回転軸回り他方向(例えば、軸線方向一端側から見て右回り)に回転可能となっている。 The drive ring 11 is formed in an annular shape, and a plurality of convex internal helical teeth 11A are formed on its inner peripheral surface. Furthermore, a drive ring-side uneven portion 11B that continues in the circumferential direction of the axis X is formed on the end surface of the drive ring 11 on one end side in the axial direction. The drive ring side uneven portion 11B is constituted by a plurality of triangular teeth 11Ba having the same shape and arranged in the circumferential direction of the axis X. Each triangular tooth 11Ba has a triangular cross-sectional shape along the circumferential direction of the axis X, and has a pair of inclined surfaces 11Bb and 11Bc. The pair of inclined surfaces 11Bb and 11Bc are configured such that their respective slopes (inclination angles with respect to a plane perpendicular to the axis steep slope). The drive ring 11 having such a configuration is arranged in the housing 50 with each internal helical tooth 11A meshing with each external helical tooth 72Ba of the sleeve 72 (sleeve sub-portion 72B). The drive ring 11 is rotated around the axis X in one direction (for example, counterclockwise when viewed from one end in the axial direction) and in the other direction around the rotation axis (for example, clockwise when viewed from one end in the axial direction). It is possible to rotate.
 クラッチリング12はドライブリング11と同様に円環状に形成されている。クラッチリング12の軸線方向の他端側の端面には、軸線Xの周方向に連続するクラッチリング側凹凸部12Aが形成されている。このクラッチリング側凹凸部12Aは、軸線Xの周方向に並ぶ互いに同一形状の複数の三角歯12Aaにより構成されている。各三角歯12Aaは、軸線Xの周方向に沿った断面形状が三角形状に形成されているとともに、一対の傾斜面12Ab,12Acを有している。この一対の傾斜面12Ab,12Acは、それぞれの勾配(軸線Xに垂直な平面に対する傾斜角)が互いに異なるように構成されている(本例の場合、傾斜面12Acよりも傾斜面12Abの方が急勾配)。なお、クラッチリング側凹凸部12Aは、ドライブリング11をX軸に垂直な軸線を中心として反転させたときのドライブリング側凹凸部11Bと等しい形状を有している。したがって、クラッチリング側凹凸部12Aとドライブリング側凹凸部11Bを突き合わせると、両者が互いにぴったりと噛み合うことが可能になっている。このような構成のクラッチリング12は、クラッチリング側凹凸部12Aがドライブリング側凹凸部11Bと対向して当接する状態でハウジング50内に固定される。 The clutch ring 12 is formed in an annular shape like the drive ring 11. A clutch ring-side uneven portion 12A that continues in the circumferential direction of the axis X is formed on the end surface of the other end of the clutch ring 12 in the axial direction. The clutch ring side uneven portion 12A is constituted by a plurality of triangular teeth 12Aa having the same shape and arranged in the circumferential direction of the axis X. Each triangular tooth 12Aa has a triangular cross-sectional shape along the circumferential direction of the axis X, and has a pair of inclined surfaces 12Ab and 12Ac. The pair of inclined surfaces 12Ab and 12Ac are configured such that their respective slopes (inclination angles with respect to the plane perpendicular to the axis X) are different from each other (in this example, the inclined surface 12Ab is larger than the inclined surface 12Ac. steep slope). Note that the clutch ring side uneven portion 12A has the same shape as the drive ring side uneven portion 11B when the drive ring 11 is reversed about an axis perpendicular to the X-axis. Therefore, when the clutch ring-side uneven portion 12A and the drive ring-side uneven portion 11B are butted against each other, they can be perfectly engaged with each other. The clutch ring 12 having such a configuration is fixed in the housing 50 with the clutch ring side uneven portion 12A facing and abutting against the drive ring side uneven portion 11B.
 ウェイブスプリング13は、ドライブリング側凹凸部11Bをクラッチリング側凹凸部12Aに押し付ける付勢力(ドライブリング付勢力と称する)を、ドライブリング11に作用させる付勢部材である。ウェイブスプリング13は、スナップリング56を介してシリンダ部52の開口端に取り付けられるブーツ55により保持されて、ハウジング50内に設置される。 The wave spring 13 is a biasing member that applies a biasing force (referred to as a drive ring biasing force) to the drive ring 11 that presses the drive ring side uneven portion 11B against the clutch ring side uneven portion 12A. The wave spring 13 is held in the housing 50 by a boot 55 attached to the open end of the cylinder portion 52 via a snap ring 56.
 このように構成されるドライブクラッチ機構10では、ドライブリング11が回転軸回りに回転することに抵抗する回転抵抗力(ドライブリング回転抵抗力と称する)をドライブリング11に付与する。このドライブリング回転抵抗力は、クラッチリング側凹凸部12Aおよびドライブリング側凹凸部11Bの各三角歯の傾斜面の勾配を変えることによって調整することができる。すなわち、ドライブリング11は、ウェイブスプリング13からドライブリング付勢力を受けた状態で、クラッチリング側凹凸部12Aに対するドライブリング側凹凸部11Bの当接位置を回転軸の周方向に移動させながら回転するが、この回転の際に、クラッチリング側凹凸部12Aとドライブリング側凹凸部11Bとの当接部を介してドライブリング11に、ドライブリング回転抵抗力が作用する。このドライブリング回転抵抗力は、クラッチリング側凹凸部12Aの各三角歯12Aaの傾斜面およびドライブリング側凹凸部11Bの各三角歯11Baの傾斜面の勾配が大きい程、大きくなる。本実施形態では、ドライブリング11が回転軸回り一方向(上記左回り)に回転するときは、ドライブリング側凹凸部11Bの各三角歯11Baの一対の傾斜面11Bb,11Bcのうち、相対的に勾配が緩い傾斜面11Bcが、クラッチリング側凹凸部12Aの各三角歯12Aaの一対の傾斜面12Ab,12Acのうち、相対的に勾配が緩い傾斜面12Acを乗り越えることになる。一方、ドライブリング11が回転軸回り他方向(上記右回り)に回転するときは、ドライブリング側凹凸部11Bの各三角歯11Baにおける相対的に勾配が急な傾斜面11Bbが、クラッチリング側凹凸部12Aの各三角歯12Aaにおける相対的に勾配が急な傾斜面12Abを乗り越えることになる。そのため、ドライブリング11が回転軸回り一方向(上記左回り)に回転するときにドライブリング11に作用するドライブリング回転抵抗力(以下「ドライブリング左回り回転抵抗力」とも称する)よりも、ドライブリング回転抵抗力が回転軸回り他方向(上記右回り)に回転するときにドライブリング11に作用するドライブリング回転抵抗力(以下「ドライブリング右回り回転抵抗力」とも称する)の方が大きい。 In the drive clutch mechanism 10 configured in this way, a rotational resistance force (referred to as a drive ring rotational resistance force) that resists rotation of the drive ring 11 around the rotation axis is applied to the drive ring 11. This drive ring rotational resistance force can be adjusted by changing the slope of the inclined surface of each triangular tooth of the clutch ring side uneven portion 12A and the drive ring side uneven portion 11B. That is, the drive ring 11 rotates while receiving the drive ring biasing force from the wave spring 13 while moving the contact position of the drive ring side uneven portion 11B with respect to the clutch ring side uneven portion 12A in the circumferential direction of the rotating shaft. However, during this rotation, a drive ring rotational resistance force acts on the drive ring 11 via the contact portion between the clutch ring side uneven portion 12A and the drive ring side uneven portion 11B. This drive ring rotational resistance force increases as the slope of the inclined surface of each triangular tooth 12Aa of the clutch ring side uneven portion 12A and the inclined surface of each triangular tooth 11Ba of the drive ring side uneven portion 11B becomes larger. In the present embodiment, when the drive ring 11 rotates in one direction (counterclockwise as described above) around the rotation axis, the relative The sloped surface 11Bc having a gentle slope crosses over the sloped surface 12Ac having a relatively gentle slope among the pair of sloped surfaces 12Ab and 12Ac of each triangular tooth 12Aa of the clutch ring side uneven portion 12A. On the other hand, when the drive ring 11 rotates in the other direction (clockwise as described above) around the rotation axis, the relatively steep inclined surface 11Bb of each triangular tooth 11Ba of the drive ring side uneven portion 11B becomes the clutch ring side unevenness. This will overcome the relatively steep inclined surface 12Ab of each triangular tooth 12Aa of the portion 12A. Therefore, the driving The drive ring rotational resistance force (hereinafter also referred to as "drive ring clockwise rotational resistance force") that acts on the drive ring 11 when the ring rotational resistance force rotates in the other direction (clockwise as described above) around the rotation axis is larger.
 次に、ドラムブレーキBのブレーキ作動時、非作動時における作用、およびドライブクラッチ機構10による間隙調整について説明する。以下では、ブレーキ作動によって、ブレーキドラム31およびブレーキシュー40(ライニング43)が比較的大きく弾性変形する場合について説明する。 Next, the operation of the drum brake B when the brake is activated and when it is not activated, and the gap adjustment by the drive clutch mechanism 10 will be explained. Below, a case where the brake drum 31 and the brake shoe 40 (lining 43) undergo relatively large elastic deformation due to brake operation will be described.
 まず、ブレーキ操作がなされると、不図示のダイヤフラム(サービスチャンバ)の作動により、ウェッジ61がウェッジスプリング62の付勢力に抗してウェッジ収容部51への挿入方向(図2および図3の下方向)に押圧される。この押圧力は、ウェッジ61の傾斜面61b,61bとタペット71の傾斜面71c,71cとの楔作用によりローラ61c,61cを介して軸線方向への押圧力に変換され、タペット71を介してスリーブ72に伝達される。この押圧力を受けて、スリーブ72はタペット71と一緒にシリンダ部52内を軸線方向の一端側から他端側へ向かって移動する。 First, when the brake is operated, the wedge 61 resists the biasing force of the wedge spring 62 and is inserted into the wedge accommodating portion 51 (in the lower part of FIGS. 2 and 3) due to the operation of a diaphragm (service chamber) not shown. direction). This pressing force is converted into a pressing force in the axial direction via the rollers 61c, 61c due to the wedge action between the inclined surfaces 61b, 61b of the wedge 61 and the inclined surfaces 71c, 71c of the tappet 71, and is applied to the sleeve via the tappet 71. 72. In response to this pressing force, the sleeve 72 moves together with the tappet 71 within the cylinder portion 52 from one end to the other end in the axial direction.
 スリーブ72は、スリーブ72の外歯はす歯72Baとドライブリング11の内歯はす歯11Aとの噛合部を介して、ドライブリング11に噛合している。スリーブ72が軸線方向の他端側へ移動するとき、スリーブ72からドライブリング11には、それらの噛合部を介して、ドライブリング11を回転軸回り一方向(上記左回り)に回転させる回転力(以下「制動時移動対応回転力」とも称する)が作用する。一方、ドライブリング11には、ドライブクラッチ機構10の作用により、上記ドライブリング左回り回転抵抗力が作用する。また、スリーブ72は、スリーブ72の雌ねじ部72Aeとスクリュウ73の雄ねじ部73aとの螺合部を介して、スクリュウ73に螺合している。スリーブ72が軸線方向の他端側へ移動するときスリーブ72とスクリュウ73との螺合部には、スクリュウ73に対しスリーブ72が回転軸回りに回転することに抵抗する回転抵抗力(以下「制動時スリーブ回転抵抗力」とも称する)が作用する。 The sleeve 72 meshes with the drive ring 11 through the meshing portion between the external helical teeth 72Ba of the sleeve 72 and the internal helical teeth 11A of the drive ring 11. When the sleeve 72 moves toward the other end in the axial direction, a rotational force is applied from the sleeve 72 to the drive ring 11 through their meshing portions to rotate the drive ring 11 in one direction (counterclockwise) around the rotation axis. (hereinafter also referred to as "rotational force corresponding to movement during braking") acts. On the other hand, the drive ring counterclockwise rotation resistance force acts on the drive ring 11 due to the action of the drive clutch mechanism 10 . Further, the sleeve 72 is screwed onto the screw 73 via a threaded portion between a female threaded portion 72Ae of the sleeve 72 and a male threaded portion 73a of the screw 73. When the sleeve 72 moves toward the other end in the axial direction, the threaded joint between the sleeve 72 and the screw 73 has a rotational resistance force (hereinafter referred to as "braking") that resists the rotation of the sleeve 72 around the rotation axis with respect to the screw 73. At the same time, a sleeve rotation resistance force (also referred to as "sleeve rotation resistance force") acts.
 本実施形態では、上記制動時移動対応回転力が、上記ドライブリング左回り回転抵抗力よりも大きく、上記制動時スリーブ回転抵抗力よりも小さくなるように、クラッチリング側凹凸部12Aの各三角歯11Baにおける傾斜面11Bcの勾配およびクラッチリング側凹凸部12Aの各三角歯12Aaにおける傾斜面12Acの勾配が設定されている。そのため、ドライブリング11は回転軸回り一方向に回転する一方で、スリーブ72は回転せずにシリンダ部52内を軸線方向の他端側へ向かって移動する。 In this embodiment, each triangular tooth of the clutch ring-side uneven portion 12A is arranged so that the rotational force corresponding to the movement during braking is larger than the counterclockwise rotational resistance force of the drive ring and smaller than the sleeve rotational resistance force during braking. The slope of the slope 11Bc at 11Ba and the slope of the slope 12Ac at each triangular tooth 12Aa of the clutch ring side uneven portion 12A are set. Therefore, while the drive ring 11 rotates in one direction around the rotation axis, the sleeve 72 does not rotate and moves within the cylinder portion 52 toward the other end in the axial direction.
 また、スリーブ72と螺合されたスクリュウ73は、スリーブ72と一体的に軸線方向の他端側へ移動する。そして、スクリュウ73,73の軸線方向への張出により、一対のブレーキシュー40,40はアンカーピン44,44を中心に外方へ揺動し、ライニング43がブレーキドラム31の内周面に押圧され、これら両者間の摩擦によりブレーキドラム31の回転が制動される。ライニング43がブレーキドラム31の内周面に押圧されることにより、ブレーキドラム31およびブレーキシュー40(ライニング43)が弾性変形すると、この弾性変形する範囲においてもスクリュウ73は、スリーブ72と一体的に軸線方向の他端側へ移動する。 Further, the screw 73 screwed into the sleeve 72 moves integrally with the sleeve 72 toward the other end in the axial direction. Then, due to the extension of the screws 73, 73 in the axial direction, the pair of brake shoes 40, 40 swing outward around the anchor pins 44, 44, and the lining 43 is pressed against the inner peripheral surface of the brake drum 31. The rotation of the brake drum 31 is braked by the friction between the two. When the lining 43 is pressed against the inner circumferential surface of the brake drum 31 and the brake drum 31 and the brake shoe 40 (lining 43) are elastically deformed, the screw 73 remains integral with the sleeve 72 even in this elastically deformed range. Move to the other end in the axial direction.
 ブレーキ操作が解除されると、ウェッジ61がウェッジスプリング62の付勢力によりウェッジ収容部51からの抜脱方向(図3および図4の上方向)へ移動する。このウェッジ61の移動に応じてウェッジ61からエキスパンダ70に作用する軸線方向の他端側への押圧力が小さくなる。これにより、スクリュウ73およびスリーブ72が、軸線方向の一端側へ移動することが許容されるとともに、ブレーキドラム31およびブレーキシュー40が弾性復元することが許容される。スクリュウ73が軸線方向の一端側へ移動するとき、スクリュウ73とスリーブ72との螺合部には、スクリュウ73に対しスリーブ72が回転軸回りに回転することに抵抗する回転抵抗力(以下「制動解除時スリーブ回転抵抗力」とも称する)が作用する。また、スクリュウ73と共にスリーブ72が軸線方向の一端側へ移動するとき、スリーブ72からドライブリング11には、それらの噛合部を介して、ドライブリング11を回転軸回り他方向(上記右回り)に回転させる回転力(「制動解除時移動対応回転力」とも称する)が作用する。一方、ドライブリング11には、ドライブクラッチ機構10の作用により、上記ドライブリング右回り回転抵抗力が作用する。 When the brake operation is released, the wedge 61 moves in the direction of removal from the wedge accommodating portion 51 (upward in FIGS. 3 and 4) due to the biasing force of the wedge spring 62. In accordance with this movement of the wedge 61, the pressing force acting on the expander 70 from the wedge 61 toward the other end in the axial direction becomes smaller. Thereby, the screw 73 and the sleeve 72 are allowed to move toward one end in the axial direction, and the brake drum 31 and the brake shoe 40 are allowed to recover elastically. When the screw 73 moves toward one end in the axial direction, the threaded portion of the screw 73 and the sleeve 72 has a rotational resistance force (hereinafter referred to as "braking") that resists the rotation of the sleeve 72 relative to the screw 73 around the rotation axis. When released, a sleeve rotation resistance force (also referred to as "sleeve rotation resistance force") acts. Furthermore, when the sleeve 72 moves toward one end in the axial direction together with the screw 73, the drive ring 11 is moved from the sleeve 72 to the drive ring 11 in the other direction around the rotation axis (clockwise as described above) via their meshing portions. A rotational force for rotation (also referred to as "rotational force for movement when brake is released") acts. On the other hand, the drive ring clockwise rotation resistance force acts on the drive ring 11 due to the action of the drive clutch mechanism 10 .
 本実施形態では、ブレーキドラム31およびブレーキシュー40が弾性復元する過程においては、上記制動解除時移動対応回転力が、上記制動解除時スリーブ回転抵抗力よりも小さく、上記ドライブリング左回り回転抵抗力よりも大きくなるように、クラッチリング側凹凸部12Aの各三角歯11Baにおける傾斜面11Bbの勾配およびクラッチリング側凹凸部12Aの各三角歯12Aaにおける傾斜面12Abの勾配が設定されている。そのため、ドライブリング11は回転軸回り他方向に回転する一方で、スリーブ72は回転せずにシリンダ部52内を軸線方向の一端側へ向かって移動する。 In this embodiment, in the process where the brake drum 31 and the brake shoes 40 are elastically restored, the rotational force corresponding to the movement at the time of brake release is smaller than the sleeve rotation resistance force at the time of brake release, and the drive ring counterclockwise rotation resistance force is smaller than the sleeve rotation resistance force at the time of brake release. The slope of the inclined surface 11Bb of each triangular tooth 11Ba of the clutch ring side uneven portion 12A and the slope of the inclined surface 12Ab of each triangular tooth 12Aa of the clutch ring side uneven portion 12A are set so as to be larger than the above. Therefore, while the drive ring 11 rotates in the other direction around the rotation axis, the sleeve 72 moves toward one end in the axial direction within the cylinder portion 52 without rotating.
 また、スリーブ72と螺合されたスクリュウ73は、スリーブ72と一体的に軸線方向の一端側へ移動する。このとき、スリーブ72は回転しないので、スリーブ72に対するスクリュウ73の繰出量が増大することはなく、したがって間隙調整は行われない。 Further, the screw 73 screwed into the sleeve 72 moves integrally with the sleeve 72 toward one end in the axial direction. At this time, since the sleeve 72 does not rotate, the amount of feed of the screw 73 relative to the sleeve 72 does not increase, and therefore no gap adjustment is performed.
 スクリュウ73およびスリーブ72の軸線方向の一端側への移動により、ブレーキドラム31およびブレーキシュー40の弾性復元が進むと、それに応じて、制動解除時スリーブ回転抵抗力および制動解除時移動対応回転力は小さくなる。なお、ブレーキドラム31およびブレーキシュー40の弾性復元が完了しても、スクリュウ73およびスリーブ72は、シリンダ部52内の所定位置に格納されるまで、両ブレーキシュー40,40間に跨設されたリターンスプリング45の作用により、軸線方向の一端側へ向かって移動する。 As the elastic restoration of the brake drum 31 and brake shoe 40 progresses due to the movement of the screw 73 and sleeve 72 toward one end in the axial direction, the sleeve rotational resistance force at the time of brake release and the rotational force corresponding to the movement at the time of brake release are correspondingly increased. becomes smaller. In addition, even if the elastic restoration of the brake drum 31 and the brake shoes 40 is completed, the screw 73 and the sleeve 72 remain in place between the two brake shoes 40 and 40 until they are stored in a predetermined position in the cylinder part 52. Due to the action of the return spring 45, it moves toward one end in the axial direction.
 本実施形態では、ブレーキドラム31およびブレーキシュー40の弾性復元が完了すると、上記制動解除時移動対応回転力が、上記制動解除時スリーブ回転抵抗力よりも大きく、上記ドライブリング左回り回転抵抗力よりも小さくなるように、クラッチリング側凹凸部12Aの各三角歯11Baにおける傾斜面11Bbの勾配およびクラッチリング側凹凸部12Aの各三角歯12Aaにおける傾斜面12Abの勾配が設定されている。そのため、ドライブリング11は回転しない一方で、スリーブ72は回転軸回り他方向(上記右回り)に回転しながらシリンダ部52内を軸線方向の一端側へ向かって移動する。 In this embodiment, when the elastic restoration of the brake drum 31 and the brake shoes 40 is completed, the rotational force corresponding to the movement at the time of brake release is greater than the sleeve rotation resistance force at the time of brake release, and is greater than the counterclockwise rotation resistance force of the drive ring. The slope of the inclined surface 11Bb of each triangular tooth 11Ba of the clutch ring side uneven portion 12A and the slope of the inclined surface 12Ab of each triangular tooth 12Aa of the clutch ring side uneven portion 12A are set such that Therefore, while the drive ring 11 does not rotate, the sleeve 72 moves toward one end in the axial direction within the cylinder portion 52 while rotating in the other direction (clockwise as described above) around the rotation axis.
 また、スリーブ72と螺合されたスクリュウ73は、スリーブ72が回転軸回り他方向(上記右回り)に回転することにより、スリーブ72の回転角に応じた繰出量だけ軸線方向の他端側へ繰り出される。これにより、間隙調整が行われる。 Further, as the sleeve 72 rotates in the other direction (clockwise as described above) around the rotation axis, the screw 73 screwed into the sleeve 72 is moved toward the other end in the axial direction by an amount corresponding to the rotation angle of the sleeve 72. It is rolled out. This performs gap adjustment.
 このように、ドライブクラッチ機構10を備えたドラムブレーキ装置Bでは、ブレーキドラム31およびブレーキシュー40の弾性復元する過程では、スクリュウ73が軸線方向の一端側に移動する際にスリーブ72は回転せず間隙調整が行われないので、ブレーキの引きずりが発生することを防止することができる。また、ブレーキドラム31およびブレーキシュー40の弾性復元が完了後、スクリュウ73が軸線方向の一端側に移動する際にはスリーブ72が回転して間隙調整が行われるので、ブレーキドラム31の内周面とブレーキシュー40との間隙を適正に自動調整することができる。 In this manner, in the drum brake device B equipped with the drive clutch mechanism 10, the sleeve 72 does not rotate when the screw 73 moves toward one end in the axial direction during the process of elastically restoring the brake drum 31 and the brake shoes 40. Since gap adjustment is not performed, it is possible to prevent brake drag from occurring. Further, after the elastic restoration of the brake drum 31 and the brake shoes 40 is completed, when the screw 73 moves toward one end in the axial direction, the sleeve 72 rotates to adjust the gap, so that the inner peripheral surface of the brake drum 31 The gap between the brake shoe 40 and the brake shoe 40 can be automatically adjusted appropriately.
 次に、間隙調整を手動で行う場合について説明する。ドラムブレーキ装置Bでは、スリーブ72の工具係合部72Acにスパナ等の工具を係合させて手動でスリーブ72を回転軸回りに回転させることにより、スリーブ72に対するスクリュウ73の繰出量を増減調整できるようになっている。具体的には、スリーブ72を回転軸回り一方向(上記左回り)に回転させることによって、スリーブ72に対するスクリュウ73の繰出量を減少させることができる。これにより、ブレーキドラム31の内周面とブレーキシュー40との間隙を広げることができる。また、スリーブ72を回転軸回り他方向(上記右回り)に回転させることによって、スリーブ72に対するスクリュウ73の繰出量を増大させることができる。これにより、ブレーキドラム31の内周面とブレーキシュー40との間隙を詰めることができる。なお、スリーブ72を回転させるとき、ドライブリング11はスリーブ72と一緒に回転する。 Next, a case where the gap adjustment is performed manually will be explained. In the drum brake device B, by engaging a tool such as a spanner with the tool engaging portion 72Ac of the sleeve 72 and manually rotating the sleeve 72 around the rotation axis, the amount of delivery of the screw 73 relative to the sleeve 72 can be adjusted to increase or decrease. It looks like this. Specifically, by rotating the sleeve 72 in one direction (counterclockwise as described above) around the rotation axis, it is possible to reduce the amount of delivery of the screw 73 relative to the sleeve 72. Thereby, the gap between the inner circumferential surface of the brake drum 31 and the brake shoe 40 can be widened. Further, by rotating the sleeve 72 in the other direction (clockwise as described above) around the rotation axis, the amount of delivery of the screw 73 relative to the sleeve 72 can be increased. Thereby, the gap between the inner peripheral surface of the brake drum 31 and the brake shoe 40 can be reduced. Note that when the sleeve 72 is rotated, the drive ring 11 rotates together with the sleeve 72.
 従来のドラムブレーキ装置では、スクリューを手動で回転させることによってスリーブに対するスクリュウの繰出量を増減調整するようになっている。スクリューは、手動調整時以外のスクリューの回転を規制しつつ手動調整時のスクリューの回転は許容するためのクリップ部材を介してブレーキシューに接続されている。このクリップ部材は、走行時の振動によって破損する虞があるが、ドラムブレーキ装置Bでは、上記のようなクリップ部材を使用しないので、そのような懸念がない。 In conventional drum brake devices, the amount of payout of the screw relative to the sleeve is adjusted by manually rotating the screw. The screw is connected to the brake shoe via a clip member that restricts rotation of the screw except during manual adjustment while allowing rotation of the screw during manual adjustment. There is a risk that this clip member may be damaged by vibrations during driving, but drum brake device B does not use such a clip member as described above, so there is no such concern.
 なお、本発明は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば適宜変更可能である。 Note that the present invention is not limited to the above embodiments, and can be modified as appropriate without departing from the gist of the present invention.
 上述の実施形態では、ドラムブレーキ装置Bをリーディングトレーリング式のドラムブレーキとして構成した場合を例示したが、ユニサーボ式、デュオサーボ式、あるいは2リーディング式のドラムブレーキとして構成してもよい。 In the above-described embodiment, the drum brake device B is configured as a leading-trailing type drum brake, but it may also be configured as a uni-servo type, duo-servo type, or two-leading type drum brake.
B ドラムブレーキ装置
1 車軸(回転部材)
2 アンカーブラケット
3 ドラムユニット
4 ブレーキシューユニット
5 エキスパンダユニット
10 ドライブクラッチ機構
11 ドライブリング
11B ドライブリング側凹凸部
11A 内歯はす歯
12 クラッチリング
12A クラッチリング側凹凸部
13 ウェイブスプリング
31 ブレーキドラム
40 ブレーキシュー
50 ハウジング
60 ウェッジユニット
70 エキスパンダ
71 タペット
72 スリーブ
72Ba 外歯はす歯
72Ae 雌ねじ部
73 スクリュウ
73a 雄ねじ部
B Drum brake device 1 Axle (rotating member)
2 Anchor bracket 3 Drum unit 4 Brake shoe unit 5 Expander unit 10 Drive clutch mechanism 11 Drive ring 11B Drive ring side uneven part 11A Internal helical teeth 12 Clutch ring 12A Clutch ring side uneven part 13 Wave spring 31 Brake drum 40 Brake shoe 50 Housing 60 Wedge unit 70 Expander 71 Tappet 72 Sleeve 72Ba External helical teeth 72Ae Female thread part 73 Screw 73a Male thread part

Claims (7)

  1.  回転部材に設けられて前記回転部材とともに回転可能な円筒状のブレーキドラムと、固定部材に移動自在に設けられて前記ブレーキドラムの内周面に対向して配設されるブレーキシューと、ブレーキ操作に応じて前記ブレーキシューを移動させて前記ブレーキドラムの内周面に当接させるエキスパンダと、前記エキスパンダに駆動力を付与する駆動機構とを備え、
     前記エキスパンダは、前記固定部材に前記移動方向に移動自在に且つ前記移動方向に延びる回転軸を中心として回転可能となって取り付けられ、前記駆動機構からの駆動力を受けて前記移動方向に移動されるスリーブ部材と、前記スリーブ部材に前記回転軸を中心とするネジにより螺合して取り付けられ、先端部が前記ブレーキシューを押圧して移動させる押圧部材と、を備え、
     前記スリーブ部材の外周に外歯はす歯が形成され、
     内周側に前記外歯はす歯と噛合する内歯はす歯が形成され、前記内歯はす歯が前記外歯はす歯と噛合して前記スリーブ部材の外周に取り付けられるドライブリング部材を有し、
     前記ドライブリング部材を前記回転軸方向に向かって前記固定部材に押しつけて前記ドライブリング部材に第1の回転抵抗力を付与するように構成され、
     前記駆動機構からの駆動力を受けて前記スリーブ部材が移動されて前記押圧部材により前記ブレーキシューを前記ブレーキドラムの内周面に当接させてブレーキを作用させたり、前記駆動機構からの駆動力を解除してブレーキ作用を解除したりするときに、
     前記スリーブ部材の移動に応じて前記外歯はす歯と前記内歯はす歯との噛合により発生する前記スリーブ部材から前記ドライブリング部材に伝わる移動対応回転力が、前記ドライブリング部材に付与される前記第1の回転抵抗力より大きく、前記スリーブ部材と前記押圧部材との螺合部に作用する第2の回転抵抗力より小さいときには、前記ドライブリング部材が回転して前記スリーブ部材を回転することなしに前記移動方向に移動させ、
     前記移動対応回転力が、前記第1の回転抵抗力より小さく、前記第2の回転抵抗力より大きいときには、前記押圧部材に対して前記噛合部を介して前記スリーブ部材が回転しながら前記移動方向に移動するように構成されたことを特徴とするドラムブレーキ装置。
    a cylindrical brake drum provided on a rotating member and rotatable together with the rotating member; a brake shoe movably provided on a fixed member and disposed facing the inner circumferential surface of the brake drum; and a brake operation device. an expander that moves the brake shoe to make it come into contact with the inner peripheral surface of the brake drum in accordance with the above, and a drive mechanism that applies a driving force to the expander,
    The expander is attached to the fixed member so as to be movable in the moving direction and rotatable about a rotating shaft extending in the moving direction, and moves in the moving direction in response to a driving force from the drive mechanism. and a pressing member that is screwed onto the sleeve member with a screw centered on the rotating shaft, and whose tip presses and moves the brake shoe,
    External helical teeth are formed on the outer periphery of the sleeve member,
    A drive ring member having internal helical teeth that mesh with the external helical teeth formed on the inner peripheral side, the internal helical teeth meshing with the external helical teeth, and is attached to the outer periphery of the sleeve member. has
    configured to press the drive ring member against the fixed member in the direction of the rotation axis to apply a first rotational resistance force to the drive ring member,
    The sleeve member is moved in response to the driving force from the drive mechanism, and the brake shoe is brought into contact with the inner circumferential surface of the brake drum by the pressing member to apply the brake, or the sleeve member is moved by the driving force from the drive mechanism. When releasing the brake action by releasing the
    As the sleeve member moves, a rotational force corresponding to the movement is transmitted from the sleeve member to the drive ring member, which is generated by the meshing of the external helical teeth and the internal helical teeth, and is applied to the drive ring member. When the drive ring member is larger than the first rotational resistance force acting on the threaded portion of the sleeve member and the pressing member and smaller than the second rotational resistance force acting on the threaded portion of the sleeve member and the pressing member, the drive ring member rotates to rotate the sleeve member. moving in the moving direction without any movement,
    When the rotational force corresponding to the movement is smaller than the first rotational resistance force and larger than the second rotational resistance force, the sleeve member rotates with respect to the pressing member via the meshing portion in the moving direction. A drum brake device configured to move.
  2.  前記固定部材に固定され、前記ドライブリング部材の前記回転軸方向の一端面と対向し前記一端面が当接される当接受面を有するクラッチリング部材と、
     前記固定部材に設けられ、前記ドライブリング部材に前記一端面を前記当接受面に押圧する付勢力を作用させる付勢部材と、を有し、
     前記当接受面には、前記回転軸の周方向に連続するクラッチリング側凹凸部が形成され、
     前記一端面には、前記クラッチリング側凹凸部と当接して係合可能で、前記回転軸の周方向に連続するドライブリング側凹凸部が形成されており、
     前記付勢力が作用された状態で前記ドライブリング部材は、前記クラッチリング側凹凸部に対する前記ドライブリング側凹凸部の当接位置を前記回転軸の周方向に移動させながら回転し、当該回転の際に、前記クラッチリング側凹凸部と前記ドライブリング側凹凸部との当接部を介して前記ドライブリング部材に、前記第1の回転抵抗力が作用するように構成されていることを特徴とする請求項1に記載のドラムブレーキ装置。
    a clutch ring member that is fixed to the fixed member and has an abutment receiving surface that faces one end surface of the drive ring member in the rotation axis direction and that the one end surface abuts;
    a biasing member that is provided on the fixed member and applies a biasing force to the drive ring member to press the one end surface against the contact receiving surface;
    A clutch ring-side uneven portion continuous in the circumferential direction of the rotating shaft is formed on the abutment receiving surface,
    A drive ring side uneven portion is formed on the one end surface and is capable of contacting and engaging with the clutch ring side uneven portion and continuous in the circumferential direction of the rotating shaft,
    With the biasing force applied, the drive ring member rotates while moving the contact position of the drive ring side unevenness with respect to the clutch ring side unevenness in the circumferential direction of the rotating shaft, and during the rotation, The first rotational resistance force is configured to act on the drive ring member through a contact portion between the clutch ring side uneven portion and the drive ring side uneven portion. The drum brake device according to claim 1.
  3.  前記クラッチリング側凹凸部および前記ドライブリング側凹凸部は、前記回転軸の周方向に並び当該周方向に沿った断面形状が三角形状に形成された複数の三角歯により構成されていることを特徴とする請求項2に記載のドラムブレーキ装置。 The clutch ring-side uneven portion and the drive ring-side uneven portion are configured by a plurality of triangular teeth arranged in the circumferential direction of the rotating shaft and having a triangular cross-sectional shape along the circumferential direction. The drum brake device according to claim 2.
  4.  各前記三角歯は一対の傾斜面を有し、前記一対の傾斜面はそれぞれの勾配が互いに異なるように構成されていることを特徴とする請求項3に記載のドラムブレーキ装置。 The drum brake device according to claim 3, wherein each of the triangular teeth has a pair of inclined surfaces, and each of the pair of inclined surfaces is configured to have a different slope.
  5.  前記エキスパンダは、前記固定部材に前記移動方向に移動自在に設けられ、前記駆動機構からの駆動力を前記スリーブ部材に伝達する伝達部材を有し、
     前記スリーブ部材は、前記回転軸回り一方向および他方向に回転自在に前記伝達部材に取り付けられていることを特徴とする請求項1~4のいずれかに記載のドラムブレーキ装置。
    The expander includes a transmission member that is provided on the fixed member so as to be movable in the movement direction and that transmits the driving force from the drive mechanism to the sleeve member,
    The drum brake device according to any one of claims 1 to 4, wherein the sleeve member is attached to the transmission member so as to be rotatable in one direction and the other direction about the rotation axis.
  6.  前記スリーブ部材は、スリーブ基部と、前記スリーブとは別体に形成されて前記スリーブ基部に固定されるスリーブ副部とを有し、前記スリーブ副部の外周に前記外歯はす歯が形成されていることを特徴とする請求項1~5のいずれかに記載のドラムブレーキ装置。 The sleeve member has a sleeve base and a sleeve sub-portion formed separately from the sleeve and fixed to the sleeve base, and the external helical teeth are formed on the outer periphery of the sleeve sub-portion. The drum brake device according to any one of claims 1 to 5, characterized in that:
  7.  前記スリーブ部材の前記回転軸回り一方向および他方向への回転位置を手動調整することにより、前記スリーブ部材に対する前記押圧部材の前記回転軸方向への繰出量を増減調整可能に構成されていることを特徴とする請求項1~6のいずれかに記載のドラムブレーキ装置。 By manually adjusting the rotational position of the sleeve member in one direction and the other direction around the rotation axis, the amount by which the pressing member is extended in the direction of the rotation axis relative to the sleeve member can be adjusted to increase or decrease. The drum brake device according to any one of claims 1 to 6, characterized by:
PCT/JP2022/020805 2022-05-19 2022-05-19 Drum brake device WO2023223492A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/020805 WO2023223492A1 (en) 2022-05-19 2022-05-19 Drum brake device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/020805 WO2023223492A1 (en) 2022-05-19 2022-05-19 Drum brake device

Publications (1)

Publication Number Publication Date
WO2023223492A1 true WO2023223492A1 (en) 2023-11-23

Family

ID=88835061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020805 WO2023223492A1 (en) 2022-05-19 2022-05-19 Drum brake device

Country Status (1)

Country Link
WO (1) WO2023223492A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617432U (en) * 1979-07-19 1981-02-16
JP2001056034A (en) * 1999-08-13 2001-02-27 Nachi Fujikoshi Corp Two-way clutch
WO2016088152A1 (en) * 2014-12-02 2016-06-09 株式会社Tbk Drum brake device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617432U (en) * 1979-07-19 1981-02-16
JP2001056034A (en) * 1999-08-13 2001-02-27 Nachi Fujikoshi Corp Two-way clutch
WO2016088152A1 (en) * 2014-12-02 2016-06-09 株式会社Tbk Drum brake device

Similar Documents

Publication Publication Date Title
JP2857071B2 (en) Pneumatically operated disc brake
US3285372A (en) Self-energization spot type brake systems
JP6543149B2 (en) Brake device
WO2016088152A1 (en) Drum brake device
WO2023223492A1 (en) Drum brake device
JP4667074B2 (en) Drum brake
KR20110060245A (en) Drum brake
JPH0225939Y2 (en)
JPH11182593A (en) Duo-servo type drum braking device
KR20110056624A (en) Adjuster assembly of drum brake
JP2002168274A (en) Drum brake
JP2548282Y2 (en) Brake cylinder with automatic clearance adjustment device
JP3901289B2 (en) Automatic gap adjustment device for drum brake
JP6878184B2 (en) Automatic shoe gap adjustment device for vehicle drum brakes
JPH0135219B2 (en)
JPH0354990Y2 (en)
JP2548278Y2 (en) Brake cylinder with automatic clearance adjustment device
JP2007139023A (en) Disc brake device
JP2590426Y2 (en) Automatic clearance adjustment device for drum brake
KR20110029268A (en) Drum brake
JPH0354989Y2 (en)
JP6332934B2 (en) Automatic brake clearance adjustment device for drum brakes
JP2015206388A (en) drum brake device
KR20120088340A (en) Drum brake
JPH0312990Y2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942697

Country of ref document: EP

Kind code of ref document: A1