WO2023223443A1 - 乗員状態推定装置及び乗員状態推定方法 - Google Patents
乗員状態推定装置及び乗員状態推定方法 Download PDFInfo
- Publication number
- WO2023223443A1 WO2023223443A1 PCT/JP2022/020600 JP2022020600W WO2023223443A1 WO 2023223443 A1 WO2023223443 A1 WO 2023223443A1 JP 2022020600 W JP2022020600 W JP 2022020600W WO 2023223443 A1 WO2023223443 A1 WO 2023223443A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- feature amount
- feature
- calculation unit
- occupant
- Prior art date
Links
- 238000000034 method Methods 0.000 title description 21
- 238000001514 detection method Methods 0.000 claims description 38
- 230000001815 facial effect Effects 0.000 claims description 17
- 239000000470 constituent Substances 0.000 claims description 15
- 230000008921 facial expression Effects 0.000 description 40
- 230000014509 gene expression Effects 0.000 description 31
- 238000010586 diagram Methods 0.000 description 18
- 206010011469 Crying Diseases 0.000 description 5
- 210000000744 eyelid Anatomy 0.000 description 5
- 238000000605 extraction Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 2
- 208000004350 Strabismus Diseases 0.000 description 1
- 230000008451 emotion Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 210000004709 eyebrow Anatomy 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
Definitions
- the present disclosure relates to an occupant condition estimation device and an occupant condition estimation method.
- the facial expression determination device includes an extraction means and a facial expression determination means.
- the extraction means detects the face of a person appearing in the photographed image and extracts facial features.
- the facial expression determination means determines whether the facial expression is a predetermined expression based on the difference between the feature amount extracted by the extraction means and a reference feature amount stored in advance.
- the predetermined facial expression includes, for example, a smiling expression or an angry facial expression.
- the facial expression determination device is based on the premise that the reference feature amount is the feature amount of the face of a person whose facial expression is expressionless.
- the control circuit in order to enable capturing an image when the expression of a person's face is expressionless, causes the display unit to display guidance indicating that an expressionless face is to be captured.
- the system prompts the person whose facial expression is to be determined to maintain a neutral facial expression.
- the control circuit causes the display section to display guidance indicating that a face with no expression is to be photographed. It does not necessarily mean that your face will be photographed. If the standard features are calculated based on the facial features of a person whose facial expression is not expressionless, errors will occur in the results of estimating the passenger's state using the standard features, and the estimation of the passenger's state will be incorrect. There was a problem in that accuracy could decrease.
- the present disclosure has been made to solve the above-mentioned problems, and provides an occupant state estimation device and an occupant state estimation method that can calculate a reference feature amount that can prevent a decrease in the accuracy of estimating the state of an occupant.
- the purpose is to obtain.
- the occupant state estimation device includes an in-vehicle image acquisition unit that acquires an in-vehicle image that is an image of the interior of the vehicle, and a reference feature amount that is used as a reference feature amount to describe the in-vehicle image captured by the in-vehicle image acquisition unit.
- a first feature amount calculation unit that calculates the facial feature amount of the passenger in the vehicle, and a shooting time acquired by the in-vehicle image acquisition unit after the reference feature amount is calculated by the first feature amount calculation unit.
- a second feature amount calculation unit that calculates feature amounts of the occupant's face shown in each of the plurality of in-vehicle images that are different from each other.
- the occupant state estimation device also includes a difference calculation unit that calculates a difference between the reference feature calculated by the first feature calculation unit and each feature calculated by the second feature calculation unit; Among the plurality of differences calculated by the calculation unit, among the plurality of differences calculated within a certain period after the reference feature quantity is calculated by the first feature quantity calculation unit, the difference is greater than or equal to the first threshold value.
- the apparatus further includes a recalculation instruction section that instructs the first feature amount calculation section to recalculate the reference feature amount if the ratio of the difference is equal to or greater than the second threshold value.
- FIG. 1 is a configuration diagram showing an occupant state estimation device 2 according to Embodiment 1.
- FIG. FIG. 2 is a hardware configuration diagram showing the hardware of the occupant state estimation device 2 according to the first embodiment.
- FIG. 2 is a hardware configuration diagram of a computer when the occupant state estimation device 2 is implemented by software, firmware, or the like.
- FIG. 2 is a configuration diagram showing a first feature value calculation unit 12 of the occupant state estimation device 2 according to the first embodiment.
- FIG. 2 is a configuration diagram showing a second feature amount calculation unit 13 of the occupant state estimation device 2 according to the first embodiment.
- 2 is a flowchart showing an occupant condition estimation method which is a processing procedure of the occupant condition estimation device 2.
- FIG. FIG. 2 is a hardware configuration diagram showing the hardware of the occupant state estimation device 2 according to the first embodiment.
- FIG. 2 is a hardware configuration diagram of a computer when the occupant state estimation device 2 is implemented by software, firmware, or the like.
- FIG. 2 is
- FIG. 3 is an explanatory diagram showing a straight-line distance L n, m from a face reference point C n to a part constituent point K n, m; It is an explanatory diagram showing an example of three-dimensional model MD cus after customization.
- FIG. 2 is a configuration diagram showing an occupant state estimation device 2 according to a second embodiment.
- FIG. 2 is a hardware configuration diagram showing hardware of an occupant state estimation device 2 according to a second embodiment.
- FIG. 1 is a configuration diagram showing an occupant state estimation device 2 according to the first embodiment.
- FIG. 2 is a hardware configuration diagram showing the hardware of the occupant state estimation device 2 according to the first embodiment.
- a camera 1 repeatedly photographs the inside of a vehicle, and repeatedly outputs video data representing an interior video, which is a video of the interior of the vehicle, to an occupant state estimation device 2.
- the in-vehicle video may be a still image or a moving image.
- the occupant state estimation device 2 includes an in-vehicle image acquisition section 11, a first feature amount calculation section 12, a second feature amount calculation section 13, a difference calculation section 14, a recalculation instruction section 15, and an occupant state detection section 16.
- the occupant condition estimation device 2 shown in FIG. 1 detects changes in the facial expressions of occupants riding in a vehicle.
- the passenger riding the vehicle may be the driver of the vehicle, a passenger sitting in the front passenger seat, or a passenger sitting in the rear seat.
- the in-vehicle image acquisition unit 11 is realized, for example, by an in-vehicle image acquisition circuit 21 shown in FIG.
- the in-vehicle video acquisition unit 11 acquires video data representing in-vehicle video from the camera 1.
- the in-vehicle video acquisition section 11 outputs video data representing the in-vehicle video to the first feature amount calculation section 12 .
- the in-vehicle video acquisition unit 11 acquires video data showing the in-vehicle video captured by the camera 1 after the reference feature amount has been calculated by the first feature amount calculation unit 12, and converts the video data into a second feature. It is output to the quantity calculation section 13.
- the first feature amount calculation unit 12 is realized, for example, by the first feature amount calculation circuit 22 shown in FIG.
- the first feature value calculation unit 12 acquires video data representing an in-vehicle video from the in-vehicle video acquisition unit 11 .
- the first feature amount calculation unit 12 calculates, as a reference feature amount, the feature amount of the face of the occupant riding in the vehicle, which is shown in the in-vehicle video indicated by the video data.
- the first feature quantity calculation unit 12 outputs the reference feature quantity to the difference calculation unit 14.
- the second feature amount calculation unit 13 is realized, for example, by the second feature amount calculation circuit 23 shown in FIG. After the reference feature amount is calculated by the first feature amount calculation section 12, the second feature amount calculation section 13 calculates each of the plurality of in-vehicle images acquired by the in-vehicle image acquisition section 11 and taken at different times. Calculate the facial features of the passenger in the image. The second feature amount calculation unit 13 outputs the feature amount to the difference calculation unit 14.
- the difference calculation unit 14 is realized, for example, by a difference calculation circuit 24 shown in FIG. 2.
- the difference calculation unit 14 calculates the difference between the reference feature calculated by the first feature calculation unit 12 and each feature calculated by the second feature calculation unit 13.
- the difference calculation section 14 outputs the respective differences to the recalculation instruction section 15 and the occupant state detection section 16, respectively.
- the recalculation instruction unit 15 is realized, for example, by the recalculation instruction circuit 25 shown in FIG.
- the recalculation instruction unit 15 selects a plurality of differences calculated within the FCP for a certain period after the reference feature quantity is calculated by the first feature quantity calculation unit 12, among the plurality of differences calculated by the difference calculation unit 14. get.
- the fixed period FCP is a fixed period after a certain period of time has elapsed since the first feature amount calculation unit 12 calculated the reference feature amount. For example, if the time when the reference feature amount is calculated is T 0 and the constant time is t con , the start time of FCP for the constant period is T 0 +t con .
- the fixed period FCP is not limited to a fixed period, and the time zone of the fixed period FCP may change.
- the start time of FCP for a certain period is T 0 +t con + ⁇ t
- the end time of FCP for a certain period is T 0 +t con +t FC + ⁇ t.
- t FC + ⁇ t is the time length of FCP for a certain period of time
- ⁇ t is a change time of FCP for a certain period of time.
- the recalculation instruction unit 15 instructs the recalculation of the reference feature amount to be performed for the first time if the proportion of differences that are equal to or greater than the first threshold is equal to or greater than the second threshold among the plurality of differences computed within the FCP for a certain period of time. 1 to the feature amount calculation unit 12.
- Each of the first threshold value and the second threshold value may be stored in the internal memory of the recalculation instruction unit 15, or may be given from outside the occupant state estimation device.
- the occupant condition detection section 16 is realized, for example, by an occupant condition detection circuit 26 shown in FIG. 2. If there is no recalculation instruction from the recalculation instruction section 15 to the first feature value calculation section 12, the occupant state detection section 16 determines the state of the occupant based on the respective differences calculated by the difference calculation section 14. To detect.
- the occupant state estimation device 2 includes an in-vehicle image acquisition section 11, a first feature amount calculation section 12, a second feature amount calculation section 13, a difference calculation section 14, a recalculation instruction section 15, and an occupant state estimation device 2. It is assumed that each of the state detection units 16 is realized by dedicated hardware as shown in FIG. That is, the occupant state estimation device 2 uses the in-vehicle image acquisition circuit 21 , the first feature amount calculation circuit 22 , the second feature amount calculation circuit 23 , the difference calculation circuit 24 , the recalculation instruction circuit 25 , and the occupant state detection circuit 26 . We envision what will come true.
- Each of the in-vehicle image acquisition circuit 21, the first feature amount calculation circuit 22, the second feature amount calculation circuit 23, the difference calculation circuit 24, the recalculation instruction circuit 25, and the occupant state detection circuit 26 is, for example, a single circuit, This includes a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof.
- ASIC Application Specific Integrated Circuit
- FPGA Field-Programmable Gate Array
- the components of the occupant state estimation device 2 are not limited to those realized by dedicated hardware, and the occupant state estimation device 2 may be realized by software, firmware, or a combination of software and firmware. There may be.
- Software or firmware is stored in a computer's memory as a program.
- a computer means hardware that executes a program, and includes, for example, a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor). do.
- FIG. 3 is a hardware configuration diagram of a computer when the occupant state estimation device 2 is implemented by software, firmware, or the like.
- the in-vehicle image acquisition section 11, the first feature amount calculation section 12, the second feature amount calculation section 13, the difference calculation section 14, and the recalculation instruction section A program for causing a computer to execute the respective processing procedures in the passenger condition detecting section 15 and the occupant condition detecting section 16 is stored in the memory 31. Then, the processor 32 of the computer executes the program stored in the memory 31.
- FIG. 2 shows an example in which each of the constituent elements of the occupant condition estimation device 2 is realized by dedicated hardware
- FIG. 3 shows an example in which the occupant condition estimation device 2 is realized by software, firmware, etc. ing.
- this is just an example, and some of the components in the occupant state estimation device 2 may be realized by dedicated hardware, and the remaining components may be realized by software, firmware, or the like.
- FIG. 4 is a configuration diagram showing the first feature amount calculation unit 12 of the occupant state estimation device 2 according to the first embodiment.
- the first feature calculation section 12 shown in FIG. 4 includes a straight-line distance calculation section 41, a model adjustment section 42, and a feature calculation processing section 43.
- the straight-line distance calculation section 41 acquires video data from the in-vehicle video acquisition section 11 .
- the straight-line distance calculation unit 41 calculates straight-line distances from a reference point of the passenger's face shown in the in-vehicle image indicated by the video data to a plurality of part constituent points included in the passenger's facial parts.
- the model adjustment unit 42 includes a three-dimensional model MD of a general face.
- the model adjustment unit 42 customizes the three-dimensional model MD into a three-dimensional model representing the face of the passenger by fitting each straight-line distance calculated by the straight-line distance calculation unit 41 to the three-dimensional model MD.
- the feature quantity calculation processing unit 43 calculates the feature quantity of the passenger's face as a reference feature quantity based on the three-dimensional model customized by the model adjustment unit 42 .
- FIG. 5 is a configuration diagram showing the second feature value calculation unit 13 of the occupant state estimation device 2 according to the first embodiment.
- the second feature calculation unit 13 shown in FIG. 5 includes a straight-line distance calculation unit 51, a model adjustment unit 52, and a feature calculation processing unit 53.
- the straight-line distance calculation unit 51 acquires video data each time the in-vehicle video acquisition unit 11 acquires the video data after the first feature calculation unit 12 calculates the reference feature amount.
- the straight-line distance calculation unit 51 calculates straight-line distances from a reference point of the passenger's face shown in the in-vehicle image indicated by the video data to a plurality of part constituent points included in the passenger's facial parts.
- the model adjustment unit 52 includes a three-dimensional model MD of a general face.
- the model adjustment unit 52 customizes the three-dimensional model MD into a three-dimensional model representing the face of the passenger by fitting each straight-line distance calculated by the straight-line distance calculation unit 51 to the three-dimensional model MD.
- the feature amount calculation processing unit 53 calculates the feature amount of the passenger's face based on the three-dimensional model customized by the model adjustment unit 52.
- facial expressions can be used as indicators of the occupant's condition.
- Facial expressions include, for example, a serious expression, a smiling expression, a crying expression, or an angry expression.
- the expression on a straight face is the expression when the person is expressionless.
- the time for a straight face expression to appear is longer than the time for a smiling expression, a crying expression, or an angry expression to appear. Therefore, for example, over a certain period of time, such as several minutes, it is assumed that the rate at which a straight face appears is greater than the rate at which a smiling expression, a crying expression, or an angry expression appears. If the occupant has many opportunities to laugh during a certain period of time, the proportion of straight facial expressions will decrease. However, even in that case, it is assumed that the proportion of straight facial expressions appearing will be greater than the proportion of smiling expressions appearing.
- FIG. 6 is a flowchart showing an occupant condition estimation method, which is a processing procedure of the occupant condition estimation device 2.
- the occupant condition detection unit 16 detects the condition of the driver among the occupants riding in the vehicle.
- this is just an example, and the state of the passenger sitting in the front passenger seat or the passenger sitting in the rear seat among the passengers riding in the vehicle may be detected.
- the camera 1 and the occupant state estimation device 2 are activated. After being activated, the camera 1 repeatedly takes pictures of the interior of the vehicle.
- the camera 1 repeatedly outputs video data representing an in-vehicle video, which is a video of the inside of the vehicle, to the occupant state estimation device 2 .
- the facial expression during the initial period is not necessarily a straight-faced expression, but may be a smiling expression, a crying expression, an angry expression, or the like.
- the initial period is, for example, a period from when the ignition switch is turned on until the vehicle starts running, or a period of several seconds after the ignition switch is turned on.
- the initial period is, for example, a period shorter than the fixed period FCP.
- the camera 1 photographs the inside of the vehicle N times during the initial period when the ignition switch is turned on, and the video data P 1 to P N representing N interior images are collected. It is assumed that each of them is output to the occupant state estimation device 2.
- N is an integer of 1 or more.
- the in-vehicle video acquisition unit 11 acquires video data P 1 to P N representing N in-vehicle videos from the camera 1 (step ST1 in FIG. 6).
- the in-vehicle video acquisition section 11 outputs N pieces of video data P 1 to P N to the first feature quantity calculation section 12 .
- the first feature calculation unit 12 acquires N pieces of video data P 1 to P N from the in-vehicle video acquisition unit 11.
- j 1, . . . , J, where J is an integer of 1 or more.
- the first feature quantity calculation unit 12 outputs the reference feature quantity V j to the difference calculation unit 14 .
- the calculation process of the reference feature value V j by the first feature value calculation unit 12 will be specifically described.
- the straight line distance L n,m is, for example, a Euclidean distance.
- the process of calculating the straight-line distance itself is a well-known technique, so a detailed explanation will be omitted.
- FIG. 7 is an explanatory diagram showing the straight-line distance L n,m from the reference point C n of the face to the part constituent point K n, m .
- the reference point C n of the face is the midpoint between the inner corner of the left eye and the inner corner of the right eye.
- the number of part constituent points K n,m of the facial parts is 32.
- the number of part constituent points K n,m is not limited to 32 points.
- the facial parts are, for example, eyes, eyebrows, nose, mouth, or chin.
- the process of customizing the three-dimensional model MD into the three-dimensional model MD cus by fitting the straight-line distance L n,m to the three-dimensional model MD is a well-known technique, so a detailed explanation will be omitted.
- FIG. 8 is an explanatory diagram showing an example of the three-dimensional model MD cus after customization.
- the black circle drawn on the upper left face and the black circle drawn on the lower right face each indicate a part constituent point.
- the upper left face is a general face shown by the three-dimensional model MD
- the lower right face is the driver's face shown by the customized three-dimensional model MD cus .
- the feature value calculation processing unit 43 acquires the customized three-dimensional model MD cus from the model adjustment unit 42 .
- Examples of the reference feature amount V j include the oblateness of the eyes or the angle of the corners of the mouth.
- the flatness of the eye is the ratio of the maximum distance between the upper and lower eyelids to the distance between the inner and outer corners of the eye.
- the distance between the inner corner and the outer corner of the eye is the distance between the inner corner and the outer corner of the eye in the three-dimensional model MD cus .
- the first feature value calculation unit 12 calculates the reference feature value based on N vehicle interior images shot at different times.
- the quantity V j is calculated.
- the first feature amount calculation unit 12 may calculate the reference feature amount V j based on one in-vehicle video.
- the camera 1 After the reference feature value V j is calculated by the first feature value calculation unit 12, the camera 1 repeatedly photographs the interior of the vehicle.
- the camera 1 repeatedly outputs video data showing an in-vehicle video to the occupant state estimation device 2.
- G is an integer of 2 or more.
- the second feature quantity calculation unit 13 outputs the facial feature quantity V g,j to the difference calculation unit 14 .
- the process of calculating the feature amount V g,j by the second feature amount calculation unit 13 will be specifically described.
- the straight-line distance calculation unit 51 calculates M part constituent points K g, m included in the driver's facial parts from the reference point C g of the driver's face shown in the in-vehicle image indicated by the video data P g .
- the reference point C g of the face corresponds to the reference point C n shown in FIG. 7, and the part constituent point K g,m corresponds to the part constituent point K n,m shown in FIG.
- the straight-line distance L g,m corresponds to the straight-line distance L n,m shown in FIG. 7 .
- Select M straight distances L g,m (m 1, 2, . . . , 32) related to P g .
- Any one video data P g is one video data among G video data P 1 to P G.
- the MD is customized into a three-dimensional model MD cus,g showing the driver's face.
- the model adjustment unit 52 repeats the selection of M straight-line distances L g,m and the fitting of the straight-line distances L g,m to the 3-dimensional model MD G times. Models MD cus,1 to MD cus,G are generated.
- the feature calculation processing unit 53 obtains G customized three-dimensional models MD cus,1 to MD cus,G from the model adjustment unit 52.
- the driver's facial feature amount V g,j includes, for example, the flatness of the eyes or the angle of the corners of the mouth.
- the difference calculation unit 14 calculates the difference ⁇ V g,j between the reference feature amount V j and the feature amount V g, j as shown in the following equation (1) (step ST5 in FIG. 6).
- ⁇ V 1,j
- ⁇ V 2,j
- ⁇ V G,j
- the difference calculation unit 14 recalculates G ⁇ J differences ⁇ V 1,1 ... ⁇ V 1,J , ⁇ V 2,1 ... ⁇ V 2,J , ⁇ V G,1 ... ⁇ V G,J It is output to each of the instruction section 15 and the occupant state detection section 16.
- the recalculation instruction unit 15 selects G ⁇ J differences ⁇ V 1,1 ... ⁇ V 1,J , ⁇ V 2,1 ... ⁇ V 2,J , ⁇ V G,1 ... ⁇ V G,J , attention is paid to G differences ⁇ V 1,j to ⁇ V G,j for a certain j.
- the recalculation instruction unit 15 compares each of the G differences ⁇ V 1,j to ⁇ V G,j with the first threshold V th1 , and calculates the difference among the G differences ⁇ V 1,j to ⁇ V G,j.
- the reference feature amount V j calculated by the first feature amount calculation unit 12 is likely to be the feature amount of the driver's face when the facial expression is expressionless. However, there is a possibility that the reference feature amount V j calculated by the first feature amount calculation unit 12 is the feature amount of the driver's face when the facial expression is not expressionless.
- the fixed period FCP after the reference feature amount V j is calculated by the first feature amount calculation unit 12 is a fixed period of several minutes, for example, the rate at which a straight-faced expression appears in the fixed period FCP It is assumed that R 0 is greater than the rate at which a smiling expression, a crying expression, or an angry expression appears. If the driver has many opportunities to laugh during the FCP for a certain period of time, the rate R0 of a straight facial expression will decrease. However, even in that case, it is assumed that the ratio R 0 where a straight face expression appears is greater than the ratio R 0 where a smiling expression appears.
- the first feature quantity calculation unit 12 When the first feature quantity calculation unit 12 receives an instruction to recalculate the reference feature quantity V j from the recalculation instruction unit 15, the first feature quantity calculation unit 12 newly generates N pieces of video data P 1 to P N from the in-vehicle image acquisition unit 11.
- the first feature quantity calculation unit 12 outputs the reference feature quantity V j to the difference calculation unit 14 .
- step ST6 in FIG. 6: NO the recalculation instruction unit 15 determines that the reference feature value V j indicates that the facial expression is expressionless. It is determined that this is likely to be the feature amount of the driver's face at that time. Therefore, the recalculation instruction section 15 does not instruct the first feature amount calculation section 12 to recalculate the reference feature amount Vj . Thereafter, processes similar to those in steps ST3 to ST5 are repeated.
- the condition detection threshold value may be stored in the internal memory of the occupant condition detection section 16 or may be given from outside the occupant condition estimation device 2.
- the occupant condition detection unit 16 determines that the condition of the occupant has changed if the difference ⁇ V g,j is greater than or equal to the condition detection threshold. The occupant condition detection unit 16 determines that the condition of the occupant has not changed if the difference ⁇ V g,j is less than the condition detection threshold. In the occupant condition estimating device 2 shown in FIG. 1, if the difference ⁇ V g,j is equal to or greater than the condition detection threshold, the occupant condition detection unit 16 determines that the condition of the occupant is changing.
- the occupant condition detection unit 16 detects that the condition of the occupant has changed. It may also be determined that there is.
- each of the reference feature value V j calculated by the first feature value calculation unit 12 and the feature values V g,j calculated by the second feature value calculation unit 13 is, for example, the oblateness of the eye.
- the reference feature amount V j is a correct reference feature amount determined by the recalculation instructing unit 15 to determine that any ratio R j is less than the second threshold value V th2 .
- the occupant condition detection unit 16 can detect the driver's facial expression when the driver is drowsy, as the condition of the occupant.
- the driver in a situation where the driver is not drowsy, the driver usually has his eyes wide open, so the oblateness of the eyes, which is the reference feature amount Vj , is large.
- the driver in a situation where the driver is drowsy, the driver closes his eyes or squints his eyes, so the oblateness of the eyes, which is the feature amount V g,j, is small. Therefore, if each of the reference feature value V j and the feature value V g,j is the oblateness of the eyes, it is possible to detect the facial expression when the driver is drowsy as the passenger's condition. .
- the occupant condition detection unit 16 detects the driving condition as the occupant condition. It is possible to detect whether the driver is looking away, the environment of the vehicle is changing, or the driver's physical condition is suddenly changing. Further, if the reference feature value V j is calculated based on an in-vehicle image taken when the driver's posture is not collapsed, the occupant condition detection unit 16 detects the driver's condition as the occupant condition. It is possible to detect a state where the driver's posture is collapsed, a state where the environment of the vehicle is changing, a state where the driver's physical condition is suddenly changing, etc.
- the occupant state detection unit 16 can detect changes in the facial expressions of the occupant as the occupant's condition, it is possible to estimate the occupant's emotions. By outputting the detection result of the occupant's condition to, for example, the vehicle control device, the occupant condition detection unit 16 can not only issue a warning of drowsy driving but also execute emergency evacuation processing of the vehicle.
- the in-vehicle image acquisition unit 11 acquires an in-vehicle image that is an image of the inside of the vehicle, and the in-vehicle image captured in the in-vehicle image acquired by the in-vehicle image acquisition unit 11 is used as a reference feature amount.
- the reference feature amount is calculated by the first feature amount calculation section 12 that calculates the feature amount of the face of the driver in the vehicle, and the first feature amount calculation section 12, the in-vehicle image acquisition section 11 acquires the reference feature amount.
- the occupant state estimation device 2 is configured to include a second feature amount calculation unit 13 that calculates the feature amount of the occupant's face shown in each of a plurality of in-vehicle images shot at different times.
- the occupant state estimation device 2 also includes a difference calculation unit that calculates the difference between the reference feature calculated by the first feature calculation unit 12 and each feature calculated by the second feature calculation unit 13.
- the first A recalculation instructing unit 15 is provided that instructs the first feature quantity calculating unit 12 to recalculate the reference feature quantity if the proportion of differences that are equal to or greater than one threshold value is equal to or greater than a second threshold value. Therefore, the occupant condition estimating device 2 can calculate a reference feature quantity that can prevent a decrease in the accuracy of estimating the occupant's condition.
- the occupant state estimating device 2 shown in FIG. 1 is activated when the ignition switch is turned on, and the processing procedure shown in FIG. 6 is executed.
- this is just an example, and even if the ignition switch is left on, for example, when it is detected that a door of the vehicle has been opened or that the driver has been replaced, as shown in FIG. A processing procedure may be executed.
- the first feature value calculation unit 12 calculates M part constituent points K n included in the driver's facial parts from a reference point C n of the driver's face. , m are calculated , and the reference feature quantity V j is calculated using the respective straight line distances L n, m .
- the first feature value calculation unit 12 may calculate the respective straight-line distances L n,m as the reference feature values.
- the second feature amount calculation unit 13 may calculate the respective straight line distances L g, m as the feature amounts.
- the first feature amount calculation section 12 calculates the The reference feature amount V j may be recalculated based on the in-vehicle image related to the difference that is greater than or equal to the first threshold value V th1 among the differences ⁇ V g, j .
- the in-vehicle video related to the difference that is greater than or equal to the first threshold value V th1 is the in-vehicle video acquired by the in-vehicle video acquisition unit 11 within the FCP for a certain period of time. If the reference feature value V j previously calculated by the first feature value calculation unit 12 is calculated based on an in-vehicle video taken when the facial expression is not expressionless, the first feature value calculation unit 12 The in-vehicle video related to the difference that is equal to or greater than the threshold value V th1 is likely to be an in-vehicle video captured when the facial expression is expressionless.
- Embodiment 2 an occupant condition estimation device 2 including a vehicle information acquisition section 17 that acquires vehicle information indicating the condition of the vehicle will be described.
- FIG. 9 is a configuration diagram showing an occupant state estimation device 2 according to the second embodiment.
- the same reference numerals as those in FIG. 1 indicate the same or corresponding parts, so the explanation will be omitted.
- FIG. 10 is a hardware configuration diagram showing the hardware of the occupant state estimation device 2 according to the second embodiment.
- the occupant state estimation device 2 includes a vehicle information acquisition section 17, an in-vehicle image acquisition section 11, a first feature amount calculation section 18, a second feature amount calculation section 13, a difference calculation section 14, a recalculation instruction section 15, and an occupant state estimation unit 17.
- a detection section 16 is provided.
- the occupant state estimation device 2 detects changes in the facial expressions of the driver among the occupants riding in the vehicle.
- this is just an example, and the occupant state estimation device 2 detects changes in the facial expressions of the occupant sitting in the front passenger seat or the occupant sitting in the rear seat among the occupants riding in the vehicle. It may be something.
- the vehicle information acquisition unit 17 is realized, for example, by a vehicle information acquisition circuit 27 shown in FIG.
- the vehicle information acquisition unit 17 acquires vehicle information indicating the state of the vehicle, for example, from a control circuit of the vehicle.
- Vehicle information acquisition section 17 outputs vehicle information to first feature quantity calculation section 18 .
- the first feature amount calculation unit 18 is realized, for example, by a first feature amount calculation circuit 28 shown in FIG.
- the first feature quantity calculation unit 18 acquires vehicle information from the vehicle information acquisition unit 17.
- the first feature value calculation unit 18 acquires the video data acquired by the in-vehicle video acquisition unit 11 when the state of the vehicle indicated by the vehicle information acquired by the vehicle information acquisition unit 17 is a certain state.
- the first feature amount calculation unit 18 calculates, as a reference feature amount, the feature amount of the driver's face shown in the in-vehicle video indicated by the acquired video data.
- the first feature quantity calculation unit 18 outputs the reference feature quantity to the difference calculation unit 14.
- Each of the vehicle information acquisition circuit 27, the in-vehicle image acquisition circuit 21, the first feature amount calculation circuit 28, the second feature amount calculation circuit 23, the difference calculation circuit 24, the recalculation instruction circuit 25, and the occupant state detection circuit 26, For example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
- the components of the occupant state estimation device 2 are not limited to those realized by dedicated hardware, and the occupant state estimation device 2 may be realized by software, firmware, or a combination of software and firmware. There may be.
- a program for causing a computer to execute the respective processing procedures in the recalculation instruction section 15 and the occupant state detection section 16 is stored in the memory 31 shown in FIG. Then, the processor 32 shown in FIG. 3 executes the program stored in the memory 31.
- FIG. 10 shows an example in which each of the components of the occupant condition estimation device 2 is realized by dedicated hardware
- FIG. 3 shows an example in which the occupant condition estimation device 2 is realized by software, firmware, etc. ing.
- this is just an example, and some of the components in the occupant state estimation device 2 may be realized by dedicated hardware, and the remaining components may be realized by software, firmware, or the like.
- the vehicle information acquisition unit 17 acquires vehicle information indicating the state of the vehicle, for example, from a control circuit of the vehicle.
- the vehicle information includes, for example, information indicating the shift of the vehicle, information indicating the speed of the vehicle, or information indicating the steering angle of the vehicle.
- Vehicle information acquisition section 17 outputs vehicle information to first feature quantity calculation section 18 .
- the first feature quantity calculation unit 18 acquires vehicle information from the vehicle information acquisition unit 17. For example, the first feature amount calculation unit 18 calculates N pieces of video data P 1 to P N representing in-vehicle video captured by the camera 1 when the vehicle state indicated by the vehicle information is a certain state. The image is acquired from the in-vehicle image acquisition unit 11.
- the first feature amount calculation unit 18 calculates, for example, that the vehicle state indicated by the vehicle information is a drive shift state, a state where the speed of the vehicle is equal to or higher than a third threshold value, or a state where the vehicle state is
- N pieces of video data P 1 to P N representing in-vehicle images captured by the camera 1 are acquired from the in-vehicle image acquisition unit 11.
- Each of the third threshold value and the fourth threshold value may be stored in the internal memory of the first feature value calculation unit 18, or may be provided from outside the occupant state estimation device 2.
- the first feature quantity calculation unit 18, similar to the first feature quantity calculation unit 12 shown in FIG. a reference feature quantity V j is calculated.
- the vehicle state indicated by the vehicle information is a state in which the vehicle shift is a drive shift, a state in which the speed of the vehicle is greater than the third threshold value, or a state in which the steering angle of the vehicle is within the fourth threshold value.
- the vehicle state indicated by the vehicle information is a state in which the vehicle is shifted to a drive shift, a state in which the speed of the vehicle is greater than or equal to the third threshold, or a state in which the steering angle of the vehicle is within the fourth threshold.
- the driver's facial expression is a straight-faced expression.
- the occupant condition estimation device 2 shown in FIG. 9 is configured to include the vehicle information acquisition section 17 that acquires vehicle information indicating the condition of the vehicle.
- the first feature value calculation unit 18 of the occupant state estimation device 2 shown in FIG. The in-vehicle image obtained by the unit 11 is acquired, and the feature amount of the passenger's face shown in the in-vehicle image is calculated as the reference feature amount. Therefore, the occupant state estimating device 2 shown in FIG. 9 uses the standard feature based on the in-vehicle video taken when the driver's facial expression is a straight-faced expression, rather than the occupant state estimating device 2 shown in FIG. 1. It is possible to increase the possibility that the amount can be calculated.
- the present disclosure is suitable for an occupant state estimation device and an occupant state estimation method.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Image Analysis (AREA)
Abstract
車両の内部の映像である車内映像を取得する車内映像取得部(11)と、基準特徴量として、車内映像取得部(11)により取得された車内映像に映っている、車両に乗車している乗員の顔の特徴量を算出する第1の特徴量算出部(12)と、第1の特徴量算出部(12)により基準特徴量が算出された後に、車内映像取得部(11)により取得された、撮影時刻が互いに異なる複数の車内映像のそれぞれに映っている乗員の顔の特徴量を算出する第2の特徴量算出部(13)とを備えるように、乗員状態推定装置(2)を構成した。また、乗員状態推定装置(2)は、第1の特徴量算出部(12)により算出された基準特徴量と第2の特徴量算出部(13)により算出されたそれぞれの特徴量との差分を算出する差分算出部(14)と、差分算出部(14)により算出された複数の差分のうち、第1の特徴量算出部(12)により基準特徴量が算出された後の一定期間内に算出された複数の差分の中で、第1の閾値以上である差分の割合が第2の閾値以上であれば、基準特徴量の再算出を第1の特徴量算出部(12)に指示する再算出指示部(15)とを備えている。
Description
本開示は、乗員状態推定装置及び乗員状態推定方法に関するものである。
撮影画像に映っている人物の顔を検出し、顔の表情を判定する表情判定装置がある(例えば、特許文献1を参照)。
当該表情判定装置は、抽出手段及び表情判定手段を備えている。当該抽出手段は、撮影画像に映っている人物の顔を検出し、顔の特徴量を抽出する。当該表情判定手段は、抽出手段により抽出された特徴量と予め記憶された基準特徴量との差分に基づいて、顔の表情が所定の表情であるか否かを判定する。所定の表情としては、例えば、笑顔の表情、又は、怒り顔の表情がある。
当該表情判定装置では、基準特徴量が、顔の表情が無表情である人物の顔の特徴量であることを前提としている。当該表情判定装置では、人物の顔の表情が無表情であるときの画像の撮影を可能にするために、制御回路が、無表情の顔を撮影する旨を示すガイダンスを表示部に表示させることで、表情判定対象の人物に対して、顔の表情が無表情になるように促している。
当該表情判定装置は、抽出手段及び表情判定手段を備えている。当該抽出手段は、撮影画像に映っている人物の顔を検出し、顔の特徴量を抽出する。当該表情判定手段は、抽出手段により抽出された特徴量と予め記憶された基準特徴量との差分に基づいて、顔の表情が所定の表情であるか否かを判定する。所定の表情としては、例えば、笑顔の表情、又は、怒り顔の表情がある。
当該表情判定装置では、基準特徴量が、顔の表情が無表情である人物の顔の特徴量であることを前提としている。当該表情判定装置では、人物の顔の表情が無表情であるときの画像の撮影を可能にするために、制御回路が、無表情の顔を撮影する旨を示すガイダンスを表示部に表示させることで、表情判定対象の人物に対して、顔の表情が無表情になるように促している。
特許文献1に開示されている表情判定装置では、制御回路が、無表情の顔を撮影する旨を示すガイダンスを表示部に表示させているものの、当該ガイダンスが表示されるだけでは、無表情の顔が撮影されるとは限らない。基準特徴量が、顔の表情が無表情ではない人物の顔の特徴量に基づいて算出された場合には、基準特徴量を用いた乗員の状態推定結果に誤りが生じ、乗員の状態推定の精度が低下することがあるという課題があった。
本開示は、上記のような課題を解決するためになされたもので、乗員の状態推定精度の低下を防ぐことが可能な基準特徴量を算出することができる乗員状態推定装置及び乗員状態推定方法を得ることを目的とする。
本開示に係る乗員状態推定装置は、車両の内部の映像である車内映像を取得する車内映像取得部と、基準特徴量として、車内映像取得部により取得された車内映像に映っている、車両に乗車している乗員の顔の特徴量を算出する第1の特徴量算出部と、第1の特徴量算出部により基準特徴量が算出された後に、車内映像取得部により取得された、撮影時刻が互いに異なる複数の車内映像のそれぞれに映っている乗員の顔の特徴量を算出する第2の特徴量算出部とを備えている。また、乗員状態推定装置は、第1の特徴量算出部により算出された基準特徴量と第2の特徴量算出部により算出されたそれぞれの特徴量との差分を算出する差分算出部と、差分算出部により算出された複数の差分のうち、第1の特徴量算出部により基準特徴量が算出された後の一定期間内に算出された複数の差分の中で、第1の閾値以上である差分の割合が第2の閾値以上であれば、基準特徴量の再算出を第1の特徴量算出部に指示する再算出指示部とを備えている。
本開示によれば、乗員の状態推定精度の低下を防ぐことが可能な基準特徴量を算出することができる。
以下、本開示をより詳細に説明するために、本開示を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
図1は、実施の形態1に係る乗員状態推定装置2を示す構成図である。
図2は、実施の形態1に係る乗員状態推定装置2のハードウェアを示すハードウェア構成図である。
図1において、カメラ1は、車両の内部を繰り返し撮影し、車両の内部の映像である車内映像を示す映像データを乗員状態推定装置2に繰り返し出力する。なお、車内映像は、静止画であってもよいし、動画であってもよい。
乗員状態推定装置2は、車内映像取得部11、第1の特徴量算出部12、第2の特徴量算出部13、差分算出部14、再算出指示部15及び乗員状態検出部16を備えている。
図1に示す乗員状態推定装置2は、車両に乗車している乗員の顔の表情の変化を検出する。車両に乗車している乗員は、車両の運転者であってもよいし、助手席に座っている乗員であってもよいし、後部座席に座っている乗員であってもよい。
図1は、実施の形態1に係る乗員状態推定装置2を示す構成図である。
図2は、実施の形態1に係る乗員状態推定装置2のハードウェアを示すハードウェア構成図である。
図1において、カメラ1は、車両の内部を繰り返し撮影し、車両の内部の映像である車内映像を示す映像データを乗員状態推定装置2に繰り返し出力する。なお、車内映像は、静止画であってもよいし、動画であってもよい。
乗員状態推定装置2は、車内映像取得部11、第1の特徴量算出部12、第2の特徴量算出部13、差分算出部14、再算出指示部15及び乗員状態検出部16を備えている。
図1に示す乗員状態推定装置2は、車両に乗車している乗員の顔の表情の変化を検出する。車両に乗車している乗員は、車両の運転者であってもよいし、助手席に座っている乗員であってもよいし、後部座席に座っている乗員であってもよい。
車内映像取得部11は、例えば、図2に示す車内映像取得回路21によって実現される。
車内映像取得部11は、カメラ1から、車内映像を示す映像データを取得する。
車内映像取得部11は、車内映像を示す映像データを第1の特徴量算出部12に出力する。
また、車内映像取得部11は、第1の特徴量算出部12により基準特徴量が算出された後に、カメラ1により撮影された車内映像を示す映像データを取得し、映像データを第2の特徴量算出部13に出力する。
車内映像取得部11は、カメラ1から、車内映像を示す映像データを取得する。
車内映像取得部11は、車内映像を示す映像データを第1の特徴量算出部12に出力する。
また、車内映像取得部11は、第1の特徴量算出部12により基準特徴量が算出された後に、カメラ1により撮影された車内映像を示す映像データを取得し、映像データを第2の特徴量算出部13に出力する。
第1の特徴量算出部12は、例えば、図2に示す第1の特徴量算出回路22によって実現される。
第1の特徴量算出部12は、車内映像取得部11から、車内映像を示す映像データを取得する。
第1の特徴量算出部12は、基準特徴量として、映像データが示す車内映像に映っている、車両に乗車している乗員の顔の特徴量を算出する。
第1の特徴量算出部12は、基準特徴量を差分算出部14に出力する。
第1の特徴量算出部12は、車内映像取得部11から、車内映像を示す映像データを取得する。
第1の特徴量算出部12は、基準特徴量として、映像データが示す車内映像に映っている、車両に乗車している乗員の顔の特徴量を算出する。
第1の特徴量算出部12は、基準特徴量を差分算出部14に出力する。
第2の特徴量算出部13は、例えば、図2に示す第2の特徴量算出回路23によって実現される。
第2の特徴量算出部13は、第1の特徴量算出部12により基準特徴量が算出された後に、車内映像取得部11により取得された、撮影時刻が互いに異なる複数の車内映像のそれぞれに映っている乗員の顔の特徴量を算出する。
第2の特徴量算出部13は、特徴量を差分算出部14に出力する。
第2の特徴量算出部13は、第1の特徴量算出部12により基準特徴量が算出された後に、車内映像取得部11により取得された、撮影時刻が互いに異なる複数の車内映像のそれぞれに映っている乗員の顔の特徴量を算出する。
第2の特徴量算出部13は、特徴量を差分算出部14に出力する。
差分算出部14は、例えば、図2に示す差分算出回路24によって実現される。
差分算出部14は、第1の特徴量算出部12により算出された基準特徴量と第2の特徴量算出部13により算出されたそれぞれの特徴量との差分を算出する。
差分算出部14は、それぞれの差分を再算出指示部15及び乗員状態検出部16のそれぞれに出力する。
差分算出部14は、第1の特徴量算出部12により算出された基準特徴量と第2の特徴量算出部13により算出されたそれぞれの特徴量との差分を算出する。
差分算出部14は、それぞれの差分を再算出指示部15及び乗員状態検出部16のそれぞれに出力する。
再算出指示部15は、例えば、図2に示す再算出指示回路25によって実現される。
再算出指示部15は、差分算出部14により算出された複数の差分のうち、第1の特徴量算出部12により基準特徴量が算出された後の一定期間FCP内に算出された複数の差分を取得する。
図1に示す乗員状態推定装置2では、一定期間FCPは、第1の特徴量算出部12により基準特徴量が算出されてから、一定の時間が経過した後の固定期間である。例えば、基準特徴量が算出された時刻がT0であり、一定の時間がtconであれば、一定期間FCPの開始時刻は、T0+tconである。また、一定期間FCPの時間長がtFCであれば、一定期間FCPの終了時刻は、T0+tcon+tFCである。しかしながら、一定期間FCPは、固定の期間であるものに限るものではなく、一定期間FCPの時間帯が変化するものであってもよい。一定期間FCPの時間帯が変化する場合、一定期間FCPの開始時刻は、T0+tcon+Δtであり、一定期間FCPの終了時刻は、T0+tcon+tFC+Δtである。tFC+Δtは、一定期間FCPの時間長であり、Δtは、一定期間FCPの変化時間である。
再算出指示部15は、一定期間FCP内に算出された複数の差分の中で、第1の閾値以上である差分の割合が第2の閾値以上であれば、基準特徴量の再算出を第1の特徴量算出部12に指示する。第1の閾値及び第2の閾値のそれぞれは、再算出指示部15の内部メモリに格納されていてもよいし、乗員状態推定装置の外部から与えられるものであってもよい。
再算出指示部15は、差分算出部14により算出された複数の差分のうち、第1の特徴量算出部12により基準特徴量が算出された後の一定期間FCP内に算出された複数の差分を取得する。
図1に示す乗員状態推定装置2では、一定期間FCPは、第1の特徴量算出部12により基準特徴量が算出されてから、一定の時間が経過した後の固定期間である。例えば、基準特徴量が算出された時刻がT0であり、一定の時間がtconであれば、一定期間FCPの開始時刻は、T0+tconである。また、一定期間FCPの時間長がtFCであれば、一定期間FCPの終了時刻は、T0+tcon+tFCである。しかしながら、一定期間FCPは、固定の期間であるものに限るものではなく、一定期間FCPの時間帯が変化するものであってもよい。一定期間FCPの時間帯が変化する場合、一定期間FCPの開始時刻は、T0+tcon+Δtであり、一定期間FCPの終了時刻は、T0+tcon+tFC+Δtである。tFC+Δtは、一定期間FCPの時間長であり、Δtは、一定期間FCPの変化時間である。
再算出指示部15は、一定期間FCP内に算出された複数の差分の中で、第1の閾値以上である差分の割合が第2の閾値以上であれば、基準特徴量の再算出を第1の特徴量算出部12に指示する。第1の閾値及び第2の閾値のそれぞれは、再算出指示部15の内部メモリに格納されていてもよいし、乗員状態推定装置の外部から与えられるものであってもよい。
乗員状態検出部16は、例えば、図2に示す乗員状態検出回路26によって実現される。
乗員状態検出部16は、再算出指示部15から第1の特徴量算出部12への再算出の指示がなければ、差分算出部14により算出されたそれぞれの差分に基づいて、乗員の状態を検出する。
乗員状態検出部16は、再算出指示部15から第1の特徴量算出部12への再算出の指示がなければ、差分算出部14により算出されたそれぞれの差分に基づいて、乗員の状態を検出する。
図1では、乗員状態推定装置2の構成要素である車内映像取得部11、第1の特徴量算出部12、第2の特徴量算出部13、差分算出部14、再算出指示部15及び乗員状態検出部16のそれぞれが、図2に示すような専用のハードウェアによって実現されるものを想定している。即ち、乗員状態推定装置2が、車内映像取得回路21、第1の特徴量算出回路22、第2の特徴量算出回路23、差分算出回路24、再算出指示回路25及び乗員状態検出回路26によって実現されるものを想定している。
車内映像取得回路21、第1の特徴量算出回路22、第2の特徴量算出回路23、差分算出回路24、再算出指示回路25及び乗員状態検出回路26のそれぞれは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。
車内映像取得回路21、第1の特徴量算出回路22、第2の特徴量算出回路23、差分算出回路24、再算出指示回路25及び乗員状態検出回路26のそれぞれは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。
乗員状態推定装置2の構成要素は、専用のハードウェアによって実現されるものに限るものではなく、乗員状態推定装置2が、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせによって実現されるものであってもよい。
ソフトウェア又はファームウェアは、プログラムとして、コンピュータのメモリに格納される。コンピュータは、プログラムを実行するハードウェアを意味し、例えば、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、あるいは、DSP(Digital Signal Processor)が該当する。
ソフトウェア又はファームウェアは、プログラムとして、コンピュータのメモリに格納される。コンピュータは、プログラムを実行するハードウェアを意味し、例えば、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、あるいは、DSP(Digital Signal Processor)が該当する。
図3は、乗員状態推定装置2が、ソフトウェア又はファームウェア等によって実現される場合のコンピュータのハードウェア構成図である。
乗員状態推定装置2が、ソフトウェア又はファームウェア等によって実現される場合、車内映像取得部11、第1の特徴量算出部12、第2の特徴量算出部13、差分算出部14、再算出指示部15及び乗員状態検出部16におけるそれぞれの処理手順をコンピュータに実行させるためのプログラムがメモリ31に格納される。そして、コンピュータのプロセッサ32がメモリ31に格納されているプログラムを実行する。
乗員状態推定装置2が、ソフトウェア又はファームウェア等によって実現される場合、車内映像取得部11、第1の特徴量算出部12、第2の特徴量算出部13、差分算出部14、再算出指示部15及び乗員状態検出部16におけるそれぞれの処理手順をコンピュータに実行させるためのプログラムがメモリ31に格納される。そして、コンピュータのプロセッサ32がメモリ31に格納されているプログラムを実行する。
また、図2では、乗員状態推定装置2の構成要素のそれぞれが専用のハードウェアによって実現される例を示し、図3では、乗員状態推定装置2がソフトウェア又はファームウェア等によって実現される例を示している。しかし、これは一例に過ぎず、乗員状態推定装置2における一部の構成要素が専用のハードウェアによって実現され、残りの構成要素がソフトウェア又はファームウェア等によって実現されるものであってもよい。
図4は、実施の形態1に係る乗員状態推定装置2の第1の特徴量算出部12を示す構成図である。
図4に示す第1の特徴量算出部12は、直線距離算出部41、モデル調整部42及び特徴量算出処理部43を備えている。
直線距離算出部41は、車内映像取得部11から、映像データを取得する。
直線距離算出部41は、映像データが示す車内映像に映っている乗員の顔の基準点から、乗員の顔パーツに含まれている複数のパーツ構成点までの直線距離をそれぞれ算出する。
モデル調整部42は、一般的な顔の3次元モデルMDを備えている。
モデル調整部42は、直線距離算出部41により算出されたそれぞれの直線距離を3次元モデルMDにフィッティングすることで、3次元モデルMDを乗員の顔を示す3次元モデルにカスタマイズする。
特徴量算出処理部43は、モデル調整部42によるカスタマイズ後の3次元モデルに基づいて、基準特徴量として、乗員の顔の特徴量を算出する。
図4に示す第1の特徴量算出部12は、直線距離算出部41、モデル調整部42及び特徴量算出処理部43を備えている。
直線距離算出部41は、車内映像取得部11から、映像データを取得する。
直線距離算出部41は、映像データが示す車内映像に映っている乗員の顔の基準点から、乗員の顔パーツに含まれている複数のパーツ構成点までの直線距離をそれぞれ算出する。
モデル調整部42は、一般的な顔の3次元モデルMDを備えている。
モデル調整部42は、直線距離算出部41により算出されたそれぞれの直線距離を3次元モデルMDにフィッティングすることで、3次元モデルMDを乗員の顔を示す3次元モデルにカスタマイズする。
特徴量算出処理部43は、モデル調整部42によるカスタマイズ後の3次元モデルに基づいて、基準特徴量として、乗員の顔の特徴量を算出する。
図5は、実施の形態1に係る乗員状態推定装置2の第2の特徴量算出部13を示す構成図である。
図5に示す第2の特徴量算出部13は、直線距離算出部51、モデル調整部52及び特徴量算出処理部53を備えている。
直線距離算出部51は、第1の特徴量算出部12により基準特徴量が算出された後に、車内映像取得部11により映像データが取得される毎に、当該映像データを取得する。
直線距離算出部51は、映像データが示す車内映像に映っている乗員の顔の基準点から、乗員の顔パーツに含まれている複数のパーツ構成点までの直線距離をそれぞれ算出する。
モデル調整部52は、一般的な顔の3次元モデルMDを備えている。
モデル調整部52は、直線距離算出部51により算出されたそれぞれの直線距離を3次元モデルMDにフィッティングすることで、3次元モデルMDを乗員の顔を示す3次元モデルにカスタマイズする。
特徴量算出処理部53は、モデル調整部52によるカスタマイズ後の3次元モデルに基づいて、乗員の顔の特徴量を算出する。
図5に示す第2の特徴量算出部13は、直線距離算出部51、モデル調整部52及び特徴量算出処理部53を備えている。
直線距離算出部51は、第1の特徴量算出部12により基準特徴量が算出された後に、車内映像取得部11により映像データが取得される毎に、当該映像データを取得する。
直線距離算出部51は、映像データが示す車内映像に映っている乗員の顔の基準点から、乗員の顔パーツに含まれている複数のパーツ構成点までの直線距離をそれぞれ算出する。
モデル調整部52は、一般的な顔の3次元モデルMDを備えている。
モデル調整部52は、直線距離算出部51により算出されたそれぞれの直線距離を3次元モデルMDにフィッティングすることで、3次元モデルMDを乗員の顔を示す3次元モデルにカスタマイズする。
特徴量算出処理部53は、モデル調整部52によるカスタマイズ後の3次元モデルに基づいて、乗員の顔の特徴量を算出する。
乗員の状態を示すものとして、例えば、顔の表情がある。顔の表情としては、例えば、真顔の表情、笑顔の表情、泣顔の表情、又は、怒り顔の表情がある。真顔の表情は、無表情であるときの表情である。
一般的に、真顔の表情が現れる時間は、笑顔の表情、泣顔の表情、又は、怒り顔の表情が現れる時間よりも長いことが知られている。したがって、例えば、数分単位の一定期間では、真顔の表情が現れる割合は、笑顔の表情、泣顔の表情、又は、怒り顔の表情が現れる割合よりも大きくなることが想定される。乗員が、一定期間において、笑う機会が多い場合、真顔の表情が現れる割合が減少する。しかし、その場合でも、真顔の表情が現れる割合は、笑顔の表情が現れる割合よりも大きくなることが想定される。
一般的に、真顔の表情が現れる時間は、笑顔の表情、泣顔の表情、又は、怒り顔の表情が現れる時間よりも長いことが知られている。したがって、例えば、数分単位の一定期間では、真顔の表情が現れる割合は、笑顔の表情、泣顔の表情、又は、怒り顔の表情が現れる割合よりも大きくなることが想定される。乗員が、一定期間において、笑う機会が多い場合、真顔の表情が現れる割合が減少する。しかし、その場合でも、真顔の表情が現れる割合は、笑顔の表情が現れる割合よりも大きくなることが想定される。
次に、図1に示す乗員状態推定装置2の動作について説明する。
図6は、乗員状態推定装置2の処理手順である乗員状態推定方法を示すフローチャートである。
図1に示す乗員状態推定装置2では、乗員状態検出部16が、車両に乗車している乗員のうち、運転者の状態を検出するものとする。しかし、これは一例に過ぎず、車両に乗車している乗員のうち、助手席に座っている乗員、又は、後部座席に座っている乗員の状態を検出するものであってもよい。
図6は、乗員状態推定装置2の処理手順である乗員状態推定方法を示すフローチャートである。
図1に示す乗員状態推定装置2では、乗員状態検出部16が、車両に乗車している乗員のうち、運転者の状態を検出するものとする。しかし、これは一例に過ぎず、車両に乗車している乗員のうち、助手席に座っている乗員、又は、後部座席に座っている乗員の状態を検出するものであってもよい。
運転者は、車両に乗車して、車両の運転を開始する際に、イグニッションスイッチをオンにする。イグニッションスイッチがオンになることで、カメラ1及び乗員状態推定装置2のそれぞれが起動する。
カメラ1は、起動後に、車両の内部の撮影を繰り返し行う。
カメラ1は、車両の内部の映像である車内映像を示す映像データを乗員状態推定装置2に繰り返し出力する。
イグニッションスイッチがオンになった当初の期間中は、一般的に、運転者の顔の表情が、真顔の表情である確率が高い。ただし、当初の期間中の顔の表情は、真顔の表情であるとは限らず、笑顔の表情、泣顔の表情、又は、怒り顔の表情等であることもある。当初の期間は、例えば、イグニッションスイッチがオンになってから、車両の走行が開始されるまでの期間、あるいは、イグニッションスイッチがオンになってから、数秒の期間である。当初の期間は、例えば、一定期間FCPよりも短い期間である。
図1に示す乗員状態推定装置2では、イグニッションスイッチがオンになった当初の期間中、カメラ1が車両の内部をN回撮影し、N個の車内映像を示す映像データP1~PNのそれぞれを乗員状態推定装置2に出力するものとする。Nは、1以上の整数である。
カメラ1は、起動後に、車両の内部の撮影を繰り返し行う。
カメラ1は、車両の内部の映像である車内映像を示す映像データを乗員状態推定装置2に繰り返し出力する。
イグニッションスイッチがオンになった当初の期間中は、一般的に、運転者の顔の表情が、真顔の表情である確率が高い。ただし、当初の期間中の顔の表情は、真顔の表情であるとは限らず、笑顔の表情、泣顔の表情、又は、怒り顔の表情等であることもある。当初の期間は、例えば、イグニッションスイッチがオンになってから、車両の走行が開始されるまでの期間、あるいは、イグニッションスイッチがオンになってから、数秒の期間である。当初の期間は、例えば、一定期間FCPよりも短い期間である。
図1に示す乗員状態推定装置2では、イグニッションスイッチがオンになった当初の期間中、カメラ1が車両の内部をN回撮影し、N個の車内映像を示す映像データP1~PNのそれぞれを乗員状態推定装置2に出力するものとする。Nは、1以上の整数である。
車内映像取得部11は、カメラ1から、N個の車内映像を示す映像データP1~PNを取得する(図6のステップST1)。
車内映像取得部11は、N個の映像データP1~PNを第1の特徴量算出部12に出力する。
車内映像取得部11は、N個の映像データP1~PNを第1の特徴量算出部12に出力する。
第1の特徴量算出部12は、車内映像取得部11から、N個の映像データP1~PNを取得する。
第1の特徴量算出部12は、基準特徴量Vjとして、映像データPn(n=1,・・・,N)が示す車内映像に映っている運転者の顔の特徴量を算出する(図6のステップST2)。j=1,・・・,Jであり、Jは、1以上の整数である。
第1の特徴量算出部12は、基準特徴量Vjを差分算出部14に出力する。
以下、第1の特徴量算出部12による基準特徴量Vjの算出処理を具体的に説明する。
第1の特徴量算出部12は、基準特徴量Vjとして、映像データPn(n=1,・・・,N)が示す車内映像に映っている運転者の顔の特徴量を算出する(図6のステップST2)。j=1,・・・,Jであり、Jは、1以上の整数である。
第1の特徴量算出部12は、基準特徴量Vjを差分算出部14に出力する。
以下、第1の特徴量算出部12による基準特徴量Vjの算出処理を具体的に説明する。
直線距離算出部41は、映像データPn(n=1,・・・,N)が示す車内映像に映っている運転者の顔を検出する。運転者の顔を検出する処理自体は、公知の技術であるため詳細な説明を省略する。
直線距離算出部41は、図7に示すように、映像データPnが示す車内映像に映っている運転者の顔の基準点Cnから、運転者の顔パーツに含まれているM個のパーツ構成点Kn,mまでの直線距離Ln,mをそれぞれ算出する。Mは、2以上の整数である。直線距離Ln,mは、例えば、ユークリッド距離である。直線距離を算出する処理自体は、公知の技術であるため詳細な説明を省略する。
図7は、顔の基準点Cnからパーツ構成点Kn,mまでの直線距離Ln,mを示す説明図である。
図7の例では、顔の基準点Cnは、左目の目頭と右目の目頭との中間点である。また、図7の例では、顔パーツのパーツ構成点Kn,mの数は、32点である。ただし、パーツ構成点Kn,mの数は、32点に限るものではない。顔パーツは、例えば、目、眉毛、鼻、口、又は、顎である。
直線距離算出部41は、図7に示すように、映像データPnが示す車内映像に映っている運転者の顔の基準点Cnから、運転者の顔パーツに含まれているM個のパーツ構成点Kn,mまでの直線距離Ln,mをそれぞれ算出する。Mは、2以上の整数である。直線距離Ln,mは、例えば、ユークリッド距離である。直線距離を算出する処理自体は、公知の技術であるため詳細な説明を省略する。
図7は、顔の基準点Cnからパーツ構成点Kn,mまでの直線距離Ln,mを示す説明図である。
図7の例では、顔の基準点Cnは、左目の目頭と右目の目頭との中間点である。また、図7の例では、顔パーツのパーツ構成点Kn,mの数は、32点である。ただし、パーツ構成点Kn,mの数は、32点に限るものではない。顔パーツは、例えば、目、眉毛、鼻、口、又は、顎である。
モデル調整部42は、直線距離算出部41から、N×M個の直線距離Ln,m(n=1,・・・,N:m=1,2,・・・,32)を取得する。
モデル調整部42は、一般的な顔の3次元モデルMDに対して、N×M個の直線距離Ln,m(n=1,・・・,N:m=1,2,・・・,32)をフィッティングすることで、図8に示すように、3次元モデルMDを運転者の顔を示す3次元モデルMDcusにカスタマイズする。3次元モデルMDに対して直線距離Ln,mをフィッティングすることで、3次元モデルMDを3次元モデルMDcusにカスタマイズする処理自体は、公知の技術であるため詳細な説明を省略する。
図8は、カスタマイズ後の3次元モデルMDcusの一例を示す説明図である。
図8において、左上の顔に描かれている黒○及び右下の顔に描かれている○のそれぞれは、パーツ構成点を示している。
左上の顔は、3次元モデルMDが示している一般的な顔であり、右下の顔は、カスタマイズ後の3次元モデルMDcusが示している運転者の顔である。
モデル調整部42は、一般的な顔の3次元モデルMDに対して、N×M個の直線距離Ln,m(n=1,・・・,N:m=1,2,・・・,32)をフィッティングすることで、図8に示すように、3次元モデルMDを運転者の顔を示す3次元モデルMDcusにカスタマイズする。3次元モデルMDに対して直線距離Ln,mをフィッティングすることで、3次元モデルMDを3次元モデルMDcusにカスタマイズする処理自体は、公知の技術であるため詳細な説明を省略する。
図8は、カスタマイズ後の3次元モデルMDcusの一例を示す説明図である。
図8において、左上の顔に描かれている黒○及び右下の顔に描かれている○のそれぞれは、パーツ構成点を示している。
左上の顔は、3次元モデルMDが示している一般的な顔であり、右下の顔は、カスタマイズ後の3次元モデルMDcusが示している運転者の顔である。
特徴量算出処理部43は、モデル調整部42から、カスタマイズ後の3次元モデルMDcusを取得する。
特徴量算出処理部43は、カスタマイズ後の3次元モデルMDcusに基づいて、基準特徴量Vj(j=1,・・・,J)として、運転者の顔の特徴量を算出する。
基準特徴量Vjとしては、例えば、目の扁平率、又は、口角の角度がある。目の扁平率は、目頭と目尻との間の距離に対する、上瞼と下瞼との間の最大距離の比である。目頭と目尻との間の距離は、3次元モデルMDcusにおける目頭と目尻との間の距離である。上瞼と下瞼との間の最大距離は、3次元モデルMDcusにおける上瞼と下瞼との間の最大距離である。
基準特徴量Vjが、例えば、目の扁平率と口角の角度との2つであれば、J=2である。また、基準特徴量Vjが、例えば、目の扁平率の1つであれば、J=1である。
特徴量算出処理部43は、カスタマイズ後の3次元モデルMDcusに基づいて、基準特徴量Vj(j=1,・・・,J)として、運転者の顔の特徴量を算出する。
基準特徴量Vjとしては、例えば、目の扁平率、又は、口角の角度がある。目の扁平率は、目頭と目尻との間の距離に対する、上瞼と下瞼との間の最大距離の比である。目頭と目尻との間の距離は、3次元モデルMDcusにおける目頭と目尻との間の距離である。上瞼と下瞼との間の最大距離は、3次元モデルMDcusにおける上瞼と下瞼との間の最大距離である。
基準特徴量Vjが、例えば、目の扁平率と口角の角度との2つであれば、J=2である。また、基準特徴量Vjが、例えば、目の扁平率の1つであれば、J=1である。
図1に示す乗員状態推定装置2では、基準特徴量Vjの算出精度を高めるために、第1の特徴量算出部12が、撮影時刻が互いに異なるN個の車内映像に基づいて、基準特徴量Vjを算出している。しかし、これは一例に過ぎず、第1の特徴量算出部12が、1つの車内映像に基づいて、基準特徴量Vjを算出するものであってもよい。
カメラ1は、第1の特徴量算出部12により基準特徴量Vjが算出された後、車両の内部の撮影を繰り返し行う。
カメラ1は、車内映像を示す映像データを乗員状態推定装置2に繰り返し出力する。
図1に示す乗員状態推定装置2では、第1の特徴量算出部12により基準特徴量Vjが算出された後の一定期間FCP中に、カメラ1が車両の内部をG回撮影し、G個の車内映像を示す映像データP1~PGのそれぞれを乗員状態推定装置2に出力するものとする。Gは、2以上の整数である。
カメラ1は、車内映像を示す映像データを乗員状態推定装置2に繰り返し出力する。
図1に示す乗員状態推定装置2では、第1の特徴量算出部12により基準特徴量Vjが算出された後の一定期間FCP中に、カメラ1が車両の内部をG回撮影し、G個の車内映像を示す映像データP1~PGのそれぞれを乗員状態推定装置2に出力するものとする。Gは、2以上の整数である。
車内映像取得部11は、第1の特徴量算出部12により基準特徴量Vjが算出された後、カメラ1が車内映像を撮影する毎に、カメラ1から、当該車内映像を示す映像データPg(g=1,・・・,G)を取得する(図6のステップST3)。
車内映像取得部11は、映像データPgを第2の特徴量算出部13に出力する。
車内映像取得部11は、映像データPgを第2の特徴量算出部13に出力する。
第2の特徴量算出部13は、車内映像取得部11から、映像データPg(g=1,・・・,G)を取得する。
第2の特徴量算出部13は、映像データPg(g=1,・・・,G)が示す車内映像に映っている運転者の顔の特徴量Vg,j(g=1,・・・,G:j=1,・・・,J)を算出する(図6のステップST4)。
第2の特徴量算出部13は、顔の特徴量Vg,jを差分算出部14に出力する。
以下、第2の特徴量算出部13による特徴量Vg,jの算出処理を具体的に説明する。
第2の特徴量算出部13は、映像データPg(g=1,・・・,G)が示す車内映像に映っている運転者の顔の特徴量Vg,j(g=1,・・・,G:j=1,・・・,J)を算出する(図6のステップST4)。
第2の特徴量算出部13は、顔の特徴量Vg,jを差分算出部14に出力する。
以下、第2の特徴量算出部13による特徴量Vg,jの算出処理を具体的に説明する。
直線距離算出部51は、映像データPg(g=1,・・・,G)が示す車内映像に映っている運転者の顔を検出する。
直線距離算出部51は、映像データPgが示す車内映像に映っている運転者の顔の基準点Cgから、運転者の顔パーツに含まれているM個のパーツ構成点Kg,mまでの直線距離Lg,mをそれぞれ算出する。顔の基準点Cgは、図7に示す基準点Cnに相当し、パーツ構成点Kg,mは、図7に示すパーツ構成点Kn,mに相当する。また、直線距離Lg,mは、図7に示す直線距離Ln,mに相当する。
直線距離算出部51は、映像データPgが示す車内映像に映っている運転者の顔の基準点Cgから、運転者の顔パーツに含まれているM個のパーツ構成点Kg,mまでの直線距離Lg,mをそれぞれ算出する。顔の基準点Cgは、図7に示す基準点Cnに相当し、パーツ構成点Kg,mは、図7に示すパーツ構成点Kn,mに相当する。また、直線距離Lg,mは、図7に示す直線距離Ln,mに相当する。
モデル調整部52は、直線距離算出部51から、G×M個の直線距離Lg,m(g=1,・・・,G:m=1,2,・・・,32)を取得する。
モデル調整部52は、G×M個の直線距離Lg,m(g=1,・・・,G:m=1,2,・・・,32)の中から、いずれか1つの映像データPgに係るM個の直線距離Lg,m(m=1,2,・・・,32)を選択する。いずれか1つの映像データPgは、G個の映像データP1~PGの中の1つの映像データである。
モデル調整部52は、いずれか1つの映像データPg(g=1,・・・,G)に係るM個の直線距離Lg,mを3次元モデルMDにフィッティングすることで、3次元モデルMDを運転者の顔を示す3次元モデルMDcus,gにカスタマイズする。
モデル調整部52は、M個の直線距離Lg,mの選択と3次元モデルMDに対する直線距離Lg,mのフィッティングとをG回繰り返すことで、3次元モデルMDから、G個の3次元モデルMDcus,1~MDcus,Gを生成する。
モデル調整部52は、G×M個の直線距離Lg,m(g=1,・・・,G:m=1,2,・・・,32)の中から、いずれか1つの映像データPgに係るM個の直線距離Lg,m(m=1,2,・・・,32)を選択する。いずれか1つの映像データPgは、G個の映像データP1~PGの中の1つの映像データである。
モデル調整部52は、いずれか1つの映像データPg(g=1,・・・,G)に係るM個の直線距離Lg,mを3次元モデルMDにフィッティングすることで、3次元モデルMDを運転者の顔を示す3次元モデルMDcus,gにカスタマイズする。
モデル調整部52は、M個の直線距離Lg,mの選択と3次元モデルMDに対する直線距離Lg,mのフィッティングとをG回繰り返すことで、3次元モデルMDから、G個の3次元モデルMDcus,1~MDcus,Gを生成する。
特徴量算出処理部53は、モデル調整部52から、カスタマイズ後のG個の3次元モデルMDcus,1~MDcus,Gを取得する。
特徴量算出処理部43は、それぞれの3次元モデルMDcus,g(g=1,・・・,G)に基づいて、運転者の顔の特徴量Vg,j(g=1,・・・,G:j=1,・・・,J)を算出する。
運転者の顔の特徴量Vg,jとしては、例えば、目の扁平率、又は、口角の角度がある。
特徴量算出処理部43は、それぞれの3次元モデルMDcus,g(g=1,・・・,G)に基づいて、運転者の顔の特徴量Vg,j(g=1,・・・,G:j=1,・・・,J)を算出する。
運転者の顔の特徴量Vg,jとしては、例えば、目の扁平率、又は、口角の角度がある。
差分算出部14は、第1の特徴量算出部12から、J個の基準特徴量Vj(j=1,・・・,J)を取得し、第2の特徴量算出部13から、G×J個の特徴量Vg,j(g=1,・・・,G:j=1,・・・,J)を取得する。
差分算出部14は、以下の式(1)に示すように、基準特徴量Vjと特徴量Vg,jとの差分ΔVg,jを算出する(図6のステップST5)。
ΔV1,j=|Vj-V1,j|
ΔV2,j=|Vj-V2,j|
: (1)
ΔVG,j=|Vj-VG,j|
差分算出部14は、G×J個の差分ΔV1,1・・・ΔV1,J、ΔV2,1・・・ΔV2,J、ΔVG,1・・・ΔVG,Jを再算出指示部15及び乗員状態検出部16のそれぞれに出力する。
差分算出部14は、以下の式(1)に示すように、基準特徴量Vjと特徴量Vg,jとの差分ΔVg,jを算出する(図6のステップST5)。
ΔV1,j=|Vj-V1,j|
ΔV2,j=|Vj-V2,j|
: (1)
ΔVG,j=|Vj-VG,j|
差分算出部14は、G×J個の差分ΔV1,1・・・ΔV1,J、ΔV2,1・・・ΔV2,J、ΔVG,1・・・ΔVG,Jを再算出指示部15及び乗員状態検出部16のそれぞれに出力する。
再算出指示部15は、差分算出部14から、差分ΔVg,j(g=1,・・・,G:j=1,・・・,J)を取得する。
再算出指示部15は、G×J個の差分ΔV1,1・・・ΔV1,J、ΔV2,1・・・ΔV2,J、ΔVG,1・・・ΔVG,Jのうち、或るjについてのG個の差分ΔV1,j~ΔVG,jに着目する。
再算出指示部15は、G個の差分ΔV1,j~ΔVG,jのそれぞれと第1の閾値Vth1とを比較し、G個の差分ΔV1,j~ΔVG,jの中で、第1の閾値Vth1以上である差分の個数Cjを計数する。
再算出指示部15は、以下の式(2)に示すように、G個の差分ΔV1,j~ΔVG,jの中で、第1の閾値Vth1以上である差分の割合Rjを算出する。
Rj=(Cj/G)×100(2)
再算出指示部15は、それぞれのjについての割合Rj(j=1,・・・,J)を算出する。
再算出指示部15は、G×J個の差分ΔV1,1・・・ΔV1,J、ΔV2,1・・・ΔV2,J、ΔVG,1・・・ΔVG,Jのうち、或るjについてのG個の差分ΔV1,j~ΔVG,jに着目する。
再算出指示部15は、G個の差分ΔV1,j~ΔVG,jのそれぞれと第1の閾値Vth1とを比較し、G個の差分ΔV1,j~ΔVG,jの中で、第1の閾値Vth1以上である差分の個数Cjを計数する。
再算出指示部15は、以下の式(2)に示すように、G個の差分ΔV1,j~ΔVG,jの中で、第1の閾値Vth1以上である差分の割合Rjを算出する。
Rj=(Cj/G)×100(2)
再算出指示部15は、それぞれのjについての割合Rj(j=1,・・・,J)を算出する。
イグニッションスイッチがオンになった当初の期間中は、一般的に、運転者の顔の表情が、真顔の表情である確率が高い。したがって、第1の特徴量算出部12により算出された基準特徴量Vjは、顔の表情が無表情であるときの運転者の顔の特徴量である可能性が高い。ただし、第1の特徴量算出部12により算出された基準特徴量Vjは、顔の表情が無表情ではないときの運転者の顔の特徴量である可能性はある。
一方、第1の特徴量算出部12により基準特徴量Vjが算出された後の一定期間FCPが、例えば、数分単位の一定期間であれば、一定期間FCPにおいて、真顔の表情が現れる割合R0は、笑顔の表情、泣顔の表情、又は、怒り顔の表情が現れる割合よりも大きくなることが想定される。運転者が、一定期間FCPにおいて、笑う機会が多い場合、真顔の表情が現れる割合R0が減少する。しかし、その場合でも、真顔の表情が現れる割合R0は、笑顔の表情が現れる割合よりも大きくなることが想定される。
したがって、例えば、第2の閾値Vth2が割合R0よりも大きな値である場合、第1の特徴量算出部12により算出された基準特徴量Vjが、顔の表情が無表情であるときの運転者の顔の特徴量であれば、再算出指示部15により算出される割合Rj(j=1,・・・,J)は、第2の閾値Vth2未満になる。
一方、第1の特徴量算出部12により算出された基準特徴量Vjが、顔の表情が無表情ではないときの運転者の顔の特徴量であれば、再算出指示部15により算出される割合Rj(j=1,・・・,J)は、第2の閾値以上になる。
一方、第1の特徴量算出部12により基準特徴量Vjが算出された後の一定期間FCPが、例えば、数分単位の一定期間であれば、一定期間FCPにおいて、真顔の表情が現れる割合R0は、笑顔の表情、泣顔の表情、又は、怒り顔の表情が現れる割合よりも大きくなることが想定される。運転者が、一定期間FCPにおいて、笑う機会が多い場合、真顔の表情が現れる割合R0が減少する。しかし、その場合でも、真顔の表情が現れる割合R0は、笑顔の表情が現れる割合よりも大きくなることが想定される。
したがって、例えば、第2の閾値Vth2が割合R0よりも大きな値である場合、第1の特徴量算出部12により算出された基準特徴量Vjが、顔の表情が無表情であるときの運転者の顔の特徴量であれば、再算出指示部15により算出される割合Rj(j=1,・・・,J)は、第2の閾値Vth2未満になる。
一方、第1の特徴量算出部12により算出された基準特徴量Vjが、顔の表情が無表情ではないときの運転者の顔の特徴量であれば、再算出指示部15により算出される割合Rj(j=1,・・・,J)は、第2の閾値以上になる。
再算出指示部15は、J個の割合R1~RJのうち、いずれかの割合Rjが第2の閾値Vth2以上であれば(図6のステップST6:YESの場合)、基準特徴量Vjが、顔の表情が無表情ではないときの運転者の顔の特徴量である可能性が高いと判断する。このため、再算出指示部15は、基準特徴量Vj(j=1,・・・,J)の再算出を第1の特徴量算出部12に指示する(図6のステップST7)。
第1の特徴量算出部12は、再算出指示部15から、基準特徴量Vjの再算出の指示を受けると、車内映像取得部11から、N個の映像データP1~PNを新たに取得し、新たに取得した映像データPn(n=1,・・・,N)が示す車内映像に基づいて、基準特徴量Vjを再算出する(図6のステップST1,ST2)。第1の特徴量算出部12は、基準特徴量Vjを差分算出部14に出力する。
第1の特徴量算出部12は、再算出指示部15から、基準特徴量Vjの再算出の指示を受けると、車内映像取得部11から、N個の映像データP1~PNを新たに取得し、新たに取得した映像データPn(n=1,・・・,N)が示す車内映像に基づいて、基準特徴量Vjを再算出する(図6のステップST1,ST2)。第1の特徴量算出部12は、基準特徴量Vjを差分算出部14に出力する。
再算出指示部15は、いずれの割合Rjも第2の閾値Vth2未満であれば(図6のステップST6:NOの場合)、基準特徴量Vjが、顔の表情が無表情であるときの運転者の顔の特徴量である可能性が高いと判断する。このため、再算出指示部15は、基準特徴量Vjの再算出を第1の特徴量算出部12に指示しない。以降、ステップST3~ST5の処理と同様の処理が繰り返される。
乗員状態検出部16は、差分算出部14から、差分ΔVg,j(g=1,・・・,G:j=1,・・・,J)を取得する。
乗員状態検出部16は、再算出指示部15から第1の特徴量算出部12への再算出の指示がなく、基準特徴量Vjが既に正しい値に設定されていれば、差分ΔVg,jに基づいて、乗員の状態を検出する。
即ち、乗員状態検出部16は、差分ΔVg,jと状態検出用閾値とを比較する。状態検出用閾値は、乗員状態検出部16の内部メモリに格納されていてもよいし、乗員状態推定装置2の外部から与えられるものであってもよい。
乗員状態検出部16は、差分ΔVg,jが状態検出用閾値以上であれば、乗員の状態が変化しているものと判断する。
乗員状態検出部16は、差分ΔVg,jが状態検出用閾値未満であれば、乗員の状態が変化していないものと判断する。
図1に示す乗員状態推定装置2では、差分ΔVg,jが状態検出用閾値以上であれば、乗員状態検出部16が、乗員の状態が変化しているものと判断している。しかし、これは一例に過ぎず、或るjについての差分ΔVg,jが状態検出用閾値以上である期間が所定時間以上であるとき、乗員状態検出部16が、乗員の状態が変化しているものと判断するようにしてもよい。
乗員状態検出部16は、再算出指示部15から第1の特徴量算出部12への再算出の指示がなく、基準特徴量Vjが既に正しい値に設定されていれば、差分ΔVg,jに基づいて、乗員の状態を検出する。
即ち、乗員状態検出部16は、差分ΔVg,jと状態検出用閾値とを比較する。状態検出用閾値は、乗員状態検出部16の内部メモリに格納されていてもよいし、乗員状態推定装置2の外部から与えられるものであってもよい。
乗員状態検出部16は、差分ΔVg,jが状態検出用閾値以上であれば、乗員の状態が変化しているものと判断する。
乗員状態検出部16は、差分ΔVg,jが状態検出用閾値未満であれば、乗員の状態が変化していないものと判断する。
図1に示す乗員状態推定装置2では、差分ΔVg,jが状態検出用閾値以上であれば、乗員状態検出部16が、乗員の状態が変化しているものと判断している。しかし、これは一例に過ぎず、或るjについての差分ΔVg,jが状態検出用閾値以上である期間が所定時間以上であるとき、乗員状態検出部16が、乗員の状態が変化しているものと判断するようにしてもよい。
第1の特徴量算出部12により算出される基準特徴量Vj及び第2の特徴量算出部13により算出される特徴量Vg,jのそれぞれが、例えば、目の扁平率である場合を想定する。基準特徴量Vjは、再算出指示部15によって、いずれの割合Rjも第2の閾値Vth2未満であると判断されることで確定した正しい基準特徴量である。
このような場合、乗員状態検出部16は、乗員の状態として、運転者が眠気を生じているときの表情を検出することが可能である。即ち、運転者が眠気を生じていない状況では、通常、運転者は、目を大きく開いているので、基準特徴量Vjである目の扁平率は大きい。一方、運転者が眠気を生じている状況では、運転者は、目を閉じている、あるいは、目を細めているので、特徴量Vg,jである目の扁平率は小さい。したがって、基準特徴量Vj及び特徴量Vg,jのそれぞれが、目の扁平率であれば、乗員の状態として、運転者が眠気を生じているときの表情を検出することが可能である。
このような場合、乗員状態検出部16は、乗員の状態として、運転者が眠気を生じているときの表情を検出することが可能である。即ち、運転者が眠気を生じていない状況では、通常、運転者は、目を大きく開いているので、基準特徴量Vjである目の扁平率は大きい。一方、運転者が眠気を生じている状況では、運転者は、目を閉じている、あるいは、目を細めているので、特徴量Vg,jである目の扁平率は小さい。したがって、基準特徴量Vj及び特徴量Vg,jのそれぞれが、目の扁平率であれば、乗員の状態として、運転者が眠気を生じているときの表情を検出することが可能である。
また、基準特徴量Vjが、運転者が車両の前方を向いているときに撮影された車内映像に基づいて算出されたものであれば、乗員状態検出部16は、乗員の状態として、運転者のわき見をしている状態、車両の環境が変化している状態、又は、運転者の体調が急変している状態等を検出することが可能である。
また、基準特徴量Vjが、運転者の姿勢が崩れていないときに撮影された車内映像に基づいて算出されたものであれば、乗員状態検出部16は、乗員の状態として、運転者の姿勢が崩れている状態、車両の環境が変化している状態、又は、運転者の体調が急変している状態等を検出することが可能である。
また、乗員状態検出部16は、乗員の状態として、乗員の表情の変化を検出することができるので、乗員の感情を推定することが可能である。
乗員状態検出部16が、乗員の状態の検出結果を、例えば、車両制御装置に出力することで、居眠り運転の警告を提示するだけでなく、車両の緊急退避処理を実行させることができる。
また、基準特徴量Vjが、運転者の姿勢が崩れていないときに撮影された車内映像に基づいて算出されたものであれば、乗員状態検出部16は、乗員の状態として、運転者の姿勢が崩れている状態、車両の環境が変化している状態、又は、運転者の体調が急変している状態等を検出することが可能である。
また、乗員状態検出部16は、乗員の状態として、乗員の表情の変化を検出することができるので、乗員の感情を推定することが可能である。
乗員状態検出部16が、乗員の状態の検出結果を、例えば、車両制御装置に出力することで、居眠り運転の警告を提示するだけでなく、車両の緊急退避処理を実行させることができる。
以上の実施の形態1では、車両の内部の映像である車内映像を取得する車内映像取得部11と、基準特徴量として、車内映像取得部11により取得された車内映像に映っている、車両に乗車している運転者の顔の特徴量を算出する第1の特徴量算出部12と、第1の特徴量算出部12により基準特徴量が算出された後に、車内映像取得部11により取得された、撮影時刻が互いに異なる複数の車内映像のそれぞれに映っている乗員の顔の特徴量を算出する第2の特徴量算出部13とを備えるように、乗員状態推定装置2を構成した。また、乗員状態推定装置2は、第1の特徴量算出部12により算出された基準特徴量と第2の特徴量算出部13により算出されたそれぞれの特徴量との差分を算出する差分算出部14と、差分算出部14により算出された複数の差分のうち、第1の特徴量算出部12により基準特徴量が算出された後の一定期間内に算出された複数の差分の中で、第1の閾値以上である差分の割合が第2の閾値以上であれば、基準特徴量の再算出を第1の特徴量算出部12に指示する再算出指示部15とを備えている。したがって、乗員状態推定装置2は、乗員の状態推定精度の低下を防ぐことが可能な基準特徴量を算出することができる。
図1に示す乗員状態推定装置2は、イグニッションスイッチがオンになることで起動し、図6に示す処理手順が実行されている。しかし、これは一例に過ぎず、イグニッションスイッチがオンのままでも、例えば、車両のドアがオープンされたことが検出、又は、運転者が交代されたことが検出されたときに、図6に示す処理手順が実行されるものであってもよい。
図1に示す乗員状態推定装置2では、第1の特徴量算出部12が、運転者の顔の基準点Cnから、運転者の顔パーツに含まれているM個のパーツ構成点Kn,mまでの直線距離Ln,mをそれぞれ算出し、それぞれの直線距離Ln,mを用いて、基準特徴量Vjを算出している。しかし、これは一例に過ぎず、例えば、第1の特徴量算出部12が、基準特徴量として、それぞれの直線距離Ln,mを算出するようにしてもよい。
また、図1に示す乗員状態推定装置2では、第2の特徴量算出部13が、運転者の顔の基準点Cgから、運転者の顔パーツに含まれているM個のパーツ構成点Kg,mまでの直線距離Lg,mをそれぞれ算出し、それぞれの直線距離Lg,mを用いて、特徴量Vg,jを算出している。しかし、これは一例に過ぎず、例えば、第2の特徴量算出部13が、特徴量として、それぞれの直線距離Lg,mを算出するようにしてもよい。
また、図1に示す乗員状態推定装置2では、第2の特徴量算出部13が、運転者の顔の基準点Cgから、運転者の顔パーツに含まれているM個のパーツ構成点Kg,mまでの直線距離Lg,mをそれぞれ算出し、それぞれの直線距離Lg,mを用いて、特徴量Vg,jを算出している。しかし、これは一例に過ぎず、例えば、第2の特徴量算出部13が、特徴量として、それぞれの直線距離Lg,mを算出するようにしてもよい。
図1に示す乗員状態推定装置2では、第1の特徴量算出部12が、再算出指示部15から、基準特徴量Vjの再算出の指示を受けると、車内映像取得部11から、N個の映像データP1~PNを新たに取得している。そして、第1の特徴量算出部12が、新たに取得した映像データPn(n=1,・・・,N)が示す車内映像に基づいて、基準特徴量Vjを再算出している。しかし、これは一例に過ぎず、第1の特徴量算出部12は、再算出指示部15から、基準特徴量Vjの再算出の指示を受けると、一定期間FCP内に算出された複数の差分ΔVg,jのうち、第1の閾値Vth1以上である差分に係る車内映像に基づいて、基準特徴量Vjを再算出するようにしてもよい。第1の閾値Vth1以上である差分に係る車内映像は、車内映像取得部11によって、一定期間FCP内に取得された車内映像である。
第1の特徴量算出部12によって、先に算出された基準特徴量Vjが、顔の表情が無表情でないときに撮影された車内映像に基づいて算出されたものである場合、第1の閾値Vth1以上である差分に係る車内映像は、顔の表情が無表情であるときに撮影された車内映像である可能性が高い。
第1の特徴量算出部12によって、先に算出された基準特徴量Vjが、顔の表情が無表情でないときに撮影された車内映像に基づいて算出されたものである場合、第1の閾値Vth1以上である差分に係る車内映像は、顔の表情が無表情であるときに撮影された車内映像である可能性が高い。
実施の形態2.
実施の形態2では、車両の状態を示す車両情報を取得する車両情報取得部17を備えている乗員状態推定装置2について説明する。
実施の形態2では、車両の状態を示す車両情報を取得する車両情報取得部17を備えている乗員状態推定装置2について説明する。
図9は、実施の形態2に係る乗員状態推定装置2を示す構成図である。図9において、図1と同一符号は同一又は相当部分を示すので説明を省略する。
図10は、実施の形態2に係る乗員状態推定装置2のハードウェアを示すハードウェア構成図である。図10において、図2と同一符号は同一又は相当部分を示すので説明を省略する。
乗員状態推定装置2は、車両情報取得部17、車内映像取得部11、第1の特徴量算出部18、第2の特徴量算出部13、差分算出部14、再算出指示部15及び乗員状態検出部16を備えている。
実施の形態2では、乗員状態推定装置2は、車両に乗車している乗員のうち、運転者の表情の変化を検出する。しかし、これは一例に過ぎず、乗員状態推定装置2が、車両に乗車している乗員のうち、助手席に座っている乗員、又は、後部座席に座っている乗員の表情の変化を検出するものであってもよい。
図10は、実施の形態2に係る乗員状態推定装置2のハードウェアを示すハードウェア構成図である。図10において、図2と同一符号は同一又は相当部分を示すので説明を省略する。
乗員状態推定装置2は、車両情報取得部17、車内映像取得部11、第1の特徴量算出部18、第2の特徴量算出部13、差分算出部14、再算出指示部15及び乗員状態検出部16を備えている。
実施の形態2では、乗員状態推定装置2は、車両に乗車している乗員のうち、運転者の表情の変化を検出する。しかし、これは一例に過ぎず、乗員状態推定装置2が、車両に乗車している乗員のうち、助手席に座っている乗員、又は、後部座席に座っている乗員の表情の変化を検出するものであってもよい。
車両情報取得部17は、例えば、図10に示す車両情報取得回路27によって実現される。
車両情報取得部17は、例えば、車両の制御回路から、車両の状態を示す車両情報を取得する。
車両情報取得部17は、車両情報を第1の特徴量算出部18に出力する。
車両情報取得部17は、例えば、車両の制御回路から、車両の状態を示す車両情報を取得する。
車両情報取得部17は、車両情報を第1の特徴量算出部18に出力する。
第1の特徴量算出部18は、例えば、図10に示す第1の特徴量算出回路28によって実現される。
第1の特徴量算出部18は、車両情報取得部17から、車両情報を取得する。
第1の特徴量算出部18は、車両情報取得部17により取得された車両情報が示す車両の状態が或る状態であるときに、車内映像取得部11により取得された映像データを取得する。
第1の特徴量算出部18は、基準特徴量として、取得した映像データが示す車内映像に映っている運転者の顔の特徴量を算出する。
第1の特徴量算出部18は、基準特徴量を差分算出部14に出力する。
第1の特徴量算出部18は、車両情報取得部17から、車両情報を取得する。
第1の特徴量算出部18は、車両情報取得部17により取得された車両情報が示す車両の状態が或る状態であるときに、車内映像取得部11により取得された映像データを取得する。
第1の特徴量算出部18は、基準特徴量として、取得した映像データが示す車内映像に映っている運転者の顔の特徴量を算出する。
第1の特徴量算出部18は、基準特徴量を差分算出部14に出力する。
図9では、乗員状態推定装置2の構成要素である車両情報取得部17、車内映像取得部11、第1の特徴量算出部18、第2の特徴量算出部13、差分算出部14、再算出指示部15及び乗員状態検出部16のそれぞれが、図10に示すような専用のハードウェアによって実現されるものを想定している。即ち、乗員状態推定装置2が、車両情報取得回路27、車内映像取得回路21、第1の特徴量算出回路28、第2の特徴量算出回路23、差分算出回路24、再算出指示回路25及び乗員状態検出回路26によって実現されるものを想定している。
車両情報取得回路27、車内映像取得回路21、第1の特徴量算出回路28、第2の特徴量算出回路23、差分算出回路24、再算出指示回路25及び乗員状態検出回路26のそれぞれは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、又は、これらを組み合わせたものが該当する。
車両情報取得回路27、車内映像取得回路21、第1の特徴量算出回路28、第2の特徴量算出回路23、差分算出回路24、再算出指示回路25及び乗員状態検出回路26のそれぞれは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、又は、これらを組み合わせたものが該当する。
乗員状態推定装置2の構成要素は、専用のハードウェアによって実現されるものに限るものではなく、乗員状態推定装置2が、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせによって実現されるものであってもよい。
乗員状態推定装置2が、ソフトウェア又はファームウェア等によって実現される場合、車両情報取得部17、車内映像取得部11、第1の特徴量算出部18、第2の特徴量算出部13、差分算出部14、再算出指示部15及び乗員状態検出部16におけるそれぞれの処理手順をコンピュータに実行させるためのプログラムが図3に示すメモリ31に格納される。そして、図3に示すプロセッサ32がメモリ31に格納されているプログラムを実行する。
乗員状態推定装置2が、ソフトウェア又はファームウェア等によって実現される場合、車両情報取得部17、車内映像取得部11、第1の特徴量算出部18、第2の特徴量算出部13、差分算出部14、再算出指示部15及び乗員状態検出部16におけるそれぞれの処理手順をコンピュータに実行させるためのプログラムが図3に示すメモリ31に格納される。そして、図3に示すプロセッサ32がメモリ31に格納されているプログラムを実行する。
また、図10では、乗員状態推定装置2の構成要素のそれぞれが専用のハードウェアによって実現される例を示し、図3では、乗員状態推定装置2がソフトウェア又はファームウェア等によって実現される例を示している。しかし、これは一例に過ぎず、乗員状態推定装置2における一部の構成要素が専用のハードウェアによって実現され、残りの構成要素がソフトウェア又はファームウェア等によって実現されるものであってもよい。
次に、図9に示す乗員状態推定装置2の動作について説明する。車両情報取得部17及び第1の特徴量算出部18以外は、図1に示す乗員状態推定装置2と同様である。このため、ここでは、車両情報取得部17及び第1の特徴量算出部18の動作のみを説明する。
車両情報取得部17は、例えば、車両の制御回路から、車両の状態を示す車両情報を取得する。車両情報としては、例えば、車両のシフトを示す情報、車両の速度を示す情報、又は、車両の舵角を示す情報がある。
車両情報取得部17は、車両情報を第1の特徴量算出部18に出力する。
車両情報取得部17は、例えば、車両の制御回路から、車両の状態を示す車両情報を取得する。車両情報としては、例えば、車両のシフトを示す情報、車両の速度を示す情報、又は、車両の舵角を示す情報がある。
車両情報取得部17は、車両情報を第1の特徴量算出部18に出力する。
第1の特徴量算出部18は、車両情報取得部17から、車両情報を取得する。
第1の特徴量算出部18は、例えば、車両情報が示す車両の状態が、或る状態であるときに、カメラ1により撮影された車内映像を示すN個の映像データP1~PNを車内映像取得部11から取得する。
即ち、第1の特徴量算出部18は、例えば、車両情報が示す車両の状態が、車両のシフトがドライブシフトである状態、車両の速度が第3の閾値以上である状態、あるいは、車両の舵角が第4の閾値以内である状態であるときに、カメラ1により撮影された車内映像を示すN個の映像データP1~PNを車内映像取得部11から取得する。
第3の閾値及び第4の閾値のそれぞれは、第1の特徴量算出部18の内部メモリに格納されていてもよいし、乗員状態推定装置2の外部から与えられるものであってもよい。
以降、第1の特徴量算出部18は、図1に示す第1の特徴量算出部12と同様に、映像データPn(n=1,・・・,N)が示す車内映像に基づいて、基準特徴量Vjを算出する。
第1の特徴量算出部18は、例えば、車両情報が示す車両の状態が、或る状態であるときに、カメラ1により撮影された車内映像を示すN個の映像データP1~PNを車内映像取得部11から取得する。
即ち、第1の特徴量算出部18は、例えば、車両情報が示す車両の状態が、車両のシフトがドライブシフトである状態、車両の速度が第3の閾値以上である状態、あるいは、車両の舵角が第4の閾値以内である状態であるときに、カメラ1により撮影された車内映像を示すN個の映像データP1~PNを車内映像取得部11から取得する。
第3の閾値及び第4の閾値のそれぞれは、第1の特徴量算出部18の内部メモリに格納されていてもよいし、乗員状態推定装置2の外部から与えられるものであってもよい。
以降、第1の特徴量算出部18は、図1に示す第1の特徴量算出部12と同様に、映像データPn(n=1,・・・,N)が示す車内映像に基づいて、基準特徴量Vjを算出する。
車両情報が示す車両の状態が、車両のシフトがドライブシフトである状態、車両の速度が第3の閾値以上である状態、あるいは、車両の舵角が第4の閾値以内である状態のときは、通常、車両の運転に対する注意が必要な時間帯である。
したがって、車両情報が示す車両の状態が、車両のシフトがドライブシフトである状態、車両の速度が第3の閾値以上である状態、あるいは、車両の舵角が第4の閾値以内である状態のときは、運転者の顔の表情が真顔の表情である可能性が高い。
したがって、車両情報が示す車両の状態が、車両のシフトがドライブシフトである状態、車両の速度が第3の閾値以上である状態、あるいは、車両の舵角が第4の閾値以内である状態のときは、運転者の顔の表情が真顔の表情である可能性が高い。
以上の実施の形態2では、車両の状態を示す車両情報を取得する車両情報取得部17を備えるように、図9に示す乗員状態推定装置2を構成した。また、図9に示す乗員状態推定装置2の第1の特徴量算出部18は、車両情報取得部17により取得された車両情報が示す車両の状態が或る状態であるときに、車内映像取得部11により取得された車内映像を取得し、基準特徴量として、当該車内映像に映っている乗員の顔の特徴量を算出するように構成した。したがって、図9に示す乗員状態推定装置2は、図1に示す乗員状態推定装置2よりも、運転者の顔の表情が真顔の表情であるときに撮影された車内映像に基づいて、基準特徴量を算出できる可能性を高めることができる。
なお、本開示は、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
本開示は、乗員状態推定装置及び乗員状態推定方法に適している。
1 カメラ、2 乗員状態推定装置、11 車内映像取得部、12 第1の特徴量算出部、13 第2の特徴量算出部、14 差分算出部、15 再算出指示部、16 乗員状態検出部、17 車両情報取得部、18 第1の特徴量算出部、21 車内映像取得回路、22 第1の特徴量算出回路、23 第2の特徴量算出回路、24 差分算出回路、25 再算出指示回路、26 乗員状態検出回路、27 車両情報取得回路、28 第1の特徴量算出回路、31 メモリ、32 プロセッサ、41 直線距離算出部、42 モデル調整部、43 特徴量算出処理部、51 直線距離算出部、52 モデル調整部、53 特徴量算出処理部。
Claims (8)
- 車両の内部の映像である車内映像を取得する車内映像取得部と、
基準特徴量として、前記車内映像取得部により取得された車内映像に映っている、前記車両に乗車している乗員の顔の特徴量を算出する第1の特徴量算出部と、
前記第1の特徴量算出部により基準特徴量が算出された後に、前記車内映像取得部により取得された、撮影時刻が互いに異なる複数の車内映像のそれぞれに映っている前記乗員の顔の特徴量を算出する第2の特徴量算出部と、
前記第1の特徴量算出部により算出された基準特徴量と前記第2の特徴量算出部により算出されたそれぞれの特徴量との差分を算出する差分算出部と、
前記差分算出部により算出された複数の差分のうち、前記第1の特徴量算出部により基準特徴量が算出された後の一定期間内に算出された複数の差分の中で、第1の閾値以上である差分の割合が第2の閾値以上であれば、前記基準特徴量の再算出を前記第1の特徴量算出部に指示する再算出指示部と
を備えた乗員状態推定装置。 - 前記再算出指示部から前記第1の特徴量算出部への再算出の指示がなければ、前記差分算出部により算出されたそれぞれの差分に基づいて、前記乗員の状態を検出する乗員状態検出部を備えたことを特徴とする請求項1記載の乗員状態推定装置。
- 前記車内映像取得部は、撮影時刻が互いに異なる複数の車内映像を取得し、
前記第1の特徴量算出部は、
前記車内映像取得部により取得されたそれぞれの車内映像に映っている前記乗員の顔の特徴量を算出し、算出した複数の特徴量から、前記基準特徴量を算出することを特徴とする請求項1記載の乗員状態推定装置。 - 前記第1の特徴量算出部は、
前記車内映像取得部により取得された車内映像に映っている乗員の顔の基準点から、前記乗員の顔パーツに含まれている複数のパーツ構成点までの直線距離をそれぞれ算出する直線距離算出部と、
前記直線距離算出部により算出されたそれぞれの直線距離を顔の3次元モデルにフィッティングすることで、当該3次元モデルを前記乗員の顔を示す3次元モデルにカスタマイズするモデル調整部と、
前記モデル調整部によるカスタマイズ後の3次元モデルに基づいて、前記基準特徴量として、前記乗員の顔の特徴量を算出する特徴量算出処理部とを備えていることを特徴とする請求項1記載の乗員状態推定装置。 - 前記第2の特徴量算出部は、
前記第1の特徴量算出部により基準特徴量が算出された後に、前記車内映像取得部により取得されたそれぞれの車内映像に映っている乗員の顔の基準点から、前記乗員の顔パーツに含まれている複数のパーツ構成点までの直線距離をそれぞれ算出する直線距離算出部と、
前記直線距離算出部により算出されたそれぞれの直線距離を顔の3次元モデルにフィッティングすることで、当該3次元モデルを前記乗員の顔を示す3次元モデルにカスタマイズするモデル調整部と、
前記モデル調整部によるカスタマイズ後の3次元モデルに基づいて、前記乗員の顔の特徴量を算出する特徴量算出処理部とを備えていることを特徴とする請求項1記載の乗員状態推定装置。 - 前記車両の状態を示す車両情報を取得する車両情報取得部を備え、
前記第1の特徴量算出部は、
前記車両情報取得部により取得された車両情報が示す車両の状態が或る状態であるときに前記車内映像取得部により取得された車内映像を取得し、前記基準特徴量として、当該車内映像に映っている前記乗員の顔の特徴量を算出することを特徴とする請求項1記載の乗員状態推定装置。 - 前記或る状態は、
前記車両のシフトがドライブシフトである状態、前記車両の速度が第3の閾値以上である状態、あるいは、前記車両の舵角が第4の閾値以内である状態であり、
前記第1の特徴量算出部は、
前記車両情報取得部により取得された車両情報が示す車両の状態が前記或る状態であるときに前記車内映像取得部により取得された車内映像を取得し、前記基準特徴量として、当該車内映像に映っている前記乗員の顔の特徴量を算出することを特徴とする請求項6記載の乗員状態推定装置。 - 車内映像取得部が、車両の内部の映像である車内映像を取得し、
第1の特徴量算出部が、基準特徴量として、前記車内映像取得部により取得された車内映像に映っている、前記車両に乗車している乗員の顔の特徴量を算出し、
第2の特徴量算出部が、前記第1の特徴量算出部により基準特徴量が算出された後に、前記車内映像取得部により取得された、撮影時刻が互いに異なる複数の車内映像のそれぞれに映っている前記乗員の顔の特徴量を算出し、
差分算出部が、前記第1の特徴量算出部により算出された基準特徴量と前記第2の特徴量算出部により算出されたそれぞれの特徴量との差分を算出し、
再算出指示部が、前記差分算出部により算出された複数の差分のうち、前記第1の特徴量算出部により基準特徴量が算出された後の一定期間内に算出された複数の差分の中で、第1の閾値以上である差分の割合が第2の閾値以上であれば、前記基準特徴量の再算出を前記第1の特徴量算出部に指示する
乗員状態推定方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2024519511A JP7504326B2 (ja) | 2022-05-18 | 2022-05-18 | 乗員状態推定装置及び乗員状態推定方法 |
PCT/JP2022/020600 WO2023223443A1 (ja) | 2022-05-18 | 2022-05-18 | 乗員状態推定装置及び乗員状態推定方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/020600 WO2023223443A1 (ja) | 2022-05-18 | 2022-05-18 | 乗員状態推定装置及び乗員状態推定方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023223443A1 true WO2023223443A1 (ja) | 2023-11-23 |
Family
ID=88834871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/020600 WO2023223443A1 (ja) | 2022-05-18 | 2022-05-18 | 乗員状態推定装置及び乗員状態推定方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7504326B2 (ja) |
WO (1) | WO2023223443A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008146137A (ja) * | 2006-12-06 | 2008-06-26 | Seiko Epson Corp | 画像認識装置、電子機器、画像認識方法、制御プログラム及び記録媒体 |
WO2018150485A1 (ja) * | 2017-02-15 | 2018-08-23 | 三菱電機株式会社 | 運転状態判定装置および運転状態判定方法 |
JP2020163660A (ja) * | 2019-03-29 | 2020-10-08 | コニカミノルタ株式会社 | 画像形成装置 |
-
2022
- 2022-05-18 WO PCT/JP2022/020600 patent/WO2023223443A1/ja unknown
- 2022-05-18 JP JP2024519511A patent/JP7504326B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008146137A (ja) * | 2006-12-06 | 2008-06-26 | Seiko Epson Corp | 画像認識装置、電子機器、画像認識方法、制御プログラム及び記録媒体 |
WO2018150485A1 (ja) * | 2017-02-15 | 2018-08-23 | 三菱電機株式会社 | 運転状態判定装置および運転状態判定方法 |
JP2020163660A (ja) * | 2019-03-29 | 2020-10-08 | コニカミノルタ株式会社 | 画像形成装置 |
Also Published As
Publication number | Publication date |
---|---|
JP7504326B2 (ja) | 2024-06-21 |
JPWO2023223443A1 (ja) | 2023-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11084424B2 (en) | Video image output apparatus, video image output method, and medium | |
US8964066B2 (en) | Apparatus and method for generating image including multiple people | |
EP3033999B1 (en) | Apparatus and method for determining the state of a driver | |
WO2017208529A1 (ja) | 運転者状態推定装置、運転者状態推定システム、運転者状態推定方法、運転者状態推定プログラム、対象者状態推定装置、対象者状態推定方法、対象者状態推定プログラム、および記録媒体 | |
US20220084384A1 (en) | Method and apparatus for detecting child status, electronic device, and storage medium | |
US8552873B2 (en) | Method and system for detecting a driving state of a driver in a vehicle | |
JP7118136B2 (ja) | 搭乗者状態判定装置、警告出力制御装置及び搭乗者状態判定方法 | |
CN110155072B (zh) | 防晕车方法和防晕车装置 | |
EP3113073A1 (en) | Determination device, determination method, and non-transitory storage medium | |
WO2020170916A1 (ja) | 状態検知装置及び状態検知方法 | |
US11203347B2 (en) | In-vehicle device, information management server, information management system, and method | |
CN115439832A (zh) | 监测车辆乘员的方法和系统 | |
JP2021037216A (ja) | 閉眼判定装置 | |
CN114356072A (zh) | 用于检测可穿戴设备的空间取向的系统和方法 | |
WO2017209225A1 (ja) | 状態推定装置、状態推定方法、及び状態推定プログラム | |
CN113365556B (zh) | 情绪推定装置及情绪推定方法 | |
WO2023223443A1 (ja) | 乗員状態推定装置及び乗員状態推定方法 | |
JP7267467B2 (ja) | 注意方向判定装置および注意方向判定方法 | |
JP2018173757A (ja) | 検知装置、学習装置、検知方法、学習方法、およびプログラム | |
JP7374373B2 (ja) | 体格判定装置および体格判定方法 | |
JP2017007548A (ja) | 後席状況表示制御装置 | |
JP7359084B2 (ja) | 感情推定装置、感情推定方法及びプログラム | |
EP4439485A1 (en) | Interactive vision-based child seat mounting assistance | |
WO2021171538A1 (ja) | 表情認識装置及び表情認識方法 | |
JP7557389B2 (ja) | 視線検出装置、視線検出システム、及び視線検出方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22942648 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024519511 Country of ref document: JP Kind code of ref document: A |