WO2023223409A1 - Steel material used as material for fastening member, and fastening member - Google Patents

Steel material used as material for fastening member, and fastening member Download PDF

Info

Publication number
WO2023223409A1
WO2023223409A1 PCT/JP2022/020477 JP2022020477W WO2023223409A1 WO 2023223409 A1 WO2023223409 A1 WO 2023223409A1 JP 2022020477 W JP2022020477 W JP 2022020477W WO 2023223409 A1 WO2023223409 A1 WO 2023223409A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
steel material
steel
less
corrosion resistance
Prior art date
Application number
PCT/JP2022/020477
Other languages
French (fr)
Japanese (ja)
Inventor
清信 菅江
直樹 松井
聡 志賀
勇 高畠
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2022573338A priority Critical patent/JP7231136B1/en
Priority to PCT/JP2022/020477 priority patent/WO2023223409A1/en
Publication of WO2023223409A1 publication Critical patent/WO2023223409A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present disclosure relates to steel materials and fastening members, and more particularly to steel materials used as materials for fastening members such as bolts, nuts, washers, etc., and fastening members made of the steel materials.
  • Fastening members such as bolts, nuts, or washers are used for fastening industrial machinery, automobiles, bridges, buildings, etc.
  • bridges and buildings may be built in coastal areas. Beach areas are corrosive environments with a lot of chloride ions. Therefore, even if the above-mentioned fastening member is painted, the paint may peel off and corrosion may progress. Therefore, fastening members used in corrosive environments containing chloride ions are required to have excellent corrosion resistance.
  • Patent Document 1 JP-A No. 2020-180325
  • Patent Document 2 JP-A No. 2017-226878
  • the steel material disclosed in Patent Document 1 has C: 0.15% or more and 0.25% or less, Si: 0.05% or more and 0.30% or less, and Mn: 0.50% or more and 1.80% by mass. % or less, P: 0.002% or more and 0.030% or less, S: 0.0005% or more and 0.0200% or less, Al: 0.010% or more and 0.065% or less, Cu: 0.01% or more and 0.
  • Nb 0.005% or more and 0.030% or less
  • Sn 0.005% or more and 0.200% or less
  • Ti 0.005% or more and 0.200% or less
  • B 0.0001% N: 0.0020% or more and 0.0100% or less
  • O 0.0025% or less
  • the remainder has a component composition of iron and inevitable impurities.
  • the steel material disclosed in Patent Document 2 has C: 0.15% or more and less than 0.30%, Si: 0.05% or more and 1.00% or less, and Mn: 0.20% or more and 2.00% by mass. % or less, P: 0.001% or more and 0.030% or less, S: 0.0001% or more and 0.0100% or less, Al: 0.010% or more and 0.100% or less, Cu: 0.010% or more1 .000% or less, Nb: 0.005% or more and 0.200% or less, Sn: 0.005% or more and 0.200% or less, and N: 0.0010% or more and 0.0100% or less, with the balance being iron. and has a component composition of unavoidable impurities.
  • This document states that containing Cu, Nb, Sn, and Ni increases the corrosion resistance of the steel material in a corrosive environment.
  • An object of the present disclosure is to provide a steel material and a fastening member that have excellent corrosion resistance and excellent hydrogen embrittlement resistance.
  • the steel material according to the present disclosure has the following configuration.
  • C 0.15-0.45%, Si: 0.01-1.00%, Mn: 0.01 to 1.50%, P: 0.050% or less, S: 0.050% or less, Al: 0.100% or less, Sn: 0.02-0.30%, Cr: 0.20% or less, Cu: 0.010-0.500%, Ni: 0.01-0.50%, Mo: 0.01-0.50%, Ti: 0.001 to 0.100%, One or more selected from the group consisting of Co, Sb, Ge, and In: 0.0013 to less than 0.0065% in total, N: 0.010% or less, O: 0.015% or less, W: 0-0.50%, B: 0 to 0.0050%, Nb: 0 to 0.300%, Ca: 0-0.0050%, Mg: 0 to 0.0050%, Rare earth elements: 0 to 0.0200%, and The remainder: Fe and impurities, and satisfies formula (1), Steel material.
  • the fastening member according to the present disclosure is made of the above-mentioned steel material.
  • the steel material and fastening member according to the present disclosure have excellent corrosion resistance and excellent hydrogen embrittlement resistance.
  • FIG. 1 is an example of a photographic image of the microstructure of the steel material of this embodiment.
  • FIG. 2 is a schematic diagram of an example of a graph showing the relationship between the amount of penetrating hydrogen and the breaking load obtained by the SSRT test under hydrogen charging.
  • the present inventors investigated and studied steel materials that have excellent corrosion resistance and excellent hydrogen embrittlement resistance. As a result, we obtained the following knowledge.
  • the present inventors conducted a study on the chemical composition of a steel material having excellent corrosion resistance and excellent hydrogen embrittlement resistance. As a result, the present inventors found that in mass %, C: 0.15 to 0.45%, Si: 0.01 to 1.00%, Mn: 0.01 to 1.50%, P: 0.
  • chloride ions fly onto the surface of the steel materials that make up the fastening members, as described above. Furthermore, water containing chloride ions that comes flying in due to fog, rain, etc. adheres to the surface of the steel material. As a result, the surface of the steel material becomes wet (wetting process), and then water containing chloride ions dries from the surface of the steel material (drying process).
  • the dissolution of Fe on the surface of the steel material is promoted, especially in the drying process.
  • the dissolved Fe makes the surface of the steel material an acidic environment.
  • the pH at the surface of the steel material decreases. The lower the pH, the more Fe dissolves. In other words, corrosion progresses.
  • the present inventors believed that dissolution of Fe could be suppressed if the decrease in pH on the surface of the steel material could be suppressed. Therefore, we investigated elements that can suppress the decrease in pH in the acidic range of pH 0 to 7. As a result, if any one or more of Co, Sb, Ge, and In is contained in addition to the above-mentioned Cu, Ni, and Sn, it is possible to suppress the decrease in pH over a wide range in the acidic region. As a result, the present inventors discovered that dissolution of Fe can be suppressed in the drying process.
  • the present inventors further studied the chemical composition of steel materials.
  • the above chemical composition further contains one or more selected from the group consisting of Co, Sb, Ge, and In in a total amount of less than 0.0013 to 0.0065%, chloride ions
  • the present inventors have discovered that corrosion resistance and hydrogen embrittlement resistance are further enhanced in a corrosive environment containing.
  • the present inventors have found that when the steel material satisfies the following characteristic 1, corrosion resistance and hydrogen embrittlement resistance are further enhanced in a corrosive environment containing chloride ions.
  • the chemical composition is in mass%, C: 0.15 to 0.45%, Si: 0.01 to 1.00%, Mn: 0.01 to 1.50%, P: 0.050% or less, S : 0.050% or less, Al: 0.100% or less, Sn: 0.02 to 0.30%, Cr: 0.20% or less, Cu: 0.010 to 0.500%, Ni: 0.01 ⁇ 0.50%, Mo: 0.01 ⁇ 0.50%, Ti: 0.001 ⁇ 0.100%, one or more selected from the group consisting of Co, Sb, Ge, and In: total of 0.
  • N 0.010% or less
  • O 0.015% or less
  • W 0 to 0.50%
  • B 0 to 0.0050%
  • Nb 0 to 0.300%
  • Ca 0 to 0.0050%
  • Mg 0 to 0.0050%
  • rare earth elements 0 to 0.0200%
  • the remainder Fe and impurities.
  • the present inventors further investigated means for obtaining excellent corrosion resistance and excellent hydrogen embrittlement resistance in steel materials having the above-mentioned chemical composition.
  • F1 10 ⁇ LN(Cu+0.5 ⁇ Sn+2000 ⁇ Tx)+100 ⁇ (0.5 ⁇ Ni+Mo) 3 ⁇ 100 ⁇ (0.5 ⁇ Ni+Mo) 2 +30 ⁇ (0.5 ⁇ Ni+Mo)+10.
  • Cu, Sn, Co, Sb, Ge, and In increase corrosion resistance in an environment containing chloride ions, and also suppress the generation of hydrogen due to reduction reactions caused by corrosion. If hydrogen generation is suppressed, the amount of hydrogen that comes into contact with the steel surface will be reduced. Therefore, the amount of hydrogen penetrating into the steel material from the surface of the steel material is also reduced. As a result, hydrogen embrittlement resistance increases. Therefore, Cu, Sn, Co, Sb, Ge, and In are an element group that not only increases corrosion resistance but also suppresses hydrogen generation and increases hydrogen embrittlement resistance.
  • Ni and Mo have a synergistic effect with Sn in the chemical composition that satisfies feature 1, and depending on their content, increases or decreases corrosion resistance and hydrogen embrittlement resistance.
  • corrosion resistance and hydrogen embrittlement resistance increase when the contents of Ni and Mo are in a certain range, but conversely, corrosion resistance and hydrogen embrittlement resistance decrease when the Ni and Mo contents are in a different range.
  • the level of corrosion resistance and hydrogen embrittlement resistance due to Ni and Mo is considered to be influenced by the synergistic effect of Ni and Mo with Sn.
  • the steel material according to this embodiment which was completed based on the above findings, has the following configuration.
  • the steel material of this embodiment satisfies the following characteristics 1 and 2.
  • the chemical composition is in mass%, C: 0.15 to 0.45%, Si: 0.01 to 1.00%, Mn: 0.01 to 1.50%, P: 0.050% or less, S : 0.050% or less, Al: 0.100% or less, Sn: 0.02 to 0.30%, Cr: 0.20% or less, Cu: 0.010 to 0.500%, Ni: 0.01 ⁇ 0.50%, Mo: 0.01 ⁇ 0.50%, Ti: 0.001 ⁇ 0.100%, one or more selected from the group consisting of Co, Sb, Ge, and In: total of 0.
  • the chemical composition of the steel material according to this embodiment contains the following elements.
  • C 0.15-0.45% Carbon (C) improves the hardenability of steel and increases the strength of fastening members made of steel. If the C content is less than 0.15%, the above effects cannot be sufficiently obtained even if the contents of other elements are within the range of this embodiment. On the other hand, if the C content exceeds 0.45%, the cold forgeability of the steel material will decrease even if the contents of other elements are within the range of this embodiment. Therefore, the C content is 0.15-0.45%.
  • the preferable lower limit of the C content is 0.18%, more preferably 0.20%, and still more preferably 0.22%.
  • a preferable upper limit of the C content is 0.43%, more preferably 0.41%, and still more preferably 0.39%.
  • Si 0.01 ⁇ 1.00%
  • Silicon (Si) increases the strength of fastening members made of steel through solid solution strengthening. If the Si content is less than 0.01%, the above effects cannot be sufficiently obtained even if the contents of other elements are within the range of this embodiment. On the other hand, if the Si content exceeds 1.00%, the cold forgeability of the steel material will decrease even if the contents of other elements are within the range of this embodiment. Therefore, the Si content is 0.01 to 1.00%.
  • the preferable lower limit of the Si content is 0.02%, more preferably 0.03%, and even more preferably 0.05%.
  • the preferable upper limit of the Si content is 0.90%, more preferably 0.80%, even more preferably 0.70%, still more preferably 0.60%, and still more preferably 0.50%. %.
  • Mn 0.01-1.50%
  • Mn Manganese
  • the lower limit of the Mn content is preferably 0.05%, more preferably 0.10%, and even more preferably 0.15%.
  • a preferable upper limit of the Mn content is 1.40%, more preferably 1.30%, and still more preferably 1.20%.
  • P 0.050% or less Phosphorus (P) is an impurity.
  • the lower limit of the P content is over 0%. If the P content exceeds 0.050%, P will segregate at grain boundaries even if the contents of other elements are within the ranges of this embodiment. As a result, the hydrogen embrittlement resistance of the steel material decreases. Therefore, the P content is 0.050% or less. It is preferable that the P content is as low as possible. However, extreme reduction in P content significantly increases manufacturing costs. Therefore, when considering industrial production, the preferable lower limit of the P content is 0.001%, more preferably 0.002%, and still more preferably 0.003%. A preferable upper limit of the P content is 0.040%, more preferably 0.030%, and still more preferably 0.020%.
  • S 0.050% or less Sulfur (S) is an impurity.
  • the lower limit of the S content is over 0%. If the S content exceeds 0.050%, S will segregate at grain boundaries even if the contents of other elements are within the range of this embodiment. As a result, the hydrogen embrittlement resistance of the steel material decreases. Therefore, the S content is 0.050% or less. It is preferable that the S content is as low as possible. However, extreme reduction in S content significantly increases manufacturing costs. Therefore, when considering industrial production, the preferable lower limit of the S content is 0.001%, more preferably 0.002%, and still more preferably 0.003%. A preferable upper limit of the S content is 0.040%, more preferably 0.030%, and still more preferably 0.020%.
  • Al 0.100% or less
  • Aluminum (Al) is unavoidably contained. That is, the Al content is over 0%. Al deoxidizes steel. If the Al content is even small, the above effects can be obtained to some extent. However, if the Al content exceeds 0.100%, coarse Al nitrides will be produced even if the contents of other elements are within the range of this embodiment. Coarse Al nitrides become a starting point for destruction. Therefore, the workability of the steel material decreases. Therefore, the Al content is 0.100% or less.
  • the preferable lower limit of the Al content is 0.001%, more preferably 0.010%, and still more preferably 0.015%.
  • a preferable upper limit of the Al content is 0.090%, more preferably 0.080%, and still more preferably 0.070%.
  • the Al content means the total Al (Total-Al) content.
  • Tin (Sn) increases the corrosion resistance and hydrogen embrittlement resistance of steel materials in corrosive environments. If the Sn content is less than 0.02%, the above effects cannot be sufficiently obtained even if the contents of other elements are within the range of this embodiment. On the other hand, if the Sn content exceeds 0.30%, Sn will segregate at grain boundaries even if the contents of other elements are within the range of this embodiment. In this case, the hot workability of the steel material decreases. Therefore, the Sn content is 0.02-0.30%.
  • the preferable lower limit of the Sn content is 0.03%, more preferably 0.05%, and still more preferably 0.10%.
  • a preferable upper limit of the Sn content is 0.25%, more preferably 0.20%, still more preferably 0.15%, and still more preferably 0.10%.
  • the Cr content is more than 0%. Cr improves the hardenability of steel. Cr reduces the corrosion resistance and hydrogen embrittlement resistance of steel materials in corrosive environments. If the Cr content exceeds 0.20%, the corrosion resistance and hydrogen embrittlement resistance of the steel material will decrease even if the contents of other elements are within the range of this embodiment. Therefore, the Cr content is 0.20% or less. It is preferable that the Cr content is as low as possible. However, extreme reduction in Cr content significantly increases manufacturing costs. Therefore, when considering industrial production, the preferable lower limit of the Cr content is 0.01%, more preferably 0.02%, and still more preferably 0.03%.
  • a preferable upper limit of the Cr content is 0.15%, more preferably 0.10%, and still more preferably 0.07%.
  • the preferred upper limit of the Cr content, which is more effective for further increasing the corrosion resistance and hydrogen embrittlement resistance of steel materials, is less than 0.05%.
  • Cu 0.010-0.500% Copper (Cu) increases the corrosion resistance and hydrogen embrittlement resistance of steel materials in corrosive environments. If the Cu content is less than 0.010%, the above effects cannot be sufficiently obtained even if the contents of other elements are within the range of this embodiment. On the other hand, if the Cu content exceeds 0.500%, the steel material will easily become red-hot embrittled. Furthermore, the corrosion resistance and hydrogen embrittlement resistance of the steel material are rather reduced. Therefore, the Cu content is 0.010 to 0.500%.
  • the preferable lower limit of the Cu content is 0.050%, more preferably 0.100%, even more preferably 0.150%, even more preferably 0.200%, even more preferably 0.250%. %.
  • a preferable upper limit of the Cu content is 0.450%, more preferably 0.400%.
  • Ni 0.01 ⁇ 0.50%
  • Nickel (Ni) improves the hardenability of steel materials and increases the strength of fastening members made of steel materials. Ni further increases the corrosion resistance and hydrogen embrittlement resistance of the steel material. If the Ni content is less than 0.01%, the above effects cannot be sufficiently obtained even if the contents of other elements are within the range of this embodiment. On the other hand, if the Ni content exceeds 0.50%, the corrosion resistance and hydrogen embrittlement resistance of the steel material will deteriorate. Therefore, the Ni content is 0.01 to 0.50%.
  • the preferable lower limit of the Ni content is 0.05%, more preferably 0.10%, even more preferably 0.15%, even more preferably 0.20%, even more preferably 0.25%. %.
  • a preferable upper limit of the Ni content is 0.45%, more preferably 0.40%.
  • Mo 0.01 ⁇ 0.50% Molybdenum (Mo) improves the hardenability of steel and increases the strength of fastening members made of steel. Fastening members for civil engineering and architectural applications may have a diameter exceeding 20 mm. In order to increase the strength of such thick fastening members, it is necessary to improve the hardenability of the steel material from which they are made. Mo tends to improve the hardenability of steel materials. On the other hand, if the Mo content exceeds 0.50%, the corrosion resistance and hydrogen embrittlement resistance of the steel material will decrease even if the contents of other elements are within the range of this embodiment. Therefore, the Mo content is 0.01 to 0.50%.
  • the lower limit of the Mo content is preferably 0.05%, more preferably 0.10%, even more preferably 0.15%, and even more preferably 0.20%.
  • a preferable upper limit of the Mo content is 0.45%, more preferably 0.40%, and still more preferably 0.35%.
  • Ti 0.001-0.100% Titanium (Ti) combines with N to form Ti nitride, increasing the strength of fastening members made of steel. If the Ti content is less than 0.001%, the above effects cannot be sufficiently obtained. On the other hand, if the Ti content exceeds 0.100%, an excessive amount of Ti precipitates such as carbides and carbonitrides will be generated even if the contents of other elements are within the ranges of this embodiment. In this case, the corrosion resistance and hydrogen embrittlement resistance of the steel material decrease. Therefore, the Ti content is 0.001 to 0.100%.
  • the lower limit of the Ti content is preferably 0.005%, more preferably 0.010%, even more preferably 0.015%, and even more preferably 0.018%.
  • a preferable upper limit of the Ti content is 0.080%, more preferably 0.060%, still more preferably 0.040%, and still more preferably 0.030%.
  • the total content of one or more selected from the group consisting of Co, Sb, Ge, and In is 0.0065% or more, the corrosion resistance and hydrogen embrittlement resistance of the steel material will deteriorate on the contrary. Therefore, the total content of one or more selected from the group consisting of Co, Sb, Ge, and In is 0.0013 to less than 0.0065%.
  • a preferable lower limit of the total content of one or more selected from the group consisting of Co, Sb, Ge, and In is 0.0015%, more preferably 0.0017%, and even more preferably 0.0020%. 0.0022%, more preferably 0.0022%.
  • a preferable upper limit of the total content of one or more selected from the group consisting of Co, Sb, Ge, and In is 0.0063%, more preferably 0.0061%, and still more preferably 0.0059%. 0.0057%, more preferably 0.0057%.
  • N 0.010% or less Nitrogen (N) is unavoidably contained. That is, the N content is more than 0%. N combines with Al or Ti to form nitride or carbonitride. These nitrides and carbonitrides suppress coarsening of crystal grains due to their pinning effect. As a result, the cold forgeability of the steel material is improved. However, if the N content exceeds 0.010%, coarse nitrides will be produced even if the contents of other elements are within the range of this embodiment. Coarse nitrides become a starting point for fracture and reduce the cold forgeability of steel materials. Furthermore, the bolt's resistance to hydrogen embrittlement is reduced. Therefore, the N content is 0.010% or less.
  • the preferable lower limit of the N content is 0.001%, more preferably 0.002%, and still more preferably 0.003%.
  • a preferable upper limit of the N content is 0.009%, more preferably 0.008%, still more preferably 0.007%, and still more preferably 0.006%.
  • Oxygen (O) is an impurity that is inevitably contained. In other words, the O content is more than 0%. O forms oxides in steel materials. If the O content exceeds 0.015%, even if the contents of other elements are within the ranges of this embodiment, coarse oxides will reduce the hydrogen embrittlement resistance of the bolt. Therefore, the O content is 0.015% or less.
  • the preferable lower limit of the O content is 0.001%, more preferably 0.002%, still more preferably 0.003%, and still more preferably 0.004%.
  • a preferable upper limit of the O content is 0.013%, more preferably 0.011%, and still more preferably 0.009%.
  • the remainder of the chemical composition of the steel material according to this embodiment consists of Fe and impurities.
  • impurities in the chemical composition are those that are mixed in from ores used as raw materials, scrap, or the manufacturing environment when steel products are manufactured industrially, and do not have a negative effect on the steel products according to this embodiment. means permissible within range.
  • the steel material of this embodiment may further contain one or more elements selected from the following element groups in place of a part of Fe.
  • W 0-0.50%
  • B 0 to 0.0050%
  • Nb 0 to 0.300%
  • Ca 0-0.0050%
  • Mg 0 to 0.0050%
  • Rare earth elements 0 to 0.0200%.
  • W 0-0.50% Tungsten (W) is an optional element and may not be included. That is, the W content may be 0%.
  • W like Co, Sb, Ge, and In, suppresses dissolution of Fe in the steel material in a corrosive environment containing chloride ions. This increases the corrosion resistance and hydrogen embrittlement resistance of the steel material. If even a small amount of W is contained, the above effects can be obtained to some extent. However, if the W content exceeds 0.50%, even if the contents of other elements are within the ranges of this embodiment, the corrosion resistance and hydrogen embrittlement resistance of the steel material will deteriorate. Therefore, the W content is 0 to 0.50%.
  • the preferable lower limit of the W content is 0.01%, more preferably 0.03%, and still more preferably 0.05%.
  • the upper limit of the W content is preferably 0.40%, more preferably 0.35%, even more preferably 0.30%, and still more preferably 0.25%.
  • B 0-0.0050% Boron (B) is an optional element and may not be included. That is, the B content may be 0%.
  • B increases the hardenability of the steel material and increases the strength of the fastening member made of the steel material.
  • the Cr content is suppressed in order to suppress hydrogen from entering the steel material in a corrosive environment. Together with Mo, B improves the hardenability of steel materials as a substitute for Cr, thereby increasing the strength of fastening members made of steel materials. If even a small amount of B is contained, the above effects can be obtained to some extent.
  • the B content is 0 to 0.0050%.
  • the lower limit of the B content is preferably 0.0001%, more preferably 0.0005%, and even more preferably 0.0007%.
  • a preferable upper limit of the B content is 0.0045%, more preferably 0.0040%, still more preferably 0.0030%, and still more preferably 0.0025%.
  • Niobium (Nb) is an optional element and may not be included. That is, the Nb content may be 0%. When contained, Nb forms Nb precipitates such as carbides and carbonitrides. Nb precipitates increase the strength of fastening members made of steel. If the Nb content is even small, the above effects can be obtained to some extent. However, if the Nb content exceeds 0.300%, a large amount of Nb precipitates will be generated even if the content of other elements is within the range of this embodiment. In this case, the amount of hydrogen penetrating into the steel material increases. As a result, the corrosion resistance and hydrogen embrittlement resistance of the steel material decrease. Therefore, the Nb content is 0-0.300%.
  • the lower limit of the Nb content is preferably 0.001%, more preferably 0.003%, even more preferably 0.005%, even more preferably 0.010%, and even more preferably 0.020%. %.
  • a preferable upper limit of the Nb content is 0.250%, more preferably 0.200%, and still more preferably 0.150%.
  • Ca 0-0.0050% Calcium (Ca) is an optional element and may not be included. That is, the Ca content may be 0%. When Ca is contained, that is, when Ca is more than 0%, Ca makes MnS fine. Therefore, the corrosion resistance and hydrogen embrittlement resistance of the steel material increases. If even a small amount of Ca is contained, the above effects can be obtained to some extent. However, if the Ca content exceeds 0.0050%, coarse Ca oxides will be produced even if the contents of other elements are within the range of this embodiment. In this case, the corrosion resistance and hydrogen embrittlement resistance of the steel material decrease. Therefore, the Ca content is 0 to 0.0050%.
  • the lower limit of the Ca content is preferably 0.0001%, more preferably 0.0002%, and still more preferably 0.0005%.
  • a preferable public limit of the Ca content is 0.0040%, more preferably 0.0030%.
  • Mg 0-0.0050%
  • Mg Magnesium
  • Mg is an optional element and may not be included. That is, the Mg content may be 0%.
  • Mg refines MnS. Therefore, the corrosion resistance and hydrogen embrittlement resistance of the steel material increases. If even a small amount of Mg is contained, the above effects can be obtained to some extent. However, if the Mg content exceeds 0.0050%, coarse Mg oxides will be produced even if the contents of other elements are within the range of this embodiment. In this case, the corrosion resistance and hydrogen embrittlement resistance of the steel material decrease. Therefore, the Mg content is between 0 and 0.0050%.
  • the preferable lower limit of the Mg content is 0.0001%, more preferably 0.0002%, and still more preferably 0.0005%.
  • a preferable upper limit of the Mg content is 0.0040%, more preferably 0.0030%.
  • Rare earth elements are optional elements and may not be included. That is, the REM content may be 0%. When REM is contained, that is, when REM is more than 0%, REM refines MnS. Therefore, the corrosion resistance and hydrogen embrittlement resistance of the steel material increases. If even a small amount of REM is contained, the above effects can be obtained to some extent. However, if the REM content exceeds 0.0200%, coarse oxides will be produced even if the contents of other elements are within the range of this embodiment. In this case, the corrosion resistance and hydrogen embrittlement resistance of the steel material decrease. Therefore, the REM content is between 0 and 0.0200%.
  • the lower limit of the REM content is preferably 0.0001%, more preferably 0.0005%, even more preferably 0.0010%, even more preferably 0.0020%, and even more preferably 0.0050%. %.
  • a preferable upper limit of the REM content is 0.0150%, more preferably 0.0100%.
  • REM refers to scandium (Sc) with an atomic number of 21, yttrium (Y) with an atomic number of 39, and lanthanoids such as lanthanum (La) with an atomic number of 57 to lutetium (with an atomic number of 71).
  • Sc scandium
  • Y yttrium
  • La lanthanum
  • the REM content in this specification is the total content of these elements.
  • the chemical composition of the steel material of this embodiment can be measured by a well-known component analysis method based on JIS G0321:2017. Specifically, chips are collected from the inside of the steel material at a depth of 1 mm or more from the surface using a drill. The collected chips are dissolved in acid to obtain a solution. ICP-AES (Inductively Coupled Plasma Atomic Emission Spectrometry) is performed on the solution to perform elemental analysis of the chemical composition. The C content and S content are determined by the well-known high frequency combustion method (combustion-infrared absorption method). The N content and O content are determined using the well-known inert gas melting-thermal conductivity method.
  • ICP-AES Inductively Coupled Plasma Atomic Emission Spectrometry
  • the content of each element is determined by rounding off the fraction of the measured value based on the significant figures specified in this embodiment, and calculates the value to the smallest digit of the content of each element specified in this embodiment. do.
  • the C content of the steel material of this embodiment is defined as a value to the second decimal place. Therefore, the C content is a value obtained by rounding off the measured value to the second decimal place.
  • the content of other elements other than C content in the steel material of this embodiment is a value obtained by rounding off the measured value to the smallest digit specified in this embodiment. Let be the content of the element.
  • rounding means rounding down if the fraction is less than 5, and rounding up if the fraction is 5 or more.
  • the chemical composition of the steel material of this embodiment further satisfies formula (1) on the premise that the content of each element is within the range of this embodiment.
  • the content in mass % of the corresponding element is substituted for the element symbol in formula (1)
  • Tx is one or more types selected from the group consisting of Co, Sb, Ge, and In.
  • the total content in mass % is substituted.
  • LN in formula (1) means natural logarithm.
  • the natural logarithm is a logarithm whose base is Napier's number e.
  • F1 10 ⁇ LN(Cu+0.5 ⁇ Sn+2000 ⁇ Tx)+100 ⁇ (0.5 ⁇ Ni+Mo) 3 ⁇ 100 ⁇ (0.5 ⁇ Ni+Mo) 2 +30 ⁇ (0.5 ⁇ Ni+Mo)+10.
  • F1 is an index of corrosion resistance and hydrogen embrittlement resistance of steel materials.
  • Ni and Mo have a synergistic effect with Sn in the chemical composition that satisfies feature 1, and can increase or decrease corrosion resistance and hydrogen embrittlement resistance depending on their content. or Specifically, in a chemical composition that satisfies characteristic 1, corrosion resistance and hydrogen embrittlement resistance increase when the content of Ni and Mo is in a certain range, but conversely, corrosion resistance and hydrogen embrittlement resistance decrease in a different range.
  • the level of corrosion resistance and hydrogen embrittlement resistance due to Ni and Mo is considered to be influenced by the synergistic effect of Ni and Mo with Sn.
  • F1 is higher than 23 and less than 39.
  • the lower limit of F1 is preferably 24, more preferably 25, and still more preferably 26.
  • the upper limit of F1 is preferably 38, more preferably 36, and still more preferably 34.
  • the F1 value shall be an integer. That is, the F1 value is a value obtained by rounding off the obtained value to the first decimal place.
  • the microstructure of the steel material of this embodiment is not particularly limited.
  • the steel material of this embodiment is used as a fastening member, if the hardness of the steel material is too high, annealing treatment is performed. The cold forgeability of annealed steel increases. Therefore, it is possible to manufacture a fastening member by performing cold forging using the steel material of this embodiment as a raw material. Therefore, the microstructure of the steel material of this embodiment is not particularly limited.
  • the area ratio of pearlite in the microstructure at a depth of D/4 in the radial direction from the surface of the steel material is 10% or less.
  • the portion other than pearlite is made of one or more selected from the group consisting of polygonal ferrite, bainitic ferrite, acicular ferrite, and martensite. Note that in this specification, pearlite includes pseudo pearlite.
  • FIG. 1 shows an example of a photographic image of the microstructure of the steel material of this embodiment at a depth of D/4. The portion with low brightness in FIG.
  • the portion other than pearlite is made of one or more selected from the group consisting of polygonal ferrite, bainitic ferrite, acicular ferrite, and martensite.
  • the microstructure of the steel material of this embodiment is not limited to the above-mentioned microstructure.
  • the microstructure of steel can be observed using the following method.
  • a surface including a position at a depth of D/4 in the radial direction from the surface of the steel material is defined as an observation surface.
  • D means the diameter of the steel material.
  • Etching is performed on the mirror-polished observation surface using 3% nitric alcohol (nital etching solution).
  • An arbitrary observation field (0.5 mm x 0.5 mm) of the etched observation surface is observed with a 500x optical microscope. Identify each tissue in the observation field and calculate the area ratio (%).
  • the steel material of this embodiment is applicable as a material for fastening members of industrial machines, automobiles, bridges, buildings, etc.
  • the fastening members include bolts, nuts, and washers.
  • the shape of the steel material of this embodiment is not particularly limited.
  • the shape of the steel material may be a steel bar or wire rod, or may be a steel plate.
  • An example of the method for manufacturing steel materials of this embodiment includes the following steps.
  • Process of preparing materials material preparation process
  • Process 2 Process of manufacturing steel products by hot processing materials (hot processing process)
  • a material for the steel material of this embodiment is prepared. Specifically, molten steel whose chemical composition contains each element within the range of this embodiment is manufactured.
  • the refining method is not particularly limited, and any known method may be used.
  • molten metal produced by a well-known method is subjected to refining (primary refining) in a converter.
  • Well-known secondary refining is performed on the molten steel tapped from the converter. In the secondary refining, the content of alloying elements in the molten steel is adjusted to produce molten steel having a chemical composition in which the content of each element is within the range of this embodiment.
  • a material is produced by a well-known casting method.
  • an ingot may be manufactured by an ingot-forming method using molten steel.
  • blooms or billets may be manufactured by continuous casting using molten steel.
  • a material (ingot, bloom, or billet) is manufactured by the above method.
  • Step 2 Hot processing step hot working is performed on the material (ingot, bloom, or billet) prepared in the material preparation step to manufacture the steel material of this embodiment.
  • the shape of the steel material is not particularly limited, it is, for example, a steel bar or a wire rod.
  • the steel material is a steel bar or a wire rod will be described as an example.
  • the steel material is a steel plate, it can be manufactured using the same hot working process.
  • the hot working process includes the following steps.
  • the main conditions in each step are as follows.
  • (Step 21) Blooming rolling step (Step 22) Finish rolling step (Step 23) Cooling step Each step will be explained below.
  • a billet is manufactured by hot rolling a material.
  • a billet is manufactured by hot rolling (blending) the material using a blooming mill.
  • a continuous rolling mill is installed downstream of the blooming mill, the billet after blooming is further hot-rolled using the continuous mill to produce a billet with a smaller size. It's okay.
  • horizontal stands having a pair of horizontal rolls and vertical stands having a pair of vertical rolls are alternately arranged in a line.
  • a material is manufactured into a billet using a blooming mill or a blooming mill and a continuous rolling mill.
  • the heating temperature in the blooming process may be within a known temperature range.
  • the heating temperature is, for example, 1100 to 1300°C.
  • the billet produced by the blooming process is allowed to cool (air cool) to room temperature before the finish rolling process.
  • Step 22 Finish rolling step
  • the billet which has been cooled to room temperature, is heated using a heating furnace.
  • the heated billet is hot rolled using a continuous rolling mill to produce a steel bar or wire rod.
  • the heating temperature in the heating furnace in the finish rolling process may be within a known range.
  • the heating temperature is, for example, 900 to 1050°C.
  • hot rolling is performed using a continuous rolling mill equipped with a plurality of rolling stands arranged in a row.
  • the finishing temperature (°C).
  • the finishing temperature may be within a known range.
  • the finishing temperature is, for example, less than 800-900°C.
  • Step 23 Cooling step
  • the steel material after the finish rolling process is cooled.
  • the arithmetic mean value (°C/sec) of the cooling rate at the finishing temperature FT to 300°C is defined as the average cooling rate.
  • the average cooling rate may be within a known range.
  • the average cooling rate CR1 is, for example, 0.6 to 1.8°C/sec.
  • a finish rolling step may be performed without implementing the blooming rolling step.
  • the blooming process is an arbitrary process. For example, when a billet is prepared in the material preparation process, the blooming process may be omitted and the finish rolling process may be performed.
  • the fastening member of this embodiment is made of the steel material of this embodiment described above. In other words, the fastening member of this embodiment satisfies Feature 1 and Feature 2. As mentioned above, the fastening members are, for example, bolts, nuts, washers, and the like.
  • the method of manufacturing the fastening member made of steel according to this embodiment is a well-known manufacturing method.
  • the method for manufacturing a fastening member includes the following steps. (Step 31) Wire drawing process (Step 32) Cold forging process (Step 33) Quenching and tempering process Each process will be explained below.
  • Step 31 Wire drawing process
  • the wire drawing process a well-known wire drawing process is performed on the above-mentioned steel material to produce a steel wire.
  • the wire drawing process may be only a primary wire drawing process, or may be performed multiple times, such as a secondary wire drawing process.
  • Step 32 Cold forging process
  • the steel wire after the wire drawing process is subjected to well-known cold forging to produce an intermediate product having the shape of a fastening member.
  • Step 33 Quenching and tempering step
  • the intermediate product is quenched and tempered.
  • the quenching temperature and the holding time at the quenching temperature may be within known ranges.
  • the quenching temperature is, for example, 840 to 970°C.
  • the holding time at the quenching temperature is, for example, 15 minutes to 360 minutes (6 hours).
  • the intermediate product is rapidly cooled. Specifically, the intermediate product is water-cooled or oil-cooled.
  • Tempering is performed on the intermediate product after quenching.
  • the tempering temperature and the holding time at the tempering temperature may be within known ranges.
  • the tempering temperature is, for example, 400 to 550°C.
  • the holding time at the tempering temperature is 0.5 to 6.0 hours.
  • a fastening member made of the steel material of this embodiment can be manufactured.
  • the manufactured fastening member has sufficient corrosion resistance and sufficient hydrogen embrittlement resistance in a corrosive environment containing chloride ions.
  • the produced material was subjected to a blooming rolling process to produce a billet.
  • the material was heated to 1100 to 1300°C and then hot rolled using a blooming mill and a continuous rolling mill.
  • the billet produced by the blooming process was allowed to cool to room temperature.
  • a finish rolling process was performed on the manufactured billet.
  • the billet was heated at 900 to 1050°C.
  • the heated billet was hot rolled using a continuous rolling mill to produce a steel material (steel bar) with a diameter of 22 mm.
  • the finishing temperature during hot rolling was 800 to less than 900°C. Cooling was performed on the steel material (steel bar) after hot rolling. At this time, the average cooling rate from the finishing temperature to 300°C was 0.6 to 1.8°C/sec.
  • Test 4 The following steel evaluation tests (Test 1 to Test 4) were conducted on the manufactured steel materials with each test number. (Test 1) Steel chemical composition measurement test (Test 2) Hot workability evaluation test (Test 3) Corrosion resistance evaluation test (Test 4) Hydrogen embrittlement resistance evaluation test Each test will be explained below.
  • the corrosion resistance of the steel materials of each test number was evaluated by the following test.
  • steel plates of each test number were manufactured using the following method instead of using steel bars as the material. Specifically, a finish rolling process and a cooling process were performed on the materials having the chemical compositions shown in Tables 1-1 and 1-2 to produce steel plates having a thickness of 6 mm and each test number.
  • the steel plate temperature at the start of finish rolling was 900 to 1050°C.
  • the finishing temperature was below 800-900°C.
  • the average cooling rate from finishing temperature to 300°C was 0.6-1.8°C/sec.
  • Hardening and tempering were performed on the steel plate, simulating the manufacturing process of bolts. Hardening was performed using a heat treatment furnace. The quenching temperature was 880°C, and the holding time at the quenching temperature was 60 minutes. After the holding time had elapsed, the steel plate was immersed in oil at 60°C to perform quenching. The inside of the heat treatment furnace was filled with Ar gas to suppress decarburization of the steel sheet. Tempering was performed after the hardening process. Tempering was performed using a heat treatment furnace. The tempering temperature was 450°C, and the holding time at the tempering temperature was 90 minutes.
  • a plate-shaped test piece measuring 100 mm x 60 mm x 3 mm in thickness was taken from the steel plate that had been quenched and tempered. Shot blasting was performed on the surface of the sampled plate-shaped test piece, and the ten-point average roughness Rzjis based on JIS B0601:2001 was adjusted to 75 ⁇ m on the surface of the plate-shaped test piece.
  • the surface of the plate-shaped test piece after shot blasting was coated with a 120 ⁇ m thick undercoat (trade name: Neo Gosei #2300PS, manufactured by Shinto Paint Co., Ltd.) and a 30 ⁇ m thick intermediate coat (trade name: Shinto Paint Co., Ltd.).
  • a coating film was formed consisting of a 25 ⁇ m thick topcoat (trade name: Syntoflon #100, manufactured by Shinto Paint Co., Ltd.).
  • a cutter was used to form coating film defects that reached the base (steel plate).
  • the total length of the coating film defect was 500 mm.
  • a corrosion test based on the American standard SAE J2334 was conducted using a dry-wet cycle tester capable of immersion in salt water using a plate-shaped test piece having a coating film defect. Specifically, a test was conducted in which one cycle consisted of the following three steps (24 hours in total).
  • Step 1 Wetting process
  • the plate-shaped test piece is held in an environment of 50° C. and 100% RH for 6 hours.
  • Step 2 Salt water immersion process
  • the plate specimen after step 1 is immersed for 15 minutes in an aqueous solution containing 0.5% NaCl, 0.1% CaCl 2 and 0.075% NaHCO 3 at pH 8.
  • Step 3 Drying process
  • the plate-shaped test piece after step 2 is held in an environment of 60° C. and relative humidity of 50% RH for 17.75 hours. Dry the plate-shaped specimen after holding.
  • the part of the coating film that had peeled off from the surface of the test piece (hereinafter referred to as the peeled part of the coating film) starting from the coating film defect was removed using a cutter. After removing the peeled part of the paint film, an image of the paint film of the plate-shaped test piece in plan view was generated. By image processing, on the surface of the plate-shaped test piece, a region where the paint film remained and a region where the steel plate was exposed (paint film peeled part) were distinguished. Then, the total area of the peeled part of the paint film (peeled area) was determined.
  • the peeled area ratio (%) of the paint film was determined based on the total area of the peeled part of the paint film and the area of the surface of the plate-shaped test piece on which the paint film was formed. The obtained peeled area ratio is shown in the "peeled area ratio (%)" column of Table 2.
  • the amount of penetrating hydrogen in the steel materials of each test number subjected to the above quenching and tempering treatments was measured by the following method (invading hydrogen amount investigation test).
  • a test piece was taken from the center of a cross section perpendicular to the axial direction of a steel material (steel bar).
  • the test piece was a round bar test piece with a diameter of 7 mm and a length of 100 mm.
  • the central axis of the test piece was coaxial with the steel material.
  • Two test pieces were prepared for each test number.
  • a corrosion test was conducted in accordance with the American standard SAE J2334, and the amount of hydrogen penetrating each specimen after the corrosion test was measured.
  • Steps 1 to 3 of Test 3 were taken as one cycle, and the amount of hydrogen penetrating was measured for the test piece after the 56-cycle test.
  • the test piece after the corrosion test was immersed in liquid nitrogen until just before the amount of hydrogen that had entered was measured.
  • the corrosion products adhering to the surface of the test piece were completely removed using sandblasting.
  • the amount of penetrating hydrogen was measured using a temperature programmed desorption analyzer for the test piece from which corrosion products had been removed. Specifically, the amount of diffusible hydrogen detected by a desorption reaction from room temperature to 200° C.
  • the arithmetic mean value of the amount of penetrating hydrogen of the two obtained test pieces was defined as the amount of penetrating hydrogen He (ppm) of the steel material of that test number.
  • test piece was taken from the center position of the cross section perpendicular to the axial direction of the steel material (steel bar) that had been quenched and tempered as described above.
  • the test piece was a round bar test piece with an annular notch having a diameter of 7 mm and a length of 70 mm.
  • An annular notch was formed at the longitudinal center of the test piece.
  • the depth of the notch was 1.4 mm, the notch angle was 60°, and the radius of curvature of the notch bottom was 0.175 mm.
  • Round bar specimens with annular notches charged with hydrogen at various current densities were plated to prevent hydrogen from desorbing.
  • the round bar test piece with an annular notch was left at room temperature for 8 hours or more. Thereafter, a tensile test was performed at a speed of 0.005 mm/min to break the round bar test piece with an annular notch. After the fracture, the amount of hydrogen (ppm) intruding into the round bar test piece with an annular notch was measured using a temperature programmed desorption analyzer.
  • the breaking load ⁇ 2He when charged with hydrogen was divided by the breaking load ( ⁇ 0 ) when not charged with hydrogen to obtain the breaking load ratio ( ⁇ 2He / ⁇ 0 ).
  • Hydrogen embrittlement resistance was evaluated based on the breaking load ratio ( ⁇ 2He / ⁇ 0 ). The evaluation results are shown in the "Hydrogen embrittlement resistance” column in Table 2. If the breaking load ratio was 0.8 or more, it was judged that the hydrogen embrittlement resistance was excellent (indicated by "E” in Table 2). If the breaking load ratio was less than 0.8, it was determined that the hydrogen embrittlement resistance was low (indicated by "B” in Table 2).
  • test results The evaluation results are shown in Table 2.
  • the chemical composition was appropriate and F1 satisfied formula (1). Therefore, the peeling area ratio was 40% or less, and sufficient corrosion resistance was obtained. Furthermore, sufficient hydrogen embrittlement resistance was obtained.
  • the microstructures of these test numbers all have a pearlite area ratio of 10% or less, and the parts other than pearlite are made from the group consisting of polygonal ferrite, bainitic ferrite, acicular ferrite, and martensite. The tissue consisted of one or more selected types. Therefore, all of these test numbers had excellent hot workability.
  • test number 27 the Sn content was low. Therefore, the peeling area ratio exceeded 40%, and the corrosion resistance was low. Furthermore, sufficient hydrogen embrittlement resistance could not be obtained.
  • test number 28 the Sn content was high. Therefore, hot workability was low.
  • test number 32 the total content Tx of Co, Sb, Ge, and In was too high.
  • the peeling area ratio exceeded 40%, and the corrosion resistance was low. Furthermore, sufficient hydrogen embrittlement resistance could not be obtained.
  • test numbers 33 and 34 the total content Tx of Co, Sb, Ge, and In was too low. Therefore, the peeled area ratio exceeded 40% and the corrosion resistance was low. Furthermore, sufficient hydrogen embrittlement resistance could not be obtained.
  • test number 35 the Ni content was too high. Therefore, the peeling area ratio exceeded 40%, and the corrosion resistance was low. Furthermore, sufficient hydrogen embrittlement resistance could not be obtained.
  • test number 37 the W content was too high. Therefore, the peeling area ratio exceeded 40%, and the corrosion resistance was low. Furthermore, the hydrogen embrittlement resistance also decreased.
  • test numbers 38 and 39 F1 exceeded the upper limit of formula (1). Therefore, the peeling area ratio exceeded 40%, and the corrosion resistance was low. Furthermore, the hydrogen embrittlement resistance also decreased.
  • test numbers 40 and 41 F1 was less than the lower limit of formula (1). Therefore, the peeling area ratio exceeded 40%, and the corrosion resistance was low.

Abstract

Provided is a steel material having excellent corrosion resistance and hydrogen embrittlement resistance. A steel material according to the present disclosure comprises: 0.15-0.45 mass% of C; 0.01-1.00 mass% of Si; 0.01-1.50 mass% of Mn: at most 0.050 mass% of P; at most 0.050 mass% of S; at most 0.100% of Al; 0.02-0.30 mass% of Sn; at most 0.20 mass% of Cr; 0.010-0.500 mass% of Cu; 0.01-0.50 mass% of Ni; 0.01-0.50 mass% of Mo; 0.0001-0.100 mass% of Ti; a total of 0.0013-0.0065 mass% (exclusive of 0.0065) of at least one selected from the group consisting of Co, Sb, Ge and In; at most 0.010 mass% of N; and at most 0.015 mass% of O, with the balance consisting of Fe and impurities, and satisfies expression (1). (1) 23<10×LN(Cu+0.5×Sn+2,000×Tx)+100×(0.5×Ni+Mo)3-100×(0.5×Ni+Mo)2+30×(0.5×Ni+Mo)+10<39

Description

締結部材の素材として用いられる鋼材、及び、締結部材Steel materials used as materials for fastening members and fastening members
 本開示は、鋼材及び締結部材に関し、さらに詳しくは、ボルト、ナット又は座金等の締結部材の素材として用いられる鋼材、及び、その鋼材で構成される締結部材に関する。 The present disclosure relates to steel materials and fastening members, and more particularly to steel materials used as materials for fastening members such as bolts, nuts, washers, etc., and fastening members made of the steel materials.
 ボルト、ナット、又は座金等の締結部材は、産業機械、自動車、橋梁及び建築物等の締結に用いられる。これらの用途のうち、橋梁や建築物等は、海浜地域に建てられる場合がある。海浜地域は塩化物イオンの多い腐食環境である。そのため、上述の締結部材に塗装を施していても、塗装が剥離して腐食が進行する場合がある。したがって、上述の塩化物イオンを含む腐食環境で用いられる締結部材では、優れた耐食性が求められる。 Fastening members such as bolts, nuts, or washers are used for fastening industrial machinery, automobiles, bridges, buildings, etc. Among these uses, bridges and buildings may be built in coastal areas. Beach areas are corrosive environments with a lot of chloride ions. Therefore, even if the above-mentioned fastening member is painted, the paint may peel off and corrosion may progress. Therefore, fastening members used in corrosive environments containing chloride ions are required to have excellent corrosion resistance.
 さらに、塩化物イオンを含む腐食環境では、水素脆化が起こりやすい。したがって、塩化物イオンを含む腐食環境で用いられる締結部材では、優れた耐食性だけでなく、優れた耐水素脆性も求められる。 Furthermore, hydrogen embrittlement is likely to occur in a corrosive environment containing chloride ions. Therefore, fastening members used in corrosive environments containing chloride ions are required to have not only excellent corrosion resistance but also excellent hydrogen embrittlement resistance.
 耐食性の向上に関する技術が、特開2020-180325号公報(特許文献1)及び特開2017-226878号公報(特許文献2)に提案されている。 Technologies related to improving corrosion resistance are proposed in JP-A No. 2020-180325 (Patent Document 1) and JP-A No. 2017-226878 (Patent Document 2).
 特許文献1に開示された鋼材は、質量%で、C:0.15%以上0.25%以下、Si:0.05%以上0.30%以下、Mn:0.50%以上1.80%以下、P:0.002%以上0.030%以下、S:0.0005%以上0.0200%以下、Al:0.010%以上0.065%以下、Cu:0.01%以上0.48%以下、Nb:0.005%以上0.030%以下、Sn:0.005%以上0.200%以下、Ti:0.005%以上0.200%以下、B:0.0001%以上0.0050%以下、N:0.0020%以上0.0100%以下、及び、O:0.0025%以下を含有し、残部が鉄及び不可避的不純物の成分組成を有する。この文献では、Cu、Nb及びSnを含有することにより、腐食環境での鋼材の耐食性が高まる、と記載されている。 The steel material disclosed in Patent Document 1 has C: 0.15% or more and 0.25% or less, Si: 0.05% or more and 0.30% or less, and Mn: 0.50% or more and 1.80% by mass. % or less, P: 0.002% or more and 0.030% or less, S: 0.0005% or more and 0.0200% or less, Al: 0.010% or more and 0.065% or less, Cu: 0.01% or more and 0. .48% or less, Nb: 0.005% or more and 0.030% or less, Sn: 0.005% or more and 0.200% or less, Ti: 0.005% or more and 0.200% or less, B: 0.0001% N: 0.0020% or more and 0.0100% or less, O: 0.0025% or less, and the remainder has a component composition of iron and inevitable impurities. This document states that containing Cu, Nb, and Sn increases the corrosion resistance of steel in a corrosive environment.
 特許文献2に開示された鋼材は、質量%で、C:0.15%以上0.30%未満、Si:0.05%以上1.00%以下、Mn:0.20%以上2.00%以下、P:0.001%以上0.030%以下、S:0.0001%以上0.0100%以下、Al:0.010%以上0.100%以下、Cu:0.010%以上1.000%以下、Nb:0.005%以上0.200%以下、Sn:0.005%以上0.200%以下およびN:0.0010%以上0.0100%以下を含有し、残部が鉄および不可避的不純物の成分組成を有する。この文献では、Cu、Nb、Sn及びNiを含有することにより、腐食環境での鋼材の耐食性が高まる、と記載されている。 The steel material disclosed in Patent Document 2 has C: 0.15% or more and less than 0.30%, Si: 0.05% or more and 1.00% or less, and Mn: 0.20% or more and 2.00% by mass. % or less, P: 0.001% or more and 0.030% or less, S: 0.0001% or more and 0.0100% or less, Al: 0.010% or more and 0.100% or less, Cu: 0.010% or more1 .000% or less, Nb: 0.005% or more and 0.200% or less, Sn: 0.005% or more and 0.200% or less, and N: 0.0010% or more and 0.0100% or less, with the balance being iron. and has a component composition of unavoidable impurities. This document states that containing Cu, Nb, Sn, and Ni increases the corrosion resistance of the steel material in a corrosive environment.
特開2020-180325号公報Japanese Patent Application Publication No. 2020-180325 特開2017-226878号公報JP2017-226878A
 しかしながら、特許文献1及び特許文献2に開示される鋼材とは異なる手段により、耐食性及び耐水素脆性を高めてもよい。 However, the corrosion resistance and hydrogen embrittlement resistance may be increased by means different from those for the steel materials disclosed in Patent Documents 1 and 2.
 本開示の目的は、優れた耐食性及び優れた耐水素脆性を有する鋼材及び締結部材を提供することである。 An object of the present disclosure is to provide a steel material and a fastening member that have excellent corrosion resistance and excellent hydrogen embrittlement resistance.
 本開示による鋼材は、次の構成を有する。 The steel material according to the present disclosure has the following configuration.
 質量%で、
 C:0.15~0.45%、
 Si:0.01~1.00%、
 Mn:0.01~1.50%、
 P:0.050%以下、
 S:0.050%以下、
 Al:0.100%以下、
 Sn:0.02~0.30%、
 Cr:0.20%以下、
 Cu:0.010~0.500%、
 Ni:0.01~0.50%、
 Mo:0.01~0.50%、
 Ti:0.001~0.100%、
 Co、Sb、Ge及びInからなる群から選択される1種以上:合計で0.0013~0.0065%未満、
 N:0.010%以下、
 O:0.015%以下、
 W:0~0.50%、
 B:0~0.0050%、
 Nb:0~0.300%、
 Ca:0~0.0050%、
 Mg:0~0.0050%、
 希土類元素:0~0.0200%、及び、
 残部:Fe及び不純物、
 からなり、式(1)を満たす、
 鋼材。
 23<10×LN(Cu+0.5×Sn+2000×Tx)+100×(0.5×Ni+Mo)-100×(0.5×Ni+Mo)+30×(0.5×Ni+Mo)+10<39 (1)
 ここで、式(1)中の元素記号には、対応する元素の質量%での含有量が代入され、Txには、Co、Sb、Ge及びInからなる群から選択される1種以上の質量%での合計含有量が代入される。式(1)中のLNは自然対数を意味する。
In mass%,
C: 0.15-0.45%,
Si: 0.01-1.00%,
Mn: 0.01 to 1.50%,
P: 0.050% or less,
S: 0.050% or less,
Al: 0.100% or less,
Sn: 0.02-0.30%,
Cr: 0.20% or less,
Cu: 0.010-0.500%,
Ni: 0.01-0.50%,
Mo: 0.01-0.50%,
Ti: 0.001 to 0.100%,
One or more selected from the group consisting of Co, Sb, Ge, and In: 0.0013 to less than 0.0065% in total,
N: 0.010% or less,
O: 0.015% or less,
W: 0-0.50%,
B: 0 to 0.0050%,
Nb: 0 to 0.300%,
Ca: 0-0.0050%,
Mg: 0 to 0.0050%,
Rare earth elements: 0 to 0.0200%, and
The remainder: Fe and impurities,
and satisfies formula (1),
Steel material.
23<10×LN(Cu+0.5×Sn+2000×Tx)+100×(0.5×Ni+Mo) 3 -100×(0.5×Ni+Mo) 2 +30×(0.5×Ni+Mo)+10<39 (1)
Here, the content in mass % of the corresponding element is substituted for the element symbol in formula (1), and Tx is one or more types selected from the group consisting of Co, Sb, Ge, and In. The total content in mass % is substituted. LN in formula (1) means natural logarithm.
 本開示による締結部材は、上述の鋼材で構成される。 The fastening member according to the present disclosure is made of the above-mentioned steel material.
 本開示による鋼材及び締結部材は、優れた耐食性及び優れた耐水素脆性を有する。 The steel material and fastening member according to the present disclosure have excellent corrosion resistance and excellent hydrogen embrittlement resistance.
図1は、本実施形態の鋼材のミクロ組織の写真画像の一例である。FIG. 1 is an example of a photographic image of the microstructure of the steel material of this embodiment. 図2は、水素チャージ下でのSSRT試験により得られた侵入水素量と破断荷重との関係を示すグラフの一例の模式図である。FIG. 2 is a schematic diagram of an example of a graph showing the relationship between the amount of penetrating hydrogen and the breaking load obtained by the SSRT test under hydrogen charging.
 本発明者らは、優れた耐食性及び優れた耐水素脆性を有する鋼材について、調査及び検討を行った。その結果、次の知見を得た。 The present inventors investigated and studied steel materials that have excellent corrosion resistance and excellent hydrogen embrittlement resistance. As a result, we obtained the following knowledge.
 鋼材の耐食性及び耐水素脆性を高めるためには、鋼材中のCr含有量をなるべく低減することが有効である。さらに、Cu、Ni及びSnは、鋼材の耐食性を顕著に高める。以上の化学組成の観点からの検討に基づいて、本発明者らは、優れた耐食性及び優れた耐水素脆性を有する鋼材の化学組成について検討を行った。その結果、本発明者らは、質量%で、C:0.15~0.45%、Si:0.01~1.00%、Mn:0.01~1.50%、P:0.050%以下、S:0.050%以下、Al:0.100%以下、Sn:0.02~0.30%、Cr:0.20%以下、Cu:0.010~0.500%、Ni:0.01~0.50%、Mo:0.01~0.50%、Ti:0.001~0.100%、N:0.010%以下、O:0.015%以下、W:0~0.50%、B:0~0.0050%、Nb:0~0.300%、Ca:0~0.0050%、Mg:0~0.0050%、希土類元素:0~0.0200%、及び、残部:Fe及び不純物からなる化学組成を有する鋼材であれば、塩化物イオンを含む腐食環境においても耐食性及び耐水素脆性が高まると考えた。 In order to improve the corrosion resistance and hydrogen embrittlement resistance of steel materials, it is effective to reduce the Cr content in the steel materials as much as possible. Furthermore, Cu, Ni, and Sn significantly improve the corrosion resistance of steel materials. Based on the above study from the viewpoint of chemical composition, the present inventors conducted a study on the chemical composition of a steel material having excellent corrosion resistance and excellent hydrogen embrittlement resistance. As a result, the present inventors found that in mass %, C: 0.15 to 0.45%, Si: 0.01 to 1.00%, Mn: 0.01 to 1.50%, P: 0. 050% or less, S: 0.050% or less, Al: 0.100% or less, Sn: 0.02 to 0.30%, Cr: 0.20% or less, Cu: 0.010 to 0.500%, Ni: 0.01 to 0.50%, Mo: 0.01 to 0.50%, Ti: 0.001 to 0.100%, N: 0.010% or less, O: 0.015% or less, W : 0-0.50%, B: 0-0.0050%, Nb: 0-0.300%, Ca: 0-0.0050%, Mg: 0-0.0050%, Rare earth elements: 0-0 It was thought that a steel material having a chemical composition consisting of .0200% and the balance: Fe and impurities would have improved corrosion resistance and hydrogen embrittlement resistance even in a corrosive environment containing chloride ions.
 しかしながら、上述の化学組成を有する鋼材であっても、塩化物イオンを含む腐食環境で十分な耐食性及び十分な耐水素脆性が得られない場合があった。そこで、本発明者らは、上述の化学組成の鋼材の耐食性及び耐水素脆性が低下する原因について調査及び検討を行った。その結果、本発明者らは、塩化物イオンを含む腐食環境では、次のメカニズムにより腐食が進行すると考えた。 However, even with steel materials having the above chemical composition, sufficient corrosion resistance and sufficient hydrogen embrittlement resistance may not be obtained in corrosive environments containing chloride ions. Therefore, the present inventors investigated and studied the cause of the decrease in corrosion resistance and hydrogen embrittlement resistance of steel materials having the above-mentioned chemical composition. As a result, the present inventors believed that corrosion progresses by the following mechanism in a corrosive environment containing chloride ions.
 ボルト、ナット、又は、座金等の締結部材が海浜地域の橋梁等の建築物に使用された場合、上述のとおり、塩化物イオンが締結部材を構成する鋼材表面に飛来する。さらに、霧や降雨等により、飛来した塩化物イオンを含む水が鋼材表面に付着する。その結果、鋼材表面が湿潤な状態(湿潤工程)になったり、その後に塩化物イオンを含む水が鋼材表面から乾燥する状態(乾燥工程)になったりする。 When fastening members such as bolts, nuts, or washers are used in buildings such as bridges in coastal areas, chloride ions fly onto the surface of the steel materials that make up the fastening members, as described above. Furthermore, water containing chloride ions that comes flying in due to fog, rain, etc. adheres to the surface of the steel material. As a result, the surface of the steel material becomes wet (wetting process), and then water containing chloride ions dries from the surface of the steel material (drying process).
 このような環境下において、特に、乾燥工程において、鋼材表面のFeの溶解が促進される。溶解したFeは鋼材表面を酸性環境にする。つまり、Feの溶解が進むにつれ、鋼材表面でのpHは低くなる。pHが低くなるほど、Feの溶解がさらに進む。つまり、腐食が進行する。 Under such an environment, the dissolution of Fe on the surface of the steel material is promoted, especially in the drying process. The dissolved Fe makes the surface of the steel material an acidic environment. In other words, as the dissolution of Fe progresses, the pH at the surface of the steel material decreases. The lower the pH, the more Fe dissolves. In other words, corrosion progresses.
 上記検討結果に基づいて、本発明者らは、鋼材表面のpHの低下を抑えることができれば、Feの溶解を抑制できると考えた。そこで、pHが0~7の酸性領域でpHの低下を抑制可能な元素を検討した。その結果、上述のCu、Ni及びSnに加え、Co、Sb、Ge及びInのいずれか1種以上を含有すれば、酸性領域中の広い範囲において、pHの低下を抑制することができ、その結果、乾燥工程においてFeの溶解を抑制できることを、本発明者らは見出した。 Based on the above study results, the present inventors believed that dissolution of Fe could be suppressed if the decrease in pH on the surface of the steel material could be suppressed. Therefore, we investigated elements that can suppress the decrease in pH in the acidic range of pH 0 to 7. As a result, if any one or more of Co, Sb, Ge, and In is contained in addition to the above-mentioned Cu, Ni, and Sn, it is possible to suppress the decrease in pH over a wide range in the acidic region. As a result, the present inventors discovered that dissolution of Fe can be suppressed in the drying process.
 以上の検討結果を踏まえて、本発明者らは、鋼材の化学組成をさらに検討した。その結果、上述の化学組成に、さらに、Co、Sb、Ge及びInからなる群から選択される1種以上を合計で0.0013~0.0065%未満の範囲で含有すれば、塩化物イオンを含む腐食環境において、耐食性及び耐水素脆性がさらに高まることを、本発明者らは見出した。換言すれば、鋼材が次の特徴1を満たすことにより、塩化物イオンを含む腐食環境において、耐食性及び耐水素脆性がさらに高まることを本発明者らは見出した。
 (特徴1)
 化学組成が、質量%で、C:0.15~0.45%、Si:0.01~1.00%、Mn:0.01~1.50%、P:0.050%以下、S:0.050%以下、Al:0.100%以下、Sn:0.02~0.30%、Cr:0.20%以下、Cu:0.010~0.500%、Ni:0.01~0.50%、Mo:0.01~0.50%、Ti:0.001~0.100%、Co、Sb、Ge及びInからなる群から選択される1種以上:合計で0.0013~0.0065%未満、N:0.010%以下、O:0.015%以下、W:0~0.50%、B:0~0.0050%、Nb:0~0.300%、Ca:0~0.0050%、Mg:0~0.0050%、希土類元素:0~0.0200%、及び、残部:Fe及び不純物からなる。
Based on the above study results, the present inventors further studied the chemical composition of steel materials. As a result, if the above chemical composition further contains one or more selected from the group consisting of Co, Sb, Ge, and In in a total amount of less than 0.0013 to 0.0065%, chloride ions The present inventors have discovered that corrosion resistance and hydrogen embrittlement resistance are further enhanced in a corrosive environment containing. In other words, the present inventors have found that when the steel material satisfies the following characteristic 1, corrosion resistance and hydrogen embrittlement resistance are further enhanced in a corrosive environment containing chloride ions.
(Feature 1)
The chemical composition is in mass%, C: 0.15 to 0.45%, Si: 0.01 to 1.00%, Mn: 0.01 to 1.50%, P: 0.050% or less, S : 0.050% or less, Al: 0.100% or less, Sn: 0.02 to 0.30%, Cr: 0.20% or less, Cu: 0.010 to 0.500%, Ni: 0.01 ~0.50%, Mo: 0.01~0.50%, Ti: 0.001~0.100%, one or more selected from the group consisting of Co, Sb, Ge, and In: total of 0. 0013 to less than 0.0065%, N: 0.010% or less, O: 0.015% or less, W: 0 to 0.50%, B: 0 to 0.0050%, Nb: 0 to 0.300% , Ca: 0 to 0.0050%, Mg: 0 to 0.0050%, rare earth elements: 0 to 0.0200%, and the remainder: Fe and impurities.
 しかしながら、上述の化学組成を有する鋼材では、塩化物イオンを含む腐食環境において、優れた耐食性及び優れた耐水素脆性の両立が十分に得られなかった。そこで、本発明者らはさらに、上述の化学組成を有する鋼材において、優れた耐食性及び優れた耐水素脆性が得られる手段について検討を行った。 However, with the steel material having the above-mentioned chemical composition, it was not possible to sufficiently achieve both excellent corrosion resistance and excellent hydrogen embrittlement resistance in a corrosive environment containing chloride ions. Therefore, the present inventors further investigated means for obtaining excellent corrosion resistance and excellent hydrogen embrittlement resistance in steel materials having the above-mentioned chemical composition.
 検討の結果、上述の特徴1を満たす鋼材において、さらに、次の特徴2を満たすことにより、優れた耐食性及び優れた耐水素脆性が得られることを、本発明者らは見出した。
 (特徴2)
 鋼材の化学組成がさらに、式(1)を満たす。
 23<10×LN(Cu+0.5×Sn+2000×Tx)+100×(0.5×Ni+Mo)-100×(0.5×Ni+Mo)+30×(0.5×Ni+Mo)+10<39 (1)
 ここで、式(1)中の元素記号には、対応する元素の質量%での含有量が代入され、Txには、Co、Sb、Ge及びInからなる群から選択される1種以上の質量%での合計含有量が代入される。式(1)中のLNは自然対数を意味する。
As a result of studies, the present inventors have found that in a steel material that satisfies the above feature 1, by further satisfying the following feature 2, excellent corrosion resistance and excellent hydrogen embrittlement resistance can be obtained.
(Feature 2)
The chemical composition of the steel material further satisfies formula (1).
23<10×LN(Cu+0.5×Sn+2000×Tx)+100×(0.5×Ni+Mo) 3 -100×(0.5×Ni+Mo) 2 +30×(0.5×Ni+Mo)+10<39 (1)
Here, the content in mass % of the corresponding element is substituted for the element symbol in formula (1), and Tx is one or more types selected from the group consisting of Co, Sb, Ge, and In. The total content in mass % is substituted. LN in formula (1) means natural logarithm.
 F1=10×LN(Cu+0.5×Sn+2000×Tx)+100×(0.5×Ni+Mo)-100×(0.5×Ni+Mo)+30×(0.5×Ni+Mo)+10と定義する。特徴1を満たす化学組成中の元素のうち、Cu、Sn、Co、Sb、Ge及びInは、塩化物イオンを含む環境において、耐食性を高めるとともに、腐食による還元反応による水素の発生も抑制する。水素の発生が抑制されれば、鋼材表面に接触する水素量が低減する。そのため、鋼材表面から鋼材内部に侵入する水素量も低減する。その結果、耐水素脆性が高まる。したがって、Cu、Sn、Co、Sb、Ge及びInは、耐食性を高めると共に、水素の発生を抑制して耐水素脆性を高める元素群である。 Define F1=10×LN(Cu+0.5×Sn+2000×Tx)+100×(0.5×Ni+Mo) 3 −100×(0.5×Ni+Mo) 2 +30×(0.5×Ni+Mo)+10. Among the elements in the chemical composition that satisfy Feature 1, Cu, Sn, Co, Sb, Ge, and In increase corrosion resistance in an environment containing chloride ions, and also suppress the generation of hydrogen due to reduction reactions caused by corrosion. If hydrogen generation is suppressed, the amount of hydrogen that comes into contact with the steel surface will be reduced. Therefore, the amount of hydrogen penetrating into the steel material from the surface of the steel material is also reduced. As a result, hydrogen embrittlement resistance increases. Therefore, Cu, Sn, Co, Sb, Ge, and In are an element group that not only increases corrosion resistance but also suppresses hydrogen generation and increases hydrogen embrittlement resistance.
 一方、特徴1を満たす化学組成中の元素のうち、Ni及びMoは、特徴1の化学組成中のSnとの相乗作用により、その含有量に応じて、耐食性及び耐水素脆性を高めたり、下げたりする。具体的には、特徴1を満たす化学組成において、Ni及びMoの含有量がある範囲では耐食性及び耐水素脆性が高まるものの、異なる範囲では逆に、耐食性及び耐水素脆性が低下する。このようなNi及びMoによる耐食性及び耐水素脆性の高低は、Ni及びMoとSnとの相乗作用が影響していると考えられる。F1中の「100×(0.5×Ni+Mo)-100×(0.5×Ni+Mo)+30×(0.5×Ni+Mo)+10」は、三次式となっている。この三次式は、Snを含有する特徴1の化学組成において、Ni及びMo含有量と、耐食性及び耐水素脆性との関係を示す。 On the other hand, among the elements in the chemical composition that satisfies feature 1, Ni and Mo have a synergistic effect with Sn in the chemical composition that satisfies feature 1, and depending on their content, increases or decreases corrosion resistance and hydrogen embrittlement resistance. or Specifically, in a chemical composition that satisfies Feature 1, corrosion resistance and hydrogen embrittlement resistance increase when the contents of Ni and Mo are in a certain range, but conversely, corrosion resistance and hydrogen embrittlement resistance decrease when the Ni and Mo contents are in a different range. The level of corrosion resistance and hydrogen embrittlement resistance due to Ni and Mo is considered to be influenced by the synergistic effect of Ni and Mo with Sn. “100×(0.5×Ni+Mo) 3 −100×(0.5×Ni+Mo) 2 +30×(0.5×Ni+Mo)+10” in F1 is a cubic equation. This cubic equation shows the relationship between the Ni and Mo contents and the corrosion resistance and hydrogen embrittlement resistance in the chemical composition of Feature 1 containing Sn.
 F1が23よりも高く、39未満である場合、特徴1を満たす化学組成において、Cu、Sn、Co、Sb、Ge及びInの含有量、及び、Ni、Mo含有量との関係が適切である。そのため、塩化物イオンを含む腐食環境において、優れた耐食性及び優れた耐水素脆性を両立できる。 When F1 is higher than 23 and lower than 39, the relationship between the contents of Cu, Sn, Co, Sb, Ge, and In, and the contents of Ni and Mo is appropriate in the chemical composition that satisfies characteristic 1. . Therefore, both excellent corrosion resistance and excellent hydrogen embrittlement resistance can be achieved in a corrosive environment containing chloride ions.
 以上の知見に基づいて完成した本実施形態による鋼材は、次の構成を有する。 The steel material according to this embodiment, which was completed based on the above findings, has the following configuration.
 [1]
 質量%で、
 C:0.15~0.45%、
 Si:0.01~1.00%、
 Mn:0.01~1.50%、
 P:0.050%以下、
 S:0.050%以下、
 Al:0.100%以下、
 Sn:0.02~0.30%、
 Cr:0.20%以下、
 Cu:0.010~0.500%、
 Ni:0.01~0.50%、
 Mo:0.01~0.50%、
 Ti:0.001~0.100%、
 Co、Sb、Ge及びInからなる群から選択される1種以上:合計で0.0013~0.0065%未満、
 N:0.010%以下、
 O:0.015%以下、
 W:0~0.50%、
 B:0~0.0050%、
 Nb:0~0.300%、
 Ca:0~0.0050%、
 Mg:0~0.0050%、
 希土類元素:0~0.0200%、及び、
 残部:Fe及び不純物、
 からなり、式(1)を満たす、
 鋼材。
 23<10×LN(Cu+0.5×Sn+2000×Tx)+100×(0.5×Ni+Mo)-100×(0.5×Ni+Mo)+30×(0.5×Ni+Mo)+10<39 (1)
 ここで、式(1)中の元素記号には、対応する元素の質量%での含有量が代入され、Txには、Co、Sb、Ge及びInからなる群から選択される1種以上の質量%での合計含有量が代入される。式(1)中のLNは自然対数を意味する。
[1]
In mass%,
C: 0.15-0.45%,
Si: 0.01-1.00%,
Mn: 0.01 to 1.50%,
P: 0.050% or less,
S: 0.050% or less,
Al: 0.100% or less,
Sn: 0.02-0.30%,
Cr: 0.20% or less,
Cu: 0.010-0.500%,
Ni: 0.01-0.50%,
Mo: 0.01-0.50%,
Ti: 0.001 to 0.100%,
One or more selected from the group consisting of Co, Sb, Ge, and In: 0.0013 to less than 0.0065% in total,
N: 0.010% or less,
O: 0.015% or less,
W: 0-0.50%,
B: 0 to 0.0050%,
Nb: 0 to 0.300%,
Ca: 0-0.0050%,
Mg: 0 to 0.0050%,
Rare earth elements: 0 to 0.0200%, and
The remainder: Fe and impurities,
and satisfies formula (1),
Steel material.
23<10×LN(Cu+0.5×Sn+2000×Tx)+100×(0.5×Ni+Mo) 3 -100×(0.5×Ni+Mo) 2 +30×(0.5×Ni+Mo)+10<39 (1)
Here, the content in mass % of the corresponding element is substituted for the element symbol in formula (1), and Tx is one or more types selected from the group consisting of Co, Sb, Ge, and In. The total content in mass % is substituted. LN in formula (1) means natural logarithm.
 [2]
 [1]に記載の鋼材であって、
 W:0.01~0.50%、
 B:0.0001~0.0050%、
 Nb:0.001~0.300%、
 Ca:0.0001~0.0050%、
 Mg:0.0001~0.0050%、及び、
 希土類元素:0.0001~0.0200%、
 からなる群から選択される1種以上を含有する、
 鋼材。
[2]
The steel material according to [1],
W: 0.01-0.50%,
B: 0.0001 to 0.0050%,
Nb: 0.001-0.300%,
Ca: 0.0001-0.0050%,
Mg: 0.0001 to 0.0050%, and
Rare earth elements: 0.0001-0.0200%,
Containing one or more selected from the group consisting of
Steel material.
 [3]
 [1]又は[2]に記載の鋼材で構成される締結部材。
[3]
A fastening member made of the steel material according to [1] or [2].
 以下、本実施形態による鋼材及び締結部材について詳述する。なお、元素に関する「%」は、特に断りがない限り、質量%を意味する。 Hereinafter, the steel material and fastening member according to this embodiment will be described in detail. Note that "%" regarding elements means mass % unless otherwise specified.
 [本実施形態の鋼材の特徴]
 本実施形態の鋼材は、次の特徴1及び2を満たす。
 (特徴1)
 化学組成が、質量%で、C:0.15~0.45%、Si:0.01~1.00%、Mn:0.01~1.50%、P:0.050%以下、S:0.050%以下、Al:0.100%以下、Sn:0.02~0.30%、Cr:0.20%以下、Cu:0.010~0.500%、Ni:0.01~0.50%、Mo:0.01~0.50%、Ti:0.001~0.100%、Co、Sb、Ge及びInからなる群から選択される1種以上:合計で0.0013~0.0065%未満、N:0.010%以下、O:0.015%以下、W:0~0.50%、B:0~0.0050%、Nb:0~0.300%、Ca:0~0.0050%、Mg:0~0.0050%、希土類元素:0~0.0200%、及び、残部:Fe及び不純物からなる。
 (特徴2)
 鋼材の化学組成がさらに、式(1)を満たす。
 23<10×LN(Cu+0.5×Sn+2000×Tx)+100×(0.5×Ni+Mo)-100×(0.5×Ni+Mo)+30×(0.5×Ni+Mo)+10<39 (1)
 ここで、式(1)中の元素記号には、対応する元素の質量%での含有量が代入され、Txには、Co、Sb、Ge及びInからなる群から選択される1種以上の質量%での合計含有量が代入される。式(1)中のLNは自然対数を意味する。
 以下、特徴1及び特徴2について説明する。
[Characteristics of the steel material of this embodiment]
The steel material of this embodiment satisfies the following characteristics 1 and 2.
(Feature 1)
The chemical composition is in mass%, C: 0.15 to 0.45%, Si: 0.01 to 1.00%, Mn: 0.01 to 1.50%, P: 0.050% or less, S : 0.050% or less, Al: 0.100% or less, Sn: 0.02 to 0.30%, Cr: 0.20% or less, Cu: 0.010 to 0.500%, Ni: 0.01 ~0.50%, Mo: 0.01~0.50%, Ti: 0.001~0.100%, one or more selected from the group consisting of Co, Sb, Ge, and In: total of 0. 0013 to less than 0.0065%, N: 0.010% or less, O: 0.015% or less, W: 0 to 0.50%, B: 0 to 0.0050%, Nb: 0 to 0.300% , Ca: 0 to 0.0050%, Mg: 0 to 0.0050%, rare earth elements: 0 to 0.0200%, and the remainder: Fe and impurities.
(Feature 2)
The chemical composition of the steel material further satisfies formula (1).
23<10×LN(Cu+0.5×Sn+2000×Tx)+100×(0.5×Ni+Mo) 3 -100×(0.5×Ni+Mo) 2 +30×(0.5×Ni+Mo)+10<39 (1)
Here, the content in mass % of the corresponding element is substituted for the element symbol in formula (1), and Tx is one or more types selected from the group consisting of Co, Sb, Ge, and In. The total content in mass % is substituted. LN in formula (1) means natural logarithm.
Feature 1 and Feature 2 will be explained below.
 [(特徴1)化学組成中の各元素の含有量について]
 本実施形態による鋼材の化学組成は、次の元素を含有する。
[(Feature 1) Regarding the content of each element in the chemical composition]
The chemical composition of the steel material according to this embodiment contains the following elements.
 C:0.15~0.45%
 炭素(C)は、鋼材の焼入れ性を高めて、鋼材で構成される締結部材の強度を高める。C含有量が0.15%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
 一方、C含有量が0.45%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の冷間鍛造性が低下する。
 したがって、C含有量は0.15~0.45%である。
 C含有量の好ましい下限は0.18%であり、さらに好ましくは0.20%であり、さらに好ましくは0.22%である。
 C含有量の好ましい上限は0.43%であり、さらに好ましくは0.41%であり、さらに好ましくは0.39%である。
C: 0.15-0.45%
Carbon (C) improves the hardenability of steel and increases the strength of fastening members made of steel. If the C content is less than 0.15%, the above effects cannot be sufficiently obtained even if the contents of other elements are within the range of this embodiment.
On the other hand, if the C content exceeds 0.45%, the cold forgeability of the steel material will decrease even if the contents of other elements are within the range of this embodiment.
Therefore, the C content is 0.15-0.45%.
The preferable lower limit of the C content is 0.18%, more preferably 0.20%, and still more preferably 0.22%.
A preferable upper limit of the C content is 0.43%, more preferably 0.41%, and still more preferably 0.39%.
 Si:0.01~1.00%
 シリコン(Si)は、固溶強化により、鋼材で構成される締結部材の強度を高める。Si含有量が0.01%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
 一方、Si含有量が1.00%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の冷間鍛造性が低下する。
 したがって、Si含有量は0.01~1.00%である。
 Si含有量の好ましい下限は0.02%であり、さらに好ましくは0.03%であり、さらに好ましくは0.05%である。
 Si含有量の好ましい上限は0.90%であり、さらに好ましくは0.80%であり、さらに好ましくは0.70%であり、さらに好ましくは0.60%であり、さらに好ましくは0.50%である。
Si: 0.01~1.00%
Silicon (Si) increases the strength of fastening members made of steel through solid solution strengthening. If the Si content is less than 0.01%, the above effects cannot be sufficiently obtained even if the contents of other elements are within the range of this embodiment.
On the other hand, if the Si content exceeds 1.00%, the cold forgeability of the steel material will decrease even if the contents of other elements are within the range of this embodiment.
Therefore, the Si content is 0.01 to 1.00%.
The preferable lower limit of the Si content is 0.02%, more preferably 0.03%, and even more preferably 0.05%.
The preferable upper limit of the Si content is 0.90%, more preferably 0.80%, even more preferably 0.70%, still more preferably 0.60%, and still more preferably 0.50%. %.
 Mn:0.01~1.50%
 マンガン(Mn)は、鋼材の焼入れ性を高めて、鋼材で構成される締結部材の強度を高める。Mn含有量が0.01%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
 一方、Mn含有量が1.50%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の冷間鍛造性が低下する。
 したがって、Mn含有量は0.01~1.50%である。
 Mn含有量の好ましい下限は0.05%であり、さらに好ましくは0.10%であり、さらに好ましくは0.15%である。
 Mn含有量の好ましい上限は1.40%であり、さらに好ましくは1.30%であり、さらに好ましくは1.20%である。
Mn: 0.01-1.50%
Manganese (Mn) improves the hardenability of steel materials and increases the strength of fastening members made of steel materials. If the Mn content is less than 0.01%, the above effects cannot be sufficiently obtained even if the contents of other elements are within the range of this embodiment.
On the other hand, if the Mn content exceeds 1.50%, the cold forgeability of the steel material will decrease even if the contents of other elements are within the range of this embodiment.
Therefore, the Mn content is 0.01-1.50%.
The lower limit of the Mn content is preferably 0.05%, more preferably 0.10%, and even more preferably 0.15%.
A preferable upper limit of the Mn content is 1.40%, more preferably 1.30%, and still more preferably 1.20%.
 P:0.050%以下
 燐(P)は不純物である。つまり、P含有量の下限は0%超である。
 P含有量が0.050%を超えれば、他の元素含有量が本実施形態の範囲内であっても、Pが粒界に偏析する。その結果、鋼材の耐水素脆性が低下する。
 したがって、P含有量は0.050%以下である。
 P含有量はなるべく低い方が好ましい。しかしながら、P含有量の極端な低減は、製造コストを大幅に高める。したがって、工業生産を考慮した場合、P含有量の好ましい下限は0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.003%である。
 P含有量の好ましい上限は0.040%であり、さらに好ましくは0.030%であり、さらに好ましくは0.020%である。
P: 0.050% or less Phosphorus (P) is an impurity. In other words, the lower limit of the P content is over 0%.
If the P content exceeds 0.050%, P will segregate at grain boundaries even if the contents of other elements are within the ranges of this embodiment. As a result, the hydrogen embrittlement resistance of the steel material decreases.
Therefore, the P content is 0.050% or less.
It is preferable that the P content is as low as possible. However, extreme reduction in P content significantly increases manufacturing costs. Therefore, when considering industrial production, the preferable lower limit of the P content is 0.001%, more preferably 0.002%, and still more preferably 0.003%.
A preferable upper limit of the P content is 0.040%, more preferably 0.030%, and still more preferably 0.020%.
 S:0.050%以下
 硫黄(S)は不純物である。つまり、S含有量の下限は0%超である。
 S含有量が0.050%を超えれば、他の元素含有量が本実施形態の範囲内であっても、Sが粒界に偏析する。その結果、鋼材の耐水素脆性が低下する。
 したがって、S含有量は0.050%以下である。
 S含有量はなるべく低い方が好ましい。しかしながら、S含有量の極端な低減は、製造コストを大幅に高める。したがって、工業生産を考慮した場合、S含有量の好ましい下限は0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.003%である。
 S含有量の好ましい上限は0.040%であり、さらに好ましくは0.030%であり、さらに好ましくは0.020%である。
S: 0.050% or less Sulfur (S) is an impurity. In other words, the lower limit of the S content is over 0%.
If the S content exceeds 0.050%, S will segregate at grain boundaries even if the contents of other elements are within the range of this embodiment. As a result, the hydrogen embrittlement resistance of the steel material decreases.
Therefore, the S content is 0.050% or less.
It is preferable that the S content is as low as possible. However, extreme reduction in S content significantly increases manufacturing costs. Therefore, when considering industrial production, the preferable lower limit of the S content is 0.001%, more preferably 0.002%, and still more preferably 0.003%.
A preferable upper limit of the S content is 0.040%, more preferably 0.030%, and still more preferably 0.020%.
 Al:0.100%以下
 アルミニウム(Al)は不可避に含有される。つまり、Al含有量は0%超である。
 Alは鋼を脱酸する。Al含有量が少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、Al含有量が0.100%を超えれば、他の元素含有量が本実施形態の範囲内であっても、粗大なAl窒化物が生成する。粗大なAl窒化物は破壊の起点になる。そのため、鋼材の加工性が低下する。
 したがって、Al含有量は0.100%以下である。
 Al含有量の好ましい下限は0.001%であり、さらに好ましくは0.010%であり、さらに好ましくは0.015%である。
 Al含有量の好ましい上限は0.090%であり、さらに好ましくは0.080%であり、さらに好ましくは0.070%である。
 本実施形態の鋼材の化学組成において、Al含有量は、全Al(Total-Al)含有量を意味する。
Al: 0.100% or less Aluminum (Al) is unavoidably contained. That is, the Al content is over 0%.
Al deoxidizes steel. If the Al content is even small, the above effects can be obtained to some extent.
However, if the Al content exceeds 0.100%, coarse Al nitrides will be produced even if the contents of other elements are within the range of this embodiment. Coarse Al nitrides become a starting point for destruction. Therefore, the workability of the steel material decreases.
Therefore, the Al content is 0.100% or less.
The preferable lower limit of the Al content is 0.001%, more preferably 0.010%, and still more preferably 0.015%.
A preferable upper limit of the Al content is 0.090%, more preferably 0.080%, and still more preferably 0.070%.
In the chemical composition of the steel material of this embodiment, the Al content means the total Al (Total-Al) content.
 Sn:0.02~0.30%
 スズ(Sn)は、腐食環境下での鋼材の耐食性及び耐水素脆性を高める。Sn含有量が0.02%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
 一方、Sn含有量が0.30%を超えれば、他の元素含有量が本実施形態の範囲内であっても、Snが粒界に偏析する。この場合、鋼材の熱間加工性が低下する。
 したがって、Sn含有量は0.02~0.30%である。
 Sn含有量の好ましい下限は0.03%であり、さらに好ましくは0.05%であり、さらに好ましくは0.10%である。
 Sn含有量の好ましい上限は0.25%であり、さらに好ましくは0.20%であり、さらに好ましくは0.15%であり、さらに好ましくは0.10%である。
Sn: 0.02-0.30%
Tin (Sn) increases the corrosion resistance and hydrogen embrittlement resistance of steel materials in corrosive environments. If the Sn content is less than 0.02%, the above effects cannot be sufficiently obtained even if the contents of other elements are within the range of this embodiment.
On the other hand, if the Sn content exceeds 0.30%, Sn will segregate at grain boundaries even if the contents of other elements are within the range of this embodiment. In this case, the hot workability of the steel material decreases.
Therefore, the Sn content is 0.02-0.30%.
The preferable lower limit of the Sn content is 0.03%, more preferably 0.05%, and still more preferably 0.10%.
A preferable upper limit of the Sn content is 0.25%, more preferably 0.20%, still more preferably 0.15%, and still more preferably 0.10%.
 Cr:0.20%以下
 本実施形態の鋼材において、Cr含有量は0%超である。Crは鋼材の焼入れ性を高める。Crは、腐食環境下での鋼材の耐食性及び耐水素脆性を低下する。Cr含有量が0.20%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の耐食性及び耐水素脆性が低下する。
 したがって、Cr含有量は0.20%以下である。
 Cr含有量はなるべく低い方が好ましい。しかしながら、Cr含有量の極端な低減は、製造コストを大幅に高める。したがって、工業生産を考慮した場合、Cr含有量の好ましい下限は0.01%であり、さらに好ましくは0.02%であり、さらに好ましくは0.03%である。
 Cr含有量の好ましい上限は0.15%であり、さらに好ましくは0.10%であり、さらに好ましくは0.07%である。鋼材の耐食性及び耐水素脆性をさらに高めるためのより有効なCr含有量の好ましい上限は0.05%未満である。
Cr: 0.20% or less In the steel material of this embodiment, the Cr content is more than 0%. Cr improves the hardenability of steel. Cr reduces the corrosion resistance and hydrogen embrittlement resistance of steel materials in corrosive environments. If the Cr content exceeds 0.20%, the corrosion resistance and hydrogen embrittlement resistance of the steel material will decrease even if the contents of other elements are within the range of this embodiment.
Therefore, the Cr content is 0.20% or less.
It is preferable that the Cr content is as low as possible. However, extreme reduction in Cr content significantly increases manufacturing costs. Therefore, when considering industrial production, the preferable lower limit of the Cr content is 0.01%, more preferably 0.02%, and still more preferably 0.03%.
A preferable upper limit of the Cr content is 0.15%, more preferably 0.10%, and still more preferably 0.07%. The preferred upper limit of the Cr content, which is more effective for further increasing the corrosion resistance and hydrogen embrittlement resistance of steel materials, is less than 0.05%.
 Cu:0.010~0.500%
 銅(Cu)は、腐食環境下での鋼材の耐食性及び耐水素脆性を高める。Cu含有量が0.010%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
 一方、Cu含有量が0.500%を超えれば、鋼材が赤熱脆化しやすくなる。さらに、鋼材の耐食性及び耐水素脆性がかえって低下する。
 したがって、Cu含有量は、0.010~0.500%である。
 Cu含有量の好ましい下限は0.050%であり、さらに好ましくは0.100%であり、さらに好ましくは0.150%であり、さらに好ましくは0.200%であり、さらに好ましくは0.250%である。
 Cu含有量の好ましい上限は0.450%であり、さらに好ましくは0.400%である。
Cu: 0.010-0.500%
Copper (Cu) increases the corrosion resistance and hydrogen embrittlement resistance of steel materials in corrosive environments. If the Cu content is less than 0.010%, the above effects cannot be sufficiently obtained even if the contents of other elements are within the range of this embodiment.
On the other hand, if the Cu content exceeds 0.500%, the steel material will easily become red-hot embrittled. Furthermore, the corrosion resistance and hydrogen embrittlement resistance of the steel material are rather reduced.
Therefore, the Cu content is 0.010 to 0.500%.
The preferable lower limit of the Cu content is 0.050%, more preferably 0.100%, even more preferably 0.150%, even more preferably 0.200%, even more preferably 0.250%. %.
A preferable upper limit of the Cu content is 0.450%, more preferably 0.400%.
 Ni:0.01~0.50%
 ニッケル(Ni)は、鋼材の焼入れ性を高め、鋼材で構成される締結部材の強度を高める。Niはさらに、鋼材の耐食性及び耐水素脆性を高める。Ni含有量が0.01%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
 一方、Ni含有量が0.50%を超えれば、鋼材の耐食性及び耐水素脆性がかえって低下する。
 したがって、Ni含有量は0.01~0.50%である。
 Ni含有量の好ましい下限は0.05%であり、さらに好ましくは0.10%であり、さらに好ましくは0.15%であり、さらに好ましくは0.20%であり、さらに好ましくは0.25%である。
 Ni含有量の好ましい上限は0.45%であり、さらに好ましくは0.40%である。
Ni: 0.01~0.50%
Nickel (Ni) improves the hardenability of steel materials and increases the strength of fastening members made of steel materials. Ni further increases the corrosion resistance and hydrogen embrittlement resistance of the steel material. If the Ni content is less than 0.01%, the above effects cannot be sufficiently obtained even if the contents of other elements are within the range of this embodiment.
On the other hand, if the Ni content exceeds 0.50%, the corrosion resistance and hydrogen embrittlement resistance of the steel material will deteriorate.
Therefore, the Ni content is 0.01 to 0.50%.
The preferable lower limit of the Ni content is 0.05%, more preferably 0.10%, even more preferably 0.15%, even more preferably 0.20%, even more preferably 0.25%. %.
A preferable upper limit of the Ni content is 0.45%, more preferably 0.40%.
 Mo:0.01~0.50%
 モリブデン(Mo)は、鋼の焼入れ性を高め、鋼材で構成される締結部材の強度を高める。土木及び建築用途の締結部材では、直径が20mmを超える場合がある。このような太い締結部材の強度を高めるために、その素材となる鋼材の焼入れ性を高める必要がある。Moは鋼材の焼入れ性を高めやすい。
 一方、Mo含有量が0.50%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の耐食性及び耐水素脆性が低下する。
 したがって、Mo含有量は0.01~0.50%である。
 Mo含有量の好ましい下限は0.05%であり、さらに好ましくは0.10%であり、さらに好ましくは0.15%であり、さらに好ましくは0.20%である。
 Mo含有量の好ましい上限は0.45%であり、さらに好ましくは0.40%であり、さらに好ましくは0.35%である。
Mo: 0.01~0.50%
Molybdenum (Mo) improves the hardenability of steel and increases the strength of fastening members made of steel. Fastening members for civil engineering and architectural applications may have a diameter exceeding 20 mm. In order to increase the strength of such thick fastening members, it is necessary to improve the hardenability of the steel material from which they are made. Mo tends to improve the hardenability of steel materials.
On the other hand, if the Mo content exceeds 0.50%, the corrosion resistance and hydrogen embrittlement resistance of the steel material will decrease even if the contents of other elements are within the range of this embodiment.
Therefore, the Mo content is 0.01 to 0.50%.
The lower limit of the Mo content is preferably 0.05%, more preferably 0.10%, even more preferably 0.15%, and even more preferably 0.20%.
A preferable upper limit of the Mo content is 0.45%, more preferably 0.40%, and still more preferably 0.35%.
 Ti:0.001~0.100%
 チタン(Ti)は、Nと結合してTi窒化物を形成し、鋼材で構成される締結部材の強度を高める。Ti含有量が0.001%未満であれば、上記効果が十分に得られない。
 一方、Ti含有量が0.100%を超えれば、他の元素含有量が本実施形態の範囲内であっても、炭化物、炭窒化物等のTi析出物が過剰に多く生成する。この場合、鋼材の耐食性及び耐水素脆性が低下する。
 したがって、Ti含有量は0.001~0.100%である。
 Ti含有量の好ましい下限は0.005%であり、さらに好ましくは0.010%であり、さらに好ましくは0.015%であり、さらに好ましくは0.018%である。
 Ti含有量の好ましい上限は0.080%であり、さらに好ましくは0.060%であり、さらに好ましくは0.040%であり、さらに好ましくは0.030%である。
Ti: 0.001-0.100%
Titanium (Ti) combines with N to form Ti nitride, increasing the strength of fastening members made of steel. If the Ti content is less than 0.001%, the above effects cannot be sufficiently obtained.
On the other hand, if the Ti content exceeds 0.100%, an excessive amount of Ti precipitates such as carbides and carbonitrides will be generated even if the contents of other elements are within the ranges of this embodiment. In this case, the corrosion resistance and hydrogen embrittlement resistance of the steel material decrease.
Therefore, the Ti content is 0.001 to 0.100%.
The lower limit of the Ti content is preferably 0.005%, more preferably 0.010%, even more preferably 0.015%, and even more preferably 0.018%.
A preferable upper limit of the Ti content is 0.080%, more preferably 0.060%, still more preferably 0.040%, and still more preferably 0.030%.
 Co、Sb、Ge及びInからなる群から選択される1種以上:合計で0.0013~0.0065%未満
 コバルト(Co)、アンチモン(Sb)、ゲルマニウム(Ge)及びインジウム(In)はいずれも、酸性環境下において、鋼材中のFeが溶解するのを抑制する。より具体的には、これらの元素は酸性環境下において、Feよりも優先して溶解する。溶解したこれらの元素は、酸化物、又は、金属として、鋼材表面に付着する。そのため、鋼材中のFeの溶解が抑制される。その結果、鋼材の耐食性及び耐水素脆性が高まる。Co、Sb、Ge及びInからなる群から選択される1種以上の合計含有量が0.0013%未満であれば、上記効果が十分に得られない。
 一方、Co、Sb、Ge及びInからなる群から選択される1種以上の合計含有量が0.0065%以上であれば、鋼材の耐食性及び耐水素脆性がかえって低下する。
 したがって、Co、Sb、Ge及びInからなる群から選択される1種以上の合計含有量は0.0013~0.0065%未満である。
 Co、Sb、Ge及びInからなる群から選択される1種以上の合計含有量の好ましい下限は0.0015%であり、さらに好ましくは0.0017%であり、さらに好ましくは0.0020%であり、さらに好ましくは0.0022%である。
 Co、Sb、Ge及びInからなる群から選択される1種以上の合計含有量の好ましい上限は0.0063%であり、さらに好ましくは0.0061%であり、さらに好ましくは0.0059%であり、さらに好ましくは0.0057%である。
One or more selected from the group consisting of Co, Sb, Ge, and In: 0.0013 to less than 0.0065% in total Cobalt (Co), antimony (Sb), germanium (Ge), and indium (In) It also suppresses dissolution of Fe in the steel material in an acidic environment. More specifically, these elements dissolve preferentially over Fe in an acidic environment. These dissolved elements adhere to the steel surface as oxides or metals. Therefore, dissolution of Fe in the steel material is suppressed. As a result, the corrosion resistance and hydrogen embrittlement resistance of the steel material increases. If the total content of one or more selected from the group consisting of Co, Sb, Ge, and In is less than 0.0013%, the above effects cannot be sufficiently obtained.
On the other hand, if the total content of one or more selected from the group consisting of Co, Sb, Ge, and In is 0.0065% or more, the corrosion resistance and hydrogen embrittlement resistance of the steel material will deteriorate on the contrary.
Therefore, the total content of one or more selected from the group consisting of Co, Sb, Ge, and In is 0.0013 to less than 0.0065%.
A preferable lower limit of the total content of one or more selected from the group consisting of Co, Sb, Ge, and In is 0.0015%, more preferably 0.0017%, and even more preferably 0.0020%. 0.0022%, more preferably 0.0022%.
A preferable upper limit of the total content of one or more selected from the group consisting of Co, Sb, Ge, and In is 0.0063%, more preferably 0.0061%, and still more preferably 0.0059%. 0.0057%, more preferably 0.0057%.
 N:0.010%以下
 窒素(N)は、不可避に含有される。つまり、N含有量は0%超である。
 Nは、Al又はTiと結合して窒化物又は炭窒化物を形成する。これらの窒化物及び炭窒化物は、ピン止め効果により結晶粒の粗大化を抑制する。その結果、鋼材の冷間鍛造性を高める。
 しかしながら、N含有量が0.010%を超えれば、他の元素含有量が本実施形態の範囲内であっても、粗大な窒化物が生成する。粗大な窒化物は破壊の起点になり、鋼材の冷間鍛造性を低下させる。さらに、ボルトの耐水素脆性が低下する。
 したがって、N含有量は0.010%以下である。
 N含有量の好ましい下限は0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.003%である。
 N含有量の好ましい上限は0.009%であり、さらに好ましくは0.008%であり、さらに好ましくは0.007%であり、さらに好ましくは0.006%である。
N: 0.010% or less Nitrogen (N) is unavoidably contained. That is, the N content is more than 0%.
N combines with Al or Ti to form nitride or carbonitride. These nitrides and carbonitrides suppress coarsening of crystal grains due to their pinning effect. As a result, the cold forgeability of the steel material is improved.
However, if the N content exceeds 0.010%, coarse nitrides will be produced even if the contents of other elements are within the range of this embodiment. Coarse nitrides become a starting point for fracture and reduce the cold forgeability of steel materials. Furthermore, the bolt's resistance to hydrogen embrittlement is reduced.
Therefore, the N content is 0.010% or less.
The preferable lower limit of the N content is 0.001%, more preferably 0.002%, and still more preferably 0.003%.
A preferable upper limit of the N content is 0.009%, more preferably 0.008%, still more preferably 0.007%, and still more preferably 0.006%.
 O:0.015%以下
 酸素(O)は、不可避に含有される不純物である。つまり、O含有量は0%超である。
 Oは、鋼材中に酸化物を形成する。O含有量が0.015%を超えれば、他の元素含有量が本実施形態の範囲内であっても、粗大な酸化物がボルトの耐水素脆性を低下する。
 したがって、O含有量は0.015%以下である。
 O含有量の好ましい下限は0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.003%であり、さらに好ましくは0.004%である。
 O含有量の好ましい上限は0.013%であり、さらに好ましくは0.011%であり、さらに好ましくは0.009%である。
O: 0.015% or less Oxygen (O) is an impurity that is inevitably contained. In other words, the O content is more than 0%.
O forms oxides in steel materials. If the O content exceeds 0.015%, even if the contents of other elements are within the ranges of this embodiment, coarse oxides will reduce the hydrogen embrittlement resistance of the bolt.
Therefore, the O content is 0.015% or less.
The preferable lower limit of the O content is 0.001%, more preferably 0.002%, still more preferably 0.003%, and still more preferably 0.004%.
A preferable upper limit of the O content is 0.013%, more preferably 0.011%, and still more preferably 0.009%.
 本実施形態による鋼材の化学組成の残部は、Fe及び不純物からなる。ここで、化学組成における不純物とは、鋼材を工業的に製造する際に、原料としての鉱石、スクラップ、又は製造環境などから混入されるものであって、本実施形態による鋼材に悪影響を与えない範囲で許容されるものを意味する。 The remainder of the chemical composition of the steel material according to this embodiment consists of Fe and impurities. Here, impurities in the chemical composition are those that are mixed in from ores used as raw materials, scrap, or the manufacturing environment when steel products are manufactured industrially, and do not have a negative effect on the steel products according to this embodiment. means permissible within range.
 [任意元素(Optional Elements)]
 本実施形態の鋼材はさらに、Feの一部に代えて、次の元素群から選択された1元素以上を含有してもよい。
 W:0~0.50%、
 B:0~0.0050%、
 Nb:0~0.300%、
 Ca:0~0.0050%、
 Mg:0~0.0050%、及び、
 希土類元素:0~0.0200%。
 以下、これらの元素について説明する。
[Optional Elements]
The steel material of this embodiment may further contain one or more elements selected from the following element groups in place of a part of Fe.
W: 0-0.50%,
B: 0 to 0.0050%,
Nb: 0 to 0.300%,
Ca: 0-0.0050%,
Mg: 0 to 0.0050%, and
Rare earth elements: 0 to 0.0200%.
These elements will be explained below.
 W:0~0.50%
 タングステン(W)は任意元素であり、含有されなくてもよい。つまり、W含有量は0%であってもよい。含有される場合、Wは、Co、Sb、Ge及びInと同様に、塩化物イオンを含む腐食環境下において、鋼材中のFeが溶解するのを抑制する。これにより、鋼材の耐食性及び耐水素脆性が高まる。Wが少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、W含有量が0.50%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の耐食性及び耐水素脆性がかえって低下する。
 したがって、W含有量は0~0.50%である。
 W含有量の好ましい下限は0.01%であり、さらに好ましくは0.03%であり、さらに好ましくは0.05%である。
 W含有量の好ましい上限は0.40%であり、さらに好ましくは0.35%であり、さらに好ましくは0.30%であり、さらに好ましくは0.25%である。
W: 0-0.50%
Tungsten (W) is an optional element and may not be included. That is, the W content may be 0%. When contained, W, like Co, Sb, Ge, and In, suppresses dissolution of Fe in the steel material in a corrosive environment containing chloride ions. This increases the corrosion resistance and hydrogen embrittlement resistance of the steel material. If even a small amount of W is contained, the above effects can be obtained to some extent.
However, if the W content exceeds 0.50%, even if the contents of other elements are within the ranges of this embodiment, the corrosion resistance and hydrogen embrittlement resistance of the steel material will deteriorate.
Therefore, the W content is 0 to 0.50%.
The preferable lower limit of the W content is 0.01%, more preferably 0.03%, and still more preferably 0.05%.
The upper limit of the W content is preferably 0.40%, more preferably 0.35%, even more preferably 0.30%, and still more preferably 0.25%.
 B:0~0.0050%
 ボロン(B)は任意元素であり、含有されなくてもよい。つまり、B含有量は0%であってもよい。含有される場合、Bは、鋼材の焼入れ性を高め、鋼材で構成される締結部材の強度を高める。本実施形態の鋼材では、腐食環境下での鋼材への水素の侵入を抑制するために、Cr含有量を抑制している。Bは、Moとともに、Crの代替として、鋼材の焼入れ性を高めて、鋼材で構成される締結部材の強度を高める。Bが少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、B含有量が0.0050%を超えれば、他の元素含有量が本実施形態の範囲内であっても、粗大なB窒化物が生成する。粗大なB窒化物は破壊の起点になる。その結果、鋼材の冷間鍛造性が低下する。
 したがって、B含有量は0~0.0050%である。
 B含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0005%であり、さらに好ましくは0.0007%である。
 B含有量の好ましい上限は0.0045%であり、さらに好ましくは0.0040%であり、さらに好ましくは0.0030%であり、さらに好ましくは0.0025%である。
B: 0-0.0050%
Boron (B) is an optional element and may not be included. That is, the B content may be 0%. When contained, B increases the hardenability of the steel material and increases the strength of the fastening member made of the steel material. In the steel material of this embodiment, the Cr content is suppressed in order to suppress hydrogen from entering the steel material in a corrosive environment. Together with Mo, B improves the hardenability of steel materials as a substitute for Cr, thereby increasing the strength of fastening members made of steel materials. If even a small amount of B is contained, the above effects can be obtained to some extent.
However, if the B content exceeds 0.0050%, coarse B nitrides will be produced even if the contents of other elements are within the range of this embodiment. Coarse B nitrides become a starting point for destruction. As a result, the cold forgeability of the steel material decreases.
Therefore, the B content is 0 to 0.0050%.
The lower limit of the B content is preferably 0.0001%, more preferably 0.0005%, and even more preferably 0.0007%.
A preferable upper limit of the B content is 0.0045%, more preferably 0.0040%, still more preferably 0.0030%, and still more preferably 0.0025%.
 Nb:0~0.300%
 ニオブ(Nb)は任意元素であり、含有されなくてもよい。つまり、Nb含有量は0%であってもよい。含有される場合、Nbは、炭化物、炭窒化物等のNb析出物を形成する。Nb析出物は鋼材で構成される締結部材の強度を高める。Nb含有量が少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、Nb含有量が0.300%を超えれば、他の元素含有量が本実施形態の範囲内であっても、Nb析出物が多く生成する。この場合、鋼材への水素侵入量が多くなる。その結果、鋼材の耐食性及び耐水素脆性が低下する。
 したがって、Nb含有量は0~0.300%である。
 Nb含有量の好ましい下限は0.001%であり、さらに好ましくは0.003%であり、さらに好ましくは0.005%であり、さらに好ましくは0.010%であり、さらに好ましくは0.020%である。
 Nb含有量の好ましい上限は0.250%であり、さらに好ましくは0.200%であり、さらに好ましくは0.150%である。
Nb: 0-0.300%
Niobium (Nb) is an optional element and may not be included. That is, the Nb content may be 0%. When contained, Nb forms Nb precipitates such as carbides and carbonitrides. Nb precipitates increase the strength of fastening members made of steel. If the Nb content is even small, the above effects can be obtained to some extent.
However, if the Nb content exceeds 0.300%, a large amount of Nb precipitates will be generated even if the content of other elements is within the range of this embodiment. In this case, the amount of hydrogen penetrating into the steel material increases. As a result, the corrosion resistance and hydrogen embrittlement resistance of the steel material decrease.
Therefore, the Nb content is 0-0.300%.
The lower limit of the Nb content is preferably 0.001%, more preferably 0.003%, even more preferably 0.005%, even more preferably 0.010%, and even more preferably 0.020%. %.
A preferable upper limit of the Nb content is 0.250%, more preferably 0.200%, and still more preferably 0.150%.
 Ca:0~0.0050%
 カルシウム(Ca)は任意元素であり、含有されなくてもよい。つまり、Ca含有量は0%であってもよい。Caが含有される場合、つまり、Caが0%超である場合、CaはMnSを微細化する。そのため、鋼材の耐食性及び耐水素脆性が高まる。Caが少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、Ca含有量が0.0050%を超えれば、他の元素含有量が本実施形態の範囲内であっても、粗大なCa酸化物が生成する。この場合、鋼材の耐食性及び耐水素脆性が低下する。
 したがって、Ca含有量は0~0.0050%である。
 Ca含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0002%であり、さらに好ましくは0.0005%である。
 Ca含有量の好ましい上限は0.0040%であり、さらに好ましくは0.0030%である。
Ca: 0-0.0050%
Calcium (Ca) is an optional element and may not be included. That is, the Ca content may be 0%. When Ca is contained, that is, when Ca is more than 0%, Ca makes MnS fine. Therefore, the corrosion resistance and hydrogen embrittlement resistance of the steel material increases. If even a small amount of Ca is contained, the above effects can be obtained to some extent.
However, if the Ca content exceeds 0.0050%, coarse Ca oxides will be produced even if the contents of other elements are within the range of this embodiment. In this case, the corrosion resistance and hydrogen embrittlement resistance of the steel material decrease.
Therefore, the Ca content is 0 to 0.0050%.
The lower limit of the Ca content is preferably 0.0001%, more preferably 0.0002%, and still more preferably 0.0005%.
A preferable upper limit of the Ca content is 0.0040%, more preferably 0.0030%.
 Mg:0~0.0050%
 マグネシウム(Mg)は任意元素であり、含有されなくてもよい。つまり、Mg含有量は0%であってもよい。Mgが含有される場合、つまり、Mgが0%超である場合、MgはMnSを微細化する。そのため、鋼材の耐食性及び耐水素脆性が高まる。Mgが少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、Mg含有量が0.0050%を超えれば、他の元素含有量が本実施形態の範囲内であっても、粗大なMg酸化物が生成する。この場合、鋼材の耐食性及び耐水素脆性が低下する。
 したがって、Mg含有量は0~0.0050%である。
 Mg含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0002%であり、さらに好ましくは0.0005%である。
 Mg含有量の好ましい上限は0.0040%であり、さらに好ましくは0.0030%である。
Mg: 0-0.0050%
Magnesium (Mg) is an optional element and may not be included. That is, the Mg content may be 0%. When Mg is contained, that is, when Mg is more than 0%, Mg refines MnS. Therefore, the corrosion resistance and hydrogen embrittlement resistance of the steel material increases. If even a small amount of Mg is contained, the above effects can be obtained to some extent.
However, if the Mg content exceeds 0.0050%, coarse Mg oxides will be produced even if the contents of other elements are within the range of this embodiment. In this case, the corrosion resistance and hydrogen embrittlement resistance of the steel material decrease.
Therefore, the Mg content is between 0 and 0.0050%.
The preferable lower limit of the Mg content is 0.0001%, more preferably 0.0002%, and still more preferably 0.0005%.
A preferable upper limit of the Mg content is 0.0040%, more preferably 0.0030%.
 希土類元素(REM):0~0.0200%
 希土類元素(REM)は任意元素であり、含有されなくてもよい。つまり、REM含有量は0%であってもよい。REMが含有される場合、つまり、REMが0%超である場合、REMはMnSを微細化する。そのため、鋼材の耐食性及び耐水素脆性が高まる。REMが少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、REM含有量が0.0200%を超えれば、他の元素含有量が本実施形態の範囲内であっても、粗大な酸化物が生成する。この場合、鋼材の耐食性及び耐水素脆性が低下する。
 したがって、REM含有量は0~0.0200%である。
 REM含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0005%であり、さらに好ましくは0.0010%であり、さらに好ましくは0.0020%であり、さらに好ましくは0.0050%である。
 REM含有量の好ましい上限は0.0150%であり、さらに好ましくは0.0100%である。
Rare earth elements (REM): 0 to 0.0200%
Rare earth elements (REM) are optional elements and may not be included. That is, the REM content may be 0%. When REM is contained, that is, when REM is more than 0%, REM refines MnS. Therefore, the corrosion resistance and hydrogen embrittlement resistance of the steel material increases. If even a small amount of REM is contained, the above effects can be obtained to some extent.
However, if the REM content exceeds 0.0200%, coarse oxides will be produced even if the contents of other elements are within the range of this embodiment. In this case, the corrosion resistance and hydrogen embrittlement resistance of the steel material decrease.
Therefore, the REM content is between 0 and 0.0200%.
The lower limit of the REM content is preferably 0.0001%, more preferably 0.0005%, even more preferably 0.0010%, even more preferably 0.0020%, and even more preferably 0.0050%. %.
A preferable upper limit of the REM content is 0.0150%, more preferably 0.0100%.
 本明細書におけるREMとは、原子番号21番のスカンジウム(Sc)、原子番号39番のイットリウム(Y)、及び、ランタノイドである原子番号57番のランタン(La)~原子番号71番のルテチウム(Lu)からなる群から選択される1元素以上の元素である。本明細書におけるREM含有量とは、これらの元素の合計含有量である。 In this specification, REM refers to scandium (Sc) with an atomic number of 21, yttrium (Y) with an atomic number of 39, and lanthanoids such as lanthanum (La) with an atomic number of 57 to lutetium (with an atomic number of 71). One or more elements selected from the group consisting of Lu). The REM content in this specification is the total content of these elements.
 [鋼材の化学組成の測定方法]
 本実施形態の鋼材の化学組成は、JIS G0321:2017に準拠した周知の成分分析法で測定できる。具体的には、ドリルを用いて、鋼材の表面から1mm深さ以上の内部から、切粉を採取する。採取された切粉を酸に溶解させて溶液を得る。溶液に対して、ICP-AES(Inductively Coupled Plasma Atomic Emission Spectrometry)を実施して、化学組成の元素分析を実施する。C含有量及びS含有量については、周知の高周波燃焼法(燃焼-赤外線吸収法)により求める。N含有量及びO含有量については、周知の不活性ガス溶融-熱伝導度法を用いて求める。
[Method for measuring chemical composition of steel]
The chemical composition of the steel material of this embodiment can be measured by a well-known component analysis method based on JIS G0321:2017. Specifically, chips are collected from the inside of the steel material at a depth of 1 mm or more from the surface using a drill. The collected chips are dissolved in acid to obtain a solution. ICP-AES (Inductively Coupled Plasma Atomic Emission Spectrometry) is performed on the solution to perform elemental analysis of the chemical composition. The C content and S content are determined by the well-known high frequency combustion method (combustion-infrared absorption method). The N content and O content are determined using the well-known inert gas melting-thermal conductivity method.
 なお、各元素含有量は、本実施形態で規定された有効数字に基づいて、測定された数値の端数を四捨五入して、本実施形態で規定された各元素含有量の最小桁までの数値とする。例えば、本実施形態の鋼材のC含有量は小数第二位までの数値で規定される。したがって、C含有量は、測定された数値の小数第三位を四捨五入して得られた小数第二位までの数値とする。 In addition, the content of each element is determined by rounding off the fraction of the measured value based on the significant figures specified in this embodiment, and calculates the value to the smallest digit of the content of each element specified in this embodiment. do. For example, the C content of the steel material of this embodiment is defined as a value to the second decimal place. Therefore, the C content is a value obtained by rounding off the measured value to the second decimal place.
 本実施形態の鋼材のC含有量以外の他の元素含有量も同様に、測定された値に対して、本実施形態で規定された最小桁までの数値の端数を四捨五入して得られた値を、当該元素含有量とする。 Similarly, the content of other elements other than C content in the steel material of this embodiment is a value obtained by rounding off the measured value to the smallest digit specified in this embodiment. Let be the content of the element.
 なお、四捨五入とは、端数が5未満であれば切り捨て、端数が5以上であれば切り上げることを意味する。 Note that rounding means rounding down if the fraction is less than 5, and rounding up if the fraction is 5 or more.
 [(特徴2)式(1)について]
 本実施形態の鋼材の化学組成はさらに、各元素含有量が本実施形態の範囲内であることを前提として、さらに、式(1)を満たす。
 23<10×LN(Cu+0.5×Sn+2000×Tx)+100×(0.5×Ni+Mo)-100×(0.5×Ni+Mo)+30×(0.5×Ni+Mo)+10<39 (1)
 ここで、式(1)中の元素記号には、対応する元素の質量%での含有量が代入され、Txには、Co、Sb、Ge及びInからなる群から選択される1種以上の質量%での合計含有量が代入される。式(1)中のLNは自然対数を意味する。自然対数とは、ネイピア数eを底とする対数である。
[(Feature 2) Regarding formula (1)]
The chemical composition of the steel material of this embodiment further satisfies formula (1) on the premise that the content of each element is within the range of this embodiment.
23<10×LN(Cu+0.5×Sn+2000×Tx)+100×(0.5×Ni+Mo) 3 -100×(0.5×Ni+Mo) 2 +30×(0.5×Ni+Mo)+10<39 (1)
Here, the content in mass % of the corresponding element is substituted for the element symbol in formula (1), and Tx is one or more types selected from the group consisting of Co, Sb, Ge, and In. The total content in mass % is substituted. LN in formula (1) means natural logarithm. The natural logarithm is a logarithm whose base is Napier's number e.
 F1=10×LN(Cu+0.5×Sn+2000×Tx)+100×(0.5×Ni+Mo)-100×(0.5×Ni+Mo)+30×(0.5×Ni+Mo)+10と定義する。F1は、鋼材の耐食性及び耐水素脆性の指標である。 Define F1=10×LN(Cu+0.5×Sn+2000×Tx)+100×(0.5×Ni+Mo) 3 −100×(0.5×Ni+Mo) 2 +30×(0.5×Ni+Mo)+10. F1 is an index of corrosion resistance and hydrogen embrittlement resistance of steel materials.
 特徴1を満たす化学組成中の元素のうち、Cu、Sn、Co、Sb、Ge及びInは、塩化物イオンを含む環境において、耐食性を高めるとともに、腐食による還元反応による水素の発生も抑制する。水素の発生が抑制されれば、鋼材表面に接触する水素量が低減する。そのため、鋼材表面から鋼材内部に侵入する水素量も低減する。その結果、耐水素脆性が高まる。したがって、Cu、Sn、Co、Sb、Ge及びInは、耐食性を高めると共に、水素の発生を抑制して耐水素脆性を高める。 Among the elements in the chemical composition that satisfy Feature 1, Cu, Sn, Co, Sb, Ge, and In increase corrosion resistance in an environment containing chloride ions, and also suppress the generation of hydrogen due to reduction reactions caused by corrosion. If hydrogen generation is suppressed, the amount of hydrogen that comes into contact with the steel surface will be reduced. Therefore, the amount of hydrogen penetrating into the steel material from the surface of the steel material is also reduced. As a result, hydrogen embrittlement resistance increases. Therefore, Cu, Sn, Co, Sb, Ge, and In increase corrosion resistance and suppress hydrogen generation to increase hydrogen embrittlement resistance.
 さらに、特徴1の化学組成中の元素のうち、Ni及びMoは、特徴1を満たす化学組成中のSnとの相乗作用により、その含有量に応じて、耐食性及び耐水素脆性を高めたり、下げたりする。具体的には、特徴1を満たす化学組成において、Ni及びMoの含有量がある範囲では、耐食性及び耐水素脆性が高まるものの、異なる範囲では逆に、耐食性及び耐水素脆性が低下する。このようなNi及びMoによる耐食性及び耐水素脆性の高低は、Ni及びMoとSnとの相乗作用が影響していると考えられる。
 F1中の「100×(0.5×Ni+Mo)-100×(0.5×Ni+Mo)+30×(0.5×Ni+Mo)+10」は、三次式となっている。この三次式は、Snを含有する特徴1の化学組成において、Ni及びMo含有量と、耐食性及び耐水素脆性との関係を示す。
Furthermore, among the elements in the chemical composition of feature 1, Ni and Mo have a synergistic effect with Sn in the chemical composition that satisfies feature 1, and can increase or decrease corrosion resistance and hydrogen embrittlement resistance depending on their content. or Specifically, in a chemical composition that satisfies characteristic 1, corrosion resistance and hydrogen embrittlement resistance increase when the content of Ni and Mo is in a certain range, but conversely, corrosion resistance and hydrogen embrittlement resistance decrease in a different range. The level of corrosion resistance and hydrogen embrittlement resistance due to Ni and Mo is considered to be influenced by the synergistic effect of Ni and Mo with Sn.
“100×(0.5×Ni+Mo) 3 −100×(0.5×Ni+Mo) 2 +30×(0.5×Ni+Mo)+10” in F1 is a cubic equation. This cubic equation shows the relationship between the Ni and Mo contents and the corrosion resistance and hydrogen embrittlement resistance in the chemical composition of Feature 1 containing Sn.
 F1が23よりも高く、39未満である場合、特徴1を満たす化学組成において、Cu、Sn、Co、Sb、Ge及びInの含有量、及び、Ni、Mo含有量との関係が適切である。そのため、塩化物イオンを含む腐食環境において、優れた耐食性及び優れ耐水素脆性を両立できる。 When F1 is higher than 23 and lower than 39, the relationship between the contents of Cu, Sn, Co, Sb, Ge, and In, and the contents of Ni and Mo is appropriate in the chemical composition that satisfies characteristic 1. . Therefore, it is possible to achieve both excellent corrosion resistance and excellent hydrogen embrittlement resistance in a corrosive environment containing chloride ions.
 したがって、F1は23よりも高く、39未満である。
 F1の好ましい下限は24であり、さらに好ましくは25であり、さらに好ましくは26である。
 F1の好ましい上限は38であり、さらに好ましくは36であり、さらに好ましくは34である。
Therefore, F1 is higher than 23 and less than 39.
The lower limit of F1 is preferably 24, more preferably 25, and still more preferably 26.
The upper limit of F1 is preferably 38, more preferably 36, and still more preferably 34.
 F1値は整数とする。つまり、F1値は、得られた値の小数第一位を四捨五入して得られた値である。 The F1 value shall be an integer. That is, the F1 value is a value obtained by rounding off the obtained value to the first decimal place.
 [本実施形態の鋼材のミクロ組織について]
 本実施形態の鋼材のミクロ組織は、特に限定されない。本実施形態の鋼材が、締結部材として使用される場合、鋼材の硬さが高すぎれば、焼鈍処理が実施される。焼鈍された鋼材の冷間鍛造性は高まる。そのため、本実施形態の鋼材を素材として冷間鍛造を実施し、締結部材を製造することが可能である。したがって、本実施形態の鋼材のミクロ組織は特に限定されない。
[About the microstructure of the steel material of this embodiment]
The microstructure of the steel material of this embodiment is not particularly limited. When the steel material of this embodiment is used as a fastening member, if the hardness of the steel material is too high, annealing treatment is performed. The cold forgeability of annealed steel increases. Therefore, it is possible to manufacture a fastening member by performing cold forging using the steel material of this embodiment as a raw material. Therefore, the microstructure of the steel material of this embodiment is not particularly limited.
 例えば、鋼材の直径をDとしたとき、鋼材の長手方向に垂直な断面において、鋼材の表面から径方向にD/4深さ位置でのミクロ組織において、パーライトの面積率は10%以下であり、パーライト以外の部分は、ポリゴナルフェライト、ベイニティックフェライト、アシキュラーフェライト、及び、マルテンサイトからなる群から選択される1種以上からなる。なお、本明細書において、パーライトは、疑似パーライトを含む。図1に、本実施形態の鋼材のD/4深さ位置でのミクロ組織の写真画像の一例を示す。図1中の明度の低い部分はパーライトであり、パーライト以外の部分は、ポリゴナルフェライト、ベイニティックフェライト、アシキュラーフェライト、及び、マルテンサイトからなる群から選択される1種以上からなる。ただし、本実施形態の鋼材のミクロ組織は、上述のミクロ組織に限定されない。 For example, when the diameter of the steel material is D, in the cross section perpendicular to the longitudinal direction of the steel material, the area ratio of pearlite in the microstructure at a depth of D/4 in the radial direction from the surface of the steel material is 10% or less. The portion other than pearlite is made of one or more selected from the group consisting of polygonal ferrite, bainitic ferrite, acicular ferrite, and martensite. Note that in this specification, pearlite includes pseudo pearlite. FIG. 1 shows an example of a photographic image of the microstructure of the steel material of this embodiment at a depth of D/4. The portion with low brightness in FIG. 1 is pearlite, and the portion other than pearlite is made of one or more selected from the group consisting of polygonal ferrite, bainitic ferrite, acicular ferrite, and martensite. However, the microstructure of the steel material of this embodiment is not limited to the above-mentioned microstructure.
 [ミクロ組織観察方法]
 鋼材のミクロ組織は、次の方法で観察できる。
 鋼材の長手方向に垂直な断面において、鋼材の表面から径方向にD/4深さ位置を含む表面を観察面と定義する。ここで、上述のとおり、Dは鋼材の直径を意味する。観察面を含むサンプルを採取する。サンプルの観察面を鏡面研磨する。鏡面研磨された観察面に対して、3%硝酸アルコール(ナイタール腐食液)を用いてエッチングを行う。エッチングされた観察面のうち、任意の観察視野(0.5mm×0.5mm)を、500倍の光学顕微鏡で観察する。観察視野中で各組織を特定し、面積率(%)を求める。
[Microstructure observation method]
The microstructure of steel can be observed using the following method.
In a cross section perpendicular to the longitudinal direction of the steel material, a surface including a position at a depth of D/4 in the radial direction from the surface of the steel material is defined as an observation surface. Here, as mentioned above, D means the diameter of the steel material. Collect a sample including the observation surface. Mirror-polish the observation surface of the sample. Etching is performed on the mirror-polished observation surface using 3% nitric alcohol (nital etching solution). An arbitrary observation field (0.5 mm x 0.5 mm) of the etched observation surface is observed with a 500x optical microscope. Identify each tissue in the observation field and calculate the area ratio (%).
 [本実施形態の鋼材の用途]
 本実施形態の鋼材は、産業機械、自動車、橋梁及び建築物等の締結部材の素材として適用可能である。ここで、締結部材は、ボルト、ナット、及び座金を含む。本実施形態の鋼材の形状は特に限定されない。鋼材の形状は棒鋼又は線材であってもよいし、鋼板であってもよい。
[Applications of steel material of this embodiment]
The steel material of this embodiment is applicable as a material for fastening members of industrial machines, automobiles, bridges, buildings, etc. Here, the fastening members include bolts, nuts, and washers. The shape of the steel material of this embodiment is not particularly limited. The shape of the steel material may be a steel bar or wire rod, or may be a steel plate.
 [鋼材の製造方法]
 本実施形態の鋼材の製造方法の一例を説明する。以降に説明する鋼材の製造方法は、本実施形態の鋼材を製造するための一例である。したがって、上述の構成を有する鋼材は、以降に説明する製造方法以外の他の製造方法により製造されてもよい。しかしながら、以降に説明する製造方法は、本実施形態の鋼材の製造方法の好ましい一例である。
[Manufacturing method of steel materials]
An example of the method for manufacturing steel materials of this embodiment will be described. The method for manufacturing steel materials described below is an example for manufacturing the steel materials of this embodiment. Therefore, the steel material having the above-mentioned configuration may be manufactured by a manufacturing method other than the manufacturing method described below. However, the manufacturing method described below is a preferable example of the method for manufacturing the steel material of this embodiment.
 本実施形態の鋼材の製造方法の一例は、次の工程を含む。
 (工程1)素材を準備する工程(素材準備工程)
 (工程2)素材を熱間加工して鋼材を製造する工程(熱間加工工程)
 以下、各工程について説明する。
An example of the method for manufacturing steel materials of this embodiment includes the following steps.
(Process 1) Process of preparing materials (material preparation process)
(Process 2) Process of manufacturing steel products by hot processing materials (hot processing process)
Each step will be explained below.
 [(工程1)素材準備工程]
 素材準備工程では、本実施形態の鋼材の素材を準備する。具体的には、化学組成中の各元素含有量が本実施形態の範囲内である溶鋼を製造する。精錬方法は特に限定されず、周知の方法を用いればよい。例えば、周知の方法で製造された溶銑に対して転炉での精錬(一次精錬)を実施する。転炉から出鋼した溶鋼に対して、周知の二次精錬を実施する。二次精錬において、溶鋼中の合金元素の含有量を調整して、各元素含有量が本実施形態の範囲内である化学組成を有する溶鋼を製造する。
[(Process 1) Material preparation process]
In the material preparation step, a material for the steel material of this embodiment is prepared. Specifically, molten steel whose chemical composition contains each element within the range of this embodiment is manufactured. The refining method is not particularly limited, and any known method may be used. For example, molten metal produced by a well-known method is subjected to refining (primary refining) in a converter. Well-known secondary refining is performed on the molten steel tapped from the converter. In the secondary refining, the content of alloying elements in the molten steel is adjusted to produce molten steel having a chemical composition in which the content of each element is within the range of this embodiment.
 上述の精錬方法により製造された溶鋼を用いて、周知の鋳造法により素材を製造する。例えば、溶鋼を用いて造塊法によりインゴットを製造してもよい。又は、溶鋼を用いて連続鋳造法によりブルーム又はビレットを製造してもよい。以上の方法により、素材(インゴット、ブルーム又はビレット)を製造する。 Using the molten steel produced by the above-mentioned refining method, a material is produced by a well-known casting method. For example, an ingot may be manufactured by an ingot-forming method using molten steel. Alternatively, blooms or billets may be manufactured by continuous casting using molten steel. A material (ingot, bloom, or billet) is manufactured by the above method.
 [(工程2)熱間加工工程]
 熱間加工工程では、素材準備工程にて準備された素材(インゴット、ブルーム又はビレット)に対して、熱間加工を実施して、本実施形態の鋼材を製造する。鋼材の形状は特に限定されないが、例えば、棒鋼又は線材である。以下の説明では、一例として鋼材が棒鋼又は線材である場合について説明する。しかしながら、鋼材が鋼板であっても、同様の熱間加工工程で製造可能である。
[(Step 2) Hot processing step]
In the hot working step, hot working is performed on the material (ingot, bloom, or billet) prepared in the material preparation step to manufacture the steel material of this embodiment. Although the shape of the steel material is not particularly limited, it is, for example, a steel bar or a wire rod. In the following description, a case where the steel material is a steel bar or a wire rod will be described as an example. However, even if the steel material is a steel plate, it can be manufactured using the same hot working process.
 熱間加工工程は、次の工程を含む。各工程での主要な条件は次のとおりである。
 (工程21)分塊圧延工程
 (工程22)仕上げ圧延工程
 (工程23)冷却工程
 以下、各工程について説明する。
The hot working process includes the following steps. The main conditions in each step are as follows.
(Step 21) Blooming rolling step (Step 22) Finish rolling step (Step 23) Cooling step Each step will be explained below.
 [(工程21)分塊圧延工程]
 分塊圧延工程では、素材を熱間圧延してビレットを製造する。
 具体的には、分塊圧延工程では、分塊圧延機により素材に対して熱間圧延(分塊圧延)を実施して、ビレットを製造する。分塊圧延機の下流に連続圧延機が配置されている場合、分塊圧延後のビレットに対してさらに、連続圧延機を用いて熱間圧延を実施して、さらにサイズの小さいビレットを製造してもよい。連続圧延機では、一対の水平ロールを有する水平スタンドと、一対の垂直ロールを有する垂直スタンドとが交互に一列に配列される。以上のとおり、分塊圧延工程では、分塊圧延機を用いて、又は、分塊圧延機と連続圧延機とを用いて、素材をビレットに製造する。
[(Step 21) Blooming rolling step]
In the blooming process, a billet is manufactured by hot rolling a material.
Specifically, in the blooming process, a billet is manufactured by hot rolling (blending) the material using a blooming mill. When a continuous rolling mill is installed downstream of the blooming mill, the billet after blooming is further hot-rolled using the continuous mill to produce a billet with a smaller size. It's okay. In a continuous rolling mill, horizontal stands having a pair of horizontal rolls and vertical stands having a pair of vertical rolls are alternately arranged in a line. As described above, in the blooming rolling process, a material is manufactured into a billet using a blooming mill or a blooming mill and a continuous rolling mill.
 分塊圧延工程での加熱温度は、周知の温度範囲でよい。加熱温度は例えば、1100~1300℃である。分塊圧延工程により製造されたビレットは、仕上げ圧延工程前に、常温まで放冷(空冷)される。 The heating temperature in the blooming process may be within a known temperature range. The heating temperature is, for example, 1100 to 1300°C. The billet produced by the blooming process is allowed to cool (air cool) to room temperature before the finish rolling process.
 [(工程22)仕上げ圧延工程]
 仕上げ圧延工程では、初めに、常温まで冷却されたビレットを、加熱炉を用いて加熱する。加熱後のビレットに対して、連続圧延機を用いて熱間圧延を実施して、鋼材である棒鋼又は線材を製造する。
[(Step 22) Finish rolling step]
In the finish rolling process, first, the billet, which has been cooled to room temperature, is heated using a heating furnace. The heated billet is hot rolled using a continuous rolling mill to produce a steel bar or wire rod.
 仕上げ圧延工程での加熱炉での加熱温度は周知の範囲でよい。加熱温度は例えば、900~1050℃である。仕上げ圧延工程では、一列に配列された複数の圧延スタンドを備える連続圧延機により熱間圧延(仕上げ圧延)を実施する。連続圧延機を用いた熱間圧延において、最後に鋼材を圧下したスタンドの出側での鋼材温度を、仕上げ温度(℃)と定義する。仕上げ温度は、周知の範囲でよい。仕上げ温度は例えば、800~900℃未満である。 The heating temperature in the heating furnace in the finish rolling process may be within a known range. The heating temperature is, for example, 900 to 1050°C. In the finish rolling process, hot rolling (finish rolling) is performed using a continuous rolling mill equipped with a plurality of rolling stands arranged in a row. In hot rolling using a continuous rolling mill, the temperature of the steel material at the exit side of the stand where the steel material is finally rolled is defined as the finishing temperature (°C). The finishing temperature may be within a known range. The finishing temperature is, for example, less than 800-900°C.
 [(工程23)冷却工程]
 冷却工程では、仕上げ圧延工程後の鋼材を冷却する。ここで、仕上げ温度FT~300℃での冷却速度の算術平均値(℃/秒)を平均冷却速度と定義する。平均冷却速度は周知の範囲でよい。平均冷却速度CR1は例えば、0.6~1.8℃/秒である。
[(Step 23) Cooling step]
In the cooling process, the steel material after the finish rolling process is cooled. Here, the arithmetic mean value (°C/sec) of the cooling rate at the finishing temperature FT to 300°C is defined as the average cooling rate. The average cooling rate may be within a known range. The average cooling rate CR1 is, for example, 0.6 to 1.8°C/sec.
 なお、上述の製造工程の熱間加工工程では、分塊圧延工程を実施せずに、仕上げ圧延工程を実施してもよい。つまり、分塊圧延工程は任意の工程である。例えば、素材準備工程でビレットを準備した場合、分塊圧延工程を省略して、仕上げ圧延工程を実施してもよい。 In addition, in the hot working step of the above-mentioned manufacturing process, a finish rolling step may be performed without implementing the blooming rolling step. In other words, the blooming process is an arbitrary process. For example, when a billet is prepared in the material preparation process, the blooming process may be omitted and the finish rolling process may be performed.
 [本実施形態の締結部材について]
 本実施形態の締結部材は、上述の本実施形態の鋼材で構成される。つまり、本実施形態の締結部材は、特徴1及び特徴2を満たす。上述のとおり、締結部材は例えば、ボルト、ナット、及び座金等である。
[About the fastening member of this embodiment]
The fastening member of this embodiment is made of the steel material of this embodiment described above. In other words, the fastening member of this embodiment satisfies Feature 1 and Feature 2. As mentioned above, the fastening members are, for example, bolts, nuts, washers, and the like.
 [本実施形態の鋼材で構成される締結部材の製造方法]
 本実施形態の鋼材で構成される締結部材の製造方法は、周知の製造方法である。締結部材の製造方法は例えば、次の工程を含む。
 (工程31)伸線加工工程
 (工程32)冷間鍛造工程
 (工程33)焼入れ及び焼もどし工程
 以下、各工程について説明する。
[Method for manufacturing fastening member made of steel material of this embodiment]
The method of manufacturing the fastening member made of steel according to this embodiment is a well-known manufacturing method. For example, the method for manufacturing a fastening member includes the following steps.
(Step 31) Wire drawing process (Step 32) Cold forging process (Step 33) Quenching and tempering process Each process will be explained below.
 [(工程31)伸線加工工程]
 伸線加工工程では、上述の鋼材に対して周知の伸線加工を実施して鋼線を製造する。伸線加工は、一次伸線のみであってもよいし、二次伸線等、複数回の伸線加工を実施してもよい。
[(Step 31) Wire drawing process]
In the wire drawing process, a well-known wire drawing process is performed on the above-mentioned steel material to produce a steel wire. The wire drawing process may be only a primary wire drawing process, or may be performed multiple times, such as a secondary wire drawing process.
 [(工程32)冷間鍛造工程]
 冷間鍛造工程では、伸線加工工程後の鋼線に対して、周知の冷間鍛造を実施して、締結部材の形状を有する中間品を製造する。
[(Step 32) Cold forging process]
In the cold forging process, the steel wire after the wire drawing process is subjected to well-known cold forging to produce an intermediate product having the shape of a fastening member.
 [(工程33)焼入れ及び焼もどし工程]
 焼入れ及び焼もどし工程では、中間品に対して、焼入れ及び焼もどしを実施する。
[(Step 33) Quenching and tempering step]
In the quenching and tempering process, the intermediate product is quenched and tempered.
 [焼入れ]
 焼入れは周知の方法で実施される。焼入れ温度及び焼入れ温度での保持時間は周知の範囲でよい。焼入れ温度は例えば、840~970℃である。焼入れ温度での保持時間は例えば、15分~360分(6時間)である。保持時間経過後の中間品を急冷する。具体的には、中間品に対して水冷又は油冷を実施する。
[Quenching]
Hardening is performed in a known manner. The quenching temperature and the holding time at the quenching temperature may be within known ranges. The quenching temperature is, for example, 840 to 970°C. The holding time at the quenching temperature is, for example, 15 minutes to 360 minutes (6 hours). After the holding time has elapsed, the intermediate product is rapidly cooled. Specifically, the intermediate product is water-cooled or oil-cooled.
 [焼もどし]
 焼入れ後の中間品に対して、焼もどしを実施する。焼もどし温度及び焼もどし温度での保持時間は周知の範囲でよい。焼もどし温度は例えば、400~550℃である。焼もどし温度での保持時間は、0.5~6.0時間である。
[Tempered]
Tempering is performed on the intermediate product after quenching. The tempering temperature and the holding time at the tempering temperature may be within known ranges. The tempering temperature is, for example, 400 to 550°C. The holding time at the tempering temperature is 0.5 to 6.0 hours.
 以上の製造方法により、本実施形態の鋼材で構成される締結部材を製造することができる。製造された締結部材では、塩化物イオンを含む腐食環境において、十分な耐食性及び十分な耐水素脆性が得られる。 With the above manufacturing method, a fastening member made of the steel material of this embodiment can be manufactured. The manufactured fastening member has sufficient corrosion resistance and sufficient hydrogen embrittlement resistance in a corrosive environment containing chloride ions.
 実施例により本実施形態の鋼材の効果をさらに具体的に説明する。以下の実施例での条件は、本実施形態の鋼材の実施可能性及び効果を確認するために採用した一条件例である。したがって、本実施形態の鋼材はこの一条件例に限定されない。 The effects of the steel material of this embodiment will be explained in more detail with examples. The conditions in the following examples are examples of conditions adopted to confirm the feasibility and effects of the steel material of this embodiment. Therefore, the steel material of this embodiment is not limited to this one example condition.
 [素材準備工程]
 表1-1及び表1-2に示す化学組成を有する溶鋼を製造した。溶鋼を用いて連続鋳造法により素材(鋳片)を製造した。
[Material preparation process]
Molten steel having the chemical composition shown in Tables 1-1 and 1-2 was produced. Materials (slabs) were manufactured using molten steel using a continuous casting method.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 [熱間加工工程]
 製造した素材に対して分塊圧延工程を実施して、ビレットを製造した。分塊圧延工程では、素材を1100~1300℃に加熱した後、分塊圧延機及び連続圧延機を用いて熱間圧延を実施した。分塊圧延工程により製造されたビレットを常温まで放冷した。
[Hot processing process]
The produced material was subjected to a blooming rolling process to produce a billet. In the blooming rolling process, the material was heated to 1100 to 1300°C and then hot rolled using a blooming mill and a continuous rolling mill. The billet produced by the blooming process was allowed to cool to room temperature.
 製造されたビレットに対して、仕上げ圧延工程を実施した。仕上げ圧延工程では、ビレットを900~1050℃で加熱した。加熱後のビレットに対して、連続圧延機を用いて熱間圧延を実施して、直径22mmの鋼材(棒鋼)を製造した。熱間圧延での仕上げ温度は800~900℃未満であった。熱間圧延後の鋼材(棒鋼)に対して冷却を実施した。このとき、仕上げ温度~300℃までの平均冷却速度は0.6~1.8℃/秒であった。 A finish rolling process was performed on the manufactured billet. In the finish rolling process, the billet was heated at 900 to 1050°C. The heated billet was hot rolled using a continuous rolling mill to produce a steel material (steel bar) with a diameter of 22 mm. The finishing temperature during hot rolling was 800 to less than 900°C. Cooling was performed on the steel material (steel bar) after hot rolling. At this time, the average cooling rate from the finishing temperature to 300°C was 0.6 to 1.8°C/sec.
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
 以上の製造工程により、各試験番号の鋼材を製造した。 Through the above manufacturing process, steel materials of each test number were manufactured.
 [評価試験について]
 製造された各試験番号の鋼材に対して、次の鋼材評価試験(試験1~試験4)を実施した。
 (試験1)鋼材の化学組成測定試験
 (試験2)熱間加工性評価試験
 (試験3)耐食性評価試験
 (試験4)耐水素脆性評価試験
 以下、各試験について説明する。
[About the evaluation test]
The following steel evaluation tests (Test 1 to Test 4) were conducted on the manufactured steel materials with each test number.
(Test 1) Steel chemical composition measurement test (Test 2) Hot workability evaluation test (Test 3) Corrosion resistance evaluation test (Test 4) Hydrogen embrittlement resistance evaluation test Each test will be explained below.
 [(試験1)鋼材の化学組成測定試験]
 各試験番号の鋼材(棒鋼)に対して、上述の[鋼材の化学組成の測定方法]に基づいて化学組成を分析した。その結果、いずれの試験番号の化学組成も、表1-1及び表1-2に示すとおりであった。
[(Test 1) Steel chemical composition measurement test]
The chemical composition of the steel material (steel bar) of each test number was analyzed based on the above-mentioned [method for measuring chemical composition of steel material]. As a result, the chemical compositions of all test numbers were as shown in Tables 1-1 and 1-2.
 [(試験2)熱間加工性評価試験]
 各試験番号の鋼材(棒鋼)に対して、熱間加工工程時に割れが発生したか否かを確認した。熱間加工中に割れが発生した場合、熱間加工性が低いと判断した(表2中の「熱間加工性」欄で「B」(Bad)と記載)。一方、熱間加工工程時に鋼材に割れが生じなかった場合、熱間加工性に優れると判断した(表2中の「熱間加工性」欄で「E」(Excellent)と記載)。
[(Test 2) Hot workability evaluation test]
It was confirmed whether or not cracks occurred during the hot working process for the steel materials (steel bars) of each test number. When cracking occurred during hot working, hot workability was determined to be low (described as "B" (Bad) in the "hot workability" column in Table 2). On the other hand, if no cracks occurred in the steel material during the hot working process, it was determined that the steel material had excellent hot workability (described as "E" (Excellent) in the "hot workability" column in Table 2).
 [(試験3)耐食性評価試験]
 各試験番号の鋼材の耐食性を、次の試験により評価した。
 耐食性評価試験では、耐食性の評価のしやすさを考慮して、棒鋼を素材とせず、棒鋼を代替した各試験番号の鋼板を次の方法で製造した。具体的には、表1-1及び表1-2の化学組成を有する素材に対して仕上げ圧延工程及び冷却工程を実施して、板厚が6mmの各試験番号の鋼板を製造した。仕上げ圧延開始時の鋼板温度は900~1050℃であった。仕上げ温度は800~900℃未満であった。仕上げ温度~300℃までの平均冷却速度は0.6~1.8℃/秒であった。
[(Test 3) Corrosion resistance evaluation test]
The corrosion resistance of the steel materials of each test number was evaluated by the following test.
In the corrosion resistance evaluation test, considering the ease of evaluating corrosion resistance, steel plates of each test number were manufactured using the following method instead of using steel bars as the material. Specifically, a finish rolling process and a cooling process were performed on the materials having the chemical compositions shown in Tables 1-1 and 1-2 to produce steel plates having a thickness of 6 mm and each test number. The steel plate temperature at the start of finish rolling was 900 to 1050°C. The finishing temperature was below 800-900°C. The average cooling rate from finishing temperature to 300°C was 0.6-1.8°C/sec.
 鋼板に対して、ボルトの製造工程を模擬した焼入れ及び焼もどしを実施した。焼入れは熱処理炉を用いて実施した。焼入れ温度を880℃とし、焼入れ温度での保持時間を60分とした。保持時間経過後の鋼板を60℃の油に浸漬して、焼入れを行った。なお、熱処理炉内はArガスを充填した雰囲気とし、鋼板の脱炭を抑制した。焼入れ処理後に焼もどしを実施した。焼もどしは熱処理炉を用いて実施した。焼もどし温度を450℃とし、焼もどし温度での保持時間を90分とした。 Hardening and tempering were performed on the steel plate, simulating the manufacturing process of bolts. Hardening was performed using a heat treatment furnace. The quenching temperature was 880°C, and the holding time at the quenching temperature was 60 minutes. After the holding time had elapsed, the steel plate was immersed in oil at 60°C to perform quenching. The inside of the heat treatment furnace was filled with Ar gas to suppress decarburization of the steel sheet. Tempering was performed after the hardening process. Tempering was performed using a heat treatment furnace. The tempering temperature was 450°C, and the holding time at the tempering temperature was 90 minutes.
 焼入れ処理及び焼もどしが実施された鋼板から、100mm×60mm×厚さ3mmの板状試験片を採取した。採取した板状試験片の表面に対してショットブラストを実施して、板状試験片の表面において、JIS B0601:2001に準拠した十点平均粗さRzjisが75μmとなるように調整した。 A plate-shaped test piece measuring 100 mm x 60 mm x 3 mm in thickness was taken from the steel plate that had been quenched and tempered. Shot blasting was performed on the surface of the sampled plate-shaped test piece, and the ten-point average roughness Rzjis based on JIS B0601:2001 was adjusted to 75 μm on the surface of the plate-shaped test piece.
 ショットブラスト後の板状試験片の表面に塗装を行い、厚さ120μmの下塗り(神東塗料株式会社製の商品名:ネオゴーセイ#2300PS)、厚さ30μmの中塗り(神東塗料株式会社製の商品名:シントーフロン#100)、厚さ25μmの上塗り(神東塗料株式会社製の商品名:シントーフロン#100)で構成される塗膜を形成した。 The surface of the plate-shaped test piece after shot blasting was coated with a 120 μm thick undercoat (trade name: Neo Gosei #2300PS, manufactured by Shinto Paint Co., Ltd.) and a 30 μm thick intermediate coat (trade name: Shinto Paint Co., Ltd.). A coating film was formed consisting of a 25 μm thick topcoat (trade name: Syntoflon #100, manufactured by Shinto Paint Co., Ltd.).
 カッターを用いて素地(鋼板)に達する塗膜欠陥を形成した。塗膜欠陥の総長さを500mmとした。 A cutter was used to form coating film defects that reached the base (steel plate). The total length of the coating film defect was 500 mm.
 塗膜欠陥を有する板状試験片を用いて、塩水浸漬が可能な乾湿繰り返し試験機により、米国規格SAE J2334に準拠した腐食試験を実施した。具体的には、次の3つのステップ(合計24時間)を1サイクルとする試験を実施した。
 (ステップ1:湿潤工程)
 板状試験片を50℃、相対湿度100%RHの環境で、6時間保持する。
 (ステップ2:塩水浸漬工程)
 ステップ1後の板状試験片を、0.5%NaCl、0.1%CaCl及び0.075%NaHCOを含有する、pH8の水溶液中に15分間浸漬する。
 (ステップ3:乾燥工程)
 ステップ2後の板状試験片を、60℃、相対湿度50%RHの環境で、17.75時間保持する。保持後の板状試験片を乾燥する。
A corrosion test based on the American standard SAE J2334 was conducted using a dry-wet cycle tester capable of immersion in salt water using a plate-shaped test piece having a coating film defect. Specifically, a test was conducted in which one cycle consisted of the following three steps (24 hours in total).
(Step 1: Wetting process)
The plate-shaped test piece is held in an environment of 50° C. and 100% RH for 6 hours.
(Step 2: Salt water immersion process)
The plate specimen after step 1 is immersed for 15 minutes in an aqueous solution containing 0.5% NaCl, 0.1% CaCl 2 and 0.075% NaHCO 3 at pH 8.
(Step 3: Drying process)
The plate-shaped test piece after step 2 is held in an environment of 60° C. and relative humidity of 50% RH for 17.75 hours. Dry the plate-shaped specimen after holding.
 上記ステップ1~ステップ3を1サイクルとして、80サイクル実施した。 Eighty cycles were performed, with the steps 1 to 3 described above being one cycle.
 80サイクル実施後の板状試験片の塗膜のうち、塗膜欠陥を起点とし、試験片表面から剥離している塗膜部分(以下、塗膜剥離部という)をカッターで除去した。塗膜剥離部を除去した後、板状試験片の塗膜を平面視した画像を生成した。画像処理により、板状試験片の表面のうち、塗膜が残存している領域と鋼板が露出している領域(塗膜剥離部)とを区別した。そして、塗膜剥離部の総面積(剥離面積)を求めた。塗膜剥離部の総面積と、板状試験片の塗膜が形成された表面の面積とに基づいて、塗膜の剥離面積率(%)を求めた。求めた剥離面積率を表2の「剥離面積率(%)」欄に示す。 Of the coating film on the plate-shaped test piece after 80 cycles, the part of the coating film that had peeled off from the surface of the test piece (hereinafter referred to as the peeled part of the coating film) starting from the coating film defect was removed using a cutter. After removing the peeled part of the paint film, an image of the paint film of the plate-shaped test piece in plan view was generated. By image processing, on the surface of the plate-shaped test piece, a region where the paint film remained and a region where the steel plate was exposed (paint film peeled part) were distinguished. Then, the total area of the peeled part of the paint film (peeled area) was determined. The peeled area ratio (%) of the paint film was determined based on the total area of the peeled part of the paint film and the area of the surface of the plate-shaped test piece on which the paint film was formed. The obtained peeled area ratio is shown in the "peeled area ratio (%)" column of Table 2.
 [(試験4)耐水素脆性評価試験]
 各試験番号の鋼材の耐水素脆性を、次の試験により評価した。
 初めに、鋼材(棒鋼)に対して、ボルトの製造工程を模擬した焼入れ及び焼もどしを実施した。焼入れは熱処理炉を用いて実施した。焼入れ温度を880℃とし、焼入れ温度での保持時間を60分とした。保持時間経過後の鋼材を60℃の油に浸漬して、油焼入れを行った。なお、熱処理炉内はArガスを充填した雰囲気とし、鋼材の脱炭を抑制した。焼入れ後に焼もどしを実施した。焼もどしは熱処理炉を用いて実施した。焼もどし温度を450℃とし、焼もどし温度での保持時間を90分とした。
[(Test 4) Hydrogen embrittlement resistance evaluation test]
The hydrogen embrittlement resistance of the steel materials of each test number was evaluated by the following test.
First, the steel material (steel bar) was quenched and tempered to simulate the manufacturing process of bolts. Hardening was performed using a heat treatment furnace. The quenching temperature was 880°C, and the holding time at the quenching temperature was 60 minutes. After the holding time had elapsed, the steel material was immersed in oil at 60°C to perform oil quenching. Note that the inside of the heat treatment furnace was filled with Ar gas to suppress decarburization of the steel material. Tempering was performed after quenching. Tempering was performed using a heat treatment furnace. The tempering temperature was 450°C, and the holding time at the tempering temperature was 90 minutes.
 以上の焼入れ処理及び焼もどし処理を実施した各試験番号の鋼材の侵入水素量を、次の方法で測定した(侵入水素量調査試験)。
 初めに、鋼材(棒鋼)の軸方向に垂直な断面における中心位置から試験片を採取した。試験片は直径7mm、長さ100mmの丸棒試験片とした。試験片の中心軸は、鋼材と同軸とした。試験片は各試験番号ごとに2本準備した。
The amount of penetrating hydrogen in the steel materials of each test number subjected to the above quenching and tempering treatments was measured by the following method (invading hydrogen amount investigation test).
First, a test piece was taken from the center of a cross section perpendicular to the axial direction of a steel material (steel bar). The test piece was a round bar test piece with a diameter of 7 mm and a length of 100 mm. The central axis of the test piece was coaxial with the steel material. Two test pieces were prepared for each test number.
 米国規格SAE J2334に準拠した腐食試験を実施し、腐食試験後の各試験片の侵入水素量を測定した。 A corrosion test was conducted in accordance with the American standard SAE J2334, and the amount of hydrogen penetrating each specimen after the corrosion test was measured.
 具体的には、試験3のステップ1~ステップ3を1サイクルとして、56サイクル試験後の試験片について侵入水素量を測定した。腐食試験後の試験片に侵入した水素が離脱しないように、侵入水素量を測定する直前まで、腐食試験後の試験片を液体窒素中に浸漬した。侵入水素量の測定前に、サンドブラストを使って試験片の表面に付着した腐食生成物を完全に除去した。腐食生成物を除去した試験片に対して、昇温脱離分析装置を用いて侵入水素量を測定した。具体的には、昇温脱離分析装置により室温から200℃までに脱離反応によって検出された拡散性水素量を測定し、侵入水素量とした。得られた2本の試験片の侵入水素量の算術平均値を、その試験番号の鋼材の侵入水素量He(ppm)と定義した。 Specifically, Steps 1 to 3 of Test 3 were taken as one cycle, and the amount of hydrogen penetrating was measured for the test piece after the 56-cycle test. In order to prevent the hydrogen that had entered the test piece after the corrosion test from leaving, the test piece after the corrosion test was immersed in liquid nitrogen until just before the amount of hydrogen that had entered was measured. Before measuring the amount of penetrating hydrogen, the corrosion products adhering to the surface of the test piece were completely removed using sandblasting. The amount of penetrating hydrogen was measured using a temperature programmed desorption analyzer for the test piece from which corrosion products had been removed. Specifically, the amount of diffusible hydrogen detected by a desorption reaction from room temperature to 200° C. was measured using a temperature-programmed desorption analyzer, and was defined as the amount of intruded hydrogen. The arithmetic mean value of the amount of penetrating hydrogen of the two obtained test pieces was defined as the amount of penetrating hydrogen He (ppm) of the steel material of that test number.
 続いて、次の方法により、耐水素脆性評価試験を実施した。 Subsequently, a hydrogen embrittlement resistance evaluation test was conducted using the following method.
 上述の焼入れ及び焼もどしを実施した鋼材(棒鋼)の軸方向に垂直な断面における中心位置から試験片を採取した。試験片は直径7mm、長さ70mmの環状切欠き付き丸棒試験片とした。試験片の長手方向中央位置には、環状の切欠きを形成した。切欠きの深さは1.4mm、切欠き角度は60°であり、切欠き底の曲率半径は0.175mmであった。 A test piece was taken from the center position of the cross section perpendicular to the axial direction of the steel material (steel bar) that had been quenched and tempered as described above. The test piece was a round bar test piece with an annular notch having a diameter of 7 mm and a length of 70 mm. An annular notch was formed at the longitudinal center of the test piece. The depth of the notch was 1.4 mm, the notch angle was 60°, and the radius of curvature of the notch bottom was 0.175 mm.
 準備した環状切り欠き付き丸棒試験片を用いて、SSRT(Slow Strain Rate Technique)試験を実施した。具体的には、3%NaCl溶液に3g/LのNHSCNを加えた水素チャージ溶液を準備した。水素チャージ溶液中に環状切欠き付き丸棒試験片を浸漬した状態で、試験片に付与する電流密度を調整し、試験片への水素侵入量を調整した。 An SSRT (Slow Strain Rate Technique) test was conducted using the prepared round bar test piece with an annular notch. Specifically, a hydrogen charge solution was prepared by adding 3 g/L of NH 4 SCN to a 3% NaCl solution. With the round bar test piece with an annular notch immersed in the hydrogen charging solution, the current density applied to the test piece was adjusted to adjust the amount of hydrogen penetrating into the test piece.
 各電流密度で水素チャージした環状切欠き付き丸棒試験片に、水素が脱離しないように、めっき処理を施した。めっき処理後の環状切欠き付き丸棒試験片を、8時間以上室温で放置した。その後、0.005mm/minの速度で引張試験を実施して、環状切欠き付き丸棒試験片を破断させた。破断後、環状切欠き付き丸棒試験片の侵入水素量(ppm)を、昇温脱離分析装置を用いて測定した。 Round bar specimens with annular notches charged with hydrogen at various current densities were plated to prevent hydrogen from desorbing. After the plating treatment, the round bar test piece with an annular notch was left at room temperature for 8 hours or more. Thereafter, a tensile test was performed at a speed of 0.005 mm/min to break the round bar test piece with an annular notch. After the fracture, the amount of hydrogen (ppm) intruding into the round bar test piece with an annular notch was measured using a temperature programmed desorption analyzer.
 以上の試験により、図2に例示するような、侵入水素量(ppm)と破断荷重(kN)とのグラフを作成した。作成したグラフに基づいて、侵入水素量調査試験で得られた侵入水素量(He)の2倍となる水素量(2He)での破断荷重(σ2He)を求めた。 Through the above tests, a graph of the amount of penetrating hydrogen (ppm) and breaking load (kN) as illustrated in FIG. 2 was created. Based on the created graph, the breaking load (σ 2He ) at a hydrogen amount (2He) that is twice the amount of invaded hydrogen (He) obtained in the intruded hydrogen amount investigation test was determined.
 さらに、各試験番号の水素チャージしていない環状切欠き付き丸棒試験片に対して0.005mm/minの速度で引張試験を実施して、環状切欠き付き丸棒試験片を破断させ、破断荷重(σ)を求めた。 Furthermore, a tensile test was performed on the round bar specimen with an annular notch that had not been charged with hydrogen at a speed of 0.005 mm/min to break the round bar specimen with an annular notch of each test number. The load (σ 0 ) was determined.
 水素チャージしたときの破断荷重σ2Heを、水素チャージしていないときの破断荷重(σ)で除して、破断荷重比(σ2He/σ)を求めた。 The breaking load σ 2He when charged with hydrogen was divided by the breaking load (σ 0 ) when not charged with hydrogen to obtain the breaking load ratio (σ 2He0 ).
 破断荷重比(σ2He/σ)に基づいて、耐水素脆性を評価した。評価結果を表2中の「耐水素脆性」欄に示す。破断荷重比が0.8以上であれば、耐水素脆性に優れると判断した(表2中で「E」で表示)。破断荷重比が0.8未満であれば、耐水素脆性が低いと判断した(表2中で「B」で表示)。 Hydrogen embrittlement resistance was evaluated based on the breaking load ratio (σ 2He0 ). The evaluation results are shown in the "Hydrogen embrittlement resistance" column in Table 2. If the breaking load ratio was 0.8 or more, it was judged that the hydrogen embrittlement resistance was excellent (indicated by "E" in Table 2). If the breaking load ratio was less than 0.8, it was determined that the hydrogen embrittlement resistance was low (indicated by "B" in Table 2).
 [評価結果]
 評価結果を表2に示す。
 試験番号1~26では、化学組成が適切であり、F1が式(1)を満たした。そのため、剥離面積率が40%以下であり、十分な耐食性が得られた。さらに、十分な耐水素脆性が得られた。なお、これらの試験番号のミクロ組織はいずれも、パーライト面積率が10%以下であり、パーライト以外の部分は、ポリゴナルフェライト、ベイニティックフェライト、アシキュラーフェライト、及び、マルテンサイトからなる群から選択される1種以上からなる組織であった。そのため、これらの試験番号はいずれも、熱間加工性に優れた。
[Evaluation results]
The evaluation results are shown in Table 2.
In test numbers 1 to 26, the chemical composition was appropriate and F1 satisfied formula (1). Therefore, the peeling area ratio was 40% or less, and sufficient corrosion resistance was obtained. Furthermore, sufficient hydrogen embrittlement resistance was obtained. In addition, the microstructures of these test numbers all have a pearlite area ratio of 10% or less, and the parts other than pearlite are made from the group consisting of polygonal ferrite, bainitic ferrite, acicular ferrite, and martensite. The tissue consisted of one or more selected types. Therefore, all of these test numbers had excellent hot workability.
 一方、試験番号27では、Sn含有量が低かった。そのため、剥離面積率が40%を超え、耐食性が低かった。さらに、十分な耐水素脆性が得られなかった。 On the other hand, in test number 27, the Sn content was low. Therefore, the peeling area ratio exceeded 40%, and the corrosion resistance was low. Furthermore, sufficient hydrogen embrittlement resistance could not be obtained.
 試験番号28では、Sn含有量が高かった。そのため、熱間加工性が低かった。 In test number 28, the Sn content was high. Therefore, hot workability was low.
 試験番号29では、Cr含有量が高すぎた。そのため、剥離面積率が40%を超え、耐食性が低かった。さらに、十分な耐水素脆性が得られなかった。 In test number 29, the Cr content was too high. Therefore, the peeling area ratio exceeded 40%, and the corrosion resistance was low. Furthermore, sufficient hydrogen embrittlement resistance could not be obtained.
 試験番号30では、Cu含有量が低すぎた。そのため、剥離面積率が40%を超え、耐食性が低かった。さらに、十分な耐水素脆性が得られなかった。 In test number 30, the Cu content was too low. Therefore, the peeling area ratio exceeded 40%, and the corrosion resistance was low. Furthermore, sufficient hydrogen embrittlement resistance could not be obtained.
 試験番号31では、Cu含有量が高すぎた。そのため、剥離面積率が40%を超え、耐食性が低かった。さらに、十分な耐水素脆性が得られなかった。 In test number 31, the Cu content was too high. Therefore, the peeling area ratio exceeded 40%, and the corrosion resistance was low. Furthermore, sufficient hydrogen embrittlement resistance could not be obtained.
 試験番号32では、Co、Sb、Ge及びInの合計含有量Txが高すぎた。剥離面積率が40%を超え、耐食性が低かった。さらに、十分な耐水素脆性が得られなかった。 In test number 32, the total content Tx of Co, Sb, Ge, and In was too high. The peeling area ratio exceeded 40%, and the corrosion resistance was low. Furthermore, sufficient hydrogen embrittlement resistance could not be obtained.
 試験番号33及び34では、Co、Sb、Ge及びInの合計含有量Txが低すぎた。そのため、そのため、剥離面積率が40%を超え、耐食性が低かった。さらに、十分な耐水素脆性が得られなかった。 In test numbers 33 and 34, the total content Tx of Co, Sb, Ge, and In was too low. Therefore, the peeled area ratio exceeded 40% and the corrosion resistance was low. Furthermore, sufficient hydrogen embrittlement resistance could not be obtained.
 試験番号35では、Ni含有量が高すぎた。そのため、剥離面積率が40%を超え、耐食性が低かった。さらに、十分な耐水素脆性が得られなかった。 In test number 35, the Ni content was too high. Therefore, the peeling area ratio exceeded 40%, and the corrosion resistance was low. Furthermore, sufficient hydrogen embrittlement resistance could not be obtained.
 試験番号36では、Mo含有量が高すぎた。そのため、剥離面積率が40%を超え、耐食性が低かった。さらに、耐水素脆性も低下した。 In test number 36, the Mo content was too high. Therefore, the peeling area ratio exceeded 40%, and the corrosion resistance was low. Furthermore, the hydrogen embrittlement resistance also decreased.
 試験番号37では、W含有量が高すぎた。そのため、剥離面積率が40%を超え、耐食性が低かった。さらに、耐水素脆性も低下した。 In test number 37, the W content was too high. Therefore, the peeling area ratio exceeded 40%, and the corrosion resistance was low. Furthermore, the hydrogen embrittlement resistance also decreased.
 試験番号38及び39では、F1が式(1)の上限を超えた。そのため、剥離面積率が40%を超え、耐食性が低かった。さらに、耐水素脆性も低下した。 In test numbers 38 and 39, F1 exceeded the upper limit of formula (1). Therefore, the peeling area ratio exceeded 40%, and the corrosion resistance was low. Furthermore, the hydrogen embrittlement resistance also decreased.
 試験番号40及び41では、F1が式(1)の下限未満であった。そのため、剥離面積率が40%を超え、耐食性が低かった。 In test numbers 40 and 41, F1 was less than the lower limit of formula (1). Therefore, the peeling area ratio exceeded 40%, and the corrosion resistance was low.
 以上、本開示の実施の形態を説明した。しかしながら、上述した実施の形態は本開示を実施するための例示に過ぎない。したがって、本開示は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。
 
The embodiments of the present disclosure have been described above. However, the embodiments described above are merely examples for implementing the present disclosure. Therefore, the present disclosure is not limited to the embodiments described above, and the embodiments described above can be modified and implemented as appropriate without departing from the spirit thereof.

Claims (3)

  1.  質量%で、
     C:0.15~0.45%、
     Si:0.01~1.00%、
     Mn:0.01~1.50%、
     P:0.050%以下、
     S:0.050%以下、
     Al:0.100%以下、
     Sn:0.02~0.30%、
     Cr:0.20%以下、
     Cu:0.010~0.500%、
     Ni:0.01~0.50%、
     Mo:0.01~0.50%、
     Ti:0.001~0.100%、
     Co、Sb、Ge及びInからなる群から選択される1種以上:合計で0.0013~0.0065%未満、
     N:0.010%以下、
     O:0.015%以下、
     W:0~0.50%、
     B:0~0.0050%、
     Nb:0~0.300%、
     Ca:0~0.0050%、
     Mg:0~0.0050%、
     希土類元素:0~0.0200%、及び、
     残部:Fe及び不純物、
     からなり、式(1)を満たす、
     鋼材。
     23<10×LN(Cu+0.5×Sn+2000×Tx)+100×(0.5×Ni+Mo)-100×(0.5×Ni+Mo)+30×(0.5×Ni+Mo)+10<39 (1)
     ここで、式(1)中の元素記号には、対応する元素の質量%での含有量が代入され、Txには、Co、Sb、Ge及びInからなる群から選択される1種以上の質量%での合計含有量が代入される。式(1)中のLNは自然対数を意味する。
    In mass%,
    C: 0.15-0.45%,
    Si: 0.01-1.00%,
    Mn: 0.01 to 1.50%,
    P: 0.050% or less,
    S: 0.050% or less,
    Al: 0.100% or less,
    Sn: 0.02-0.30%,
    Cr: 0.20% or less,
    Cu: 0.010-0.500%,
    Ni: 0.01-0.50%,
    Mo: 0.01-0.50%,
    Ti: 0.001 to 0.100%,
    One or more selected from the group consisting of Co, Sb, Ge, and In: 0.0013 to less than 0.0065% in total,
    N: 0.010% or less,
    O: 0.015% or less,
    W: 0-0.50%,
    B: 0 to 0.0050%,
    Nb: 0 to 0.300%,
    Ca: 0-0.0050%,
    Mg: 0 to 0.0050%,
    Rare earth elements: 0 to 0.0200%, and
    The remainder: Fe and impurities,
    and satisfies formula (1),
    Steel material.
    23<10×LN(Cu+0.5×Sn+2000×Tx)+100×(0.5×Ni+Mo) 3 -100×(0.5×Ni+Mo) 2 +30×(0.5×Ni+Mo)+10<39 (1)
    Here, the content in mass % of the corresponding element is substituted for the element symbol in formula (1), and Tx is one or more types selected from the group consisting of Co, Sb, Ge, and In. The total content in mass % is substituted. LN in formula (1) means natural logarithm.
  2.  請求項1に記載の鋼材であって、
     W:0.01~0.50%、
     B:0.0001~0.0050%、
     Nb:0.001~0.300%、
     Ca:0.0001~0.0050%、
     Mg:0.0001~0.0050%、及び、
     希土類元素:0.0001~0.0200%、
     からなる群から選択される1種以上を含有する、
     鋼材。
    The steel material according to claim 1,
    W: 0.01-0.50%,
    B: 0.0001 to 0.0050%,
    Nb: 0.001-0.300%,
    Ca: 0.0001-0.0050%,
    Mg: 0.0001 to 0.0050%, and
    Rare earth elements: 0.0001-0.0200%,
    Containing one or more selected from the group consisting of
    Steel material.
  3.  請求項1又は請求項2に記載の鋼材で構成される締結部材。 A fastening member made of the steel material according to claim 1 or claim 2.
PCT/JP2022/020477 2022-05-17 2022-05-17 Steel material used as material for fastening member, and fastening member WO2023223409A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022573338A JP7231136B1 (en) 2022-05-17 2022-05-17 Steel materials used as materials for fastening members, and fastening members
PCT/JP2022/020477 WO2023223409A1 (en) 2022-05-17 2022-05-17 Steel material used as material for fastening member, and fastening member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/020477 WO2023223409A1 (en) 2022-05-17 2022-05-17 Steel material used as material for fastening member, and fastening member

Publications (1)

Publication Number Publication Date
WO2023223409A1 true WO2023223409A1 (en) 2023-11-23

Family

ID=85380667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020477 WO2023223409A1 (en) 2022-05-17 2022-05-17 Steel material used as material for fastening member, and fastening member

Country Status (2)

Country Link
JP (1) JP7231136B1 (en)
WO (1) WO2023223409A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019218584A (en) * 2018-06-18 2019-12-26 日本製鉄株式会社 bolt
WO2020162616A1 (en) * 2019-02-08 2020-08-13 日本製鉄株式会社 Bolt, and steel material for bolts
WO2020203158A1 (en) * 2019-03-29 2020-10-08 日本製鉄株式会社 Steel sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019218584A (en) * 2018-06-18 2019-12-26 日本製鉄株式会社 bolt
WO2020162616A1 (en) * 2019-02-08 2020-08-13 日本製鉄株式会社 Bolt, and steel material for bolts
WO2020203158A1 (en) * 2019-03-29 2020-10-08 日本製鉄株式会社 Steel sheet

Also Published As

Publication number Publication date
JPWO2023223409A1 (en) 2023-11-23
JP7231136B1 (en) 2023-03-01

Similar Documents

Publication Publication Date Title
KR101617115B1 (en) Hot-rolled steel sheet and method for producing same
EP2762585B1 (en) High-strength hot-dip galvanized steel sheet with excellent mechanical cutting characteristics, high-strength alloyed hot-dip galvanized steel sheet, and method for producing said sheets
JP6583588B2 (en) Carburizing steel sheet and method for manufacturing carburizing steel sheet
TW201809313A (en) Steel sheet and plated steel sheet
KR102090196B1 (en) Rolled bar for cold forging
US20150329932A1 (en) Hot-rolled steel sheet exhibiting excellent cold formability and excellent surface hardness after forming
WO2019116520A1 (en) Steel material
WO2017122830A1 (en) Steel wire for non-thermal-refined machine component, and non-thermal-refined machine component
WO2015002190A1 (en) Cold-rolled steel plate, galvanized cold-rolled steel plate, and method for manufacturing said plates
JP6540245B2 (en) High strength steel plate excellent in shape freezing property and method for manufacturing the same
JP2004339569A (en) Stainless steel sheet for solid high polymer type fuel cell separator, its production method, and its forming method
WO2019176112A1 (en) Steel sheet for coal/ore carrier hold
JP2021167445A (en) Duplex stainless steel
JP6354274B2 (en) Hot-rolled steel sheet and manufacturing method thereof
WO2023223409A1 (en) Steel material used as material for fastening member, and fastening member
WO2019098233A1 (en) Two-phase stainless steel and method for manufacturing two-phase stainless steel
CN107429359B (en) Hot-rolled rod and wire material, component, and method for producing hot-rolled rod and wire material
JP7401841B1 (en) steel material
JP2024007157A (en) steel material
JP2023035141A (en) Steel for use as material of bolt
WO2023022222A1 (en) Steel material
JP7469696B2 (en) Steel material and manufacturing method thereof
JP7425299B2 (en) Austenitic stainless steel material
JP2024067898A (en) Steel
JP7417181B1 (en) steel material

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022573338

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942614

Country of ref document: EP

Kind code of ref document: A1