WO2023222935A1 - Recinto blindado, portátil, modular, procedimientos de construcción del recinto y de fabricación de los paneles blindados empleados para su construcción y usos - Google Patents

Recinto blindado, portátil, modular, procedimientos de construcción del recinto y de fabricación de los paneles blindados empleados para su construcción y usos Download PDF

Info

Publication number
WO2023222935A1
WO2023222935A1 PCT/ES2023/070311 ES2023070311W WO2023222935A1 WO 2023222935 A1 WO2023222935 A1 WO 2023222935A1 ES 2023070311 W ES2023070311 W ES 2023070311W WO 2023222935 A1 WO2023222935 A1 WO 2023222935A1
Authority
WO
WIPO (PCT)
Prior art keywords
enclosure
panels
assembly
armored
profiles
Prior art date
Application number
PCT/ES2023/070311
Other languages
English (en)
French (fr)
Inventor
Miguel Suffo Pino
Claudio Andrés SÁNCHEZ CANDÓN
Original Assignee
Universidad De Cádiz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Cádiz filed Critical Universidad De Cádiz
Publication of WO2023222935A1 publication Critical patent/WO2023222935A1/es

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/12Laminated shielding materials
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/02Transportable or portable shielded containers with provision for restricted exposure of a radiation source within the container
    • G21F5/04Means for controlling exposure, e.g. time, size of aperture
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/06Details of, or accessories to, the containers
    • G21F5/12Closures for containers; Sealing arrangements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F7/00Shielded cells or rooms

Definitions

  • the branch of industrial activity is “DJ-Metallurgy, Manufacture of metal products”, CNAE Division “28- Manufacture of Metallic Products, except Machinery and Equipment”.
  • CPC Cooperative Patent Classification
  • the exposure dose of users and other people who are in the vicinity in addition to the surrounding environment must implement the ALARA concept (As Low As Reasonably Achievable), that is, reduced to levels as low as reasonably possible and, in any case, not exceeding the internationally agreed threshold as dictated by the International Atomic Energy Agency (IAEA) through its standards for the occupational radiation protection (No. RS-G-1.1, 1.2 and 1.3, from 2004).
  • ALARA concept As Low As Reasonably Achievable
  • IAEA International Atomic Energy Agency
  • the regulatory body in charge of protection against ionizing radiation in Spain is the CSN, the International Commission on Radiological Protection (ICRP) at the European level and the International Atomic Energy Agency (IAEA) at the international level.
  • a preventive measure against this radiological risk is the classification of danger zones at the inspection site. According to article 17 of the aforementioned Royal Decree, the areas are classified as:
  • Monitored area area in which there is the possibility of receiving an effective dose greater than 1 mSv / year and less than 6 mSv / year.
  • Controlled zone zone in which there is the possibility of receiving an effective dose greater than 6 mSv/year. Within this category, there are the following three subzones:
  • - Regulated permanence zone zone in which doses greater than the regulatory limits can be received in short periods of time.
  • - Prohibited access zone area in which doses greater than the regulatory limits can be received in a single exposure.
  • Access to each area is allowed only to authorized workers and those areas in which there is the possibility of receiving a dose greater than 1 mSv per year must be delimited.
  • One of the methods to achieve this objective is to act on the shielding materials that make up the room where the tests will be carried out using the radioactive source.
  • Other methods also related to this purpose are structural design and appropriate wall thicknesses for the armored enclosure.
  • distance is one of the most effective and simple measures, sometimes it is not enough to reduce radiation to a safe amount for the body, or it is not even possible to move far enough from the source due to the characteristics of the inspection area.
  • exposure time the time that the source is emitting radiation depends on the thickness of the object to be inspected, so it cannot be varied as appropriate.
  • shielding an essential protection that will allow operators to remain at a considerable distance from the source without exposing themselves to harmful doses and will allow the cordoned area to be reduced in some cases to allow work to continue in the vicinity of the source. site. Shielding is possible using a structure that surrounds the object to be radiated and the source, but the percentage of reduction, as mentioned above, will depend on the type of material used for that structure and its thickness. Additionally, it will be necessary to define the way in which radiation sources are exchanged and how the equipment to perform x-rays or scintigraphy will be installed.
  • patents US4079257A from 1978 and EP0171256A2 from 1985 address other types of fixed chambers to carry out chemical or photochemical processes with different purposes and, using for this purpose, metal containers where no materials or barrier thicknesses are indicated. .
  • the reference FR2577684A1 from 1985 provides an interesting solution by providing a useful container for its application as an instrument for measuring the dose of gamma ray radiation through a set of sensors.
  • reference WO 94/02869 from 1994 describes a system for calibrating the radiation dose received in two separate containers. This design is widely used in radiodiagnostic activities to compare the dose received in different human organs.
  • the apparatus includes an outer container adapted to be portable and self-supporting.
  • the interior of the container has barriers of different thicknesses to attenuate the radiation dose and allow the occupation of several people without risk.
  • the walls are designed with metallic and polymer materials, likewise, the container itself includes a trailer system with wheels. Given the dimensions and, therefore, the weight of this previous referenced tank, it is estimated that the cost of transporting it may seriously compromise the economic aspect of its use.
  • patent ES2545276A1 which describes a portable, armored enclosure design for industrial scintigraphy activity and its modular construction.
  • This reference although novel, requires modular panels that include inside them different materials whose properties attenuate the radioactive wave due to the change in the physical medium in which it is transmitted.
  • the construction of this type of panels is complex and requires thicknesses of lead whose availability is scarce, its weight is high and, above all, its use is highly dangerous (Jamal et al., 2019) (Burns et al., 2017) .
  • the reference ES2545276A1 describes the presence of a containment structure, composed of hollow standardized metal profiles that serve as a structure and guide for the assembly of the panels that make up the walls of the enclosure.
  • a containment structure composed of hollow standardized metal profiles that serve as a structure and guide for the assembly of the panels that make up the walls of the enclosure.
  • no document specifies the assembly of any accessory for holding the remote control if gamma rays are used, nor of course, the X-ray tube, since it does not contemplate this radiographic source. Therefore, it is not They describe these aspects in the construction procedure of the armored enclosure.
  • said document contemplates armored modular panels built from sandwich sheets, as in W02020036777A1.
  • Both documents describe two outer layers made of polymeric material, although not of recycled origin.
  • the central layer is made up of sheets of radiation-attenuating material such as lead.
  • the origin of the lead used to block or how the panels are manufactured is not specified.
  • the patent US2018240559A1 makes use of recycled polymeric material for the manufacture of layers in armored panels, although it is not specified where said recycling material comes from.
  • the enclosure can be used for two radiation sources by replacing interchangeable shielded panels is not raised in any document found in the search.
  • the central layer of the sandwich panel is composed of recycled lead sheets made from the attenuating material that is incorporated into the radiographic films once the paper that they incorporate on one of their sides has been removed.
  • Non-destructive testing in the industrial environment is one of the most notable applications of ionizing radiation. These have a very important role in terms of ensuring the quality of the materials and although there are several methods that are used for this purpose, radiography using X-rays and gamma rays is one of the most used NDT techniques today to ensure the physical integrity of industrial structures. Industrial radiography inspection is performed to detect defects that are not visible to the naked eye in materials used in engineering.
  • the source is equipment connected to electrical current, so it only emits radiation when it is in operating condition.
  • this equipment is used in structures designed for this purpose, such as reinforced concrete and lead bunkers. This need comes from the fact that the radiation produced by X-rays is strongly penetrating into the human body, so it is rarely possible to use an thereto.
  • a gamma ray source To use a gamma ray source, the equipment provided with a hose is used, through which the source exits to the radiography point, driven by a remote control, which is activated by the operator from a distance far enough away to carry out the task safely.
  • a collimator At the end of the hose where the source remains, a collimator is usually added to focus the radiation beam in one direction.
  • special care must be taken since, unlike X-rays, the gamma ray source continues to continuously emit radiation, since it is a radioactive isotope whose useful life runs out over time. .
  • Ionizing radiation suffers a certain decrease in the flux of its photons when passing through materials, that is, the radiation does not propagate in a straight line to infinity, but rather disappears as it passes through different materials. This is known as attenuation, and depends on the nature of the radiation, its energy and the nature of the material it passes through (CSN, 2013). This attenuation follows an exponential law, known as the Beer-Lambert law or Exponential attenuation law, expressed by equation (1).
  • p Linear attenuation coefficient.
  • x Thickness of the absorbent material.
  • the linear attenuation coefficient “p” is specific to each material; it increases with its atomic number and decreases with the energy of the incident radiation. It is measured in rrr 1 and the higher it is, the better the radiation attenuating quality the material will have.
  • the semi-reduction thickness is used, a magnitude that is easier to handle than the aforementioned attenuation coefficient and which is obtained by applying a reduction factor of two with respect to the initial radiation intensity (l 0 ) in equation (1).
  • the tenth reduction thickness (di/10) or tenth reduction layer (CDR) can also be calculated in the manner shown in equation (4).
  • di/ 2 ln (10) .
  • the shielded enclosure must be removable, portable and capable of considerably reducing radiation from the radioactive source. To do this, its design must be carried out taking into account the following requirements:
  • Circular economy and sustainability One of the important aspects on which this proposal focuses is the protection of the environment through the use of recycled materials for the elaboration of most of the design. Taking into account the problem of pollution that is generated daily worldwide, the decision has been made to reduce the consumption of newly manufactured materials so as not to aggravate the problem and even look for a way to take advantage of certain waste, thus helping to reduce pollution. generated by these, reducing the carbon footprint. On the other hand, we want to achieve a final budget that is not very high, which is possible by using recycled materials.
  • profiles of a metallic material will be taken that allow the union of all the plates, ensuring that the structure is as firm and watertight as possible to prevent radiation leakage.
  • these profiles will be designed in such a way that they can only fit in the place designed for them. They will also be numbered and the complete structure will be accompanied by an instruction manual to guarantee the resolution of any doubts. possible that may arise at the time of assembly.
  • the final design should not have a single assembly method, the structure must be designed in such a way that allows the incorporation or replacement of different types of modular panels, built from two or more armored sandwich panels (A+ B+A), to allow it to be used for both X-ray and scintigraphy equipment.
  • a first aspect of the invention is the design of armored panels, made of composite material from recycled sources, forming a sandwich structure for use in the manufacture of modular panels used in an armored enclosure for industrial and biomedical radiography activity.
  • the panels object of the invention are composed of three sandwich-like layers (A+B+A), where the two outer layers (A) are manufactured from the polymeric fraction obtained from recycling electrical cables and the layer central (B), is composed of sheets of attenuating material that are incorporated into the radiographic films, to protect them from scattered radiation, once the white paper that is attached to it on one of its sides has been removed.
  • the function of the polymeric material is to provide consistency to the structure, providing very little weight and a change in the physical medium in which the radiation is transmitted.
  • the attenuating material that protects radiographic films is mainly composed of a lead alloy and its function is to act as a radiation absorbing material, or strongly attenuating material.
  • the attenuating material that acts as protection for the radiographic films is composed of a paper base on one side and an alloy in a higher proportion of lead and other metallic materials whose mass fraction (w) and density (p) can be seen in Table 3, whose data have been determined empirically by means of an X-ray fluorescence assay.
  • the part corresponding to non-metallic materials is mainly composed of paper.
  • the sheet composed of paper and lead has a thickness of 100 pm, although the attenuating fraction is only 27 m thick.
  • the density of this component is estimated as 1.
  • each of the companies registered in the province of Cádiz to carry out industrial radiography can consume about 1,680 sheets of attenuating material per month, which gives an idea of the amount of waste material generated, which can be used for the manufacture of these panels.
  • the polymeric fraction of discarded cables comes from the protective covers of said cables used in electrical installations.
  • this material has an approximate composition of different polymers such as low-density polyethylene (LDPE), polyethylene copolymers, cross-linked polyethylene (XLPE), although it may also contain small percentages of other polymeric materials such as HFFR. , contains rubber and even traces of copper from cable remains.
  • LDPE low-density polyethylene
  • XLPE cross-linked polyethylene
  • the material is crushed and sieved until an average granulometry of 4mm is achieved.
  • the most common elements are PVC (68%) and LDPE/XLPE (28%). Table 4 provides an estimate of the composition of this material, the mass fraction of the components and their densities without including binder.
  • Table 4 Composition of the material that comes from the polymeric fraction of discarded cables, without including binder.
  • a second aspect of the invention is the manufacturing procedure for the armored panels defined above, which, starting from the granulated material, a compression molding process is applied at a maximum temperature of 80°C until obtaining an armored panel composed of three layers (polymeric material from discarded cables, A + attenuating material from discarded radiographic films, B + polymeric material from discarded cables A).
  • the stages included in the procedure are: a) Crush and sift the polymeric material from discarded cables until achieving an average granulometry of 4mm granules. b) Mix 50% of the polymeric material from discarded cables with a polyurethane (PU) resin.
  • PU polyurethane
  • thermoplastic, thermostable, elastomeric and even metallic polymeric materials without reaching the melting temperature in any of them.
  • Table 5 shows the components of the polymeric material from cables once discarded. It is mixed with the PU resin in the indicated proportions.
  • Table 5 Composition of the polymeric material from discarded cables mixed at 50% with PU. nsity of the mixture of the two components X:Y, in a 5:1 ratio.
  • Table 6 The final geometry of the mixture is shown in Table 6. Likewise, the final composition of a composite panel is shown in Table 7. Table 6: Preferred geometry of a small panel of Mixlead composite material.
  • a third aspect of the invention is the enclosure for carrying out non-destructive tests for industrial and medical radiography that incorporates the armored panels described above, which are integrated into its structure, and inside which the radioactive source and the elements to be radiated are arranged. (pipes, accessories, beams, etc.).
  • the enclosure is basically made up of two parts: Supporting structure and walls made up of armored panel modules. a)
  • the supporting structure is composed of 26 hollow aluminum alloy profiles; 12 structural and 14 reinforcement in the shape of H or T, which serve as a guide for the assembly of the modules that make up the walls of the enclosure.
  • each of the modular panels is composed of as many armored panels as required by the thickness of radiological risk attenuation up to permitted limits, achieving low radiation exposure zones.
  • the armored panels are joined together using a polymer adhesive.
  • the assembly of the modular panels is carried out on the supporting structure made up of metal profiles.
  • the low weight of the assembly and its quick assembly and disassembly provide the operator with more productivity since he is not restricted only to the use of his own interior area located in his facilities.
  • the aluminum profiles have slits in both the vertical and horizontal parts to introduce the panels so that they are fixed correctly (see figure 2b and 2c).
  • the different units of armored panels which together form the modular panels that make up the side walls of the enclosure, are made by placing them slightly displaced from each other to form a tongue-and-groove structure (see figure 2a), so that, in the vertical direction, they can join several panels without structural openings where there are radioactive leaks.
  • the design is designed for applications with radioactive sources of artificial origin, whose energy spectrum is around 1.4 MeV, such as Ir 192 and Se 75 , whose sources are confined or aggregated within protective capsules or boxes and, Using an internal guide, it pushes and moves them until they come out to the outside.
  • radioactive sources are considered Category 2 by Safety Guide No. RS-G-1.9 of the IAEA of 2009, that is, considered very dangerous for people and the environment.
  • the thickness that the panels should have has been estimated, considering parameters such as the distance from the source to the specimen, the orientation of the source with respect to it and the mass attenuation coefficient of each material used in the panels. .
  • a fourth aspect of the invention is the construction procedure of the enclosure. Its special configuration, based on the use of lightweight panels, provides the design with an adequate layout for easy transport and use wherever necessary. This aspect of portability affects the productivity of the company in charge of carrying out the tests, due to the suitability of the container to the user's facilities, both indoors and outdoors.
  • the first step is the assembly of the four profiles at the bottom and the four vertical profiles, in this way the four lower corners are already available.
  • the correct order to follow is the following: a) Assembly of one of the lower vertices of the enclosure, composed of two horizontal side profiles with a vertical profile forming a first corner. b) Assembly of the rest of the lower corners of the enclosure. c) Assembly of the two central profiles of the base of the enclosure. d) Assembly of the lower horizontal panels that make up the floor of the enclosure. e) Assembly of the lateral and rear central profiles, one on each side and two on the back.
  • a fifth aspect of the invention is the particular uses that can be made of the enclosure that is the object of the invention.
  • Historically there have been numerous types of shielded enclosures for medical radiodiagnostic applications, many of them highlighted in the background. Likewise, although less extensive, these enclosures have been used for industrial purposes of fixed non-destructive testing. The problem posed by this type of fixed installations is that it limits the productive capacity of the company that operates them since it limits itself to the tests that it is allowed to carry out in its own premises.
  • enclosure object of the invention it is possible to complement said test work with those that can be carried out in the user's own facilities. But additionally, given the ease of assembly and its portability, it is possible to use it anywhere and, as well as the use, equally effective for certain applications, of the panels that make it up outdoors as a screen. This aspect adds productivity to the company that is testing since it allows it to carry out work in parallel, meeting different needs in different places.
  • barrier based on the use of armored panels that are also the object of the invention.
  • One of the options is to use the armored material (A+B+A), as an armored box for transporting the scintigraphic equipment in vehicles for its movement from the delegation that owns the equipment to the inspection location.
  • A+B+A armored material
  • Another application similar to the previous one is the use of a drawer made of armored material (A+B+A), for temporary storage of scintigraphic equipment on site.
  • A+B+A armored material
  • a sixth aspect of the invention would be the numerical calculation methodology to determine the number of panels of each wall and their thicknesses, as mentioned above.
  • the distance between operator and source necessary to carry out the work in compliance with legal regulations is determined, to check if it is necessary to use an extra protection measure such as shielding.
  • calculations will be made to maximize shielding protection, although combining the shielding factor with distance will also be taken into account. In this way, it will be possible to reduce the distance at which people present in the vicinity of the radiographic inspection have to remain in order to remain within the threshold. radiation safe for health.
  • the first step is to perform dosimetry calculations for gamma ray and x-ray sources, to determine how much radiation industrial radiology operators are exposed to at a fixed distance. Subsequently, the distance at which the operator must be located is determined to ensure that the limiting dose rate for each source is not exceeded. If a distance value is obtained that is too high to be applied practically or not very time-efficient, calculations are carried out to obtain the necessary panel thickness for each radioactive source.
  • the enclosure is to be designed in such a way that its use for several ionizing sources is possible, if different thickness values result depending on the type of source, a thickness value must be chosen (considering the thickness and weight of the enclosure so that it complies with its transportable characteristic), and calculate the new operating distance for each source if necessary.
  • Table 1 Equivalent dose rate vs distance before and after applying the 4-panel composite shielding for Ir source.
  • Maintaining a distance of up to 5 meters ensures the limit rate for the operator in the worst possible case.
  • This dose limit per hour has been calculated taking into account that the operator receives radiation for a period of time. the full day.
  • the estimated time for an Ir source is 4 hours and 22 minutes a day and for X-rays, just under 2 hours, which means that the actual exposure will always be less than 8 hours. Therefore, the operator may take slightly higher dose rates for a short time, as long as the daily dose limit of 80 pSv/h is met, although it is always preferable, when it is possible to remain within an area with lower dose rates. to the limit.
  • Fig. 1 Exterior appearance of the armored enclosure object of the invention already assembled and with indications of its component parts.
  • Fig. 2 Modular walls composed of armored panels mounted on their guide profiles. a) Meeting of two tongue and groove panels; b) Location of panels on metal guides.
  • Fig. 3 Mounting method of top and bottom armored panels. A detail is shown of the position of the overlapping cuts of the armored panels that make up the upper modular panels.
  • Fig. 4. Folding door assembly details. a) Armored door partially folded with the handle or handle at the top; b) Hinge details at the bottom.
  • Fig. 5 Exploded view for the identification of construction elements. a) aluminum profiles (P1 to P20) and metal fixture A1 available for use in the enclosure with X-ray source; b) modular panels, each constructed by joining armored panels made up of sandwich layers (A+B+A). This figure also distinguishes the A2 fixtures for the installation corresponding to use for X-rays and the A3 fixture for use with a Gamma Ray source.
  • Fig. 6 Delimited orthogonal views of the interchangeable modular panels for the different radioactive sources. a) Panel L10 b) Panel L11.
  • Fig. 7 Assembly of elements of the upper area. a) Appliques of the set for X-rays (A1 and A2); b) Assembly of A1 fixture for X-ray tube; c) Location of fixture A1 for X-ray tube; d) assembly of A3 wall light for Gamma Rays.
  • Fig. 8 Delimited orthogonal views of fixtures A1, A2 and A3. a) Delimited views of wall light A1; b) Delimited views of wall light A2; c) Delimited views of the A3 wall light;
  • Fig. 9 Supporting metal structure once assembled.
  • Fig. 10 Metal profiles of the containment structure located in one of the corners. a) Structural or main profile; b) Reinforcement or secondary profile used as reinforcement and guide for the assembly of armored panels.
  • Fig. 11 Assembly of profiles in the lower area, a) First screwed lower corner; b) assembly of the four corners; c) assembly of the central profiles.
  • Fig. 12 Assembly of panels in the lower side area. a) panels of the lower area; b) assembly of central profiles; c) assembly of side panels.
  • Fig. 13 Assembly of panels in the folding door area. a) assembly of vertical panels of the folding door; b) assembly of upper horizontal profiles;
  • Fig. 14 Comparative graph of shielding attenuation provided by the different test scenarios in the gamma ray tests.
  • Example 1 Manufacturing procedure for armored panels (A+B+A)
  • the amount of PU resin and the polymeric material concentration of discarded cables does not have to be exact, since the resin is introduced inside the voids of the waste, escaping from the mold if it has a concentration higher than necessary. to fill gaps in the polymeric material of discarded cables. Now, to fill all the voids in the polymeric material of discarded cables with the resin, something more than a material: resin ratio of 1:1 and less than 1:2 is necessary.
  • the amount of total mass of the mixture was increased to 220 g to fill the mold cavity and avoid possible defects such as lack of filling.
  • the 220 g of mixture was divided into 110 g of polymeric material, 91.7 g of resin and 18.3 g of catalyst.
  • the largest armored panels manufactured are between 250 and 285mm wide and 470 to 485mm long.
  • the weight of each largest armored panel manufactured is 16.8 kg, so each of the manufactured panels object of the invention can be transported by one person.
  • the enclosure is made up of two well-differentiated parts configured with different materials and thicknesses:
  • the supporting structure (represented in figure 9) is composed of 26 hollow aluminum alloy profiles EN AW-6063 (L-3441 according to UNE 38337-1982 standard) with a T5 heat treatment, which are identified by the location they occupy in each part of the structure (see identification in figure 5a). Additionally, it has a metal clamp (A1) attached to the central profiles of the ceiling of the enclosure to hold the tube that must be introduced into the enclosure when the radiation source used is an X-ray equipment.
  • the armored panels (A+B+A), whose identification is shown in figure 5b. Additionally, it has two circular accessories, identified with the references A2 and A3.
  • the supporting structure is made up of 26 profiles, with only 12 being the main profiles that give stability to the structure (see figure 10a), while the other 14 secondary profiles (guide) are mounted as reinforcements and, given their H shape ( see figure 10b), are used as a guide for the subsequent assembly of the 34 panels that make up the walls of the enclosure (two of them interchangeable). They have used a total of 24 10 mm long M5 DIN 933 metric thread bolts with hexagonal head made of carbon steel accompanied by M5 DIN 934 nuts of the same material.
  • the total weight of the enclosure has been calculated considering the densities of each element and the total volume of the enclosure, the result has been approximately 448kg.
  • Example 3 Detailed assembly of the armored enclosure:
  • profiles P16, P19 and P20 will be joined to profile P5 in two joints that will act as a hinge for the folding door (see figure 4a).
  • panels L9 are introduced on the lower sides of the folding door and panel L8 in the center, and then panels L4 on top of L9 and panel L2 on top of L8 (see figure 4b).
  • Profile P15 is fixed to profiles P17, P18, P19 and P20, which will act as a handle to open and close the folding door.
  • the center bolts will be secured in the next step (see figure 13a).
  • the last profiles P12 are mounted, located in the slots of profiles P4 and P6. Once assembled, they are screwed together, using the two bolts that remain at the front of the enclosure as temporary bolts that will be removed when it is necessary to open the folding door (see figure 13b).
  • the estimated assembly time between two people is about 30 minutes.
  • Example 4 Estimation of the number of panels necessary for each modular wall of the enclosure based on the different uses
  • radioactive equipment that must be transported must be transported in authorized vehicles, and these must have a drawer shielded in order to reduce the radioactive emission of the equipment during the journey.
  • the maximum dose rate to be received during the trip for the driver of the vehicle and authorized companions must be less than 11 pSv/h.
  • the dose rate limit should be 2.5pSV/h.
  • an experimental measurement of the dose rate received has been carried out at a distance of 15 cm from the housing of the scintigraphic equipment, with an activity of 24.5 Ci, resulting in a dose rate of 21.98 pSv/h. .
  • the only barrier available is that of the company vehicle, where the operator can go to take shelter if he has time before he has to put away the source, or he can activate the remote control behind the vehicle in order to achieve additional protection.
  • the operator if the operator has time to get behind his vehicle located more or less 20 meters from the source, he would be exposed to a dose rate of around double the limit, once the source is in the area. collimator position. But normally the exposure times to carry out a test on a welded joint are very short (on the order of seconds), so the operator remains in the remote control position until the test is completed. Furthermore, while the operator is operating the remote control, the dose rate is multiplied, since the source runs through the hose, without the protection offered by the collimator.
  • Example 5 Tests carried out with built prototypes.
  • the X-ray tests have been carried out with the tube from the manufacturer General Electric Company, Tubehousing ISOVOLT 160 model, similar to the one shown in figure 7.
  • the radioactive focus of the equipment points downwards and is at a height of 70 centimeters from the ground.
  • a cover has been made with armored panels (A+B+A), with the size of the X-ray tube window, where is the focus of the radiation.
  • A+B+A armored panels
  • the lid must have dimensions such that a good fit is achieved, obtaining the least radiation leakage to increase the reliability of the tests.
  • prototypes have been manufactured in the form of hollow parallelepipeds composed of panels of armored material. A hole is made on one of its sides in order to introduce the hose of the scintigraphic equipment inside, thus being able to check the amount of leaked radiation.
  • the prototypes are scaled as layers are added, forming a structure similar to Russian dolls (mat ⁇ oska).
  • the first of the prototypes has dimensions of 72x45x60 mm, while the second has been designed with dimensions of 100x71x86 mm, with the intention of introducing the first inside it, and leaving a separation of 5 mm between the walls of each one. .
  • the second parallelepiped as it must include the first in its interior, has been made to the wall that has the hole with a hinge to be able to open and close it.
  • cardboard rolls cut to 5 mm wide and joined with adhesive in the center of each face of the parallelepiped have been used. little.
  • the prototype has been placed inside the bunker, but due to the high radioactive power of the gamma ray source, the measurement has been carried out this time on the outside of the bunker wall. at ground level.
  • Scenario 5 Collimator inside the large parallelepiped
  • scenario 1 the most effective shielding corresponds to scenario 1, as expected, since the collimator has a thickness of 10 mm and a correspondingly higher attenuation coefficient. to lead.
  • scenario 3 corresponding to a large parallelepiped, values equal to those obtained without using protection are obtained. This is due to the tolerance of the measuring device since this parallelepiped has a small hinged door. , so its tightness decreases, with the radiation having more holes through which to escape.
  • scenario 4 which corresponds to both parallelepipeds together, attenuation is observed compared to scenario 2, since the value goes from 150 pSv/h to 100 pSv/h.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

El recinto se compone de una estructura portante compuesta por una serie de perfiles que sirven de guía para el montaje de unos paneles modulares que constituyen las paredes del recinto, los cuales están formados por la unión de una serie de paneles individuales blindados, construidos de material compuesto de fuente reciclada, formando una estructura en sándwich (A+B+A). Son objeto de esta invención la composición de los paneles blindados anteriormente mencionados, su procedimiento de fabricación, la estructura del recinto y su procedimiento de construcción, así como los usos particulares tanto del recinto, como de los paneles blindados.

Description

Figure imgf000003_0001
RECINTO BLINDADO, PORTÁTIL, MODULAR, PROCEDIMIENTOS DE CONSTRUCCIÓN DEL RECINTO Y DE FABRICACIÓN DE LOS PANELES BLINDADOS EMPLEADOS PARA SU CONSTRUCCIÓN Y USOS.
SECTOR DE LA TÉCNICA
El área científica es “Tecnologías del medio ambiente”
El área tecnológica es “II. Instrumentos: CT09- Ingeniería nuclear”.
La rama de actividad industrial es “DJ-Metalurgia, Fabricación de productos metálicos”, División CNAE “28- Fabricación de Productos, Metálicos, excepto Maquinaria y Equipo”.
Códigos de la Clasificación Internacional de Patentes (CIP)
G21 F7/00, G21 F5/04, G21 F1/12, G21 F5/12
Códigos de la Clasificación Cooperativa de Patentes (CPC) G21 F7/00, G21 F5/04, G21 F1/12, G21 F5/12
ANTECEDENTES DE LA INVENCIÓN
Según indicación del Consejo de Segundad Nuclear (CSN), en todas las aplicaciones de la radiación ionizante, la dosis de exposición de los usuarios y de otras personas que se encuentren en las proximidades además del medio ambiente colindante, debe implementar el concepto ALARA (As Low As Reasonably Achievable), es decir, reducida a niveles tan bajos como sea razonablemente posible y, en todo caso, no sobrepasar el umbral acordado a nivel internacional conforme dicta el Organismo Internacional de Energía Atómica (OIEA) por medio de sus normas para la protección radiológica ocupacional (N° RS-G-1.1 , 1.2 y, 1.3, del año 2004). Tal y como se ha reseñado, el organismo regulador encargado de la protección contra radiaciones ionizantes en España es el CSN, la Comisión Internacional de Protección Radiológica (ICRP) a nivel europeo y el Organismo Internacional de Energía Atómica (OIEA) a nivel internacional. En España, las regulaciones para todo lo relativo a las radiaciones ionizantes y la protección radiológica se recogen en el Real Decreto 783/2001 , de 6 de julio, por el que se aprueba el Reglamento sobre protección sanitaria contra radiaciones ionizantes (BOE num.178, de 26 de julio de 2001 ). Según el artículo 9, la dosis máxima para un trabajador expuesto será de 100 mSv durante un periodo de 5 años consecutivos, con un límite por año de 50 mSv. Así mismo, en el artículo 13 se establece el límite anual de 1 mSv para el público en general. Según esta disposición legal, los trabajadores que utilicen radiaciones ionizantes deben tomar una señe de medidas con la intención de prevenir la exposición a la radiación y de vigilar la dosis recibida.
Una medida preventiva ante este riesgo radiológico es la clasificación de las zonas de peligro en el emplazamiento de la inspección. Según el artículo 17 del citado Real Decreto, las zonas se clasifican en:
- Zona vigilada: zona en la que existe la posibilidad de recibir una dosis efectiva superior a 1 mSv / año e inferior a 6 mSv / año.
- Zona controlada: zona en la que existe la posibilidad de recibir una dosis efectiva superior a 6 mSv / año. Dentro de esta categoría, se encuentran las tres subzonas siguientes:
- Zona de permanencia limitada: zona en la que existe el riesgo de recibir una dosis superior a los límites anuales establecidos.
- Zona de permanencia reglamentada: zona en la que se pueden recibir dosis superiores a los límites reglamentarios en periodos cortos de tiempo.
- Zona de acceso prohibido: zona en la que se pueden recibir dosis superiores a los límites reglamentarios en una única exposición.
El acceso a cada zona está permitido únicamente a los trabajadores autorizados y se deben delimitar aquellas zonas en las que exista la posibilidad de recibir una dosis superior a 1 mSv al año.
Uno de los métodos para alcanzar este objetivo es actuar sobre los materiales de blindaje que conforman el recinto donde se va a desarrollar los ensayos mediante la fuente radioactiva. Otros métodos también relacionados con este fin son el diseño estructural y espesores de pared adecuados para el recinto blindado.
En España, a través del manual práctico de seguridad radiológica publicado en abril de 1996 (IAEA-PRSM-2) y, en particular, dentro del manual sobre recintos blindados, se recoge la definición de estas construcciones como “todo espacio cerrado construido para contener la radiación ionizante y proporcionar suficiente blindaje a las personas en las zonas contiguas”. La definición es indiferente del tamaño y diseño del recinto, lo que varía es el tipo de fuente radioactiva que va a actuar en su interior: rayos X, gamma o neutrones, entre otras. Este aspecto implicará un diseño basado en unos materiales y espesores adecuados para garantizar que no se sobrepase el umbral que define la zona de alerta radiológica. En dicho documento, por tanto, se realizan una serie de recomendaciones para la selección de los espesores de las barreras primarias y secundarias basadas en dos variables: La fuente radioactiva y el tipo de material de las barreras: hormigón o plomo. Con ello se obtienen una señe de espesores estándares para cada configuración fuente-material. Este tipo de recomendaciones se establecen para barreras macizas y, únicamente, para estos dos tipos de materiales de blindaje, a partir de ellas, permiten la estimación del cálculo de la tasa de dosis de cualquier persona u objeto situado a una cierta distancia del exterior del recinto blindado.
Por ello, para justificar empíricamente el uso de otro tipo de materiales como blindaje (Nazemi et al., 2018), y alcanzar una reducción de la exposición se recurre a tres variables: distancia, blindaje y tiempo. Aunque la distancia es una de las medidas más eficaces y sencillas, a veces no es suficiente para reducir la radiación hasta una cantidad segura para el organismo, o ni si quiera es posible alejarse suficiente de la fuente debido a las características del área de inspección. En cuanto al tiempo de exposición, el tiempo que la fuente está emitiendo radiación va en función del espesor del objeto a inspeccionar, por lo que no se puede variar como convenga. Es entonces cuando se necesita recurrir al blindaje, una protección esencial que permitirá a los operarios permanecer a una distancia considerable de la fuente sin exponerse a dosis perjudiciales y permitirá reducir el área acordonada en algunos casos para permitir la continuación de los trabajos en las cercanías del emplazamiento. El blindaje es posible utilizando una estructura que envuelva el objeto a radiar y la fuente, pero el porcentaje de reducción, tal y como se ha comentado anteriormente, dependerá del tipo de material utilizado para esa estructura y el espesor del mismo. Adicionalmente, será necesario definir la forma en la que se intercambien las fuentes de radiación y como se instalarán los equipos para realizar radiografías o gammagrafías.
En la bibliografía científica, es posible encontrar registros antiguos como los publicados por los autores Roca y Capdevila, en el año 1967, donde se describe un recinto blindado para el análisis espectográfico de soluciones de radioisótopo. Dicho recinto, supuso uno de los primeros diseños para atenuar la radiación ionizante mediante la estimación del espesor de pared en plomo necesario, tomando como base para dicho estudio el yodo-131. A partir del espectro radioactivo y la distancia del operador no inferior a 45 cm de la pared exterior del recinto, se determinó la necesidad de usar planchas de plomo macizo de 10 mm de espesor que proporcionaba un margen de seguridad adecuado. Las dimensiones de dicho contenedor fueron de 1254x800x1 OOOmm.
Más recientemente, las patentes US4079257A del año 1978 y, la EP0171256A2 del 1985, abordan otro tipo de cámaras fijas para llevar a cabo procesos químicos o fotoquímicos con diferentes propósitos y, usando para ello, contenedores metálicos donde no se indican materiales ni espesores de barrera.
La referencia FR2577684A1 del año 1985, aporta una solución interesante al aportar un contenedor útil para su aplicación como instrumento de medida de la dosis de radiación de rayos gamma con la mediación de un conjunto de sensores.
Otro tipo de registros encontrados en la bibliografía, como las patentes EP0513512A2 y EP0513515B1 del 1992 abordan diferentes tipos de portacontenedores para alojar fuentes radioactivas de los que, en la actualidad, son ya fácilmente adquiñbles comercialmente, pero adolecen de recintos blindados para llevar a cabo cualquier actividad radiológica sin riesgo para las personas que allí operen.
De manera similar, la referencia WO 94/02869 del año 1994, describe un sistema de calibración de la dosis de radiación recibida en dos recipientes separados, este diseño se usa profusamente en actividades radiodiagnósticas para comparar la dosis recibida en diferentes órganos humanos.
Sin embargo, una referencia temporalmente más cercana es el modelo de utilidad U201130221 , el cual aborda el diseño de un depósito móvil para el transporte de material radiológico, de geometría paralelepípedo construido mediante paredes macizas de hormigón bañtado y, dispuesto con orejetas en su parte superior o, huecos en su parte inferior, para su izado. En este último registro no se aportan espesores de barrera, ni peso del depósito completo y, al ser de obra civil, difícilmente podrá usarse como instrumento de trabajo itinerante, de fácil montaje y desmontaje.
La patente US2018240559A1 , hace uso de material poliméñco reciclado para la fabricación de capas en paneles blindados, aunque no se especifique de dónde procede dicho material de reciclaje ni tampoco especifica si puede servir para diferentes tipos de fuentes radioactivas.
Por último, en la patente US2013047521 A1 , se describe un equipo portátil autónomo para la actividad radiológica. El aparato incluye un recipiente exterior adaptado para ser portátil y autoportante. El interior del contenedor dispone de barreras de diferentes espesores para atenuar la dosis de radiación y permitir la ocupación de varias personas sin riesgo. Las paredes se diseñan con materiales metálicos y poliméricos, así mismo, el propio contenedor incluye un sistema de remolque con ruedas. Dadas las dimensiones y, por ende, el peso de este anterior depósito referenciado, se estima que el coste del transporte de este puede comprometer seriamente el aspecto económico de su uso.
La más reciente referencia es la patente ES2545276A1 , en la cual se describe un diseño de recinto blindado, portátil, para la actividad de gammagrafía industrial y, la construcción modular del mismo. Dicha referencia, aunque novedosa requiere de paneles modulares que incluyen en su interior, diferentes materiales cuyas propiedades hacen atenuar la onda radioactiva por el cambio de medio físico en el que se transmite. La construcción de ese tipo de paneles resulta compleja y requiere de espesores de plomo cuya disponibilidad es escasa, su peso es alto y, sobre todo, su uso es altamente peligroso (Jamal et al., 2019) (Burns et al., 2017). Tampoco se especifica el proceso de fabricación de esos paneles blindados, ni se tienen en cuenta el coste de los materiales usados para fabricarlos ni se aplican criterios de ecodiseño, economía circular y reducción de huella de carbono resultante de hacer uso de materiales reciclados. El diseño está concebido sólo para aplicaciones con fuentes radioactivas de origen artificial, cuyo espectro energético equivalen a 192lr y 75Se, pero no para Rayos X. No se ha provisto de la posibilidad de intercambiar dichas fuentes radioactivas. Tampoco se han encontrado otros usos alternativos del recinto aprovechando otro tipo de prestaciones como la modulañdad y escalabilidad.
En resumen, la referencia ES2545276A1 , describe la presencia de una estructura de contención, compuesta por perfiles metálicos normalizados huecos que sirven de estructura y de guía para el montaje de los paneles que componen las paredes del recinto. Sin embargo, en ningún documento se especifica el montaje de ningún accesorio para la sujeción del telemando si se usan rayos gamma, ni por supuesto, del tubo de rayos X, ya que no contempla esta fuente radiográfica. Por tanto, no se describen estos aspectos en el procedimiento de construcción del recinto blindado.
Así mismo, dicho documento contempla paneles modulares blindados construidos a partir de planchas tipo sándwich, al igual que en W02020036777A1 . En ambos documentos se describen dos capas exteriores fabricadas de material polimérico, aunque no de origen reciclado. La capa central está compuesta por láminas de material atenuante de las radiaciones como puede ser plomo. No obstante, no se especifica el origen del plomo que se usan para bloquear ni cómo se fabrican los paneles. La patente US2018240559A1 , hace uso de material polimérico reciclado para la fabricación de capas en paneles blindados, aunque no se especifique de dónde procede dicho material de reciclaje. La opción de reutilizar la fracción polimérica de los cables eléctricos es conocida, como se observa en el documento https://reciclario.com.ar/reciclable/cables/, sin embargo, no se especifica en detalle qué procesado debe hacerse con dicha fracción para orientarlo a un determinado producto final. Ni en la citada web, ni en el citado documento W02020036777A1 , se divulgan metodologías, granulometrías, mezclas de materiales reciclados, ni inserción de láminas de plomo reciclado.
No se encuentra planteada en ningún documento encontrado en la búsqueda, la opción de que el recinto pueda ser utilizado para dos fuentes de radiación mediante la sustitución de paneles blindados intercambiables. Tampoco se encuentra planteada la opción de que la capa central del panel sándwich esté compuesta por láminas de plomo reciclado a partir del material atenuante que se incorporan en las películas radiográficas una vez retirado el papel que incorporan en una de sus caras.
EXPLICACIÓN DE LA INVENCIÓN
La utilización de radiaciones ionizantes presenta numerosos beneficios para varios sectores como la medicina, industria e investigación. Los ensayos no destructivos (END), en el entorno industrial son unas de las aplicaciones más notables de las radiaciones ionizantes. Estos tienen un papel muy importante en cuanto al aseguramiento de la calidad de los materiales y aunque hay varios métodos que se utilizan para tal propósito, la radiografía mediante rayos X y rayos gamma es una de las técnicas de END más utilizadas hoy en día para asegurar la integridad física de las estructuras industriales. La inspección por radiografía industrial se realiza para detectar defectos que no son visibles a simple vista en los materiales utilizados en ingeniería.
Al tratarse de radiaciones ionizantes, a la hora de realizar la prueba se tienen que cumplir una serie medidas de segundad para evitar los posibles daños en la salud de los trabajadores y las personas cercanas a la zona. La manera de realizar el ensayo depende de la fuente utilizada. Para realizar radiografías en los metales se utiliza la radiación producida por los rayos X y rayos gamma, las cuales funcionan de una manera muy similar, aunque los equipos utilizados para producir estas radiaciones son diferentes.
Para utilizar los rayos X, la fuente es un equipo conectado a la corriente eléctrica, por lo que solo emite radiación cuando está en condiciones de funcionamiento. Normalmente, este equipo se utiliza en estructuras diseñadas para tal fin, tales como búnkeres de hormigón armado y plomo. Esta necesidad viene del hecho de que la radiación producida por rayos X es fuertemente penetrante en el cuerpo humano, por lo que en pocas ocasiones es posible utilizar una fuente de rayos X en el emplazamiento donde se realice la inspección si no dispone de un búnker destinado a ello.
Para la utilización de una fuente de rayos gamma, se usa el equipo dispuesto con una manguera, por donde sale la fuente hasta el punto de radiografiado conducida mediante un telemando, el cual, es accionado por el operario desde una distancia lo suficientemente alejada para realizar la tarea con seguridad. En el extremo de la manguera donde permanece la fuente se suele añadir un colimador para enfocar el haz de radiación en una dirección. Con este tipo de fuente hay que tener especial cuidado ya que, al contrario que para los rayos X, la fuente de rayos gamma permanece continuamente emitiendo radiación, ya que se trata de un isótopo radiactivo cuya vida útil se va agotando con el paso del tiempo.
La radiación ionizante sufre una cierta disminución del flujo de sus fotones al pasar a través de los materiales, es decir, la radiación no se propaga en línea recta hasta el infinito, sino que va desapareciendo a medida que pasa por diferentes materiales. Esto se conoce como atenuación, y depende de la naturaleza de la radiación, su energía y la naturaleza del material que atraviese (CSN, 2013). Esta atenuación sigue una ley de tipo exponencial, conocida como ley de Beer- Lambert o Ley de atenuación exponencial, expresada mediante la ecuación (1 ).
Ix = lo e x (cm 1) (1)
Siendo:
Ix = Intensidad después de la atenuación. lo = Intensidad antes de la atenuación. p = Coeficiente de atenuación lineal. x = Espesor del material absorbente.
El coeficiente de atenuación lineal “p”, es propio de cada material, aumenta con su número atómico y disminuye con la energía de la radiación incidente. Se mide en rrr1 y, cuanto mayor sea mejor cualidad atenuante de la radiación tendrá el material.
El coeficiente de atenuación también puede expresarse en forma másica, dividiendo el coeficiente de atenuación lineal por la densidad del material atravesado por la radiación. Se expresa según la ecuación (2). pm = p p 1 (cm2 g 1) (2)
Para comprender como se comportan los materiales en cuanto a su capacidad para atenuar la dosis de radiación, dependiendo de la fuente radiactiva, se recurre al espesor de semirreducción, una magnitud más sencilla de manejar que el citado coeficiente de atenuación y que se obtiene al aplicar un factor de reducción de dos con respecto a la intensidad de radiación inicial (l0) en la ecuación (1 ). Según la norma UNE EN ISO 80000-10:2021 , el espesor de semirreducción (di/2) o capa hemirreductora (CHR) es aquel que reduce la magnitud de interés de un haz unidireccional a la mitad de su valor inicial. Se mide en metros y depende tanto de la naturaleza de la fuente radiactiva como del material utilizado como atenuante. Se calcula como aparece en la ecuación (3). di/2 = In (2) . p’1 (3)
También puede calcularse el espesor décimorreductor (di/10) o capa décimorreductora (CDR) de la manera mostrada en la ecuación (4). di/2 = ln (10) . |J-1 (4)
Para permitir su aplicación, el recinto blindado debe ser desmontable, portátil y capaz de reducir considerablemente la radiación procedente de la fuente radiactiva. Para ello, su diseño debe realizarse teniendo en cuenta los siguientes requisitos:
Materiales: Para aislar a los operarios de la radiación es necesario que esté fabricado de un material que sea capaz de absorber una gran cantidad de la radiación desprendida por la fuente radiactiva. Los materiales con más capacidad de absorción suelen ser aquellos con mayor densidad, pero esto a la vez conlleva un peso muy elevado, lo que está en contraposición con la característica portátil del diseño. Además de ser denso debe ser accesible y, con lo que esto conlleva, económico. Los materiales más utilizados en la protección contra la radiación suelen ser el hormigón y el plomo, debido a su densidad y accesibilidad, aunque, por otro lado, también es posible encontrar otros materiales como el agua o el boro para contener grandes cantidades de radiación ionizante en centrales nucleares.
Economía circular y sostenibilidad: Uno de los aspectos importantes en los que se centra la presente propuesta es la protección del medio ambiente mediante la utilización de materiales reciclados para la elaboración de la mayor parte del diseño. Teniendo en cuenta el problema de la contaminación que se genera diariamente a nivel mundial, se ha tomado la decisión de reducir el consumo de materiales de nueva fabricación para no agravar el problema e incluso buscar una manera de aprovechar ciertos residuos ayudando así a reducir la contaminación generada por estos, reduciendo la huella de carbono. Por otra parte, se quiere conseguir un presupuesto final que no sea muy elevado, lo cual es posible utilizando materiales reciclados.
Montaje: Debido a la cualidad portátil del recinto, se debe tener en cuenta que el montaje del recinto puedan realizarlo, de manera rápida y fácil, un par de operadores como máximo. Además, se debe tener en cuenta que, según el Real Decreto 487 /1997 de 14 de abril, sobre disposiciones mínimas de seguridad y salud relativas a la manipulación de cargas que entrañe riesgos, en particular dorso lumbares, para los trabajadores. Según el Real Decreto 487 /1997 de 14 de abril, sobre disposiciones mínimas de seguridad y salud relativas a la manipulación de cargas que entrañe riesgos, en particular dorso lumbares, para los trabajadores, la carga máxima para condiciones ideales de levantamiento es de 25 kg, por lo que no se debe superar esta cifra para ningún objeto que deba ser levantado por una única persona. Para ensamblar el recinto, se tomarán perfiles de un material metálico que permitan la unión de todas las placas consiguiendo que la estructura quede lo más firme y estanca posible para impedir la fuga de radiación. Para asegurar que el montaje no se realice de manera errónea se diseñarán estos perfiles de tal manera que solo puedan encajar en el sitio diseñado para ellos, además estarán numerados y la estructura completa irá acompañada de un manual de instrucciones para garantizar la resolución de toda duda posible que pueda surgir en el momento del montaje.
Adaptabilidad: El diseño final no debe tener un único método de montaje, se deberá diseñar la estructura de tal manera que permita la incorporación o la sustitución de distintos tipos de paneles modulares, construidos a partir de dos o más paneles blindados tipo sándwich (A+B+A), para permitir que pueda utilizarse tanto para el equipo de rayos X como para el de gammagrafía.
Portabilidad: Una vez queda montado el recinto blindado (ver figura 1 ), debe tener la capacidad de desplazarse por las instalaciones, si fuera necesario, sin necesidad de tener que desmontarlo completamente.
Teniendo en cuenta las anteriores premisas, un primer aspecto de la invención es el diseño de unos paneles blindados, constituidos de material compuesto de fuentes recicladas, formando una estructura en sándwich para su uso en la fabricación de los paneles modulares empleados en un recinto blindado para la actividad de radiografía industrial y biomédica.
Los paneles objeto de la invención están compuestos por tres capas a modo de sándwich (A+B+A), donde las dos capas exteriores (A), están fabricadas a partir de la fracción poliméñca obtenida del reciclaje de cables eléctricos y, la capa central (B), está compuesta por láminas del material atenuante que se incorporan en las películas radiográficas, para protegerlas de la radiación dispersa, una vez retirada del papel de color blanco que está unida a ella en una de sus caras.
La función del material poliméñco es la de aportar consistencia a la estructura aportando muy poco peso y un cambio del medio físico en el que se transmita la radiación. El material atenuante que protegen a las películas radiográficas, está compuesto principalmente de una aleación de plomo y, su función, es la de actuar como material absorbente de la radiación, o material fuertemente atenuador.
El material atenuante que actúa de protección de las películas radiográficas, está compuesto por una base de papel en una cara y, una aleación en mayor proporción de plomo y otros materiales metálicos cuya fracción en masa (w) y densidad (p) puede apreciarse en la tabla 3, cuyos datos han sido determinados empíricamente mediante un ensayo de fluorescencia de rayos X.
Tabla 3: Composición de la aleación de plomo
Figure imgf000013_0001
* La parte correspondiente a los materiales no metálicos está compuesta mayoritariamente por papel. La lámina compuesta de papel y plomo tiene un espesor de 100 pm, aunque la fracción atenuante sólo mide 27 m de grosor. La densidad de este componente se estima como 1.
Por otra parte, cada una de las empresas registradas en la provincia de Cádiz para realizar radiografiado industrial puede consumir unas 1680 láminas de material atenuante al mes, lo cual da ¡dea de la cantidad de material de desecho generado, que puede servir para la fabricación de estos paneles.
Adicionalmente, la fracción polimérica de cables desechados procede de las cubiertas protectoras de dichos cables usados en instalaciones eléctricas. Según (Díaz et al., 2018), ese material tiene una composición aproximada de diferentes polímeros como polietileno de baja densidad (LDPE), copolímeros de polietileno, polietileno reticulado (XLPE), aunque también puede contener pequeños porcentajes de otros materiales poliméñcos como HFFR, contiene gomas e incluso trazas de cobre procedentes de restos de cables. Además, por medio de un reciclado mecánico, el material se tritura y tamiza hasta conseguir una granulometría promedio de 4mm. Según (Lindahl & Winsnes, 2005), los elementos más comunes son PVC (68%) y LDPE/XLPE (28%). En la tabla 4 se aporta estimación de la composición de este material, la fracción en masa de los componentes y sus densidades sin incluir aglutinante.
Tabla 4: Composición del material que procede la fracción polimérica de cables desechados, sin incluir aglutinante.
Figure imgf000014_0001
Un segundo aspecto de la invención es el procedimiento de fabricación de los paneles blindados definidos anteriormente, el cual, partiendo del material granulado, se aplica un proceso de moldeo por compresión a una temperatura máxima de 80°C hasta obtener un panel blindado compuesto por tres capas (material polimérico de cables desechados, A + material atenuante de películas radiográficas desechadas, B + material polimérico de cables desechados A). Las etapas que comprende el procedimiento son: a) Triturar y tamizar el material polimérico de cables desechados hasta conseguir una granulometría promedio de 4mm gránulos. b) Mezclar al 50% el material polimérico de cables desechados con una resina de poliuretano (PU). c) Colocar una primera capa de la mezcla: material polimérico de cables desechados + PU vertiéndola en un molde hasta alcanzar una altura de entre 3,5 y 4 mm en toda la extensión del molde. d) Insertar las láminas de aleación de plomo en toda la extensión del molde hasta alcanzar una altura de 2-2, 5mm aproximadamente. e) Colocar la tercera capa de la mezcla: material polimérico de cables desechados + PU, hasta alcanzar una altura de entre 3 y 3,5mm aproximadamente. f) Cerrar el molde y proceder al proceso de prensado por compresión con ayuda de una fuente térmica que favorezca la polimerización de materiales y aglutinantes hasta un punto en el que se queda unido por compresión, al tiempo que se produce la eliminación del sobrante de PU. Este procedimiento de fabricación permite compactar materiales poliméricos tipo termoplásticos, termoestables así como elastómeros e incluso metálicos, sin alcanzar la temperatura de fusión en ninguno de ellos.. Así mismo, en la tabla 5 se recogen los componentes del material polimérico de cables desechados una vez se mezcla con la resina de PU en las proporciones indicadas.
Tabla 5: Composición del material polimérico de cables desechados mezclado al 50% con PU.
Figure imgf000015_0001
nsidad de la mezcla de los dos componentes X:Y, en una relación 5:1.
La geometría final de la mezcla se recoge en la tabla 6. Así mismo, la composición final de un panel compuesto se recoge en la tabla 7. Tabla 6: Geometría preferente de un panel pequeño de material compuesto Mixlead.
Figure imgf000015_0002
A: material polimérico de cables desechados
B: material atenuante a base de aleación de plomo
* los cálculos para el panel de material se han realizado teniendo en cuenta que el material está compuesto por dos capas de material A y una de B. Tabla 7: Composición elemental preferente de un panel de material compuesto.
Figure imgf000016_0001
Un tercer aspecto de la invención es el recinto para llevar a cabo ensayos no destructivos para radiografía industrial y médica que incorpora los paneles blindados anteriormente descritos, que se integran a su estructura, y en cuyo interior se dispone la fuente radioactiva y los elementos a radiar (tuberías, accesorios, vigas, etc.).
El recinto se compone básicamente de dos partes: Estructura portante y paredes compuestas por módulos de paneles blindados. a) La estructura portante está compuesta por 26 perfiles huecos de aleación de aluminio; 12 estructurales y 14 de refuerzo en forma de H o T, los cuales, sirven de guía para el montaje de los módulos que componen las paredes del recinto. b) 34 paneles modulares que componen las paredes del recinto, dos de ellos intercambiables para adaptar el recinto a la fuente de radiación a emplear, construidos cada uno de ellos por la unión de dos o más paneles individuales en forma de sándwich de material compuesto A+B+A, donde las dos capas exteriores (A) están fabricadas a partir de la fracción polimérica obtenida del reciclaje de cables eléctricos y la capa central (B) está compuesta por láminas del material atenuante que se incorporan en las películas radiográficas, para protegerlas de la radiación dispersa, una vez retirada del papel de color blanco que está unida a ella en una de sus caras Cada uno de los paneles modulares está compuesto de tantos paneles blindados como requiera el espesor de atenuación del riesgo radiológico hasta límites permitidos, consiguiendo zonas de exposición de baja radiación. La unión de los paneles blindados entre sí se realiza mediante un adhesivo para polímeros.
El montaje de los paneles modulares se realiza sobre la estructura portante compuesta por los perfiles metálicos. El bajo peso del conjunto y, su rápido montaje y desmontaje dota al operario de más productividad ya que no se restringe únicamente al uso de su propio recinto interior ubicado en sus instalaciones.
Todos los perfiles cuentan con unas pletinas para facilitar el montaje mediante pernos normalizados y una geometría tal que los perfiles que componen las esquinas queden perfectamente unidos con un solo perno, haciendo más corto el tiempo de montaje.
Para evitar que la radiación puede escapar por cualquier orificio o junta, los perfiles de aluminio cuentan con hendiduras tanto en la parte vertical como en la horizontal para introducir los paneles de manera que queden fijados de manera correcta (ver figura 2b Y 2c).
Las diferentes unidades de paneles blindados, que unidos forman los paneles modulares que conforman las paredes laterales del recinto, se realiza situándolos unos levemente desplazados de los otros para formar una estructura machihembrada (ver figura 2a), de modo que, en la dirección vertical pueden unirse varios paneles sin aberturas estructurales donde existan fugas radioactivas.
Para montar la parte superior e inferior del recinto se colocan unos perfiles centrales en forma de T donde irán posados los paneles modulares horizontales directamente, los cuales irán unidos entre ellos mediante un corte en forma de solape en los paneles blindados (ver figura 3).
Para acceder al interior del recinto, así como, para introducir, posicionar y retirar los elementos a inspeccionar y las fuentes radioactivas, se ha optado por articular una de las paredes del recinto a modo de puerta abatible. De esta manera, tirando de una maneta o asa situada en el perfil superior de una de las paredes del recinto se abate al completo, quedando accesible todo el interior del recinto (ver figura 4a). Para que la puerta pueda abatir se han diseñado las uniones atornilladas inferiores de los perfiles inferiores para que actúen de bisagra o charnela, quedando como aparece en la figura 4b.
Teniendo en cuenta que el diseño propuesto prevé su utilización tanto con un equipo de rayos X como con un equipo gammagráfico, se debe adaptar el diseño para que pueda ser utilizado bajo las mismas condiciones de seguridad para ambas fuentes. Para ello, se ha dispuesto de paneles verticales intercambiables, los cuales, sirvan para adecuar el recinto al tipo de radiación que se necesite. Para la utilización del recinto con el equipo de rayos X, se usará el panel vertical intercambiable marcado como L10 en la figura 5b, en sustitución del vertical convencional marcado como L2. Dicho panel L10, dispone de un agujero de diámetro igual al del tubo, con lo cual se puede introducir el tubo en el recinto de manera que este siga estando cerrado por todos lados, sus dimensiones se han descrito en la figura 6. Para sujetar el tubo en el interior no basta con apoyarlo en la plancha vertical a la que se le ha realizado el agujero, sino que hay que atornillar una abrazadera metálica (A1 ) entre los dos perfiles centrales del techo del recinto, de manera que el tubo quede fijado por dos puntos de apoyo, garantizando la correcta instalación de este. Para tapar los huecos que quedan en la unión del orificio de la plancha y el perímetro del tubo de rayos X, se utiliza un aplique circular (A2) fabricado en material blindado como se ha descrito anteriormente, garantizando también la sujeción de éste. Dichos accesorios se han denominado apliques A1 y A2 (figura 7a) y sus formas se detallan en las figuras 8a y 8b respectivamente.
Para la utilización del recinto con el equipo de rayos gamma, cabría la posibilidad de introducir el equipo completo dentro del recinto, lo cual sería mucho más seguro que introducir solo la manguera de este. No obstante, para posicionar la fuente del equipo hasta el punto final de la manguera, donde se emite la radiación, se debe empujar la fuente con ayuda del telemando, que va enchufado en el otro extremo del contenedor gammagráfico, esto supone que habrá que manipular desde fuera a una distancia prudente, por este motivo se usa otro panel vertical intercambiable marcado como L11 en la figura 5b, en sustitución del vertical convencional marcado como L1. Dicho panel L11 dispone de un agujero de diámetro igual a la envolvente de las dos mangueras del telemando y sus dimensiones se han descrito en la figura 8b. Para tapar los huecos que quedan en la unión del orificio de la plancha y el perímetro de las mangueras del telemando, se utiliza otro accesorio circular fabricado en material blindado como se ha descrito anteriormente, garantizando también la sujeción de éste. Dicho accesorio se ha denominado Aplique A3 (figura 7d) y su forma se detalla esquemáticamente en la figura 8c.
De esta manera, se garantiza el montaje adaptativo a una configuración u otra dependiendo de la fuente elegida para el ensayo.
Su especial configuración en paneles modulares de bajo peso dota al diseño de una adecuada disposición para su fácil transporte y su uso allí donde sea necesario. Este aspecto de portabilidad incide sobre la productividad de la empresa encargada de realizar los ensayos, en virtud de la adecuación del contenedor a las instalaciones del usuario, tanto en el interior como a la intemperie.
El diseño está concebido para aplicaciones con fuentes radioactivas de origen artificial, cuyo espectro energético esté comprendido alrededor de los 1 ,4 MeV, como son el Ir192 y el Se75, cuyas fuentes están confinadas o agregadas dentro de cápsulas o cajas protectoras y, mediante una guía interna las empuja y desplaza hasta hacerlas salir al exterior. Dichas fuentes radioactivas están consideradas como Categoría 2 por la Guía de Seguridad N°. RS-G-1.9 del IAEA del año 2009, es decir, consideradas muy peligrosas para las personas y el medio ambiente. En base a ellos se ha estimado el espesor que deben tener los paneles, considerando parámetros como la distancia de la fuente a la probeta, la orientación de la fuente con respecto a ella y, al coeficiente de atenuación másico de cada material usado en los paneles.
Un cuarto aspecto de la invención es el procedimiento de construcción del recinto. Su especial configuración, basada en el uso de paneles de bajo peso dota al diseño de una adecuada disposición para su fácil transporte y su uso allí donde sea necesario. Este aspecto de portabilidad incide sobre la productividad de la empresa encargada de realizar los ensayos, en virtud de la adecuación del contenedor a las instalaciones del usuario, tanto en el interior como a la intemperie.
En primer lugar, es necesario decidir el lugar dónde se instalará el recinto y si tendrá que desplazarse por determinados recorridos montado en una plataforma con ruedas. En cualquier caso, el primer paso es el montaje de los cuatro perfiles de la parte inferior y los cuatro perfiles verticales, de esta forma ya se disponen de las cuatro esquinas inferiores. El orden correcto que debe seguirse es el siguiente: a) Montaje de uno de los vértices inferiores del recinto, compuesto por dos perfiles laterales horizontales con un perfil vertical formando una primera esquina. b) Montaje del resto de esquinas inferiores del recinto. c) Montaje de los dos perfiles centrales de la base del recinto. d) Montaje de los paneles horizontales inferiores que conforman el suelo del recinto. e) Montaje de los perfiles centrales laterales y traseros, uno a cada lado y dos en la parte posterior. f) Montaje de paneles laterales y traseros, situándolos encima de los raíles que quedan entre las uniones de los perfiles. g) Montaje del perfil inferior para puerta abatible. h) Montaje de perfiles verticales para puerta abatible. i) Montaje de paneles verticales de la puerta abatible. j) Montaje de perfiles horizontales superiores. k) Montaje de perfil superior de puerta abatible. l) Montaje de perfiles centrarle superiores. m) Montaje de abrazadera de sujeción del tubo de Rx. n) Montaje de accesorio para telemando si se usan Rayos gamma. o) Montaje de paneles horizontales superiores, situándolos en los raíles de los perfiles superiores, quedando el recinto montado por completo (figura 1 ).
Un quinto aspecto de la invención son los usos particulares que pueden hacerse del recinto objeto de la invención. Históricamente han existido numerosos tipos de recintos blindados para aplicaciones de radiodiagnósticos médicos, muchos de ellos destacados en los antecedentes. Así mismo, aunque menos profuso, esos recintos han sido usado para fines industriales de ensayos no destructivos fijos. El problema que plantea este tipo de instalaciones fijas es que limita la capacidad productiva de la empresa que los explota ya que se ciñe a los ensayos que le permiten llevar a cabo en su propio recinto.
Mediante el recinto objeto de la invención, es posible complementar dichos trabajos de ensayo con los que se pueden ejecutar en las instalaciones del propio usuario. Pero adicionalmente, dada la facilidad de montaje y su portabilidad, es posible su uso en cualquier lugar y, así como el uso, igualmente eficaz para determinadas aplicaciones, de los paneles que lo conforman a la intemperie a modo de pantalla. Este aspecto añade productividad a la empresa que ensaya ya que le permite realizar los trabajos en paralelo atendiendo diferentes necesidades en lugares distintos. A continuación, se citan dos aplicaciones industriales adicionales de este tipo de recinto blindado, portátil y modular que, aprovecha las buenas propiedades de blindaje que aporta el material compuesto de polímero y aleación de plomo del que está formado sus paneles, así como una aplicación adicional de barrera basada en el empleo de los paneles blindados que igualmente son objeto de la invención.
A) Recinto para transporte del equipo radiactivo
Una de las opciones es utilizar el material blindado (A+B+A), a modo de cajón blindado para el transporte del equipo gammagráfico en vehículos para su desplazamiento de la delegación propietaria del equipo hasta el emplazamiento de la inspección. b) Recinto para almacenamiento en obra del equipo radiactivo
Otra aplicación similar a la anterior es el uso de un cajón fabricado con el material blindado (A+B+A), para almacenamiento temporal a pie de obra del equipo gammagráfico. c) Barrera para refugio en campo en inspecciones radiográficas llevadas cabo en campo abierto, como las que se realizan en plantas termosolares, empleando para ello una pantalla vertical compuesta por varias capas de los paneles tipo sandwich objeto de la invención, de un tamaño suficiente para cubrir al operador.
Un sexto aspecto de la invención sería la metodología de cálculo numérico para determinar el número de paneles de cada pared y sus espesores, tal y como se citó anteriormente. Como ya se ha reseñado anteriormente, existen tres factores básicos para reducir la dosis de radiación a la que están expuestos los operadores y el público en general en el emplazamiento de la inspección radiográfica. Estos factores son el tiempo, la distancia y el blindaje.
En primer lugar, se determina la distancia entre operador y fuente necesaria para realizar los trabajos cumpliendo con la normativa legal, para comprobar si es necesario utilizar una medida extra de protección como lo es el blindaje. En este caso, se realizarán los cálculos para maximizar la protección por blindaje, aunque también se tendrá en cuenta combinar el factor blindaje con la distancia. De esta manera se conseguirá reducir la distancia a la que tienen que mantenerse las personas presentes en las inmediaciones de la inspección radiográfica, para permanecer dentro del umbral de radiación seguro para la salud. A continuación, se aplica la metodología:
El primer paso es realizar los cálculos de dosimetría para fuentes de rayos gamma y rayos X, para determinar a qué cantidad de radiación están expuestos los operadores de radiología industrial a una distancia fija. Posteriormente, se determina la distancia a la cual se debe situar el operador para garantizar que no se supere la tasa de dosis límite para cada fuente. Si se obtiene un valor de distancia demasiado alto para ser aplicado de manera práctica o poco eficiente en tiempo, se realizan los cálculos para obtener el espesor de panel necesario para cada fuente radioactiva. Como el recinto se desea diseñar de manera que sea posible su utilización para varias fuentes ionizantes, si resultan valores de espesores diferentes dependiendo del tipo de fuente, se deberá escoger un valor de espesor (considerando el espesor y el peso del recinto para que cumpla con su característica transportable), y calcular la nueva distancia de operación para cada fuente si resulta necesario.
De los cálculos numéricos realizados para determinar qué tipo de protección haría falta en cada caso particular de fuente radioactiva, se han llegado a las siguientes conclusiones para cada fuente radioactiva:
192lr: Es totalmente necesario utilizar una protección extra por blindaje además de la distancia, tanto usando colimador como cuando no pueda utilizarse. Será necesario calcular la distancia a mantener con el equipo con la barrera de blindaje dependiendo de la actividad del isótopo radiactivo.
75Se: Es recomendable utilizar la protección por blindaje solo cuando haya presencia de personal ajeno en las inmediaciones del emplazamiento de inspección y no se pueda acordonar la zona. También sería necesario su uso cuando se utilice este isótopo sin colimador, aunque esto sucede en muy pocas ocasiones.
Rayos X: Es necesario utilizar la protección por distancia en todo momento, además el blindaje para este tipo de fuente presenta una eficiencia muy alta, reduciendo en gran medida la radiación.
Como solución final se ha determinado empíricamente diseñar un recinto con paredes modulares compuestas por 4 paneles de material blindado cuyo espesor total de adapte tanto para radiación gamma como para Rayos X. Para la radiación gamma de un isótopo de 192lr de unos 30C¡ de actividad, situándose a 10 metros de distancia y utilizando dicho recinto de blindaje, para poder cumplir con el límite por hora de 11 pSv/h se deberían utilizar paredes modulares compuestas por 8 paneles de material blindado. Por el contrario, al utilizar rayos X, con sólo 3 paneles ya se obtiene una tasa de dosis suficientemente pequeña como para no superar los límites, para operador y público en general, a un metro de distancia de la fuente. De esta manera, con los 4 paneles blindados se podría situar el operador junto a la pared del recinto blindado incluso a voltajes mayores.
Una vez decidida la configuración de montaje del recinto, se compara la tasa de dosis obtenida antes y después de la utilización del recinto y la distancia suplementaria que habría que aplicar en algunos casos. Los resultados obtenidos para este cálculo se recogen en las tablas 1 y 2, y se realiza para las fuentes de rayos X e Ir, ya que para Se, como se ha demostrado, apenas tiene utilidad esta medida adicional de blindaje. El coeficiente de atenuación utilizado se ha calculado expeñmentalmente.
Tabla 1 : Tasa de dosis equivalente vs distancia antes y después de aplicar el blindaje compuesto de 4 paneles para fuente de Ir.
Figure imgf000023_0001
El operador deberá alejarse a una distancia de algo más de 10 metros de la posición del telemando, lo que implica una distancia total con la fuente de más de 20 metros. Aunque es una distancia alta, al disponer del blindaje propuesto, la tasa de dosis se ve reducida de 45 pSv/h a 14 pSv/h, lo que supone una mejora notable. Tabla 2: Tasa de dosis equivalente vs distancia antes y después de aplicar el blindaje de 4 paneles para fuente de rayos X
Figure imgf000024_0001
Manteniendo una distancia de hasta 5 metros se asegura la tasa límite para el operador en el peor de los casos posibles. Tal y como se ha recogido en las tablas 1 y 2, incluso aplicando blindaje habría que mantenerse alejado de la fuente radioactiva varios metros en el caso del Ir. Este límite de dosis por hora ha sido calculado teniendo en cuenta que el operador recibe radiación durante la jornada completa. El tiempo estimado para una fuente de Ir es de 4 horas y 22 minutos al día y para los rayos X, de algo menos de 2 horas, lo que significa que la exposición real siempre va a ser menor a las 8 horas. Por lo tanto, el operador podrá tomar tasas de dosis un poco superiores durante poco tiempo, mientras cumpla con el límite de dosis diario de 80 pSv /h, aunque siempre es preferible, cuando sea posible permanecer dentro de una zona con tasas de dosis menor al límite.
Referencias empleadas
Burns, K. M., Shoag, J. M., Kahlon, S. S., Parsons, P. J., Bijur, P. E., Taragin, B. H., & Markowitz, M. (2017). Lead Aprons Are a Lead Exposure Hazard. Journal of the American College of Radiology, 14(5), 641-647. https://doi.Org/10.1016/j.jacr.2O16.10.024
CSN. (2013). http : // csn. ciemat . es/ MDCSN /recursos/ ficheros_ md / 1289767266 157200911511.pdf (Accedido en 07/01/2022). Determinación Experimental de La Variación de La Dosis Absorbida, Debida a Una Fuente Puntual, En Función de La Distancia, Tiempo y BlindajeCSN. Determinación Experimental de La Variación de La Dosis Absorbida, Debida a Una Fuente Puntual, En Función, Tie.
Díaz, S., Ortega, Z., Mccourt, M., Kearns, M. P., & Benítez, A. N. (2018). Recycling of polymeric fraction of cable waste by rotational moulding. Waste Management, 76, 199-206. https://doi.Org/10.1016/j.wasman.2O18.03.020
Jamal, N., Aida, N., & Amin, B. (2019). Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine : A review. 765(May). https://doi.Org/10.1016/j.radphyschem.2019.108439
Lindahl, M., & Winsnes, M. (2005). Recycling of Cable Plastics - A Life Cycle Assessment of Several Different Alternatives. 2005 4th International Symposium on Environmentally Conscious Design and Inverse Manufacturing, 539-546. https://doi.Org/10.1109/ECODIM.2005.1619290
Nazemi, E., Rokrok, B., Movafeghi, A., & Dastjerdi, M. H. C. (2018). Simulation of a complete X-ray digital radiographic system for industrial applications. Applied Radiation and Isotopes, 739(May), 294-303. https://doi.Org/10.1016/j.apradiso.2018.05.017
BREVE DESCRIPCIÓN DE LOS DIBUJOS
Fig. 1. Aspecto exterior del recinto blindado objeto de la invención ya montado y con indicaciones de sus partes componentes.
En ella se muestran marcas sobre:
- Pp: perfiles denominados estructurales o principales.
- Ps: perfiles denominados de refuerzo o secundarios.
- Pa: paneles modulares que conforman las paredes del recinto.
- As: asa para puerta abatible.
- To: ubicación de un par de fijaciones con tornillo.
Fig. 2. Paredes modulares compuestos por paneles blindados montados en sus perfiles guías. a) Encuentro de dos paneles machihembrados; b) Situación de paneles en guías metálicas.
En estas imágenes puede distinguirse el modo en el que se encuentran unidos y desplazados unos sobre otros los diferentes paneles blindados, que conforman cada pared modular, formando el perfil machihembrado.
Fig. 3. Método de montaje de paneles blindados de la parte superior e inferior. Se muestra detalle de la posición de los cortes en forma de solape de los paneles blindados que conforman los paneles modulares superiores.
Fig. 4. Detalles del montaje de la puerta abatible. a) Puerta blindada parcialmente abatida con el asa o maneta en la parte superior; b) Detalles de bisagras en la parte inferior.
Fig. 5. Vista explosionada para la identificación de elementos constructivos. a) perfiles de aluminio (P1 a P20) y aplique metálico A1 disponible para uso del recinto con fuente de Rayos X; b) paneles modulares, construidos cada uno de ellos por la unión paneles blindados constituidos por capas en sandwich (A+B+A). En esta figura se distingue también los apliques A2 para la instalación correspondiente al uso para Rayos X y el aplique A3 para su uso con fuente de Rayos gamma.
Fig. 6. Vistas ortogonales acotadas de los paneles modulares intercambiables para las distintas fuentes radioactivas. a) Panel L10 b) Panel L11.
Fig. 7. Montaje de elementos de la zona superior. a) Apliques del conjunto para Rayos X (A1 y A2); b) Montaje de aplique A1 para tubo de Rayos X; c) Ubicación de aplique A1 para tubo de Rayos X; d) montaje de aplique A3 para Rayos gamma.
Fig. 8. Vistas ortogonales acotadas de los apliques A1 , A2 y A3. a) Vistas acotadas del aplique A1 ; b) Vistas acotadas del aplique A2; c) Vistas acotadas del aplique A3;
Fig. 9. Estructura metálica portante una vez montada.
Fig. 10. Perfiles metálicos de la estructura de contención situada en una de las esquinas. a) Perfil estructural o principal; b) Perfil de refuerzo o secundario usados como refuerzo y guía para el montaje de los paneles blindados.
Fig. 11. Montaje de perfiles de la zona inferior, a) Primera esquina inferior atornillada; b) montaje de las cuatro esquinas; c) montaje de los perfiles centrales.
Fig. 12. Montaje de paneles de la zona lateral inferior. a) paneles de la zona inferior; b) montaje de perfiles centrales; c) montaje de paneles laterales.
Fig. 13. Montaje de paneles de la zona de la puerta abatible. a) montaje de paneles verticales de la puerta abatible; b) montaje de perfiles horizontales superiores;
Fig. 14. Gráfico comparativo de atenuación del blindaje proporcionado por los diferentes escenarios de prueba en los ensayos con rayos gamma.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
Ejemplo 1 : Procedimiento de fabricación de paneles blindados (A+B+A)
Con base en el procedimiento de fabricación de paneles blindados anteriormente indicado en la descripción de la invención se han tenido en cuenta las siguientes características técnicas para obtener un resultado correcto.
Para llenar el volumen de la cavidad del molde lo importante es tener al menos 100 gr de material polimérico de cables desechados.
La cantidad de resina de PU y la concentración material polimérico de cables desechados, no tiene por qué ser exacta, ya que la resina se introduce en el interior de los huecos del residuo, escapándose del molde en caso de tener una concentración superior a la necesaria para rellenar los huecos del material polimérico de cables desechados. Ahora bien, para rellenar todos los huecos del material polimérico de cables desechados con la resina, es necesario algo más de una relación material: resina de 1 :1 y menos de 1 :2.
Debido a que la densidad de la resina es mayor que la densidad del material polimérico, se incrementó la cantidad de masa total de la mezcla hasta 220 gr para conseguir llenar la cavidad del molde y evitar posibles defectos como puede ser falta de llenado. Los 220 gr de mezcla se dividieron en 110 gr de material polimérico, 91.7 gr de resina y 18.3 gr de catalizador.
Los paneles blindados más grandes fabricados tienen un tamaño de entre 250 y 285mm de ancho y de 470 a 485mm de largo. El peso de cada panel blindado más grande de los fabricados es de 16,8 kg, por lo que cada uno los paneles fabricados objeto de la invención pueden ser transportados por una persona.
Ejemplo 2: Estructura de recinto objeto de la invención
El diseño que se propone para el recinto objeto de la invención es el representado en la figura 1 con indicación de sus partes componentes.
En base en este diseño, se ha construido un recinto en forma de paralelepípedo de medidas máximas (largo x ancho x alto) de 850x705x998mm, para llevar a cabo ensayos no destructivos para radiografía industrial y médica.
El recinto se compone de dos partes bien diferenciadas y configuradas con diferentes materiales y espesores:
- La estructura portante (representada en la figura 9) está compuesta por 26 perfiles huecos de aleación de aluminio EN AW-6063 (L-3441 según norma UNE 38337-1982) con un tratamiento térmico T5, a los que se les identifica por la ubicación que ocupan en cada parte de la estructura (véase identificación en la figura 5a). Adicionalmente cuenta con una abrazadera metálica (A1 ) unida a los perfiles centrales del techo del recinto para sujetar el tubo que es necesario introducir en el recinto cuando la fuente de radiación empleada es un equipo de rayos X.
- Los paneles blindados (A+B+A), cuya identificación se recoge en la figura 5b. Adicionalmente cuenta con dos accesorios circulares, identificados con las referencias A2 y A3.
La estructura portante se compone de 26 perfiles, siendo sólo 12 los perfiles principales que dan estabilidad a la estructura (ver figura 10a), mientras que los otros 14 perfiles secundarios (guía) que se montan como refuerzos y, dada su forma en H (ver figura 10b), se usan como guía para el posterior montaje de los 34 paneles que componen las paredes del recinto (dos de ellos intercambiables). Se han utilizado un total de 24 pernos de rosca métrica M5 DIN 933 de 10 mm de longitud y cabeza hexagonal de acero al carbono acompañados de tuercas M5 DIN 934 del mismo material.
El peso total del recinto se ha calculado considerando las densidades de cada elemento y el volumen total del recinto, el resultado ha sido de aproximadamente 448kg.
Ejemplo 3: Montaje detallado del recinto blindado:
El orden correcto que debe seguirse es el siguiente: a) Montaje de los perfiles de la zona inferior: Montaje de los perfiles P1 , P5 y P9. Se deben encajar estos tres perfiles y atornillar con perno M5 DIN 933 y tuerca M5 DIN 934; para dejar fijada la primera esquina del recinto (ver figura 11a). b) Montaje de las cuatro esquinas inferiores: Una vez se tiene la primera esquina montada, se procede a hacer lo mismo con las otras tres esquinas, utilizando los perfiles P5, P1 y P10 para la esquina delantera derecha, los perfiles P1 , P3 y P7 para la esquina izquierda trasera, y los perfiles P1 , P3 y P8 para la esquina derecha trasera. Una vez hecho esto se tendrían las cuatro esquinas unidas como puede verse en la figura 11 b. c) Montaje de los perfiles centrales inferiores: una vez fijada la base inferior, tal y como se observa en la figura 11c, se fijan los perfiles centrales inferiores tipo P11 . d) Montaje de paneles horizontales inferiores: Una vez montados los perfiles que componen la base del recinto, se montan los paneles horizontales L5 en la izquierda y derecha del suelo, así como, las L6 para la parte central del mismo, situándolas encima de los raíles que quedan entre las uniones de los perfiles (ver figura 12a). e) Montaje de los perfiles centrales laterales: Se montan los perfiles P13 y P14, en los laterales izquierdo, derecho y trasero, fijándolos a la pletina central de los perfiles P1 y P3 (ver figura 12b). f) Montaje de los paneles laterales y traseros: Una vez fijado cada perfil central, se van montando los paneles verticales L3, L4, L9 (L2), y L10 (L1 ). Los paneles L9 y L10 se sustituirán por los L1 y L2 según se utilice el equipo de rayos X o el de rayos gamma respectivamente (ver figura 12c). g) Montaje del perfil inferior para puerta abatible. Se inicia el montaje de la puerta abatible, para ello, se monta el perfil P16 que permanecerá sin fijar hasta que no se complete el paso siguiente. h) Montaje de perfiles verticales para la puerta abatible. Una vez montado el perfil inferior P16, se montan los perfiles verticales P17, P18, P19 y, P20 situados de izquierda a derecha, atornillándolos a las pletinas del perfil P16. Además, los perfiles P16, P19 y P20 irán unidos al perfil P5 en dos uniones que harán de bisagra para la puerta abatible (ver figura 4a). i) Montaje de paneles verticales de la puerta abatible. De manera similar, se van introduciendo los paneles L9 en los laterales inferiores de la puerta abatible y el panel L8 en el centro, y luego los paneles L4 encima de los L9 y el panel L2 encima del L8 (ver figura 4b). j) Montaje de perfiles horizontales superiores. Una vez montados todos los paneles de las paredes del recinto, se montan los perfiles horizontales P2, en los laterales de parte superior, P4 en la parte trasera y P6, en la delantera, fijándolos a los perfiles verticales correspondientes. k) Montaje de perfil superior de la puerta abatible. Se fija el perfil P15 a los perfiles P17, P18, P19 y P20, que hará de maneta para abrir y cerrar la puerta abatible. Los pernos centrales se fijarán en el siguiente paso (ver figura 13a). l) Montaje de perfiles centrales superiores. Se montan los últimos perfiles P12, situados en las ranuras de los perfiles P4 y P6. Una vez montados se atornillan, utilizando los dos pernos que quedan en la parte delantera del recinto como pernos provisionales que se retirarán cuando sea necesario abrir la puerta abatible (ver figura 13b). m) Montaje de abrazadera de sujeción para tubo de Rayos X. En el caso de utilizar el equipo de Rayos X, se debe montar el aplique o accesorio A1 tipo abrazadera, encima de los dos perfiles centrales P12, a una distancia cercana al centro del recinto (ver figuras 7a y 7b), y el accesorio de material blindado A2 alrededor del tubo de rayos X. n) Montaje del telemando para tubo de Rayos gamma En el caso de utilizar el recinto con el equipo de rayos gamma, se debe introducir el equipo completo dentro del recinto, al igual que para el caso anterior, la parte del telemando que debe ser conectada al equipo es más ancha que la manguera, por lo que queda un hueco entre la manguera y el panel blindado. Por lo tanto, se ha diseñado un accesorio unido a la manguera del telemando (aplique A3), similar al anterior A2, y teniendo en cuenta que la manguera del telemando es doble, queda de la manera mostrada en la figura 7d. o) Montaje de paneles horizontales superiores: Por último, se montan los paneles L5, L6 y L7, dejándolos caer en los raíles de los perfiles superiores. Los paneles L5 se sitúan en los laterales, el panel L6 en la parte central delantera y el L7 encima del aplique A1 , haciendo coincidir los huecos del panel con el perfil del aplique. Una vez completado este paso el recinto queda montado por completo (figura 1 ).
El tiempo estimado de montaje entre dos personas es de unos 30 minutos.
Debido al peso del recinto una vez montado, resulta imposible desplazarlo al lugar del emplazamiento de las operaciones normales de inspección en caso de que fuera necesario. Para solventar este problema será necesario disponer de una plataforma comercial de transporte del tipo de chasis de acero y cuatro ruedas cuya capacidad máxima de carga sea de 1050kg, suficiente para cargar con el recinto completo y equipos en su interior. De esta manera se podría ensamblar el recinto encima de la plataforma, teniendo únicamente que empujar por uno de los laterales del recinto para desplazarlo por los alrededores de la instalación, haciendo esta tarea mucho más fácil.
Ejemplo 4: Estimación del número de paneles necesarios para cada pared modular del recinto en base a los diferentes usos
A continuación, se indican el número de paneles necesarios para cada uno de los usos alternativos mencionados en la descripción:
Para uso del recinto para transporte del equipo radiactivo:
Según la guía de seguridad 5.14 del CSN, los equipos radiactivos que deban ser transportados deben hacerlo en vehículos autorizados, y estos deben poseer un cajón blindado a modo de reducir la emisión radiactiva del equipo durante el trayecto. La tasa de dosis máxima a recibir durante el trayecto para el conductor del vehículo y acompañantes autorizados debe ser menor a 11 pSv/h.
Como resultado de haber realizado una medición experimental en la carcasa externa de un equipo gammagráfico, con una actividad de 28,6 C¡ (1058 Bq), se ha obtenido con el radiómetro una tasa de dosis de 40pSv/h en contacto con la carcasa del mismo.
Por este motivo, para conseguir que la dosis sea inferior al límite establecido serían necesarias al menos dos hemirreducciones, lo cual se consigue utilizando 4 paneles de material blindado.
Por ello, si se fabrica un paralepípedo mediante perfiles y paneles blindados ¡guales a los utilizados para el presente recinto portátil y de medidas un poco superiores al contenedor gammagráfico (por ejemplo, 40x40x40 mm) se puede garantizar la protección radiológica del conductor y acompañantes del vehículo.
Para uso del recinto como almacenamiento en obra del equipo radiactivo:
Según la guía de seguridad 5.14 del CSN, en este caso el límite de tasa de dosis debe ser de 2,5pSV/h. Para ello, se ha realizado una medición experimental de la tasa de dosis recibida a una distancia de 15 cm de la carcasa del equipo gammagráfico, con una actividad de 24,5 Ci, donde resulta una tasa de dosis de 21 ,98 pSv/h.
Para conseguir no rebasar el umbral establecido por el CSN, se deberían tener en cuenta 4 hemirreducciones como mínimo para un equipo con esa actividad, con lo cual serán necesarios como mínimo 8 paneles de material blindado, lo cual se dispondría de un paralepípedo similar al anterior, pero con unas paredes modulares de 8 cm por lado en total.
Para uso de los paneles como barrera para refugio en campo:
En la mayoría de las inspecciones radiográficas llevadas cabo en campo abierto, la única barrera disponible es la del vehículo de empresa, donde el operador puede acudir a refugiarse si dispone de tiempo necesario antes de que tenga que guardar la fuente, o bien puede accionar el telemando detrás del vehículo con objeto de conseguir una protección adicional. Tal y como se ha descrito, si el operador dispone de tiempo para situarse tras su vehículo situado más o menos a 20 metros de la fuente, estaría expuesto a una tasa de dosis de alrededor del doble del límite, una vez la fuente esté en la posición del colimador. Pero normalmente los tiempos de exposición para llevar a cabo un ensayo en una unión soldada son muy pequeños (del orden de segundos), por lo que el operador se mantiene en la posición del telemando hasta que concluye el ensayo. Además, mientras el operador está accionando el telemando, la tasa de dosis se multiplica, ya que la fuente discurre por la manguera, sin contar con la protección que ofrece el colimador.
De manera similar a las anteriores, se ha realizado una medición experimental de la tasa de dosis recibida en la posición del operador y esta puede llegar a superar los 1000 pSv/h. Si delante del telemando se instalara de manera provisional una pantalla vertical compuesta por varios paneles blindados de un tamaño suficiente para cubrir al operador, la tasa de dosis podría reducirse en gran medida, disminuyendo la dosis total diaria a la que estaría expuesto el operador.
Ejemplo 5: Ensayos realizados con prototipos construidos.
Para poder contrastar la información determinada por el método numérico, y así tener garantías a la hora de ver cómo se comporta el material blindado experimental, respecto a la radiación incidente, se han realizado ensayos exponiendo pequeños prototipos de paneles blindados tanto a rayos X como a rayos gamma. Para medir la dosis de radiación, se ha utilizado un radiómetro de marca S.E. International y modelo Monitor 4EC el cual dispone de una exactitud de ±15 % del total de la escala (con referencia a Cs-137. Para cumplir los límites de tasa de dosis y garantizar la seguridad personal a la hora de realizar los ensayos, estos han sido realizados en un búnker registrado, construido a base de hormigón armado y plomo. a) Ensayos con Rayos X.
Los ensayos con rayos X se han realizado con el tubo del fabricante General Electric Company, modelo Tubehousing ISOVOLT 160, similar al mostrado en la figura 7. El foco radiactivo del equipo apunta hacia abajo y se encuentra a una altura de 70 centímetros del suelo. Para realizar el ensayo se ha elaborado una tapadera con paneles blindados (A+B+A), con la medida de la ventana del tubo de rayos X, donde se encuentra el foco de la radiación. De esta manera, utilizando tapadera como barrera de blindaje ante la radiación producida por los rayos X, y midiendo antes y después de su montaje, se obtiene la atenuación lograda por el material blindado. La tapadera debe tener unas dimensiones tales que se consiga un buen ajuste, obteniéndose la menor fuga de radiación para aumentar la fiabilidad de los ensayos.
Para conocer el comportamiento del material blindado, se han realizado ensayos usando equipos radiográficos sin aplicar protección y, posteriormente, usando prototipos blindados construidos a base de paneles blindados recortados, tal y como se muestra en la figura 2. A continuación, se determinan las tasas de dosis obtenida con el coeficiente de atenuación calculado experimentalmente (pexP = 1 ,25 cm'1), para configuraciones de 1 y 4 paneles de material blindado (A+B+A), midiendo a una distancia de 10 metros.
Para una barrera de blindaje compuesta por una sola capa, aplicando la ecuación (1 ): hom = 60 e 1-25 °’977 = 17,69 Sv/h
Para 4 capas de material: hom = 60 e'1,25 °’9774 = 0,45 Sv/h
Por tanto, tomando el peor de los casos, con la tasa más alta y el coeficiente más bajo se reduce la tasa de dosis a unos niveles muy bajos situándose a 10 metros de distancia, e incluso el operador podría posicionarse mucho más cerca cumpliendo con el límite requerido. b) Ensayos con Rayos gamma.
Para la realización de los ensayos con rayos gamma se ha hecho uso del equipo gammagráfico registrado cedido por una empresa colaboradora, de marca QSA Global, modelo Sentinel 880. En el momento de la realización de los ensayos, el equipo contaba en su interior con una fuente radiactiva de iridio de 28,7 C¡ de actividad.
En este caso, a modo de bancada o módulo de pruebas, se han fabricado prototipos en forma de paralelepípedos huecos compuestos por paneles del material blindado. En una de sus caras se practica un agujero con la finalidad de introducir la manguera del equipo gammagráfico en el interior, pudiendo comprobar así la cantidad de radiación fugada. Los prototipos se van escalando a medida que se van añadiendo capas, formando una estructura similar a las muñecas rusas (matñoskas).
El primero de los prototipos tiene unas dimensiones de 72x45x60 mm, mientras que el segundo se ha diseñado con unas dimensiones de 100x71x86 mm, con la intención de introducir el primero dentro de éste, y dejando una separación de 5 mm entre las paredes de cada uno.
Para construir los cubos se han utilizados 6 paneles de material, una de ellas con un agujero de 18 milímetros (medida del diámetro de la manguera). Estos paneles se han unido con adhesivo en todas las esquinas interiores y exteriores reduciendo así la cantidad de radiación fugada al realizar el ensayo.
El segundo paralelepípedo, como debe incluir al primero en su interior, se le ha realizado a la pared que tiene el agujero una bisagra para poder abrirlo y cerrarlo. Por otro lado, para poder centrar el cubo más pequeño en el interior del grande, garantizando la misma separación entre todas las caras, se han utilizado rollos de cartón cortados a 5 mm de anchura y unidos con adhesivo en el centro de cada cara del paralelepípedo pequeño.
De la misma manera que para los ensayos con Rayos X, el prototipo se ha dispuesto dentro del búnker, pero debido al alto poder radiactivo de la fuente de Rayos gamma, la medición se ha realizado esta vez en el exterior de la pared del búnker, a la altura del suelo.
Los ensayos se han realizado con la manguera sin protección, y utilizando 5 escenarios diferentes, situando los modelos de prueba con la fuente de dos maneras, primero pegada a la pared interior del búnker, a la altura del suelo, y después a un metro de la pared interior, también a la altura del suelo. Los cinco escenarios que se han elegido para realizar los ensayos son: Escenario 1 : Colimador
Escenario 2: Paralelepípedo pequeño
Escenario 3: Paralelepípedo grande
Escenario 4: Paralelepípedo pequeño dentro del paralelepípedo grande
Escenario 5: Colimador dentro del paralelepípedo grande Los resultados se muestran en la gráfica de la figura 14 y, tal y como se aprecia, el blindaje más efectivo corresponde al escenario 1 , como era espera le, ya que el colimador tiene un grosor de 10 mm y un coeficiente de atenuación mayor correspondiente al plomo. Mediante la protección aportada en el escenario 3, correspondiente a un paralelepípedo grande, se obtienen unos valores ¡guales a los obtenidos sin utilizar protección, esto se debe a la tolerancia del aparato de medición y a que, este paralelepípedo dispone de una pequeña puerta con bisagra, por lo que su estanqueidad disminuye, teniendo la radiación más huecos por donde escapar. No obstante, para el escenario 4 que corresponde a ambos paralelepípedos juntos, sí que se observa atenuación comparado con el escenario 2, ya que el valor pasa de 150 pSv/h a 100 pSv/h.
Por último, se determinan los valores para la tasa de dosis con el valor del coeficiente experimental (pexP = 0,294 cm'1) teniendo en cuenta la tasa de dosis teórica, para contemplar el peor de los casos. Para una distancia de 10 metros, utilizando hasta 8 paneles de material blindado (A+B+A).
Para una barrera de blindaje compuesta por un único panel blindado, aplicando la ecuación (1 ): hom = 180 e 0,2940,977 = 135 ¡jSv/h
Para 8 paneles de material (espesor = 78,16mm): hom = 180 e 0,2940,9778 = 18,08 Sv/h

Claims

REIVINDICACIONES
1. Recinto blindado, portátil, para aplicaciones que usen radiación ionizante, diseñado a base de paneles modulares fabricados a partir de materiales reciclados, que comprende: a) Una estructura portante compuesta por 26 perfiles metálicos huecos, 12 estructurales y 14 de refuerzo en forma de H o T, que sirven de guía para el montaje de los paneles modulares que componen las paredes del recinto. b) 34 paneles modulares que componen las paredes del recinto, dos de ellos intercambiables para adaptar el recinto a la fuente de radiación a emplear, compuestos por la unión de dos o más paneles blindados construidos por tres capas a modo de sándwich, donde las dos capas exteriores están fabricadas a partir de la fracción polimérica obtenida del reciclaje de cables eléctricos y la capa central está compuesta por láminas del material atenuante a base de aleación de plomo que incorporan las películas radiográficas una vez retirado el papel que está adherido en la cara inferior de la lámina.
2. Recinto, según reivindicación 1 , caracterizado por que los paneles blindados que conforman cada uno de los paneles modulares van unidos entre sí mediante adhesivo para polímeros, hasta alcanzar el espesor necesario que aporte un nivel de atenuación del riesgo radiológico adecuado.
3. Recinto, según reivindicaciones 1 y 2, caracterizado por que los paneles blindados que conforman los paneles modulares laterales del recinto se colocan levemente desplazados entre si, para formar una estructura machihembrada.
4. Recinto, según reivindicaciones 1 y 2, caracterizado por que los paneles blindados que conforman los paneles modulares horizontales del recinto van unidos entre ellos mediante un corte en forma de solape.
5. Recinto, según reivindicaciones 1 a 4, caracterizado por que los perfiles cuentan con hendiduras tanto en la parte vertical, para colocación de los paneles verticales gracias a su estructura machihembrada, como en la parte horizontal para soportar sobre ellos los paneles horizontales que se unen entre sí con el corte en forma de solape.
6. Recinto, según reivindicaciones 1 a 5, caracterizado por que una de las paredes laterales del recinto está articulada a modo de puerta abatióle, de manera que tirando de una maneta o asa situada en el perfil superior de una de las caras del recinto se abate la pared al completo, quedando accesible todo el interior del recinto.
7. Recinto, según reivindicación 6, caracterizado por que el abatimiento de la puerta se consigue mediante las uniones atornilladas inferiores de los dos perfiles centrales que actúan de bisagra o charnela.
8. Recinto, según reivindicación 1 , caracterizado por que uno de los paneles modulares intercambiables está configurado para la utilización del recinto con un equipo de rayos X, para lo cual dispone de un agujero de diámetro idéntico al del tubo que es necesario introducir en el recinto de manera que este siga estando cerrado por todos lados.
9. Recinto, según reivindicación 1 , caracterizado por que cuenta con una abrazadera metálica (A1) unida a los perfiles centrales del techo del recinto para sujetar el tubo que es necesario introducir en el recinto cuando la fuente de radiación empleada es un equipo de rayos X.
10. Recinto, según reivindicaciones 1 , 8 y 9, caracterizado por que la sujeción del tubo en el interior del recinto, cuando la fuente de radiación empleada es un equipo de rayos X, se realiza con dos puntos de apoyo formados por el agujero que presenta el panel intercambiable a través del cual discurre y de la abrazadera metálica sujeta a los perfiles centrales del techo del recinto.
11. Recinto, según reivindicaciones 1 , 8, 9 y 10, caracterizado por que para tapar los huecos que quedan en la unión del orificio del panel vertical intercambiable y el perímetro del tubo de rayos X, cuenta con un accesorio circular o prensaestopas (A2) fabricado en material blindado garantizando además la sujeción de éste. Recinto, según reivindicación 1 , caracterizado por que uno de los paneles intercambiables está configurado para la utilización del recinto con un equipo de rayos gamma, para lo cual dispone de un agujero de diámetro igual a la envolvente de las dos mangueras del telemando. Recinto, según reivindicaciones 1 y 12, caracterizado por que para tapar los huecos que quedan en la unión del orificio de la plancha y el perímetro de las mangueras del telemando, se utiliza un accesorio circular o prensaestopas (A3) fabricado en material blindado garantizando también la sujeción de éste. Procedimiento de construcción del recinto, según reivindicaciones anteriores, que comprende las siguientes etapas: a) Montaje de uno de los vértices inferiores del recinto, compuesto por dos perfiles laterales horizontales con un perfil vertical formando una primera esquina. b) Montaje del resto de esquinas inferiores del recinto. c) Montaje de los dos perfiles centrales de la base del recinto. d) Montaje de los paneles horizontales inferiores que conforman el suelo del recinto. e) Montaje de los perfiles centrales laterales y traseros, uno a cada lado y dos en la parte posterior. f) Montaje de paneles laterales y traseros, situándolos encima de los raíles que quedan entre las uniones de los perfiles. g) Montaje del perfil inferior para puerta abatible. h) Montaje de perfiles verticales para puerta abatible. i) Montaje de paneles verticales de la puerta abatible. j) Montaje de perfiles horizontales superiores. k) Montaje de perfil superior de puerta abatible. l) Montaje de perfiles centrarles superiores. m) Montaje de abrazadera de sujeción del tubo de Rayos X. n) Montaje de accesorio para telemando si se usan Rayos gamma. o) Montaje de paneles horizontales superiores, situándolos en los raíles de los perfiles superiores. Procedimiento de fabricación paneles blindados, empleados en la construcción de los paneles modulares del recinto blindado, según reivindicación 1 , que comprende las siguientes etapas: a) Triturar y tamizar la fracción polimérica de cables eléctricos desechados hasta conseguir una granulometría promedio de 4mm gránulos. b) Mezclar al 50% la fracción polimérica, con una resina de poliuretano (PU). c) Colocar una primera capa de la fracción polimérica+PU vertiéndola en un molde hasta alcanzar una altura de entre 3,5 y 4 mm en toda la extensión del molde. d) Insertar las láminas de aleación de plomo en toda la extensión del molde hasta alcanzar una altura de 2-2, 5mm aproximadamente. e) Colocar la tercera capa de la fracción polimérica+PU hasta alcanzar una altura de entre 3 y 3,5mm aproximadamente. f) Cerrar el molde y proceder al proceso de prensado por compresión con ayuda de una fuente térmica que favorezca la polimerización de materiales y aglutinantes hasta un punto en el que se queda unido por compresión, al tiempo que se produce la eliminación del sobrante de PU. Uso del recinto blindado, según reivindicaciones 1 a 7 y 15, a modo de cajón blindado para el transporte del equipo gammagráfico en vehículos para su desplazamiento de la delegación propietaria del equipo hasta el emplazamiento de la inspección, empleando para ello 4 paneles blindados. Uso del recinto blindado, según reivindicaciones 1 a 7 y 15, para almacenamiento temporal a pie de obra del equipo gammagráfico, empleando para ello 8 paneles blindados. Uso de los paneles blindados, compuestos por tres capas a modo de sándwich, donde las dos capas exteriores están fabricadas a partir de la fracción polimérica obtenida del reciclaje de cables eléctricos y la capa central está compuesta por láminas del material atenuante a base de una aleación de plomo, que protegen las películas radiográficas una vez retirado el papel adherido en la cara posterior de la lámina, obtenidos según procedimiento recogido en reivindicación 15, como barrera para refugio en campo en inspecciones radiográficas llevadas cabo en campo abierto.
PCT/ES2023/070311 2022-05-20 2023-05-16 Recinto blindado, portátil, modular, procedimientos de construcción del recinto y de fabricación de los paneles blindados empleados para su construcción y usos WO2023222935A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES202230433A ES2956832B2 (es) 2022-05-20 2022-05-20 Recinto blindado, portatil, modular, procedimientos de construccion del recinto y de fabricacion de los paneles blindados empleados para su construccion y usos
ESP202230433 2022-05-20

Publications (1)

Publication Number Publication Date
WO2023222935A1 true WO2023222935A1 (es) 2023-11-23

Family

ID=88834723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2023/070311 WO2023222935A1 (es) 2022-05-20 2023-05-16 Recinto blindado, portátil, modular, procedimientos de construcción del recinto y de fabricación de los paneles blindados empleados para su construcción y usos

Country Status (2)

Country Link
ES (1) ES2956832B2 (es)
WO (1) WO2023222935A1 (es)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2545276A1 (es) * 2014-03-07 2015-09-09 Universidad De Cádiz Recinto blindado portátil para aplicaciones que usen radiación ionizante
US20180240559A1 (en) * 2015-10-09 2018-08-23 Hazprotect Pty Ltd Method and system to contain or encapsulate radioactive materials and toxic substances for transportation or containment
WO2020036777A1 (en) * 2018-08-14 2020-02-20 Nordson Corporation Binder permeated ionizing radiation shielding panels, method of construction of ionizing radiation shielding panels and an x-ray inspection system employing such panels

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2545276A1 (es) * 2014-03-07 2015-09-09 Universidad De Cádiz Recinto blindado portátil para aplicaciones que usen radiación ionizante
US20180240559A1 (en) * 2015-10-09 2018-08-23 Hazprotect Pty Ltd Method and system to contain or encapsulate radioactive materials and toxic substances for transportation or containment
WO2020036777A1 (en) * 2018-08-14 2020-02-20 Nordson Corporation Binder permeated ionizing radiation shielding panels, method of construction of ionizing radiation shielding panels and an x-ray inspection system employing such panels

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Cables", 26 September 2021 (2021-09-26), pages 1 - 2, XP093113705, Retrieved from the Internet <URL:https://web.archive.org/web/20210926072529/https://reciclario.com.ar/reciclable/cables/> [retrieved on 20221013] *
ANONYMOUS: "Tratar y reciclar… ¡"una larga película"!", 20 July 2017 (2017-07-20), pages 1 - 1, XP093113709, Retrieved from the Internet <URL:https://web.archive.org/web/20170720190918/http://www.valorema-films.es/es/films/reciclaje_films/> [retrieved on 20221013] *

Also Published As

Publication number Publication date
ES2956832B2 (es) 2024-06-25
ES2956832A1 (es) 2023-12-28

Similar Documents

Publication Publication Date Title
ES2956832B2 (es) Recinto blindado, portatil, modular, procedimientos de construccion del recinto y de fabricacion de los paneles blindados empleados para su construccion y usos
Méndez-Villafañe et al. Design and verification of the shielding around the new Neutron Standards Laboratory (LPN) at CIEMAT
Hashim et al. Dose assessment of Betatron electron beam: A key component of safe and secure industrial operations
Alameen et al. Shielding evaluation of diagnostic X-ray rooms in Khartoum State
Strabel et al. Radiation protection studies for the SHiP facility
Molina et al. Design and Assembly of a Shielded Enclosure for Industrial Radiology Using Mixlead® Material
Chiaghanam et al. Safety of Ionizing Radiation in selected Conventional X-ray Diagnostic centres in Calabar and Uyo metropolises, Nigeria
Board AERB SAFETY GUIDE NO. AERB/RF-RQTL/SG-1
Sheridan et al. Protecting a CT simulator room to accommodate a cyberknife facility
Seodat et al. An evaluation of the effectiveness of the structural radiation shielding barriers of a radiation therapy facility: cancer institute of guyana
Sultana et al. Real-time Environmental Gamma Dose Monitoring around Dhaka University Campus and Estimation of Excess Lifetime Cancer Risk on Public Health
WO2015132425A1 (es) Recinto blindado portátil para aplicaciones que usen radiación ionizante
Ochieng Assessment of Occupational Radiation Exposures: A Case Study of Nuclear Moisture-Density Gauge in Construction Industry in Kenya
SARCHIAPONE Radiation Protection Issues for Cyclotron Produced Radionuclides
Frazier et al. Radiation Safety in Industrial Radiography with Radioisotopes
Pang et al. Monte Carlo based investigation of a universal two-component albedo neutron dosimeter in a deep geological disposal system for high-level nuclear waste
Arwui et al. Assessment Of The Effectiveness Of Collimation Of Cs–137 Panoramic Beam on TLD Calibration Using a Constructed Lead Block Collimator and an ICRU Slab Phantom at SSDL in Ghana
Saunderson et al. Radiotherapy and brachytherapy equipment
Mohammed Estimation of radiation dose received by the radiation workers during radiographic testing
Bakht Radiation safety aspects in application of isotopes for industrial radiography in Bangladesh
Dhlomo et al. Evaluation and Verification of a Biological Shield in a SHARS Unit
Stankunas et al. Assessment and benchmarking of the impact to gamma dose rate employing different photon-to-dose conversion factors using MCNPX code at the decommissioning stage of Ignalina Nuclear Power Plant
Plants HPS Mid-Year Abstracts
Jang et al. Development of portable thyroid monitoring system for 131I and 133I in nuclear emergency
Adu et al. Radiological assessment of the structural shielding adequacy of the radiotherapy facility at Korle-Bu Teaching Hospital, Accra, Ghana

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807100

Country of ref document: EP

Kind code of ref document: A1