WO2023222439A1 - Dispositif de regulation thermique d'un bloc batterie de vehicule - Google Patents

Dispositif de regulation thermique d'un bloc batterie de vehicule Download PDF

Info

Publication number
WO2023222439A1
WO2023222439A1 PCT/EP2023/062181 EP2023062181W WO2023222439A1 WO 2023222439 A1 WO2023222439 A1 WO 2023222439A1 EP 2023062181 W EP2023062181 W EP 2023062181W WO 2023222439 A1 WO2023222439 A1 WO 2023222439A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
channel
conduit
spacer
fluid
Prior art date
Application number
PCT/EP2023/062181
Other languages
English (en)
Inventor
Julien Tissot
Kamel Azzouz
Julio GUERRA
Moussa Nacer-Bey
Original Assignee
Valeo Systemes Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques filed Critical Valeo Systemes Thermiques
Publication of WO2023222439A1 publication Critical patent/WO2023222439A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0481Compression means other than compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape

Definitions

  • the subject of the invention is a device for thermal regulation of a vehicle battery pack as well as a cooling system comprising such a device.
  • the invention also relates to a motor vehicle equipped with this cooling system.
  • the invention relates in particular to the technical field of thermal regulation of electrical energy storage elements, in particular battery elements, likely to release heat during their operation.
  • the invention applies preferentially, but not exclusively, to the automotive field and more particularly to the field of vehicles with electric and/or hybrid motors.
  • the electrical energy of vehicles with electric and/or hybrid engines is provided by one or more battery packs, each comprising several battery cells.
  • the cells heat up and swell, thus risking damage.
  • a charging technique called rapid charging, consists of charging the cells under high voltage and high amperage, in a short time, in particular in a maximum time of around twenty minutes. This rapid charge involves significant heating of the cells that need to be treated.
  • the thermal regulation device makes it possible to modify a temperature of a battery pack, for example when starting the vehicle in cold weather, by increasing its temperature for example, or whether during driving or during a recharging operation, by reducing the temperature of the cells, which tend to heat up during use.
  • the thermal regulation device comprises a cold plate inside which a cooling fluid circulates, and arranged in contact with the cells to be cooled. It has been noted that such an arrangement can lead to non-uniform cooling of the cells of the same battery pack to be cooled, thus leading to a reduction in overall performance.
  • Such a thermal regulation device also has high thermal resistance due to the thicknesses of material present between the cooling fluid and the cells to be cooled. In addition, this solution generally takes up a lot of space.
  • a dielectric fluid is sprayed, projected, generally in the form of a spray, directly onto the cells, by means of a circuit of the dielectric fluid and orifices or spray nozzles dielectric fluid.
  • a thermal exchange can then take place between the cells and the dielectric fluid which comes into direct contact with a surface of said cells.
  • the dielectric fluid can flow along the walls of said cells, and accumulate in particular in a lower part of the housing receiving the battery pack to be thermally regulated.
  • the cells are not necessarily arranged flat, parallel to the horizontal, but can be inclined, leaning relative to the horizontal, so that dielectric fluid may only accumulate on one side.
  • the accumulated dielectric fluid is then not distributed uniformly in relation to the cells.
  • Patent document FR3060863 proposes another solution for dissipating the heat generated by the battery cells, consisting of installing a spacer between the cells so as to space them from each other and blowing air from cooling towards said cells.
  • the solution proposed in this document is, however, relatively complex to achieve and does not allow, in practice, uniform and optimal cooling of the cells. It has further been found that the time to bring the cells to a desired temperature can be relatively long.
  • the invention aims to remedy all or part of the aforementioned drawbacks.
  • an objective of the invention is to propose a thermal regulation device making it possible to cool the cells of a battery pack more homogeneously and more efficiently.
  • Another objective of the invention is to propose a thermal regulation device which makes it possible to bring the cells to the desired temperature more quickly.
  • An additional objective of the invention is to propose a thermal regulation device whose design is simple, inexpensive and whose installation is easy.
  • the solution proposed by the invention is a device for thermal regulation of a vehicle battery pack, comprising:
  • housing comprising a heat transfer fluid circulation circuit, which housing is capable of housing a battery pack, which block comprises at least two battery cells of generally parallelepiped shape each having two large lateral faces, which cells are adjacent to the level of one of their large lateral faces,
  • the spacer includes:
  • an openwork part arranged to be located opposite the large adjacent side faces of the cells and to extend over the majority of said large faces
  • the forced circulation circuit comprises an inlet and an outlet.
  • the proposed innovation now consists of using a specific spacer, whose particularly simple configuration makes it possible to force the circulation of the heat transfer fluid, according to a prescribed path.
  • the forced circulation circuit of the heat transfer fluid makes it possible to increase the heat exchange coefficient and ensures homogeneous cooling or heating over the entire large face of the cells. The cells are then brought very quickly to the desired temperature.
  • the ribs being in tight contact with the large lateral faces of the cells, they make it possible to contain their swelling, and therefore increase their autonomy and their power.
  • This spacer ultimately has a triple function: to keep the cells apart, to limit the swelling of the cells, and to create a forced circulation circuit for the heat transfer fluid.
  • an entrance to the forced circulation circuit is located at one edge of a large side face and an outlet is located at another edge of said large face.
  • the housing comprises: - a heat transfer fluid inlet in fluid communication with the inlet of the circulation circuit forced spacer; - a heat transfer fluid outlet in fluid communication with the outlet of the forced circulation circuit of the spacer.
  • the rib(s) are arranged in the spacer so that the circulation of the fluid in the forced circulation circuit takes place only between the inlet and outlet of said circuit.
  • one or more seals are installed in the space between adjacent cells so that the circulation of the fluid in the forced circulation circuit takes place only between the inlet and outlet of said circuit.
  • the housing is formed by an enclosure closed in a sealed manner to the heat transfer fluid by a cover and by a bottom wall.
  • At least one inlet and at least one heat transfer fluid outlet from the housing are arranged in the bottom wall.
  • the bottom wall is provided with a channel or conduit for inlet of the heat transfer fluid and a channel or conduit for evacuation of the heat transfer fluid; the inlet and outlet of the forced circulation circuit open respectively into a first channel or conduit and into a second channel or conduit arranged in the cover; a first conduit arranged in the housing is configured to bring the fluid circulating in the inlet channel or conduit to the first channel or conduit; a second conduit arranged in the housing is configured to bring the fluid circulating in the second channel or conduit to the evacuation channel or conduit.
  • the heat transfer fluid inlet of the housing is arranged in the bottom wall and the heat transfer fluid outlet of said housing is arranged in the cover.
  • the heat transfer fluid inlet of the housing is arranged in the cover and the heat transfer fluid outlet of said housing is arranged in the bottom wall.
  • At least one inlet and at least one heat transfer fluid outlet from the housing are arranged in the cover.
  • the cover is provided with a channel or conduit for inlet and/or evacuation of the heat transfer fluid, which channel or conduit opens at each spacer.
  • the bottom wall is provided with a channel or conduit for inlet and/or evacuation of the heat transfer fluid, which channel or conduit opens at each spacer.
  • the bottom wall is provided with a channel or conduit for the arrival of the heat transfer fluid, which channel or conduit opens at the level of each spacer.
  • the cover is provided with a channel or conduit for discharging the heat transfer fluid, which channel or conduit opens at each spacer.
  • the spacer comprises several ribs arranged so as to form at least a first forced circulation circuit and a second forced circulation circuit.
  • the circulation of the heat transfer fluid in the first circuit and the circulation of said fluid in the second circuit have the same direction.
  • the circulation of the heat transfer fluid in the first circuit is in the opposite direction to the circulation of said fluid in the second circuit.
  • the spacer comprises several ribs arranged so as to form at least a first forced circulation circuit and a second forced circulation circuit, each forced circulation circuit comprising an entrance to the forced circulation circuit located at one edge of a large side face (100) and an outlet located at another edge of said large face, in particular the inlets and outlets being located in the cover and the bottom wall of the housing.
  • the rib(s) occupy at most 10%, advantageously at most 5%, of the surface of a large side face of a cell.
  • the spacer is made of a material having a thermal conductivity of at most 0.4 W.nr 1 .K ⁇ 1 , preferably a thermal conductivity of at most 0.2 W. nr 1 .K -1 .
  • the spacer is made of a polymer material or a polymer-based composite material.
  • the spacer comprises a material from the silicate family, preferably fiber-reinforced calcium silicate.
  • the spacer is configured to be clipped onto the first battery cell or stuck onto at least one battery cell.
  • the spacer when the spacer is glued, the spacer is formed of a plurality of segments or independent elements.
  • the spacer is made up of a rigid core and a deformable external coating covering at least one portion of said core so as to ensure sealing to a heat transfer fluid of said portion when this portion is supported against one and/or the other of the first or the second battery cell.
  • the heat transfer fluid circulation circuit comprises fluid circulation sections of variable width, preferably these circulation sections of variable width being formed by the spacer.
  • the heat transfer fluid circulation circuit comprises fluid circulation sections of decreasing width, preferably gradual or continuous, from at least one inlet collector to at least one outlet collector.
  • turbulators are present in the forced circulation circuit, so as to create turbulence in the flow of the heat transfer fluid between the inlet and the outlet of said forced circulation circuit, which turbulators are in reliefs and extend in the height of the ribs
  • the turbulators are arranged on one or more supports distinct from the spacer and attached to the forced circulation circuit. [45] According to one embodiment, the turbulators form a single piece with the spacer (3).
  • the invention also relates to a cooling system comprising a device according to one of the preceding characteristics, and further comprising: - a battery pack comprising N adjacent battery cells, including two end cells each arranged at the level of an end wall of the housing, N being an integer greater than 3; said device comprises at least N-1 spacers, preferably N+1 spacers.
  • a spacer is installed between each cell adjacent to another cell; a spacer is installed between each end wall of the housing and the end cell, a large side face of which is adjacent to said wall; the spacers conform to the invention so that all the large side faces of the cells are cooled by a forced circulation circuit.
  • the heat transfer fluid is a dielectric cooling fluid.
  • the invention also relates to a motor vehicle equipped with a system according to one of the preceding characteristics.
  • FIG. 1 is an exploded view showing different constituent elements of the device and system according to the invention.
  • FIG. 2 is a perspective view of a case.
  • FIG. 3 is a perspective view of an example of spacer according to the invention.
  • FIG. 4 shows an assembly of two adjacent battery cells on which spacers are installed.
  • FIG. 5 illustrates a sectional view along AA of the assembly of Figure 4.
  • N n illustrates a sectional view along BB of Figure 2 (the beams not being shown).
  • FIG. 7A [Fig. 7B], [Fig. 7C], [Fig. 7D], [Fig. 7E] and [Fig. 7F] illustrates different possible spacer and fluid circulation configurations.
  • FIG. 8A and FIG. 8B illustrates a mode of circulation of the fluid in the housing, said housing being seen from above and below respectively.
  • the thermal regulation device which is the subject of the invention aims to regulate the temperature of a battery pack, in particular of a battery pack of an electric and/or hybrid motor vehicle. It can, however, be fitted to other types of vehicles or be used to regulate the temperature of other electrical and/or electronic components such as power electronics elements, for example, without limitation, semiconductors, such as diodes or transistors. It could also be computer server components. According to a preferred embodiment, thermal regulation consists of cooling the cells of the battery pack.
  • the battery block 1 comprises at least two battery cells 10 and generally between 2 and 25 cells, which block is housed in a housing 2 ( Figure 2).
  • the battery pack 1 comprises N adjacent cells 10, with N an integer greater than 2 and preferably greater than 3, including two end cells each arranged at an end wall 201 of the housing 2.
  • the cells 10 are of the type known to those skilled in the art, generally prismatic, that is to say of a generally parallelepiped shape, each having two large side faces 100, two small side faces 103, an upper face 101 and a lower face 102. These different faces are generally flat, but some can be curved or curved.
  • the cells 10 are positioned adjacently at the level of their large side faces 100.
  • the battery pack 1 is housed in a housing 2 formed by an enclosure 20 closed in a sealed manner by a cover 21 and by a bottom wall 22.
  • the enclosure 20 has an internal space capable of receiving one or more battery packs .
  • Structural beams 24 can be attached to the enclosure 20 to further stiffen the housing 2.
  • the housing 2 is of generally parallelepiped shape, but other suitable shapes can be considered, in particular according to the general shape of the battery block 2.
  • the different elements 20, 21, 22 are made by molding a plastic material, but other materials suitable for those skilled in the art can be used.
  • the enclosure 20 is delimited by two side walls 200 extending in a longitudinal direction and two end walls 201 perpendicular to said side walls.
  • the cover 21 is provided with one or more heat transfer fluid circulation channels 210i, 2102 in fluid communication with the enclosure 20.
  • these channels 210i, 2102 extend throughout the length of the enclosure 20 so as to be in fluid communication with all of the cells 10 of the block 1.
  • These channels 210i, 2102 can serve as an inlet (i.e., arrival of the fluid into the housing 2) or outlet (i.e., evacuation of the fluid out of the housing 2).
  • a channel 210i can serve as an input and another channel 2102 can serve as an output.
  • channels 210i, 2102 serve as input.
  • channels 210i, 2102 serve as output.
  • the cover 21 does not have a circulation channel of heat transfer fluid, the entry/exit of the fluid taking place exclusively at the bottom wall 22.
  • the bottom wall 22 is made in two parts 220, 221 assembled together, for example by screwing, welding, gluing, etc.
  • a first part 22 is in the form of a plate intended to be fixed at the bottom of the enclosure 20.
  • a second part 221 has profiles in the form of channels 2210i, 22102, opening at the level of openings 2200i, 22002 arranged in the plate 222, which openings are in fluid communication with the enclosure 20. In Figure 1, these openings extend along the entire length of the enclosure 20 so as to be in fluid communication with all of the cells 10 of block 1. Channels 2210i, 22102 thus open at each spacer 3 (in each intercell space).
  • the bottom wall 22 can however be made in a single part, the channels 2210 then being directly integrated into the plate 220, for example by molding.
  • the bottom wall 22 can form the bottom of the enclosure 20 or be an additional attached wall, independent of the bottom of said enclosure.
  • the channels 2210i, 22102 of the bottom wall 22 serve for the circulation of the heat transfer fluid 210. They can serve as an inlet (i.e. arrival of the fluid into the housing 2) or an outlet (i.e. evacuation of the fluid out of the housing 2). According to one embodiment, a channel 2210i can serve as an input and another channel 22102 can serve as an output. According to another embodiment, the channels
  • channels 2210i, 22102 serve as input.
  • channels 2210i, 22102 serve as output.
  • the bottom wall 22 does not have a heat transfer fluid circulation channel, the entry/exit of the fluid taking place exclusively at the level of the cover 21.
  • the inlets/outlets of the housing 2 are connected to a circulation circuit of the heat transfer fluid 23, comprising for example a pumping circuit, and making it possible in particular to circulate the heat transfer fluid in said housing for regulating the temperature of cells 10 housed therein.
  • the circulation of the fluid in the housing 2 is described in detail further in the description.
  • Temperature regulation preferably consists of cooling adjusted to maintain the cells 10 at a temperature less than or equal to a threshold temperature, for example between 20°C and 40°C. When the cells 10 exceed this threshold temperature, they are cooled by the heat transfer fluid, the latter then being a cooling fluid.
  • the regulation can also consist of heating the cells 10, in particular when they are at a temperature less than or equal to a threshold temperature, for example less than 0° vs. Below this threshold temperature, the cells 10 are heated by the heat transfer fluid which is then a heating fluid.
  • a threshold temperature for example less than 0° vs.
  • the heat transfer fluid used is preferably a dielectric liquid, for example a mineral oil or a fluorinated liquid.
  • the heat transfer fluid can, however, be in another form, for example blown air.
  • the fluid can be previously cooled or heated depending on the desired thermal regulation.
  • a spacer 3 (or spacer, the two terms being synonymous within the meaning of the invention) is installed between each cell 10 adjacent to another cell so as to space them from each other.
  • a spacer 3 is also advantageously installed between each end wall 201 of the housing 2 and the end cell 10, a large side face 100 of which is adjacent to said wall.
  • the device comprises at least N-1 spacers 3, preferably N+1 spacers.
  • the spacers 3 have a relatively low thermal conductivity so as to play a role of thermal insulator between the cells.
  • the spacers 3 are made of a material having a thermal conductivity of at most 0.4 W.nr 1 .K- 1 , preferably a thermal conductivity of at most 0.2 Wm -1 . K“ 1 .
  • the material used may be a polymer or a polymer-based composite material, or a material from the silicate family, preferably fiber-reinforced calcium silicate.
  • Each spacer 3 has a structure configured to be installed in a removable manner on a cell 10.
  • the structure of the spacer 3 is adjusted (for example by an elastic deformation of said structure) to the shape of the cell 10 to be mounted tight on said cell so that the contacts between said structure and said cell are fluid-tight contacts .
  • the structure of the spacer 3 has a general shape of a U-shaped chute.
  • the spacer 3 has a first support zone 30 configured to come to bear against a large side face 100 of cell 10, a second support zone 31 configured to come to bear against the upper face 101 of said cell, and a third support zone 32 configured to come to bear against the lower face 102 of said cell.
  • the structure of the spacer 3 can however have another conformation, and for example only present the first support zone 30, or only the first zone 30 and the second zone 31, or only the first zone 30 and the third zone 32.
  • the first zone 30 not only bears against the large side face 100 of the cell 10 against which the The spacer 3 is installed (hereinafter the large "front” side face) but also rests against the large side face 100 of the adjacent cell 10 (hereinafter the large "rear” side face).
  • the first zone 30 is thus sandwiched between the large adjacent side faces of the cells.
  • the contacts between the first zone 30 and the large front and rear side faces of the adjacent cells are fluid-tight contacts.
  • one or more seals are installed in the space between adjacent cells 10 so as to create fluid-tight contacts.
  • the first zone 30 has the same dimensions, or substantially the same dimensions, in length and width, as those of a large side face 100. It has a perforated part located opposite the large side face 100 of the cell 10 against which the spacer 3 is installed and which extends over most of said large side face. Symmetrically, this perforated part is also located opposite the large rear side face of the adjacent cell. [70] According to one embodiment, the perforated part leaves at least 51%, advantageously at least 90% and preferably at least 95% of the large adjacent side faces 100 free. The majority of these large side faces 100 can thus be in contact with the heat transfer fluid as explained further in the description.
  • One or more ribs 300 extend in the perforated part of the first zone 30 and are arranged so as to form one or more forced circulation circuits of the heat transfer fluid between adjacent cells.
  • forced circulation means that the fluid is forced to follow one or more singular paths imposed by the arrangement of the rib(s) 300. This circuit(s) are thus delimited on the one hand by the large side faces 100 adjacent to the cells and on the other hand by the ribs 300. All the large lateral faces 100 of the cells 10 are thus cooled by a forced circulation circuit. The number of passes (i.e. changes of direction in a forced circulation circuit) is adjusted according to the desired heat exchange and/or according to the allowed pressure loss.
  • Each forced circulation circuit includes an inlet and an outlet of the fluid, which inlet/outlet are defined by the arrangement of the rib(s) 300.
  • several ribs 300 are arranged so as to form two distinct circuits, respectively C1, C2, each circuit comprising an input, respectively E1 and E2, and an output, respectively S1 and S2.
  • the ribs 300 are arranged to form M forced circulation circuits, with M an integer greater than 2.
  • the inputs E1, E2 are located at one edge of a large side face 100 (at the junction of said large side face and the lower face 102) and the outputs S1, S2 at another edge of said large face (at the junction of said large face and the upper face 101).
  • Other input/output configurations are however possible, in particular a configuration opposite to that of Figure 4.
  • the inputs, respectively the outputs are not necessarily located at the same edge of the large side face 100.
  • An input E1 of a first circuit C1 can be located at a first edge (for example an upper edge) and the output S1 at a second edge (for example a lower edge), while the input E2 of a second circuit C2 is located at said second edge and the output S2 at said first edge. Or vice versa.
  • the input E1 and the output E2 of a first circuit C1 are located at the same edge, for example a lower edge, while the input E2 and the output E2 of a second circuit C2 are located at another, for example an upper edge.
  • all or part of the inputs/outputs are located at one or more side edges of a large side face 100 (at the junction of said large side face and a small side face 103 ).
  • the ribs 300 are preferably rectilinear, but can be curved or have curved and rectilinear portions, be in broken lines, or be of any other shape suitable to those skilled in the art.
  • the ribs 300 are in tight contact with the adjacent large side faces 100. This tight contact forms a seal against the fluid so that the circulation of the fluid in a forced circulation circuit C1, C2 takes place only between the inlet E1, E2 and the outlet S1, S2 of said circuit.
  • a forced circulation circuit C1, C2 takes place only between the inlet E1, E2 and the outlet S1, S2 of said circuit.
  • spacer 3 there is in particular no fluid communication between these circuits, which ensures homogeneous circulation in each circuit.
  • one or more seals are installed in the space between adjacent cells 10 so that the circulation of the fluid in a forced circulation circuit takes place only between the inlet and outlet of said circuit.
  • the thickness of the structure of the spacer 3 and/or the thickness of the ribs 300 depend on the desired distance between the cells 10 and/or the desired flow rate of the fluid circulating in the circuit(s). The best results, particularly in terms of regulation, are obtained when this thickness is between 0.5 mm and 5 mm, advantageously between 1 mm and 4 mm, preferably between 1.5 mm to 3.5 mm.
  • the spacers 3 In addition to allowing a distancing of adjacent cells 10 for the flow of the heat transfer fluid, the spacers 3 have a mechanical role against the swelling of the cells 10 induced by their rise in temperature. They in fact make it possible to maintain the cells 10 in compression under the effect of this swelling, which ensures maximum capacity of said cells.
  • the ribs 300 obscure at least the surface of the large side faces 100 in contact with the heat transfer fluid, said ribs occupy at most 10%, advantageously at most 5%, of the surface of a large side face 100.
  • Optimal results in terms of limitation of swelling and efficiency of heat exchange are obtained when the ribs 300 have a width of between 0.5 mm and 5 mm, advantageously between 1 mm and 4 mm, preferably between 1.5 mm to 3.5mm.
  • the ribs 300 can have the same width or different widths.
  • the ribs 300 or the portions of ribs located in the central zone of the large side faces 100 can be wider to the extent that the mechanical stresses due to swelling are maximum in this zone.
  • the second zone 31 and the third zone 32 have the same dimensions, or substantially the same dimensions, in length and width, as those of the upper 101 and lower 102 faces of a cell 10. They can however have different dimensions in length and/or width.
  • the second zone 31 advantageously has perforated parts 310 arranged to leave the connection terminals 104 of the cell 10 free.
  • the third zone 32 can also have perforated parts. In these perforated parts, the fluid is in contact with the upper faces 101 and lower faces 102, contributing to the thermal exchanges and thermal regulation of the cell 10 at the level of said faces.
  • the spacer 3 comprises several ribs 300 arranged so as to form a first forced circulation circuit C1 and a second forced circulation circuit C2.
  • the first circuit C1 comprises an input E1 and an output S1 and the second circuit C2 comprises an input E2 and an output S2.
  • the inputs E1 and E2 are located at the lower edge of the large side face 100 and the outputs S1, S2 at the upper edge of said large face.
  • the inlets E1 and E2 are in fluid communication with the inlet channels 2210i, 22102 arranged in the bottom wall 2.
  • the outlets S1 and S2 are in fluid communication with the evacuation channels 210i, 2102 arranged in the cover 21.
  • the fluid enters through the inlet channel 2210i, circulates forcedly in the first circuit C1 from the inlet E1 to the outlet S1 and is evacuated through the evacuation channel 210i.
  • the fluid also enters through the other inlet channel 22102, circulates forcedly in the second circuit C2 from the inlet E2 to the outlet S2 and is evacuated through the evacuation channel 2102.
  • the circulation of the fluid in the first circuit C1 and the circulation of said fluid in the second circuit C2 here have the same direction.
  • FIG. 7B The configuration of Figure 7B is similar to that of Figure 7A.
  • the main difference is that the inputs E1 and E2 are not located at the same edge of the large side face 100, nor are the outputs S1, S2.
  • the input E1 of circuit C1 and the output S2 of circuit C2 are located at the upper edge of the large face 100, while the input E2 of circuit C2 and the output S1 of circuit C1 are located at the lower edge of said large face.
  • the fluid enters through the inlet channel 210i, circulates forcedly from the inlet E1 to the outlet S1 and is evacuated through the evacuation channel 2210i.
  • the fluid enters through the inlet channel 22102, circulates in a forced manner from the inlet E2 to the outlet S2 and is evacuated through the evacuation channel 2102.
  • the circulation of the fluid in the first circuit C1 is in the opposite direction to the circulation of said fluid in the second circuit C2, which can contribute to improving the thermal exchanges between said fluid and the large lateral faces 100.
  • the ribs 300 are arranged so as to form a single forced circulation circuit C comprising an inlet E and an outlet S which are both located at the lower edge of the large side face 100.
  • the arrival and evacuation of the fluid takes place here from the bottom wall 22, said fluid not circulating through the cover 21.
  • the fluid enters through the inlet channel 2210i arranged in the bottom wall 22, circulates in a forced manner in the circuit C from the inlet E to the outlet S and is evacuated by the evacuation channel 22102 arranged in said bottom wall.
  • Figure 7D The configuration of Figure 7D is similar to that of Figure 7C. The main difference is that the input E is located at the lower edge of the large face 100, while the output S is located at the upper edge of said large face.
  • the fluid enters through the inlet channel 2210i arranged in the bottom wall 22, circulates in a forced manner in the circuit C from the inlet E to the outlet S and is evacuated by the evacuation channel 2102 arranged in the cover 21.
  • FIG. 7E An inverse configuration to Figure 7D can be envisaged as illustrated in Figure 7E.
  • the inlet E is located at the upper edge of the large face 100 and the outlet S is located at the lower edge of said large face is possible.
  • the fluid enters through the inlet channel 2102 arranged in the cover 21, circulates in a forced manner in the circuit C from the inlet E to the outlet S and is evacuated through the evacuation channel 2210i arranged in the wall of bottom 22.
  • FIGs 8A and 8B illustrate yet another configuration of the device making it possible to make the assembly particularly compact and easy to install.
  • the configuration of spacer 3 is similar to that of Figure 7F, in the sense that the ribs 300 are arranged so that the inlet E and the outlet S of the circuit C are located at the level of the upper edge of the large side face 100. The arrival and evacuation of the fluid however takes place from the bottom wall 22.
  • This is provided with an inlet channel 2210i and an evacuation channel 22102 which each open at the level of each spacer 3 (in each intercell space).
  • the fluid connection of the housing 2 to the circuit 23 is therefore only made at the bottom wall 22, which makes it possible to simplify the installation.
  • the cover 21 being devoid of connections to the circuit 23, it can be easily and quickly removed in the event of intervention on the battery pack 1.
  • a first conduit 2100i makes it possible to bring the fluid circulating in the inlet channel 2210i to a first channel 210i arranged in the cover 21.
  • the ends of the first conduit 2100i open respectively into the inlet channel 2210i and into the first channel 210i.
  • the first conduit 2100i thus allows the fluid to “rise” from the bottom wall 22 to the cover 21.
  • the first channel 210i arranged in the cover 21 makes it possible to supply the inputs E of the different circuits C in parallel.
  • the first conduit 2100i is arranged at the level of an end wall 201 of the housing 2.
  • a second conduit 21 OO2 makes it possible to bring the fluid circulating in the second channel 2102 arranged in the cover 21 to the evacuation channel 22102.
  • the ends of the second conduit 21002 open respectively into the second channel 2102 and in the evacuation channel 22102. The second conduit 21002 thus makes it possible to
  • the second channel 2102 arranged in the cover 21 is in fluid communication with the outlets S of the different circuits C.
  • the second conduit 21002 is arranged at another end wall 201 of housing 2.
  • the fluid enters through the inlet channel 2210i and passes through the first conduit 2100i to reach the first channel 210i of the cover 21.
  • the fluid then circulates forcedly in circuit C from inlet E to outlet S.
  • the fluid then circulates in the second channel 2102 and passes through the second conduit 21002 to reach the evacuation channel 22102 through which it is evacuated.
  • channels 2101, 2102, 22101, 22102 can be in the form of conduits having orifices opening out at the level of each spacer 3 (in each intercell space).
  • one or more features set forth only in one embodiment may be combined with one or more other features set forth only in another embodiment.
  • one or more characteristics presented only in one embodiment can be generalized to other embodiments, even if this or these characteristics are described only in combination with other characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

L'invention concerne un dispositif de régulation thermique d'un bloc batterie (1) de véhicule, comprenant : - un boîtier comprenant un circuit de circulation de fluide caloporteur, apte à loger le bloc, lequel bloc comporte au moins deux cellules de batterie présentant chacune deux grandes faces latérales (100), lesquelles cellules sont adjacentes au niveau d'une de leurs grandes faces, - un espaceur (3) installé entre les cellules (10), configuré pour être en contact avec les grandes faces latérales (100) adjacentes desdites cellules, l'espaceur (3) comprend : - une partie ajourée (30) située en vis-à-vis des grandes faces latérales adjacentes et qui s'étend sur la majeure partie desdites grandes faces, - une ou plusieurs nervures (300) s'étendant dans la partie ajourée (30), la ou les nervures (300) étant agencées de façon à former au moins un circuit de circulation forcée (C1, C2) du fluide caloporteur entre lesdites cellules (10).

Description

Description
Titre : DISPOSITIF DE REGULATION THERMIQUE D’UN BLOC BATTERIE DE VEHICULE
Domaine technique
[1] L’invention a pour objet un dispositif de régulation thermique d’un bloc batterie de véhicule ainsi qu’un système de refroidissement comprenant un tel dispositif. L’invention a également pour objet un véhicule automobile équipé de ce de système de refroidissement.
[2] L'invention se rapporte notamment au domaine technique de la régulation thermique des éléments de stockage d’énergie électrique, notamment des éléments de batteries, susceptibles de dégager de la chaleur lors de leur fonctionnement. L’invention s’applique préférentiellement, mais non exclusivement au domaine automobile et plus particulièrement au domaine des véhicules à motorisation électrique et/ou hybride.
État de la technique
[3] L’énergie électrique des véhicules à motorisation électrique et/ou hybride est fournie par un ou plusieurs blocs batteries comprenant chacun plusieurs cellules de batterie. Durant leur fonctionnement, les cellules sont amenées à chauffer et à gonfler, risquant ainsi de s’endommager. En particulier, une technique de charge, dite de charge rapide, consiste à charger les cellules sous une tension élevée et un ampérage élevé, en un temps réduit, notamment en un temps maximum d’une vingtaine de minutes. Cette charge rapide implique un échauffement important des cellules qu’il convient de traiter.
[4] Dans le domaine des véhicules automobiles, il est connu d’utiliser un dispositif de régulation thermique, notamment pour le refroidissement, des blocs batteries. Un tel dispositif de régulation thermique permet de modifier une température d’un bloc batterie, par exemple lors d’un démarrage du véhicule par temps froid, en augmentant sa température par exemple, ou que ce soit en cours de roulage ou lors d’une opération de recharge, en diminuant la température des cellules, qui tendent à s’échauffer au cours de leur utilisation. [5] Selon une solution connue, le dispositif de régulation thermique comporte une plaque froide à l’intérieur de laquelle circule un fluide de refroidissement, et agencée en contact avec les cellules à refroidir. Il a été constaté qu’un tel agencement peut conduire à un refroidissement non homogène des cellules d’un même bloc batterie à refroidir, entraînant alors une diminution de la performance globale. Un tel dispositif de régulation thermique présente en outre une résistance thermique élevée en raison des épaisseurs de matière présentes entre le fluide de refroidissement et les cellules à refroidir. De plus, cette solution présente généralement un encombrement important.
[6] Selon une autre solution de régulation thermique connue, un fluide diélectrique est pulvérisé, projeté, généralement sous forme de spray, directement sur les cellules, au moyen d’un circuit du fluide diélectrique et d’orifices ou de buses d’aspersion du fluide diélectrique. Il peut alors s’opérer un échange thermique entre les cellules et le fluide diélectrique qui vient en contact direct avec une surface desdites cellules. Après aspersion du fluide diélectrique sur les cellules, notamment en phase liquide, le fluide diélectrique peut s’écouler le long des parois desdites cellules, et s’accumuler notamment dans une partie basse du boîtier recevant le bloc batterie à réguler thermiquement. Une telle solution est par exemple décrite dans le document brevet FR3077683. Cependant, notamment dans le cadre d’une utilisation dans un véhicule, il se peut que les cellules ne soient pas forcément disposées à plat, parallèlement à l’horizontale, mais peuvent être inclinées, penchées par rapport à l’horizontale, de sorte que le fluide diélectrique peut ne s’accumuler que d’un côté. Le fluide diélectrique accumulé n’est alors pas réparti de façon uniforme par rapport aux cellules. Ces problèmes peuvent aussi être rencontrés lorsque le véhicule est lui-même incliné, par exemple sur une route inclinée, ou à cause de vibrations, dues à l’état de la route, à la conduite, ou toute autre condition. De plus, cela peut engendrer un travail plus important d’une pompe par exemple pour pouvoir aspirer hors du boîtier, le fluide diélectrique accumulé d’un côté. En outre, la pompe risquerait d’aspirer de l’air, ce qui pourrait l’endommager.
[7] Le document brevet FR3060863 propose une autre solution pour dissiper la chaleur générée par les cellules de batterie, consistant à installer un espaceur entre les cellules de manière à les espacer l’une de l’autre et à souffler de l'air de refroidissement vers lesdites cellules. La solution proposée dans ce document est toutefois relativement complexe à réaliser et ne permet pas, en pratique, un refroidissement homogène et optimale des cellules. Il a en outre été constaté que le temps pour amener les cellules à une température souhaitée peut être relativement long.
[8] On connait également des dispositifs de régulation comprenant un boîtier dans lequel circule un fluide de refroidissement et dans lequel est logé le bloc batterie. On assure de la sorte un échange thermique entre les cellules et le fluide de refroidissement. Toutefois, l’immersion des cellules dans un fluide ne permet pas un refroidissement homogène desdites cellules.
[9] L’invention vise à remédier à tout ou partie des inconvénients précités. En particulier, un objectif de l’invention est de proposer un dispositif de régulation thermique permettant de refroidir de manière plus homogène et plus efficace les cellules d’un bloc batterie. Un autre objectif de l’invention est de proposer un dispositif de régulation thermique qui permet d’amener plus rapidement les cellules à la température souhaitée. Un objectif supplémentaire de l’invention est de proposer un dispositif de régulation thermique dont la conception est simple, peu onéreuse et dont l’installation est aisée.
Présentation de l’invention
[10] La solution proposée par l’invention est un dispositif de régulation thermique d’un bloc batterie de véhicule, comprenant :
- un boîtier comprenant un circuit de circulation de fluide caloporteur, lequel boîtier est apte à loger un bloc batterie, lequel bloc comporte au moins deux cellules de batterie de forme générale parallélépipédique présentant chacune deux grandes faces latérales, lesquelles cellules sont adjacentes au niveau d’une de leurs grandes faces latérales,
- un espaceur installé entre les cellules de manière à les espacer l’une de l’autre, lequel espaceur est configuré pour être en contact avec les grandes faces latérales adjacentes desdites cellules.
[11 ] L’espaceur comprend :
- une partie ajourée aménagée pour être située en vis-à-vis des grandes faces latérales adjacentes des cellules et pour s’étendre sur la majeure partie desdites grandes faces,
- une ou plusieurs nervures s’étendant dans la partie ajourée, la ou les nervures étant agencées de façon à former au moins un circuit de circulation forcée du fluide caloporteur entre lesdites cellules, le circuit de circulation forcée comprend une entrée et une sortie.
[12] L’innovation proposée consiste maintenant à utiliser un espaceur spécifique, dont la configuration particulièrement simple permet de forcer la circulation du fluide caloporteur, selon un cheminement imposé. Ainsi, le circuit de circulation forcée du fluide caloporteur permet d’augmenter le coefficient d'échange thermique et assure un refroidissement ou chauffage homogène sur toute de la grande face des cellules. Les cellules sont alors amenées très rapidement à la température souhaitée.
[13] En outre, les nervures étant en contact serré avec les grandes faces latérales des cellules, elles permettent de contenir leur gonflement, et partant d’augmenter leur autonomie et leur puissance.
[14] Cet espaceur a en définitive une triple fonction : maintenir à distance les cellules, limiter le gonflement des cellules, et créer un circuit de circulation forcée du fluide caloporteur.
[15] D’autres caractéristiques avantageuses de l’invention sont listées ci-dessous. Chacune de ces caractéristiques peut être considérée seule ou en combinaison avec les caractéristiques remarquables définies ci-dessus. Chacune de ces caractéristiques contribue, le cas échéant, à la résolution de problèmes techniques spécifiques définis plus avant dans la description et auxquels ne participent pas nécessairement les autres caractéristiques définies ci-dessus.
Les caractéristiques suivantes peuvent ainsi faire l’objet, le cas échéant, d’une ou plusieurs demandes de brevet divisionnaires :
[16] Selon un mode de réalisation, une entrée du circuit de circulation forcée est située au niveau d’un bord d’une grande face latérale et une sortie est située au niveau d’un autre bord de ladite grande face.
[17] Selon un mode de réalisation, le boîtier comprend : - une entrée de fluide caloporteur en communication fluidique avec l’entrée du circuit de circulation forcée de l’espaceur ; - une sortie de fluide caloporteur en communication fluidique avec la sortie du circuit de circulation forcée de l’espaceur.
[18] Selon un mode de réalisation, la ou les nervures sont aménagées dans l’espaceur de sorte que la circulation du fluide dans le circuit de circulation forcée se fasse uniquement entre l’entrée et la sortie dudit circuit.
[19] Selon un mode de réalisation, un ou plusieurs joints d’étanchéité sont installés dans l’espace entre les cellules adjacentes de sorte que la circulation du fluide dans le circuit de circulation forcée se fasse uniquement entre l’entrée et la sortie dudit circuit.
[20] Selon un mode de réalisation, le boîtier est formé par une enceinte fermée de manière étanche au fluide caloporteur par un couvercle et par une paroi de fond.
[21] Selon un mode de réalisation, au moins une entrée et au moins une sortie de fluide caloporteur du boîtier sont aménagées dans la paroi de fond.
[22] Selon un mode de réalisation, la paroi de fond est pourvue d’un canal ou conduit d’arrivée du fluide caloporteur et d’un canal ou conduit d’évacuation du fluide caloporteur ; l’entrée et la sortie du circuit de circulation forcée débouchent respectivement dans un premier canal ou conduit et dans un deuxième canal ou conduit aménagé dans le couvercle ; un premier conduit aménagé dans le boîtier est configuré pour amener le fluide circulant dans le canal ou conduit d’arrivée au premier canal ou conduit ; un deuxième conduit aménagé dans le boîtier est configuré pour amener le fluide circulant dans le deuxième canal ou conduit au canal ou conduit d’évacuation.
[23] Selon un mode de réalisation, l’entrée de fluide caloporteur du boîtier est aménagée dans la paroi de fond et la sortie de fluide caloporteur dudit boîtier est aménagée dans le couvercle.
[24] Selon un mode de réalisation, l’entrée de fluide caloporteur du boîtier est aménagée dans le couvercle et la sortie de fluide caloporteur dudit boîtier est aménagée dans la paroi de fond.
[25] Selon un mode de réalisation, au moins une entrée et au moins une sortie de fluide caloporteur du boîtier sont aménagées dans le couvercle. [26] Selon un mode de réalisation, le couvercle est pourvu d’un canal ou conduit d’arrivée et/ou d’évacuation du fluide caloporteur, lequel canal ou conduit débouche au niveau de chaque espaceur.
[27] Selon un mode de réalisation, la paroi de fond est pourvue d’un canal ou conduit d’arrivée et/ou d’évacuation du fluide caloporteur, lequel canal ou conduit débouche au niveau de chaque espaceur.
[28] Selon un mode de réalisation, la paroi de fond est pourvue d’un canal ou conduit d’arrivée du fluide caloporteur, lequel canal ou conduit débouche au niveau de chaque espaceur.
[29] Selon un mode de réalisation, le couvercle est pourvu d’un canal ou conduit d’évacuation du fluide caloporteur, lequel canal ou conduit débouche au niveau de chaque espaceur.
[30] Selon un mode de réalisation, l’espaceur comprend plusieurs nervures agencées de façon à former au moins un premier circuit de circulation forcée et un deuxième circuit de circulation forcée.
[31] Selon un mode de réalisation, la circulation du fluide caloporteur dans le premier circuit et la circulation dudit fluide dans le deuxième circuit ont le même sens.
[32] Selon un mode de réalisation, la circulation du fluide caloporteur dans le premier circuit est dans un sens inverse de la circulation dudit fluide dans le deuxième circuit.
[33] Selon un mode de réalisation, l’espaceur comprend plusieurs nervures agencées de façon à former au moins un premier circuit de circulation forcée et un deuxième circuit de circulation forcée, chaque circuit de circulation forcée comprenant une entrée du circuit de circulation forcée située au niveau d’un bord d’une grande face latérale (100) et une sortie située au niveau d’un autre bord de ladite grande face, notamment les entrées et sorties étant situées dans le couvercle et la paroi de fond du boitier.
[34] Selon un mode de réalisation, la ou les nervures occupent au plus 10%, avantageusement au plus 5%, de la surface d’une grande face latérale d’une cellule. [35] Selon un mode de réalisation, l’espaceur est en un matériau présentant une conductivité thermique d’au plus 0,4 W.nr1.K~1, de préférence une conductivité thermique d’au plus 0,2 W.nr1.K-1.
[36] Selon un mode de réalisation, l’espaceur est en un matériau polymère ou en un matériau composite à base polymère.
[37] Selon un mode de réalisation, l’espaceur comprend un matériau de la famille des silicates, de préférence en silicate de calcium renforcé par des fibres.
[38] Selon un mode de réalisation, l’espaceur est configuré pour être clipsé sur la première cellule de batterie ou collé sur au moins une cellule de batterie.
[39] Selon un mode de réalisation, lorsque l’espaceur est collé, l’espaceur est formé d’une pluralité de segments ou d’éléments indépendants.
[40] Selon un mode de réalisation, l’espaceur est constitué d’une âme rigide et d’un revêtement externe déformable recouvrant au moins une portion de ladite âme de manière à assurer l’étanchéité à un fluide caloporteur de ladite portion lorsque cette portion est en appui contre l’une et/ou l’autre de la première ou de la deuxième cellule de batterie.
[41] Selon un mode de réalisation, le circuit de circulation du fluide caloporteur comprend des sections de circulation du fluide de largeur variable, de préférence ces sections de circulation de largeur variable étant formées par l’espaceur.
[42] Selon un mode de réalisation, le circuit de circulation du fluide caloporteur comprend des sections de circulation du fluide de largeur décroissante, de préférence graduelle ou continue, depuis au moins un collecteur d’entrée vers au moins un collecteur de sortie.
[43] Selon un mode de réalisation, des turbulateurs sont présents dans le circuit de circulation forcée, de manière à créer des turbulences dans l’écoulement du fluide caloporteur entre l’entrée et la sortie dudit circuit de circulation forcée, lesquels turbulateurs sont en reliefs et s’étendent dans la hauteur des nervures
[44] Selon un mode de réalisation, les turbulateurs sont aménagés sur un ou plusieurs supports distincts de l’espaceur et rapportés dans le circuit de circulation forcée. [45] Selon un mode de réalisation, les turbulateurs forment avec l’espaceur (3) une pièce monobloc.
[46] L’invention concerne également un système de refroidissement comprenant un dispositif selon l’une des caractéristiques précédentes, et comprenant en outre : - un bloc batterie comprenant N cellules de batterie adjacentes, dont deux cellules d’extrémité disposées chacune au niveau d’une paroi d’extrémité du boîtier, N étant un nombre entier supérieur à 3 ; ledit dispositif comprend au moins N-1 espaceurs, de préférence N+1 espaceurs.
[47] Selon un mode de réalisation du système, un espaceur est installé entre chaque cellule adjacente à une autre cellule ; un espaceur est installé entre chaque paroi d’extrémité du boîtier et la cellule d’extrémité dont une grande face latérale est adjacente à ladite paroi ; les espaceurs sont conforme à l’invention de sorte que toutes les grandes faces latérales des cellules soient refroidies par un circuit de circulation forcée.
[48] Selon un mode de réalisation du système, le fluide caloporteur est un fluide de refroidissement diélectrique.
[49] L’invention concerne encore un véhicule automobile équipé d’un système selon l’une des caractéristiques précédentes.
Brève description des figures
[50] D’autres avantages et caractéristiques de l’invention apparaîtront mieux à la lecture de la description des modes de réalisation qui vont suivre, en référence aux dessins annexés, réalisés à titre d’exemples indicatifs et non limitatifs et sur lesquels :
[Fig. 1] est une vue éclatée montrant différents éléments constitutifs du dispositif et système selon l’invention.
[Fig. 2] est une vue en perspective d’un boîtier.
[Fig. 3] est une vue en perspective d’un exemple d’espaceur conforme à l’invention.
[Fig. 4] montre un assemblage de deux cellules de batteries adjacentes sur lesquelles sont installés des espaceurs. [Fig. 5] illustre une vue en coupe selon A-A de l’assemblage de la figure 4. N n [Fig. 6] illustre une vue en coupe selon B-B de la figure 2 (les poutrelles n’étant pas représentées).
[Fig. 7A], [Fig. 7B], [Fig. 7C], [Fig. 7D], [Fig. 7E] et [Fig. 7F] illustre différentes configurations possibles d’espaceur et de circulation du fluide.
[Fig. 8A] et [Fig. 8B] illustre un mode de circulation du fluide dans le boîtier, ledit boîtier étant respectivement vue de dessus et de dessous.
Description des modes de réalisation
[51] Tel qu’utilisé ici, sauf indication contraire, l’éventuelle utilisation des adjectifs ordinaux « premier », « deuxième >>, etc., pour décrire un objet indique simplement que différentes occurrences d’objets similaires sont mentionnées et n’implique pas que les objets ainsi décrits doivent être dans une séquence donnée, que ce soit dans le temps, dans l'espace, dans un classement ou de toute autre manière. « X et/ou Y >> signifie : X seul ou Y seul ou X+Y. D'une manière générale, on appréciera que sur les différents dessins annexés, les objets sont arbitrairement dessinés pour faciliter leur lecture.
[52] Le dispositif de régulation thermique objet de l’invention vise à réguler la température d’un bloc batterie, notamment d’un bloc batterie d’un véhicule automobile électrique et/ou hybride. Il peut toutefois équiper d’autre type de véhicules ou être utilisé pour réguler la température d’autres composants électriques et/ou électroniques tels que des éléments d’électronique de puissance, par exemple de façon non limitative des semi-conducteurs, tels que des diodes ou transistors. Il pourrait s’agir aussi de composants de serveurs informatiques. Selon un mode préféré de réalisation, la régulation thermique consiste en un refroidissement des cellules du bloc batterie.
[53] Sur la figure 1 , le bloc batterie 1 comporte au moins deux cellules de batterie 10 et généralement entre 2 et 25 cellules, lequel bloc est logé dans un boîtier 2 (figure 2). Selon un mode de réalisation, le bloc batterie 1 comprend N cellules 10 adjacentes, avec N un nombre entier supérieur à 2 et préférentiellement supérieur à 3, dont deux cellules d’extrémité disposées chacune au niveau d’une paroi d’extrémité 201 du boîtier 2. [54] Les cellules 10 sont du type connu de l’homme du métier, généralement prismatiques, c’est-à-dire de forme générale parallélépipédique présentant chacune deux grandes faces latérales 100, deux petites faces latérales 103, une face supérieure 101 et une face inférieure 102. Ces différentes faces sont généralement planes, mais certaines peuvent être incurvées ou courbes. Les cellules 10 sont positionnées de manière adjacente au niveau de leurs grandes faces latérales 100.
[55] Le bloc batterie 1 est logé dans un boîtier 2 formé par une enceinte 20 fermée de manière étanche par un couvercle 21 et par une paroi de fond 22. L’enceinte 20 présente un espace interne apte à recevoir un ou plusieurs blocs batteries. Des poutrelles structurelles 24 peuvent être fixées à l’enceinte 20 pour rigidifier davantage le boîtier 2.
[56] Sur la figure 2, le boîtier 2 est de forme générale parallélépipédique, mais d’autres formes adaptées peuvent être envisagées, notamment selon la forme générale du bloc batterie 2. Selon un mode de réalisation, les différents éléments 20, 21 , 22 sont réalisées par moulage d’une matière plastique, mais d’autres matériaux convenant à l’homme du métier peuvent être employés.
[57] Sur l’exemple de la figure 1 , l’enceinte 20 est délimitée par deux parois latérales 200 s’étendant dans une direction longitudinale et deux parois d’extrémité 201 perpendiculaires auxdites parois latérales.
[58] Selon un mode de réalisation, le couvercle 21 est pourvu d’un ou plusieurs canaux de circulation de fluide caloporteur 210i, 2102 en communication fluidique avec l’enceinte 20. Préférentiellement, ces canaux 210i, 2102 s’étendent dans toute la longueur de l’enceinte 20 de manière à être en communication fluidique avec l’ensemble des cellules 10 du bloc 1 . Ces canaux 210i, 2102 peuvent servir d’entrée (c.-à-d. d’arrivée du fluide dans le boîtier 2) ou de sortie (c.-à-d. d’évacuation du fluide hors du boîtier 2). Selon un mode de réalisation, un canal 210i peut servir d’entrée et un autre canal 2102 peut servir de sortie. Selon un autre mode de réalisation, les canaux 210i, 2102 servent d’entrée. Selon encore un autre mode de réalisation, les canaux 210i, 2102 servent de sortie. Dans un autre mode de réalisation, le couvercle 21 est dépourvu de canal de circulation de fluide caloporteur, les entrée/sortie du fluide se faisant exclusivement au niveau de la paroi de fond 22.
[59] Selon un mode de réalisation, la paroi de fond 22 est réalisée en deux parties 220, 221 assemblées entre elles, par exemple par vissage, soudage, collage, etc. Une première partie 22 se présente sous la forme d’une plaque destinée à être fixée au niveau du fond de l’enceinte 20. Une deuxième partie 221 présente des profilés en forme de canaux 2210i, 22102, débouchant au niveau d’ouvertures 2200i, 22002 aménagées dans la plaque 222, lesquelles ouvertures sont en communication fluidique avec l’enceinte 20. Sur la figure 1 , ces ouvertures s’étendent dans toute la longueur de l’enceinte 20 de manière à être en communication fluidique avec l’ensemble des cellules 10 du bloc 1. Les canaux 2210i, 22102 débouchent ainsi au niveau de chaque espaceur 3 (dans chaque espace intercellules). La paroi de fond 22 peut toutefois être réalisée en une seule partie, les canaux 2210 étant alors directement intégrés dans la plaque 220, par exemple par moulage. La paroi de fond 22 peut former le fond de l’enceinte 20 ou être une paroi supplémentaire rapportée, indépendante du fond de ladite enceinte.
[60] Les canaux 2210i , 22102 de la paroi de fond 22 servent à la circulation du fluide caloporteur 210. Ils peuvent servir d’entrée (c.-à-d. d’arrivée du fluide dans le boîtier 2) ou de sortie (c.-à-d. d’évacuation du fluide hors du boîtier 2). Selon un mode de réalisation, un canal 2210i peut servir d’entrée et un autre canal 22102 peut servir de sortie. Selon un autre mode de réalisation, les canaux
2210i, 22102 servent d’entrée. Selon encore un autre mode de réalisation, les canaux 2210i, 22102 servent de sortie. Dans un autre mode de réalisation, la paroi de fond 22 est dépourvue de canal de circulation de fluide caloporteur, les entrée/sortie du fluide se faisant exclusivement au niveau du couvercle 21 .
[61] En se rapportant à la figure 2, les entrée/sortie du boîtier 2 sont connectées à un circuit de circulation du fluide caloporteur 23, comprenant par exemple un circuit de pompage, et permettant notamment de mettre en circulation le fluide caloporteur dans ledit boîtier pour réguler la température de cellules 10 qui y sont logées. La circulation du fluide dans le boîtier 2 est décrite en détail plus avant dans la description. La régulation de température consiste préférentiellement en un refroidissement réglé pour maintenir les cellules 10 à une température inférieure ou égale à une température seuil, par exemple comprise entre 20°C 40°C. Lorsque les cellules 10 dépassent cette température seuil, elles sont refroidies par le fluide caloporteur, ce dernier étant alors un fluide de refroidissement.
[62] Dans certains cas, par exemple lors du démarrage du véhicule, la régulation peut également consister en un réchauffement des cellules 10, notamment lorsque celles-ci sont à une température inférieure ou égale à une température seuil, par exemple inférieur à 0°C. En deçà de cette température seuil, les cellules 10 sont réchauffées par le fluide caloporteur qui est alors un fluide de chauffage.
[63] Le fluide caloporteur utilisé est préférentiellement un liquide diélectrique, par exemple une huile minérale ou un liquide fluoré. Le fluide caloporteur peut toutefois se présenter sous une autre forme, par exemple de l’air soufflé. Le fluide peut être préalablement refroidi ou chauffé selon la régulation thermique visée.
[64] Un espaceur 3 (ou intercalaire, les deux termes étant synonymes au sens de l’invention) est installé entre chaque cellule 10 adjacente à une autre cellule de manière à les espacer l’une de l’autre. Un espaceur 3 est également avantageusement installé entre chaque paroi d’extrémité 201 du boîtier 2 et la cellule d’extrémité 10 dont une grande face latérale 100 est adjacente à ladite paroi. Selon un mode de réalisation, si le bloc batterie 1 comprend N cellules 10, le dispositif comprend au moins N-1 espaceurs 3, de préférence N+1 espaceurs.
[65] Avantageusement, les espaceurs 3 présentent une conductivité thermique relativement faible de manière à jouer un rôle d’isolant thermique entre les cellules. Selon un mode de réalisation, les espaceurs 3 sont réalisés en un matériau présentant une conductivité thermique d’au plus 0,4 W.nr1.K-1, de préférence une conductivité thermique d’au plus 0,2 W.m-1.K“1. Le matériau utilisé peut être un polymère ou un matériau composite à base polymère, ou un matériau de la famille des silicates, de préférence en silicate de calcium renforcé par des fibres.
[66] Chaque espaceur 3 présente une structure configurée pour s’installer de manière démontable sur une cellule 10. Selon un mode de réalisation, la structure de l’espaceur 3 est ajustée (par exemple par une déformation élastique de ladite structure) à la forme de la cellule 10 pour être montée serrée sur ladite cellule de sorte que les contacts entre ladite structure et ladite cellule sont des contacts étanches au fluide.
[67] Sur les figures 3, 4 et 5, la structure de l’espaceur 3 a une forme générale de goulotte en U. L’espaceur 3 présente une première zone d'appui 30 configurée pour venir en appui contre une grande face latérale 100 de la cellule 10, une deuxième zone d'appui 31 configurée pour venir en appui contre la face supérieure 101 de ladite cellule, et une troisième zone d'appui 32 configurée pour venir en appui contre la face inférieure 102 de ladite cellule. La structure de l’espaceur 3 peut toutefois avoir une autre conformation, et par exemple ne présenter que la première zone d'appui 30, ou seulement la première zone 30 et la deuxième zone 31 , ou seulement la première zone 30 et la troisième zone 32.
[68] Comme illustré sur les figures 4 et 5, lorsque les cellules 10 sont installées en configuration d’usage dans le boîtier 2, la première zone 30 vient non seulement en appui contre la grande face latérale 100 de la cellule 10 contre laquelle l’espaceur 3 est installé (ci-après la grande face latérale « avant ») mais également en appui contre la grande face latérale 100 de la cellule 10 adjacente (ci-après la grande face latérale « arrière »). La première zone 30 est ainsi prise en sandwich entre les grandes faces latérales adjacentes des cellules. Selon un mode préféré de réalisation, les contacts entre la première zone 30 et les grandes faces latérales avant et arrière des cellules adjacentes sont des contacts étanches au fluide. De façon alternative ou complémentaire, un ou plusieurs joints d’étanchéité sont installés dans l’espace entre les cellules 10 adjacentes de façon à créer des contacts étanches au fluide.
[69] La première zone 30 a les mêmes dimensions, ou sensiblement les mêmes dimensions, en longueur et largeur, que celles d’une grande face latérale 100. Elle présente une partie ajourée située en vis-à-vis de la grande face latérale 100 de la cellule 10 contre laquelle l’espaceur 3 est installé et qui s’étend sur la majeure partie de ladite grande face latérale. De façon symétrique, cette partie ajourée est également située en vis-à-vis de la grande face latérale arrière de la cellule adjacente. [70] Selon un mode de réalisation, la partie ajourée laisse libre au moins 51%, avantageusement au moins 90% et préférentiellement au moins 95% des grandes faces latérales 100 adjacentes. La majeure partie de ces grandes faces latérales 100 peut ainsi être en contact avec le fluide caloporteur comme expliquée plus avant dans la description.
[71] Une ou plusieurs nervures 300 s’étendent dans la partie ajourée de la première zone 30 et sont agencées de façon à former un ou plusieurs circuits de circulation forcée du fluide caloporteur entre les cellules adjacentes. Par
« circulation forcée », on entend que le fluide est contraint de suivre un ou plusieurs cheminements singuliers imposés par l’agencement de la ou des nervures 300. Ce ou ces circuits sont ainsi délimités d’une part par les grandes faces latérales 100 adjacentes des cellules et d’autre part par les nervures 300. Toutes les grandes faces latérales 100 des cellules 10 sont ainsi refroidies par un circuit de circulation forcée. Le nombre de passes (c.à.d. les changements de direction dans un circuit de circulation forcée) est ajusté en fonction de l’échange thermique désiré et/ou en fonction de la perte de charge admise.
[72] Chaque circuit de circulation forcée comprend une entrée et une sortie du fluide, lesquelles entrée/sortie sont définies par l’agencement de la ou des nervures 300. Dans l’exemple de réalisation des figures 4 et 6, plusieurs nervures 300 sont agencées de manière à former deux circuits distincts, respectivement C1 , C2, chaque circuit comprenant une entrée, respectivement E1 et E2, et une sortie, respectivement S1 et S2. Dans d’autres modes de réalisations, les nervures 300 sont agencées pour former M circuits de circulation forcée, avec M un nombre entier supérieur à 2.
[73] Sur l’exemple de la figure 4, les entrées E1 , E2 sont situées au niveau d’un bord d’une grande face latérale 100 (à la jonction de ladite grande face latérale et de la face inférieure 102) et les sorties S1 , S2 au niveau au niveau d’un autre bord de ladite grande face (à la jonction de ladite grande face et de la face supérieure 101 ). D’autres configurations d’entrée/sortie sont toutefois envisageable, notamment une configuration inverse à celle de la figure 4. De même, les entrées, respectivement les sorties, de ne sont pas nécessairement situées au niveau d’un même bord de la grande face latérale 100. Une entrée E1 d’un premier circuit C1 peut être située au niveau d’un premier bord (par exemple un bord supérieur) et la sortie S1 au niveau d’un deuxième bord (par exemple un bord inférieur), tandis que l’entrée E2 d’un deuxième circuit C2 est située au niveau dudit deuxième bord et la sortie S2 au niveau dudit premier bord. Ou inversement. Selon un autre exemple de configuration, l’entrée E1 et la sortie E2 d’un premier circuit C1 sont situées au niveau d’un même bord, par exemple un bord inférieur, tandis que l’entrée E2 et la sortie E2 d’un deuxième circuit C2 sont situées au niveau d’un autre, par exemple un bord supérieur. Dans d’autres modes de réalisation, tout ou partie des entrées/sorties sont situées au niveau d’un ou des bords latéraux d’une grande face latérale 100 (à la jonction de ladite grande face latérale et d’une petite face latérale 103).
[74] Les nervures 300 sont préférentiellement rectilignes, mais peuvent être courbe ou avoir des portions courbes et rectilignes, être en lignes brisées, ou être de toute autre forme convenant à l’homme du métier.
[75] Les nervures 300 sont en contact serré avec les grandes faces latérales 100 adjacentes. Ce contact serré forme étanchéité au fluide de sorte que la circulation du fluide dans un circuit de circulation forcée C1 , C2 se fasse uniquement entre l’entrée E1 , E2 et la sortie S1 , S2 dudit circuit. Lorsque plusieurs circuits sont définis par l’espaceur 3, il n’y a notamment pas de communication fluidique entre ces circuits, ce qui assure une circulation homogène dans chaque circuit. De façon alternative ou complémentaire, un ou plusieurs joints d’étanchéité sont installés dans l’espace entre les cellules 10 adjacentes de sorte que la circulation du fluide dans un circuit de circulation forcée se fasse uniquement entre l’entrée et la sortie dudit circuit.
[76] L’épaisseur de la structure de l’espaceur 3 et/ou l’épaisseur des nervures 300 dépendent de la distanciation souhaitée entre les cellules 10 et/ou du débit souhaité du fluide circulant dans le ou les circuits. Les meilleurs résultats, notamment en termes de régulation, sont obtenus lorsque cette épaisseur est comprise entre 0,5 mm et 5 mm, avantageusement entre 1 mm et 4 mm, préférentiellement entre 1 ,5 mm à 3,5 mm.
[77] En plus de permettre une distanciation des cellules 10 adjacentes pour l’écoulement du fluide caloporteur, les espaceurs 3 ont un rôle mécanique contre le gonflement des cellules 10 induit par leur montée en température. Ils permettent en effet de maintenir les cellules 10 en compression sous l’effet de ce gonflement, ce qui assure une capacité maximale desdites cellules.
[78] Pour que les nervures 300 occultent à minima la surface des grandes faces latérales 100 en contact avec le fluide caloporteur, lesdites nervures occupent au plus 10%, avantageusement au plus 5%, de la surface d’une grande face latérale 100. Des résultats optimums en termes de limitation au gonflement et d’efficacité des échanges thermiques sont obtenus lorsque les nervures 300 ont une largeur comprise entre 0,5 mm et 5 mm, avantageusement entre 1 mm et 4 mm, préférentiellement entre 1 ,5 mm à 3,5 mm. Les nervures 300 peuvent avoir la même largeur ou des largeurs différentes. En particulier, les nervures 300 ou les portions de nervures situées dans la zone centrale des grandes faces latérales 100 peuvent être plus larges dans la mesure où les contraintes mécaniques dues au gonflement sont maximales dans cette zone.
[79] Sur les figures annexées, la deuxième zone 31 et la troisième zone 32 ont les mêmes dimensions, ou sensiblement les mêmes dimensions, en longueur et largeur, que celles des faces supérieures 101 et inférieure 102 d’une cellule 10. Elles peuvent toutefois avoir des dimensions différentes en longueur et/ou largeur. La deuxième zone 31 présente avantageusement des parties ajourées 310 agencées pour laisser libres les bornes de connexion 104 de la cellule 10. La troisième zone 32 peut également présenter des parties ajourées. Dans ces parties ajourées, le fluide est en contact avec les faces supérieures 101 et inférieure 102, contribuant aux échanges thermiques et à la régulation thermiques de la cellule 10 au niveau desdites faces.
[80] Lorsque les cellules 10 et les espaceurs 3 sont installés en configuration d’usage dans le boîtier 2, la ou les entrées/sorties du ou des circuits C1 , C2 sont en communication fluidique avec la ou les entrée/sorties du circuit 23 du boîtier 2. Sur la figure 6, les ouvertures 2210i, 22102 de la paroi de fond 22 débouchent au niveau des entrées E1 , E2 et les canaux 210i, 21Û2 du couvercle 21 débouchent au niveau des sorties S1 , S2. Ainsi, les canaux 210i, 2102 et 2210i, 22102 débouchent au niveau de chaque espaceur 3, c’est-à-dire dans chaque espace intercellules. [81] Les figures 7A, 7B, 7C, 7D, 7E et 7F illustrent différentes configurations du dispositif. La figure 7A correspond à la configuration précitée. L’espaceur 3 comprend plusieurs nervures 300 agencées de façon à former un premier circuit de circulation forcée C1 et un deuxième circuit de circulation forcée C2. Le premier circuit C1 comprend une entrée E1 et une sortie S1 et le deuxième circuit C2 comprend une entrée E2 et une sortie S2. Les entrées E1 et E2 sont situées au niveau du bord inférieur de la grande face latérale 100 et les sorties S1 , S2 au niveau du bord supérieur de ladite grande face. Les entrée E1 et E2 sont en communication fluidique avec les canaux d’arrivée 2210i, 22102 aménagés dans la paroi de fond 2. Les sorties S1 et S2 sont en communication fluidique avec les canaux d’évacuation 210i, 2102 aménagés dans le couvercle 21. Le fluide pénètre par le canal d’arrivée 2210i, circule de manière forcée dans le premier circuit C1 depuis l’entrée E1 jusqu’à la sortie S1 et est évacué par le canal d’évacuation 210i. Parallèlement, le fluide pénètre également par l’autre canal d’arrivée 22102, circule de manière forcée dans le deuxième circuit C2 depuis l’entrée E2 jusqu’à la sortie S2 et est évacué par le canal d’évacuation 2102. La circulation du fluide dans le premier circuit C1 et la circulation dudit fluide dans le deuxième circuit C2 ont ici le même sens.
[82] La configuration de la figure 7B est similaire à celle de la figure 7A. La principale différence est que les entrées E1 et E2 ne sont pas situées au niveau du même bord de la grande face latérale 100, de même que les sorties S1 , S2. L’entrée E1 du circuit C1 et la sortie S2 du circuit C2 sont situées au niveau du bord supérieur de la grande face 100, alors que l’entrée E2 du circuit C2 et la sortie S1 du circuit C1 sont situées au niveau du bord inférieur de ladite grande face. Pour le premier circuit C1 , le fluide pénètre par le canal d’arrivée 210i, circule de manière forcée depuis l’entrée E1 jusqu’à la sortie S1 et est évacué par le canal d’évacuation 2210i. Pour le deuxième circuit C2, le fluide pénètre par le canal d’arrivée 22102, circule de manière forcée depuis l’entrée E2 jusqu’à la sortie S2 et est évacué par le canal d’évacuation 2102. Dans cette configuration, la circulation du fluide dans le premier circuit C1 est dans un sens inverse de la circulation dudit fluide dans le deuxième circuit C2, ce qui peut contribuer à améliorer les échanges thermiques entre ledit fluide et les grandes faces latérales 100. [83] Dans la configuration de la figure 7C, les nervures 300 sont agencées de façon à former un seul circuit de circulation forcée C comprenant une entrée E et une sortie S qui sont toutes deux situées au niveau du bord inférieur de la grande face latérale 100. L’arrivée et l’évacuation du fluide se font ici depuis la paroi de fond 22, ledit fluide ne circulant pas au travers du couvercle 21 . Le fluide pénètre par le canal d’arrivée 2210i aménagé dans la paroi de fond 22, circule de manière forcée dans le circuit C depuis l’entrée E jusqu’à la sortie S et est évacué par le canal d’évacuation 22102 aménagé dans ladite paroi de fond.
[84] La configuration de la figure 7D est similaire à celle de la figure 7C. La principale différence est que, l’entrée E est située au niveau du bord inférieur de la grande face 100, alors que la sortie S est située au niveau du bord supérieur de ladite grande face. Le fluide pénètre par le canal d’arrivée 2210i aménagé dans la paroi de fond 22, circule de manière forcée dans le circuit C depuis l’entrée E jusqu’à la sortie S et est évacué par le canal d’évacuation 2102 aménagé dans le couvercle 21 .
[85] Une configuration inverse à la figure 7D peut être envisagée comme illustrée sur la figure 7E. Dans ce cas, l’entrée E est située au niveau du bord supérieur de la grande face 100 et la sortie S est située au niveau du bord inférieur de ladite grande face est envisageable. Le fluide pénètre par le canal d’arrivée 2102 aménagé dans le couvercle 21 , circule de manière forcée dans le circuit C depuis l’entrée E jusqu’à la sortie S et est évacué par le canal d’évacuation 2210i aménagé dans la paroi de fond 22.
[86] Dans la configuration de la figure 7F, l’entrée E et la sortie S du circuit C sont situées au niveau du bord supérieur de la grande face latérale 100. L’arrivée et l’évacuation du fluide se font ici depuis le couvercle 21 , ledit fluide ne circulant pas au travers de la paroi de fond 22. Le fluide pénètre par le canal d’arrivée
210i aménagé dans le couvercle 21 , circule de manière forcée dans le circuit C depuis l’entrée E jusqu’à la sortie S et est évacué par le canal d’évacuation 2102 aménagé dans ledit couvercle.
[87] Les figures 8A et 8B illustrent encore une autre configuration du dispositif permettant de rendre l’ensemble particulièrement compact et facile à installer. La configuration de l’espaceur 3 est similaire à celle de la figure 7F, en ce sens que les nervures 300 sont agencées de sorte que l’entrée E et la sortie S du circuit C sont situées au niveau du bord supérieur de la grande face latérale 100. L’arrivée et l’évacuation du fluide se font toutefois depuis la paroi de fond 22. Celle-ci est pourvue d’un canal d’arrivée 2210i et d’un canal d’évacuation 22102 qui débouchent chacun au niveau de chaque espaceur 3 (dans chaque espace intercellules). La connexion fluidique du boîtier 2 au circuit 23 se fait donc uniquement au niveau de la paroi de fond 22, ce qui permet de simplifier l’installation. En outre, le couvercle 21 étant dépourvu de connectiques au circuit 23, il peut être aisément et rapidement enlevé en cas d’intervention sur le bloc batterie 1 .
[88] Un premier conduit 2100i permet d’amener le fluide circulant dans le canal d’arrivée 2210i à un premier canal 210i aménagé dans le couvercle 21 . Selon un mode de réalisation, les extrémités du premier conduit 2100i débouchent respectivement dans le canal d’arrivée 2210i et dans le premier canal 210i. Le premier conduit 2100i permet ainsi de faire « monter >> le fluide de la paroi de fond 22 jusqu’au couvercle 21 . Le premier canal 210i aménagé dans le couvercle 21 permet d’alimenter en parallèle les entrées E des différents circuits C. Sur la figure 8A, le premier conduit 2100i est aménagé au niveau d’un paroi d’extrémité 201 du boîtier 2.
[89] Un deuxième conduit 21 OO2 permet d’amener le fluide circulant dans le deuxième canal 2102 aménagé dans le couvercle 21 au canal d’évacuation 22102. Selon un mode de réalisation, les extrémités du deuxième conduit 21002 débouchent respectivement dans le deuxième canal 2102 et dans le canal d’évacuation 22102. Le deuxième conduit 21002 permet ainsi de faire
« descendre >> le fluide de la du couvercle 21 jusqu’à la paroi de fond 22. Le deuxième canal 2102 aménagé dans le couvercle 21 est en communication fluidique avec les sorties S des différents circuits C. Sur la figure 8A, le deuxième conduit 21002 est aménagé au niveau d’une autre paroi d’extrémité 201 du boîtier 2.
[90] Dans cette configuration, le fluide pénètre par le canal d’arrivée 2210i et passe par le premier conduit 2100i pour atteindre le premier canal 210i du couvercle 21 . Le fluide circule alors de manière forcée dans le circuit C depuis l’entrée E jusqu’à la sortie S. Le fluide circule ensuite dans le deuxième canal 2102 et passe par le deuxième conduit 21002 pour atteindre le canal d’évacuation 22102 par lequel il est évacué.
[91 ] L’agencement des différents éléments et/ou moyens et/ou étapes de l’invention, dans les modes de réalisation décrits ci-dessus, ne doit pas être compris comme exigeant un tel agencement dans toutes les implémentations. En tout état de cause, on comprendra que diverses modifications peuvent être apportées à ces éléments et/ou moyens et/ou étapes, sans s'écarter de l'esprit et de la portée de l’invention. En particulier, les canaux 2101, 2102, 22101 , 22102 peuvent se présenter sous la forme de conduits présentant des orifices débouchant au niveau de chaque espaceur 3 (dans chaque espace intercellule).
[92] En outre, une ou plusieurs caractéristiques exposées seulement dans un mode de réalisation peuvent être combinées avec une ou plusieurs autres caractéristiques exposées seulement dans un autre mode de réalisation. De même, une ou plusieurs caractéristiques exposées seulement dans un mode de réalisation peuvent être généralisées aux autres modes de réalisation, même si ce ou ces caractéristiques sont décrites seulement en combinaison avec d’autres caractéristiques.

Claims

Revendications
[Revendication 1] Dispositif de régulation thermique d’un bloc batterie (1 ) de véhicule, comprenant :
- un boîtier (2) comprenant un circuit de circulation de fluide caloporteur, lequel boîtier est apte à loger un bloc batterie (1 ), lequel bloc comporte au moins deux cellules de batterie (10) de forme générale parallélépipédique présentant chacune deux grandes faces latérales (100), lesquelles cellules sont adjacentes au niveau d’une de leurs grandes faces latérales,
- un espaceur (3) installé entre les cellules (10) de manière à les espacer l’une de l’autre, lequel espaceur est configuré pour être en contact avec les grandes faces latérales (100) adjacentes desdites cellules, caratérisé en ce que l’espaceur (3) comprend :
- une partie ajourée (30) aménagée pour être située en vis-à-vis des grandes faces latérales adjacentes des cellules (10) et pour s’étendre sur la majeure partie desdites grandes faces,
- une ou plusieurs nervures (300) s’étendant dans la partie ajourée (30), la ou les nervures (300) étant agencées de façon à former au moins un circuit de circulation forcée (C, C1 , C2) du fluide caloporteur entre lesdites cellules (10), le circuit de circulation forcée (C, C1 , C2) comprend une entrée (E, E1 , E2) et une sortie (S, S1 , S2).
[Revendication 2] Dispositif selon la revendication 1 , dans lequel une entrée (E, E1 , E2) du circuit de circulation forcée (C, C1 , C2) est située au niveau d’un bord d’une grande face latérale (100) et une sortie (S, S1 , S2) est située au niveau d’un autre bord de ladite grande face.
[Revendication 3] Dispositif selon l’une des revendications précédentes, dans lequel le boîtier (2) comprend :
- une entrée de fluide caloporteur (210i , 2102) en communication fluidique avec l’entrée (E, E1 , E3) du circuit de circulation forcée (C, C1 , C2) de l’espaceur (3),
- une sortie de fluide caloporteur (2210i, 22102) en communication fluidique avec la sortie (S, S1 , S2) du circuit de circulation forcée (C, C1 , C2) de l’espaceur (3).
[Revendication 4] Dispositif selon l’une des revendications précédentes, dans lequel la ou les nervures (300) sont aménagées dans l’espaceur (3) de sorte que la circulation du fluide dans le circuit de circulation forcée (C, C1 , C2) se fasse uniquement entre l’entrée (E, E1 , E2) et la sortie (S, S1 , S2) dudit circuit.
[Revendication 5] Dispositif selon l’une des revendications précédentes, dans lequel le boîtier (2) est formé par une enceinte (20) fermée de manière étanche au fluide caloporteur par un couvercle (21 ) et par une paroi de fond (22).
[Revendication 6] Dispositif selon les revendications 3 et 5, dans lequel au moins une entrée et au moins une sortie de fluide caloporteur du boîtier (2) sont aménagées dans la paroi de fond (22).
[Revendication 7] Dispositif selon la revendication 6, dans lequel :
- la paroi de fond (22) est pourvue d’un canal ou conduit d’arrivée du fluide caloporteur (2210-i) et d’un canal ou conduit d’évacuation du fluide caloporteur (22102),
- l’entrée (E) et la sortie (S) du circuit de circulation forcée (C) débouchent respectivement dans un premier canal ou conduit (2101) et dans un deuxième canal ou conduit (2102) aménagé dans le couvercle (21 ),
- un premier conduit (21 OO1) aménagé dans le boîtier (2) est configuré pour amener le fluide circulant dans le canal ou conduit d’arrivée (22101) au premier canal ou conduit (2101),
- un deuxième conduit (21 OO2) aménagé dans le boîtier (2) est configuré pour amener le fluide circulant dans le deuxième canal ou conduit (2102) au canal ou conduit d’évacuation (22102).
[Revendication 8] Dispositif selon les revendications 3 et 5, dans lequel au moins une entrée (2101) et au moins une sortie (2102) de fluide caloporteur du boîtier (2) sont aménagées dans le couvercle (21 ).
[Revendication 9] Dispositif selon les revendications 3 et 5 et/ou selon la revendication 8, dans lequel le couvercle (21 ) est pourvu d’un canal ou conduit d’arrivée et/ou d’évacuation du fluide caloporteur (2101), lequel canal ou conduit débouche au niveau de chaque espaceur (3).
[Revendication 10] Dispositif selon les revendications 3 et 5 et/ou selon l’une des revendications 6 ou 7, dans lequel la paroi de fond (22) est pourvue d’un canal ou conduit d’arrivée et/ou d’évacuation du fluide caloporteur (22102), lequel canal ou conduit débouche au niveau de chaque espaceur (3).
[Revendication 11 ] Système de refroidissement comprenant un dispositif selon l’une des revendications précédentes, et comprenant en outre :
- un bloc batterie (1 ) comprenant N cellules de batterie (10) adjacentes, dont deux cellules d’extrémité disposées chacune au niveau d’une paroi d’extrémité (201 ) du boîtier (2), N étant un nombre entier supérieur à 3,
- le dispositif comprend au moins N-1 espaceurs (3), de préférence N+1 espaceurs (3).
[Revendication 12] Système selon la revendication 11 , dans lequel :
- un espaceur (3) est installé entre chaque cellule (10) adjacente à une autre cellule,
- un espaceur (3) est installé entre chaque paroi d’extrémité (201 ) du boîtier
(2) et la cellule d’extrémité (10) dont une grande face latérale est adjacente à ladite paroi,
- les espaceurs (3) sont conformes à la revendication 1 de sorte que toutes les grandes faces latérales (100) des cellules (10) soient refroidies par un circuit de circulation forcée.
PCT/EP2023/062181 2022-05-16 2023-05-09 Dispositif de regulation thermique d'un bloc batterie de vehicule WO2023222439A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2204640A FR3135570A1 (fr) 2022-05-16 2022-05-16 Dispositif de régulation thermique d’un bloc batterie de véhicule
FRFR2204640 2022-05-16

Publications (1)

Publication Number Publication Date
WO2023222439A1 true WO2023222439A1 (fr) 2023-11-23

Family

ID=83188933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/062181 WO2023222439A1 (fr) 2022-05-16 2023-05-09 Dispositif de regulation thermique d'un bloc batterie de vehicule

Country Status (2)

Country Link
FR (1) FR3135570A1 (fr)
WO (1) WO2023222439A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100307723A1 (en) * 2007-11-13 2010-12-09 Behr Gmbh & Co. Kg Device for cooling a heat source of a motor vehicle
US20110206948A1 (en) * 2010-02-23 2011-08-25 Yasuhiro Asai Power source apparatus with electrical components disposed in the battery blocks
US20170125858A1 (en) * 2015-11-03 2017-05-04 Ford Global Technologies, Llc Traction Battery Assembly
FR3060863A1 (fr) 2016-12-15 2018-06-22 Valeo Systemes Thermiques Gestion de temperature de batterie
FR3077683A1 (fr) 2018-02-05 2019-08-09 Valeo Systemes Thermiques Dispositif de regulation de temperature d'une batterie a l'aide d'un fluide dielectrique et pack-batterie comprenant un tel dispositif

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100307723A1 (en) * 2007-11-13 2010-12-09 Behr Gmbh & Co. Kg Device for cooling a heat source of a motor vehicle
US20110206948A1 (en) * 2010-02-23 2011-08-25 Yasuhiro Asai Power source apparatus with electrical components disposed in the battery blocks
US20170125858A1 (en) * 2015-11-03 2017-05-04 Ford Global Technologies, Llc Traction Battery Assembly
FR3060863A1 (fr) 2016-12-15 2018-06-22 Valeo Systemes Thermiques Gestion de temperature de batterie
FR3077683A1 (fr) 2018-02-05 2019-08-09 Valeo Systemes Thermiques Dispositif de regulation de temperature d'une batterie a l'aide d'un fluide dielectrique et pack-batterie comprenant un tel dispositif

Also Published As

Publication number Publication date
FR3135570A1 (fr) 2023-11-17

Similar Documents

Publication Publication Date Title
FR3019688A1 (fr) "batterie de vehicule automobile equipee d'une conduite de fluide caloporteur separee des elements de batterie par une cloison souple"
EP3925018B1 (fr) Unité de batterie et vehicule automobile equipé d'au moins une telle unité
EP4005008B1 (fr) Module et dispositif de refroidissement pour batterie et batterie correspondante
EP4062120A1 (fr) Système de gestion thermique pour composant électrique
WO2019069020A1 (fr) Boîtier de protection d'un pack batterie intégrant des canaux de circulation d'un fluide caloporteur
EP4121711B1 (fr) Dispositif de régulation thermique d'au moins un composant électronique
EP4089794A2 (fr) Unité de batterie avec des moyens de controle ou de régulation de température intégrés
WO2023222439A1 (fr) Dispositif de regulation thermique d'un bloc batterie de vehicule
FR2976739A3 (fr) Dispositif de regulation thermique d’une batterie d’accumulateurs d’un vehicule a motorisation electrique
WO2022129387A1 (fr) Batterie de stockage d'électricité et ensemble comprenant un conditionnement d'air et une telle batterie
WO2024068421A1 (fr) Dispositif pour espacer des cellules de batterie d'un bloc batterie de vehicule
WO2021123559A1 (fr) Dispositif d'échange thermique pour des composants électriques et/ou électroniques
WO2024068419A1 (fr) Dispositif de regulation thermique pour un bloc batterie de vehicule
WO2019243222A1 (fr) Ensemble modulable pour la circulation d'un fluide caloporteur dans une batterie pour vehicule automobile
WO2024068420A1 (fr) Espaceur pour cellules de batterie, configure pour former une partie du circuit de circulation etanche au fluide caloporteur
FR3140479A1 (fr) dispositif de régulation thermique comprenant un collecteur de sortie positionné sous le bloc batterie.
FR3145649A1 (fr) Module de batterie comprenant une plaque de traitement thermique et procédé d’assemblage dudit module
WO2022268587A1 (fr) Dispositif de régulation thermique pour système électronique
WO2023089029A1 (fr) Dispositif de refroidissement d'un composant electrique et/ou electronique susceptible de degager de la chaleur en fonctionnement
WO2023135213A1 (fr) Support de circuit de fluide diélectrique et ensemble de régulation thermique correspondant, notamment pour véhicule automobile
FR3129778A1 (fr) Véhicule automobile comprenant un dispositif de refroidissement d’au moins un accumulateur électrique
WO2021048499A1 (fr) Dispositif de gestion thermique pour composant électrique et système comprenant un tel dispositif
FR3135568A1 (fr) Batterie et procédé de refroidissement associé
WO2021058884A1 (fr) Carter en trois parties pour une batterie de vehicule automobile
WO2020161399A1 (fr) Refroidisseur pour une batterie d'un véhicule automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23725238

Country of ref document: EP

Kind code of ref document: A1