WO2023222032A1 - 图案化的光伏组件 - Google Patents

图案化的光伏组件 Download PDF

Info

Publication number
WO2023222032A1
WO2023222032A1 PCT/CN2023/094766 CN2023094766W WO2023222032A1 WO 2023222032 A1 WO2023222032 A1 WO 2023222032A1 CN 2023094766 W CN2023094766 W CN 2023094766W WO 2023222032 A1 WO2023222032 A1 WO 2023222032A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
layer
index difference
photovoltaic module
photovoltaic
Prior art date
Application number
PCT/CN2023/094766
Other languages
English (en)
French (fr)
Inventor
崔艳峰
黄强
Original Assignee
中能创光电科技(常州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中能创光电科技(常州)有限公司 filed Critical 中能创光电科技(常州)有限公司
Publication of WO2023222032A1 publication Critical patent/WO2023222032A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to the field of photovoltaic technology, in particular to a patterned photovoltaic component.
  • Solar photovoltaic building is a new concept of applying solar power generation. It is the perfect combination of solar photovoltaic system and modern architecture. Photovoltaic components are laid on the outer surface of the building structure to provide power, and the solar power generation system is integrated with roofs, skylights, curtain walls and other buildings. In one, build green and environmentally friendly residences.
  • Such a component colorization scheme will cause light occlusion and large energy loss.
  • the technical problem to be solved by the present invention is to provide a patterned photovoltaic module to reduce the impact of photovoltaic module patterning on the power generation efficiency of the module.
  • a patterned photovoltaic module including a photovoltaic cell and a transparent packaging structure for packaging the photovoltaic cell.
  • the transparent packaging structure has a patterned refractive index difference layer for use in the photovoltaic module.
  • a patterned area is formed on the surface, and the refractive index of the refractive index difference layer ⁇ is located The refractive index of the physical medium inside the photovoltaic module above and below it.
  • the difference between the refractive index of the refractive index difference layer and the refractive index of the physical medium inside the photovoltaic module located above and below it is ⁇ 0.05.
  • the transparent packaging structure includes a panel layer and an packaging film layer.
  • the photovoltaic cells are packaged under the surface layer through the packaging film layer.
  • the refractive index difference layer is located in the packaging film layer; or the refractive index difference layer is located between the packaging film layer and the packaging film layer. Between the panel layers; or the refractive index difference layer is between the encapsulation film layer and the photovoltaic cell.
  • the refractive index difference layer is hybrid TPU
  • the packaging film layer is EVA
  • the panel layer is glass
  • the refractive index difference layer of the hybrid TPU material is located between the panel layer and the packaging film layer.
  • the refractive index of hybrid TPU is about 1.2
  • the refractive index of EVA is 1.48 ⁇ 1.51
  • the refractive index of glass is 1.5
  • the difference between the refractive index of hybrid TPU and the refractive index of the glass and EVA located above and below it All are greater than 0.28.
  • the refractive index difference layer is PS
  • the encapsulation film layer is EVA
  • the refractive index difference layer of PS material is located in the encapsulation film layer.
  • the refractive index of PS is 1.59 ⁇ 1.66, and the refractive index of EVA is 1.48 ⁇ 1.51.
  • the difference between the refractive index of PS and the refractive index of EVA located on its upper and lower layers is greater than 0.08.
  • the refractive index difference layer is PET
  • the encapsulating adhesive film layer is EVA
  • the refractive index difference layer of PET material is located between the encapsulating adhesive film layer and the photovoltaic cell.
  • the refractive index of PET is about 1.575
  • the refractive index of EVA is 1.48 ⁇ 1.51
  • the refractive index of photovoltaic cells is 2.
  • the difference between the refractive index of PET and the refractive index of EVA and photovoltaic cells located on its upper and lower layers is greater than 0.06.
  • the refractive index difference layer is made of TPU, PET, PE, PP, PVC, PS, TPO, TPE or PC.
  • the present invention does not require coating of pigments to form patterns and does not increase costs. Only the principles of physical optics are used, and the difference in refractive index of different materials is used to carry out matching design, causing interference with the incident light, obvious changes in reflection and transmission, showing different reflection or transmission colors, thus producing rich color changes, and also Photovoltaic modules show different colors when viewed from different angles. The photovoltaic modules are no longer single blue and black, but colorful. At the same time, the component power loss can be controlled below 10% as needed.
  • Figure 1 is a schematic structural diagram of a photovoltaic module according to Embodiment 1 of the present invention.
  • Figure 2 is a schematic structural diagram of a photovoltaic module according to Embodiment 2 of the present invention.
  • Figure 3 is a schematic structural diagram of a photovoltaic module according to Embodiment 3 of the present invention.
  • Figure 4 is a schematic diagram of the appearance of a pattern on the surface of the photovoltaic module of the present invention.
  • Photovoltaic cell 2. Refractive index difference layer, 3. Panel layer, 3-1. Glass, 3-2. Anti-reflection coating, 4. Encapsulation film layer, 5. Pattern area, 6. Non-pattern area.
  • Embodiment 1 a patterned photovoltaic component, includes a photovoltaic cell 1 and a transparent packaging structure for packaging the photovoltaic cell 1.
  • the transparent packaging structure has a patterned refractive index difference layer 2 inside for use in A patterned area 5 is formed on the surface of the photovoltaic component.
  • the refractive index of the refractive index difference layer 2 ⁇ the refractive index of the physical medium inside the photovoltaic component located above and below it.
  • the surface area of the photovoltaic component without the refractive index difference layer 2 is a non-patterned area 6.
  • the refractive index of the refractive index difference layer 2 is related to the physical medium inside the photovoltaic module located above and below it.
  • the difference in refractive index is ⁇ 0.05.
  • the transparent packaging structure includes a panel layer 3 and an packaging film layer 4.
  • the photovoltaic cell 1 is packaged under the surface layer through the packaging film layer 4, and the refractive index difference layer 2 is located between the packaging film layer 4 and the panel layer 3.
  • the physical medium inside the photovoltaic module located on the upper layer of the refractive index difference layer 2 is the panel layer 3
  • the internal physical medium of the photovoltaic module located on the lower layer of the refractive index difference layer 2 is the encapsulating film layer 4 .
  • the structure of the patterned photovoltaic module of this embodiment 1 is from top to bottom: panel layer 3, refractive index difference layer 2, encapsulating film layer 4, photovoltaic cell 1, encapsulating film layer 4, panel layer 3.
  • the front panel layer 3 is glass 3-1 with an anti-reflective coating 3-2.
  • the anti-reflective coating 3-2 has a refractive index of 1.3 and a thickness of 100 nm, and the glass 3-1 has a refractive index of 1.5.
  • the refractive index difference layer 2 is hybrid TPU.
  • the refractive index of hybrid TPU is about 1.2, the light transmittance is greater than 98%, and it has high thermal stability, that is, it can maintain stable film properties below 480°C.
  • the encapsulation film layer 4 is common EVA, and the refractive index of EVA is about 1.5.
  • the photovoltaic cell 1 is a heterojunction cell, and the antireflection film SiN or ITO on the surface of the heterojunction cell has a refractive index between 1.9 and 2.
  • the back panel layer 3 is made of non-coated glass 3-1 with a refractive index of 1.5.
  • the patterned photovoltaic component of this embodiment 1 can form a pattern area 5 and a non-pattern area 6 on the front side.
  • the photovoltaic component structure of the pattern area 5 is glass 3-1 (refractive index 1.5)/TPU (refractive index 1.2)/EVA ( Refractive index 1.5)/photovoltaic cell 1 (refractive index 2)/EVA (refractive index 1.5)/glass 3-1 (refractive index 1.5),
  • the refractive index of the refractive index difference layer 2 is related to the internal physics of the photovoltaic module located above and below it The difference in the refractive index of the medium is 0.3.
  • the photovoltaic module structure of non-pattern area 6 is glass 3-1 (refractive index 1.5)/EVA (refractive index 1.5)/photovoltaic cell 1 (refractive index 2)/EVA (refractive index 1.5)/glass 3-1 (refractive index 1.5 ).
  • the pattern area 5 and the non-pattern area 6 have different structures, causing interference with the incident light and producing colors, so that the pattern area 5 displays a color different from the non-pattern area 6.
  • the entire photovoltaic module surface presents a colorful pattern. As shown in Figure 4, a sun-shaped pattern appears on the entire photovoltaic module surface.
  • Embodiment 2 is basically the same as Embodiment 1, except that the refractive index difference layer 2 is located between two encapsulating adhesive film layers 4 .
  • the physical medium inside the photovoltaic module located on the upper layer of the refractive index difference layer 2 and the internal physical medium of the photovoltaic module located on the lower layer of the refractive index difference layer 2 are both the encapsulating adhesive film layer 4 .
  • the refractive index difference layer 2 is made of polystyrene PS and has a refractive index of 1.59 to 1.66.
  • the encapsulation film layer 4 is EVA, with a refractive index of 1.49.
  • Embodiment 3 is basically the same as Embodiment 1, except that the refractive index difference layer 2 is located between the encapsulating adhesive film layer 4 and the photovoltaic cell 1 .
  • the physical medium inside the photovoltaic module located on the upper layer of the refractive index difference layer 2 is the encapsulant film layer 4
  • the internal physical medium of the photovoltaic module located on the lower layer of the refractive index difference layer 2 is the photovoltaic cell 1 .
  • the refractive index difference layer 2 is PET, with a refractive index of 1.575.
  • the encapsulation film layer 4 is EVA, with a refractive index of 1.51.
  • the refractive index of photovoltaic cell 1 is 2.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及光伏技术领域,特别是一种图案化的光伏组件,包括光伏电池和封装光伏电池的透明封装结构,透明封装结构具有图形化的折射率差异层,用于在光伏组件表面形成图案区域,折射率差异层的折射率≠位于其上层和下层的光伏组件内部物理介质的折射率。有益效果是:本发明形成图形化不需要涂覆颜料,不增加成本,仅利用物理光学原理,利用不同材料的折射率差异,进行搭配设计,造成对入射光线产生干涉,反射、透射变化明显,展现出不同的反射或者透射色,从而产生丰富的颜色变化,同时也会产生从不同角度观察时,光伏组件展现出不同的颜色。使得光伏组件不再是单一的蓝黑色,而是五彩斑斓。同时组件功率损失可以根据需要控制在10%以下。

Description

图案化的光伏组件 技术领域
本发明涉及光伏技术领域,特别是一种图案化的光伏组件。
背景技术
太阳能光伏建筑是应用太阳能发电的一种新概念,是将太阳能光伏系统与现代建筑的完美结合,在建筑结构外表面铺设光伏组件提供电力,将太阳能发电系统与屋顶、天窗、幕墙等建筑融合为一体,建筑绿色环保住宅。
目前所应用的光伏建筑中,除了一些光伏屋顶采用所谓的“光伏瓦”之外,大型光伏建筑仍然采用传统的光伏组件,颜色也是蓝黑色,深蓝色,浅蓝色,美观和艺术性欠缺。一些强调美观需求的建筑,会在传统的光伏组件上涂覆颜料,使其显示深红色,褐色等颜色,从而带来一定的观赏性。但缺点是组件功率损失20%以上,发电收益大幅降低。
例如中国发明专利文献CN113087406A高温钢化型彩色光伏玻璃面板及其生产方法、彩色太阳能光伏组件,中国发明专利CN109463011A有色光伏模块,以及EnergyProcedia 122(2017)175-180中公布的建筑彩色光伏外立面技术。这样的组件彩色化方案会造成光线遮挡和较大的能量损失。
发明内容
本发明所要解决的技术问题是:提供一种图案化的光伏组件,降低光伏组件图形化对组件发电效率的影响。
本发明解决其技术问题所采用的技术方案是:一种图案化的光伏组件,包括光伏电池和封装光伏电池的透明封装结构,透明封装结构具有图形化的折射率差异层,用于在光伏组件表面形成图案区域,折射率差异层的折射率≠位于 其上层和下层的光伏组件内部物理介质的折射率。
进一步限定,折射率差异层的折射率与位于其上层和下层的光伏组件内部物理介质的折射率的差值≥0.05。
进一步限定,透明封装结构包括面板层和封装胶膜层,光伏电池通过封装胶膜层封装在面层下,折射率差异层位于封装胶膜层中;或者折射率差异层位于封装胶膜层与面板层之间;或者折射率差异层位于封装胶膜层与光伏电池之间。
进一步限定,折射率差异层为杂化的TPU,封装胶膜层为EVA,面板层为玻璃,杂化的TPU材质的折射率差异层位于面板层与封装胶膜层之间。
杂化的TPU的折射率为1.2左右,EVA的折射率为1.48~1.51,玻璃的折射率为1.5,杂化的TPU的折射率与位于其上层和下层的玻璃和EVA的折射率的差值都大于0.28。
或者,折射率差异层为PS,封装胶膜层为EVA,PS材质的折射率差异层位于封装胶膜层中。
PS的折射率为1.59~1.66,EVA的折射率为1.48~1.51,PS的折射率与位于其上层和下层的EVA折射率的差值都大于0.08。
或者,折射率差异层为PET,封装胶膜层为EVA,PET材质的折射率差异层位于封装胶膜层与光伏电池之间。
PET的折射率为1.575左右,EVA的折射率为1.48~1.51,光伏电池的折射率为2,PET的折射率与位于其上层和下层的EVA和光伏电池的折射率的差值都大于0.06。
进一步限定,折射率差异层为TPU、PET、PE、PP、PVC、PS、TPO、TPE或PC材质。
本发明的有益效果是:本发明形成图形化不需要涂覆颜料,不增加成本, 仅利用物理光学原理,利用不同材料的折射率差异,进行搭配设计,造成对入射光线产生干涉,反射、透射变化明显,展现出不同的反射或者透射色,从而产生丰富的颜色变化,同时也会产生从不同角度观察时,光伏组件展现出不同的颜色。使得光伏组件不再是单一的蓝黑色,而是五彩斑斓。同时组件功率损失可以根据需要控制在10%以下。
附图说明
下面结合附图和实施例对本发明进一步说明;
图1是本发明的实施例1的光伏组件的结构示意图;
图2是本发明的实施例2的光伏组件的结构示意图;
图3是本发明的实施例3的光伏组件的结构示意图;
图4是本发明的光伏组件的表面呈现出图案的外观效果示意图;
图中,1.光伏电池,2.折射率差异层,3.面板层,3-1.玻璃,3-2.减反射镀膜,4.封装胶膜层,5.图案区域,6.非图案区域。
具体实施方式
如图1所示,实施例1,一种图案化的光伏组件,包括光伏电池1和封装光伏电池1的透明封装结构,透明封装结构的内部具有图形化的折射率差异层2,用于在光伏组件表面形成图案区域5,折射率差异层2的折射率≠位于其上层和下层的光伏组件内部物理介质的折射率,不具有折射率差异层2的光伏组件表面区域为非图案区域6。
折射率差异层2的折射率与位于其上层和下层的光伏组件内部物理介质的 折射率的差值≥0.05。
透明封装结构包括面板层3和封装胶膜层4,光伏电池1通过封装胶膜层4封装在面层下,折射率差异层2位于封装胶膜层4与面板层3之间。位于折射率差异层2的上层的光伏组件内部物理介质为面板层3,位于折射率差异层2的下层的光伏组件内部物理介质为封装胶膜层4。
具体地,本实施例1的图案化的光伏组件的结构由上至下分别为:面板层3、折射率差异层2、封装胶膜层4、光伏电池1、封装胶膜层4、面板层3。
正面的面板层3为带有减反射镀膜3-2的玻璃3-1,减反射镀膜3-2的折射率为1.3,厚度100nm,玻璃3-1折射率1.5。
折射率差异层2为杂化的TPU,杂化的TPU的折射率为1.2左右,透光率大于98%,具有高热稳定性,即在480℃以下都可以保持薄膜性质的稳定。
封装胶膜层4为常见的EVA,EVA的折射率为1.5左右。
光伏电池1为异质结电池,异质结电池表面的减反射膜SiN或者ITO的折射率在1.9~2之间。
背面的面板层3为非镀膜的玻璃3-1,折射率1.5。
本实施例1的图案化的光伏组件在正面可以形成图案区域5和非图案区域6,图案区域5的光伏组件结构为玻璃3-1(折射率1.5)/TPU(折射率1.2)/EVA(折射率1.5)/光伏电池1(折射率2)/EVA(折射率1.5)/玻璃3-1(折射率1.5),折射率差异层2的折射率与位于其上层和下层的光伏组件内部物理介质的折射率的差值为0.3。非图案区域6的光伏组件结构为玻璃3-1(折射率1.5)/EVA(折射率1.5)/光伏电池1(折射率2)/EVA(折射率1.5)/玻璃3-1(折射率1.5)。
当入射光线进入时,图案区域5和非图案区域6结构不同,造成对入射光线产生干涉,产生颜色,从而在图案区域5显示出不同于非图案区域6的颜色, 整个光伏组件表面呈现出彩色的图案,如图4所示在整个光伏组件表面呈现出太阳形状的图案。
如图2所示,实施例2,和实施例1基本相同,区别在于:折射率差异层2位于两层封装胶膜层4之间。
位于折射率差异层2的上层的光伏组件内部物理介质和位于折射率差异层2的下层的光伏组件内部物理介质都为封装胶膜层4。
折射率差异层2为聚苯乙烯PS,折射率为1.59~1.66。封装胶膜层4为EVA,折射率为1.49。
如图3所示,实施例3,和实施例1基本相同,区别在于:折射率差异层2位于封装胶膜层4与光伏电池1之间。
位于折射率差异层2的上层的光伏组件内部物理介质为封装胶膜层4,位于折射率差异层2的下层的光伏组件内部物理介质为光伏电池1。
折射率差异层2为PET,折射率为1.575。封装胶膜层4为EVA,折射率为1.51。光伏电池1的折射率为2。

Claims (7)

  1. 一种图案化的光伏组件,包括光伏电池(1)和封装光伏电池(1)的透明封装结构,其特征是:所述的透明封装结构具有图形化的折射率差异层(2),用于在光伏组件表面形成图案区域(5),折射率差异层(2)的折射率≠位于其上层和下层的光伏组件内部物理介质的折射率。
  2. 根据权利要求1所述的图案化的光伏组件,其特征是:所述的折射率差异层(2)的折射率与位于其上层和下层的光伏组件内部物理介质的折射率的差值≥0.05。
  3. 根据权利要求1或2所述的图案化的光伏组件,其特征是:所述的透明封装结构包括面板层(3)和封装胶膜层(4),光伏电池(1)通过封装胶膜层(4)封装在面板层下,折射率差异层(2)位于封装胶膜层(4)中;或者折射率差异层(2)位于封装胶膜层(4)与面板层(3)之间;或者折射率差异层(2)位于封装胶膜层(4)与光伏电池(1)之间。
  4. 根据权利要求1或2所述的图案化的光伏组件,其特征是:所述的折射率差异层(2)为杂化的TPU,封装胶膜层(4)为EVA,面板层(3)为玻璃(3-1),杂化的TPU材质的折射率差异层(2)位于面板层(3)与封装胶膜层(4)之间。
  5. 根据权利要求1或2所述的图案化的光伏组件,其特征是:所述的折射率差异层(2)为PS,封装胶膜层(4)为EVA,PS材质的折射率差异层(2)位于封装胶膜层(4)中。
  6. 根据权利要求1或2所述的图案化的光伏组件,其特征是:所述的折射率差异层(2)为PET,封装胶膜层(4)为EVA,折射率差异层(2)位于封装胶膜层(4)与光伏电池(1)之间。
  7. 根据权利要求1所述的图案化的光伏组件,其特征是:所述的折射率差异层(2)为TPU、PET、PE、PP、PVC、PS、TPO、TPE或PC材质。
PCT/CN2023/094766 2022-05-20 2023-05-17 图案化的光伏组件 WO2023222032A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210551428.X 2022-05-20
CN202210551428.XA CN114975666A (zh) 2022-05-20 2022-05-20 图案化的光伏组件

Publications (1)

Publication Number Publication Date
WO2023222032A1 true WO2023222032A1 (zh) 2023-11-23

Family

ID=82985528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/094766 WO2023222032A1 (zh) 2022-05-20 2023-05-17 图案化的光伏组件

Country Status (2)

Country Link
CN (1) CN114975666A (zh)
WO (1) WO2023222032A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114975666A (zh) * 2022-05-20 2022-08-30 中能创光电科技(常州)有限公司 图案化的光伏组件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140338722A1 (en) * 2013-05-14 2014-11-20 First Solar, Inc. Photovoltaic modules with a controlled color on their window surface and arrays thereof
CN106952977A (zh) * 2017-04-02 2017-07-14 韩少茹 一种太阳能电池封装结构
CN215988795U (zh) * 2021-08-26 2022-03-08 西安隆基绿能建筑科技有限公司 一种光伏组件及屋面结构
CN114597279A (zh) * 2022-02-25 2022-06-07 中能创光电科技(常州)有限公司 带图案的光伏组件及其制备方法
CN114975666A (zh) * 2022-05-20 2022-08-30 中能创光电科技(常州)有限公司 图案化的光伏组件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101872795B (zh) * 2009-04-27 2013-04-03 财团法人工业技术研究院 太阳模块封装结构
CN101908571A (zh) * 2010-07-21 2010-12-08 友达光电股份有限公司 太阳能电池
KR101917533B1 (ko) * 2017-08-31 2018-11-09 주식회사 포스코 컬러 태양광 모듈

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140338722A1 (en) * 2013-05-14 2014-11-20 First Solar, Inc. Photovoltaic modules with a controlled color on their window surface and arrays thereof
CN106952977A (zh) * 2017-04-02 2017-07-14 韩少茹 一种太阳能电池封装结构
CN215988795U (zh) * 2021-08-26 2022-03-08 西安隆基绿能建筑科技有限公司 一种光伏组件及屋面结构
CN114597279A (zh) * 2022-02-25 2022-06-07 中能创光电科技(常州)有限公司 带图案的光伏组件及其制备方法
CN114709287A (zh) * 2022-02-25 2022-07-05 中能创光电科技(常州)有限公司 带图案的光伏组件及其制备方法
CN114975666A (zh) * 2022-05-20 2022-08-30 中能创光电科技(常州)有限公司 图案化的光伏组件

Also Published As

Publication number Publication date
CN114975666A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
NL2026856B1 (en) Photovoltaic Devices
CN105144397B (zh) 太阳能光伏模块
TWI379427B (en) Transparent solar cell module
WO2023222032A1 (zh) 图案化的光伏组件
CN114709287B (zh) 带图案的光伏组件及其制备方法
CN110931592A (zh) 一种用于bipv的铜铟镓硒太阳能电池
WO2019154277A1 (zh) 一种发电建材及其制备方法
CN109119538A (zh) 柔性一维光子晶体调控的半透明无铟聚合物太阳能电池
US20190348555A1 (en) Solar module
JP2019197880A (ja) ソーラーモジュール
CN210607294U (zh) 一种用于bipv的铜铟镓硒太阳能电池
CN210628330U (zh) 一种用于铜铟镓硒电池的光伏盖板玻璃
CN104377251B (zh) 一种多尺度陷光的柔性大面积叠层太阳能电池及制备方法
CN100373636C (zh) 在硅太阳能电池表面制备复合波长变换-减反射膜的方法
CN204834645U (zh) 有色太阳能玻璃
CN104718628A (zh) 太阳能组件及其制造方法
CN202487586U (zh) 一种彩色太阳能电池组件
CN218867118U (zh) 一种彩色bipv太阳能双玻组件
CN209447810U (zh) 一种彩色瓦
CN110952689A (zh) 前板、太阳能玻璃幕墙及其制备方法
CN114349342A (zh) 一种新型彩色bipv的制备方法
CN218602455U (zh) 一种高透光彩色bipv太阳能双玻组件
CN210086700U (zh) 一种发电建材
CN204216056U (zh) 用于建筑内部装饰的彩色光伏组件
TWM440530U (en) Light transmission tunable photovoltaic panel and photovoltaic panel array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23806983

Country of ref document: EP

Kind code of ref document: A1