WO2023222009A1 - 感测设备校正方法及校正系统 - Google Patents

感测设备校正方法及校正系统 Download PDF

Info

Publication number
WO2023222009A1
WO2023222009A1 PCT/CN2023/094674 CN2023094674W WO2023222009A1 WO 2023222009 A1 WO2023222009 A1 WO 2023222009A1 CN 2023094674 W CN2023094674 W CN 2023094674W WO 2023222009 A1 WO2023222009 A1 WO 2023222009A1
Authority
WO
WIPO (PCT)
Prior art keywords
field strength
sensing
sensing device
signal
strength value
Prior art date
Application number
PCT/CN2023/094674
Other languages
English (en)
French (fr)
Inventor
杨戴天杙
刘耀华
吴威
明繁华
Original Assignee
安翰科技(武汉)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安翰科技(武汉)股份有限公司 filed Critical 安翰科技(武汉)股份有限公司
Publication of WO2023222009A1 publication Critical patent/WO2023222009A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references

Definitions

  • the present invention relates to the field of magnetic field sensing technology, and in particular, to a sensing equipment calibration method and a calibration system.
  • the sensing equipment installed in the positioning system often cooperates with other signal transmitting devices in the positioning system to inform the operator of the location of the sensing equipment and other information by receiving signals and/or emitting signals by itself.
  • the above technical solution can be applied in the field of medical technology to control magnetic medical equipment in the human body, and correspondingly receive positioning information fed back by it to confirm the location of the lesion in the human body.
  • One object of the present invention is to provide a sensing device calibration method to solve the technical problems in the prior art that the sensing device calibration process has poor accuracy, high cost, and cannot improve the accuracy loss caused by delay and signal attenuation.
  • One object of the present invention is to provide a sensing device calibration system.
  • an embodiment of the present invention provides a sensing device calibration method, which includes: respectively sending a steady-state excitation signal and a transient excitation signal to the sensing device, and correspondingly receiving the steady-state sensing signal. and the transient sensing signal; when the steady-state sensing signal meets the preset conditions, the corresponding steady-state field strength value is obtained by analysis; the transient sensing signal is analyzed to obtain the transient field strength value, and according to the The steady-state field strength value and the transient field strength value are used to correct the dynamic sensing signal of the sensing device.
  • the steady-state sensing signal is the sensing signal output by the sensing device in a stable working state during the correction process;
  • the transient sensing signal is the sensing signal during the correction process.
  • the dynamic sensing signal is the sensing signal output by the sensing device during use;
  • the method specifically includes: according to the steady-state field strength A correction factor is calculated based on the value and the transient field strength value, and the dynamic sensing signal is corrected according to the correction factor.
  • the method specifically includes: receiving the background sensing signal output by the sensing device, analyzing and obtaining the corresponding background field strength value; according to the steady-state field strength value, the instantaneous state field strength value and the background field strength value, Calculate the correction factor, and correct the dynamic signal of the sensing device according to the correction factor; wherein the correction factor is: the difference between the transient field strength value and the background field strength value and the The quotient of the difference between the steady-state field strength value and the background field strength value.
  • the method specifically includes: continuously sending a steady-state excitation signal, and correspondingly receiving a first sensing signal at a first time and a second sensing signal at a second time as the Steady-state sensing signal; analyze the first sensing signal and the second sensing signal to obtain the first field strength value and the second field strength value. If the first field strength value and the second field strength value are If the difference between the strength values is less than the preset fluctuation allowable value, the steady-state field strength value is calculated based on the first field strength value and the second field strength value.
  • the method further includes: sending a test excitation signal to the sensing device, and correspondingly receiving at least a first axial sensing signal, a second axial sensing signal and a third axis axial sensing signal; according to the field strength values carried by the first axial sensing signal, the second axial sensing signal and the third axial sensing signal, selectively output the first rotation axis adjustment signal and The second rotation axis adjustment signal is adjusted until the waveform amplitude carried by each axial sensing signal meets the preset amplitude condition; wherein the first axis, the second axis and the third axis are the sensing devices of the sensing device.
  • the first rotation axis and the second rotation axis are used to adjust the posture of the sensing device and are configured to be perpendicular to each other.
  • the method specifically includes: parsing the first axial sensing signal, obtaining a first field strength waveform with a first duration, and calculating the value of the first field strength waveform.
  • the first average field strength value segment the first field strength waveform according to a preset time window, extract the first time period, and analyze the first value of the first field strength waveform within the first time period.
  • the highest field strength value and the first lowest field strength value calculate the difference between the first highest field strength value and the first average field strength value, and the first average field strength value and the first lowest field strength value
  • the first field strength difference value and the second field strength difference value are respectively obtained; if the first field strength difference value or the second field strength difference value is less than the preset amplitude value, the first field strength difference value is output
  • At least one of the rotation axis signal and the second rotation axis signal controls the sensing device to adjust from the first attitude to the second attitude; wherein the first duration is greater than the preset time window length;
  • the first axial sensing signal of the sensing device in the second posture is stronger than the first axial sensing signal of the sensing device in the first posture.
  • one embodiment of the present invention provides a sensing device calibration system, which includes a sensing device to be calibrated and a main control system.
  • the main control system is configured to perform any of the above technical solutions. Sensing device calibration methods.
  • the sensing equipment calibration system also includes an attitude adjustment device, which includes a fixed mechanism and an adjustment component provided on the fixed mechanism;
  • the main control system includes a data processing unit unit, a signal generating unit and a host computer, the data processing unit is used to perform data collection, processing and transmission, the signal generating unit is used to output excitation signals, the host computer is used to output control signals, draw and display waveforms;
  • the sensing device to be corrected is arranged in the adjustment component, the data processing unit is connected to at least one of the adjustment component and the sensing device to be corrected, and the host computer is connected to the signal generating unit and the sensing device to be corrected respectively. the data processing unit.
  • the fixing mechanism includes a first connecting piece with one end connected to each other to form a central node, and the other end extending along the first axial direction, the second axial direction and the third axial direction respectively.
  • the second connecting piece and the third connecting piece; the At least one of the adjustment component and/or the sensing device to be corrected is disposed at the central node, and at least the other one is disposed at the first connection, the second connection or the third connection. piece at the other end away from the central node.
  • the adjustment assembly includes a support part, a first fixing part and a second fixing part; at least one of the first fixing part and the second fixing part is movably connected to The support part, the first fixing part and the second fixing part are collectively surrounded to form an accommodating space, and the sensing device to be corrected is arranged in the accommodating space.
  • the adjustment assembly further includes a first rotating shaft and a second rotating shaft; the first fixing part and the second fixing part are configured in an annular shape and are respectively surrounded to form a first space. and a second space; the first rotation axis is disposed at a symmetry axis of the first space, the second rotation axis is disposed at a symmetry axis of the second space, the first rotation axis and the third
  • the two rotating axes are arranged perpendicularly to each other and are configured to receive control from the main control system to rotate and adjust the attitude of the sensing device to be corrected.
  • the sensing equipment correction method provided by the present invention obtains the sensing signals of the sensing equipment in two working states: steady state and transient state by respectively outputting steady-state excitation signals and transient excitation signals. , and use the field strength values measured in the two states to calibrate the work of the sensing equipment. In this way, the signal attenuation problem caused by the difference in detection time of the sensing equipment can be effectively overcome, the detection precision and accuracy of the sensing equipment can be improved, and the cost and resource waste of the calibration process of the existing sensing equipment can be reduced.
  • Figure 1 is a schematic structural diagram of a sensing device calibration system in an embodiment of the present invention
  • Figure 2 is a schematic structural diagram of a sensing device calibration system in an embodiment of the present invention.
  • Figure 3 is a partial structural schematic diagram of a sensing device calibration system in an embodiment of the present invention.
  • Figure 4 is a schematic diagram of the coordination structure of the adjustment component of the sensing device calibration system and the sensing device to be corrected in an embodiment of the present invention
  • Figure 5 is a schematic structural diagram of the sensing device to be corrected in the sensing device calibration system in an embodiment of the present invention
  • Figure 6 is a schematic diagram of the steps of a sensing device calibration method in an embodiment of the present invention.
  • Figure 7 is a schematic waveform diagram of the field strength value changing with time in the sensing device calibration method in one embodiment of the present invention.
  • Figure 8 is a schematic diagram of the steps of a sensing device calibration method in another embodiment of the present invention.
  • Figure 9 is a schematic diagram of the steps of the first embodiment of the sensing device calibration method in an embodiment of the present invention.
  • Figure 10 is a schematic diagram of the steps of a second embodiment of a sensing device calibration method in an embodiment of the present invention.
  • Figure 11 is a schematic diagram of the steps of a sensing device calibration method in yet another embodiment of the present invention.
  • Figure 12 is a schematic step diagram of a specific example of step 41 of the sensing device calibration method in yet another embodiment of the present invention.
  • FIG. 13 is a schematic waveform diagram of a change in field strength value of a specific example of a sensing device calibration method in yet another embodiment of the present invention.
  • Sensing devices are usually configured to: receive signals from external signal sources, analyze the data information carried in the signals, and perform corresponding calculations to obtain the information required by the user.
  • a typical example is that when a sensing device is used in a capsule device, especially a capsule endoscope, or a capsule endoscope is defined as a sensing device, the sensing device can receive electromagnetic signals input from the outside and solve for the current magnetic field value. , and substituted into the preset algorithm model, the position of the sensing device in the non-magnetic cavity (for example, the human body) is calculated to achieve the effect of positioning the sensing device.
  • the periodic signal of the preset pattern emitted by the external signal source is very likely to have problems such as phase deviation and amplitude attenuation when reflected to the sensing device due to many reasons during the transmission process, resulting in the detection and calculation of the sensing device. There are large errors in the data.
  • the present invention provides a sensing device calibration system, which can be applied in any large scenario where electromagnetic signal interaction exists, and can also be applied in any of the above specific scenarios. For example, it is used to correct the sensing situation of a capsule endoscope that interacts with an external magnetic signal generating coil, so that the capsule endoscope can output a more accurate positioning signal.
  • a sensing device calibration system provided by an embodiment of the present invention includes a sensing device 100 to be calibrated and a main control system 300 .
  • the main control system 300 is configured to carry a sensing device correction method, thereby solving technical problems such as large errors in detection data of the sensing device 100 to be corrected, and achieving corresponding technical effects.
  • the sensing device correction system may further include an attitude adjustment device 200 for adjusting the attitude of the sensing device 100 to be corrected.
  • the sensing device 100 to be corrected is configured to be fixed in the attitude adjustment device 200 .
  • the main control system 300 may further include a data processing unit 31 , a host computer 32 and a signal generating unit 33 .
  • the data processing unit 31 is used to perform data collection, processing and transmission.
  • the data may be detection data from the sensing device 100 to be corrected, or may be a control signal output to the attitude adjustment device 200 .
  • the data processing unit 31 can be configured to be wired or wirelessly connected to the posture adjustment device 200, and receive detection data from the sensing device 100 to be corrected through the electrical connection relationship between the posture adjustment device 200 and the sensing device 100 to be corrected;
  • the data processing unit 31 may also be configured to connect the sensing device 100 to be corrected and the posture adjustment device 200 via wired or wireless connections respectively.
  • the present invention is not limited to the two connection methods provided above.
  • the sensing device 100 to be corrected and the posture adjustment device 200 , the posture adjustment device 200 and the data processing unit 31 , and the sensing device 100 to be corrected and the data processing unit 31 can be established simultaneously.
  • the sensing device 100 to be corrected can be configured to adjust its own posture autonomously without the assistance of the posture adjustment device 200 .
  • the posture adjustment device 200 can be canceled and only the sensing device 100 to be corrected is established.
  • the host computer 32 is used to output control signals, draw and display waveforms.
  • the generation of the control signal and the waveform relies on the detection data of the sensing device 100 to be corrected transmitted by the data processing unit 31; the host computer 32 can therefore be configured to: fit the changing waveform curve according to the detection data, and In the same or different forms, the detection data of the sensing device 100 to be corrected at different locations or at the same location at different times are displayed on the screen.
  • the sensing device correction system includes multiple sensing devices 100 to be corrected that are arranged at different positions, preferably, different sensing devices 100 to be corrected can draw curves of different colors accordingly, and those skilled in the art can derive from this come up with various implementations.
  • the signal generating unit 33 is used to output an excitation signal, so that the sensing device 100 to be corrected generates a detection signal correspondingly according to the excitation signal.
  • the excitation signal may be controlled and output by one of the host computer 32 or the data processing unit 31 .
  • the excitation signal can be a periodic signal in any preset mode, for example, a sinusoidal signal or a square wave signal; the excitation signal can be a higher frequency signal of 30Hz to 100Hz, preferably 50Hz, or it can be 0.1Hz to 1Hz. lower frequency signals.
  • the signal generating unit 33 may include only one signal generating device or multiple signal generating devices to output the same or different electromagnetic signals to form an excitation for the sensing device 100 to be corrected.
  • the host computer 32 can use the data processing unit 31 as a relay driver to receive the detection data from the sensing device 100 to be corrected, and output a control signal to the attitude adjustment device 200 (or to the sensing device 100 to be corrected).
  • the device 100 outputs a control signal) to achieve the effect of dynamically adjusting the posture of the sensing device 100 to be corrected according to the detection data, so that the quality of the detection data meets the preset requirements; then, the control signal generating unit 33 outputs different electromagnetic signals, and receives corresponding different Different detection signals of electromagnetic signals are analyzed to analyze the detection data under different situations to correct the sensing equipment.
  • the configuration of the host computer 32 can be canceled, and the data processing unit 31 independently completes the reception of the above-mentioned detection data, the output of the control signal, the control and correction of the signal generating unit 33 (especially for correction). parameter calculation) process.
  • the attitude adjustment device 200 may further include a fixing mechanism 22 and an adjustment component 21 disposed at at least one location of the fixing mechanism 22 . Therefore, the sensing device 100 to be corrected is arranged in the adjustment component 21, the data processing unit 31 is connected to at least one of the adjustment component 21 and the sensing device 100 to be corrected, and the host computer 32 is connected to the signal generating unit 33 and the data processing unit 31 respectively.
  • the host computer 32 establishes a control path with the adjustment component 21 through the data processing unit 31 and a data transmission path with the sensing device 100 to be corrected (or, in an embodiment in which the host computer 32 is not provided, Directly controlled and/or collected by the data processing unit 31), the fixing mechanism 22 is configured to be sufficient to cover multiple sensing ranges and structures or configurations of multiple devices.
  • the fixing mechanism 22 may further include: one end connected to each other to form a central node 20, and the other end extending along the first axial direction d1, the second axial direction d2 and the third axial direction d3 respectively.
  • the first connecting member 221 , the second connecting member 222 and the third connecting member 223 may be configured in a rod shape to form a structure similar to a spatial rectangular coordinate system to arrange multiple sensing devices 100 to be corrected from multiple directions.
  • the sensing device 100 to be corrected and/or the adjustment component 21 may be provided with one or more ends at any one of the two ends of the first connecting member 221 , the two ends of the second connecting member 222 , and the two ends of the third connecting member 223 . or each of the first connecting member 221 , the second connecting member 222 and the third connecting member 223 One or more are provided in the length extension direction, and the details can be adjusted as needed. An exhaustive list will not be made here.
  • At least one of the adjustment component 21 and/or the sensing device 100 to be corrected is disposed at the central node 20 , and at least the other one is disposed at the first connection member 221 , the second connection member 222 and the third connection member 223 at the other end away from the central node 20 .
  • at least two adjustment components 21 are disposed at two different positions with known relative position relationships in the correction space 30 to collect more comprehensive detection data.
  • the adjustment component 21 can be specifically configured to include a first adjustment component 21A, a second adjustment component 21B, a third adjustment component 21C and a fourth adjustment component 21D; the first adjustment component 21A is disposed on At the central node 20, the second adjustment component 21B is disposed at the end of the first connecting member 221 away from the central node 20, the third adjusting component 21C is disposed at the end of the second connecting member 222 away from the central node 20, and the fourth adjusting component 21D is disposed at the central node 20.
  • the third connecting member 223 has an end far away from the central node 20 , thereby covering a wider range in the correction space 30 .
  • the above structures can also be provided with multiple groups in the correction space 30, which will not be described again here.
  • the adjustment component 21 can be specifically configured to include a first fixing part 211 and a second fixing part 212 , and the first fixing part 211 and the second fixing part 212 are collectively surrounded to form a Accommodation space 210.
  • the above-mentioned sensing device 100 to be corrected is disposed in the accommodation space 210.
  • the sensing device 100 to be corrected may be directly fixed to the first fixing part 211, and an indirect connection is established between the first fixing part 211 and the second fixing part 212.
  • the relationship; it may also be that the sensing device 100 to be corrected is directly fixed to the second fixing part 212, and an indirect connection relationship is established with the first fixing part 211 through the second fixing part 212. Therefore, it can accept the attitude adjustment of the two fixing parts at the same time.
  • the first fixing part 211 and the second fixing part 212 can be configured to connect to the main control system 300 , especially to connect to the data processing unit 31 , to receive control signals from the data processing unit 31 itself or the host computer 32 , adjust the fixed part's own posture to affect the sensing device 100 to be corrected.
  • the first fixing part 211 and the second fixing part 212 are configured in an annular shape, preferably an annular shape, and surround a first space 231 and a second space 232 respectively. Further, the first space 231 and the second space 232 are combined and equivalently form a three-dimensional space during the action.
  • the three-dimensional space can be the accommodating space 210 defined above, or can be a part of the accommodating space 210 or include the accommodating space 210, so that the sensing device 100 to be calibrated can adjust its posture in various directions, including the extension direction. , spatial location, etc.
  • the adjustment assembly 21 may also include a first rotating shaft 241 and a second rotating shaft 242 .
  • the first rotating shaft 241 is arranged at any symmetry axis of the first space 231, and only one or two corresponding ones can be arranged along the symmetry axis; the second rotating shaft 242 is arranged at any symmetry axis of the second space 232, and the same is also true. It is possible to set only one or two along the symmetry axis.
  • the first rotating axis 241 and the second rotating axis 242 are arranged perpendicularly to each other, and are configured to receive control from the main control system 300 (specifically, the data processing unit 31) to rotate and adjust the attitude of the sensing device 100 to be corrected.
  • the first rotating shaft 241 and the second rotating shaft 242 can also be configured to accommodate manual adjustment. In this way, additional mechanical control requirements and related structural requirements such as transmission mechanisms can be reduced, and the configuration of the device can be simplified.
  • the first fixed part 211 For the first fixed part 211, during the rotation of the first rotating axis 241, it is arranged symmetrically with respect to the first rotating axis 241. The position will be synchronously and relatively adjusted on the plane perpendicular to the first rotation axis 241, thereby equivalently expanding the first space 231 into at least a part of the accommodation space 210; similarly, the second fixed part 212 can be in the second When the rotating shaft 242 is driven to rotate, the second space 232 is equivalently expanded into at least a part of the accommodating space 210 . In this way, the posture of the sensing device 100 to be corrected can be fully adjusted.
  • different sensing devices 100 to be corrected located in the adjustment assembly 21 at different positions can be configured to have different sensing devices 100 as shown in FIG. 3 Rotation angle, of course, other fixed parts can also be added to adjust the tilt component.
  • the adjustment assembly 21 may also include a support part 213. At least one of the first fixing part 211 and the second fixing part 212 is movably connected to the supporting part 213 .
  • the support part 213 may be configured in a " ⁇ " shape, and clamp the first fixing part 211 and the second fixing part 212 therein.
  • the connection lines and other structures used by the main control system 300 to establish connections with the first rotating shaft 241 and the second rotating shaft 242 respectively, and/or the connecting lines and other structures used to establish the connection between the main control system 300 and the sensing device 100 to be corrected, can be accommodated in the support part. 213 in.
  • the above-mentioned sensing device 100 to be calibrated is not limited to a sensing device or related device put into actual use.
  • a device manufactured to simulate an actual sensing device may also be defined as the sensing device 100 to be calibrated.
  • the sensing device 100 to be corrected may be configured to include at least a magnetic component 11 (which may be a magnet), a battery 121 and a sensor 13 .
  • the above-mentioned components may preferably have the same relative positional relationship, quantity, size and other configurations as those of the actual sensing device.
  • a control part 122 for controlling at least one of the above components may also be included.
  • control unit 122 may also be configured as a backup battery or other devices at the position shown in FIG. 5 .
  • the sensing device or the sensing device to be corrected throughout the present invention may refer to the entire sensing device 100 to be corrected defined in any of the above definitions, or may be a sensor in the sensing device 100 to be corrected. Part 13 (on the premise that the sensor 13 is configured as a device such as a magnetic sensor for detecting external magnetic field information).
  • one embodiment of the present invention provides a sensing device calibration method, which can be installed in the sensing device calibration system provided in any of the above embodiments.
  • any of the above-defined sensing devices 100 to be corrected can be used as the sensing devices described below to adapt to the correction method provided below to calibrate the sensing device 100 to be corrected.
  • the sensing device calibration method specifically includes:
  • Step 42 Send the steady-state excitation signal and the transient excitation signal to the sensing device respectively, and receive the steady-state sensing signal and the transient sensing signal accordingly;
  • Step 44 When the steady-state sensing signal meets the preset conditions, analyze and obtain the corresponding steady-state field strength value
  • Step 46 Analyze the transient sensing signal to obtain the transient field strength value, and correct the dynamic sensing signal of the sensing device based on the steady-state field strength value and the transient field strength value.
  • the detection process of the sensing device represented by the waveform schematic diagram of the change of field strength value over time provided in FIG. 7 is taken as an example to describe the embodiment.
  • the above steps can also be applied to the calibration process of any other sensing equipment.
  • the sensing device of a capsule endoscope (or a magnetic sensor installed inside it) receives an external excitation signal, it will first form a sensing signal and calculate the field strength value accordingly (it can be calculated by the sensing device itself, and after correction state can also be calculated by other devices), thereby using the field strength value to cooperate with other sensor information (for example, acceleration sensor), and substitute it into the magnetic field theoretical model to obtain the position information.
  • the field strength value can be a steady-state field strength that excludes the inductance of the signal source (signal generating unit 33 or other electromagnetic coils) and the output delay of the sensing device, and has no phase offset or amplitude attenuation.
  • Value B 0 any value on the curve B 0 (t)).
  • the field strength value finally sampled is a transient field strength value B c (any value on the curve B c (t)). Therefore, compared with the steady-state field strength curve B 0 (t) composed of the steady-state field strength value B 0 , the transient field strength curve B c (t) composed of the transient field strength value B c has an attenuation amount ⁇ B, and Differences in other waveforms.
  • the sampling point t s as an example, it has a sampling transient field strength value B c (t s ), so it has a sampling proportional coefficient r(t s ) relative to the amplitude of the steady-state field strength curve B 0 (t).
  • this implementation method controls to send out the steady-state excitation signal and the transient excitation signal respectively, receives and calculates the steady-state field strength value and the transient field strength value, and further solves the proportional coefficient relationship between the two to comprehensively evaluate Signal waveform, signal frequency, coil parameters (inductance, resistance, etc.), sensor performance, sampling phase and other indicators, and use this relationship to correct the sensing equipment.
  • the steady-state sensing signal and the transient sensing signal are defined as signals in two different states obtained when the sensing device is in a calibration process.
  • the dynamic sensing signal is correspondingly defined as an actual signal obtained by the sensing device during use.
  • the steady-state sensing signal may be configured as: a sensing signal output by the sensing device in a stable working state during the calibration process.
  • the transient sensing signal may be configured as: a sensing signal output by the sensing device in any instantaneous working state during the calibration process.
  • the dynamic sensing signal may be configured as: a sensing signal corresponding to the transient sensing signal and output by the sensing device in any instantaneous working state during use.
  • the multiple signal generating devices may be triggered one by one in sequence and send one of the steady-state excitation signal and the transient excitation signal.
  • Steady-state excitation signals and transient excitation signals can be distinguished on indicators such as time or frequency, or can be distinguished by observing the output of the sensing device.
  • the steady-state excitation signal is configured to be output at a low frequency for a long time, preferably at least one frequency value in the range of 0.1 Hz to 1 Hz; the transient excitation signal is configured to be output at a high frequency for a short time, preferably at a frequency of 30 Hz to 1 Hz. At least one frequency value in the 100Hz segment, which can be 50Hz.
  • the dynamic excitation signal corresponding to the dynamic sensing signal can be configured to be consistent with the above-mentioned transient excitation signal.
  • the preset condition may be that the waveform of the steady-state sensing signal is stable and/or the amplitude is within a preset range, or that the waveform of the steady-state sensing signal is highly similar to the waveform of the steady-state excitation signal.
  • the method of calibrating the sensing equipment can be to directly obtain The proportional relationship is obtained by the quotient of the current steady-state field strength value and the current transient field strength value, and this proportional relationship is applied to the dynamic sensing signal in any scenario for blur correction; it can also be calculated using the above method in different scenarios. Obtain different proportional relationships to form an index table, and make corrections by querying the index table; you can also calculate different proportional relationships in different scenarios and/or at different times using the above method to fit and form a proportional curve, and learn the proportional curve. Correction.
  • step 42 may preferably be: controlling the signal generating device to send steady-state excitation signals and transient excitation signals to the sensing devices one by one, and correspondingly receiving the steady-state sensing signal of each signal generating device. and transient sensing signals.
  • step 44 may preferably be: when the steady-state sensing signal meets the preset conditions, analyze and obtain multiple steady-state field strength values corresponding to each signal generating device.
  • Step 46 may preferably be: analyzing the transient sensing signal to obtain multiple transient field strength values corresponding to each signal generating device, and based on the steady-state field strength value and transient field strength value of each signal generating device, simultaneously The dynamic sensing signals of the sensing equipment stimulated by all signal generating devices are corrected.
  • Step 42 Send the steady-state excitation signal and the transient excitation signal to the sensing device respectively, and receive the steady-state sensing signal and the transient sensing signal accordingly;
  • Step 44 When the steady-state sensing signal meets the conditions, analyze and obtain the corresponding steady-state field strength value
  • Step 46' analyze the transient sensing signal to obtain the transient field strength value, calculate the correction factor based on the steady-state field strength value and the transient field strength value, and correct the dynamic sensing signal based on the correction factor.
  • the correction factor can be specifically defined as the above proportional coefficient (the quotient of the transient field strength value and the steady-state field strength value), that is, the correction factor r(t) can at least satisfy:
  • multiple correction factors will be calculated correspondingly, and an arithmetic average or weighted average of the multiple correction factors can be obtained to generate a correction factor that is ultimately used to correct the dynamic sensing signal.
  • multiple correction factors will also be calculated correspondingly, and an arithmetic average or a weighted average may also be obtained.
  • the same method of obtaining the correction factor can also be used, which will not be described again here.
  • FIG. 9 it is a first embodiment of a sensing device calibration method provided in an embodiment of the present invention, which specifically includes:
  • Step 42 Send the steady-state excitation signal and the transient excitation signal to the sensing device respectively, and receive the steady-state sensing signal and the transient sensing signal accordingly;
  • Step 44 When the steady-state sensing signal meets the conditions, analyze and obtain the corresponding steady-state field strength value
  • Step 461 Receive the background sensing signal output by the sensing device, and analyze to obtain the corresponding background field strength value
  • Step 462 Analyze the transient sensing signal to obtain the transient field strength value, calculate the correction factor based on the steady-state field strength value, the transient field strength value and the background field strength value, and perform dynamic signal processing on the sensing device based on the correction factor. Correction.
  • the correction factor is: the quotient of the difference between the transient field strength value and the background field strength value and the difference between the steady-state field strength value and the background field strength value. That is, in this implementation, the correction factor r(t) is configured to at least satisfy:
  • B g is the background field strength value, which can be obtained by collecting and analyzing the main control system 300 after turning off all signal generating devices.
  • the background sensing signals measured by multiple sensing devices can also be analyzed separately to obtain multiple background field strength values, and then the multiple background field strength values can be calculated. Arithmetic average or weighted average to obtain the final background field strength value.
  • the correction factor can also be calculated after giving different weights to the transient field strength value, the steady-state field strength value and the background field strength value.
  • FIG. 10 it is a second embodiment of a sensing device calibration method provided in an embodiment of the present invention, which specifically includes:
  • Step 421 Continuously send a steady-state excitation signal, and correspondingly receive the first sensing signal at the first time and the second sensing signal at the second time as the steady-state sensing signal;
  • step 42 after or before step 421, it may also include: sending a transient excitation signal to the sensing device at a third time, and correspondingly receiving a transient sensing signal.
  • Step 441 Analyze the first sensing signal and the second sensing signal to obtain the first field strength value and the second field strength value. If the difference between the first field strength value and the second field strength value is less than the preset fluctuation allowable value , then the steady-state field strength value is calculated based on the first field strength value and the second field strength value;
  • Step 46 Analyze the transient sensing signal to obtain the transient field strength value, and correct the dynamic sensing signal of the sensing device based on the steady-state field strength value and the transient field strength value.
  • the preset fluctuation allowable value is used to determine whether the steady-state sensing signals corresponding to the first field strength value and the second field strength value are sufficient to indicate that the sensing device is in a steady state.
  • the steady state judgment can not only rely on the preset fluctuation allowable value as the judgment condition, but also can further set a preset field strength value to judge the first field strength value and the second field strength value and the field strength.
  • the difference in value is compared with the preset fluctuation allowable value; if it is less than the value, the steady-state field strength value is calculated based on the average of the first field strength value and the second field strength value to prevent Coincidental events affect the accuracy of data calculations.
  • Step 40 Send a test excitation signal to the sensing device, and correspondingly receive at least a first axial sensing signal, a second axial sensing signal, and a third axial sensing signal;
  • Step 41 Selectively output the first rotation axis adjustment signal and the second rotation axis adjustment signal according to the field strength values carried by the first axial sensing signal, the second axial sensing signal and the third axial sensing signal, and adjust until The waveform amplitude carried by each axial sensing signal meets the preset amplitude conditions;
  • Step 42 Send the steady-state excitation signal and the transient excitation signal to the sensing device respectively, and receive the steady-state sensing signal and the transient sensing signal accordingly;
  • Step 44 When the steady-state sensing signal meets the preset conditions, analyze and obtain the corresponding steady-state field strength value
  • Step 46 Analyze the transient sensing signal to obtain the transient field strength value, and correct the dynamic sensing signal of the sensing device based on the steady-state field strength value and the transient field strength value.
  • the first axis, the second axis and the third axis are the sensing directions of the sensing device, and are configured to be perpendicular to each other; the first rotating axis and the second rotating axis are used to adjust the attitude of the sensing device, and are configured as perpendicular to each other.
  • the first axial direction, the second axial direction and the third axial direction may be labeled in Figure 3
  • the first rotating axis and the second rotating axis may be two components numbered 241 and 242 in FIG. 4 .
  • the step of "adjusting the posture of the sensing device to optimize the received sensing signal” may also be specifically included.
  • the test excitation signal is only used to transmit and determine the amplitude of the received signal. Therefore, there is no limit on frequency or mode, and it can be one of the steady-state excitation signals or transient excitation signals mentioned above.
  • the sensing equipment will generate sensing signals along different axes corresponding to the same test excitation signal. Therefore, the waveforms of the sensing signals along different axes are adjusted so that they have sufficient intensity, so that the subsequent correction process can be achieved. The data is more accurate.
  • the signal strength adjustment process may be: detecting and plotting the data carried by the first axial sensing signal, the second axial sensing signal and the third axial sensing signal in the host computer 32 and other devices for the operator's reference. and adjust the posture of the sensing device.
  • the above adjustment process may further include: controlling the attitude of the sensing device according to the magnitude of the sensing signals along different axes to improve the signal strength. For example, as shown in FIG. 3 and FIG. 4 , when it is detected that the first axial sensing signal strength (or waveform amplitude, the same below) is small, the second rotating shaft 242 can be adjusted to adjust the sensing signal.
  • the equivalent component of the device along the first axis d1 (or adjust the relative position of the sensing device on the capsule endoscope in the first axis d1, the same below); when the second axial sensing signal intensity is detected to be small
  • the equivalent component of the sensing device along the second axis d2 can be adjusted by jointly adjusting the first rotating axis 241 and the second rotating axis 242; when it is detected that the third axial sensing signal intensity is small , the equivalent component of the sensing device along the third axis d3 can be adjusted by adjusting the first rotation axis 241.
  • the present invention is not limited to three items: the first axial sensing signal, the second axial sensing signal and the third axial sensing signal. It can be reduced to detecting only two of the axial sensing signals, or it can Increased detection of axial sensing signals in more directions. In the same way, the present invention is not limited to outputting the first rotation shaft adjustment signal and the second rotation shaft adjustment signal for adjustment. It can also include more rotation shaft adjustment signals, or include signals for adjusting the expansion and contraction length of the connecting member, or include adjusting the connecting member. Signal of relative angle relationship.
  • step 41 of the sensing device calibration method in yet another embodiment of the present invention.
  • the steps described therein are combined with other steps to form the sensing device calibration method in one embodiment of the present invention.
  • a specific example of includes:
  • Step 411 Analyze the first axial sensing signal, obtain the first field strength waveform with the first duration, and calculate the first field strength The first average field strength value of the waveform;
  • Step 412 Segment the first field strength waveform according to the preset time window, extract the first time period, and analyze the first highest field strength value and the first lowest field strength value of the first field strength waveform in the first time period. value;
  • Step 413 Calculate the difference between the first highest field strength value and the first average field strength value, and the difference between the first average field strength value and the first lowest field strength value to obtain the first field strength difference value and the second field strength value respectively. difference;
  • Step 414 If the first field strength difference value or the second field strength difference value is less than the preset amplitude value, output at least one of the first rotation axis signal and the second rotation axis signal, and control the sensing device to adjust from the first attitude to the second attitude. Two postures.
  • the length of the first duration is greater than the length of the preset window time, and the first axial sensing signal of the sensing device in the second posture is stronger than the first axial sensing signal of the sensing device in the first posture. Signal.
  • Figure 13 illustrates the first axial field strength value B d1 carried by the first axial sensing signal and the value B d1 carried by the second axial sensing signal when the excitation signal is in square wave mode and the system is in an ideal steady state.
  • the first axial sensing signal can correspondingly carry the first maximum field strength value Bmax (d1) and the first minimum field strength value Bmin (d1)
  • the second axial sensing signal can correspondingly carry the second maximum field value.
  • the third maximum field strength value Bmax (d2) and the second minimum field strength value Bmin (d2) , the third axial sensing signal can correspondingly carry the third maximum field strength value Bmax (d3) and the third minimum field strength value Bmin (d3) .
  • avg 1 , avg 2 and avg 3 are the corresponding first average field strength values, second average Field strength value and third average field strength value.
  • the difference between the first maximum field strength value Bmax (d1) and the first average field strength value avg 1 can be calculated, as well as the first average field strength value avg 1 and the first minimum field strength value
  • the difference between Bmin (d1) , and when Bmax (d1) -avg 1 ⁇ B TH and avg 1 -Bmin (d1) ⁇ B TH (where, ⁇ B TH is the preset amplitude value, which can be anywhere from 50 ⁇ T to 300 ⁇ T A fixed value or an adjustable value), it is determined that the waveform amplitude carried by the first axial sensing signal meets the preset amplitude condition, and there is no need to output the first rotation axis adjustment signal or the second rotation axis adjustment signal.
  • Other axial sensing signals can also be determined using the above process in this embodiment, and will not be described again here.
  • the maximum threshold TH max and the minimum threshold TH min can also be pre-calculated and compared with the measured maximum field strength value and minimum field strength value to achieve the judgment effect.
  • the above process can also be organized as follows: calculate the difference between the first highest field strength value and the first lowest field strength value to obtain the overall field strength difference; if the overall field strength If the strong difference value is less than the preset overall amplitude value (which may be twice the preset amplitude value ⁇ B TH ), then at least one of the first rotation axis signal and the second rotation axis signal is output to control the sensing The device is adjusted from the first posture to the second posture. At this time, when any of the above axial sensing signals meets the preset amplitude conditions, the field strength value carried can at least satisfy: Bmax (i) -Bmin (i) ⁇ 2 ⁇ B TH
  • the sequence of the steps can be adjusted according to the needs of those skilled in the art without affecting the technical effects achieved.
  • the multiple sensing device calibration methods provided by the present invention cannot be viewed in isolation.
  • the steps of each embodiment or embodiment can be combined and/or replaced, and the new embodiments thus generated should be included in the protection of the present invention. within the range.
  • the sensing equipment calibration method provided by the present invention obtains the sensing signals of the sensing equipment in two working states: steady state and transient, by outputting the steady-state excitation signal and the transient excitation signal respectively, and utilizes the two The numerical magnitude of the field strength measured in each state is used to calibrate the work of the sensing equipment.
  • the signal attenuation problem caused by the difference in detection time of the sensing equipment can be effectively overcome, the detection precision and accuracy of the sensing equipment can be improved, and the cost and resource waste of the calibration process of the existing sensing equipment can be reduced.

Abstract

一种感测设备校正方法和校正系统,感测设备校正方法包括:分别向感测设备发送稳态激励信号和瞬态激励信号,并对应接收稳态感测信号和瞬态感测信号(42);在稳态感测信号符合预设条件时,解析得到稳态场强值(44),解析瞬态感测信号得到瞬态场强值,并根据稳态场强值和瞬态场强值,对感测设备的动态感测信号进行校正(46)。所提供的感测设备校正方法能够有效克服信号衰减问题,提升检测精度和准确性,降低成本和资源浪费。

Description

感测设备校正方法及校正系统
本申请要求了申请日为2022年05月18日,申请号为202210551172.2,发明名称为“感测设备校正方法及校正系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及磁场感测技术领域,尤其涉及一种感测设备校正方法及校正系统。
背景技术
设置于定位系统中的感测设备,往往通过与定位系统中其他信号发射装置的配合,通过接收信号和/或自身发出信号,告知操作者感测设备所处位置以及其他信息。具体地,上述技术方案可以应用于医疗技术领域中,用以控制人体内的磁性医疗设备,并对应接收其反馈的定位信息,确认病灶在人体内的位置。
磁场信号的传输虽然没有特殊的介质要求,但是由于频率、信号形式、持续时间、延迟时间以及环境磁场影响等因素,往往会存在由于信号衰减或信号叠加所导致的“某个时间点测得的磁场信号与当前时间点实际磁场信号不一致”的情况,或是“同一位置检测出不同磁场信号”的问题。现有技术中,提供一种通过在不同周期范围选择性开闭不同信号发射装置,虽然对单周期内的检测磁场信号准确性有一定增强效果,但是会造成成本的增加、资源的浪费,并且不能解决信号衰减带来的准确性损失。
发明内容
本发明的目的之一在于提供一种感测设备校正方法,以解决现有技术中感测设备校正过程精度差、成本高,无法改善延迟和信号衰减带来的准确性损失的技术问题。
本发明的目的之一在于提供一种感测设备校正系统。
为实现上述发明目的之一,本发明一实施方式提供一种感测设备校正方法,包括:分别向所述感测设备发送稳态激励信号和瞬态激励信号,并对应接收稳态感测信号和瞬态感测信号;在所述稳态感测信号符合预设条件时,解析得到对应的稳态场强值;解析所述瞬态感测信号得到瞬态场强值,并根据所述稳态场强值和所述瞬态场强值,对所述感测设备的动态感测信号进行校正。
作为本发明一实施方式的进一步改进,所述稳态感测信号为校正过程中所述感测设备在稳定工作状态下输出的感测信号;所述瞬态感测信号为校正过程中所述感测设备在任一瞬时工作状态下输出的感测信号;所述动态感测信号为所述感测设备在使用过程中输出的感测信号;所述方法具体包括:根据所述稳态场强值和所述瞬态场强值计算校正因子,并根据所述校正因子对所述动态感测信号进行校正。
作为本发明一实施方式的进一步改进,所述方法具体包括:接收所述感测设备输出的背景感测信号,解析得到对应的背景场强值;根据所述稳态场强值、所述瞬态场强值以及所述背景场强值, 计算所述校正因子,并根据所述校正因子对所述感测设备的动态信号进行校正;其中,所述校正因子为:所述瞬态场强值与所述背景场强值之差与所述稳态场强值与所述背景场强值之差的商。
作为本发明一实施方式的进一步改进,所述方法具体包括:连续发送稳态激励信号,并对应接收第一时间下的第一感测信号和第二时间下的第二感测信号作为所述稳态感测信号;解析所述第一感测信号和所述第二感测信号,得到第一场强值和第二场强值,若所述第一场强值和所述第二场强值之差小于预设的波动允许值,则根据所述第一场强值和所述第二场强值计算得到稳态场强值。
作为本发明一实施方式的进一步改进,所述方法还包括:向所述感测设备发送测试激励信号,并对应接收至少第一轴向感测信号、第二轴向感测信号和第三轴向感测信号;根据所述第一轴向感测信号、所述第二轴向感测信号和所述第三轴向感测信号携带的场强值,选择性输出第一转轴调整信号和第二转轴调整信号,调整直至每个轴向感测信号携带的波形幅度均符合预设幅度条件;其中,第一轴向、第二轴向和第三轴向为所述感测设备的感测方向且配置为相互垂直;第一转轴和第二转轴用于调整所述感测设备的姿态且配置为相互垂直。
作为本发明一实施方式的进一步改进,所述方法具体包括:解析所述第一轴向感测信号,得到具有第一持续时间的第一场强波形,并计算所述第一场强波形的第一平均场强值;按照预设时间窗口对所述第一场强波形执行分割,提取得到第一时间段,并分析所述第一场强波形在所述第一时间段内的第一最高场强值和第一最低场强值;计算所述第一最高场强值和所述第一平均场强值之差,以及所述第一平均场强值与所述第一最低场强值之差,分别得到第一场强差值和第二场强差值;若所述第一场强差值或所述第二场强差值小于预设幅度值,则输出所述第一转轴信号和所述第二转轴信号至少其中之一,控制所述感测设备由第一姿态调整为第二姿态;其中,所述第一持续时间长度大于所述预设时间窗口长度;所述感测设备在第二姿态下的第一轴向感测信号,强于所述感测设备在第一姿态下的第一轴向感测信号。
为实现上述发明目的之一,本发明一实施方式提供一种感测设备校正系统,包括待校正感测设备和主控系统,所述主控系统配置为执行上述任一种技术方案所述的感测设备校正方法。
作为本发明一实施方式的进一步改进,所述感测设备校正系统还包括姿态调整装置,所述姿态调整装置包括固定机构以及设置于所述固定机构的调整组件;所述主控系统包括数据处理单元、信号发生单元和上位机,所述数据处理单元用于执行数据采集、处理和传输,所述信号发生单元用于输出激励信号,所述上位机用于输出控制信号、绘制并显示波形;所述待校正感测设备设置于所述调整组件中,所述数据处理单元连接所述调整组件和所述待校正感测设备至少其中之一,所述上位机分别连接所述信号发生单元和所述数据处理单元。
作为本发明一实施方式的进一步改进,所述固定机构包括一端部相互连接形成中心节点,且另一端部分别沿第一轴向、第二轴向和第三轴向延伸的第一连接件、第二连接件和第三连接件;所述 调整组件和/或所述待校正感测设备至少其中之一设置于所述中心节点处,且至少其中另一设置于所述第一连接件、所述第二连接件或所述第三连接件远离所述中心节点的另一端部处。
作为本发明一实施方式的进一步改进,所述调整组件包括支持部、第一固定部和第二固定部;所述第一固定部和所述第二固定部至少其中之一可活动地连接于所述支持部,所述第一固定部和所述第二固定部共同围设形成容置空间,所述待校正感测设备设置于所述容置空间内。
作为本发明一实施方式的进一步改进,所述调整组件还包括第一转轴和第二转轴;所述第一固定部和所述第二固定部配置为环状,并分别围设形成第一空间和第二空间;所述第一转轴设置于所述第一空间的一个对称轴处,所述第二转轴设置于所述第二空间的一个对称轴处,所述第一转轴和所述第二转轴相互垂直设置,且配置为接收所述主控系统的控制以旋转并调节所述待校正感测设备的姿态。
与现有技术相比,本发明提供的感测设备校正方法,通过分别输出稳态激励信号和瞬态激励信号,以得到感测设备在稳态和瞬态两种工作状态下的感测信号,并利用两种状态测得的场强数值大小对感测设备的工作进行校准。如此,能够有效克服感测设备检测时间长短区别所导致的信号衰减问题,提升感测设备的检测精度和准确性,降低现有感测设备校正过程的成本和资源浪费。
附图说明
图1是本发明一实施方式中感测设备校正系统的结构原理图;
图2是本发明一实施方式中感测设备校正系统的结构示意图;
图3是本发明一实施方式中感测设备校正系统的部分结构示意图;
图4是本发明一实施方式中感测设备校正系统的调整组件和待校正感测设备的配合结构示意图;
图5是本发明一实施方式中感测设备校正系统的待校正感测设备的结构示意图;
图6是本发明一实施方式中感测设备校正方法的步骤示意图;
图7是本发明一实施方式中感测设备校正方法的场强值随时间变化的波形原理图;
图8是本发明另一实施方式中感测设备校正方法的步骤示意图;
图9是本发明一实施方式中感测设备校正方法的第一实施例的步骤示意图;
图10是本发明一实施方式中感测设备校正方法的第二实施例的步骤示意图;
图11是本发明再一实施方式中感测设备校正方法的步骤示意图;
图12是本发明再一实施方式中感测设备校正方法的步骤41的一具体示例的步骤示意图;
图13是本发明再一实施方式中感测设备校正方法的一具体示例的场强值变化的波形原理图。
具体实施方式
以下将结合附图所示的具体实施方式对本发明进行详细描述。但这些实施方式并不限制本发明, 本领域的普通技术人员根据这些实施方式所做出的结构、方法、或功能上的变换均包含在本发明的保护范围内。
需要说明的是,术语“包括”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
感测设备通常配置为:接收外界信号源发出的信号、解析信号中携带的数据信息并对应运算得到用户所需信息。一个典型例子在于,当感测设备应用于胶囊型设备特别是胶囊内窥镜中,或定义胶囊内窥镜为一感测设备时,感测设备可以接收外界输入的电磁信号并求解当前磁场值,并代入预设算法模型中,计算得出感测设备位于非磁性腔体(例如,人体)中的位置,以达到对感测设备定位的效果。但外界信号源发出的预设模式的周期信号,在传输过程中基于诸多原因,反映到感测设备时极有可能出现相位偏移和幅值衰减等问题,导致感测设备检测和运算得到的数据存在较大误差。
为了改善直至解决上述问题,本发明提供一种感测设备校正系统,可以应用于任何存在电磁信号交互的大场景下,也可以应用于上述任何一种具体的场景中。例如,用于校正与外部磁信号发生线圈交互的胶囊内窥镜的感测情况,以使胶囊内窥镜输出更为准确的定位信号。
如图1所示,本发明一实施方式提供的感测设备校正系统,包括待校正感测设备100和主控系统300。所述主控系统300配置为搭载一种感测设备校正方法,从而解决待校正感测设备100检测数据误差大等技术问题,并达到对应技术效果。
继续如图1和图2所示,感测设备校正系统还可以进一步包括用于调整待校正感测设备100姿态的姿态调整装置200。优选地,待校正感测设备100配置为固定于姿态调整装置200中。主控系统300也可以进一步包括数据处理单元31、上位机32以及信号发生单元33。
其中,数据处理单元31用于执行数据采集、处理和传输。所述数据可以是来自于待校正感测设备100的检测数据,也可以是输出至姿态调整装置200的控制信号。基于此,数据处理单元31可以配置为有线或无线连接姿态调整装置200,并通过姿态调整装置200与待校正感测设备100的电性连接关系,接收来自待校正感测设备100的检测数据;数据处理单元31也可以配置为分别有线或无线连接待校正感测设备100和姿态调整装置200。当然,本发明并不局限于上文提供的两种连接方式。在一种实施方式中,待校正感测设备100与姿态调整装置200之间、姿态调整装置200与数据处理单元31之间以及待校正感测设备100与数据处理单元31之间,可以同时建立连接关系。在另一种实施方式中,待校正感测设备100可以配置为自主调节自身姿态情况,而无需姿态调整装置200的辅助,此时可以取消姿态调整装置200,并仅建立待校正感测设备100与数据处理单元31之间的连接关系。
上位机32用于输出控制信号、绘制并显示波形。所述控制信号和所述波形的生成,依托于数据处理单元31传输的待校正感测设备100的检测数据;上位机32因此可以对应配置为:根据所述检测数据拟合变化波形曲线,并以相同或不同形式,将不同位置或同一位置不同时间的待校正感测设备100的检测数据显示于屏幕中。在感测设备校正系统包括设置于不同位置上的多个待校正感测设备100时,优选地,不同待校正感测设备100可以相应绘制出不同颜色的曲线,本领域技术人员可以由此衍生出多种实施方式。
信号发生单元33用于输出激励信号,以使待校正感测设备100根据激励信号对应生成检测信号。所述激励信号可以是通过上位机32或数据处理单元31其中之一控制输出的。所述激励信号可以是任何预设模式下的周期性信号,例如,正弦信号或方波信号;所述激励信号可以是30Hz至100Hz优选为50Hz的较高频率信号,也可以是0.1Hz至1Hz的较低频率信号。信号发生单元33可以仅包括一个信号发生装置,也可以包括多个信号发生装置,以输出相同或不同的电磁信号,形成对待校正感测设备100的激励。
至此,在一种实施方式中,上位机32可以以数据处理单元31作为中转驱动,接收来自待校正感测设备100的检测数据,并向姿态调整装置200输出控制信号(或向待校正感测设备100输出控制信号),以实现根据检测数据动态调整待校正感测设备100的姿态的效果,使检测数据的素质符合预设要求;而后,控制信号发生单元33输出不同电磁信号,接收对应不同电磁信号的不同检测信号,从而分析不同情况下的检测数据,以对感测设备进行校正。当然,在另一种实施方式中,可以取消上位机32的配置,由数据处理单元31独立完成上述检测数据的接收、控制信号的输出、信号发生单元33的控制以及校正(特别是用于校正的参数的计算)过程。
如图2和图3所示,姿态调整装置200进一步可以包括固定机构22以及设置于固定机构22至少一处的调整组件21。从而,待校正感测设备100设置于调整组件21中,数据处理单元31连接调整组件21和待校正感测设备100至少其中之一,上位机32分别连接信号发生单元33和数据处理单元31。如此,上位机32通过数据处理单元31分别建立与调整组件21之间的控制路径,以及与待校正感测设备100之间的数据传输路径(或者,在不设置上位机32的实施方式中,由数据处理单元31直接控制和/或采集),固定机构22被配置为足以覆盖多感测范围和多个设备的结构或样态。
在一种实施方式中,固定机构22可以进一步包括:一端部相互连接形成中心节点20,且另一端部分别沿第一轴向d1、第二轴向d2和第三轴向d3延伸的第一连接件221、第二连接件222和第三连接件223。其中,第一连接件221、第二连接件222和第三连接件223可以配置为杆状,以形成形似空间直角坐标系的架构,以从多方位布置多个待校正感测设备100。此外,待校正感测设备100和/或调整组件21可以在第一连接件221两端部、第二连接件222两端部和第三连接件223两端部任意一处设置有一个或多个,也可以在第一连接件221、第二连接件222和第三连接件223各自 的长度延伸方向上设置有一个或多个,具体可以根据需要调整,此处不做穷举。
优选地,调整组件21和/或待校正感测设备100至少其中之一设置于中心节点20处,且至少其中另一设置于第一连接件221、第二连接件222和第三连接件223远离中心节点20的另一端部处。则,至少两个调整组件21设置于校正空间30内两处已知相对位置关系的不同位置处,以采集得到更为全面的检测数据。当然,在一种具体的实施方式中,调整组件21可以具体配置为包括第一调整组件21A、第二调整组件21B、第三调整组件21C和第四调整组件21D;第一调整组件21A设置于所述中心节点20处,第二调整组件21B设置于第一连接件221远离中心节点20一端,第三调整组件21C设置于第二连接件222远离中心节点20一端,第四调整组件21D设置于第三连接件223远离中心节点20一端,从而覆盖校正空间30内更广的范围。当然,上述结构也可以在校正空间30内设置有多组,此处不再赘述。
如图4所示,在一种实施方式中,调整组件21可以具体配置为包括第一固定部211以及第二固定部212,且第一固定部211和第二固定部212共同围设形成一容置空间210。上述待校正感测设备100设置于该容置空间210内,可以是:待校正感测设备100与第一固定部211直接固定,并通过第一固定部211与第二固定部212建立间接连接关系;也可以是:待校正感测设备100与第二固定部212直接固定,并通过第二固定部212与第一固定部211建立间接连接关系。从而,使其能够同时接受两个固定部的姿态调节。
具体地,第一固定部211和第二固定部212上至少一个部位可以配置为连接主控系统300,特别是连接数据处理单元31,以接收来自数据处理单元31自身或上位机32的控制信号,调整固定部自身姿态以影响待校正感测设备100。在一种实施方式中,第一固定部211和第二固定部212配置为环状,优选为圆环状,并分别围设形成第一空间231和第二空间232。进一步地,第一空间231和第二空间232在动作过程中组合并等效形成一立体空间。该立体空间可以是前文定义的容置空间210,也可以是容置空间210的一部分或包含容置空间210,以供待校准感测设备100在其内部沿各个方向调整自身姿态,包括延伸方向、空间位置等。
调整组件21在一种实施方式中,还可以包括第一转轴241和第二转轴242。第一转轴241设置于第一空间231的任意一个对称轴处,可以仅设置一个或沿该对称轴对应设置两个;第二转轴242设置于第二空间232的任意一个对称轴处,同样也可以仅设置一个或沿该对称轴对应设置两个。优选地,第一转轴241和第二转轴242相互垂直设置,且配置为接收主控系统300(具体可以是数据处理单元31)的控制,旋转并调节待校正感测设备100的姿态。当然,本发明中上述第一转轴241和第二转轴242也可以配置为兼顾手动调节,如此,可以减少附加的机械控制需求,以及传动机构等相关结构需求,精简装置的配置。
对于第一固定部211而言,在以第一转轴241旋转过程中,其上相对于第一转轴241对称设置 的位置会在垂直于第一转轴241的平面上同步且相对地调整位置,从而将第一空间231等效扩张为容置空间210的至少一部分;第二固定部212同理,可以在第二转轴242旋转驱动下,将第二空间232等效扩张为容置空间210的至少一部分。如此,可以充分调整待校正感测设备100的姿态。由于在调整过程中,待校正感测设备100的倾斜分量不会受到影响,因此,位于不同位置的调整组件21中的不同待校正感测设备100,可以配置为如图3所示具有不同的旋转角度,当然也可以增设其他固定部以实现对倾斜分量的调整。
当然,出于美观、结构强度和固定的考虑,调整组件21还可以包括支持部213。第一固定部211和第二固定部212至少其中之一可活动地连接于支持部213处。支持部213可以配置为“匚”字形,并将第一固定部211和第二固定部212夹持于其中。主控系统300分别与第一转轴241和第二转轴242建立连接的连接线等结构,和/或主控系统300与待校正感测设备100建立连接的连接线等结构,可以收容于支持部213中。
上述待校正感测设备100并不限定为投入实际使用的感测设备或相关装置,当然也可以定义一种模拟实际感测装置而制作形成的设备为待校正感测设备100。在此种实施方式中,如图5所示,待校正感测设备100可以配置为至少包括磁性件11(可以是磁铁),电池121和传感器13。上述元器件可以优选地,具有与实际感测设备相同的相对位置关系、数量和尺寸等配置。在一种实施方式中,还可以包括用以控制上述元器件至少其中之一的控制部122。当然在其他实施方式中,控制部122在图5中所示位置还可以配置为备用电池等其他器件。值得注意地,本发明全文所述感测设备或所述待校正感测设备,可以是指上述任一种定义的待校正感测设备100整体,也可以是待校正感测设备100中的传感器13部分(在传感器13配置为磁传感器等用于检测外部磁场信息的器件的前提下)。
如图6所示,本发明一实施方式中提供一种感测设备校正方法,可以搭载于上述任一种实施方式提供的感测设备校正系统中。同时,上述任何一种定义的待校正感测设备100均可以作为下文所述的感测设备,以适配下文提供的校正方法,对待校正感测设备100进行校正。所述感测设备校正方法具体包括:
步骤42,分别向感测设备发送稳态激励信号和瞬态激励信号,并对应接收稳态感测信号和瞬态感测信号;
步骤44,在稳态感测信号符合预设条件时,解析得到对应的稳态场强值;
步骤46,解析瞬态感测信号得到瞬态场强值,并根据稳态场强值和瞬态场强值,对感测设备的动态感测信号进行校正。
本实施方式中,以图7提供的场强值随时间变化的波形原理图所表征的感测设备检测过程为例,进行该实施方式的描述。当然,上述步骤还可以应用于其他任何感测设备校正过程中。
例如胶囊内窥镜(或其内部设置磁传感器)的感测设备接收到外界激励信号后,会首先形成一种感测信号并对应计算得到场强值(可以是感测设备自身计算,在校正状态下也可以是其他装置来计算),从而,利用该场强值配合其他传感器信息(例如,加速度传感器),代入磁场理论模型中反解得到位置信息。理想状态下,所述场强值可以是排除信号源(信号发生单元33或其他电磁线圈)自身电感和感测设备输出延迟的、不存在相位偏移和幅值衰减的一种稳态场强值B0(曲线B0(t)上任一值)。但实际工作中,由于存在上述问题,导致最终采样得到的所述场强值是一种瞬态场强值Bc(曲线Bc(t)上任一值)。从而,相较于稳态场强值B0构成的稳态场强曲线B0(t),瞬态场强值Bc构成的瞬态场强曲线Bc(t)存在衰减量ΔB,以及其他波形上的差异。以采样点ts为例,其具有采样瞬态场强值Bc(ts),因而相对于稳态场强曲线B0(t)的幅值具有一采样比例系数r(ts)。由于在不考虑环境磁场和背景干扰的情况下,采样瞬态场强值Bc(ts),和采样点ts对应的采样稳态场强值B0(ts)之间至少存在关系式:
Bc(ts)=r(ts)B0(ts);
因此,本实施方式通过控制分别发出稳态激励信号和瞬态激励信号,接收并计算稳态场强值和瞬态场强值,进一步求解两者之间的此种比例系数关系,以综合评价信号波形、信号频率、线圈参数(电感、电阻等)、传感器性能、采样相位等指标,并利用此种关系校正感测设备。
在一种实施方式中,所述稳态感测信号和所述瞬态感测信号被定义为,在感测设备处于校正过程中所获得的两种不同状态下的信号。所述动态感测信号则对应被定义为,感测设备处于使用过程中所获得的实际信号。具体地,所述稳态感测信号可以配置为:感测设备在校正过程中稳定工作状态下输出的感测信号。所述瞬态感测信号可以配置为:感测设备在校正过程中任一瞬时工作状态下输出的感测信号。所述动态感测信号则可以配置为:与所述瞬态感测信号相对应的、感测设备在使用过程中任一瞬时工作状态下输出的感测信号。
作为补充地,在信号发生单元33配置为包括多个信号发生装置的实施方式中,多个信号发生装置可以依次、逐一地被触发并发送稳态激励信号和瞬态激励信号其中之一。稳态激励信号与瞬态激励信号可以在时间或频率等指标上被区分,也可以通过观测感测设备的输出进行分辨。在一种实施方式中,稳态激励信号配置为低频率长时间输出,优选频率为0.1Hz至1Hz段中至少一个频率值;瞬态激励信号配置为高频率短时间输出,优选频率为30Hz至100Hz段中至少一个频率值,可以是50Hz。当然,与动态感测信号相对应的动态激励信号可以配置为,与上述瞬态激励信号一致。
所述预设条件可以是稳态感测信号的波形稳定和/或幅值处于预设范围内,也可以是稳态感测信号的波形与稳态激励信号的波形具备高度相似性。对感测设备进行校正的方式,可以是直接求取 当前稳态场强值和当前瞬态场强值的商得到比例关系,并将该比例关系应用到任何场景下的动态感测信号中进行模糊校正;也可以是在不同场景下利用上述方式计算得到不同比例关系以形成索引表,并通过查询该索引表进行校正;也可以是在不同场景和/或不同时间利用上述方式计算得到不同比例关系以拟合形成比例曲线,并学习该比例曲线进行校正。
当然,上述校正过程还可以应对不同信号发生装置的差异做出针对性调整。例如,在一种实施方式中,步骤42可以优选为:控制信号发生装置逐个向感测设备分别发送稳态激励信号和瞬态激励信号,并对应接收每个信号发生装置的稳态感测信号和瞬态感测信号。步骤44可以优选为:在稳态感测信号符合预设条件时,解析得到对应每个信号发生装置的多个稳态场强值。步骤46可以优选为:解析瞬态感测信号得到对应每个信号发生装置的多个瞬态场强值,并根据每个信号发生装置的稳态场强值和瞬态场强值,对同时受到全部信号发生装置激励作用的感测设备的动态感测信号进行校正。
如图8所示,为本发明另一实施方式中提供的感测设备校正方法,具体包括:
步骤42,分别向感测设备发送稳态激励信号和瞬态激励信号,并对应接收稳态感测信号和瞬态感测信号;
步骤44,在稳态感测信号符合条件时,解析得到对应的稳态场强值;
步骤46’,解析瞬态感测信号得到瞬态场强值,根据稳态场强值和瞬态场强值计算校正因子,并根据校正因子对动态感测信号进行校正。
基于前文描述,在本实施方式中,校正因子可以被具体定义为上文比例系数(瞬态场强值与稳态场强值的商),也即校正因子r(t)可以至少满足:
当然,在信号发生装置配置为逐个开启的实施方式中,会对应计算得到多个校正因子,可以对多个校正因子求取算术平均或加权平均以生成最终用于校正动态感测信号的校正因子。同时,在待校正感测设备100配置有多个的实施方式中,同样会对应计算得到多个校正因子,同样也可以求取算术平均或加权平均。上述两种实施方式组合形成的进一步的实施方式中,也可采用同样的校正因子求取方式,此处不再赘述。
如图9所示,为本发明一实施方式中提供的感测设备校正方法的第一实施例,具体包括:
步骤42,分别向感测设备发送稳态激励信号和瞬态激励信号,并对应接收稳态感测信号和瞬态感测信号;
步骤44,在稳态感测信号符合条件时,解析得到对应的稳态场强值;
步骤461,接收感测设备输出的背景感测信号,解析得到对应的背景场强值;
步骤462,解析瞬态感测信号得到瞬态场强值,根据稳态场强值、瞬态场强值和背景场强值,计算校正因子,并根据校正因子对感测设备的动态信号进行校正。
其中,所述校正因子为:所述瞬态场强值与所述背景场强值之差与所述稳态场强值与所述背景场强值之差的商。也即,在该实施方式中,校正因子r(t)配置为至少满足:
其中,Bg为背景场强值,可以是关闭所有信号发生装置后,通过主控系统300采集和分析得到的。当然,在求取背景场强值的过程中,同样可以对多个感测设备测得的背景感测信号分别进行解析,得到多个背景场强值,而后对多个背景场强值求取算术平均或加权平均以得到最终的背景场强值。此外,除了采用上述公式进行计算以外,还可以对瞬态场强值、稳态场强值和背景场强值赋予不同的权重后,再计算该校正因子。
如图10所示,为本发明一实施方式中提供的感测设备校正方法的第二实施例,具体包括:
步骤421,连续发送稳态激励信号,并对应接收第一时间下的第一感测信号和第二时间下的第二感测信号作为稳态感测信号;
当然,作为步骤42的一个具体实施例,步骤421之后或之前还可以包括:在第三时间向感测设备发送瞬态激励信号,并对应接收瞬态感测信号。
步骤441,解析第一感测信号和第二感测信号,得到第一场强值和第二场强值,若第一场强值和第二场强值之差小于预设的波动允许值,则根据第一场强值和第二场强值计算得到稳态场强值;
步骤46,解析瞬态感测信号得到瞬态场强值,并根据稳态场强值和瞬态场强值,对感测设备的动态感测信号进行校正。
预设的波动允许值,用于判断第一场强值和第二场强值所对应的稳态感测信号是否足以表征感测设备已经处于稳态。当然稳态的判断可以不仅仅依靠预设的波动允许值作为判断条件来实现,还可以进一步设定一个预设的场强值,判断第一场强值和第二场强值与该场强值的差异,并将该差异与预设的波动允许值进行比较;若小于,则根据第一场强值和第二场强值求取平均值的方式计算得到稳态场强值,以防止巧合事件影响数据计算的准确性。
如图11所示,为本发明再一实施方式中提供的感测设备校正方法,具体包括:
步骤40,向感测设备发送测试激励信号,并对应接收至少第一轴向感测信号、第二轴向感测信号和第三轴向感测信号;
步骤41,根据第一轴向感测信号、第二轴向感测信号和第三轴向感测信号携带的场强值,选择性输出第一转轴调整信号和第二转轴调整信号,调整直至每个轴向感测信号携带的波形幅度符合预设幅度条件;
步骤42,分别向感测设备发送稳态激励信号和瞬态激励信号,并对应接收稳态感测信号和瞬态感测信号;
步骤44,在稳态感测信号符合预设条件时,解析得到对应的稳态场强值;
步骤46,解析瞬态感测信号得到瞬态场强值,并根据稳态场强值和瞬态场强值,对感测设备的动态感测信号进行校正。
其中,第一轴向、第二轴向和第三轴向为感测设备的感测方向,且配置为相互垂直;第一转轴和第二转轴用于调整感测设备的姿态,且配置为相互垂直。在一种将上述感测设备校正方法实施于一种感测设备校正系统的实施方式中,所述第一轴向、所述第二轴向和所述第三轴向可以是图3中标号d1、d2和d3的三个方向,所述第一转轴和所述第二转轴可以是图4中标号241和242的两个组件。
在进行校正之前,还可以具体包括“调整感测设备的姿态以使接收到感测信号最优化”的步骤。基于此,所述测试激励信号仅作为发射并判断接收信号幅度的用途,因而并无频率或模式的限制,可以是上文提及的稳态激励信号或瞬态激励信号中的一种。感测设备对应同一测试激励信号会产生沿不同轴向的感测信号,因此,对所述沿不同轴向的感测信号进行波形调整,使其具有足够大的强度,可以使后续校正过程得到的数据更为准确。
信号强度的调整过程可以是:检测并将第一轴向感测信号、第二轴向感测信号和第三轴向感测信号携带的数据绘制于上位机32等装置中,供操作者参考并调整感测设备的姿态。当然,上述调整过程也可以进一步包括:根据沿不同轴向的感测信号的大小,控制感测设备的姿态以改善信号强度。举例而言,结合图3和图4所示,在检测到第一轴向感测信号强度(或波形幅度,下同)较小的情况下,可以通过调整第二转轴242,以调节感测设备沿第一轴向d1的等效分量(或调节胶囊内窥镜上感测设备在第一轴向d1上的相对位置,下同);在检测到第二轴向感测信号强度较小的情况下,可以通过共同调整第一转轴241和第二转轴242,以调节感测设备沿第二轴向d2的等效分量;在检测到第三轴向感测信号强度较小的情况下,可以通过调整第一转轴241,以调节感测设备沿第三轴向d3的等效分量。
当然,本发明并不局限于第一轴向感测信号、第二轴向感测信号和第三轴向感测信号三项,可以减少至仅检测其中两项轴向感测信号,也可以增加至检测更多方位的轴向感测信号。同理,本发明也不局限于输出第一转轴调整信号和第二转轴调整信号两项进行调整,还可以包括更多转轴调整信号,或包括调整连接件伸缩长度的信号,或包括调整连接件相对角度关系的信号。
如图12所示,为本发明再一实施方式中感测设备校正方法的步骤41的一个具体示例,其所记载的步骤与其他步骤组合,形成本发明在一实施方式的感测设备校正方法的一个具体示例,包括:
步骤411,解析第一轴向感测信号,得到具有第一持续时间的第一场强波形,并计算第一场强 波形的第一平均场强值;
步骤412,按照预设时间窗口对第一场强波形执行分割,提取得到第一时间段,并分析第一场强波形在第一时间段内的第一最高场强值和第一最低场强值;
步骤413,计算第一最高场强值和第一平均场强值之差,以及第一平均场强值与第一最低场强值之差,分别得到第一场强差值和第二场强差值;
步骤414,若第一场强差值或第二场强差值小于预设幅度值,则输出第一转轴信号和第二转轴信号至少其中之一,控制感测设备由第一姿态调整为第二姿态。
其中,第一持续时间的长度大于预设窗口时间的长度,感测设备在第二姿态下的第一轴向感测信号,强于感测设备在第一姿态下的第一轴向感测信号。
图13举例说明了在激励信号为方波模式且系统处于理想的稳态状态下,第一轴向感测信号携带的第一轴向场强值Bd1、第二轴向感测信号携带的第二轴向场强值Bd2,以及第三轴向感测信号携带的第三轴向场强值Bd3的波形情况。可见,第一轴向感测信号可以对应携带有第一最大场强值Bmax(d1)和第一最小场强值Bmin(d1),第二轴向感测信号可以对应携带有第二最大场强值Bmax(d2)和第二最小场强值Bmin(d2),第三轴向感测信号可以对应携带有第三最大场强值Bmax(d3)和第三最小场强值Bmin(d3)。基于此,上述任一最大场强值和最小场强值可以配置为至少满足:
Bmax(i)=max(B(i)(t-ΔT:t));
Bmin(i)=min(B(i)(t-ΔT:t));
其中,i=d1,d2,d3,ΔT为预设时间窗口的长度,可以是0.5s至1s之间任一固定或可调整的数值。
以图13中示出波形为不同轴向感测信号在第一持续时间内的场强波形为例,avg1、avg2和avg3则为相对应的第一平均场强值、第二平均场强值和第三平均场强值。基于此,在一种实施方式中,可以计算第一最大场强值Bmax(d1)和第一平均场强值avg1之差,以及第一平均场强值avg1和第一最小场强值Bmin(d1)之差,并在Bmax(d1)-avg1≥ΔBTH且avg1-Bmin(d1)≥ΔBTH时(其中,ΔBTH为预设幅度值,可以是50μT至300μT之间任一固定值或可调整的数值),判定第一轴向感测信号携带的波形幅度符合预设幅度条件,无需输出第一转轴调整信号或第二转轴调整信号。其他轴向感测信号,在本实施方式中可以同样利用上述过程判断,此处不再赘述。
当然,在另一种实施方式中,还可以预先计算最大阈值THmax和最小阈值THmin,并以此与测得的最大场强值和最小场强值比较,以达到判断效果。以第一轴向感测信号为例,其最大阈值THmax和最小阈值THmin可以配置为至少满足:
avg1+ΔBTH=THmax
avg1-ΔBTH=THmin
从而,当ΔBmax(d1)≥THmax且ΔBmin(d1)≤THmin时,判定第一轴向感测信号携带的波形幅度符合预设幅度条件,无需输出第一转轴调整信号或第二转轴调整信号。其他轴向感测信号,在本实施方式中可以同样利用上述过程判断,此处不再赘述。
当然在另一种实施方式中,还可以将上述过程整理为:计算所述第一最高场强值和所述第一最低场强值之差,得到总体场强差值;若所述总体场强差值小于预设总体幅度值(可以是所述预设幅度值ΔBTH的两倍),则输出所述第一转轴信号和所述第二转轴信号至少其中之一,控制所述感测设备由第一姿态调整为第二姿态。此时,上述任一轴向感测信号满足预设幅值条件时,所携带的场强值可以至少满足:
Bmax(i)-Bmin(i)≥2ΔBTH
此外,对于本发明提供的感测设备校正方法对应的多种实施方式和实施例,其步骤的先后顺序可以根据本领域技术人员需要、在不影响实现技术效果的前提下进行调整,同时需要注意地,不能孤立的看待本发明提供的多个感测设备校正方法,每个实施方式或实施例的步骤当然可以进行组合和/或替换,如此产生的新的实施方式应包含在本发明的保护范围内。
综上,本发明提供的感测设备校正方法,通过分别输出稳态激励信号和瞬态激励信号,以得到感测设备在稳态和瞬态两种工作状态下的感测信号,并利用两种状态测得的场强数值大小对感测设备的工作进行校准。如此,能够有效克服感测设备检测时间长短区别导致的信号衰减问题,提升感测设备的检测精度和准确性,降低现有感测设备校正过程的成本和资源浪费。
应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种感测设备校正方法,其特征在于,包括:
    分别向所述感测设备发送稳态激励信号和瞬态激励信号,并对应接收稳态感测信号和瞬态感测信号;
    在所述稳态感测信号符合预设条件时,解析得到对应的稳态场强值;
    解析所述瞬态感测信号得到瞬态场强值,并根据所述稳态场强值和所述瞬态场强值,对所述感测设备的动态感测信号进行校正。
  2. 根据权利要求1所述的感测设备校正方法,其特征在于,所述稳态感测信号为校正过程中所述感测设备在稳定工作状态下输出的感测信号;所述瞬态感测信号为校正过程中所述感测设备在任一瞬时工作状态下输出的感测信号;所述动态感测信号为所述感测设备在使用过程中输出的感测信号;所述方法具体包括:
    根据所述稳态场强值和所述瞬态场强值计算校正因子,并根据所述校正因子对所述动态感测信号进行校正。
  3. 根据权利要求2所述的感测设备校正方法,其特征在于,所述方法具体包括:
    接收所述感测设备输出的背景感测信号,解析得到对应的背景场强值;
    根据所述稳态场强值、所述瞬态场强值以及所述背景场强值,计算所述校正因子,并根据所述校正因子对所述感测设备的动态信号进行校正;
    其中,所述校正因子为:所述瞬态场强值与所述背景场强值之差与所述稳态场强值与所述背景场强值之差的商。
  4. 根据权利要求1所述的感测设备校正方法,其特征在于,所述方法具体包括:
    连续发送稳态激励信号,并对应接收第一时间下的第一感测信号和第二时间下的第二感测信号作为所述稳态感测信号;
    解析所述第一感测信号和所述第二感测信号,得到第一场强值和第二场强值,若所述第一场强值和所述第二场强值之差小于预设的波动允许值,则根据所述第一场强值和所述第二场强值计算得到稳态场强值。
  5. 根据权利要求1所述的感测设备校正方法,其特征在于,所述方法还包括:
    向所述感测设备发送测试激励信号,并对应接收至少第一轴向感测信号、第二轴向感测信号和第三轴向感测信号;
    根据所述第一轴向感测信号、所述第二轴向感测信号和所述第三轴向感测信号携带的场强值,选择性输出第一转轴调整信号和第二转轴调整信号,调整直至每个轴向感测信号携带的波形幅度均 符合预设幅度条件;
    其中,第一轴向、第二轴向和第三轴向为所述感测设备的感测方向且配置为相互垂直;第一转轴和第二转轴用于调整所述感测设备的姿态且配置为相互垂直。
  6. 根据权利要求5所述的感测设备校正方法,其特征在于,所述方法具体包括:
    解析所述第一轴向感测信号,得到具有第一持续时间的第一场强波形,并计算所述第一场强波形的第一平均场强值;
    按照预设时间窗口对所述第一场强波形执行分割,提取得到第一时间段,并分析所述第一场强波形在所述第一时间段内的第一最高场强值和第一最低场强值;
    计算所述第一最高场强值和所述第一平均场强值之差,以及所述第一平均场强值与所述第一最低场强值之差,分别得到第一场强差值和第二场强差值;
    若所述第一场强差值或所述第二场强差值小于预设幅度值,则输出所述第一转轴信号和所述第二转轴信号至少其中之一,控制所述感测设备由第一姿态调整为第二姿态;
    其中,所述第一持续时间长度大于所述预设时间窗口长度;所述感测设备在第二姿态下的第一轴向感测信号,强于所述感测设备在第一姿态下的第一轴向感测信号。
  7. 一种感测设备校正系统,其特征在于,包括待校正感测设备和主控系统,所述主控系统配置为执行一种感测设备校正方法,所述方法包括:
    分别向所述感测设备发送稳态激励信号和瞬态激励信号,并对应接收稳态感测信号和瞬态感测信号;
    在所述稳态感测信号符合预设条件时,解析得到对应的稳态场强值;
    解析所述瞬态感测信号得到瞬态场强值,并根据所述稳态场强值和所述瞬态场强值,对所述感测设备的动态感测信号进行校正。
  8. 根据权利要求7所述的感测设备校正系统,其特征在于,所述感测设备校正系统还包括姿态调整装置,所述姿态调整装置包括固定机构以及设置于所述固定机构的调整组件;所述主控系统包括数据处理单元、信号发生单元和上位机,所述数据处理单元用于执行数据采集、处理和传输,所述信号发生单元用于输出激励信号,所述上位机用于输出控制信号、绘制并显示波形;
    所述待校正感测设备设置于所述调整组件中,所述数据处理单元连接所述调整组件和所述待校正感测设备至少其中之一,所述上位机分别连接所述信号发生单元和所述数据处理单元。
  9. 根据权利要求8所述的感测设备校正系统,其特征在于,所述固定机构包括一端部相互连接形成中心节点,且另一端部分别沿第一轴向、第二轴向和第三轴向延伸的第一连接件、第二连接件和第三连接件;所述调整组件和/或所述待校正感测设备至少其中之一设置于所述中心节点处,且至少其中另一设置于所述第一连接件、所述第二连接件或所述第三连接件远离所述中心节点的另 一端部处。
  10. 根据权利要求8所述的感测设备校正系统,其特征在于,所述调整组件包括支持部、第一固定部和第二固定部;
    所述第一固定部和所述第二固定部至少其中之一可活动地连接于所述支持部,所述第一固定部和所述第二固定部共同围设形成容置空间,所述待校正感测设备设置于所述容置空间内。
  11. 根据权利要求10所述的感测设备校正系统,其特征在于,所述调整组件还包括第一转轴和第二转轴;所述第一固定部和所述第二固定部配置为环状,并分别围设形成第一空间和第二空间;
    所述第一转轴设置于所述第一空间的一个对称轴处,所述第二转轴设置于所述第二空间的一个对称轴处,所述第一转轴和所述第二转轴相互垂直设置,且配置为接收所述主控系统的控制以旋转并调节所述待校正感测设备的姿态。
PCT/CN2023/094674 2022-05-18 2023-05-17 感测设备校正方法及校正系统 WO2023222009A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210551172.2A CN114966511A (zh) 2022-05-18 2022-05-18 感测设备校正方法及校正系统
CN202210551172.2 2022-05-18

Publications (1)

Publication Number Publication Date
WO2023222009A1 true WO2023222009A1 (zh) 2023-11-23

Family

ID=82986120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/094674 WO2023222009A1 (zh) 2022-05-18 2023-05-17 感测设备校正方法及校正系统

Country Status (2)

Country Link
CN (1) CN114966511A (zh)
WO (1) WO2023222009A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114966511A (zh) * 2022-05-18 2022-08-30 安翰科技(武汉)股份有限公司 感测设备校正方法及校正系统
CN115664625B (zh) * 2022-12-13 2023-03-10 北京紫光青藤微系统有限公司 时钟相位确定方法及装置、近场通信设备、可读存储介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6211666B1 (en) * 1996-02-27 2001-04-03 Biosense, Inc. Object location system and method using field actuation sequences having different field strengths
US20040088136A1 (en) * 2002-11-01 2004-05-06 Ascension Technology Corporation Method of measuring position and orientation with improved signal to noise ratio
CN1868403A (zh) * 2005-05-16 2006-11-29 韦伯斯特生物官能公司 使用准直流磁场的位置跟踪
CN106470591A (zh) * 2014-11-10 2017-03-01 奥林巴斯株式会社 位置检测系统
CN107529948A (zh) * 2015-12-02 2018-01-02 奥林巴斯株式会社 位置检测系统和位置检测方法
CN109044249A (zh) * 2018-08-23 2018-12-21 重庆金山医疗器械有限公司 胶囊内镜姿态检测校准方法及系统
US20200154986A1 (en) * 2018-11-21 2020-05-21 Olympus Corporation Endoscope system, processor and endoscope
CN112842320A (zh) * 2019-11-28 2021-05-28 安翰科技(武汉)股份有限公司 可吞服设备定位系统及其方法
CN114469057A (zh) * 2022-04-01 2022-05-13 安翰科技(武汉)股份有限公司 无线胶囊定位装置、磁场传感器定位方法和装置
CN114966511A (zh) * 2022-05-18 2022-08-30 安翰科技(武汉)股份有限公司 感测设备校正方法及校正系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6211666B1 (en) * 1996-02-27 2001-04-03 Biosense, Inc. Object location system and method using field actuation sequences having different field strengths
US20040088136A1 (en) * 2002-11-01 2004-05-06 Ascension Technology Corporation Method of measuring position and orientation with improved signal to noise ratio
CN1868403A (zh) * 2005-05-16 2006-11-29 韦伯斯特生物官能公司 使用准直流磁场的位置跟踪
CN106470591A (zh) * 2014-11-10 2017-03-01 奥林巴斯株式会社 位置检测系统
CN107529948A (zh) * 2015-12-02 2018-01-02 奥林巴斯株式会社 位置检测系统和位置检测方法
CN109044249A (zh) * 2018-08-23 2018-12-21 重庆金山医疗器械有限公司 胶囊内镜姿态检测校准方法及系统
US20200154986A1 (en) * 2018-11-21 2020-05-21 Olympus Corporation Endoscope system, processor and endoscope
CN112842320A (zh) * 2019-11-28 2021-05-28 安翰科技(武汉)股份有限公司 可吞服设备定位系统及其方法
CN114469057A (zh) * 2022-04-01 2022-05-13 安翰科技(武汉)股份有限公司 无线胶囊定位装置、磁场传感器定位方法和装置
CN114966511A (zh) * 2022-05-18 2022-08-30 安翰科技(武汉)股份有限公司 感测设备校正方法及校正系统

Also Published As

Publication number Publication date
CN114966511A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
WO2023222009A1 (zh) 感测设备校正方法及校正系统
EP2177148A1 (en) Medical device inducing system, medical device inducing method, and method for creating look-up table to be used in the medical device inducing system
AU2006202054B2 (en) Position tracking using quasi-DC magnetic fields
EP1878384B1 (en) Probe for assessment of metal distortion
US11194385B2 (en) Method and system of obtaining and tracking human posture
US20070244666A1 (en) Electromagnetic Tracking Using a Discretized Numerical Field Model
CN104181480A (zh) 磁共振装置中成像磁场测量和校正的方法及系统
AU2011254069A1 (en) Compensation for magnetic disturbance due to fluoroscope
US20120191014A1 (en) Method and system for measuring chest parameters, especially during cpr
KR101656940B1 (ko) 관성 측정 장치를 이용한 인체 관절 가동 범위 측정시스템
CN205038240U (zh) 一种示波器探头
CN204807612U (zh) 无线相位伏安表
Ragolia et al. Performance analysis of an electromagnetic tracking system for surgical navigation
CN106963324A (zh) 一种胶囊内镜位置的推定方法及装置
US11762000B1 (en) Distortion/interference measurement device for virtual reality environments
CN114370960B (zh) 拉杆载荷测量方法、装置、系统及存储介质
KR20100018249A (ko) 지자기 센서의 축 틀어짐 검사장치
US11340311B2 (en) Determining position and orientation from a Helmholtz device
Ragolia et al. Evaluation of position RMS error from magnetic field gradient for surgical EM tracking systems
EP4032470A1 (en) System for receiving signals from a magneto-mechanical oscillator
CN216595271U (zh) 一种全自动电压源仿真负荷调零箱
GB2574672A (en) A wireless radio frequency triggered signal acquisition device
JP2004233179A (ja) 交流信号測定装置
CN208822781U (zh) 一种关节角度测量的装置
CN114609563A (zh) 一种磁共振b0涡流补偿方法、系统、存储介质及谱仪设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23806960

Country of ref document: EP

Kind code of ref document: A1