WO2023221532A1 - 一种整距绕组轴向磁通开关磁阻电机及其多目标优化方法 - Google Patents

一种整距绕组轴向磁通开关磁阻电机及其多目标优化方法 Download PDF

Info

Publication number
WO2023221532A1
WO2023221532A1 PCT/CN2022/144413 CN2022144413W WO2023221532A1 WO 2023221532 A1 WO2023221532 A1 WO 2023221532A1 CN 2022144413 W CN2022144413 W CN 2022144413W WO 2023221532 A1 WO2023221532 A1 WO 2023221532A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
rotor
pole
motor
optimization
Prior art date
Application number
PCT/CN2022/144413
Other languages
English (en)
French (fr)
Inventor
陈昊
赵熙
于丰源
闫文举
张珂
巩士磊
王星
常喜强
董利江
卢其威
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Publication of WO2023221532A1 publication Critical patent/WO2023221532A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/04Machines with one rotor and two stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the invention belongs to the technical field of switched reluctance motors, and specifically relates to a full-pitch winding axial flux switched reluctance motor and a multi-objective optimization method thereof.
  • the switched reluctance motor has the advantages of simple structure, low cost, solid body, high reliability and wide speed range.
  • the switched reluctance motor due to the electromagnetic torque of its own reluctance, the special double salient pole structure and the pulse power supply method, the switched reluctance motor has The torque density of resistance motors is not high and the torque ripple is large.
  • the switched reluctance motor is combined with the axial magnetic field structure to form an axial flux switched reluctance motor, which has the comprehensive advantages of the switched reluctance motor and the axial magnetic field motor.
  • the radial length of the axial flux switched reluctance motor from the outer diameter of the stator to the inner diameter of the stator is the effective area for the motor to generate torque. With proper magnetic circuit design, the stator and rotor cores can be fully utilized.
  • Axial flux motors typically provide higher torque density and power density than equivalent radial flux motors.
  • Axial flux switched reluctance motors with small axial length are used to drive low-speed and high-torque motors. For example, direct drive hub motors have special advantages.
  • the present invention proposes an axial flux switched reluctance motor structure with an integral pitch winding configuration, and the current in the stator armature winding flows in opposite directions in two back-to-back stator slots, with the cancellation effect and alignment at misaligned positions The magnetic flux superposition effect at the position.
  • the magnetic circuit design method of the new winding configuration is intended to enable the motor to obtain a larger maximum and minimum inductance ratio, increase the motor output, and also increase the power density of the motor.
  • the full-pitch winding axial flux switched reluctance motor has a larger rated power in the same volume, and both the power density and torque density have been improved.
  • it can be used in in-wheel direct-drive motors of electric vehicles.
  • Embodiments of the present invention provide a full-pitch winding axial flux switched reluctance motor and its multi-objective optimization method, providing a shaft with small axial length, short flux path, high energy conversion rate and high torque density.
  • a full-pitch winding axial flux switched reluctance motor includes a rotating shaft.
  • a motor core is provided on the rotating shaft.
  • the motor core includes a left stator, a rotor, and a right stator in an annular structure arranged in sequence.
  • the rotating shaft is fixed with a bearing through a bearing.
  • the left stator and the right stator are respectively installed in the end caps on both sides of the rotor.
  • the outer edges of the end caps of the left stator and the right stator are equipped with sealed casings. ;
  • the left stator includes a left stator yoke, a left stator pole, a left magnetic pole shoe, and a left stator slot.
  • the right stator has the same structural composition as the left stator, including a right stator yoke, a right stator pole, and a right magnetic pole shoe.
  • the rotor includes rotor tooth stages, magnetic pole shoes, and fixed disks, in which the inner diameter of the fixed disk is installed on the rotating shaft through a key, and the fixed disk
  • the rotor tooth stages and magnetic pole pieces are arranged at upper intervals
  • the rotor fixed disk is made of laminated epoxy resin material that is neither magnetic nor electrically conductive, which plays the role of isolating the magnetic circuit and reducing eddy current losses
  • the stator tooth poles and rotor points are The blocks are all equipped with magnetic pole pieces.
  • the left stator includes stator pole pieces 103, the right stator includes stator pole pieces 203, and the rotor core block 3 includes rotor pole pieces 302.
  • the power density of the switched reluctance motor is closely related to the effective air gap area.
  • the setting of magnetic pole pieces increases the magnetic pole contact area, allowing magnetic flux to better pass along the short magnetic flux path, which increases the power density of the motor to a certain extent;
  • the left stator, rotor, and right stator form a parallel arrangement of double stators and single rotors.
  • the double stator tooth poles are installed oppositely on both sides of the rotor disk.
  • the number of stator slots is 2mn
  • the number of block rotors is is 2(m-1)n, where n is a positive integer.
  • the main magnetic flux of the motor is generated by the excitation winding installed in the stator slot.
  • the opposite polarity of the stator slot winding is opposite.
  • the magnetic flux generated by the left stator slot winding starts from the left stator yoke, passes through the left stator pole, and passes through The air gap between the left stator pole and the rotor enters the rotor, and then follows a symmetrical path through the air gap between the rotor and the left stator pole to the adjacent left stator pole, and returns to the left stator yoke to form a closed magnetic path a;
  • the magnetic flux generated by the winding in the right stator slot starts from the left stator yoke, passes through the right stator pole, and enters the rotor through the air gap between the right stator pole and the rotor. Then follow the symmetrical path through the air gap between the rotor block 3 and the right stator pole to the adjacent right stator pole, and return to the right stator yoke to form a closed magnetic circuit b;
  • stator slotting between adjacent stator tooth poles is a parallel slot structure; that is, the stator slot width under different radii is fixed, and the stator slot width is equal to the pole arc width of the stator tooth pole at the center line of the inner and outer diameters, and at the same time, the stator slot width is fixed.
  • the block rotor pole height is twice the stator yoke height.
  • the length of the stator pole shoe slot opening is equal to the rotor pole shoe slot opening length, that is, the distance between adjacent rotor segments is equal to the distance between adjacent stator teeth; this helps to reduce the magnetic permeance at misaligned positions without Inductance that affects alignment position.
  • the switched reluctance motor windings adopt an entire pitch winding configuration, that is, the entire pitch winding coil is installed across the teeth on the left In the stator slotting and the right stator slotting, in the left stator, the four radially vertically opposite coils are connected in series with each other, and then connected in series with the series connected coils at the same position in the right stator to form one phase.
  • the polarities of the winding coils installed in the stator slots at opposite positions in the stators on both sides are opposite.
  • full-pitch windings and block rotors can obtain short magnetic flux paths between adjacent magnetic poles of the motor, which not only reduces the rotor core loss, but also makes the magnetic circuit of the switched reluctance motor operating according to the minimum magnetic flux principle in misaligned positions Mutually offset, the misaligned flux linkage can be effectively reduced, thereby obtaining a larger maximum-minimum inductance ratio; this characteristic is particularly prominent when the motor ampere-turns are large, so the axial flux switched reluctance motor Especially suitable for low-speed and high-torque applications, it can be used in in-wheel direct-drive motors of electric vehicles.
  • a multi-objective optimization method with hierarchical optimization parameters is proposed; first, the average value of each optimization parameter is calculated.
  • Comprehensive sensitivity indicators of optimization targets such as electromagnetic torque, torque ripple and torque density.
  • the optimization parameters are layered into high sensitivity parameters and low sensitivity parameters; for high sensitivity parameters, the response surface method is used to establish agents.
  • the model is optimized by combining the non-dominated sorting genetic algorithm, and the Taguchi orthogonal method is used for low-sensitivity parameters. It can obtain higher electromagnetic torque and torque ripple, and at the same time obtain smaller torque ripple, achieving multiple goals.
  • Synchronous optimization the hierarchical multi-objective optimization method described is suitable for use when there are many optimization parameters, and is suitable for the design stage of switched reluctance motors.
  • a multi-objective optimization method for full-pitch winding axial flux switched reluctance motors can significantly save optimization time.
  • the steps are as follows:
  • the three indicators of average torque, dynamic torque ripple and average torque per unit mass are selected as optimization targets;
  • n is the number of selected rotor angles in the analysis process
  • T i is the electromagnetic torque value of the motor at different angles
  • T max is the maximum electromagnetic torque value of the motor within a sampling period
  • T min is the motor's electromagnetic torque value within a sampling period.
  • M fe is the motor core mass
  • M cu is the motor winding coil mass
  • the key geometric parameters of the switched reluctance motor are used as design variables, including the rotor pole shoe length l rs , stator pole shoe length l ss , rotor slot width w ro , stator slot width w so , stator and rotor pole shoe spacing width w sro , the rotor pole length l rp , the stator pole length l sp , and the stator yoke thickness l sy ;
  • the comprehensive sensitivity index of each optimization parameter calculates the comprehensive sensitivity index of each optimization parameter to optimization targets such as average electromagnetic torque, torque ripple and torque density. Based on the size of the comprehensive sensitivity index, the optimization parameters are layered into high sensitivity parameters and low sensitivity parameters;
  • yoke thickness l sy are 0.177, 0.248, 0.382, 0.344, 0.254, 0.137, 0.178 and 0.160 respectively;
  • Select 0.2 as the limit for distinguishing high-sensitivity and low-sensitivity parameters.
  • a sensitivity index greater than 0.2 is a high-sensitivity parameter, and a sensitivity index less than 0.2 is a low-sensitivity parameter.
  • the response surface method is used to establish a surrogate model combined with the non-dominated sorting genetic algorithm NSGA-II for optimization: first determine the sampling points, and use the three-dimensional finite element method to obtain the design target results under different parameter combinations, thereby establishing four high-sensitivity parameters.
  • the method of constructing Taguchi's orthogonal matrix is used for optimization: first determine the sampling points, and use the three-dimensional finite element method to obtain the design target results under different parameter combinations, thereby constructing 4 low-sensitivity parameters about 3 optimization targets. Orthogonal matrix table, and then use the mean method to obtain a set of optimal solutions as an optimization plan for low-sensitivity parameters;
  • the obtained high-sensitivity parameter scheme is combined with the low-sensitivity parameter scheme and substituted into the motor finite element model to obtain the results of the design target and compare the effects of the optimized scheme and the initial scheme.
  • the motor windings involved in the present invention adopt a full-pitch winding configuration.
  • the windings are installed in the stator slots.
  • the coil directions of the opposite stator slots are opposite.
  • the rotor core adopts a block structure, and the rotor core blocks are fixed by a rotor disk made of magnetic isolation material. .
  • the axial flux switched reluctance motor structure using full pitch windings forms the shortest flux path on adjacent stator poles, increasing the The motor output increases the torque density of the motor, reduces losses, and improves operating efficiency.
  • the invention applies the whole-pitch winding configuration to the structure of the axial magnetic field switched reluctance motor, forming an axial flux switched reluctance motor with a short magnetic flux path, which has the integration of the switched reluctance motor and the axial magnetic field motor.
  • the stator and rotor cores can be fully utilized.
  • Axial flux motors typically provide higher torque density and power density than equivalent radial flux motors.
  • axial flux switched reluctance motors with small axial length are suitable for applications that have special requirements on motor volume, such as electric vehicle wheel hub motors.
  • stator tooth poles and the segmented rotor core have added pole shoe structures.
  • pole shoes increases the air gap surface area and increases the motor torque to a certain extent.
  • the double outer stator structure facilitates cooling and has a large heat dissipation area to facilitate heat circulation.
  • the surface of the inner rotor 3 has no unevenness, and the annular shape has lower wind resistance and smaller loss than the traditional salient pole-shaped switched reluctance motor.
  • the rotor fixed plate (303) is made of laminated epoxy resin material that is neither magnetic nor electrically conductive, and plays the role of isolating the magnetic circuit and reducing eddy current loss.
  • the density of the epoxy resin material is light and can reduce the rotor inertia. Improve the dynamic response speed of the motor.
  • Figure 1 is a schematic diagram of the core part of the entire pitch winding axial flux switching reluctance motor structure according to the embodiment of the present invention
  • Figure 2(a) is a schematic diagram of the winding configuration of the left stator NNNSSS and right stator SSSNNN deployed along the outer diameter circumference of the motor provided by the embodiment of the present invention
  • Figure 2(b) is a schematic diagram of the winding configuration of the left stator NSNSNS and right stator SNSNSN deployed along the outer diameter circumference of the motor provided by the embodiment of the present invention
  • Figure 3 is a rotor plan view of the motor structure provided for the embodiment of the present invention.
  • Figure 4(a) is a schematic diagram of the main magnetic flux at the alignment position (maximum inductance position) of phase B of the motor provided by the embodiment of the present invention
  • Figure 4(b) is a schematic diagram of the main magnetic flux at the misaligned position (minimum inductance position) of phase B of the motor provided by the embodiment of the present invention
  • Figure 5 is a schematic assembly diagram of a motor provided by an embodiment of the present invention.
  • Figure 6 is a flow chart of the multi-objective optimization method according to the embodiment of the present invention.
  • Figure 7 is a comparison chart of electromagnetic torque before and after optimization using the multi-objective optimization method provided by the embodiment of the present invention.
  • Embodiments of the present invention provide a full-pitch winding axial flux switched reluctance motor and its multi-objective optimization method.
  • the motor core part includes: a left stator 1, a right stator 2, a rotor 3.
  • the winding configuration is an integral pitch excitation winding.
  • the stator core 1 on the left side is composed of the stator yoke 101, stator poles 102, magnetic pole shoes 103, and stator slots 104;
  • the rotor 3 is composed of the rotor tooth pole 301 and the magnetic pole shoes (302);
  • the structure of the right stator core 2 is composed of It is exactly the same as the left stator core 1 and consists of a stator yoke 201, stator poles 202, magnetic pole shoes 203, and stator slots 204.
  • the pitch winding coils are mounted in the stator slots 104 and 204.
  • the double stators and the single rotor are arranged in parallel.
  • the left stator and the right stator tooth poles are installed oppositely on both sides of the rotor disk, with an air gap in the middle.
  • the number of poles of the single-sided stator is N s
  • the number of rotors in blocks is N r
  • m is the number of motor phases.
  • N s 2mn
  • N r 2(m-1)n, where n is a positive integer.
  • N r segmented rotors are equally spaced along the circumference, and the distribution spacing is 360°/N r .
  • the axial flux switched reluctance motor has a three-phase structure of 6p/4q, in which the number of stator poles (slots) is 6p and the number of rotor poles is 4q, where p and q are both is a positive integer.
  • a 12-slot 8-pole short magnetic circuit double-stator axial flux switched reluctance motor structure is used, that is, the number of stator poles on one side is 12 and the number of block rotors is 8.
  • This claim takes a three-phase, 12-slot, 8-pole axial flux-switched reluctance motor with 3 phases, 12 stator poles, and 8 rotor poles as an example to give the structure and working principle of the motor.
  • the left stator adopts the polarity configuration of NNNSSSNNNSSS (2NNNSSS), and the right stator adopts the polarity of SSSNNNSSSNNN (2SSSNNN).
  • Configuration second, as shown in Figure 2(b), the left stator adopts the polarity configuration of NSNSNSNSNS (6NS), and the right stator adopts the polarity configuration of SNSNSNSNSN (6SN).
  • the motor consists of three phases A, B, and C, and the winding distribution of each phase of the motor is as shown in the figure. Pictured.
  • the full-pitch winding axial flux switched reluctance motor adopts winding polarity configurations of 2NNNSSS and 2SSSNNN.
  • Figure 3(a) shows a screenshot of the rotor plane of the full-pitch winding axial flux switched reluctance motor structure. It can be seen that the rotor core 3 consists of 8 segmented rotors equally spaced along the circumference, with a distribution spacing of 45°.
  • Figure 3(b) is a top view of the full-pitch winding axial flux switched reluctance motor structure at the air gap. It can be seen that 12 stator tooth poles are equally spaced along the circumference, and the stator slots adopt a parallel slot structure.
  • the stator core of the full-pitch winding axial flux switched reluctance motor in the embodiment of the present invention has a salient pole structure in which wide poles and narrow poles alternate.
  • the rotor core has a block structure, and concentrated windings are wound around the wide poles of the stator. As shown in Figure 2, the polarity of the winding coils in the slots of the stator on both sides is opposite. Since only one phase winding coil is placed in each slot and the rotor adopts a block rotor structure, the excitation flux forms a short flux path between the adjacent stator wide poles and stator narrow poles.
  • Define the alignment position define the alignment position of the stator slot center line and the segmented rotor pole center line as the alignment position of the motor;
  • misaligned position Define the alignment position of the stator slot center line and the rotor slot center line as the misaligned position of the motor.
  • Figure 4 shows the flux path diagram of the full-pitch winding axial flux switched reluctance motor in the aligned position and the misaligned position.
  • Figure 4(a) shows the magnetic flux path of the motor in the aligned position
  • Figure 4(b) shows the magnetic flux path of the motor in the misaligned position.
  • the main magnetic flux of the motor is generated by the field winding installed in the stator slot, and the opposite polarity of the stator slot winding is opposite.
  • the magnetic flux generated by the winding in the left stator slot starts from the left stator yoke 101, passes through the left stator pole 102, and enters the rotor block 3 through the air gap between the left stator pole 102 and the rotor block 3, and then passes through the rotor along a symmetrical path.
  • the air gap between block 3 and the left stator pole 102 reaches the adjacent left stator pole 102 and back to the left stator yoke 101 .
  • stator slots have opposite polarity due to their relative positions.
  • the magnetic flux generated by the winding in the right stator slot starts from the left stator yoke 201, passes through the right stator pole 202, and enters the rotor block 3 through the air gap between the right stator pole 202 and the rotor block 3, and then passes through the rotor along a symmetrical path.
  • the air gap between block 3 and the right stator pole 202 reaches the adjacent right stator pole 202 and back to the right stator yoke 201 .
  • misaligned positions In misaligned positions, the magnetic fluxes produced by the two coils cancel each other out.
  • the misaligned position flux linkage of the motor is reduced, allowing the motor to obtain a larger maximum-to-minimum inductance ratio.
  • the complete assembly structure of the full-pitch winding axial flux switched reluctance motor includes a left stator 1, a right stator 2, a rotor 3, a rotating shaft 4, a bearing 5, an end cover 6, Key 7, case 8.
  • the rotor core 3 is composed of a rotor tooth stage 301, a magnetic pole piece 302, and a fixed disk 303.
  • the stator cores 1 and 2 and the rotor core 3 are both axially laminated and surrounded by silicon steel sheets.
  • the rotor fixed disk 303 is laminated by an epoxy resin material that is neither magnetic nor electrically conductive to isolate the magnetic circuit and reduce the energy consumption. The role of eddy current losses.
  • full-pitch windings are installed in the stator slots, the coils in the same slots of the two stators have opposite polarities, there are pole shoes on the stator and rotor tooth poles, and the adjacent segmented rotor core blocks are connected by magnetic isolation materials in the middle.
  • a short magnetic circuit is formed between adjacent stator poles.
  • the invention also provides a multi-objective optimization method for an axial flux switched reluctance motor with an entire pitch winding. As shown in Figure 6, a multi-objective optimization method with hierarchical optimization parameters can significantly save optimization time.
  • n is the number of selected rotor angles in the analysis process
  • T i is the electromagnetic torque value of the motor at different angles
  • T max is the maximum electromagnetic torque value of the motor within a sampling period
  • T min is the motor's electromagnetic torque value within a sampling period.
  • M fe is the mass of the motor core
  • M cu is the mass of the motor winding coil.
  • the key geometric dimensions parameters of the motor are used as design variables, including the rotor pole shoe length l rs , the stator pole shoe length l ss , the rotor slot width w ro , the stator slot width w so , the stator and rotor pole shoe spacing width w sro , and the rotor pole
  • the comprehensive sensitivity index of each optimization parameter to the optimization targets such as average electromagnetic torque, torque ripple and torque density is calculated.
  • the optimization parameters are layered into high sensitivity parameters and low sensitivity parameters.
  • the rotor pole shoe length l rs the stator pole shoe length l ss , the stator slot width w ro , the stator slot width w so , the stator and rotor pole shoe spacing width w sro , and the rotor pole length l
  • the sensitivity parameters of rp , stator pole length l sp , and stator yoke thickness l sy are 0.177, 0.248, 0.382, 0.344, 0.254, 0.137, 0.178 and 0.160 respectively.
  • this embodiment selects the stator pole shoe length l ss , the rotor slot width w ro , the stator slot width w so and the stator and rotor pole shoe spacing width w sro as high-sensitivity parameters.
  • This embodiment selects the rotor pole shoe length l rs , and the rotor The pole length l rp , the stator pole length l sp , and the stator yoke thickness l sy are low sensitivity parameters.
  • the response surface method was used to establish a surrogate model combined with the non-dominated sorting genetic algorithm (NSGA-II) for optimization.
  • NSGA-II non-dominated sorting genetic algorithm
  • the NSGA-II algorithm is used to obtain the optimal solution set by weighing the values of the three optimization objectives, from which a set of satisfactory solutions is selected as an optimization scheme for high-sensitivity parameters.
  • the method of constructing Taguchi orthogonal matrix is used for optimization. First determine the sampling points, use the three-dimensional finite element method to obtain the design target results under different parameter combinations, thereby constructing an orthogonal matrix table of 4 low-sensitivity parameters with respect to the 3 optimization targets, and then use the mean method to obtain a set of optimal solutions As an optimization solution for low sensitivity parameters.
  • the obtained high-sensitivity parameter scheme is combined with the low-sensitivity parameter scheme and substituted into the motor finite element model to obtain the results of the design target and compare the effects of the optimized scheme and the initial scheme.
  • Figure 7 is a comparison chart of dynamic torque waveforms between the optimized scheme obtained by the method and the initial scheme. It can be seen that the method can obtain higher electromagnetic torque and torque density, and at the same time obtain smaller torque ripple, achieving the three goals. Simultaneous optimization of multiple goals while saving optimization time. It is suitable for the field of motor design, especially when there are many optimization parameters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Synchronous Machinery (AREA)

Abstract

本发明公开一种整距绕组轴向磁通开关磁阻电机及其多目标优化方法,属于电机设计领域。包括转轴,转轴上设有电机铁芯,电机铁芯包括顺序设置的环形结构的左侧定子、转子、右侧定子,转轴通过轴承与固定安装左侧定子、右侧定子的端盖连接,左侧定子、右侧定子分别设置在位于转子两侧的端盖中,左侧定子、右侧定子的端盖外沿设有封口的机壳。其轴向长度小,磁通路径短,能量转换率高,转矩密度高,电机在相同体积下的额定功率更大,功率密度和转矩密度都获得了提升。同时电机具有出力大、结构简单、容易维护、可靠性高等优点,具有良好的工程应用价值。

Description

一种整距绕组轴向磁通开关磁阻电机及其多目标优化方法 技术领域
本发明属于开关磁阻电机技术领域,具体涉及一种整距绕组轴向磁通开关磁阻电机及其多目标优化方法。
背景技术
开关磁阻电机具有结构简单、造价低廉、机体坚固、可靠性高和调速范围广等优点,但是,由于自身磁阻性质的电磁转矩、特殊的双凸极结构以及脉冲供电方式,开关磁阻电机的转矩密度不高、转矩脉动较大,这两个问题是目前开关磁阻电机进入高性能驱动领域需要面对和解决的难点。因此,为了提高开关磁阻电机的功率密度和转矩密度,提高运行效率,减小转矩脉动。
将开关磁阻电机与轴向磁场结构相结合,形成轴向磁通开关磁阻电机,具有开关磁阻电机和轴向磁场电机的综合优势。轴向磁通开关磁阻电机从定子外径到定子内径的径向长度是电机产生转矩的有效区域。通过适当的磁路设计,定子和转子铁心可以被充分利用。轴向磁通电机通常能够比同样的径向磁通电机提供更高的转矩密度和功率密度。轴向长度小的轴向磁通开关磁阻电机用于低速大转矩电机驱动,例如直接驱动轮毂电机有着特别的优势。
但是传统轴向磁通开关磁阻电机均采用集中绕组配置,往往具有较长的励磁磁路,导致损耗高、运行效率较低,同时不对齐位置磁链容易饱和,使得电机在高安匝数下的转矩输出能力不强。因此本发明提出了整距绕组配置的轴向磁通开关磁阻电机结构,并且定子电枢绕组中的电流在两个背对背的定子槽中沿相反方向流动,在不对齐位置的抵消作用和对齐位置的磁通叠加作用。意在通过新的绕组配置方式的磁路设计方法,使电机能够获得较大的最大最小电感比,提高电机出力,也提高了电机的功率密度。与传统采用集中绕组的轴向磁通开关磁阻电机相比,所述整距绕组轴向磁通开关磁阻电机相同体积下的额定功率更大,功率密度和转矩密度都获得了提升,特别适用于低速大转矩应用,可用于电动汽车轮内直驱电机。
与此同时,针对本结构设计参数较多,采用传统优化方法耗时多的缺点,提出了一种基于设计变量分层的多目标优化方法。能够同时获得较高的电磁转矩和较低的转矩脉动,实现对电机性能的多目标同步优化。
发明内容
本发明的实施例提供一种整距绕组轴向磁通开关磁阻电机及其多目标优化方法,提供一种轴向长度小,磁通路径短,能量转换率高,转矩密度高的轴向磁通开关磁阻电机方案和一种优化耗时短的多目标优化方法。
为达到上述目的,本发明的实施例采用如下技术方案:
一种整距绕组轴向磁通开关磁阻电机,包括转轴,转轴上设有电机铁芯,电机铁芯包括顺序设置的环形结构的左侧定子、转子、右侧定子,转轴通过轴承与固定安装左侧定子、右 侧定子的端盖连接,左侧定子、右侧定子分别设置在位于转子两侧的端盖中,左侧定子、右侧定子的端盖外沿设有封口的机壳;
所述左侧定子包括左定子轭、左定子极、左导磁极靴、左定子开槽,右侧定子的结构组成和左侧定子完全相同,包括右定子轭、右定子极、右导磁极靴、右定子开槽组成,整距绕组线圈安装在左定子开槽和右定子开槽中;转子包括转子齿级、导磁极靴、固定盘,其中固定盘内径通过键安装在转轴上,固定盘上间隔设置转子齿级和导磁极靴;转子固定盘由既不导磁也不导电的环氧树脂材料叠压而成,起到隔离磁路和降低涡流损耗的作用;定子齿极和转子分块均设置了导磁极靴,其中左侧定子包括定子极靴103,右侧定子包括定子极靴203,转子铁心块3包括转子极靴302,开关磁阻电机的功率密度与有效气隙面积密切相关,导磁极靴的设置增大了磁极接触面积,使磁通能够更好的沿着短磁通路径通过,在一定程度上增大了电机的功率密度;
将N r个转子铁心块按圆周等距分布安装在转子固定盘上,将转子通过键安装在转轴上,将整距绕组绕制在左侧定子和右侧定子的槽内,在电枢绕组绕制完成后,将左侧定子和右侧定子齿极相对分别安装于转子两侧,并通过轴承装于转轴上,随后通过电机端盖将轴承的轴向进行固定整距绕组安装在定子槽内,两块定子相同的槽内线圈极性相反,定转子齿极上有极靴,相邻的分块转子铁心块中间由隔磁材料连接,相邻定子磁极之间形成短磁路。
进一步,左侧定子、转子、右侧定子构成双定子和单转子并行式排列,双定子齿极相对的安装在转子盘的两侧,对于m相电机,定子槽数为2mn,分块转子数为2(m-1)n,其中n为正整数。
进一步,电机主磁通由安装在定子槽内的励磁绕组产生,相对位置的定子槽绕组极性相反,左定子开槽绕组产生的磁通由左定子轭出发,经过左定子极,并穿过左定子极与转子之间的气隙进入转子,之后沿着对称路径经过转子与左定子极之间的气隙到达相邻的左定子极,回到左定子轭,形成闭合磁路a;
同样地,由于相对位置的定子槽极性相反,右定子开槽内绕组产生的磁通由左定子轭出发,经过右定子极,并穿过右定子极与转子之间的气隙进入转子,之后沿着对称路径经过转子块3与右定子极之间的气隙到达相邻的右定子极,回到右定子轭,形成闭合磁路b;
在不对齐位置时,两个线圈产生的磁通相互抵消,降低了电机的不对齐位置磁链,使电机获得了较大的最大最小电感比。
进一步,相邻定子齿极间的的定子开槽是平行槽结构;即在不同半径下的定子槽宽度是固定的,定子槽宽度等于定子齿极在内外径中线处的极弧宽度,同时分块转子极高是定子轭 高的两倍。
进一步,定子极靴槽开口长度等于转子极靴槽开口长度,即相邻转子段之间的距离等于相邻定子齿之间的距离;这样有助于减小未对齐位置的磁导,而不影响对齐位置的电感。
进一步,不同于传统双凸极结构开关磁阻电机绕组采用的集中绕组配置,为了磁通以最短磁路闭合,开关磁阻电机绕组采用整距绕组配置,即将整距绕组线圈跨齿安装在左定子开槽和右定子开槽中,在左侧定子中,径向垂直相对的四个线圈相互串联,然后再和右侧定子的相同位置的串联后的线圈相串联构成一相。
进一步,为了在不对齐位置有磁通抵消效果,两侧定子中相对位置的定子槽内所安装的绕组线圈极性相反。
进一步,整距绕组和分块转子的采用能获得电机相邻磁极间的短磁通路径,不仅减少转子铁心损耗,而且使按照最小磁通原理运行的开关磁阻电机在不对齐位置的磁路相互抵消,可使不对齐磁链有效降低,从而获得更大的最大最小电感比;这种特性在电机安匝数较大的情况下尤为凸显,因此所述的轴向磁通开关磁阻电机特别适用于低速大转矩应用,可用于电动汽车轮内直驱电机。
进一步,由于开关磁阻电机结构复杂,尺寸参数较多,采用传统多目标优化方法时计算复杂,耗时较长,提出一种优化参数分层的多目标优化方法;首先计算各个优化参数对平均电磁转矩、转矩脉动和转矩密度等优化目标的综合灵敏度指标,根据综合灵敏度指标的大小,将优化参数分层为高灵敏度参数和低灵敏度参数;对于高灵敏度参数采用响应表面法建立代理模型结合非支配排序的遗传算法进行优化,对于低灵敏度参数采用田口正交法进行优化;能够获得较高电磁转矩和转矩脉动,同时获得较小的转矩脉动,实现了多个目标的同步优化;所述的分层多目标优化方法适用于优化参数较多的情况下使用,适用于的开关磁阻电机设计阶段。
一种整距绕组轴向磁通开关磁阻电机的多目标优化方法,能够大幅节约优化时间,其步骤如下:
选取平均转矩、动态转矩脉动和单位质量平均转矩这三个指标为优化目标;
根据以下公式确定电机的平均转矩T avg
Figure PCTCN2022144413-appb-000001
根据以下公式确定电机的转矩脉动T rip
Figure PCTCN2022144413-appb-000002
根据以下公式确定电机的单位质量平均转矩T apm
Figure PCTCN2022144413-appb-000003
其中,n为分析过程转子角度的选取个数,T i为不同角度时的电机的电磁转矩值;T max为一段采样周期内电机的电磁转矩最大值,T min为一段采样周期内电机的电磁转矩最小值;M fe为电机铁心质量,M cu为电机绕组线圈质量;
以开关磁阻电机的关键几何尺寸参数为设计变量,其中包括转子极靴长度l rs,定子极靴长度l ss,转子槽宽w ro,定子槽宽w so,定转子极靴间隔宽度w sro,转子极长度l rp,定子极长度l sp,和定子轭厚l sy
首先计算各个优化参数对平均电磁转矩、转矩脉动和转矩密度等优化目标的综合灵敏度指标,根据综合灵敏度指标的大小,将优化参数分层为高灵敏度参数和低灵敏度参数;
设转子极靴长度l rs,定子极靴长度l ss,转子槽宽w ro,定子槽宽w so,定转子极靴间隔宽度w sro,转子极长度l rp,定子极长度l sp,和定子轭厚l sy的灵敏度参数分别为0.177,0.248,0.382,0.344,0.254,0.137,0.178和0.160;
选取0.2作为区分高灵敏度和低灵敏度参数的界限,灵敏度指标大于的0.2为高灵敏度参数,灵敏度指标小于的0.2为低灵敏度参数,选择定子极靴长度l ss,转子槽宽w ro,定子槽宽w so和定转子极靴间隔宽度w sro为高灵敏度参数,择转子极靴长度l rs,转子极长度l rp,定子极长度l sp,和定子轭厚l sy为低灵敏度参数;
对于高灵敏度参数,采用响应表面法建立代理模型结合非支配排序的遗传算法NSGA-Ⅱ进行优化:首先确定采样点,利用三维有限元方法得到不同参数组合下的设计目标结果,从而建立4个高灵敏度参数关于3个优化目标的二维响应面模型:
Figure PCTCN2022144413-appb-000004
Figure PCTCN2022144413-appb-000005
Figure PCTCN2022144413-appb-000006
然后利用NSGA-Ⅱ算法,通过权衡三个优化目标的取值,得到优化解集,从中选取一组满意解作为高灵敏度参数的优化方案;
而对于低灵敏度参数,采用构造田口正交矩阵的方法进行优化:首先确定采样点,利用 三维有限元方法得到不同参数组合下的设计目标结果,从而构造出4个低灵敏度参数关于3个优化目标的正交矩阵表,再利用均值法,得到一组最优解作为低灵敏度参数的优化方案;
最后将得到的高灵敏度参数方案结合低灵敏度参数方案,代入到电机有限元模型中,得到设计目标的结果,比较优化方案与初始方案的效果。
有益效果:
本发明中涉及的电机绕组采用整距绕组配置,绕组安装在定子槽内,相对的定子槽的线圈方向相反,转子铁心采用分块结构,转子铁心块通过由隔磁材料制成的转子盘固定。相较于采用集中绕组配置的传统轴向磁通开关磁阻电机,采用整距绕组的轴向磁通开关磁阻电机结构在相邻的定子极上形成了最短的磁通路径,增大了电机出力,提高了电机的转矩密度,降低了损耗,提高了运行效率。
本发明将整距绕组配置应用到与轴向磁场开关磁阻电机结构上,形成了一种短磁通路径的轴向磁通开关磁阻电机,具有开关磁阻电机和轴向磁场电机的综合优势。通过适当的磁路设计,定子和转子铁心可以被充分利用。轴向磁通电机通常能够比同样的径向磁通电机提供更高的转矩密度和功率密度。同时轴向长度小的轴向磁通开关磁阻电机适用于对电机体积有特殊要求的应用场合,例如电动汽车轮毂电机。
技术优点:
1、整距绕组和分块转子的采用能获得电机相邻磁极间的短磁通路径,不仅减少转子铁心损耗,而且使按照最小磁通原理运行的开关磁阻电机在不对齐位置的磁路相互抵消,可使不对齐磁链有效降低,从而获得更大的最大最小电感比。与传统采用集中绕组的轴向磁通开关磁阻电机相比,相同体积下,电机的额定功率更大,功率密度和转矩密度都获得了提升。
2、定子齿极和分块转子铁心均增加了极靴结构,极靴的采用增大了气隙表面积,在一定程度上提高了电机转矩。
3、双外定子结构冷却方便,具有较大的散热面积,方便热量流通。
4、内转子3表面无凹凸,环形形状比传统凸极形状的开关磁阻电机具有更低的风阻,损耗更小。转子固定盘(303)由既不导磁也不导电的环氧树脂材料叠压而成,起到隔离磁路和降低涡流损耗的作用,环氧树脂材料的密度轻,可降低转子转动惯量,提高电机动态响应速度。
附图说明
图1为本发明实施例所述的整距绕组轴向磁通开关磁阻电机结构的铁心部分示意图;
图2(a)为本发明实施例提供的电机沿外径圆周展开的左定子NNNSSS、右定子SSSNNN绕组配置示意图;
图2(b)为本发明实施例提供的电机沿外径圆周展开的左定子NSNSNS、右定子SNSNSN绕组配置示意图;
图3是为本发明实施例提供的电机结构的转子平面图;
图4(a)为本发明实施例提供的电机B相对齐位置(最大电感位置)的主磁通示意图;
图4(b)为本发明实施例提供的电机B相不对齐位置(最小电感位置)的主磁通示意图;
图5为本发明实施例提供的电机组装示意图;
图6为本发明实施例所述的多目标优化方法流程图;
图7为本发明实施例提供的采用多目标优化方法优化前后的电磁转矩对比图。
具体实施方式
下面结合附图对本发明的实施例做进一步说明:
本发明的实施例提供一种整距绕组轴向磁通开关磁阻电机及其多目标优化方法,如图1所示,所述电机铁心部分包括:左侧定子1、右侧定子2、转子3,绕组配置为整距式励磁绕组。
其中左侧定子铁心1由定子轭101、定子极102、导磁极靴103、定子开槽104组成;转子3由转子齿极301、导磁极靴(302)组成;右侧定子铁心2的结构组成和左侧定子铁心1完全相同,由定子轭201、定子极202、导磁极靴203、定子开槽204组成。整距绕组线圈安装在定子开槽104和204中。
双定子和单转子并行式排列,左侧定子和右侧定子齿极相对的安装在转子盘的两侧,中间设置有气隙。
在本实施例中,所述的单侧定子极数为N s,分块转子数量为N r,m为电机相数。则有N s=2mn,N r=2(m-1)n,其中n为正整数。N r个分块转子沿圆周等间距分布,分布间距为360°/N r
在本实施例的优选方案中,所述轴向磁通开关磁阻电机为6p/4q的三相结构,其中,定子极(槽)数目为6p,转子极数目为4q,其中p,q均为正整数。
例如:如图1所示,采用12槽8极的短磁路双定子轴向磁通开关磁阻电机结构,即单侧定子极数目为12,分块转子数目为8。本权利要求书以相数为3、定子极数为12和转子极数为8的三相12槽8极轴向磁通开关磁阻电机为例,给出所述电机的结构和工作原理。
在本实施例中,共有两种绕组极性配置:一是如图2(a)所示,左侧定子采用NNNSSSNNNSSS(2NNNSSS)的极性配置,右侧定子采用照SSSNNNSSSNNN(2SSSNNN)的极性配置;二是如图2(b)所示,左侧定子采用NSNSNSNSNSNS(6NS)的极性配置,右侧定子采用SNSNSNSNSNSN(6SN)的极性配置。该电机由A、B、C三相组成,且电机的各相绕组分布如图所示。图中。当电流从参考方向流入即电流为正方向时,可标注为A+、B+和C+。当电流从参考方向流出即电流为负方向时,可标注为A-、B-和C-。
在本实施例的优选方案中,所述整距绕组轴向磁通开关磁阻电机采用2NNNSSS和2SSSNNN的绕组极性配置。
如图3(a)所示为所述整距绕组轴向磁通开关磁阻电机结构的转子平面截图,可见转子铁心3由8个分块转子沿圆周等间距分布,分布间距为45°。图3(b)为所述整距绕组轴向磁通开关磁阻电机结构在气隙处的俯视图,可见12个定子齿极沿圆周等间距分布,同时定子槽采用的是平行槽结构。
现有技术中,轴向磁通开关磁阻电机的励磁磁路较长,导致励磁效率低,也增加了损耗。本发明实施例中的整距绕组轴向磁通开关磁阻电机的定子铁心为宽极与窄极交错出现的凸极结构,转子铁心为分块结构,集中式绕组缠绕在定子宽极上,如图2所示,两侧定子在相同位置的槽内绕组线圈极性相反。由于每槽只放置一相绕组线圈的特性,同时转子采用了分块转子结构,励磁磁通在相邻的定子宽极和定子窄极之间形成了短磁通路径。
定义对齐位置:定义定子槽中线和分块转子极中线对齐位置为电机的对齐位置;
定义不对齐位置:定义定子槽中线和转子槽中线对齐位置为电机的不对齐位置。
图4给出了所述整距绕组轴向磁通开关磁阻电机在对齐位置和不对齐位置的磁通路径图。其中图4(a)所示为该电机的对齐位置磁通路径,图4(b)所示为该电机的不对齐位置磁通路径。
可以发现,电机主磁通由安装在定子槽内的励磁绕组产生,相对位置的定子槽绕组极性相反。左定子槽内绕组产生的磁通由左定子轭101出发,经过左定子极102,并穿过左定子极102与转子块3之间的气隙进入转子块3,之后沿着对称路径经过转子块3与左定子极102之间的气隙到达相邻的左定子极102,回到左定子轭101。形成闭合磁路a。
同样地,由于相对位置的定子槽极性相反。右定子槽内绕组产生的磁通由左定子轭201出发,经过右定子极202,并穿过右定子极202与转子块3之间的气隙进入转子块3,之后沿着对称路径经过转子块3与右定子极202之间的气隙到达相邻的右定子极202,回到右定子轭201。形成闭合磁路b。
在不对齐位置时,两个线圈产生的磁通相互抵消。降低了电机的不对齐位置磁链,使电机获得了较大的最大最小电感比。
如图5所示,本发明所述的整距绕组轴向磁通开关磁阻电机完整组装结构,包括左侧定子1、右侧定子2、转子3、转轴4、轴承5、端盖6、键7、机壳8。其中转子铁心3由转子齿级301、导磁极靴302、固定盘303组成。定子铁心1和2与转子铁心3均由硅钢片轴向环绕叠压而成,转子固定盘303由既不导磁也不导电的环氧树脂材料叠压而成,起到隔离磁路 和降低涡流损耗的作用。
将N r个转子铁心块按圆周等距分布安装在转子固定盘303上,将转子3通过键8安装在转轴4上,将整距绕组绕制在左侧定子1和右侧定子2的槽内,在电枢绕组绕制完成后,将左侧定子1和右侧定子2齿极相对分别安装于转子铁心3两侧,并通过轴承5装于转轴4上,随后通过电机端盖6将轴承5的轴向进行固定。其特征在于:整距绕组安装在定子槽内,两块定子相同的槽内线圈极性相反,定转子齿极上有极靴,相邻的分块转子铁心块中间由隔磁材料连接,相邻定子磁极之间形成短磁路。
本发明还提供了一种整距绕组轴向磁通开关磁阻电机的多目标优化方法。如图6所示,一种优化参数分层的多目标优化方法,能够大幅节约优化时间。
选取平均转矩、动态转矩脉动和单位质量平均转矩这三个指标为优化目标。
根据以下公式确定电机的平均转矩T avg
Figure PCTCN2022144413-appb-000007
根据以下公式确定电机的转矩脉动T rip
Figure PCTCN2022144413-appb-000008
根据以下公式确定电机的单位质量平均转矩T apm
Figure PCTCN2022144413-appb-000009
其中,n为分析过程转子角度的选取个数,T i为不同角度时的电机的电磁转矩值;T max为一段采样周期内电机的电磁转矩最大值,T min为一段采样周期内电机的电磁转矩最小值;M fe为电机铁心质量,M cu为电机绕组线圈质量。
以电机的关键几何尺寸参数为设计变量,其中包括转子极靴长度l rs,定子极靴长度l ss,转子槽宽w ro,定子槽宽w so,定转子极靴间隔宽度w sro,转子极长度l rp,定子极长度l sp,和定子轭厚l sy
首先计算各个优化参数对平均电磁转矩、转矩脉动和转矩密度等优化目标的综合灵敏度指标,根据综合灵敏度指标的大小,将优化参数分层为高灵敏度参数和低灵敏度参数。
对于本实施例的8个尺寸结构参数,转子极靴长度l rs,定子极靴长度l ss,转子槽宽w ro,定子槽宽w so,定转子极靴间隔宽度w sro,转子极长度l rp,定子极长度l sp,和定子轭厚l sy的灵敏度参数分别为0.177,0.248,0.382,0.344,0.254,0.137,0.178和0.160。
选取0.2作为区分高灵敏度和低灵敏度参数的界限,灵敏度指标大于的0.2为高灵敏度参 数,灵敏度指标小于的0.2为低灵敏度参数。因此,本实施例选择定子极靴长度l ss,转子槽宽w ro,定子槽宽w so和定转子极靴间隔宽度w sro为高灵敏度参数,本实施例选择转子极靴长度l rs,转子极长度l rp,定子极长度l sp,和定子轭厚l sy为低灵敏度参数。
对于高灵敏度参数,采用响应表面法建立代理模型结合非支配排序的遗传算法(NSGA-Ⅱ)进行优化。首先确定采样点,利用三维有限元方法得到不同参数组合下的设计目标结果,从而建立4个高灵敏度参数关于3个优化目标的二维响应面模型:
Figure PCTCN2022144413-appb-000010
Figure PCTCN2022144413-appb-000011
Figure PCTCN2022144413-appb-000012
然后利用NSGA-Ⅱ算法,通过权衡三个优化目标的取值,得到优化解集,从中选取一组满意解作为高灵敏度参数的优化方案。
而对于低灵敏度参数,采用构造田口正交矩阵的方法进行优化。首先确定采样点,利用三维有限元方法得到不同参数组合下的设计目标结果,从而构造出4个低灵敏度参数关于3个优化目标的正交矩阵表,再利用均值法,得到一组最优解作为低灵敏度参数的优化方案。
最后将得到的高灵敏度参数方案结合低灵敏度参数方案,代入到电机有限元模型中,得到设计目标的结果,比较优化方案与初始方案的效果。
图7为采用所述方法得到的优化方案与初始方案的动态转矩波形对比图,可见所述方法能够获得较高电磁转矩和转矩密度,同时获得较小的转矩脉动,实现了三个目标的同步优化,同时节约了优化时间。适用于电机设计领域,尤其适用于优化参数较多的情况下使用。

Claims (10)

  1. 一种整距绕组轴向磁通开关磁阻电机,其特征在于:包括转轴(4),转轴(4)上设有电机铁芯,电机铁芯包括顺序设置的环形结构的左侧定子(1)、转子(3)、右侧定子(2),转轴(4)通过轴承(5)与固定安装左侧定子(1)、右侧定子(2)的端盖(6)连接,左侧定子(1)、右侧定子(2)分别设置在位于转子(3)两侧的端盖(6)中,左侧定子(1)、右侧定子(2)的端盖(6)外沿设有封口的机壳(7);
    所述左侧定子(1)包括左定子轭(101)、左定子极(102)、左导磁极靴(103)、左定子开槽(104),右侧定子(2)的结构组成和左侧定子(1)完全相同,包括右定子轭(201)、右定子极(202)、右导磁极靴(203)、右定子开槽(204)组成,整距绕组线圈安装在左定子开槽(104)和右定子开槽(204)中;转子(3)包括转子齿级(301)、导磁极靴(302)、固定盘(303),其中固定盘(303)内径通过键(8)安装在转轴(4)上,固定盘(303)上间隔设置转子齿级(301)和导磁极靴(302);转子固定盘(303)由既不导磁也不导电的环氧树脂材料叠压而成,起到隔离磁路和降低涡流损耗的作用;定子齿极和转子分块均设置了导磁极靴,其中左侧定子(1)包括定子极靴103,右侧定子(2)包括定子极靴203,转子铁心块3包括转子极靴302,开关磁阻电机的功率密度与有效气隙面积密切相关,导磁极靴的设置增大了磁极接触面积,使磁通能够更好的沿着短磁通路径通过,在一定程度上增大了电机的功率密度;
    将N r个转子铁心块按圆周等距分布安装在转子固定盘(303)上,将转子(3)通过键(8)安装在转轴(4)上,将整距绕组绕制在左侧定子(1)和右侧定子(2)的槽内,在电枢绕组绕制完成后,将左侧定子(1)和右侧定子(2)齿极相对分别安装于转子(3)两侧,并通过轴承(5)装于转轴(4)上,随后通过电机端盖(6)将轴承(5)的轴向进行固定整距绕组安装在定子槽内,两块定子相同的槽内线圈极性相反,定转子齿极上有极靴,相邻的分块转子铁心块中间由隔磁材料连接,相邻定子磁极之间形成短磁路。
  2. 根据权利要求1所述的整距绕组轴向磁通开关磁阻电机,其特征在于:左侧定子(1)、转子(3)、右侧定子(2)构成双定子和单转子并行式排列,双定子齿极相对的安装在转子盘的两侧,对于m相电机,定子槽数为2mn,分块转子数为2(m-1)n,其中n为正整数。
  3. 根据权利要求1所述的整距绕组轴向磁通开关磁阻电机,其特征在于:电机主磁通由安装在定子槽内的励磁绕组产生,相对位置的定子槽绕组极性相反,左定子开槽(104)绕组产生的磁通由左定子轭(101)出发,经过左定子极(102),并穿过左定子极 (102)与转子(3)之间的气隙进入转子(3),之后沿着对称路径经过转子(3)与左定子极(102)之间的气隙到达相邻的左定子极(102),回到左定子轭(101),形成闭合磁路a;
    同样地,由于相对位置的定子槽极性相反,右定子开槽(204)内绕组产生的磁通由左定子轭(201)出发,经过右定子极(202),并穿过右定子极(202)与转子(3)之间的气隙进入转子(3),之后沿着对称路径经过转子块3与右定子极(202)之间的气隙到达相邻的右定子极(202),回到右定子轭(201),形成闭合磁路b;
    在不对齐位置时,两个线圈产生的磁通相互抵消,降低了电机的不对齐位置磁链,使电机获得了较大的最大最小电感比。
  4. 根据权利要求1所述的整距绕组轴向磁通开关磁阻电机,其特征在于:相邻定子齿极间的的定子开槽是平行槽结构;即在不同半径下的定子槽宽度是固定的,定子槽宽度等于定子齿极在内外径中线处的极弧宽度,同时分块转子极高是定子轭高的两倍。
  5. 根据权利要求1所述的整距绕组轴向磁通开关磁阻电机,其特征在于:定子极靴槽开口长度等于转子极靴槽开口长度,即相邻转子段之间的距离等于相邻定子齿之间的距离;这样有助于减小未对齐位置的磁导,而不影响对齐位置的电感。
  6. 根据权利要求1所述的整距绕组轴向磁通开关磁阻电机,其特征在于:不同于传统双凸极结构开关磁阻电机绕组采用的集中绕组配置,为了磁通以最短磁路闭合,开关磁阻电机绕组采用整距绕组配置,即将整距绕组线圈跨齿安装在左定子开槽(104)和右定子开槽(304)中,在左侧定子(1)中,径向垂直相对的四个线圈相互串联,然后再和右侧定子(2)的相同位置的串联后的线圈相串联构成一相。
  7. 根据权利要求1所述的整距绕组轴向磁通开关磁阻电机,其特征在于:为了在不对齐位置有磁通抵消效果,两侧定子中相对位置的定子槽内所安装的绕组线圈极性相反。
  8. 根据权利要求1所述的整距绕组轴向磁通开关磁阻电机,其特征在于:整距绕组和分块转子的采用能获得电机相邻磁极间的短磁通路径,不仅减少转子铁心损耗,而且使按照最小磁通原理运行的开关磁阻电机在不对齐位置的磁路相互抵消,可使不对齐磁链有效降低,从而获得更大的最大最小电感比;这种特性在电机安匝数较大的情况下尤为凸显,因此所述的轴向磁通开关磁阻电机特别适用于低速大转矩应用,可用于电动汽车轮内直驱电机。
  9. 根据权利要求1所述的整距绕组轴向磁通开关磁阻电机,其特征在于,由于开关磁阻电机结构复杂,尺寸参数较多,采用传统多目标优化方法时计算复杂,耗时较长,提出一种优化参数分层的多目标优化方法;首先计算各个优化参数对平均电磁转矩、转矩脉 动和转矩密度等优化目标的综合灵敏度指标,根据综合灵敏度指标的大小,将优化参数分层为高灵敏度参数和低灵敏度参数;对于高灵敏度参数采用响应表面法建立代理模型结合非支配排序的遗传算法进行优化,对于低灵敏度参数采用田口正交法进行优化;能够获得较高电磁转矩和转矩脉动,同时获得较小的转矩脉动,实现了多个目标的同步优化;所述的分层多目标优化方法适用于优化参数较多的情况下使用,适用于的开关磁阻电机设计阶段。
  10. 一种整距绕组轴向磁通开关磁阻电机的多目标优化方法,能够大幅节约优化时间,其特征在于步骤如下:
    选取平均转矩、动态转矩脉动和单位质量平均转矩这三个指标为优化目标;
    根据以下公式确定电机的平均转矩T avg
    Figure PCTCN2022144413-appb-100001
    根据以下公式确定电机的转矩脉动T rip
    Figure PCTCN2022144413-appb-100002
    根据以下公式确定电机的单位质量平均转矩T apm
    Figure PCTCN2022144413-appb-100003
    其中,n为分析过程转子角度的选取个数,T i为不同角度时的电机的电磁转矩值;T max为一段采样周期内电机的电磁转矩最大值,T min为一段采样周期内电机的电磁转矩最小值;M fe为电机铁心质量,M cu为电机绕组线圈质量;
    以开关磁阻电机的关键几何尺寸参数为设计变量,其中包括转子极靴长度l rs,定子极靴长度l ss,转子槽宽w ro,定子槽宽w so,定转子极靴间隔宽度w sro,转子极长度l rp,定子极长度l sp,和定子轭厚l sy
    首先计算各个优化参数对平均电磁转矩、转矩脉动和转矩密度等优化目标的综合灵敏度指标,根据综合灵敏度指标的大小,将优化参数分层为高灵敏度参数和低灵敏度参数;
    设转子极靴长度l rs,定子极靴长度l ss,转子槽宽w ro,定子槽宽w so,定转子极靴间隔宽度w sro,转子极长度l rp,定子极长度l sp,和定子轭厚l sy的灵敏度参数分别为0.177,0.248,0.382,0.344,0.254,0.137,0.178和0.160;
    选取0.2作为区分高灵敏度和低灵敏度参数的界限,灵敏度指标大于的0.2为高灵敏度参数,灵敏度指标小于的0.2为低灵敏度参数,选择定子极靴长度l ss,转子槽宽w ro,定子槽宽w so和定转子极靴间隔宽度w sro为高灵敏度参数,择转子极靴长度l rs,转子极长度 l rp,定子极长度l sp,和定子轭厚l sy为低灵敏度参数;
    对于高灵敏度参数,采用响应表面法建立代理模型结合非支配排序的遗传算法NSGA-Ⅱ进行优化:首先确定采样点,利用三维有限元方法得到不同参数组合下的设计目标结果,从而建立4个高灵敏度参数关于3个优化目标的二维响应面模型:
    Figure PCTCN2022144413-appb-100004
    Figure PCTCN2022144413-appb-100005
    Figure PCTCN2022144413-appb-100006
    然后利用NSGA-Ⅱ算法,通过权衡三个优化目标的取值,得到优化解集,从中选取一组满意解作为高灵敏度参数的优化方案;
    而对于低灵敏度参数,采用构造田口正交矩阵的方法进行优化:首先确定采样点,利用三维有限元方法得到不同参数组合下的设计目标结果,从而构造出4个低灵敏度参数关于3个优化目标的正交矩阵表,再利用均值法,得到一组最优解作为低灵敏度参数的优化方案;
    最后将得到的高灵敏度参数方案结合低灵敏度参数方案,代入到电机有限元模型中,得到设计目标的结果,比较优化方案与初始方案的效果。
PCT/CN2022/144413 2022-05-16 2022-12-31 一种整距绕组轴向磁通开关磁阻电机及其多目标优化方法 WO2023221532A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210527934.5A CN115001229A (zh) 2022-05-16 2022-05-16 一种整距绕组轴向磁通开关磁阻电机及其多目标优化方法
CN202210527934.5 2022-05-16

Publications (1)

Publication Number Publication Date
WO2023221532A1 true WO2023221532A1 (zh) 2023-11-23

Family

ID=83027439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/144413 WO2023221532A1 (zh) 2022-05-16 2022-12-31 一种整距绕组轴向磁通开关磁阻电机及其多目标优化方法

Country Status (2)

Country Link
CN (1) CN115001229A (zh)
WO (1) WO2023221532A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117526659A (zh) * 2023-11-27 2024-02-06 皖西学院 一种低损耗开关磁阻电机及其控制系统
CN117709167A (zh) * 2024-02-02 2024-03-15 山西省机电设计研究院有限公司 基于有限元模型的电机设计优化方法、存储介质及设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115001229A (zh) * 2022-05-16 2022-09-02 中国矿业大学 一种整距绕组轴向磁通开关磁阻电机及其多目标优化方法
CN116191800B (zh) * 2023-02-20 2023-12-22 中国矿业大学 一种短磁路轴径向混合磁通开关磁阻电机及控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007060748A (ja) * 2005-08-22 2007-03-08 Sumitomo Electric Ind Ltd 超電導多軸モータおよびそれを備えた車両
KR101842827B1 (ko) * 2017-02-07 2018-03-28 경성대학교 산학협력단 이중 고정자 Axial Field형 스위치드 릴럭턴스 전동기
CN107979192A (zh) * 2016-10-24 2018-05-01 南京理工大学 一种新型轴向结构的混合励磁开关磁阻电机
CN107979255A (zh) * 2016-10-24 2018-05-01 南京理工大学 一种大转矩低脉动的双定子轴向磁通开关磁阻电机
CN112054643A (zh) * 2020-08-26 2020-12-08 中国矿业大学 一种无定子轭部相间耦合式轴向磁通磁阻电机
CN115001229A (zh) * 2022-05-16 2022-09-02 中国矿业大学 一种整距绕组轴向磁通开关磁阻电机及其多目标优化方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007060748A (ja) * 2005-08-22 2007-03-08 Sumitomo Electric Ind Ltd 超電導多軸モータおよびそれを備えた車両
CN107979192A (zh) * 2016-10-24 2018-05-01 南京理工大学 一种新型轴向结构的混合励磁开关磁阻电机
CN107979255A (zh) * 2016-10-24 2018-05-01 南京理工大学 一种大转矩低脉动的双定子轴向磁通开关磁阻电机
KR101842827B1 (ko) * 2017-02-07 2018-03-28 경성대학교 산학협력단 이중 고정자 Axial Field형 스위치드 릴럭턴스 전동기
CN112054643A (zh) * 2020-08-26 2020-12-08 中国矿业大学 一种无定子轭部相间耦合式轴向磁通磁阻电机
CN115001229A (zh) * 2022-05-16 2022-09-02 中国矿业大学 一种整距绕组轴向磁通开关磁阻电机及其多目标优化方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117526659A (zh) * 2023-11-27 2024-02-06 皖西学院 一种低损耗开关磁阻电机及其控制系统
CN117526659B (zh) * 2023-11-27 2024-05-17 皖西学院 一种低损耗开关磁阻电机及其控制系统
CN117709167A (zh) * 2024-02-02 2024-03-15 山西省机电设计研究院有限公司 基于有限元模型的电机设计优化方法、存储介质及设备
CN117709167B (zh) * 2024-02-02 2024-04-19 山西省机电设计研究院有限公司 基于有限元模型的电机设计优化方法、存储介质及设备

Also Published As

Publication number Publication date
CN115001229A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
WO2023221532A1 (zh) 一种整距绕组轴向磁通开关磁阻电机及其多目标优化方法
Li et al. Analysis of fractional-slot concentrated winding PM vernier machines with regular open-slot stators
Eskandari et al. An improved 9/12 two-phase E-core switched reluctance machine
CN108448849B (zh) 一种定子永磁型双转子磁场调制电机及其设计方法
CN103490573B (zh) 一种轴向磁场磁通切换型表贴式永磁记忆电机
CN107222075B (zh) 一种具有t型铁心内定子的双定子混合励磁电机
CN109194082B (zh) 宽弱磁扩速低转子损耗的非晶合金轴向磁通电机
CN105515229B (zh) 一种盘式电机
Wan et al. A novel transverse flux machine for vehicle traction aplications
CN106787562A (zh) 交替极混合励磁直驱游标电机
Gao et al. Synthesis of a flux modulation machine with permanent magnets on both stator and rotor
CN109217596A (zh) 一种永磁无刷双转子电机
CN110460175A (zh) 一种轴向磁通集中绕组型混合励磁电机
CN111404290B (zh) 一种集中绕组横向磁通永磁同步电机
CN110752728B (zh) 一种L型双层Halbach磁通切换永磁电机
CN103312104B (zh) 双转子磁通切换永磁电机
Tan et al. Analysis of a new flux switching permanent magnet linear motor
WO2023216635A1 (zh) 一种宽窄定子极轴向磁通开关磁阻电机及其控制方法
CN104993629B (zh) 一种绕线式直线无刷双馈发电机
CN104065227A (zh) 双凸极电机的弱磁方法及宽调速双凸极混合励磁电机
CN107276350B (zh) 一种双定子混合励磁电机
Zhao et al. Influence of rotor-pole number on electromagnetic performance of novel double-rotor hybrid excited axial switched-flux permanent-magnet machines for EV/HEV applications
CN202309460U (zh) 大容量外转子三面定子横向磁通永磁风力发电机
CN208924074U (zh) 一种永磁无刷双转子电机
Asgari et al. A dual-stator machine with diametrically magnetized PM: Analytical air-gap flux calculation, efficiency optimization, and comparison with conventional dual-stator machines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942551

Country of ref document: EP

Kind code of ref document: A1