WO2023221358A1 - 一种防侧滑性能良好的深水自升式风电安装平台桩靴 - Google Patents

一种防侧滑性能良好的深水自升式风电安装平台桩靴 Download PDF

Info

Publication number
WO2023221358A1
WO2023221358A1 PCT/CN2022/121243 CN2022121243W WO2023221358A1 WO 2023221358 A1 WO2023221358 A1 WO 2023221358A1 CN 2022121243 W CN2022121243 W CN 2022121243W WO 2023221358 A1 WO2023221358 A1 WO 2023221358A1
Authority
WO
WIPO (PCT)
Prior art keywords
pile
shoe body
pin
ground
spud
Prior art date
Application number
PCT/CN2022/121243
Other languages
English (en)
French (fr)
Inventor
渠基顺
谷家扬
陶延武
张忠宇
王丽元
Original Assignee
江苏科技大学
江苏科技大学海洋装备研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏科技大学, 江苏科技大学海洋装备研究院 filed Critical 江苏科技大学
Priority to KR1020237011589A priority Critical patent/KR20230161412A/ko
Publication of WO2023221358A1 publication Critical patent/WO2023221358A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/72Pile shoes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B17/02Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor placed by lowering the supporting construction to the bottom, e.g. with subsequent fixing thereto
    • E02B17/027Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor placed by lowering the supporting construction to the bottom, e.g. with subsequent fixing thereto steel structures
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/42Foundations for poles, masts or chimneys
    • E02D27/425Foundations for poles, masts or chimneys specially adapted for wind motors masts
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/52Submerged foundations, i.e. submerged in open water
    • E02D27/525Submerged foundations, i.e. submerged in open water using elements penetrating the underwater ground
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/16Arrangement or construction of joints in foundation structures
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2250/00Production methods
    • E02D2250/0061Production methods for working underwater
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2600/00Miscellaneous
    • E02D2600/30Miscellaneous comprising anchoring details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Definitions

  • the invention relates to the technical field of wind power installation platform manufacturing, and in particular to a deep water self-elevating wind power installation platform spud shoe with good anti-side slip performance.
  • the wind power installation platform is an important basic equipment for the construction of offshore wind power projects.
  • the self-elevating wind power installation platform has legs that can rise and fall freely. During operation, the legs extend down to the seabed and stand on the seabed together with the pile boots. The legs are used to hold up the platform and keep the bottom of the platform a certain distance away from the sea. This avoids the impact of sea waves on the platform and enables operations to be carried out on the platform.
  • This measure has the following shortcomings, specifically: 1) In order to increase the contact area between the spud boot and the seabed geology, it is necessary to further increase the structural size of the spud boot, which results in a larger structural weight and poor economic performance; 2) increased structural size of the spud boot At the same time, all hanging loads increase when pulling out piles, which requires higher lifting capacity of the wind power installation platform lifting system and is not conducive to rapid pile pulling.
  • An anti-slip pile boot includes a pile boot body and an anti-skid plate.
  • a number of anti-skid plates are arranged at the bottom of the spud boot body in a centrally symmetrical manner.
  • the anti-skid plate includes the anti-skid plate body, connecting posts and wedge-shaped cutting teeth. The upper end of the anti-skid plate body is fixedly connected to the bottom of the spud boot body through the connecting posts.
  • the lower end of the skid plate body is provided with a wedge shape. Cutting teeth.
  • this technology has the following problems, specifically: 1) there are too many anti-skid plates and it is difficult to perform assembly operations, which is very labor-intensive and time-consuming; 2) when the platform performs multiple pile insertion and extraction operations, all the anti-skid plates Larger loads are prone to damage, and they are directly connected to the main structure of the spud shoe, causing further damage to the spud shoe. Subsequent repairs require a large amount of manpower and material resources; 3) When encountering extreme sea conditions, too many anti-skid plates are inserted into the seabed. Due to the geology, the pile pulling time is too long and the pile boots cannot be discarded quickly, thus increasing the emergency risk. Therefore, it is urgent for this research group to solve the above problems.
  • the research team of the present invention collected relevant information, and after multiple evaluations and considerations, as well as continuous experiments and modifications by the team members, finally resulted in a deepwater self-elevating vehicle with excellent anti-skid performance.
  • the present invention relates to a deepwater self-elevating wind power installation platform spud shoe with good anti-sideslip performance, including a spud shoe body.
  • the pile shoe body and the pile leg unit are integrated into one piece.
  • the pile boots of the deepwater self-elevating wind power installation platform with good anti-sideslip performance also include anti-slip units.
  • the anti-slip unit is used to improve the anti-side slip resistance of the spud boot body, and it is composed of multiple anti-slip sub-units assembled in the spud boot body.
  • the anti-slip subunit includes spiked ground pins and drag sections. The drag part is arranged in the spud boot body and is matched with the ground spike.
  • the spike pin is inserted into the spud shoe body and is maintained at a theoretical design position relative to the spud shoe body by the pulling force from the drag part.
  • the pile insertion operation When the pile insertion operation is performed, the ground pin penetrates into the seabed formation due to the downward pressure.
  • the pile pulling operation is performed, the ground pin is pulled out from the seabed stratum or from the pile shoe body due to the pull out force.
  • the number of anti-slip sub-units is set to 3 and evenly distributed around the central axis of the spud shoe body.
  • the drag part includes a force-bearing member and a flexible tension member.
  • the load-bearing member is fixed in the cavity of the spud shoe body and is located on one side of the ground-piercing pin.
  • the flexible tension member is connected to the upper end of the ground-piercing pin, and is directly pulled by the force-bearing member.
  • the load-bearing part is preferably a plastic part, and its tensile strength is lower than 30Mpa.
  • the flexible tension member is preferably a chain. Under normal pile pulling conditions, the load-bearing member always exerts a pulling force toward the ground pin through the flexible tension member. In the case of abnormal pile pulling, the load-bearing member is broken due to the excessive pulling force from the flexible tension member, so as to relieve the pull on the ground pin.
  • the drag part also includes a chain guide assembly.
  • the chain guide assembly includes a support base, a pin and a guide sprocket.
  • the support seat is also arranged in the cavity of the spud shoe body, and is maintained at the theoretical design position with the load-bearing member.
  • a receiving groove for loading the guide sprocket is provided in the support seat.
  • the pin is inserted into the support base and crosses the accommodation groove.
  • the guide sprocket is sleeved on the pin shaft and can freely perform circumferential rotation when acted upon by the friction of the flexible tension member.
  • the anti-slip subunit also includes a vertical pipe and a guide sleeve.
  • the vertical pipe is vertically inserted and fixed in the cavity of the pile shoe body.
  • the vertical pipe is provided with a through channel for the flexible tension member to freely pass through.
  • the guide sleeve is also inserted and fixed in the cavity of the spud shoe body, and is connected with the lower end of the standpipe.
  • the guide sleeve is provided with an accommodating cavity that matches the shape of the ground pin. In the case of abnormal pile pulling, the load-bearing member is broken due to the excessive pulling force from the flexible tension member, and the ground pin loses the pulling force and is eventually left in the seabed formation.
  • a tapered thorn section is formed on the free end of the thorn pin, and its taper is controlled at 1:5 to 1:7.
  • an anti-wear coating that completely covers the tapered thorn section is added to the outer wall of the thorn pin.
  • At least one oblique thorn section is formed on the peripheral side wall of the thorn pin above the tapered thorn section, and its inclination angle ⁇ is controlled at 30 to 45°.
  • the spud shoe body is equipped with multiple anti-slip sub-units at the same time.
  • each anti-slip subunit includes an independent ground-piercing pin inserted into the spud shoe body.
  • the ground pin first contacts the seabed stratum, and under the continuous action of the downward pressure, it gradually penetrates deep into the seabed stratum until the bottom wall of the pile shoe body contacts the seabed stratum, thereby effectively The lateral slip resistance of the pile boots is improved, thereby enabling the pile legs to withstand the impact of huge waves at sea, ultimately ensuring the application safety of the deepwater self-elevating wind power installation platform.
  • ground-piercing pin is inserted and assembled with the spud shoe body due to the pulling force.
  • the ground pin cannot be smoothly extracted from the seabed stratum, it can also be quickly extracted from the pile shoe body, and is finally left alone in the seabed stratum.
  • Figure 1 is an application state diagram when the pile shoes and pile legs of the deepwater self-elevating wind power installation platform with good anti-sideslip performance in the present invention are mated.
  • Figure 2 is a schematic three-dimensional view of the pile boots of the deepwater self-elevating wind power installation platform with good anti-side slip performance from the first perspective of the present invention.
  • Figure 3 is a schematic three-dimensional view of the spud shoe of the deepwater self-elevating wind power installation platform with good anti-side slip performance from the second perspective of the present invention.
  • FIG. 4 is a front view of FIG. 2 .
  • Fig. 5 is a cross-sectional view taken along line A-A in Fig. 4 .
  • Figure 6 is a three-dimensional schematic view of the spud shoe of the deepwater self-elevating wind power installation platform with good anti-sideslip performance in the third perspective of the present invention (with the front shell plate of the spud shoe body hidden).
  • FIG. 7 is an enlarged view of part I of FIG. 6 .
  • 1-Stake shoe body 2-Anti-slip unit; 21-Anti-slip sub-unit; 211-Puncture pin; 2111-Conical thorn section; 2112-Oblique thorn section; 212-Drag part; 2121-Plastic Parts; 2122-chain; 2123-guide chain assembly; 21231-support seat; 21232-pin; 21233-guide sprocket; 213-stand pipe; 214-guide sleeve.
  • the pile boots are assembled at the lower ends of the pile legs, and the two work together to achieve stable support of the wind power installation platform.
  • Figures 2 and 3 respectively show the three-dimensional views of the spud boots of the deepwater self-elevating wind power installation platform with good anti-sideslip performance in the present invention from two different perspectives. From the schematic diagram, it can be seen that it is mainly composed of several parts such as the spud shoe body 1 and the anti-slip unit unit 2. Among them, the pile shoe body 1 is integrated with a plurality of pile legs that can be vertically inserted into sea water.
  • the anti-slip unit 2 is used to improve the anti-side slip resistance of the spud boot body, and is composed of a plurality of anti-slip sub-units 21 assembled in the spud boot body 1 .
  • the number of anti-slip subunits 21 is set to 3, and they are evenly distributed circumferentially around the central axis of the spud shoe body 1 .
  • the anti-slip subunit 21 preferably includes a spiked ground pin 211 and a drag portion 212 .
  • the drag part 212 is arranged in the spud shoe body 1 and matches with the ground-piercing pin 211.
  • the ground-piercing pin 211 is inserted into the spud shoe body 1 and is maintained at a theoretical design position relative to the spud shoe body 1 by the pulling force from the drag portion 212 .
  • the ground piercing pin 211 first contacts the seabed stratum, and gradually penetrates deep into the seabed stratum under the continuous action of the downward pressure, until the bottom wall of the pile shoe body 1 contacts the seabed stratum, thereby It effectively improves the lateral slip resistance of the pile boots, thereby enabling the pile legs to withstand the impact of huge waves at sea, ultimately ensuring the application safety of the deepwater self-elevating wind power installation platform.
  • the free end of the ground-piercing pin 211 can be A tapered thorn section 2111 is formed, and its taper is controlled at 1:5 to 1:7.
  • an anti-wear coating (not shown in the figure) can also be added on the outer wall of the thorn pin 211, and the tapered thorn section 2111 is preferably fully covered.
  • the drag portion 212 can adopt a variety of design structures to pull the ground spike 211 so that it always maintains a correct assembly relationship with the spud shoe body 1 .
  • the drag part 212 preferably includes There are plastic parts 2121 and chains 2122.
  • the plastic part 2121 is fixed in the cavity of the spud shoe body 1 and is located on one side of the ground-piercing pin 211 .
  • the chain 2122 is connected to the upper end of the ground stabbing pin 211, and is directly pulled by the plastic part 2121.
  • the plastic part 2121 Under normal pile pulling conditions, the plastic part 2121 always exerts a pulling force toward the ground pin 211 through the chain 2122.
  • the plastic part 2121 tensile strength should be lower than 30Mpa
  • the plastic part 2121 is broken due to the excessive pulling force from the chain 2122, so as to relieve the pull on the ground pin 211. Pull to ensure that the pile shoe body 1 can be pulled out from the seabed formation smoothly and quickly to reduce emergency risks.
  • the drag part 212 is also equipped with a guide chain assembly 2123 to avoid jamming during the process of dragging or loosening the ground stabbing pin 211.
  • the chain guide assembly 2123 includes a support base 21231 , a pin 21232 and a guide sprocket 21233 .
  • the support seat 21231 is also arranged in the cavity of the spud shoe body 1, and is maintained at the theoretical design position with the plastic part 2121.
  • a receiving groove for installing the guide sprocket 21233 is provided in the support seat 21231.
  • the pin 21232 is inserted into the support base 21231 and traverses the accommodation groove.
  • the guide sprocket 21233 is sleeved on the pin 21232, and an annular guide groove matching the lock chain 2122 is opened around its outer circumferential side wall. During the process of realizing or releasing the pulling operation on the stabbing ground pin 211, the chain 2122 always slides along the annular guide groove, and the guide sprocket 21233 can freely perform circumferential rotation motion due to the friction force of the chain 2122.
  • the anti-slip subunit 21 is also equipped with a vertical pipe 213 and a guide sleeve 214.
  • the vertical pipe 213 is inserted in an upright shape and fixed in the cavity of the spud shoe body 1 .
  • the vertical pipe 213 is provided with a through passage for the chain 2122 to freely pass through.
  • the guide sleeve 214 is also inserted and fixed in the cavity of the spud shoe body 1, and is connected with the lower end of the vertical pipe 213.
  • the guide sleeve 214 is provided with an accommodating cavity that matches the shape of the ground pin 211 .
  • the plastic part 2121 is broken due to the excessive pulling force from the chain 2122, and the ground pin 211 loses the pulling force and is finally left in the seabed stratum.
  • the guide sleeve 214 serves as a mating transition between the ground pin 211 and the spud shoe body 1, which can effectively increase the holding force of the ground pin 211, thereby preventing it from being subjected to excessive lateral forces. And the "dumping" phenomenon occurs.

Abstract

本发明涉及了一种防侧滑性能良好的深水自升式风电安装平台桩靴,包括桩靴本体和抗滑移单元。桩靴本体与桩腿单元插配为一体。抗滑移单元由多个组装于桩靴本体内的抗滑移子单元构成。抗滑移子单元包括刺地销和拖拽部。刺地销插配于桩靴本体内,且受到来自于拖拽部的牵拉力作用而相对于桩靴本体保持于理论设计位置。在执行插桩进程中,刺地销最先与海底地层相顶触,且在下压力的持续作用下逐渐地深入至海底地层以下,从而有效地提升了桩靴的横向抗滑移能力。另外,执行拔桩操作时,某些极端状况下,当刺地销不能顺利地由海底地层中脱出时,其亦可快速地由桩靴本体中脱出,而最终被单独地留置于海底地层中,利于快速拔桩操作的实施。

Description

一种防侧滑性能良好的深水自升式风电安装平台桩靴 技术领域
本发明涉及风电安装平台制造技术领域,尤其是一种防侧滑性能良好的深水自升式风电安装平台桩靴。
背景技术
海上风力发电作为无污染的可再生能源开发,发展非常迅速,风电安装平台作为海上风电项目建设的一个重要基础装备。自升式风电安装平台带有能够自由升降的桩腿,作业时桩腿下伸到海底,与桩靴一起站立在海床上,利用桩腿托起平台,并使平台底部离开海面一定的距离,从而避免海上浪流对平台的影响,可在平台上进行作业。
目前,随着风电安装作业从50m水深向80m深水迈进,海上浪流载荷加大导致桩靴所受横向载荷变大,桩靴的横向抗滑移能力需进一步加强。为了解决上述问题,较为常用的措施为通过加大桩靴与海底地质的接触面积。该措施存在以下缺点,具体:1)为加大桩靴与海底地质的接触面积,需要进一步加大桩靴的结构尺寸,结构重量较大,经济性能差;2)桩靴结构尺寸加大的同时,拔桩时所有垂下载荷加大,对风电安装平台升降系统提升能力要求变高,且不利于快速拔桩。
根据最新研究成果,为了增强桩靴的横向抗滑移能力,亦可以在桩靴的底壁上增加一定数量的垂向防滑板,以插入海底地质中,例如中国实用新型专利CN202120592152.0公开了一种抗滑移桩靴,包括桩靴本体和防滑板。桩靴本体底部以中心对称的方式设置若干数量的防滑板,防滑板包括防滑板本体、连接柱和楔形切削齿,防滑板本体上端通过连接柱固定连接于桩靴本体底部,滑板本体下端设置楔形切削齿。虽说防滑板的设置可以有效地提升桩靴的抗滑移能力。然而,该技术却存在有以下问题,具体为:1)防滑板布置过多,且难以执行装配操作,组装工作十分耗神、耗时;2)平台多次进行插拔桩作业时,防滑板所有载荷较大容易发生破坏,且与桩靴本体结构直接连接,导致桩靴进而发生破坏, 后续需投入较大的人力、物力进行返修;3)当遇到极端海况前,过多防滑板插入海底地质,拔桩时间过长,不能快速地舍弃桩靴,从而增加了应急风险。因而,亟待本课题组解决上述问题。
发明内容
故,本发明课题组鉴于上述现有的问题以及缺陷,乃搜集相关资料,经由多方的评估及考量,并经过课题组人员不断实验以及修改,最终导致该防侧滑性能良好的深水自升式风电安装平台桩靴的出现。
为了解决上述技术问题,本发明涉及了一种防侧滑性能良好的深水自升式风电安装平台桩靴,包括桩靴本体。桩靴本体与桩腿单元插配为一体。防侧滑性能良好的深水自升式风电安装平台桩靴还包括抗滑移单元。抗滑移单元用来提升桩靴本体的抗侧滑阻力,且其由多个组装于桩靴本体内的抗滑移子单元构成。抗滑移子单元包括有刺地销和拖拽部。拖拽部布置于桩靴本体内,且与刺地销相配套。刺地销插配于桩靴本体内,且受到来自于拖拽部的牵拉力作用而相对于桩靴本体保持于理论设计位置。当执行插桩操作时,刺地销因受到下压力作用而刺入海底地层。而当执行拔桩操作时,刺地销因受到拔出力作用而由海底地层中脱出,抑或由桩靴本体中脱出。
作为本发明技术方案的进一步改进,抗滑移子单元的数目设为3,且围绕于桩靴本体的中心轴线周向均布。
作为本发明技术方案的更进一步改进,拖拽部包括有承力件和柔性受拉件。承力件固定于桩靴本体的空腔中,且位于刺地销的一侧。柔性受拉件与刺地销的上端部相连,且其直接被承力件所牵拉。
作为本发明技术方案的更进一步改进,承力件优选为塑胶件,且其抗拉强度低于30Mpa。柔性受拉件优选为锁链。正常拔桩情形下,承力件借由柔性受拉件始终向着刺地销施加一牵拉力。而在非正常拔桩情形下,承力件因受到来自于柔性受拉件超限牵拉力作用而破断,以解除对刺地销的牵拉。
作为本发明技术方案的更进一步改进,拖拽部还包括有导链组件。导链组件包括有支撑座、销轴和导链轮。支撑座亦布置于桩靴本体的空腔中,且与承力件保持于理论设计位置。在支撑座内开设有一用来装入导链轮的容置凹槽。销轴插配于支撑座上,且横穿容置凹槽。导链轮套设于销轴上,且受到柔性受拉件摩擦力作用时可自由地执行周向旋转运动。
作为本发明技术方案的更进一步改进,抗滑移子单元还包括有竖管和导正套。竖管呈竖立状插配、且固定于桩靴本体的空腔中。竖管内设有一供柔性受拉件自由穿过的贯穿通道。导正套亦插配、固定于桩靴本体的空腔中,且与竖管的下端部相对接。在导正套内设有一与刺地销外形相适配的容置腔。在非正常拔桩情形下,承力件因受到来自于柔性受拉件超限牵拉力作用而破断,刺地销因失去牵拉力的作用而最终留置于海底地层中。
作为本发明技术方案的更进一步改进,在刺地销的自由端成型出有锥形刺地段,且其锥度控制在1:5~1:7。
作为本发明技术方案的更进一步改进,在刺地销的外侧壁上增设有完全覆盖锥形刺地段的抗磨涂层。
作为本发明技术方案的更进一步改进,位于锥形刺地段的上方,在刺地销的周侧壁上成型出有至少一个斜引刺地段,且其倾斜角β控制在30~45°。
相较于传统设计结构的风电安装平台桩靴,在本发明所公开的技术方案中,其桩靴本体同时配套有多个抗滑移子单元。且每个抗滑移子单元均包含有一独立的、插配于桩靴本体内的刺地销。在执行插桩进程中,刺地销最先与海底地层相顶触,且在下压力的持续作用下逐渐地深入至海底地层以下,直至桩靴本体的底壁顶触于海底地层,从而有效地提升了桩靴的横向抗滑移能力,进而使得桩腿具备抵御对来自于海上巨浪的冲击力的能力,最终确保了深水自升式风电安装平台的应用安全性。
还需要说明的是,刺地销因受到牵拉力作用而实现与桩靴本体的插 配、组装。执行拔桩操作时,某些极端状况下,当刺地销不能顺利地由海底地层中脱出时,其亦可快速地由桩靴本体中脱出,而最终被单独地留置于海底地层中。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明中防侧滑性能良好的深水自升式风电安装平台桩靴与桩腿相插配时的应用状态图。
图2是本发明中防侧滑性能良好的深水自升式风电安装平台桩靴第一种视角的立体示意图。
图3是本发明中防侧滑性能良好的深水自升式风电安装平台桩靴第二种视角的立体示意图。
图4是图2的正视图。
图5是图4的A-A剖视图。
图6是本发明中防侧滑性能良好的深水自升式风电安装平台桩靴第三种视角的立体示意图(隐去桩靴本体的前壳板状态下)。
图7是图6的I局部放大图。
1-桩靴本体;2-抗滑移单元;21-抗滑移子单元;211-刺地销;2111-锥形刺地段;2112-斜引刺地段;212-拖拽部;2121-塑胶件;2122-锁链;2123-导链组件;21231-支撑座;21232-销轴;21233-导链轮;213-竖管;214-导正套。
具体实施方式
在本发明的描述中,需要理解的是,术语“前”、“后”、“上”、“下”、 “左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
如图1中所示,可知,在实际应用中,桩靴被组装于桩腿的下端,其两者协同作用以实现对风电安装平台的稳定托顶。
下面结合具体实施例,对本发明所公开的内容作进一步详细说明,图2、图3分别示出了本发明中防侧滑性能良好的深水自升式风电安装平台桩靴两种不同视角的立体示意图,可知,其主要由桩靴本体1和抗滑移单元单元2等几部分构成。其中,桩靴本体1与多个可竖插海水中的桩腿插配为一体。抗滑移单元2用来提升桩靴本体的抗侧滑阻力,且其由多个组装于桩靴本体1内的抗滑移子单元21构成。抗滑移子单元21的数目设为3,且围绕于桩靴本体1的中心轴线周向均布。如图4-6中所示,抗滑移子单元21优选包括有刺地销211和拖拽部212。拖拽部212布置于桩靴本体1内,且与刺地销211相配套。刺地销211插配于桩靴本体1内,且受到来自于拖拽部212的牵拉力作用而相对于桩靴本体1保持于理论设计位置。在执行插桩进程中,刺地销211最先与海底地层相顶触,且在下压力的持续作用下逐渐地深入至海底地层以下,直至桩靴本体1的底壁顶触于海底地层,从而有效地提升了桩靴的横向抗滑移能力,进而使得桩腿具备抵御对来自于海上巨浪的冲击力的能力,最终确保了深水自升式风电安装平台的应用安全性。
出于降低刺地销211的下插阻力,进而确保其可更为顺利地、更为彻底地刺入至海底地层以下方面考虑,如图5中所示,可以在刺地销211的自由端成型出有锥形刺地段2111,且其锥度控制在1:5~1:7。
根据长期实验结果表明,经历一段时期的应用,刺地销211因受到摩擦力作用而磨损,进而变钝,如此,不但增加了刺地销211刺入海底地层的困难度,且后续需要耗费大量的人力对其进行返修、更换。鉴于此,作为上述技术方案的进一步优化,还可以在刺地销211的外侧壁上 增设有抗磨涂层(图中未示出),且优先对锥形刺地段2111进行全面覆盖。
再者,结合附图3、4、5、6中所示还可以明确地看出,由刺地销211的外侧壁还向外延伸出有多个斜引刺地段2112,且其倾斜角β控制在30~45°。如此一来,在执行插桩进程中,锥形刺地段2111最先与海底地层相顶触,且在下压力的持续作用下逐渐地深入至海底地层以下设定深度,此时,斜引刺地段2112与海底地层相顶触,同样在下压力的持续作用下逐渐地深入至海底地层以下,直至桩靴本体1的底壁顶触于海底地层。锥形刺地段2111和斜引刺地段2112相互协作以实现对桩靴侧滑位移的限制,可进一步提升桩靴的横向抗滑移能力。
已知,根据设计常识,拖拽部212可以采取多种设计结构以实现对刺地销211的牵拉,进而使其相对于桩靴本体1始终保持有正确组配关系。不过,在此推荐一种设计结构简单,易于制造实施、且后期便于对刺地销211执行换新操作的实施方案,具体如下:结合附图4、5、6可知,拖拽部212优选包括有塑胶件2121和锁链2122。塑胶件2121固定于桩靴本体1的空腔中,且位于刺地销211的一侧。锁链2122与刺地销211的上端部相连,且其直接被塑胶件2121所牵拉。
经历一段时期的应用,当刺地销211达到使用寿命,或其因过快磨损而受损现象发生时,无需破坏桩靴本体1,操作人员即可方便、快捷地解除锁链2122对塑胶件2121的约束,利于后续对其执行换新操作。
正常拔桩情形下,塑胶件2121借由锁链2122始终向着刺地销211施加一牵拉力。当然,执行拔桩操作时,某些极端状况下,当刺地销211不能顺利地由海底地层中脱出时,其亦可快速地由桩靴本体1中脱出,而最终被单独地留置于海底地层中。究其原因在于:而在非正常拔桩情形下,塑胶件2121(抗拉强度宜低于30Mpa)因受到来自于锁链2122超限牵拉力作用而破断,以解除对刺地销211的牵拉,以确保桩靴本体1可顺利地、快速地由海底地层中拔出,以降低应急风险。
结合附图4、5、6还可知,拖拽部212还增设有导链组件2123,以 避免在拖拽或放松刺地销211进程中发生卡滞现象。如图7中所示,导链组件2123包括有支撑座21231、销轴21232和导链轮21233。支撑座21231亦布置于桩靴本体1的空腔中,且与塑胶件2121保持于理论设计位置。在支撑座21231内开设有一用来装入导链轮21233的容置凹槽。销轴21232插配于支撑座21231上,且横穿容置凹槽。导链轮21233套设于销轴21232上,且围绕其外圆周侧壁开设一条与锁链2122相适配的环形导引槽。在实现或解除对刺地销211的牵拉操作进程中,锁链2122始终沿着环形导引槽进行滑动,而导链轮21233因受到锁链2122摩擦力作用时可自由地执行周向旋转运动。
在执行插桩操作进程中,为了确保刺地销211可竖直地插入至海底地层中,进而避免因握持力不足而导致的斜插问题的出现,作为上述技术方案的进一步优化,如图4、5、6中所示,抗滑移子单元21还增设有竖管213和导正套214。竖管213呈竖立状插配、且固定于桩靴本体1的空腔中。竖管213内设有一供锁链2122自由穿过的贯穿通道。导正套214亦插配、固定于桩靴本体1的空腔中,且与竖管213的下端部相对接。在导正套214内设有一与刺地销211外形相适配的容置腔。在非正常拔桩情形下,塑胶件2121因受到来自于锁链2122超限牵拉力作用而破断,刺地销211因失去牵拉力的作用而最终留置于海底地层中。如此,导正套214作为刺地销211和桩靴本体1之间的插配过渡,可有效地提升刺地销211所受到的握持力,进而杜绝了其因受到超限侧向力作用而“倾倒”现象的发生。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (9)

  1. 一种防侧滑性能良好的深水自升式风电安装平台桩靴,包括桩靴本体;所述桩靴本体与桩腿单元插配为一体,其特征在于,还包括抗滑移单元;所述抗滑移单元用来提升所述桩靴本体的抗侧滑阻力,且其由多个组装于所述桩靴本体内的抗滑移子单元构成;所述抗滑移子单元包括有刺地销和拖拽部;所述拖拽部布置于所述桩靴本体内,且与所述刺地销相配套;所述刺地销插配于所述桩靴本体内,且受到来自于所述拖拽部的牵拉力作用而相对于所述桩靴本体保持于理论设计位置;当执行插桩操作时,所述刺地销因受到下压力作用而刺入海底地层;而当执行拔桩操作时,所述刺地销因受到拔出力作用而由海底地层中脱出,抑或由所述桩靴本体中脱出。
  2. 根据权利要求1所述的防侧滑性能良好的深水自升式风电安装平台桩靴,其特征在于,所述抗滑移子单元的数目设为3,且围绕于所述桩靴本体的中心轴线周向均布。
  3. 根据权利要求2所述的防侧滑性能良好的深水自升式风电安装平台桩靴,其特征在于,所述拖拽部包括有承力件和柔性受拉件;所述承力件固定于所述桩靴本体的空腔中,且位于所述刺地销的一侧;所述柔性受拉件与所述刺地销的上端部相连,且其直接被所述承力件所牵拉。
  4. 根据权利要求3所述的防侧滑性能良好的深水自升式风电安装平台桩靴,其特征在于,所述承力件为塑胶件,且其抗拉强度低于30Mpa;所述柔性受拉件为锁链;正常拔桩情形下,所述承力件借由所述柔性受拉件始终向着所述刺地销施加一牵拉力;而在非正常拔桩情形下,所述承力件因受到来自于所述柔性受拉件超限牵拉力作用而破断,以解除对所述刺地销的牵拉。
  5. 根据权利要求4所述的防侧滑性能良好的深水自升式风电安装平台桩靴,其特征在于,所述拖拽部还包括有导链组件;所述导链组件包括有支撑座、销轴和导链轮;所述支撑座亦布置于所述桩靴本体的空腔中,且与所述承力件保持于理论设计位置;在所述支撑座内开设有一用来装入所述导链轮的容置凹槽;所述销轴插配于所述支撑座上,且横穿 所述容置凹槽;所述导链轮套设于所述销轴上,且受到所述柔性受拉件摩擦力作用时可自由地执行周向旋转运动。
  6. 根据权利要求3所述的防侧滑性能良好的深水自升式风电安装平台桩靴,其特征在于,所述抗滑移子单元还包括有竖管和导正套;所述竖管呈竖立状插配、且固定于所述桩靴本体的空腔中;所述竖管内设有一供所述柔性受拉件自由穿过的贯穿通道;所述导正套亦插配、固定于所述桩靴本体的空腔中,且与所述竖管的下端部相对接;在所述导正套内设有一与所述刺地销外形相适配的容置腔;在非正常拔桩情形下,所述承力件因受到来自于所述柔性受拉件超限牵拉力作用而破断,所述刺地销因失去牵拉力的作用而最终留置于海底地层中。
  7. 根据权利要求1-6中任一项所述的防侧滑性能良好的深水自升式风电安装平台桩靴,其特征在于,在所述刺地销的自由端成型出有锥形刺地段,且其锥度控制在1:5~1:7。
  8. 根据权利要求7所述的防侧滑性能良好的深水自升式风电安装平台桩靴,其特征在于,在所述刺地销的外侧壁上增设有完全覆盖所述锥形刺地段的抗磨涂层。
  9. 根据权利要求7所述的防侧滑性能良好的深水自升式风电安装平台桩靴,其特征在于,位于所述锥形刺地段的上方,在所述刺地销的周侧壁上成型出有至少一个斜引刺地段,且其倾斜角β控制在30~45°。
PCT/CN2022/121243 2022-05-17 2022-09-26 一种防侧滑性能良好的深水自升式风电安装平台桩靴 WO2023221358A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020237011589A KR20230161412A (ko) 2022-05-17 2022-09-26 측방향 미끄럼 방지 성능이 양호한 심해 자체 상승식 풍력 발전 설치 플랫폼 파일 슈

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210534696.0A CN115045273B (zh) 2022-05-17 2022-05-17 一种防侧滑性能良好的深水自升式风电安装平台桩靴
CN202210534696.0 2022-05-17

Publications (1)

Publication Number Publication Date
WO2023221358A1 true WO2023221358A1 (zh) 2023-11-23

Family

ID=83159521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121243 WO2023221358A1 (zh) 2022-05-17 2022-09-26 一种防侧滑性能良好的深水自升式风电安装平台桩靴

Country Status (3)

Country Link
KR (1) KR20230161412A (zh)
CN (1) CN115045273B (zh)
WO (1) WO2023221358A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115045273B (zh) * 2022-05-17 2023-02-28 江苏科技大学 一种防侧滑性能良好的深水自升式风电安装平台桩靴
CN115434313A (zh) * 2022-10-19 2022-12-06 江苏科技大学 一种自升式风电安装平台桩靴及与其相适配的插拔桩方法
CN116427400B (zh) * 2023-03-27 2023-09-15 巨杰科技发展集团股份有限公司 一种自升式风电安装平台桩靴及其施工方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234563A (ja) * 2012-05-02 2013-11-21 Korea Inst Of Ocean Science & Technology 海上風力発電機用基礎の洗掘防止用キャップ
CN111042122A (zh) * 2019-12-24 2020-04-21 南通泰胜蓝岛海洋工程有限公司 一种桩腿桩靴及海工平台的拔桩方法
CN112267460A (zh) * 2020-09-03 2021-01-26 中海油能源发展股份有限公司 一种自升式钻井平台主动穿刺桩靴结构及其作业方法
CN112942336A (zh) * 2021-04-20 2021-06-11 中海石油(中国)有限公司 一种自升式钻井平台模块式裙板桩靴及钻井平台
CN214005638U (zh) * 2020-12-04 2021-08-20 江苏海龙风电科技有限公司 一种平台升降液压插销式桩腿
WO2022051827A1 (en) * 2020-09-08 2022-03-17 Horton Do Brasil Tecnologia Offshore, Ltda. Offshore shallow water platforms and methods for deploying same
CN115045273A (zh) * 2022-05-17 2022-09-13 江苏科技大学 一种防侧滑性能良好的深水自升式风电安装平台桩靴

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207193934U (zh) * 2017-07-14 2018-04-06 招商局重工(江苏)有限公司 一种自升式平台八边形桩靴
KR101877971B1 (ko) * 2018-02-05 2018-07-12 주식회사 마성건설 전방위 연성작용을 가지는 내진용 기초파일의 설치구조 및 그 기초파일의 시공방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234563A (ja) * 2012-05-02 2013-11-21 Korea Inst Of Ocean Science & Technology 海上風力発電機用基礎の洗掘防止用キャップ
CN111042122A (zh) * 2019-12-24 2020-04-21 南通泰胜蓝岛海洋工程有限公司 一种桩腿桩靴及海工平台的拔桩方法
CN112267460A (zh) * 2020-09-03 2021-01-26 中海油能源发展股份有限公司 一种自升式钻井平台主动穿刺桩靴结构及其作业方法
WO2022051827A1 (en) * 2020-09-08 2022-03-17 Horton Do Brasil Tecnologia Offshore, Ltda. Offshore shallow water platforms and methods for deploying same
CN214005638U (zh) * 2020-12-04 2021-08-20 江苏海龙风电科技有限公司 一种平台升降液压插销式桩腿
CN112942336A (zh) * 2021-04-20 2021-06-11 中海石油(中国)有限公司 一种自升式钻井平台模块式裙板桩靴及钻井平台
CN115045273A (zh) * 2022-05-17 2022-09-13 江苏科技大学 一种防侧滑性能良好的深水自升式风电安装平台桩靴

Also Published As

Publication number Publication date
CN115045273A (zh) 2022-09-13
KR20230161412A (ko) 2023-11-27
CN115045273B (zh) 2023-02-28

Similar Documents

Publication Publication Date Title
WO2023221358A1 (zh) 一种防侧滑性能良好的深水自升式风电安装平台桩靴
EP2858888B1 (en) Subsea connector
CN115434313A (zh) 一种自升式风电安装平台桩靴及与其相适配的插拔桩方法
CN201649085U (zh) 用于海上钻井的隔水导管打桩作业装置
KR20160028755A (ko) 콘크리트 베이스를 이용한 해상풍력 지지구조물 및 그 시공방법
CN211690420U (zh) 一种基于桶形基础的高度可调式锚泊基础结构
CN102212994A (zh) 用于海上钻井的隔水导管打桩作业装置
CN210263066U (zh) 一种快速安装可回收式桩锚结合基坑支护结构
CN210341912U (zh) 一种海底自弃可回收的自升式钻井平台桩靴和钻井平台
CN208266908U (zh) 一种施工时多桶互嵌组合式锚泊基础
CN113998056B (zh) 一种膨胀式海洋油气平台锚泊桩拴装置
CN109881670B (zh) 一种海底自弃可回收的自升式钻井平台桩靴和钻井平台
CN216041242U (zh) 一种山区桥梁陡坡桩体固定结构
CN206529781U (zh) 一种锚定式抗滑加固结构
CN107012866B (zh) 一种易回收的拉线地锚
CN112681400B (zh) 一种冻土区电线杆防冻胀上拔装置
CN210887119U (zh) 一种环保型水利护坡拆装墙体
CN210341911U (zh) 一种鞋式可海底自弃式自升式钻井平台桩靴和钻井平台
CN209854712U (zh) 一种可降解式自升式钻井平台桩靴和钻井平台
CN217778903U (zh) 一种吸力锚结构
CN218204363U (zh) 一种适用于松软地质的太阳能发电设备用地锚桩
CN214784004U (zh) 一种钢板桩基坑支撑结构
CN108528636A (zh) 一种带圆弧固定板的吸力贯入式平板锚
CN218777659U (zh) 一种海洋浮式平台扩体式锚索系泊结构
CN202518442U (zh) 吸力贯入式弧形板锚及其安装工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942386

Country of ref document: EP

Kind code of ref document: A1