WO2023221085A1 - 具有关键加光位置的眼科镜片 - Google Patents

具有关键加光位置的眼科镜片 Download PDF

Info

Publication number
WO2023221085A1
WO2023221085A1 PCT/CN2022/094080 CN2022094080W WO2023221085A1 WO 2023221085 A1 WO2023221085 A1 WO 2023221085A1 CN 2022094080 W CN2022094080 W CN 2022094080W WO 2023221085 A1 WO2023221085 A1 WO 2023221085A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
lens
center
optical
specified
Prior art date
Application number
PCT/CN2022/094080
Other languages
English (en)
French (fr)
Inventor
沙伊尔·苏海
肖真
蓝卫忠
Original Assignee
菲特兰有限公司
珠海菲特兰医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 菲特兰有限公司, 珠海菲特兰医疗科技有限公司 filed Critical 菲特兰有限公司
Priority to PCT/CN2022/094080 priority Critical patent/WO2023221085A1/zh
Publication of WO2023221085A1 publication Critical patent/WO2023221085A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes

Definitions

  • the present disclosure relates to an ophthalmic lens, and more specifically, an ophthalmic lens with a critical adding position, which is used to prevent the occurrence of myopia or delay the progression of myopia.
  • the human eye has a complex optical system, including: cornea, anterior chamber (aqueous humor), iris (pupil), vitreous body, retina, etc.
  • aqueous humor anterior chamber
  • iris iris
  • vitreous body retina
  • the human eye can form an inverted image on the retina, in which the ciliary muscle plays a focusing role by changing the curvature of the lens.
  • the optical system of the eye should produce an image that is focused on the retina.
  • myopia or hyperopia a commonly known optical disorder occurs: myopia or hyperopia.
  • Eyes can also have other vision defects, such as astigmatism or higher-order optical aberrations such as spherical aberration, coma aberration, etc.
  • the incidence of myopia is increasing year by year globally, especially among teenagers. It is estimated that by 2050, the global population with myopia will reach approximately 5 billion. Myopia may develop into high myopia, and high myopia is closely related to the risk of a variety of eye diseases, such as retinal detachment, cataracts, macular hemorrhage, macular degeneration, glaucoma, etc. 0 to 12 years old is a sensitive period for visual development.
  • the human eye is typically hyperopic, meaning that the axial length of the eyeball is too short relative to its optical power.
  • the elongation process of the eye axis is controlled by a feedback mechanism commonly known as the emmetropization process.
  • the axial length of the eye is controlled by the position of the focal point relative to the retina, but cannot grow shorter. Therefore, it has been proposed that the progression of myopic refractive errors can be controlled by positioning the focus in front of the retina.
  • the Petzval surface When the Petzval plane is in front of the retina, it is called myopic defocus, and vice versa, it is called hyperopic defocus.
  • the Petzval surface produced by conventional monofocal spherical lenses is spherical, and the eyeball is generally ellipsoidal. Therefore, the peripheral Petzval surface is located behind the retina, causing hyperopic defocus and promoting the progression of myopic refractive error.
  • the mainstream design concept of myopia prevention and control lenses is center-for-distance (CD), that is, the center area of the lens has the prescription power for distance vision correction, and the periphery is an area with positive additional power. It causes myopic defocus in front of the retina, thereby inhibiting or slowing down the growth of the axial length of the eye.
  • CD center-for-distance
  • CN110068937A discloses an ophthalmic lens with an optical non-coaxial zone for myopia control.
  • the lens includes a central zone, at least one treatment zone and a transition zone between the two.
  • the central zone has an optical non-coaxial zone for myopia control. Negative power for myopic vision correction, while the treatment area minimizes the creation of focus behind the retinal plane of the wearer's eye through positive added power.
  • CN207867163U discloses a myopia control lens with peripheral defocus composed of an aspheric surface.
  • the lens includes a central optical zone and a peripheral optical zone surrounding the central optical zone.
  • the central optical zone is used to form a clear image on the retina, and
  • the peripheral optical zone has an aspherical outer surface and allows the passing light to be imaged at the position of the peripheral out-of-focus image zone in front of the retina of the eyeball.
  • CN104136964B discloses a multi-focus optical lens, which can be used to treat presbyopia or myopia progression.
  • the lens includes a central optical zone and a peripheral optical zone that produce different focal points, respectively providing central refractive power for distance vision and peripheral power for near vision. Refractive power.
  • E.L. Smith III et al. (Eccentricity-dependent effects of simultaneous competing defocus on emmetropization in infant rhesus monkeys, Vision Research, 17(3):32-40, 2020) use a bifocal lens (zero diopter area in the center, +3D and 3D surrounding areas) Alternating concentric annular diopter zones of zero diopter), by controlling the diameter of the central zero diopter zone, objects above a certain eccentricity are only imaged through the double diopter peripheral area, thus it is found that it is equivalent to the myopic defocus imposed at a larger eccentricity. Competing myopic defocus signals exerted close to the fovea have a stronger and more consistent effect on slowing the axial growth of the ocular axis than .
  • the present invention provides an ophthalmic lens.
  • the ophthalmic lens has an optical zone, and a first specified power P1 and a prescription power P0 are provided in the optical zone along the direction from the center to the edge; wherein, the first specified power P1 is the prescription power P0 plus the first additional power P A1 , and the distance r1 of the first specified power P1 from the optical center of the lens is 0.75-0.95mm, and the distance r0 of the prescription power P0 from the optical center of the lens is 2.5- 3.5mm, the power between r1 and r0 changes gradually in a specified way.
  • the first additional power P A1 is selected from +1.00D to +6.00D, preferably +1.20D to +5.00D, more preferably +1.50D to +4.00D, most preferably +2.00 to +3.00D .
  • the power of the lens is constant to the prescription power P0 in the area between r0 and the edge of the optical zone.
  • a second designated power P2 is provided between the center of the optical zone and the first designated power.
  • the second designated power P2 is the prescribed power P0 plus the second additional power P A2 , and
  • the distance r2 between the second specified power P2 and the optical center of the lens is 0.47-0.67mm; the power between r2 and r1 gradually changes in a specified manner.
  • the second additional power P A2 is the same as or different from the first additional power P A1 , and is selected from +1.00D to +8.00D, preferably +1.20D to +7.00D, more preferably +1.50D to +6.00D, most preferably +2.00 to +4.00D.
  • a third designated power P3 is provided between the first designated power P1 and the prescribed power P0.
  • the third designated power P3 is the prescription power P0 plus the third additional power P A3 , and the distance r3 between the third specified power P3 and the optical center of the lens is 1.05-1.25mm, and the power between r1 to r3 and r3 to r0 gradually changes in a specified manner.
  • the third additional power PA3 is greater than 0 and less than the first additional power PA1 .
  • the power of the optical center of the lens is selected from P0 to P0+8.00D.
  • the ophthalmic lens is a contact lens, a scleral lens, or a corneal inlay.
  • the ophthalmic lens further includes one or more stabilizing features.
  • the technical solution provided by the present invention adopts a center-for-near (CN) design.
  • the prescription power is set on the outer periphery of the optical zone of the lens, and at the same time, light processing is performed at a specific position. This avoids the need for The situation where the peripheral Petzval plane is located behind the retina, on the other hand, ensures that myopic defocus occurs in the area within 20 degrees of the center of the retinal macula.
  • the two mechanisms work together to make the lens of the present invention have an unexpected myopia control effect.
  • Figure 1 is a schematic diagram of a lens used to prevent the occurrence of myopia and control the progression of myopia in the prior art
  • Figure 2 shows the working principle diagram of the lens of the present invention when the first specified power P1 is set
  • Figure 3 shows a graph of the change in power of the lens with distance when the first designated power P1 is set
  • Figure 4 shows another variation curve of the power of the lens with distance when the first designated power P1 is set
  • Figure 5 shows another variation curve of the power of the lens with distance when the first designated power P1 is set
  • Figure 6 shows another variation curve of the power of the lens with distance when the first designated power P1, the second designated power P2 and the third designated power P3 are set;
  • Figure 7 shows the peripheral defocus diopter curve after setting a specified power in the existing CD lens
  • Figure 8 shows the peripheral defocus diopter curve after setting a specified power in the ophthalmic lens provided by the present invention.
  • Figure 1 shows a schematic diagram of the optical lens disclosed in CN207867163U as a representative example of a prior art design employing peripheral defocus.
  • the optical lens 1 includes a central optical zone 11 and a peripheral optical zone 12, and the negative power of the peripheral optical zone is lower than that of the central optical zone.
  • Light passing through the central optical zone forms a focus 211 on the retina, thereby forming a clear image, while light passing through the peripheral optical zone forms a focus 212 in front of the retina.
  • Figure 2 shows the working principle diagram of the lens of the present invention when the first specified power P1 is set.
  • the optical zone of the lens is provided with a first specified power P1 and a prescription power P0 in sequence from the center to the edge; among them, the first specified power P1 is a "key adding position" of the lens , the power at this position is the specified power, and the change form of power from this position to the prescribed power position is the specified form.
  • the prescribed power is 0 or the negative power that provides the best corrected vision for myopic patients. This power is specifically determined by your doctor or optometrist.
  • the power is symmetrically distributed around the center of the optical zone, and the drawings only show the situation on one side in an exemplary manner.
  • the first specified power P1 is the prescription power P0 plus the first additional power P A1 .
  • the first additional power P A1 is selected from +1.00D to +6.00D, preferably +1.20D to +5.00D, more preferably +1.50D to +4.00D, and most preferably +2.00 to +3.00D.
  • it can be selected from +2.25D, +2.50D, +2.75D, +3.25D, +3.50D, +3.75D, +4.25D, +4.50D, +4.75D, +5.25D, +5.50D, +5.75D etc.
  • the distance r1 between the first designated power P1 and the optical center of the lens is 0.75-0.95mm, preferably 0.80-0.90mm, and preferably 0.85mm, such as 0.75, 0.76, 0.77, 0.78, 0.79, 0.80, 0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.90, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97mm.
  • the incident light beam passes through the first specified power, it illuminates a specified area next to the center of the retinal macula.
  • the myopic defocus in the 20-degree range around the center of the retinal macula has a better myopia control effect. Among them, the myopic defocus at 15 degrees produces the strongest myopia control effect.
  • FIG 3 shows the change curve of the power of the lens with distance when the first specified power P1 is set, where the change in power between the first specified power P1 and the center of the optical zone is the change from the prescription power to the first specified power.
  • Figure 4 shows another change curve of the power of the lens with distance when setting the first designated power P1
  • Figure 5 shows the setting of the first designated power P1 This is another graph of how the power of the lens changes with distance.
  • the distance r0 between the prescription power P0 and the optical center of the lens is 2.5-3.5mm.
  • the distance r0 is 2.75mm.
  • the distance between the first specified power P1 and the prescription power P0 The optical power gradually changes in a specified manner, and the gradual change in optical power satisfies the following formula:
  • r is the distance to the optical center of the lens
  • f A1 is a first-order polynomial, a second-order polynomial or an N-order polynomial of r
  • r1 is the distance from the first specified power P1 to the optical center of the lens
  • P0 is the prescription power
  • the focal power calculation method can be any of the following:
  • the power of the lens in the area between the prescribed power and the edge of the optical zone, the power of the lens is constant to the prescribed power.
  • the ophthalmic lens of the present invention may be a contact lens, a scleral lens, or a corneal inlay.
  • the optical zone diameter of the lens is generally 7.0 to 12.0 mm.
  • the size of the optical zone of an ophthalmic lens depends on the height of the palpebral fissure and the diameter of the pupil of the wearer. Therefore, those skilled in the art can select an appropriate optical zone size as needed.
  • the power between the optical center of the lens and the first specified power P1 is not limited and can be set according to the performance of the lens.
  • the power of the optical center of the lens can be from P0 to P0+8.00D.
  • Any value between, the change mode of the power from the optical center of the lens to the first specified power can be gradual, step or constant, preferably the gradual mode (as shown in Figures 3 to 5), or constant Equal to the first designated focal power.
  • sudden changes in optical power make processing difficult, they may lead to sudden changes in surface morphology. Sudden changes in optical power or lens surface morphology produce scattering or diffraction in the mutation area, but scattering may cause diffuse light to illuminate the macular area, causing halos, spots, and reduced contrast sensitivity.
  • a second designated power P2 may be provided between the center of the optical zone and the first designated power.
  • the second designated power P2 is the prescribed power P0 plus the second additional power P A2 .
  • the second additional power P A2 is the same as or different from the first additional power P A1 , and is selected from +1.00D to +8.00D, preferably +1.20D to +7.00D, more preferably +1.50D to +6.00D, Most preferably +2.00 to +4.00D.
  • the distance r2 between the second specified power P2 and the optical center of the lens is 0.47-0.67mm, preferably 0.50-0.64mm, and preferably 0.57mm, such as 0.47, 0.48, 0.49, 0.50, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.60, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67mm.
  • the incident light beam passes through the second designated power P2 and then illuminates an area 10 degrees from the center of the retinal macula.
  • the power between the center of the optical zone and r2 is constant to the second designated power P2.
  • a third designated power P3 may be provided between the first designated power P1 and the prescribed power P0.
  • the third designated power P3 is the prescription power P0 plus the third additional power P A3 .
  • the third additional power P A3 is greater than 0 and smaller than the first additional power P A1 .
  • the distance r3 between the third specified power P3 and the optical center of the lens is 1.05-1.25mm, preferably 1.10-1.20mm, and preferably 1.15mm, such as 1.05, 1.06, 1.07, 1.08, 1.09, 1.10, 1.11, 1.12, 1.13, 1.14, 1.15, 1.16, 1.17, 1.18, 1.19, 1.20, 1.21, 1.22, 1.23, 1.24, 1.25mm.
  • the incident beam passes through the third designated power P3 and then illuminates an area 20 degrees from the center of the retinal macula.
  • the power between the second designated power P2 and the first designated power P1 gradually changes in a specified manner, and the gradual change in power satisfies the following formula:
  • r is the distance to the optical center of the lens
  • f A2 is the first-order polynomial, second-order polynomial or N-th degree polynomial of r
  • r2 is the distance from the second specified power P2 to the optical center of the lens
  • P0 is the prescription power
  • P A2 Is the second additional power.
  • the power between the first designated power P1 and the third designated power P3 gradually changes in a specified manner, and the gradual change in power satisfies the following formula:
  • r is the distance to the optical center of the lens
  • f A1 is a first-order polynomial, a second-order polynomial or an N-order polynomial of r
  • r1 is the distance from the first specified power to the optical center of the lens
  • P0 is the prescription power
  • P A1 is The first additional power
  • the power between the third specified power P3 and the prescription power P0 gradually changes in a specified manner, and the power satisfies the following formula:
  • r is the distance to the optical center of the lens
  • f A3 is the first-order polynomial, second-order polynomial or N-th degree polynomial of r
  • r3 is the distance from the third specified power P3 to the optical center of the lens
  • P0 is the prescription power
  • P A3 It is the third additional power.
  • the lens by additionally setting the second designated power P2 and the third designated power P3 on the lens, the lens causes myopic defocus in a wider range near the center of the retinal macula, thereby providing stable myopia. Control effect.
  • this embodiment only takes three light adding positions as an example, but is not limited to the above three light adding positions.
  • the lens can have different light adding settings according to actual use and performance requirements.
  • the technical solution provided by the present invention is to perform light processing at a specific position of the lens, that is, to set a specified power at a specific position. After passing through the center of the pupil, the narrow beam passing through the specific position will illuminate 10 to 20 degrees from the center of the retinal macula. area within the range. The myopic defocus in this area has a better myopia control effect, so as much myopic defocus as possible should be produced between 10 and 20 degrees, of which 15 degrees is the most important.
  • the inventor used the following simulation method to compare the lenses of the prior art and the lens of the present invention.
  • the prescription power -3D is set around the optical zone of the lens, and the first additional power P A1 is set to 2.76D at 0.85 mm from the center of the ophthalmic lens. Therefore, the first specified power P1 is obtained. -0.24D, and then gradually add light from the prescribed power to the first specified power and then to the center of the ophthalmic lens.
  • Figure 8 shows the peripheral defocus diopter curve after setting a specified power in the ophthalmic lens provided by the present invention. As shown in Figure 8, in the 15-degree area next to the center of the retinal macula, a myopia defocus of -3.06D is produced. Therefore, the ophthalmic lens provided by the embodiment of the present invention has a better myopia control effect.
  • the lens of the present invention was tested for its ability to slow the progression of myopia in a pilot study involving five myopic patients.
  • the average age of the patients was 11 years old.
  • the contact lens used had a base arc radius of 8.6mm and a diameter of 14.5mm.
  • the optical zone radius was 3.5mm and the light added at 0.85mm was +2.50D.
  • the average spherical refractive power of the lenses used was -2.60D.
  • the patient wears the lens of the present invention every day, performs an examination every 3 months and replaces the lens with a new one. After wearing it for 12 months, the average spherical lens of the lens is -2.90D, and the myopia degree progresses to -0.30D. .

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Eyeglasses (AREA)

Abstract

本公开涉及一种具有关键加光位置的眼科镜片,具体涉及一种用于预防近视发生或延缓近视发展的眼科镜片,该眼科镜片的光学区内沿其中心至边缘方向依次设有第一指定焦度P1和处方焦度P0;其中,第一指定焦度P1为处方焦度P0加上第一附加焦度PA1,并且第一指定焦度P1距离镜片光学中心的距离r1为0.75-0.95mm,处方焦度距离镜片光学中心的距离r0为2.5-3.5mm,第一指定焦度至处方焦度之间的焦度以指定方式渐进变化。通过在镜片的特定位置进行加光处理,经过该特定位置的窄光束经过瞳孔中心后,将照射在视网膜黄斑中心旁10度至20度范围内的区域。在该区域范围内的近视离焦具有更优的近视控制效果。

Description

具有关键加光位置的眼科镜片 技术领域
本公开涉及眼科镜片,更具体而言,一种具有关键加光位置的眼科镜片,所述眼科镜片用于预防近视发生或延缓近视发展。
背景技术
人眼有一套复杂的光学系统,包括:角膜、前房(房水)、虹膜(瞳孔)、玻璃体、视网膜等。通过空气-角膜、房水-晶状体、晶状体-玻璃体三个界面的折射成像,人眼能够在视网膜上形成倒立的像,其中睫状肌通过改变晶状体的曲率,起到调焦作用。为了形成清晰的图像感知,眼睛的光学系统应该产生聚焦在视网膜上的影像。当由于各种原因导致轴上影像聚焦在视网膜中央窝的前方、或后方而引起视力模糊时,就形成人们通常熟知的光学病症:近视或远视。眼睛还可具有其他视力缺陷,如散光或高阶光学像差如球面像差、彗星像差等。
在各种视力缺陷中,近视在全球范围内,尤其在青少年中发病率逐年增高,预计到2050年,全球近视人口将达到约50亿。近视有可能发展为高度近视,而高度近视与多种眼科疾病,例如视网膜脱落、白内障、黄斑出血和黄斑变性、青光眼等的患病风险紧密相关。0~12岁是视觉发育的敏感期。出生时,人眼一般是远视的,即眼球的轴长相对于其光焦度来说过短。眼轴随着人年龄逐渐增长,其伸长过程受到通常称为正视化过程的反馈机制控制。在正视化过程中,眼轴受焦点相对于视网膜的位置的控制而增长,但无法生长变短。因此,已经提议可以通过将焦点定位在视网膜前方来控制近视屈光不正的进展。
通常,由不同视场角入射的光线形成的最佳聚焦面即称为Petzval面。当Petzval面在视网膜之前时,称之为近视离焦,反之称为远视离焦。常规单焦球镜产生的Petzval面为球形,而眼球一般为椭球形,因此导致周边Petzval面位于视网膜后,形成远视离焦,促进近视屈光不正的进展。 目前近视防控镜片的主流设计理念为中心视远(CD,center-for-distance),即镜片中心区域具有用于远视力矫正的处方焦度,而周边为具有正附加焦度的区域,用于在视网膜前形成近视离焦,从而达到抑制或减缓眼轴增长的效果。
例如,CN110068937A公开了一种具有用于近视控制的光学非同轴区的眼科镜片,该镜片包括中心区、至少一个治疗区和介于两者之间的过渡区,所述中心区具有用于近视视力矫正的负光焦度,而治疗区则通过正附加焦度使得佩戴者眼睛的视网膜平面后面焦点的产生最小化。
CN207867163U公开了一种以非球面构成周边离焦的近视控制镜片,该镜片包括中央光学区和围绕所述中央光学区的周边光学区,所述中央光学区用于在视网膜上形成清晰影像,而周边光学区具有非球面外表面且使得通过的光线成像于眼球的视网膜前方的周边失焦影像区位置处。
CN104136964B公开了一种多焦点光学镜片,可用于治疗老花或近视加深,该镜片包括产生不同焦点的中心光学区和外围光学区,分别提供用于远视力的中心屈光力和用于近视力的外围屈光力。
E.L.Smith III等(Eccentricity-dependent effects of simultaneous competing defocus on emmetropization in infant rhesus monkeys,Vision Research,17(3):32-40,2020)采用双焦透镜(中心为零屈光度区,周围为+3D和零屈光度交替的同心环形屈光度区),通过控制中心零屈光度区的直径,使得在一定偏心度以上的物体仅通过双屈光度外周区域成像,由此发现与在较大偏心度施加的近视离焦相比,施加在靠近中心凹的竞争性近视离焦信号对减缓眼轴的轴向生长具有更强且更一致的作用。
然而,现有镜片的近视防控效果不尽如人意。因此,对于具有预防近视发生或延缓近视发展作用的新的镜片设计,存在需求。
发明内容
本发明提供了一种眼科镜片,所述眼科镜片具有光学区,所述光学区内沿其中心至边缘方向依次设有第一指定焦度P1和处方焦度P0;其中,第一指定焦度P1为处方焦度P0加上第一附加焦度P A1,并且第一指定焦度P1距离镜片光学中心的距离r1为0.75-0.95mm,处方焦度P0 距离镜片光学中心的距离r0为2.5-3.5mm,r1至r0之间的焦度以指定方式渐进变化。
在一些实施方式中,第一附加焦度P A1选自+1.00D至+6.00D、优选+1.20D至+5.00D、更优选+1.50D至+4.00D、最优选+2.00至+3.00D。
在一些实施方式中,在r0至光学区边缘之间的区域内,所述镜片的焦度恒定为处方焦度P0。
在一些实施方式中,位于光学区中心与第一指定焦度之间还设有第二指定焦度P2,第二指定焦度P2为处方焦度P0加上第二附加焦度P A2,并且第二指定焦度P2距离镜片光学中心的距离r2为0.47-0.67mm;r2至r1之间的焦度以指定方式渐进变化。
在一些实施方式中,第二附加焦度P A2与第一附加焦度P A1相同或不同,并且选自+1.00D至+8.00D、优选+1.20D至+7.00D、更优选+1.50D至+6.00D、最优选+2.00至+4.00D。
在一些实施方式中,位于第一指定焦度P1与处方焦度P0之间还设有第三指定焦度P3,第三指定焦度P3为处方焦度P0加上第三附加焦度P A3,并且第三指定焦度P3距离镜片光学中心的距离r3为1.05-1.25mm,r1至r3、且r3至r0之间的焦度以指定方式渐进变化。
在一些实施方式中,第三附加焦度P A3大于0且小于第一附加焦度P A1
在一些实施方式中,镜片光学中心的焦度选自P0至P0+8.00D。
在一些实施方式中,所述眼科镜片是角膜接触镜、巩膜镜、或角膜嵌体。
在一些实施方式中,所述眼科镜片还包括一个或多个稳定特征。
本发明提供的技术方案采用中央视近(CN,center-for-near)的设计,将处方焦度设置在镜片光学区的外周,同时还在特定位置进行加光处理,这在一方面避免了周边Petzval面位于视网膜后的情形,另一方面确保在视网膜黄斑中心旁20度范围内的区域产生近视离焦。两种机制共同作用,使得本发明的镜片具有出人预料的近视控制效果。
附图说明
图1是现有技术中用于预防近视发生和控制近视进展的镜片的示意图;
图2示出了本发明镜片设置第一指定焦度P1时的工作原理图;
图3示出了设置第一指定焦度P1时镜片的焦度随距离的变化曲线图;
图4示出了设置第一指定焦度P1时镜片的焦度随距离的另一种变化曲线图;
图5示出了设置第一指定焦度P1时镜片的焦度随距离的又一种变化曲线图;
图6示出了设置第一指定焦度P1、第二指定焦度P2和第三指定焦度P3时镜片的焦度随距离的又一种变化曲线图;
图7示出了现有的CD镜片中设置指定焦度后的周边离焦屈光度曲线图;
图8示出了采用本发明提供的眼科镜片中设置指定焦度后的周边离焦屈光度曲线图。
具体实施方式
下面将参考附图对本发明的示例性实施方式进行描述。除非另有定义,否则本文中使用的所有技术和/或科学术语具有与本申请所属领域的普通技术人员通常理解的相同的含义。
图1示出了CN207867163U中公开的光学镜片的示意图,作为采取周边离焦的现有技术设计的代表性示例。其中,所述光学镜片1包括中心光学区11和周边光学区12,周边光学区的负焦度数低于中心光学区。通过中心光学区的光线在视网膜上形成焦点211,从而形成清晰图像,而通过周边光学区的光线在视网膜前方形成焦点212。
图2示出了本发明镜片设置第一指定焦度P1时的工作原理图。如图2所示,镜片的光学区内沿其中心至边缘方向依次设有第一指定焦度P1和处方焦度P0;其中,第一指定焦度P1为镜片的一个“关键加光位置”,该位置的焦度为指定焦度,以及该位置至处方焦度位置的焦度变化形式为指定形式。在本发明的情形中,所述处方焦度是0或为近视患者提供最佳矫正视力的负焦度。该焦度由医生或验光师具体确定。另外,本发明镜片的光学区中,焦度围绕光学区的中心对称分布,附图仅以示例性方式示出一侧的情况。
具体而言,第一指定焦度P1为处方焦度P0加上第一附加焦度P A1。其中,第一附加焦度P A1选自+1.00D至+6.00D、优选+1.20D至+5.00D、更优选+1.50D至+4.00D、最优选+2.00至+3.00D。例如,其可以选自+2.25D、+2.50D、+2.75D、+3.25D、+3.50D、+3.75D、+4.25D、+4.50D、+4.75D、+5.25D、+5.50D、+5.75D等。并且第一指定焦度P1距离镜片光学中心的距离r1为0.75-0.95mm,优选0.80-0.90mm,还优选0.85mm,例如0.75、0.76、0.77、0.78、0.79、0.80、0.81、0.82、0.83、0.84、0.85、0.86、0.87、0.88、0.89、0.90、0.91、0.92、0.93、0.94、0.95、0.96、0.97mm。
如图2所示,入射光束经过第一指定焦度后,照射在视网膜黄斑中心旁的指定区域。在视网膜黄斑中心旁周边20度范围的近视离焦具有更优异的近视控制效果,其中,在15度的位置时近视离焦产生最强的近视控制效果。
对光学区中心至第一指定焦度P1之间的焦度变化没有特别限制。图3示出了设置第一指定焦度P1时镜片的焦度随距离的变化曲线图,其中第一指定焦度P1至光学区中心之间的焦度变化是处方焦度至第一指定焦度之间的焦度变化的自然延续;图4示出了设置第一指定焦度P1时镜片的焦度随距离的另一种变化曲线图;图5示出了设置第一指定焦度P1时镜片的焦度随距离的又一种变化曲线图。
如图3至图5所示,处方焦度P0距离镜片光学中心的距离r0为2.5-3.5mm,优选地,距离r0为2.75mm,第一指定焦度P1至处方焦度P0之间的焦度以指定方式渐进变化,该光焦度渐变变化满足以下公式:
P(r)=P0+f A1(r-r1)+P A1
其中,r是到镜片光学中心的距离,f A1是r的一次多项式、二次多项式或者N次多项式,r1是第一指定焦度P1到镜片光学中心的距离,P0是处方焦度,P A1是第一附加焦度;满足P(r1)=P0+P A1
作为示例,以距离角膜接触镜中心0.85mm作为关键加光位置(即r1=0.85mm),并且P0=-3D,P A1=+2.5D,第一指定焦度P1到处方焦度P0之间的焦度计算方式可以为如下任一种:
1次曲线
P(r)=-3-1.316(r-0.85)+2.5      (式I)
2次曲线
P(r)=-3-0.365(r-0.85) 2-0.6205(r-0.85)+2.5    (式II)
或者
P(r)=-3-0.692(r-0.85) 2+2.5        (式III)
3次曲线
P(r)=-3-0.364(r-0.85) 3+2.5      (式IV)
或者
P(r)=-3-0.378(r-0.85) 3+0.025(r-0.85) 2+2.5     (式V)
本发明实施方式中,在所述处方焦度至光学区边缘之间的区域内, 所述镜片的焦度恒定为处方焦度。本发明的眼科镜片可以是角膜接触镜、巩膜镜、或角膜嵌体。其中,各类眼科镜片中,所述镜片的光学区直径一般为7.0~12.0mm。本领域技术人员能够理解,眼科镜片的光学区域大小取决于配戴者的睑裂高度和瞳孔直径,因此,本领域技术人员可以根据需要,选择合适的光学区大小。
如图3至图5所示,镜片光学中心至第一指定焦度P1之间的焦度不受限制,可根据镜片性能设置,其中,镜片光学中心的焦度可以是P0至P0+8.00D之间的任何数值,镜片光学中心到第一指定焦度之间焦度的变化方式可以为渐变式、阶梯式或恒定值等方式,优选渐变方式(如图3至5所示),或者恒定等于第一指定焦度。因为光焦度的突然变化令加工困难,可能导致表面形态的突然改变。光焦度或镜片表面形态的突然改变,在突变区域产生散射或衍射,但散射可能造成弥散的光线照射在黄斑区,产生光晕、光斑、并降低对比敏感度。
本发明实施方式中,在镜片上的“关键加光位置”可以不止一处,还可在镜片上设置更多的加光位置,以及设定加光位置的加光量,以下以三个加光位置为例,即在镜片上增加第二指定焦度和第三指定焦度。
如图6所示,位于光学区中心与第一指定焦度之间还可以设有第二指定焦度P2,第二指定焦度P2为处方焦度P0加上第二附加焦度P A2。其中,第二附加焦度P A2与第一附加焦度P A1相同或不同,选自+1.00D至+8.00D、优选+1.20D至+7.00D、更优选+1.50D至+6.00D、最优选+2.00至+4.00D。例如,其可以选自+2.25D、+2.50D、+2.75D、+3.25D、+3.50D、+3.75D、+4.25D、+4.50D、+4.75D、+5.25D、+5.50D、+5.75D等。并且第二指定焦度P2距离镜片光学中心的距离r2为0.47-0.67mm,优选0.50-0.64mm,还优选0.57mm,例如0.47、0.48、0.49、0.50、0.51、0.52、0.53、0.54、0.55、0.56、0.57、0.58、0.59、0.60、0.61、0.62、0.63、0.64、0.65、0.66、0.67mm。入射光束经过第二指定焦度P2后照射在视网膜黄斑中心旁10度的区域。类似的,对光学区中心至第二指定焦度P2之间 的焦度变化没有特别限制。在优选情况下,光学区中心至r2之间的焦度恒定为第二指定焦度P2。
位于第一指定焦度P1与处方焦度P0之间还可以设有第三指定焦度P3,第三指定焦度P3为处方焦度P0加上第三附加焦度P A3。其中,第三附加焦度P A3大于0且小于第一附加焦度P A1。并且第三指定焦度P3距离镜片光学中心的距离r3为1.05-1.25mm,优选1.10-1.20mm,还优选1.15mm,例如1.05、1.06、1.07、1.08、1.09、1.10、1.11、1.12、1.13、1.14、1.15、1.16、1.17、1.18、1.19、1.20、1.21、1.22、1.23、1.24、1.25mm。入射光束经过第三指定焦度P3后照射在视网膜黄斑中心旁20度的区域。
第二指定焦度P2至第一指定焦度P1之间的焦度以指定方式渐进变化,该光焦度渐变变化满足以下公式:
P(r)=P0+f A2(r-r2)+P A2
其中,r是到镜片光学中心的距离,f A2是r的一次多项式、二次多项式或者N次多项式,r2是第二指定焦度P2到镜片光学中心的距离,P0是处方焦度,P A2是第二附加焦度。
如图6所示,第一指定焦度P1至第三指定焦度P3之间的焦度以指定方式渐进变化,该光焦度渐变变化满足以下公式:
P(r)=P0+f A1(r-r1)+P A1
其中,r是到镜片光学中心的距离,f A1是r的一次多项式、二次多项式或者N次多项式,r1是第一指定焦度到镜片光学中心的距离,P0是处方焦度,P A1是第一附加焦度;并且第三指定焦度P3至处方焦度P0之间的焦度以指定方式渐进变化,所述焦度满足以下公式:
P(r)=P0+f A3(r-r3)+P A3
其中,r是到镜片光学中心的距离,f A3是r的一次多项式、二次多项式或者N次多项式,r3是第三指定焦度P3到镜片光学中心的距离,P0是处方焦度,P A3是第三附加焦度。
由此,本发明实施方式中,通过在镜片上额外设置第二指定焦度P2和第三指定焦度P3,使得镜片在视网膜黄斑中心旁更广范围内产生近视离焦,从而提供稳定的近视控制效果。另外需要强调的是,本实施方式仅以三个加光位置为例,但并不局限于以上三个加光位置,镜片可根据实际使用及性能要求进行不同的加光设置。
本发明提供的技术方案,通过在镜片的特定位置进行加光处理,即在特定位置设置指定焦度,经过该特定位置的窄光束经过瞳孔中心后,将照射在视网膜黄斑中心旁10度至20度范围内的区域。在该区域范围内的近视离焦具有更优的近视控制效果,因此应当在10至20度产生尽量多的近视离焦,其中以15度最为重要。为体现本发明镜片的优势,发明人采用如下模拟方法,对现有技术镜片和本发明的镜片进行了比较。
模拟方法
如Liou等所述(Hwey-Lan Liou and Noel A.Brennan,"Anatomically accurate,finite model eye for optical modeling,"J.Opt.Soc.Am.A 14,1684-1695(1997)),在OpticStudio Zemax中建立Liou&Brennan模型眼,并在模拟眼前按照P(r)=P0+SA*r^2的光焦度,加入相应的光学曲面对相应的隐形眼,进行模拟。
在OpticStudio Zemax中计算不同视场角的zernike函数系数,Zernike vs Field,取得其中的z4,z11,z22,z6,z12,z24的参数以及出瞳直径,代入至以下公式之中,计算不同视场角时的离焦屈光度。
Figure PCTCN2022094080-appb-000001
结果
现有技术镜片通常为CD设计,如中央设置-3D的处方焦度,以SA=0.33D/mm,按照P(r)=P0+SA*r^2,在0.85mm处加光0.24D,在 3mm处加光0.33*3^2=3D。图7示出了现有的CD镜片中设置指定焦度后的变化曲线图。如图7所示,通过计算可知,在视网膜黄斑中心旁15度区域内,仅仅产生-0.24D近视离焦,因此,并不能达到更优的近视控制效果。
本发明实施方式中的眼科镜片,在镜片光学区周边设置处方焦度-3D,在距眼科镜片中心0.85mm处设置第一附加焦度P A1为2.76D,因此获得第一指定焦度P1为-0.24D,然后在处方焦度处向第一指定焦度处再向眼科镜片中心逐渐加光。图8示出了采用本发明提供的眼科镜片中设置指定焦度后的周边离焦屈光度曲线图。如图8所示,在视网膜黄斑中心旁15度区域内,产生-3.06D的近视离焦,因此,本发明实施方式提供的眼科镜片具有更优的近视控制效果。
实施例
在一组包含5名近视患者的初步研究中测试了本发明镜片对近视进展的延缓作用。所述患者的平均年龄为11岁,使用的接触镜片的基弧半径为8.6mm,直径14.5mm,其中,光学区半径3.5mm,在0.85mm处加光+2.50D。开始实验时,所用镜片的平均球面屈光力为-2.60D。患者每天佩戴本发明镜片,每3个月进行一次检查并更换新的镜片,在佩戴12个月后,镜片的平均球镜为-2.90D,近视度数进展为-0.30D。。
而根据文献(Walline JJ等.Effect of High Add Power,Medium Add Power,or Single-Vision Contact Lenses on Myopia Progression in Children:The BLINK Randomized Clinical Trial.JAMA.2020;324(6):571-580)的记载,相同的监测条件,CD镜片设计的不同加光度数对近视的控制中,+2.50D组近视进展平均每年-0.60D,+1.5D组近视进展平均每年-0.89D,对照组单焦点隐形眼镜平均每年-1.05D。由此可知,本发明实施方式提供的矫正方式优于现有的CD镜片矫正方式。
本领域技术人员将理解,本文中描述的发明除了具体描述的内容之外还可以进行变化和修改。本发明并不局限于本文中描述和示出的具体 构造,而是包括落入其精神和范围内的所有的此类变化和修改。本领域技术人员可以在不背离本发明实质和范围的情况下,对本说明书中单独或共同提出的特征、结构或部分中的任意两个或更多个进行任意组合。

Claims (10)

  1. 一种具有关键加光位置的眼科镜片,其特征在于,所述眼科镜片具有光学区,所述光学区内沿其中心至边缘方向依次设有第一指定焦度P1和处方焦度P0;
    其中,第一指定焦度P1为处方焦度P0加上第一附加焦度P A1,并且第一指定焦度P1距离镜片光学中心的距离r1为0.75-0.95mm,
    处方焦度P0距离镜片光学中心的距离r0为2.5-3.5mm,
    r1至r0之间的焦度以指定方式渐进变化。
  2. 根据权利要求1所述的眼科镜片,其特征在于,第一附加焦度P A1选自+1.00D至+6.00D、优选+1.20D至+5.00D、更优选+1.50D至+4.00D、最优选+2.00至+3.00D。
  3. 根据权利要求1或2所述的眼科镜片,其特征在于,在r0至光学区边缘之间的区域内,所述镜片的焦度恒定为处方焦度P0。
  4. 根据权利要求1至3任一项所述的眼科镜片,其特征在于,位于光学区中心与第一指定焦度之间还设有第二指定焦度P2,第二指定焦度P2为处方焦度P0加上第二附加焦度P A2,并且第二指定焦度P2距离镜片光学中心的距离r2为0.47-0.67mm;r2至r1之间的焦度以指定方式渐进变化。
  5. 根据权利要求4所述的眼科镜片,其特征在于,第二附加焦度P A2与第一附加焦度P A1相同或不同,并且选自+1.00D至+8.00D、优选+1.20D至+7.00D、更优选+1.50D至+6.00D、最优选+2.00至+4.00D。
  6. 根据权利要求1至5任一项所述的眼科镜片,其特征在于,位于第一指定焦度P1与处方焦度P0之间还设有第三指定焦度P3,第三指定焦度P3为处方焦度P0加上第三附加焦度P A3,并且第三指定焦度 P3距离镜片光学中心的距离r3为1.05-1.25mm,r1至r3、且r3至r0之间的焦度以指定方式渐进变化。
  7. 根据权利要求6所述的眼科镜片,其特征在于,第三附加焦度P A3大于0且小于第一附加焦度P A1
  8. 根据前述权利要求任一项所述的眼科镜片,其特征在于,镜片光学中心的焦度选自P0至P0+8.00D。
  9. 根据前述权利要求任一项所述的眼科镜片,其特征在于,所述眼科镜片是角膜接触镜、巩膜镜、或角膜嵌体。
  10. 根据前述权利要求任一项所述的眼科镜片,其特征在于,所述眼科镜片还包括一个或多个稳定特征。
PCT/CN2022/094080 2022-05-20 2022-05-20 具有关键加光位置的眼科镜片 WO2023221085A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/094080 WO2023221085A1 (zh) 2022-05-20 2022-05-20 具有关键加光位置的眼科镜片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/094080 WO2023221085A1 (zh) 2022-05-20 2022-05-20 具有关键加光位置的眼科镜片

Publications (1)

Publication Number Publication Date
WO2023221085A1 true WO2023221085A1 (zh) 2023-11-23

Family

ID=88834409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094080 WO2023221085A1 (zh) 2022-05-20 2022-05-20 具有关键加光位置的眼科镜片

Country Status (1)

Country Link
WO (1) WO2023221085A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105445959A (zh) * 2014-08-29 2016-03-30 庄臣及庄臣视力保护公司 用于预防和/或减慢近视发展的自由曲面镜片设计和方法
CN107219640A (zh) * 2016-03-22 2017-09-29 庄臣及庄臣视力保护公司 用于预防和/或减慢近视发展的多焦点镜片设计和方法
US20210199989A1 (en) * 2019-12-30 2021-07-01 Amo Groningen B.V. Multi-region refractive lenses for vision treatment
CN114911071A (zh) * 2021-02-10 2022-08-16 菲特兰有限公司 用于预防近视或延缓近视发展的眼科镜片
CN115220244A (zh) * 2021-04-21 2022-10-21 菲特兰有限公司 具有关键加光位置的眼科镜片

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105445959A (zh) * 2014-08-29 2016-03-30 庄臣及庄臣视力保护公司 用于预防和/或减慢近视发展的自由曲面镜片设计和方法
CN107219640A (zh) * 2016-03-22 2017-09-29 庄臣及庄臣视力保护公司 用于预防和/或减慢近视发展的多焦点镜片设计和方法
US20210199989A1 (en) * 2019-12-30 2021-07-01 Amo Groningen B.V. Multi-region refractive lenses for vision treatment
CN114911071A (zh) * 2021-02-10 2022-08-16 菲特兰有限公司 用于预防近视或延缓近视发展的眼科镜片
WO2022171175A1 (zh) * 2021-02-10 2022-08-18 菲特兰有限公司 用于预防近视或延缓近视发展的眼科镜片
CN115220244A (zh) * 2021-04-21 2022-10-21 菲特兰有限公司 具有关键加光位置的眼科镜片

Similar Documents

Publication Publication Date Title
TWI828696B (zh) 包含用於預防及/或減緩近視加深之微透鏡的眼用鏡片
TWI817981B (zh) 具有光學非同軸區的眼用鏡片
JP6758806B2 (ja) 近視の進行を予防及び/又は遅延するためのマスクレンズ設計及び方法
EP1691741B1 (en) Apparatuses for altering relative curvature of field and positions of peripheral, off-axis focal positions
JP2021009422A (ja) 近視の進行を予防及び/又は鈍化するための、非共軸小型レンズを具備するコンタクトレンズ
CN104020577B (zh) 用于预防和/或减慢近视发展的非对称镜片设计和方法
AU2007212045B2 (en) Methods and apparatuses for altering relative curvature of field and positions of peripheral, off-axis focal positions
CN108205208A (zh) 高加中心治疗区镜片设计以及用于预防和/或减慢近视发展的方法
RU2452433C2 (ru) Имплантат роговицы и методы коррекции аметропии человеческого глаза
CN114911071B (zh) 用于预防近视或延缓近视发展的眼科镜片
US11789292B2 (en) Ophthalmic lens with an optically non-coaxial zone for myopia control
CN115220244A (zh) 具有关键加光位置的眼科镜片
WO2023221085A1 (zh) 具有关键加光位置的眼科镜片
RU2792078C2 (ru) Офтальмологические линзы, содержащие элементарные линзы, для предотвращения и/или замедления прогрессирования миопии
EP4089473A1 (en) Spectacle lens design, spectacle lens kit, method of manufacturing a spectacle lens and method of providing a spectacle lens design
CN115268108A (zh) 一种渐变多焦眼科镜片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942125

Country of ref document: EP

Kind code of ref document: A1