WO2023221056A1 - 医疗调控系统及其使用方法和可读存储介质 - Google Patents

医疗调控系统及其使用方法和可读存储介质 Download PDF

Info

Publication number
WO2023221056A1
WO2023221056A1 PCT/CN2022/093951 CN2022093951W WO2023221056A1 WO 2023221056 A1 WO2023221056 A1 WO 2023221056A1 CN 2022093951 W CN2022093951 W CN 2022093951W WO 2023221056 A1 WO2023221056 A1 WO 2023221056A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
module
control system
stimulation
tracking
Prior art date
Application number
PCT/CN2022/093951
Other languages
English (en)
French (fr)
Inventor
张琼
魏可成
Original Assignee
北京银河方圆科技有限公司
北京优脑银河科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京银河方圆科技有限公司, 北京优脑银河科技有限公司 filed Critical 北京银河方圆科技有限公司
Priority to PCT/CN2022/093951 priority Critical patent/WO2023221056A1/zh
Publication of WO2023221056A1 publication Critical patent/WO2023221056A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy

Definitions

  • the disclosure content of this application relates to the technical field of medical equipment, and in particular, to a medical control system and its use method and readable storage medium.
  • Neuromodulation technology is a scientific, medical and bioengineering technology that uses implantable and non-implantable technologies and relies on electrical or chemical means to improve the quality of human life. As an effective surgical treatment method, it is minimally invasive, reversible, and adjustable. Compared with stereotactic destructive surgery, it greatly reduces the disability rate of surgery and can provide a new option for patients with brain diseases. .
  • neuromodulation technology has been widely used in the treatment of movement disorders, intractable pain, epilepsy, mental disorders, brain diseases, addiction, and functional recovery after damage to the nervous system. This technology is especially an important technical means for the treatment of mental and neurological diseases and rehabilitation.
  • the present application discloses a medical control system, a method of using the same, and a readable storage medium, which can at least partially realize that through an integrated design, the system can be adjusted according to the patient's needs.
  • an integrated personalized control plan can be planned and the control parameters can be adjusted in real time, thus improving the efficacy of medical control treatment.
  • a medical control system including:
  • the planning system is configured to plan a control plan based on the target information of the tracking target;
  • a control system configured to be connected to the planning system and adjust its own parameters based on the control plan to match the target of the tracking target;
  • a positioning system configured to be connected to the control system, obtain real-time information about the target and transmit the real-time information about the target to the control system, and the control system adjusts its own parameters based on the real-time information about the target to match the target.
  • the medical control system is the medical control system described in any one of the above,
  • the usage method includes the following steps:
  • the positioning system is connected to the control system, and the real-time information of the target is obtained through the positioning system, and then the real-time information of the target is transmitted to the control system, and the control system is based on the target. Point real-time information to adjust its own parameters to match the target.
  • a storage medium stores programs or instructions, and when the programs or instructions are executed by the processor, the above-mentioned method of using the medical control system is performed. .
  • Figure 1 is a schematic structural diagram of a medical control system according to an embodiment of the present invention.
  • FIG 2 is a schematic structural diagram of the planning system shown in Figure 1;
  • FIG 3 is a schematic structural diagram of the control system shown in Figure 1;
  • Figure 4 is a schematic structural diagram of the positioning system shown in Figure 1;
  • Figure 5 is a flow chart of a method of using the medical control system according to an embodiment of the present invention.
  • neuromodulation technology has been widely used in the treatment of movement disorders, intractable pain, epilepsy, mental disorders, brain diseases, addiction, and functional recovery after damage to the nervous system.
  • This technology is especially an important technical means for the treatment of mental and neurological diseases and rehabilitation.
  • the clinical application of this type of technology still faces great challenges. For example, it cannot meet the individual needs of patients, including the formulation of personalized control plans and precise target targeting. Point positioning and formulation of reasonable control parameters will seriously affect the effect of treatment.
  • the medical control system 100 includes a planning system 10 , a control system 20 and a positioning system 30 .
  • the planning system 10 is configured to plan a control scheme based on target information of a tracking target (not shown).
  • the control system 20 is configured to be connected to the planning system 10 and adjust its own parameters based on the control plan to match the target of the tracking target.
  • the positioning system 30 is configured to connect with the control system 20 , obtain real-time information about the target, and transmit the real-time information to the control system 20 , and then the control system 20 adjusts its own parameters based on the real-time information about the target to match the target.
  • the medical control system 100 further includes a signal acquisition and evaluation system 40 connected to the planning system 10 .
  • the signal acquisition and evaluation system 40 is configured to transmit its evaluation results of the target to the planning system 10, and the planning system 10 re-determines the target information and re-plans the control plan based on the evaluation results.
  • the planning system 10 includes a target determination module 11 and a control plan planning module 12 .
  • the target determination module 11 is connected to the control plan planning module 12 .
  • the control plan planning module 12 plans a control plan based on the target information transmitted by the target determination module 11, and then transmits the control plan to the control system 20.
  • the control system 20 adjusts its own parameters based on the control plan to match the target of the tracking target.
  • the target information is target location information, target size, target type, etc.
  • the target determination module 11 includes a first determination sub-module 111 , a second determination sub-module 112 , a third determination sub-module 113 and a fourth determination sub-module 114 .
  • the first determination sub-module 111 is configured to determine the target location information based on the target region of interest (ROI) determined by the medical imaging image of the tracking target.
  • the second determination sub-module 112 is configured to determine target location information based on tissue metabolism data determined by the medical imaging image.
  • the third determination sub-module 113 is configured to determine the target position information based on the physiological signal of the tracking target measured by the physiological signal measurement device.
  • the fourth determination sub-module 114 is configured to determine target location information based on locating the target with the physical stimulation device.
  • first determination sub-module 111, the second determination sub-module 112, the third determination sub-module 113 and the fourth determination sub-module 114 can be set according to actual needs, for example, when the actual situation requires the third determination sub-module
  • first determining the sub-module 111 and the fourth determining sub-module 114 those skilled in the art may choose not to set the second determining sub-module 112 and the third determining sub-module 113. Of course, they may also choose to set the second and third determining sub-modules in the system 100. Determine the sub-module and enable the second and third determination sub-modules when needed.
  • the first determination sub-module 111 may be based on the tracking target brain structure magnetic resonance imaging, task state functional magnetic resonance imaging or resting state functional magnetic resonance imaging and voxel connections between various brain regions in the corresponding imaging. Determine at least two areas of interest of the tracking target, and then the first determination sub-module 111 determines at least one abnormal area of interest based on all the areas of interest in the at least two areas of interest and according to the anomaly detection rules, and finally the first The determination sub-module 111 determines the target point based on all abnormal interest regions in the at least one abnormal interest region.
  • the abnormality detection rule is based on the average matrix and standard deviation matrix of the individual brain connection matrix of the tracking target, the group brain connection matrix of the subject group, and calculates all the areas of interest of the tracking target and obtains the abnormality detection result p_z(n ), obtain the abnormal region of interest based on the anomaly detection results.
  • the expression of the anomaly detection result p_z(n) is:
  • p_corr(n) represents the individual brain connection matrix of the tracking target
  • mean(n) represents the mean matrix of the group brain connection matrix
  • std(n) represents the standard deviation matrix of the group brain connection matrix
  • the individual brain connection matrix and the group brain connection matrix both use the Pearson correlation coefficient of the region of interest and the time series of the region of interest as elements of the matrix.
  • the first determination sub-module 111 should determine the target based on the medical imaging image of the corresponding part. .
  • mean(n) can be a mean matrix composed of the average of the Pearson correlation coefficients of the region of interest and the time series of the region of interest for all subjects in the subject group as an element, or it can be A correlation coefficient average matrix composed of each row of the population brain connection matrix and the Pearson correlation coefficient calculated from the corresponding row in the average value matrix.
  • std(n) can be a standard deviation matrix composed of the standard deviation of the Pearson correlation coefficient of the region of interest and the time series of the region of interest for all subjects in the subject group as an element, or it can be a group brain connection matrix. The Pearson correlation coefficient calculated between each row and the corresponding row in the standard deviation matrix is used as an element to form a correlation coefficient standard deviation matrix.
  • the brain connection matrix can be obtained based on structural images obtained by computed tomography (CT) and magnetic resonance imaging (MRI), and can also be obtained based on brain functional images obtained by functional magnetic resonance imaging (FMRI).
  • CT computed tomography
  • MRI magnetic resonance imaging
  • FMRI functional magnetic resonance imaging
  • the abnormal region of interest can be set as the target region of interest, and the center of the target region of interest is determined as the target point.
  • the intersection of the abnormal region of interest and the brain structural partition where the tracking target may have a target can also be used as the target region of interest, and the center of the target region of interest is determined as the target.
  • the abnormal region of interest can also be determined as the target region of interest based on the fact that the connectivity between any one of the multiple abnormal regions of interest and all other remaining abnormal regions of interest meets a preset threshold.
  • the center of the target area of interest is determined as the target, or the intersection of the abnormal area of interest and the brain structure partition where the tracking target may have a target is used as the target area of interest, and the target area of interest is The center is determined as the target point.
  • the target can also be determined based on the degree of connectivity between the disease region of interest and the target region of interest.
  • the disease area of interest may be an area where the disease may exist based on the disease type of the tracking target.
  • the target region of interest can be obtained according to the method for determining the target region of interest described above, and the corresponding region where the disease target may exist can also be obtained from the disease region of interest.
  • the second determination sub-module 112 determines by identifying the metabolism of the mediator substance in the brain metabolism image generated by positron emission computed tomography (PET) or based on the metabolic data of the mediator substance examined and generated based on the input PET. Determine the target.
  • the brain metabolism image is obtained through fluorodeoxyglucose positron emission computed tomography-computed tomography (ie, fluorodeoxyglucose PET-CT) examination, and then the second determination sub-module 112 identifies the metabolism of glucose in the brain metabolism image.
  • the second determination sub-module 112 uses its own arithmetic and logic unit (ALU). Comparison and judgment are performed. When the glucose metabolism data of a certain area is higher than a threshold, the area is determined to be the target area, and the center of the target area is determined to be the target point.
  • ALU arithmetic and logic unit
  • the third determination sub-module 113 determines the target point based on corresponding physiological signals obtained by electroencephalogram measurement equipment, electromyography measurement equipment, and near-infrared spectroscopy (NIRS) technology.
  • the third determination sub-module 113 may determine the intracranial target point based on obtaining brain waves (EEG) from an electroencephalogram measurement device.
  • the third determination sub-module 113 can also determine the sensitive point of the head based on the strength of the electromyographic signal (EMG) or the size of the electromyographic value collected by the electromyographic measurement device while performing head stimulation, and assign the sensitive point to as a target.
  • the third determination sub-module 113 can also identify the target point in real time based on near-infrared spectroscopy (NIRS) technology to determine the target point.
  • NIRS near-infrared spectroscopy
  • the fourth determination sub-module 114 determines the target point based on physical stimulation equipment such as electrode caps and stereotaxic headgear (eg, lecksell headgear).
  • physical stimulation equipment such as electrode caps and stereotaxic headgear (eg, lecksell headgear).
  • the international 10-20 electrode cap positioning method can be used for target determination.
  • the target can also be determined by using a microelectrode recorder to record the physiological electrical signals generated by microelectrode stimulation of the stereotactic head frame.
  • the planning system 10 also includes an information input module 13 .
  • the information input module 13 is connected to the target determination module 11 to input signals from an external device (not shown) or medical imaging images of the tracking target to the target determination module 11 .
  • the external device includes at least one of an electroencephalogram measurement device, a myoelectricity measurement device, a near-infrared spectroscopy (NIRS) system, an electrode cap, and a medical imaging scanning device.
  • the external device is input into the medical control system 100 through the information input module 13 , and then the information input module 13 determines which one of the first to fourth determination sub-modules to transmit the input signal to according to the signal type, signal frequency, etc. input by the external device.
  • the external device is selected according to the settings of the determination sub-module in the target determination module 11 .
  • the external device may select at least one of an electroencephalogram measurement device, a myoelectricity measurement device, and a near-infrared spectroscopy (NIRS) system.
  • NIRS near-infrared spectroscopy
  • the external device selects the electrode cap.
  • the external device can be selected as a physiological signal measurement device and a medical imaging scanning device.
  • the physiological signal measurement device may be at least one of an electroencephalogram measurement device, a myoelectricity measurement device, and a near-infrared spectroscopy system
  • the medical imaging scanning device may be at least one of a magnetic resonance scanner, a CT scanner, and a PET-CT examination device. kind.
  • This example is only an illustrative example. Those skilled in the art can combine the first to fourth determination sub-modules as needed, and determine the accessible external devices based on the combination of the first to fourth sub-modules.
  • each determination sub-module determines the target determination method of other parts other than the brain (such as intestines, heart, lymph and blood vessels, etc.) and the determination of brain targets.
  • the principles of the methods are the same or similar and will not be repeated here.
  • the control system 20 includes a magnetic field stimulation module 21 , an electric field stimulation module 22 , a light stimulation module 23 and a mechanical wave stimulation module 24 .
  • the magnetic field stimulation module 21 can output magnetic field energy to the target point of the tracking target
  • the electric field stimulation module 22 can output electric field energy to the target point of the tracking target
  • the light stimulation module 23 can output light energy to the target point of the tracking target
  • the mechanical wave stimulation module 24 can Output mechanical wave energy (such as ultrasound) to the target point of the tracking target.
  • Those skilled in the art can set each stimulation module in the control system 20 as needed.
  • the magnetic field stimulation module 21, the electric field stimulation module 22, the light stimulation module 23 and the mechanical wave stimulation module 24 can be combined in any way, and the control system 20 can be any one of the above combinations.
  • the control system 20 can include a magnetic field stimulation module. 21 and electric field stimulation module 22, it may also include only magnetic field stimulation module 21, or may also include magnetic field stimulation module 21, electric field stimulation module 22 and mechanical wave stimulation module 24.
  • This example is only an illustrative example. Those skilled in the art can select a combination of stimulation modules as needed, and determine the type of energy output to the target point of the tracking target according to the selected combination.
  • control system 20 also has an energy output terminal (not shown) and an interface (not shown) matching the energy output terminal.
  • the energy output terminal includes a magnetic field energy output terminal 211 and an electric field energy output terminal. 221. At least one of the optical energy output terminal 231 and the mechanical wave energy output terminal 241.
  • the control system 20 adjusts its own parameters according to the control plan, and then delivers the stimulation energy to the target point of the tracking target through the output end.
  • control plan planned by the planning system 10 is the type, intensity, stimulation duration, stimulation direction, stimulation frequency, energy convergence location, and control system 20 of the stimulation energy matching the target planned based on the target information.
  • the parameters of the control system 20 include the intensity of stimulation energy, stimulation duration, stimulation direction, stimulation frequency, energy convergence position, relative distance and relative posture between the energy output end of the control system and the target point.
  • the stimulation module corresponding to the type of the energy output terminal is triggered to start, and then the stimulation module sends its own or the unique identification of the energy output terminal to the planning system 10, and the planning system 10 This unique identifier determines the type of stimulation energy in the regulation protocol.
  • the magnetic field energy output end is a magnetic field energy output end
  • the magnetic field energy output end is connected to the interface and triggers the start of the magnetic field stimulation module.
  • the magnetic field stimulation module 21 sends its own unique identification or the unique identification of the magnetic field energy output end to the planning system. 10.
  • the control plan planning module 12 of the planning system 10 determines that the type of energy to be output in the control plan is a magnetic field based on the received unique identification, and then determines the intensity, stimulation duration, stimulation direction, and stimulation frequency of the magnetic field based on the target information. , the energy convergence position, the relative distance and relative posture between the energy output end of the control system and the target point, thus forming a complete set of control schemes.
  • control system 20 is also provided with a control module 25 , which is connected to the corresponding stimulation module in the control system 20 .
  • control module 25 is connected to the four stimulation modules.
  • the control module 25 is connected to the magnetic field stimulation module 21 and the electric field stimulation module 22 respectively, and so on, which will not be repeated here.
  • a low-level signal and/or its own unique identifier will be sent to the control module 25.
  • the control module 25 determines the type of the energy output terminal connected to the interface based on the received unique identifier. (such as magnetic field energy output terminal, etc.), and then start the corresponding stimulation module (such as magnetic field stimulation module 21) according to the type of energy output terminal.
  • the medical regulation system 100 can be applied in the fields of adjustment and recovery of athletes' body parts and their functions, mental meditation recovery, psychotherapy, sleep disorders, anti-aging and memory enhancement.
  • the control system 20 can be configured as, for example, a wearable device, which can output electromagnetic waves of a certain predetermined band to affect biomolecules and cells in the human body, certain body parts of athletes, human spirit, psychology, sleep and memory, etc. To regulate.
  • the control system 20 can also be set as other auxiliary equipment, such as a movement disorder control device, a functional recovery device, a rehabilitation device, a mental soothing device, a psychotherapy device, a psychological decompression adjustment device, a sleep aid device, a memory enhancement device, etc.
  • This example is only an illustrative example, and those skilled in the art can make appropriate settings according to actual needs, and should not be understood as a limitation of the present invention.
  • the positioning system 30 includes an identification module 31 , a target tracking module 32 and a registration module 33 .
  • the identification module 31 is configured to identify the tracking target and the target point of the tracking target, and obtain real-time target information of the target point.
  • the target tracking module 32 is configured to be connected to the identification module 31 and the control system 20 respectively, and is used to track the target and the target based on the real-time target information provided by the identification module 31, and transmit the real-time target information to the control system 20. in the corresponding stimulation module.
  • the registration module 33 is provided with a tracking target model (not shown) corresponding to the tracking target, and the registration module 33 is configured to be connected with the identification module 31, the target tracking module 32 and the target determination module 11 respectively, with the help of the identification module 31.
  • the target tracking module 32 and the target determination module 11 map the tracking target and target onto the tracking target model.
  • the identification module 31 includes a visible light identification component 311 and an electromagnetic field identification component 312.
  • the visible light identification component 311 includes an optical capture unit (not shown) and a reflective marking unit (not shown).
  • the electromagnetic field identification component 312 includes a magnetic field transmitting unit (not shown), a magnetic field receiving unit (not shown), and a data acquisition unit (not shown).
  • the optical capture unit is used to capture and identify the real-time position information of the tracking target and target point
  • the reflective marking unit is provided on the tracking target or target point to be captured and recognized by the optical capture unit.
  • the optical capture unit is connected to the target tracking module 32 and the registration module 33 to transmit the captured and identified target real-time information to the target tracking module 32 and the registration module 33 respectively.
  • the magnetic field transmitting unit and the magnetic field receiving unit are connected to each other.
  • the magnetic field transmitting unit is provided with a magnetic field generator.
  • the magnetic field transmitting unit sends electromagnetic waves generated by the magnetic field generator to the magnetic field receiving unit.
  • the magnetic field receiving unit is connected to the data acquisition unit, and the data acquisition unit is connected to the target tracking module 32 and the registration module 33 respectively.
  • the magnetic field receiving unit transmits the electromagnetic waves from the magnetic field transmitting unit to the data acquisition unit.
  • the data acquisition unit performs data processing and analysis on the obtained electromagnetic wave data to obtain real-time information about the target, and then transmits the real-time information about the target to the target tracking module 32 and Register module 33.
  • the target tracking module 32 includes a deviation data comparison module 321 and a follow-up tracking module 322.
  • Those skilled in the art can set the target tracking module 32 to have only the deviation data comparison module as needed, and of course can also set the target tracking module 32 to have only the follow-up tracking module 322 .
  • the deviation data comparison module 321 is configured to be connected to the identification module 31, and obtain the target deviation data in the target real-time information through the identification module 31, and then compare the target deviation data with the deviation threshold range, To determine whether to transmit the target deviation data to the control system 20 .
  • the target deviation data is outside the deviation threshold range, it is determined to transmit the target deviation data to the control system, that is, the tracking target position deviates greatly, and the control system should be adjusted to match the tracking target and the target point.
  • the target deviation data is within the deviation threshold range, it is determined that there is no need to transmit the target deviation data to the control system 20 , that is, the tracking target position deviation is small, and the control system 20 does not need to adjust.
  • the control system 20 adjusts the stimulation direction, the energy convergence position, the relative distance between the energy output end and the target point, and the relative posture among the parameters of the corresponding stimulation module according to the received target point deviation data.
  • you can also adjust the stimulation direction and energy convergence position. any combination of the relative distance between the energy output end and the target point and the relative posture between the energy output end and the target point, such as adjusting the stimulation direction and the energy convergence position, or adjusting the energy convergence position and the energy output end and the target relative attitude between points.
  • the control module 25 of the control system 20 transmits the received target point deviation data to the magnetic field stimulation module 21, and the magnetic field stimulation module 21 responds to the target point deviation.
  • the data adjusts its own energy convergence position, stimulation direction, relative distance and relative attitude between the magnetic field energy output end and the target, and other parameters.
  • the control module 25 of the control system 20 transmits the received target deviation data to the electric field stimulation module 22 and the light stimulation module 23.
  • the electric field stimulation module 22 and the light stimulation module Module 23 respectively adjusts parameters such as energy convergence position, stimulation direction, relative distance and relative posture between the magnetic field energy output end and the target according to the target deviation data.
  • This example is only an illustrative example, and those skilled in the art should not understand it as a limitation of the present invention.
  • the follow-up tracking module 322 is configured to connect with the identification module 31 and obtain the real-time information of the target through the identification module 31, and then respectively adjust the position and attitude of the identification module 31 and the corresponding information based on the real-time information of the target.
  • the position and attitude of the energy output terminal is configured to connect with the identification module 31 and obtain the real-time information of the target through the identification module 31, and then respectively adjust the position and attitude of the identification module 31 and the corresponding information based on the real-time information of the target. The position and attitude of the energy output terminal.
  • follow-up tracking module 322 is a mobile tracking system.
  • the mobile tracking device is provided with a mobile support device (not shown), a driving device (not shown) and a control system (not shown).
  • the control system is connected to the control module 25 in the driving device, the identification module 31 and the control system 20 respectively.
  • the control system obtains the real-time position and attitude information of the tracking target, the target point, the identification module 31 and the energy output end through the identification module 31 and the control module 25.
  • the driving device is connected to the mobile support device to drive the mobile support device, and the mobile support device is connected to the identification module 31 .
  • the recognition module 31 When in use, the recognition module 31 is fixed to the mobile support device.
  • the recognition module 31 recognizes the tracking target and the target movement, it transmits the real-time information of the target to the control system, and the control system calculates the position change of the target based on the real-time information of the target. and attitude change amount, and then obtain the position change amount and attitude change amount of the recognition module and energy output end based on the position change amount and attitude change amount of the target, the real-time position and attitude information of the recognition module, and the real-time position and attitude information of the energy output end, The control system then controls the driving device to drive the mobile support device to move to adjust the position and attitude of the recognition module in real time.
  • the movement amount of the mobile support device is the position change amount and attitude change amount of the recognition module.
  • control system transmits the position change and attitude change of the energy output end to the control module 25, and the control module 25 transmits the position change and attitude change of the energy output end to the corresponding stimulation module (such as a magnetic field stimulation module, an electric field stimulation module) ), the corresponding stimulation module adjusts the position and posture of its own energy output end (such as magnetic field energy output end, electric field energy output end) in real time according to the position change and attitude change of the energy output end.
  • the corresponding stimulation module such as a magnetic field stimulation module, an electric field stimulation module
  • the signal collection and evaluation system 40 includes an information collection module 41 and an evaluation module 42 connected to each other.
  • the information collection module 41 can also be configured to connect with the information input module 13 of the planning system 10 to collect physiological signals and medical imaging images of the tracking target.
  • the evaluation module 42 is connected to the target determination module 11 of the planning system 10, and evaluates the control effect based on the physiological signals and medical images transmitted by the information collection module 41, and then uses the evaluation results (such as changes in the coverage area of the target, target Changes in tissue metabolism at the point, changes in physiological signals at the target) are transmitted to the target determination module 11.
  • the target determination module 11 re-determines the target based on the evaluation results, and then transmits the re-determined target information of the tracking target to the regulation Program planning module 12:
  • the control program planning module 12 re-plans the control program based on the new target information, and transmits the new control program to the control system 20.
  • the information collection module 41 collects physiological signals of the target at different stages during the stimulation process.
  • the evaluation module 42 evaluates the real-time physiological signal changes of the target point based on the physiological signals of the target point at different stages from the information collection module 41 .
  • the information collection module 41 can also collect medical imaging images of the target before and after being stimulated by the stimulation energy.
  • the evaluation module 42 evaluates changes in the image of the target before and after stimulation based on the medical imaging images of the target before and after stimulation from the information collection module 41 .
  • Changes in medical imaging images include changes in the coverage position of the target region of interest and/or changes in tissue metabolism data.
  • the coverage area change of the target area of interest in the brain functional image generated by functional magnetic resonance imaging is collected before and after stimulation.
  • the glucose metabolism changes in brain metabolism images generated by PET based on the target before and after stimulation are collected.
  • the usage method 200 of the medical control system includes the following steps:
  • the positioning system 30 is connected to the control system 20, and real-time information of the target is obtained through the positioning system 30, and then the real-time information of the target is transmitted to the control system 20.
  • the control system 20 adjusts its own parameters based on the real-time information of the target to match the target.
  • using method 200 also includes the following steps:
  • the signal acquisition and evaluation system 40 in the medical control system 100 is connected to the planning system 10, and the target assessment results are transmitted to the planning system 10. Then the planning system 10 re-determines the target information and re-plans the control plan based on the assessment results.
  • a readable storage medium is provided in accordance with yet another embodiment of the present invention.
  • “Readable storage medium” of embodiments of the present invention refers to any medium that participates in providing programs or instructions to a processor for execution.
  • the media can take many forms, including, but not limited to, non-volatile media, volatile media, and transmission media.
  • Non-volatile media include, for example, optical or magnetic disks, such as storage devices.
  • Volatile media includes dynamic memory, such as main memory.
  • Transmission media include coaxial cables, copper wire, and fiber optics, including the wires that contain the bus. Transmission media may also take the form of acoustic or light waves, such as those generated during radio frequency (RF) and infrared (IR) data communications.
  • RF radio frequency
  • IR infrared
  • Common forms of readable storage media include, for example, floppy disks, flexdisks, hard disks, magnetic tape, any other magnetic media, CD-ROM, DVD, any other optical media, punched cards, paper tape, any other physical medium with a pattern of holes, RAM , PROM and EPROM, FLASH-EPROM, any other memory chip or cartridge, a carrier wave as described below, or any other medium from which a computer can read.
  • Programs or instructions are stored on the readable storage medium, and when the programs or instructions are executed by the processor, the above-mentioned method 200 for using the medical control system is performed.
  • the medical control system disclosed in this application can plan an integrated personalized control plan according to the individual differences of patients through integrated design, and can adjust control parameters in real time, Thereby improving the efficacy of medical regulation and treatment;
  • the medical control system and its use method and readable storage medium disclosed in this application can obtain the patient's target position and other information in real time through the design of the positioning system, thereby avoiding the control target caused by the movement of the patient's body. Point deviation, which in turn leads to a deviation in the convergence position of the stimulation energy output by the regulatory system;
  • the medical control system and its usage method and readable storage medium disclosed in this application can evaluate changes before and after stimulation or between various stages during the stimulation process through the design of the signal acquisition and evaluation system, thereby realizing timely adjustment of the control plan. .

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明的实施例公开了一种医疗调控系统及其使用方法和可读存储介质。该医疗调控系统包括:规划系统,被配置成基于跟踪目标的靶点信息规划调控方案;调控系统,被配置成与该规划系统连接,基于该调控方案调整自身的参数以匹配该跟踪目标的靶点;定位系统,被配置成与该调控系统连接,获取靶点实时信息并将该靶点实时信息传输至该调控系统,该调控系统基于该靶点实时信息调整自身的参数以匹配该靶点。

Description

医疗调控系统及其使用方法和可读存储介质 技术领域
本申请公开内容涉及医疗设备技术领域,尤其涉及一种医疗调控系统及其使用方法和可读存储介质。
背景技术
神经调控技术是利用植入性和非植入性技术,依靠电或化学手段来改善人类生命质量的科学、医学以及生物工程技术。它作为一种有效的外科治疗手段,具有微创、可逆、可调性的特点,与立体定向毁损手术相比,大大降低了手术的致残率,能够为脑疾病患者提供一种新的选择。
目前,神经调控技术已经广泛应用于运动障碍性疾病、顽固性疼痛、癫痫、精神障碍性疾病、脑类疾病、成瘾症以及神经系统受损后的功能恢复治疗方面。该项技术尤其是治疗精神与神经类疾病和进行康复治疗的重要技术手段。
但是,由于病患的个体差异化较大,使得该类技术在临床中的应用仍然面临很大的挑战,例如不能满足患者们个性化的需求,包括个性化的调控方案的制定、精准的靶点定位以及制定合理的调控参数等,这些都将严重影响治疗的效果。
因此,确有必要提供一种新的能够至少满足患者个体化需求的一体化的医疗调控系统及其使用方法和可读存储介质。
发明内容
为了解决现有技术中存在的上述问题和缺陷的至少一个方面,本申请公开了一种医疗调控系统及其使用方法和可读存储介质,能够至少部分地实现通过一体化的设计能够根据病患个体化差异的不同,规划一体式的个性化调控方案,并能够实时调整调控参数,从而提高了医疗调控治疗的疗效。所述技术方案如下:
根据本申请的一个方面,提供了一种医疗调控系统,包括:
规划系统,被配置成基于跟踪目标的靶点信息规划调控方案;
调控系统,被配置成与所述规划系统连接,基于所述调控方案调整自身的参数以匹配所述跟踪目标的靶点;
定位系统,被配置成与所述调控系统连接,获取靶点实时信息并将所述靶点实时信息传输至所述调控系统,所述调控系统基于所述靶点实时信息调整自身的参数以匹配所述靶点。
根据本申请的另一方面,提供了一种医疗调控系统的使用方法,其中,
所述医疗调控系统为上述任一项所述的医疗调控调控系统,
所述使用方法包括以下步骤:
通过规划系统基于跟踪目标的靶点信息规划调控方案;
将调控系统与所述规划系统连接,并通过所述调控系统基于所述调控方案调整自身的参数以匹配所述跟踪目标的靶点;
将定位系统与所述调控系统连接,并通过所述定位系统获取所述靶点的靶点实时信息,之后将所述靶点实时信息传输至所述调控系统,所述调控系统基于所述靶点实时信息调整自身的参数以匹配所述靶点。
根据本申请的还一方面,提供了一种可存储介质,其中,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时以执行上述的医疗调控系统的使用方法。
通过下文中参照附图对本公开的实施例所作的描述,本公开的其它目的和优点将显而易见,并可帮助对本公开有全面的理解。
附图说明
本发明的这些和/或其他方面和优点从下面结合附图对优选实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明一个实施例的医疗调控系统的结构示意图;
图2是图1所示的规划系统的结构示意图;
图3是图1所示的调控系统的结构示意图;
图4是图1所示的定位系统的结构示意图;
图5是根据本发明一个实施例的医疗调控系统的使用方法的流程图。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。在说明书中,相同或相似的附图标号指示相同或相似的部件。下述参照附图对本发明实施方式的说明旨在对本发明的总体发明构思进行解释,而不应当理解为对本发明的一种限制。
目前,神经调控技术已经广泛应用于运动障碍性疾病、顽固性疼痛、癫痫、精神障碍性疾病、脑类疾病、成瘾症以及神经系统受损后的功能恢复治疗方面。该项技术尤其是治疗精神与神经类疾病和进行康复治疗的重要技术手段。但是,由于病患的个体差异化较大,使得 该类技术在临床中的应用仍然面临很大的挑战,例如不能满足患者们个性化的需求,包括个性化的调控方案的制定、精准的靶点定位以及制定合理的调控参数等,这些都将严重影响治疗的效果。
参见图1,其示出了根据本发明的一个实施例的医疗调控系统100。医疗调控系统100包括规划系统10、调控系统20和定位系统30。规划系统10被配置成基于跟踪目标(未示出)的靶点信息规划调控方案。调控系统20被配置成与规划系统10连接,并基于调控方案调整自身的参数以匹配跟踪目标的靶点。定位系统30被配置成与调控系统20连接,获取靶点实时信息并将靶点实时信息传输至调控系统20,之后调控系统20基于靶点实时信息调整自身的参数以匹配靶点。
在一个示例中,医疗调控系统100还包括与规划系统10连接的信号采集评估系统40。信号采集评估系统40被配置成用于将其对靶点的评估结果传输至规划系统10,规划系统10基于评估结果重新确定靶点信息和重新规划调控方案。
结合图1和图2所示,规划系统10包括靶点确定模块11和调控方案规划模块12。靶点确定模块11与调控方案规划模块12连接。调控方案规划模块12根据靶点确定模块11传输的靶点信息规划调控方案,之后将调控方案传输至调控系统20,调控系统20基于调控方案调整自身的参数以匹配跟踪目标的靶点。在一个示例中,靶点信息为靶点的位置信息、靶点大小、靶点类型等。
在一个示例中,靶点确定模块11包括第一确定子模块111、第二确定子模块112、第三确定子模块113和第四确定子模块114。第一确定子模块111被配置成基于跟踪目标的医学影像图像确定的靶点感兴趣区域(ROI)来确定靶点位置信息。第二确定子模块112被配置成基于医学影像图像确定的组织代谢数据来确定靶点位置信息。第三确定子模块113被配置成基于生理信号测量设备所测量的跟踪目标的生理信号来确定靶点位置信息。第四确定子模块114被配置成基于物理刺激设备定位靶点来确定靶点位置信息。
本领域技术人员可以明白,第一确定子模块111、第二确定子模块112、第三确定子模块113和第四确定子模块114可以根据实际需要来设定,例如,当实际情况中需要第一确定子模块111和第四确定子模块114时,本领域技术人员可以选择不设置第二确定子模块112和第三确定子模块113,当然也可以选择在系统100中设置第二和第三确定子模块,在需要使用时启用第二和第三确定子模块。当然本领域技术人员还可以将第一、第二和第三确定子模块进行组合、或第一、第三和第四确定子模块进行组合、或第二和第四确定子模块进行组合、第二、第三和第四确定子模块进行组合,以此类推,在此不再一一赘述。本领域技术人员应 当明白,本示例仅是一种说明性示例,本领域技术人员不应当理解为对本发明的一种限制。
在一个示例中,第一确定子模块111可以基于跟踪目标的脑结构磁共振成像、任务态功能磁共振成像或静息态功能磁共振成像和相应成像中的各个脑区之间的体素连接度确定跟踪目标的至少两个感兴趣区域,之后第一确定子模块111基于该至少两个感兴趣区域中的所有的感兴趣区域并根据异常检测规则确定至少一个异常感兴趣区域,最后第一确定子模块111基于该至少一个异常感兴趣区域中的所有的异常感兴趣区域确定靶点。所述异常检测规则为基于跟踪目标的个体脑连接矩阵、受试群体的群体脑连接矩阵的平均值矩阵和标准差矩阵对跟踪目标的所有的感兴趣区域进行计算并获得异常检测结果p_z(n),基于异常检测结果获得异常感兴趣区域。所述异常检测结果p_z(n)的表达式为:
Figure PCTCN2022093951-appb-000001
式中,p_corr(n)表示跟踪目标的个体脑连接矩阵,mean(n)表示群体脑连接矩阵的平均值矩阵,std(n)表示群体脑连接矩阵的标准差矩阵。
在一个示例中,在脑连接矩阵中,例如个体脑连接矩阵和群体脑连接矩阵均以感兴趣区域与感兴趣区域的时间序列的皮尔逊相关系数作为矩阵的元素。
本领域技术人员可以明白,当病变部位在除脑以外的部位时,例如肠道、心脏、淋巴、血管等部位时,第一确定子模块111应当基于对应的部位的医学影像图像来确定靶点。
在一个示例中,mean(n)可以为以受试群体中全部受试者的感兴趣区域与感兴趣区域的时间序列的皮尔逊相关系数的平均值作为元素构成的平均值矩阵,也可以为群体脑连接矩阵的每一行与所述平均值矩阵中对应行计算得到的皮尔逊相关系数构成的相关系数平均值矩阵。std(n)可以为以受试群体中全部受试者的感兴趣区域与感兴趣区域的时间序列的皮尔逊相关系数的标准差作为元素构成的标准差矩阵,也可以为以群体脑连接矩阵的每一行与所述标准差矩阵中对应行计算得到的皮尔逊相关系数作为元素构成的相关系数标准差矩阵。
在一个示例中,本领域技术人员异常感兴趣区域还可以根据跟踪目标的疾病类型确定。在一个示例中,脑连接矩阵可以基于电子计算机断层扫描(CT)、磁共振成像(MRI)获得的结构像得到,还可以基于功能性磁共振成像(FMRI)获得的脑功能图像得到。
在一个示例中,可以将异常感兴趣区域设置为靶点感兴趣区域,该靶点感兴趣区域的中心确定为靶点。还可以基于异常感兴趣区域与跟踪目标可能存在靶点的脑结构分区的交集作为靶点感兴趣区域,该靶点感兴趣区域的中心确定为靶点。当然还可以基于多个异常感兴趣区域中的任意一个异常感兴趣区域与其他剩余的所有的异常感兴趣区域的连接度满足预设阈 值时,将该异常感兴趣区域确定为靶点感兴趣区域,且将该靶点感兴趣区域的中心确定为靶点,或者基于该异常感兴趣区域与跟踪目标可能存在靶点的脑结构分区的交集作为靶点感兴趣区域,该靶点感兴趣区域的中心确定为靶点。
在一个示例中,靶点还可以根据疾病感兴趣区域与靶点感兴趣区域之间的连接度来确定。疾病感兴趣区域可以为根据跟踪目标的疾病类型确定的可能存在的疾病的区域。靶点感兴趣区域可以根据上文中记载的靶点感兴趣区域的确定方法得到,还可以从疾病感兴趣区域中获得对应的疾病可能存在靶点的区域。在确定多个疾病感兴趣区域和多个靶点感兴趣区域之后,计算多个靶点感兴趣区域中的每一个靶点感兴趣区域的每个体素与多个疾病感兴趣区域中的每一个疾病感兴趣区域的皮尔逊相关系数。当计算得到的体素的皮尔逊相关系数符合预设靶点连接度阈值时,该体素确定为靶点。
在一个示例中,第二确定子模块112为通过识别正电子发射计算机断层扫描(PET)生成的脑代谢图像中的媒介物质的代谢情况或者基于输入的PET检查并生成的媒介物质的代谢数据来确定靶点。例如,通过氟代脱氧葡萄糖正电子发射计算机断层扫描-计算机断层扫描(即氟代脱氧葡萄糖PET-CT)检查获得脑代谢图像,之后第二确定子模块112识别脑代谢图像中葡萄糖的代谢情况来确定靶点,可以将葡萄糖代谢旺盛的位置设置为靶点,或者向第二确定子模块112输入媒介物质(例如葡萄糖)的代谢数据,第二确定子模块112通过自身的算逻单元(ALU)进行比较和判断,当某区域的葡萄糖代谢的数据高于一阈值时,则确定该区域为靶点区域,该靶点区域的中心确定为靶点。
在一个示例中,第三确定子模块113为基于脑电测量设备、肌电测量设备、近红外光谱(NIRS)技术获得的对应的生理信号来确定靶点。例如,第三确定子模块113可以基于脑电测量设备获得脑电波(EEG)来确定颅内的靶点。第三确定子模块113还可以在进行头部刺激的同时基于肌电测量设备采集的肌电信号(EMG)的强弱或肌电值的大小来确定头部的敏感点,并将该敏感点作为靶点。第三确定子模块113还可以基于近红外光谱(NIRS)技术实时识别靶点以确定靶点。
在一个示例中,第四确定子模块114为基于物理刺激设备例如电极帽、立体定向头架(例如lecksell头架)来确定靶点。例如,可以采用国际10-20电极帽定位方法进行靶点确定。还可以通过将微电极记录仪记录立体定向头架的微电极刺激产生的生理电信号来确定靶点。
在一个示例中,规划系统10还包括信息输入模块13。信息输入模块13与靶点确定模块11连接,以向该靶点确定模块11输入来自外部设备(未示出)的信号或者跟踪目标的医学影像图像。外部设备包括脑电测量设备、肌电测量设备、近红外光谱(NIRS)系统、电极帽 和医学影像扫描设备中的至少一种,所述外部设备通过信息输入模块13输入至医疗调控系统100中,之后信息输入模块13根据外部设备输入的信号类型、信号频率等来确定将该输入的信号传输至第一至第四确定子模块中的哪一个。
在一个示例中,外部设备的选取根据靶点确定模块11中的确定子模块的设置来选择。例如,当靶点确定模块11中仅设置了第三确定子模块113,则外部设备可以选择脑电测量设备、肌电测量设备和近红外光谱(NIRS)系统中的至少一种。当靶点确定模块11中仅设置了第四确定子模块114,则外部设备选取电极帽。当靶点确定模块11中设置了第一和第三确定子模块,则外部设备可以选取为生理信号测量设备和医学影像扫描设备。生理信号测量设备可以为脑电测量设备、肌电测量设备和近红外光谱系统中的至少一种,医学影像扫描设备可以为磁共振扫描仪、CT扫描仪和PET-CT检查设备中的至少一种。本示例仅是一种说明性示例,本领域技术人员可以根据需要来组合第一至第四确定子模块,基于第一至第四子模块的组合来确定可以接入的外部设备。
本领域技术人员可以明白,各个确定子模块在靶点确定的过程中,确定除脑以外的其他部位(例如肠道、心脏、淋巴和血管等)的靶点确定方法与脑部靶点的确定方法的原理相同或相似,在此不再一一赘述。
如图3所示,调控系统20包括磁场刺激模块21、电场刺激模块22、光刺激模块23和机械波刺激模块24。磁场刺激模块21可以向跟踪目标的靶点输出磁场能量,电场刺激模块22可以向跟踪目标的靶点输出电场能量,光刺激模块23可以向跟踪目标的靶点输出光能量,机械波刺激模块24可以向跟踪目标的靶点输出机械波能量(例如超声波)。本领域技术人员可以根据需要设置调控系统20中的各个刺激模块。例如可以将磁场刺激模块21、电场刺激模块22、光刺激模块23和机械波刺激模块24进行任意组合,调控系统20可以是所述任意组合中的任意一种,例如调控系统20可以包括磁场刺激模块21和电场刺激模块22,也可以仅包括磁场刺激模块21,还可以包括磁场刺激模块21、电场刺激模块22和机械波刺激模块24。本示例仅是一种说明性示例,本领域技术人员可以根据需要选择刺激模块的组合方式,并根据选择的组合方式确定向跟踪目标的靶点输出的能量的类型。
在一个示例中,调控系统20还具有能量输出端(未示出)和与所述能量输出端相匹配的接口(未示出),该能量输出端包括磁场能量输出端211、电场能量输出端221、光能量输出端231和机械波能量输出端241中的至少一种。调控系统20根据调控方案调整自身的参数,之后将刺激能量通过输出端输送至跟踪目标的靶点处。
在一个示例中,规划系统10规划的调控方案为根据靶点信息规划的与该靶点相匹配的刺 激能量的种类、强度、刺激持续时间、刺激方向、刺激频率、能量汇聚位置、调控系统20的能量输出端与靶点之间的相对距离以及相对姿态。相应地,调控系统20的参数包括刺激能量的强度、刺激持续时间、刺激方向、刺激频率、能量汇聚位置、调控系统的能量输出端与靶点之间的相对距离以及相对姿态。当能量输出端与调控系统20的接口连接时,触发与能量输出端的类型相对应的刺激模块启动,之后该刺激模块将自身的或该能量输出端的唯一标识发送至规划系统10,规划系统10根据该唯一标识确定调控方案中的刺激能量的种类。
例如,当能量输出端为磁场能量输出端时,磁场能量输出端与接口连接,并触发了磁场刺激模块启动,磁场刺激模块21将自身的唯一标识或者将磁场能量输出端的唯一标识发送给规划系统10,规划系统10的调控方案规划模块12根据接收到的唯一标识确定调控方案中待输出的能量的种类为磁场,之后基于靶点信息确定该磁场的强度、刺激持续时间、刺激方向、刺激频率、能量汇聚位置、调控系统的能量输出端与靶点之间的相对距离以及相对姿态,由此形成了一整套的调控方案。
在一个示例中,调控系统20还设置有控制模块25,所述控制模块25与调控系统20中的对应的刺激模块连接。例如,当调控系统20中设置有磁场刺激模块21、电场刺激模块22、光刺激模块23和机械波刺激模块24时,控制模块25与该四种刺激模块连接。当调控系统20中仅设置有磁场刺激模块21和电场刺激模块22时,则控制模块25分别与磁场刺激模块21和电场刺激模块22连接,以此类推,在此不再一一赘述。
在一个示例中,能量输出端与接口连接之后,将发送例如低平信号和/或自身的唯一标识至控制模块25,所述控制模块25根据接收到的唯一标识确定接口连接的能量输出端的类型(例如磁场能量输出端等),之后根据能量输出端的类型启动相应的刺激模块(例如磁场刺激模块21)。
在一个示例中,医疗调控系统100可以应用于运动员身体部位及其功能的调整恢复、精神冥想恢复、心理治疗、睡眠障碍、抗衰老及记忆力增强等领域。相应地,调控系统20可以设置为例如可穿戴式设备,其可以输出某一预定波段的电磁波对人体内的生物分子、细胞、运动员的某一身体部位、人的精神、心理、睡眠以及记忆力等进行调控。另外,还可以将调控系统20设置为其他辅助设备,例如运动障碍调控装置、功能恢复装置、康复装置、精神安抚装置、心理治疗装置、心理减压调整装置、助眠装置、记忆增强装置等等。本示例仅是一种说明性示例,本领域技术人员可以根据实际需要进行适当设置,并不应理解为对本发明的一种限制。
如图4所示,定位系统30包括识别模块31、靶点跟踪模块32和注册模块33。识别模块 31被配置成识别跟踪目标和该跟踪目标的靶点,并获取靶点的靶点实时信息。靶点跟踪模块32被配置成分别与识别模块31和调控系统20连接,用于基于识别模块31提供的靶点实时信息追踪跟踪目标和靶点,并将靶点实时信息传输至调控系统20中的对应的刺激模块中。注册模块33设置有与跟踪目标相对应的跟踪目标模型(未示出),且注册模块33被配置成分别与识别模块31、靶点跟踪模块32和靶点确定模块11连接,借助于识别模块31、靶点跟踪模块32和靶点确定模块11将跟踪目标和靶点映射至跟踪目标模型上。
在一个示例中,识别模块31包括可见光识别组件311和电磁场识别组件312。可见光识别组件311包括光学捕捉单元(未示出)和反光标识单元(未示出)。电磁场识别组件312包括磁场发射单元(未示出)、磁场接收单元(未示出)和数据采集单元(未示出)。本领域技术人员可以根据需要将识别模块31设置为仅具有可见光识别组件,当然也可以设置为仅具有电磁场识别组件。
在一个示例中,光学捕捉单元用于捕捉、识别跟踪目标和靶点的实时位置信息,反光标识单元设置于跟踪目标或靶点上,以用于被光学捕捉单元捕捉和识别。所述光学捕捉单元与靶点跟踪模块32和注册模块33连接,以将捕捉和识别的靶点实时信息传输分别传输至靶点跟踪模块32和注册模块33。
在一个示例中,磁场发射单元与磁场接收单元彼此连接,磁场发射单元中设置有磁场发生器,在使用时,磁场发射单元将磁场发生器产生的电磁波发送至磁场接收单元。磁场接收单元与数据采集单元连接,数据采集单元分别与靶点跟踪模块32和注册模块33连接。磁场接收单元将来自磁场发射单元的电磁波传输至数据采集单元,数据采集单元将获得的电磁波数据进行数据处理和分析以获得靶点实时信息,之后将靶点实时信息传输至靶点跟踪模块32与注册模块33。
在一个示例中,靶点跟踪模块32包括偏离数据比较模块321和随动跟踪模块322。本领域技术人员可以根据需要将靶点跟踪模块32设置为仅具有偏离数据比较模块,当然也可以将靶点跟踪模块32设置为仅具有随动跟踪模块322。
在一个示例中,偏离数据比较模块321被配置成与识别模块31连接,并通过识别模块31获取靶点实时信息中的靶点偏离数据,之后将该靶点偏离数据与偏离阈值范围进行比较,以判断是否将该靶点偏离数据传输至调控系统20。当该靶点偏离数据在偏离阈值范围外时,则确定将靶点偏离数据传输至调控系统,即跟踪目标位置偏离较大,调控系统应当进行调整以匹配跟踪目标和靶点。当该靶点偏离数据在偏离阈值范围内时,则确定不必将靶点偏离数据传输至调控系统20,即跟踪目标位置偏离较小,调控系统20无需调整。
在一个示例中,调控系统20根据接收到的靶点偏离数据调整对应的刺激模块的参数中的刺激方向、能量汇聚位置、所述能量输出端与靶点之间的相对距离以及相对姿态。当然也可以仅调整刺激方向、能量汇聚位置、能量输出端与靶点之间的相对距离以及能量输出端与靶点之间的相对姿态中的任意一个,当然还可以调整刺激方向、能量汇聚位置、所述能量输出端与靶点之间的相对距离以及能量输出端与靶点之间的相对姿态的任意组合,例如调整刺激方向和能量汇聚位置,或者调整能量汇聚位置和能量输出端与靶点之间的相对姿态。
在一个示例中,当调控系统20的能量输出端为磁场能量输出端时,调控系统20的控制模块25将接收到的靶点偏离数据传输至磁场刺激模块21,磁场刺激模块21根据靶点偏离数据调整自身的能量汇聚位置、刺激方向、磁场能量输出端与靶点之间的相对距离和相对姿态等参数。当调控系统的能量输出端为电场能量输出端和光能量输出端时,调控系统20的控制模块25将接收到的靶点偏离数据传输至电场刺激模块22和光刺激模块23,电场刺激模块22和光刺激模块23分别根据靶点偏离数据调整各自的能量汇聚位置、刺激方向、磁场能量输出端与靶点之间的相对距离和相对姿态等参数。本示例仅是一种说明性示例,本领域技术人员不应当理解为对本发明的一种限制。
在一个示例中,随动跟踪模块322被配置成与识别模块31连接,并通过识别模块31获取所述靶点实时信息,之后基于靶点实时信息分别调整识别模块31的位置和姿态、对应的能量输出端的位置和姿态。
在一个示例中,随动跟踪模块322为移动跟踪系统。移动跟踪装置设置有移动支撑装置(未示出)、驱动装置(未示出)和控制系统(未示出)。控制系统分别与驱动装置、识别模块31和调控系统20中的控制模块25连接,控制系统通过识别模块31和控制模块25获得跟踪目标、靶点、识别模块31和能量输出端的实时位置和姿态信息。驱动装置与移动支撑装置连接以驱动移动支撑装置,移动支撑装置与识别模块31连接。
使用时,识别模块31与移动支撑装置固定,当识别模块31识别到跟踪目标和靶点移动时,将靶点实时信息传输至控制系统,控制系统根据靶点实时信息计算靶点的位置变化量和姿态变化量,之后基于靶点的位置变化量和姿态变化量、识别模块的实时位置和姿态信息以及能量输出端的实时位置和姿态信息获得识别模块和能量输出端的位置变化量和姿态变化量,然后控制系统控制驱动装置驱动移动支撑装置移动以实时调整识别模块的位置和姿态。移动支撑装置的移动量为识别模块的位置变化量和姿态变化量。
同时,控制系统将能量输出端的位置变化量和姿态变化量传输至控制模块25,控制模块25将能量输出端的位置变化量和姿态变化量传输至对应的刺激模块(例如磁场刺激模块、电 场刺激模块),对应的刺激模块根据能量输出端的位置变化量和姿态变化量实时调整自身的能量输出端(例如磁场能量输出端、电场能量输出端)的位置和姿态。
如图1所示,信号采集评估系统40包括彼此连接的信息采集模块41和评估模块42。在一个示例中,信息采集模块41还可以设置为与规划系统10的信息输入模块13连接,以采集跟踪目标的生理信号和医学影像图像。评估模块42与规划系统10的靶点确定模块11连接,并根据信息采集模块41传输的生理信号和医学影像图像进行调控效果的评估,之后将评估结果(例如靶点的覆盖区域的变化、靶点处组织代谢的变化、靶点处生理信号的变化)传输至靶点确定模块11,靶点确定模块11基于评估结果重新确定靶点,之后将重新确定的跟踪目标的靶点信息传输至调控方案规划模块12,调控方案规划模块12根据新的靶点信息重新规划调控方案,并将新的调控方案传输至调控系统20。
在一个示例中,信息采集模块41采集靶点在刺激过程中的不同阶段的生理信号。评估模块42根据来自信息采集模块41的靶点在不同阶段的生理信号,评估靶点的实时生理信号变化。
在一个示例中,信息采集模块41还可以采集靶点在被刺激能量刺激前与刺激后的医学影像图像。评估模块42根据来自信息采集模块41的靶点在刺激前与刺激后的医学影像图像,评估靶点在刺激前与刺激后图像的变化。医学影像图像的变化包括靶点感兴趣区域的覆盖位置变化和/或组织代谢数据变化。例如采集靶点在刺激前后的基于功能磁共振成像生成的脑功能图像中的靶点感兴趣区域的覆盖面积变化。例如采集靶点在刺激前后基于PET生成的脑代谢图像中的葡萄糖代谢变化。
参见图5,其示出了根据本发明的另一实施例的医疗调控系统100的使用方法200。该医疗调控系统的使用方法200包括以下步骤:
通过规划系统10基于跟踪目标的靶点信息规划调控方案;
将调控系统20与规划系统10连接,并通过调控系统20基于调控方案调整自身的参数以匹配跟踪目标的靶点;
将定位系统30与调控系统20连接,并通过定位系统30获取靶点的靶点实时信息,之后将靶点实时信息传输至调控系统20,调控系统20基于靶点实时信息调整自身的参数以匹配所述靶点。
在一个示例中,使用方法200还包括以下步骤:
将医疗调控系统100中的信号采集评估系统40与规划系统10连接,并将对靶点的评估结果传输至规划系统10,之后规划系统10基于评估结果重新确定靶点信息和重新规划调控 方案。
在一个示例中,根据本发明的还一实施例提供了一种可读存储介质。本发明的实施例的“可读存储介质”是指参与向处理器提供程序或指令以供执行的任何介质。所述介质可以采用多种形式,包括但不限于非易失性介质、易失性介质和传输介质。非易失性介质包括例如光盘或磁盘,诸如存储设备。易失性介质包括动态存储器,诸如主存储器。传输介质包括同轴电缆、铜线和光纤,包括包含总线的导线。传输介质还可以采用声波或光波的形式,诸如在射频(RF)和红外(IR)数据通信期间生成的声波或光波。可读存储介质的常见形式包括例如软盘、柔性盘、硬盘、磁带、任何其他磁介质、CD-ROM、DVD、任何其他光学介质、穿孔卡、纸带、任何具有孔图案的其他物理介质、RAM、PROM和EPROM、FLASH-EPROM、任何其他存储器芯片或盒、如下所述的载波、或计算机可从其中进行读取的任何其他介质。
该可读存储介质上存储程序或指令,所述程序或指令被处理器执行时以执行上述的医疗调控系统的使用方法200。
根据本申请实施例的医疗调控系统及其使用方法和可读存储介质具有以下优点中的至少一个:
(1)本申请公开的医疗调控系统及其使用方法和可读存储介质通过一体化的设计能够根据病患个体化差异的不同,规划一体式的个性化调控方案,并能够实时调整调控参数,从而提高了医疗调控治疗的疗效;
(2)本申请公开的医疗调控系统及其使用方法和可读存储介质通过定位系统的设计能够实时获取病患的靶点位置等信息,由此避免了因病患身体移动而导致的调控靶点偏移,进而导致的调控系统输出的刺激能量的汇聚位置的偏离;
(3)本申请公开的医疗调控系统及其使用方法和可读存储介质通过信号采集评估系统的设计能够评估刺激前后或者刺激过程中的各个阶段之间的变化,从而实现了调控方案的及时调整。
虽然本总体发明构思的一些实施例已被显示和说明,本领域普通技术人员将理解,在不背离本总体发明构思的原则和精神的情况下,可对这些实施例做出改变,本发明的范围以权利要求和它们的等同物限定。

Claims (18)

  1. 一种医疗调控系统,包括:
    规划系统,被配置成基于跟踪目标的靶点信息规划调控方案;
    调控系统,被配置成与所述规划系统连接,基于所述调控方案调整自身的参数以匹配所述跟踪目标的靶点;和
    定位系统,被配置成与所述调控系统连接,获取靶点实时信息并将所述靶点实时信息传输至所述调控系统,所述调控系统基于所述靶点实时信息调整自身的参数以匹配所述靶点。
  2. 根据权利要求1所述的医疗调控系统,其中,
    所述规划系统包括彼此连接的靶点确定模块和调控方案规划模块,所述调控方案规划模块根据所述靶点确定模块传输的所述靶点信息规划所述调控方案,之后将所述调控方案传输至所述调控系统,所述调控系统基于所述调控方案调整自身的参数以匹配所述靶点。
  3. 根据权利要求2所述的医疗调控系统,其中,
    所述定位系统中设置有与所述跟踪目标相对应的跟踪目标模型,
    所述靶点确定模块与所述定位系统连接以将所述靶点信息映射至所述跟踪目标模型上。
  4. 根据权利要求3所述的医疗调控系统,其中,
    所述靶点信息包括靶点位置信息,
    所述靶点确定模块包括第一确定子模块、第二确定子模块、第三确定子模块和第四确定子模块中的至少一种或者它们的任意组合,
    所述第一确定子模块被配置成基于所述跟踪目标的医学影像图像确定的靶点感兴趣区域来确定靶点位置信息;
    所述第二确定子模块被配置成基于所述医学影像图像确定的组织代谢数据来确定靶点位置信息;
    第三确定子模块被配置成基于生理信号测量设备所测量的所述跟踪目标的生理信号来确定靶点位置信息;
    第四确定子模块被配置成基于物理刺激设备定位靶点来确定靶点位置信息。
  5. 根据权利要求1-4中任一项所述的医疗调控系统,其中,
    所述规划系统还包括与所述靶点确定模块连接的信息输入模块,所述信息输入模块向所述靶点确定模块输入来自外部设备的信号或者所述跟踪目标的医学影像图像。
  6. 根据权利要求3所述的医疗调控系统,其中,
    所述调控系统被配置成向所述靶点输出至少一种刺激能量,且被配置成包括基于所述参数输出磁场能量的磁场刺激模块、基于所述参数输出电场能量的电场刺激模块、基于所述参数输出光能量的光刺激模块和基于所述参数输出机械波能量的机械波刺激模块中的至少一种或它们的任意组合,
    所述参数包括与至少一种刺激能量相对应的刺激能量的强度、刺激持续时间、刺激方向、刺激频率、能量汇聚位置、调控系统的能量输出端与靶点之间的相对距离以及相对姿态,
    所述调控方案为根据所述靶点信息规划的与所述靶点相匹配的刺激能量的种类、强度、刺激持续时间、刺激方向、刺激频率、能量汇聚位置、调控系统的能量输出端与靶点之间的相对距离以及相对姿态。
  7. 根据权利要求6所述的医疗调控系统,其中,
    所述定位系统包括:
    识别模块,被配置成识别所述跟踪目标和所述靶点,并获取所述靶点的靶点实时信息;
    靶点跟踪模块,被配置成分别与所述识别模块和所述调控系统连接,用于基于所述靶点实时信息跟踪所述靶点,并将所述靶点实时信息传输至所述调控系统中的对应的刺激模块中;
    注册模块,设置有所述跟踪目标模型,且被配置成分别与所述识别模块和靶点跟踪模块连接,借助于所述识别模块和靶点跟踪模块将所述跟踪目标和所述靶点映射至所述跟踪目标模型上。
  8. 根据权利要求7所述的医疗调控系统,其中,
    所述识别模块包括可见光识别组件和电磁场识别组件中的至少一种,其中所述可见光识别组件包括光学捕捉单元和反光标识单元,所述电磁场识别组件包括磁场发射单元、磁场接收单元和数据采集单元。
  9. 根据权利要求7所述的医疗调控系统,其中,
    所述靶点跟踪模块包括偏离数据比较模块和随动跟踪模块中的至少一种,
    所述偏离数据比较模块,被配置成与所述识别模块连接,并通过所述识别模块获取靶点实时信息中的靶点偏离数据,之后将所述靶点偏离数据传输至所述调控系统以调整所述参数;
    所述随动跟踪模块,被配置成与所述识别模块连接,并通过所述识别模块获取所述靶点实时信息,之后基于所述靶点实时信息分别调整所述识别模块和所述能量输出端的位置和姿态。
  10. 根据权利要求9所述的医疗调控系统,其中,
    所述偏离数据比较模块基于所述靶点偏离数据与偏离阈值范围比较以判断是否将所述靶点偏离数据传输至所述调控系统,
    当所述靶点偏离数据在所述偏离阈值范围外时,则确定将所述靶点偏离数据传输至所述调控系统。
  11. 根据权利要求10所述的医疗调控系统,其中,
    所述调控系统基于所述靶点偏离数据调整所述参数中的刺激方向、能量汇聚位置、所述能量输出端与靶点之间的相对距离以及所述能量输出端与靶点之间的相对姿态中的至少一个或者它们的任意组合。
  12. 根据权利要求6-11中任一项所述的医疗调控系统,其中,
    所述医疗调控系统还包括与所述规划系统连接的信号采集评估系统,所述信号采集评估系统被配置成用于将其对所述靶点的评估结果传输至所述规划系统,所述规划系统基于所述评估结果重新确定靶点信息和重新规划调控方案。
  13. 根据权利要求12所述的医疗调控系统,其中,
    所述信号采集评估系统被配置成输入并评估所述靶点在刺激过程中的不同阶段的生理信号的变化以获得所述评估结果。
  14. 根据权利要求12所述的医疗调控系统,其中,
    所述信号采集评估系统被配置成输入并评估所述靶点在被刺激能量刺激前与刺激后的医学影像图像的变化以获得所述评估结果。
  15. 根据权利要求14所述的医疗调控系统,其中,
    所述医学影像图像的变化包括靶点感兴趣区域的覆盖位置变化和组织代谢数据变化中的至少一种。
  16. 一种医疗调控系统的使用方法,其中,
    所述医疗调控系统为根据权利要求1-15中任一项所述的医疗调控调控系统,
    所述使用方法包括以下步骤:
    通过规划系统基于跟踪目标的靶点信息规划调控方案;
    将调控系统与所述规划系统连接,并通过所述调控系统基于所述调控方案调整自身的参数以匹配所述跟踪目标的靶点;
    将定位系统与所述调控系统连接,并通过所述定位系统获取所述靶点的靶点实时信息,之后将所述靶点实时信息传输至所述调控系统,所述调控系统基于所述靶点实时信息调整自身的参数以匹配所述靶点。
  17. 根据权利要求16的使用方法,其中,
    所述使用方法还包括以下步骤:
    将所述医疗调控系统中的信号采集评估系统与规划系统连接,并将对所述靶点的评估结果传输至所述规划系统,之后所述规划系统基于所述评估结果重新确定靶点信息和重新规划调控方案。
  18. 一种可读存储介质,其中,
    所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时以执行权利要求16或17所述的医疗调控系统的使用方法。
PCT/CN2022/093951 2022-05-19 2022-05-19 医疗调控系统及其使用方法和可读存储介质 WO2023221056A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/093951 WO2023221056A1 (zh) 2022-05-19 2022-05-19 医疗调控系统及其使用方法和可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/093951 WO2023221056A1 (zh) 2022-05-19 2022-05-19 医疗调控系统及其使用方法和可读存储介质

Publications (1)

Publication Number Publication Date
WO2023221056A1 true WO2023221056A1 (zh) 2023-11-23

Family

ID=88834291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093951 WO2023221056A1 (zh) 2022-05-19 2022-05-19 医疗调控系统及其使用方法和可读存储介质

Country Status (1)

Country Link
WO (1) WO2023221056A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150335919A1 (en) * 2012-12-31 2015-11-26 Perseus-Biomed Inc. Phased array energy aiming and tracking for ablation treatment
CN205796252U (zh) * 2016-06-07 2016-12-14 四川大学华西医院 一种经人体自然腔道作用的电刺激仪
CN110465008A (zh) * 2019-08-28 2019-11-19 黄晶 一种聚焦超声治疗系统
CN111494816A (zh) * 2020-02-28 2020-08-07 南北兄弟药业投资有限公司 一种超声精准自适应聚焦系统和方法
CN111863227A (zh) * 2020-06-16 2020-10-30 中国科学院深圳先进技术研究院 超声聚焦控制方法、装置、电子设备及存储介质
CN113367679A (zh) * 2021-07-05 2021-09-10 北京银河方圆科技有限公司 靶点确定方法、装置、设备及存储介质
CN114042251A (zh) * 2021-11-17 2022-02-15 国家康复辅具研究中心 多靶点光磁电耦合神经调控装置及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150335919A1 (en) * 2012-12-31 2015-11-26 Perseus-Biomed Inc. Phased array energy aiming and tracking for ablation treatment
CN205796252U (zh) * 2016-06-07 2016-12-14 四川大学华西医院 一种经人体自然腔道作用的电刺激仪
CN110465008A (zh) * 2019-08-28 2019-11-19 黄晶 一种聚焦超声治疗系统
CN111494816A (zh) * 2020-02-28 2020-08-07 南北兄弟药业投资有限公司 一种超声精准自适应聚焦系统和方法
CN111863227A (zh) * 2020-06-16 2020-10-30 中国科学院深圳先进技术研究院 超声聚焦控制方法、装置、电子设备及存储介质
CN113367679A (zh) * 2021-07-05 2021-09-10 北京银河方圆科技有限公司 靶点确定方法、装置、设备及存储介质
CN114042251A (zh) * 2021-11-17 2022-02-15 国家康复辅具研究中心 多靶点光磁电耦合神经调控装置及方法

Similar Documents

Publication Publication Date Title
US11730409B2 (en) Head-mounted electrode array
US10636520B2 (en) Head modeling for a therapeutic or diagnostic procedure
US11992298B2 (en) Systems and methods for predicting and treating neurological condition relapses
US11253701B2 (en) Transcranial stimulation device and method based on electrophysiological testing
EP3217869B1 (en) Scoring method based on improved signals analysis
US11395920B2 (en) Brain connectivity atlas for personalized functional neurosurgery targeting and brain stimulation programming
US10039507B2 (en) Advanced intraoperative neural targeting system and method
JP2011517962A (ja) 中枢神経系に関連する医学的状態の治療のための、および認知機能の向上のためのシステムならびに方法
US20210369147A1 (en) Multimodal Neuroimaging-Based Diagnostic Systems and Methods for Detecting Tinnitus
Shimada et al. Impact of volume-conducted potential in interpretation of cortico-cortical evoked potential: detailed analysis of high-resolution electrocorticography using two mathematical approaches
Kadis et al. Intrahemispheric reorganization of language in children with medically intractable epilepsy of the left hemisphere
De Tiège et al. Sensorimotor mapping with MEG: an update on the current state of clinical research and practice with considerations for clinical practice guidelines
Hernandez-Martin et al. Evoked potentials during peripheral stimulation confirm electrode location in thalamic subnuclei in children with secondary dystonia
Mahmood et al. Introduction to Non-Invasive Biomedical Signals for Healthcare
WO2023221056A1 (zh) 医疗调控系统及其使用方法和可读存储介质
Kaur et al. Analyzing eeg based neurological phenomenon in bci systems
Tyner et al. An Automated Algorithm for the Identification of Somatosensory Cortex Using Magnetoencephalography
US20220323714A1 (en) Apparatus for controlling biological clock and sleep cycle through non-invasive brain stimulation, control method using the same, and computer-readable storage medium having computer program recorded thereon for providing the same
Lucente et al. Preservation of motor maps with increased motor evoked potential amplitude threshold in RMT determination
US20240194348A1 (en) Medical Support System and Medical Support Method for Patient Treatment
US20230218889A1 (en) Methods and Systems for Optimizing Placement of a Nerve Stimulation Device
Lu et al. Brain Temporal-Spectral Functional Variability Reveals Neural Improvements of DBS Treatment for Disorders of Consciousness
Tarapore Speech mapping with transcranial magnetic stimulation
Yuan Perspective of Neuroimaging-Based on Epilepsy Monitoring Technology
Kapeliotis et al. 15th Belgian National Day on Biomedical Engineering

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942096

Country of ref document: EP

Kind code of ref document: A1