WO2023219394A1 - Human smn1 protein variant and use thereof - Google Patents

Human smn1 protein variant and use thereof Download PDF

Info

Publication number
WO2023219394A1
WO2023219394A1 PCT/KR2023/006293 KR2023006293W WO2023219394A1 WO 2023219394 A1 WO2023219394 A1 WO 2023219394A1 KR 2023006293 W KR2023006293 W KR 2023006293W WO 2023219394 A1 WO2023219394 A1 WO 2023219394A1
Authority
WO
WIPO (PCT)
Prior art keywords
vector
hsmn1
cmv
seq
amino acid
Prior art date
Application number
PCT/KR2023/006293
Other languages
French (fr)
Korean (ko)
Inventor
공영윤
이준우
강종설
김지훈
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Publication of WO2023219394A1 publication Critical patent/WO2023219394A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Definitions

  • It relates to a human SMN1 protein variant, a polynucleotide encoding the same, a vector loaded therewith, and a composition for treating spinal muscular atrophy containing the same.
  • SMA Spinal Muscular Atrophy
  • SMA1 is an autosomal recessive neuromuscular disorder caused by mutations in the Survival Motor Neuron 1 (SMN1) gene. Deficiency in the 294 amino acids encoded in the SMN protein is responsible for presenting a wide range of disease features. These include progressive muscle weakness and atrophy, respiratory failure and premature death resulting from degeneration of motor neurons within the spinal cord. Disease severity is inversely correlated with the copy number of the accessory gene by the ability of the paralogue gene, SMN2, to induce production of approximately 10-20% functional SMN.
  • siRNA such as Spinraza
  • the cost of one administration is very high.
  • treatments that treat SMA with a single dose such as Zolgensma
  • Zolgensma not only is the cost of a single dose very high, but some toxicities have been reported. Therefore, it is difficult to use it widely in SMA patients in infancy, and the economic burden is high.
  • One aspect of the present invention is a human SMN1 (Survival) in which lysine at positions 41, 51, 184, and/or 186 in an amino acid sequence selected from the group consisting of SEQ ID NOs: 1 to 6 is replaced with another amino acid.
  • motor neuron 1 Provides protein variants.
  • Another aspect of the present invention provides a polynucleotide encoding the human SMN1 protein variant.
  • Another aspect of the present invention provides a vector loaded with the polynucleotide.
  • Another aspect of the present invention provides a pharmaceutical composition for treating or preventing spinal muscular atrophy (SMA) containing the vector as an active ingredient.
  • SMA spinal muscular atrophy
  • Another aspect of the present invention provides a method of treating or preventing spinal muscular atrophy comprising administering the pharmaceutical composition to a subject.
  • the present invention provides a human SMN1 protein variant, a polynucleotide encoding the same, a vector loaded therewith, and a pharmaceutical composition for treating spinal muscular atrophy containing the same.
  • the pharmaceutical composition mutates hSMN1, which can be used directly in humans, to lower the liver toxicity seen in existing SMN1 gene treatments, while increasing stability, resulting in a remarkable effect compared to the same dose and good persistence of effect, effectively treating spinal muscular atrophy. can be treated.
  • Figure 1 is a graph showing the survival rate of mice according to date when AAV9-CMV-hSMN1, AAV9-CMV-hSMN1 K186R and their variants were injected.
  • Figure 2 is a graph showing the weight of mice according to the date when AAV9-CMV-hSMN1, AAV9-CMV-hSMN1 K186R and their variants were injected.
  • Figure 3 is an image showing the extent to which the AAV9-CMV-hSMN1 injected group and the AAV9-CMV-hSMN1 K186R injected group turn over in the righting reflex test.
  • Figure 4 is a graph showing the turning time in the righting reflex test of the AAV9-CMV-hSMN1 injection group and the AAV9-CMV-hSMN1 K186R injection group.
  • Figure 5 is an image showing the degree to which the AAV9-CMV-hSMN1 injected group and the AAV9-CMV-hSMN1 K186R injected group turned their bodies in the negative geotaxis test.
  • Figure 6 is a graph showing the success rate in the negative geotaxis test of the AAV9-CMV-hSMN1 injection group and the AAV9-CMV-hSMN1 K186R injection group.
  • Figure 7 is a graph showing the body turning time (seconds) in the negative geotaxis test of the AAV9-CMV-hSMN1 injection group and the AAV9-CMV-hSMN1 K186R injection group.
  • Figure 8 is an image showing the degree to which the AAV9-CMV-hSMN1 injected group and the AAV9-CMV-hSMN1 K186R injected group kicked their legs or crossed their legs in the tail suspension test.
  • Figure 9 is a graph showing the degree of hindlimb clasping observed in the tail suspension test in the AAV9-CMV-hSMN1 injection group and the AAV9-CMV-hSMN1 K186R injection group.
  • Figure 10 is a graph showing body weight changes in the AAV9-CMV-hSMN1 injection group and the AAV9-CMV-hSMN1 K186R injection group.
  • Figure 11 is a graph showing the survival rate (%) of the AAV9-CMV-hSMN1 injection group and the AAV9-CMV-hSMN1 K186R injection group.
  • Figure 12 is an image of liver tissue sampled from the AAV9-CMV-hSMN1 injection group and the AAV9-CMV-hSMN1 K186R injection group.
  • Figure 13 is a Western blot (14Dpi (Day post infection)) image showing the expression level of SMN and GAPDH proteins in the AAV9-CMV-hSMN1 injection group and the AAV9-CMV-hSMN1 K186R injection group.
  • Figure 14 is a Western blot (28Dpi) image showing the expression levels of SMN and GAPDH proteins in the AAV9-CMV-hSMN1 injection group and the AAV9-CMV-hSMN1 K186R injection group.
  • Figure 15 is a graph showing the quantitative qPCR analysis of the expression levels of SMN, IGF1, and IGFALS genes in the AAV9-CMV-hSMN1 injection group and the AAV9-CMV-hSMN1 K186R injection group.
  • Figure 16 is an image showing the results of liver tissue Ki67 and DAPI immunostaining obtained on day 12 of the AAV9-CMV-hSMN1 injection group and the AAV9-CMV-hSMN1 K186R injection group.
  • Figure 17 is an image showing the results of liver tissue Ki67 and DAPI immunostaining obtained on day 25 of the AAV9-CMV-hSMN1 injection group and the AAV9-CMV-hSMN1 K186R injection group.
  • Figure 18 is a graph showing the ratio of Ki67 positive cells in liver tissue of the AAV9-CMV-hSMN1 injection group and the AAV9-CMV-hSMN1 K186R injection group.
  • One aspect of the present invention is a human SMN1 (Survival) in which lysine at positions 41, 51, 184 and/or 186 in an amino acid sequence selected from the group consisting of SEQ ID NOs: 1 to 6 is replaced with another amino acid.
  • motor neuron 1 Provides protein variants.
  • human SMN1 (Survival of motor neuron 1) protein” used herein is a telomeric copy of the gene encoding the SMN protein.
  • the centromeric copy is SMN2, and SMN1 and SMN2 are part of a 500 kbp retroduplication on chromosome 5q13.
  • SMN1 and SMN2 encode the same protein.
  • the structural difference between SMN1 and SMN2 is the presence of a single nucleotide in exon 7, the exon splice enhancer.
  • SMM1 mutations are associated with spinal muscular atrophy (SMA), and SMN2 mutations alone do not cause the disease.
  • the human SMN1 protein may refer to a wild-type polypeptide form.
  • the wild-type polypeptide may be isolated from nature, or may be produced recombinantly or synthetically.
  • the wild-type polypeptide may include a naturally cleaved form, a naturally secreted form, or a naturally occurring mutant form of the SMN1 protein.
  • the wild-type polypeptide of the human SMN 1 protein may include any one amino acid sequence selected from the group consisting of SEQ ID NOs: 1 to 6.
  • the wild-type polypeptide may include the amino acid sequence of SEQ ID NO: 6.
  • the human SMN1 protein may be a wild-type polypeptide of human SMN1 or an isoform thereof.
  • the isoform of the human SMN1 protein may have a similarity of about 90% or more to the wild-type polypeptide of SEQ ID NO: 6.
  • the isoform of the human SMN1 protein may be SMN1 isoform a, SMN1 isoform b, SMN1 isoform d, SMN1 isoform X1, SMN1 isoform X2, or analogs thereof.
  • the SMN1 isoform a may include the amino acid sequence of NCBI Reference Sequence NP_001284644.1. Specifically, the SMN1 isoform a may include the amino acid sequence of SEQ ID NO: 2.
  • the SMN1 isoform b may include the amino acid sequence of NCBI Reference Sequence NP_075012. Specifically, the SMN1 isoform b may include the amino acid sequence of SEQ ID NO: 3.
  • the SMN1 isoform d may include the amino acid sequence of NCBI Reference Sequence NP_000335.1. Specifically, the SMN1 isoform d may include the amino acid sequence of SEQ ID NO: 1.
  • the SMN1 isoform X1 may include the amino acid sequence of NCBI Reference Sequence XP_011541898.1. Specifically, the SMN1 isoform X1 may include the amino acid sequence of SEQ ID NO: 4.
  • the SMN1 isoform X2 may include the amino acid sequence of NCBI Reference Sequence XP_016865275.1. Specifically, the SMN1 isoform X2 may include the amino acid sequence of SEQ ID NO: 5.
  • the isoform of the human SMN1 protein may include one amino acid sequence selected from the group consisting of SEQ ID NOs: 1 to 5.
  • it may be SMN1 isoform d containing SEQ ID NO: 1 or a variant thereof.
  • variant refers to a form in which one or more amino acids are deleted, added, or substituted in the entire amino acid sequence of a wild-type polypeptide. Specifically, the variant may be one in which one or more amino acid residues are added or deleted from the N-terminus or C-terminus of the wild-type amino acid sequence. Additionally, the variant may be one in which some amino acids of the wild-type amino acid sequence have been substituted.
  • the human SMN1 variant may have its ubiquitination inhibited compared to an amino acid sequence selected from the group consisting of SEQ ID NOs: 1 to 6. Specifically, ubiquitination may be inhibited compared to the amino acid sequence of SEQ ID NO: 1.
  • ubiquitination refers to a type of post-translational modification in which a ubiquitin protein is attached to a substrate protein.
  • Ubiquitination generally means that glycine, the last amino acid of ubiquitin, binds to the lysine of the substrate protein and is degraded by the proteosome. Specifically, it may mean that an isopeptide bond is formed between the cariboxyl group of the ubiquitin glycine residue and the epsilon-amino group of the substrate protein.
  • the human SMN1 variant may be one in which lysine (K) in one or more amino acid sequences selected from the group consisting of SEQ ID NOs: 1 to 6 is replaced with another amino acid.
  • the substituted amino acids include alanine (A), arginine (R), asparagine (N), aspartic acid (D), cysteine (C), glutamine (Q), glutamic acid (E), glycine (G), and histidine ( H), isoleucine (I), lysine (L), methionine (M), phenylalanine (F), proline (P), serine (S), threonine (T), tryptophan (W), tyrosine (Y), and valine ( It may be any one selected from the group consisting of V).
  • the substituted amino acid may be a non-polar amino acid.
  • the human SMN1 variant may be one in which lysine (K) in an amino acid sequence selected from the group consisting of SEQ ID NOs: 1 to 6 is replaced with alanine (A). Specifically, the lysine present at the C-terminus of one amino acid sequence selected from the group consisting of SEQ ID NOs: 1 to 6 may be substituted with another amino acid.
  • the 186th lysine (K) of one amino acid sequence selected from the group consisting of SEQ ID NOs: 1 to 6 may be substituted with another amino acid.
  • the lysine (K) may be replaced with alanine (A), arginine (R), serine (S), glutamine (Q), aspartic acid (D), or tyrosine (Y).
  • the human SMN1 variant may include one amino acid sequence selected from the group consisting of SEQ ID NOs: 7 to 12 and 36 to 41.
  • the 41st lysine (K) of one or more amino acid sequences selected from the group consisting of SEQ ID NOs: 1 to 6 may be substituted with another amino acid.
  • the lysine (K) may be replaced with alanine (A) or arginine (R).
  • the human SMN1 variant may include one amino acid sequence selected from the group consisting of SEQ ID NOs: 13 to 18.
  • the 51st lysine (K) of one or more amino acid sequences selected from the group consisting of SEQ ID NOs: 1 to 6 may be substituted with another amino acid.
  • the lysine (K) may be replaced with alanine (A) or arginine (R).
  • the human SMN1 variant may include one amino acid sequence selected from the group consisting of SEQ ID NOs: 19 to 24.
  • the 184th lysine (K) of one or more amino acid sequences selected from the group consisting of SEQ ID NOs: 1 to 6 may be substituted with another amino acid.
  • the lysine (K) may be replaced with alanine (A) or arginine (R).
  • the human SMN1 variant may include one amino acid sequence selected from the group consisting of SEQ ID NOs: 25 to 30 and 41.
  • the lysine residue is replaced with a different amino acid, thereby relatively inhibiting ubiquitination, thereby increasing the stability and effectiveness of the variant protein, and reducing toxicity.
  • the human SMN1 variant may inhibit the degradation of SMN1 protein by replacing the lysine residue in the human SMN1 wild-type amino acid sequence with a different amino acid. Therefore, the stability of SMN1 protein may be improved and toxicity may be reduced.
  • polynucleotides encoding human SMN1 protein variants.
  • the polynucleotide may be DNA or RNA.
  • the polynucleotide encoding the human SMN1 protein may include one nucleic acid sequence selected from the group consisting of SEQ ID NO: 35 and 42 to 49.
  • the polynucleotide encoding the human SMN1 protein is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least one polynucleotide selected from the group consisting of SEQ ID NOs: 35 and 42 to 49.
  • the polypeptide encoded by the polynucleotide may include one amino acid sequence selected from the group consisting of SEQ ID NOs: 7 to 30 and 36 to 41.
  • the polypeptide of the human SMN1 variant is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about a polypeptide encoding one selected from the group consisting of SEQ ID NOs: 7 to 30 and 36 to 41. 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about It may have an identity of 96%, at least about 97%, at least about 98%, at least about 99%, or at least about 100%.
  • the polynucleotide may additionally include a nucleic acid encoding a signal sequence or leader sequence.
  • signal sequence used herein refers to a signal peptide that directs secretion of a target protein.
  • the signal peptide is cleaved after translation in the host cell.
  • the signal sequence is an amino acid sequence that initiates the movement of proteins through the ER (Endoplasmic reticulum) membrane.
  • the signal sequence has well-known characteristics in the art, and usually contains 16 to 30 amino acid residues, but may contain more or fewer amino acid residues.
  • a typical signal peptide consists of three regions: a basic N-terminal region, a central hydrophobic region, and a more polar C-terminal region.
  • the central hydrophobic region contains 4 to 12 hydrophobic residues that anchor the signal sequence throughout the membrane lipid bilayer while the immature polypeptide moves.
  • the signal sequence is cleaved within the lumen of the ER by cellular enzymes commonly known as signal peptidases.
  • the signal sequence may be a secretion signal sequence of tPa (Tissue Plasminogen Activation), HSV gDs (Signal sequence of Herpes simplex virus glycoprotein D), or growth hormone.
  • tPa tissue Plasminogen Activation
  • HSV gDs Synignal sequence of Herpes simplex virus glycoprotein D
  • growth hormone a secretion signal sequence used in higher eukaryotic cells, including mammals.
  • the signal sequence can be used as a wild-type signal sequence, or by replacing it with a codon that is frequently expressed in host cells.
  • Another aspect of the present invention provides a vector loaded with the polynucleotide.
  • the vector can be introduced into a host cell and recombined and inserted into the host cell genome.
  • the vector is understood as a nucleic acid vehicle containing a polynucleotide sequence capable of spontaneous replication as an episome.
  • the vector may be a linear nucleic acid, plasmid, phagemid, cosmid, RNA vector, viral vector, or analogues thereof.
  • the vector may be plasmid DNA, phage DNA, etc., commercially developed plasmids (pUC18, pBAD, pIDTSAMRT-AMP, etc.), E. coli-derived plasmids (pYG601BR322, pBR325, pUC118, pUC119, etc.), Bacillus subtilis.
  • plasmids pUB110, pTP5, etc.
  • yeast-derived plasmids YEp13, YEp24, YCp50, etc.
  • phage DNA Charon4A, Charon21A, EMBL3, EMBL4, ⁇ gt10, ⁇ gt11, ⁇ ZAP, etc.
  • the viral vector may be a retrovirus, adenovirus vector, adeno-virus associated vector (AAV), lentivirus vector, insect virus vector (Baculovirus, etc.), or vaccinia vector.
  • AAV adeno-virus associated vector
  • lentivirus vector lentivirus vector
  • insect virus vector Bacillus, etc.
  • vaccinia vector vaccinia vector
  • the viral vector may be an adeno-virus associated vector (AAV).
  • AAV adeno-virus associated vector
  • the adeno-virus associated vector may include a serotype capsid of AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAVrh8, AAV9, AAV10, AAVrh10, AAV11 or AAV12.
  • gene expression or “expression” of a protein of interest is understood to mean transcription of a DNA sequence, translation of an mRNA transcript, and secretion of a fusion protein product or fragment thereof.
  • a useful expression vector may be RcCMV (Invitrogen, Carlsbad) or variants thereof.
  • the expression vector may include a promoter to promote continuous transcription of the target gene in mammalian cells, or a bovine growth hormone polyadenylation signal sequence to increase the steady-state level of RNA after transcription.
  • the vector can additionally load a polynucleotide encoding the human ⁇ -glucuronidase promoter, chicken ⁇ -actin promoter, or CMV promoter.
  • the polynucleotide encoding the SMN1 gene variant may be operably linked to the promoter.
  • the promoter is capable of expressing a polynucleotide encoding a human SMN 1 variant in neurons of the spinal cord.
  • the promoter can express SMN1 in motor neurons of the spinal cord.
  • a polynucleotide encoding a CMV promoter can be additionally loaded.
  • the CMV promoter may include the amino acid sequence of SEQ ID NO: 52.
  • the vector is pAAV9-CMV-hSMN1 K186R, pAAV9-CMV-hSMN1 K186S, pAAV9-CMV-hSMN1 K186Q, pAAV9-CMV-hSMN1 K186D, pAAV9-CMV-K186A, pAAV9-CMV-hSMN1 K186Y, It may have the structure of pAAV9-CMV-hSMN1 K184R, pAAV9-CMV-K51R, or pAAV9-CMV-hSMN1 K41R.
  • the vector may contain one or more polynucleotides selected from the group consisting of SEQ ID NOs: 33, 34, and 50 to 57.
  • Another aspect of the present invention is, remind Provided is a pharmaceutical composition for treating or preventing spinal muscular atrophy (SMA) containing a vector as an active ingredient.
  • SMA spinal muscular atrophy
  • Another aspect of the present invention is, The vector or A method of treating or preventing spinal muscular atrophy comprising administering the pharmaceutical composition to a subject is provided.
  • SMA Spinal Muscular Atrophy
  • the spinal muscular atrophy may be SMA type 1, SMA type 2, or SMA type 3.
  • SMA type 1 is characterized by onset less than 6 months after birth, making it impossible to sit without assistance, and is also called Werdnig-Hoffmann disease. Infants usually die within 2 years.
  • SMA type 2 is characterized by onset 7 to 18 months after birth, and although it is possible to sit or stand without assistance, independent walking is impossible. Their characteristic is that they usually survive until infancy.
  • the SMA type 3 is characterized by onset at more than 18 months after birth, and although independent walking is possible, gradual muscle weakness occurs in infancy.
  • the subject may be a primate, and may specifically be a pediatric or adult subject.
  • the child is 2 months old, 3 months old, 4 months old, 5 months old, 6 months old, 7 months old, 8 months old, 9 months old, 10 months old, 11 months old, 12 months old, 13 months old, 14 months old, 15 months old, 16 months, 17 months, 18 months, 1 year, 2 years, 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 11 years, 12 years, 13 years, 14 years. , is under any of the following: 15, 16, 17, or 18 years of age. In some embodiments, the human subject is over 18 years of age.
  • the pharmaceutical composition has improved liver toxicity and is therefore suitable for administration to infants aged 1 to 18 months after birth, and the effect may last for a long time even after a single administration.
  • the pharmaceutical composition When the pharmaceutical composition is administered to an individual in an effective amount, it can be transduced into motor neurons at the site of administration in a vertebrate. In one embodiment, about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70% of the motor neurons. Approximately any excess of %, 75% or 100% may be transduced. In one embodiment, about 5%, 10%, 15%, 20%, 25%, 30%, 35% of motor neurons throughout the spinal cord (e.g., throughout the lumbar, chest, and neck regions) , 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75% or 100%. If a variant of SMN1 is expressed after administration of the pharmaceutical composition, an individual with SMA symptoms may be treated or the symptoms may be alleviated.
  • the preferred dosage of the pharmaceutical composition varies depending on the patient's condition and weight, degree of disease, drug form, administration route and period, but can be appropriately selected by a person skilled in the art.
  • the active ingredient is used in any amount (effective amount) depending on the use, formulation, purpose of formulation, etc., as long as it exhibits SMA treatment activity or, in particular, can exhibit a therapeutic effect on SMA. It may be included, and a typical effective amount will be determined within the range of 0.001% by weight to 20.0% by weight based on the total weight of the composition.
  • “effective amount” refers to the amount of active ingredient that can improve the condition of the disease or induce a treatment effect, especially improvement of the condition or treatment effect of SMA. Such effective amounts can be determined experimentally within the scope of the ordinary ability of those skilled in the art.
  • the term “treatment” may be used to include both therapeutic treatment and preventive treatment. At this time, prevention can be used to mean alleviating or reducing the pathological condition or disease of an individual.
  • the term “treatment” includes any form of administration or application to treat a disease in mammals, including humans. The term also includes inhibiting or slowing the progression of a disease; Restoring or repairing damaged or missing function, thereby partially or completely relieving a disease; or stimulating inefficient processes; It includes the meaning of alleviating serious diseases.
  • the pharmaceutical composition When the pharmaceutical composition is prepared as a parenteral formulation, it can be formulated in the form of injections, transdermal administration, nasal inhalation, and suppositories along with a suitable carrier according to methods known in the art.
  • a suitable carrier When formulated as an injection, sterilized water, ethanol, polyols such as glycerol or propylene glycol, or mixtures thereof can be used as suitable carriers.
  • the preferred dosage of the pharmaceutical composition may vary depending on the patient's condition, weight, gender, age, and severity of the patient. Administration can be done once a day or divided into several times. These dosages should not be construed as limiting the scope of the present invention in any respect.
  • the subjects to which the pharmaceutical composition can be applied are mammals and humans, and humans are particularly preferred.
  • the pharmaceutical composition of the present application may further include any compounds or natural extracts known to have a SMA treatment effect.
  • Table 1 below shows the amino acid sequences of hSMN1 and hSMN1 K186R used in the experiment.
  • hSMN1 Amino acid sequence hSMN1 (SEQ ID NO: 1) MAMSSGGSGGGVPEQEDSVLFRRGTGQSDDSDIWDDTALIKAYDKAVASFKHALKNG DICETSGKPKTTPKRKPAKKNKSQKKNTAASLQQWKVGDKCSAIWSEDGCIYPATIAS IDFKRETCVVVYTGYGNREEQNLSDLLSPICEVANNIEQNAQENENESQVSTDESENS RSPGNKSDNIKP K SAPWNSFLPPPPPMPGPRLGPGKPGLKFNGPPPPPPPPPPPPHLLSC WLPPFPSGPPIIPPPPPICPDSLDDADALGSMLISWYMSGYHTGYYMGFRQNQKEGRC SHSLN hSMN1 K186R (SEQ ID NO: 7) MAMSSGGSGGGVPEQEDSVLFRRGTGQSDDSDIWDDTALIKAYDKAVASFKHALKNG DICETSGKPKTTPKRKPAKKNKSQ
  • Table 2 shows the nucleic acid sequence of hSMN1 used in the experiment.
  • pAAV9-CMV-hSMN1 SEQ ID NO: 33
  • pAAV9-CMV-hSMN1 was added to HEK-293T cells.
  • K186R SEQ ID NO: 34
  • pAAV9-CMV-hSMN1 K186S SEQ ID NO: 50
  • pAAV9-CMV-hSMN1 K186Q SEQ ID NO: 51
  • pAAV9-CMV-hSMN1 K186D SEQ ID NO: 52
  • pAAV9-CMV-K186A SEQ ID NO: No.
  • PEI polyethylenimine
  • Opti-MEM TM Opti-MEM TM
  • Example 1.2 AAV production and purification
  • the cells in each dish were scraped with a scraper, collected in a 50 ml tube, and centrifuged at 420xg, 10 minutes, 4°C. The supernatant was discarded, the pellet was resuspended in lysis buffer (5 M NaCl, 1 M Tris HCl, ultrapure water), and the freeze-thaw process was performed three times. In the above process, the freezing and thawing process was repeated using liquid nitrogen and a water bath. After performing the above process three times, centrifugation was performed at 1,167xg, 15 minutes, and 4°C. Afterwards, the supernatant was transferred to another 50 ml tube, treated with 50 U/ml of benzonase, and maintained at 37°C for a total of 30 minutes with agitation once every 10 minutes.
  • lysis buffer 5 M NaCl, 1 M Tris HCl, ultrapure water
  • composition name ingredient 15% Iodixanol 12.5 ml of Optiprep density gradient medium 10ml of 5M NaCl 10ml of 5xPBS-MK 17.5 ml of Ultrapure water 25% Iodixanol 20.8 ml of Optiprep density gradient medium 10ml of 5xPBS-MK 19.2 ml of Ultrapure water 100 ⁇ L of phenol red 40% Iodixanol 33.3 ml of Optiprep density gradient medium 10ml of 5xPBS-MK 6.7 ml of Ultrapure water 60% Iodixanol 50 ml of Optiprep density gradient medium 100 ⁇ L of phenol red
  • 1xPBS-MK 5 ml of 1xPBS-MK was placed in a centrifugal filter tube and centrifuged at 4,000xg, 5 minutes, 4°C to perform a pre-rinse process. Meanwhile, 1xPBS was added to the AAV fraction stored at 4°C. -5 ml of MK was added. After emptying the waste tube and reconnecting the filter, the AAV fraction mixed with 1xPBS-MK was added and centrifuged at 4,000xg for 1 hour at 4°C.
  • qPCR quantitative PCR
  • the transgene expressing plasmid was linearized by treating it with a restriction enzyme. Next, it was purified by electrophoresis on a 2% agarose gel. This DNA was diluted to 1x10 9 vector genomes (VG)/ ⁇ l, and was finally diluted 1/10 times from 1x10 7 to 1x10 1 for the standard curve.
  • VG vector genomes
  • DNase1 1 U/ ⁇ l
  • step condition Step1 95°C, 5 min, 1 cycle
  • Step2 95°C, 10 min, 1 cycle
  • Step3 95°C, 10 s / 60°C 40 s / 72°C, 1 s, 40 cycles
  • Step4 40°C, 10 s, 1 cycle
  • the concentration of the AAV vector was converted based on the Ct value of the standard curve, and ultimately 3x10 13 VG/ml of AAV was obtained.
  • AAV containing SMN1 obtained in Example 1 or AAV containing mutant SMN1 was injected into newborn type 1.5 SMA mice.
  • SMA model mice were purchased from Jackson lab, SMA type 1 (Smn-/-; SMN2+/+) and SMA type 2 (Smn-/-; SMN ⁇ 7+/+; SMN2+/+) mice, respectively, and the two were crossed.
  • SMA type 1.5 Smn-/-; SMN ⁇ 7+/-; SMN2+/+ mice was produced and used in the experiment.
  • the injection process is as follows. Cut off part of the toe of a newborn baby, place it in a tube containing 50mM NaOH, and leave it at 95°C for about 30 minutes. After confirming that the tissue had dissolved, PCR was performed using primers that could confirm mouse SMN deletion. As a result, AAV injection was performed on the individual identified as a mutant. AAV injection was performed within 24 hours of birth, and was administered intravenously using a 1 ml, 31 G, 8 mm insulin syringe under ice anesthesia and facial fixation.
  • the experimental group was AAV9-SMN, AAV9-SMN K186R , AAV9-SMN K186S , AAV9-SMN K186Q , AAV9-SMN K186D , AAV9-SMN K186A , AAV9-SMN K186Y , AAV9-SMN K41R , AAV9-SMN K51R , AAV9-SMN K184 .
  • R was injected at an amount of 1.2 x 10 11 VG/g (body weight). After injection, the animal was kept at 37°C for more than 30 minutes, and after confirming that the animal had recovered from anesthesia normally, it was transferred to a cage with its mother.
  • mice injected with AAV were maintained under the care of their mothers in their birth cages, and their survival and weight were recorded daily.
  • righting reflex negative geotaxis
  • tail suspension Hindlimb clasping
  • the righting reflex is an experiment to check whether a rat can turn over and stand upright using its dorsal muscles. It is reported that newborn rats are unable to turn over, and SMA model rats are also unable to turn over. It is done. The judgment was made based on cases where the right back was completely flat on the ground and cases where the left back was completely flat on the ground. Each animal was observed for 30 seconds and the time it took to turn over was recorded. If the animal was unable to turn over, it was recorded as 30 seconds. Function was evaluated by calculating the average time measured three times each. After about two weeks or more, when all the rats quickly turned over and woke up, measurement of the righting reflex was stopped.
  • Negative geotaxis is an experiment that measures how a rat instinctively tries to climb up by turning its body upward on a tilted slope. It is known that such behavior is possible when the body has overall balance and uses its muscles accordingly.
  • rats were placed with their heads facing downward at an incline of approximately 50 degrees, how quickly they turned their bodies in the opposite direction was measured daily for each experimental group. The degree of body rotation was judged to be valid only when the body was fully turned 180 degrees opposite to the initial downward direction. The test was repeated 10 times, and if the body turned, the time taken to turn was recorded. If the body could not be turned, it was recorded as 30 seconds, and the time taken to turn and the number of complete turns were recorded.
  • the tail suspension (Hindlimb clasping) test measures whether a rat moves its hind limbs toward its stomach or kicks its legs upward when its tail is suspended. At this time, if there is a problem with the muscles or nerves, the characteristic of crossing the legs rather than kicking them appears.
  • the hindlimb clasping phenomenon described above is observed in model mice for various diseases such as SMA and ALS.
  • the time for hanging the tail for a maximum of 30 seconds and crossing the legs for 30 seconds was measured. Measurements were made a total of three times per time, and after performing for 30 seconds, the test was allowed to rest for about a minute and then repeated twice more, recording the average time. Behavioral differences were analyzed by comparing the time spent crossing the legs.
  • mice injected with AAV9-CMV-hSMN1 K186R kicked their legs without crossing them.
  • the legs were crossed for more than 20 seconds out of the 30 seconds measured, and kicking the legs upward was rarely observed.
  • the leg crossing time was about 3 to 4 seconds out of 30 seconds, and it was confirmed that the leg was kicked upward for most of the measurement time.
  • mice injected with the SMA gene as in Example 2 differences in body weight were observed for each experimental group after PND10 to PND14, and the greatest difference was observed in motor function tests after PND23.
  • mice injected with the SMA gene as in Example 2 As a result of measuring body weight in mice injected with the SMA gene as in Example 2, as shown in FIG. 10, there was no difference in body weight for each experimental group until PND10, but thereafter, body weight for each experimental group was observed. A difference in weight appeared. Specifically, it was confirmed that the body weight of mice injected with AAV9-CMV-hSMN1 K186R increased significantly compared to mice injected with AAV9-CMV-hSMN1.
  • mice injected with AAV9-CMV-hSMN1 and AAV9-CMV-hSMN1 K186R were obtained at PND14, when body weight begins to differ, and at PND28, when the greatest difference in exercise ability is observed.
  • the brain, spinal cord, liver, and muscle were each removed and placed in RIPA and Trizol for sampling.
  • the muscle used was the gastrocnemius muscle (GA).
  • GA gastrocnemius muscle
  • a 10% polyacrylamide gel was used for protein electrophoresis, and blotting was performed using SMN (ms, 1:2,000) and GAPDH (Rb, 1:1,000) on a PVDF membrane.
  • qRT-PCR was performed as follows.
  • RNA pellet was dissolved in DEPC-dH2O and the RNA concentration was quantified. Based on the quantitative values, cDNA was synthesized using an equal amount of RNA and ReverTra Ace reagent, and qRT-PCR was performed using this. GAPDH was used as a reference gene.
  • the tissue was fixed using 4% PFA. Afterwards, the tissue was moved to 15% and 30% sucrose solution and left until the tissue settled. Then, the settled tissue was placed in a tube containing OCT compound and rapidly frozen in liquid nitrogen. IHC was performed by cutting the frozen sample into 7 ⁇ m sections using a cryostat. The IHC process is as follows. The OCT was removed by washing with 1X PBS for 15 minutes, and in the case of spinal cord sections, additional fixing was performed by placing them in cold methanol for 30 minutes. Afterwards, the slide was placed in EDTA antigen retrieval buffer (1mM EDTA, 0.05% Tween 20, pH 8.0), and antigen retrieval was performed at 105°C for 10 minutes.
  • EDTA antigen retrieval buffer (1mM EDTA, 0.05% Tween 20, pH 8.0
  • the 1X PBS washed section was blocked and then treated with primary antibody.
  • the primary antibody was rabbit anti-Ki67 (1:500 dilution), and was incubated at 4°C overnight.
  • the secondary antibody Alexa Fluor 594 goat anti-rabbit IgG (1:400) matching each primary antibody was treated at room temperature for 1 hour, and then a mounting solution containing DAPI was added. The process was completed by covering it with a coverslip.

Abstract

The present invention provides a mutated human SMN1 protein, a polynucleotide encoding same, and a pharmaceutical composition for treating spinal muscular atrophy, comprising a vector loading same. The composition lowers liver toxicity seen in existing SMN1 gene therapy through mutation of hSMN1, which can be used directly in humans, while increasing stability, making it possible to efficiently treat spinal muscular atrophy due to having a remarkable effect compared to the same dose and a long-lasting effect.

Description

인간 SMN1 단백질 변이체 및 이의 용도Human SMN1 protein variants and uses thereof
인간 SMN1 단백질 변이체, 이를 코딩하는 폴리뉴클레오티드, 이를 적재한 벡터 및 이를 포함하는 척수성 근위축증 치료용 조성물에 관한 것이다.It relates to a human SMN1 protein variant, a polynucleotide encoding the same, a vector loaded therewith, and a composition for treating spinal muscular atrophy containing the same.
척수성 근위축증(Spinal Muscular Atrophy; SMA)은 생존 운동 신경세포 1(Survival Motor Neuron 1, SMN1) 유전자에서의 돌연변이에 의해 야기되는 보통염색체 열성 신경근육 장애이다. 인코딩된 294개의 아미노산의 SMN 단백질에서 발생된 결핍은 광범위한 질병 특징 제시의 원인이 된다. 이들은 척수 내의 운동 신경세포의 변성으로부터 발생하는 진행성 근육 약화 및 위축증, 호흡 기능 부전 및 조기 사망을 포함한다. 질병 중증도는 약 10 내지 20% 기능성 SMN의 생성을 유도하는 패럴로그 (paralogue) 유전자인 SMN2의 능력에 의해 상기 보조 유전자의 카피수와 역으로 상관된다.Spinal Muscular Atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by mutations in the Survival Motor Neuron 1 (SMN1) gene. Deficiency in the 294 amino acids encoded in the SMN protein is responsible for presenting a wide range of disease features. These include progressive muscle weakness and atrophy, respiratory failure and premature death resulting from degeneration of motor neurons within the spinal cord. Disease severity is inversely correlated with the copy number of the accessory gene by the ability of the paralogue gene, SMN2, to induce production of approximately 10-20% functional SMN.
상기 질병의 근원적인 분자적 기초에 대한 현재의 이해를 기반으로 하여, 더 많은 질병에 걸리기 쉬운 세포에서 기능성 SMN의 수준을 증가시키는 것을 목적으로 하는 다수의 치료 전략이 고려되고 있다. 예를 들어, 노바티스의 졸겐스마(Zolgensma), 바이오젠의 스핀라자(Spinraza) 등이 FDA 승인을 받은 SMA 치료제로 공지되어 있다. 특히, 졸겐스마의 경우, 개체에 투여할 경우 SMN1 유전자의 발현을 유도하여 SMA을 치료하거나, 증상 개선시킬 수 있다.Based on the current understanding of the underlying molecular basis of the disease, a number of therapeutic strategies are being considered aimed at increasing the level of functional SMN in more disease-prone cells. For example, Novartis' Zolgensma and Biogen's Spinraza are known as FDA-approved SMA treatments. In particular, in the case of Zolgensma, when administered to an individual, it can treat SMA or improve symptoms by inducing the expression of the SMN1 gene.
그러나, 기존의 치료용 약학 조성물의 경우, 예를 들어, 스핀라자와 같은 siRNA는 효과적인 치료를 위해 다회 투여가 요구될 뿐만 아니라, 1회의 투여 비용이 매우 높다. 뿐만 아니라, 졸겐스마와 같은 1회 투여로 SMA를 치료하는 치료제의 경우에도 1회 투여 비용이 매우 높을 뿐 아니라, 일부 독성이 보고된 바 있다. 따라서, 유아기의 SMA 환자에게 폭넓게 사용하기 어렵고, 경제적인 부담이 높은 실정이다.However, in the case of existing therapeutic pharmaceutical compositions, for example, siRNA such as Spinraza, not only multiple administrations are required for effective treatment, but the cost of one administration is very high. In addition, in the case of treatments that treat SMA with a single dose, such as Zolgensma, not only is the cost of a single dose very high, but some toxicities have been reported. Therefore, it is difficult to use it widely in SMA patients in infancy, and the economic burden is high.
따라서, 이와 같은 SMA 치료제의 개발에도 불구하고, 효과가 우수할 뿐 아니라, 치료 비용이 낮고, 독성이 없는 치료제의 개발이 필요한 실정이다. 따라서, 본 발명자들은 이러한 문제점을 연구하기 위해 연구한 결과, 종래 졸겐스마보다 효과가 우수할 뿐 아니라, 독성이 낮은 유전자 변이체를 개발하였다.Therefore, despite the development of such SMA treatments, there is a need to develop a treatment that is not only effective, but also has low treatment costs and is non-toxic. Accordingly, the present inventors studied this problem and developed a genetic variant that is not only more effective than the conventional Zolgensma, but also has lower toxicity.
본 발명의 일 측면은 서열번호 1 내지 6으로 구성된 군으로부터 선택된 하나의 아미노산 서열에서 41번째, 51번째, 184번째 및/또는 186번째 위치의 라이신(Lysine)이 다른 아미노산으로 치환된 인간 SMN1(Survival of motor neuron 1) 단백질 변이체를 제공한다.One aspect of the present invention is a human SMN1 (Survival) in which lysine at positions 41, 51, 184, and/or 186 in an amino acid sequence selected from the group consisting of SEQ ID NOs: 1 to 6 is replaced with another amino acid. of motor neuron 1) Provides protein variants.
본 발명의 다른 측면은 상기 인간 SMN1 단백질 변이체를 코딩하는 폴리뉴클레오티드를 제공한다.Another aspect of the present invention provides a polynucleotide encoding the human SMN1 protein variant.
본 발명의 다른 측면은 상기 폴리뉴클레오티드가 적재된 벡터를 제공한다.Another aspect of the present invention provides a vector loaded with the polynucleotide.
본 발명의 다른 측면은 상기 벡터를 유효성분으로 포함하는 척수성 근위축증(SMA) 치료 또는 예방용 약학 조성물을 제공한다.Another aspect of the present invention provides a pharmaceutical composition for treating or preventing spinal muscular atrophy (SMA) containing the vector as an active ingredient.
본 발명의 또 다른 측면은 상기 약학 조성물을 개체에 투여하는 단계를 포함하는 척수성 근위축을 치료 또는 예방 방법을 제공한다.Another aspect of the present invention provides a method of treating or preventing spinal muscular atrophy comprising administering the pharmaceutical composition to a subject.
본 발명은 인간 SMN1 단백질 변이체, 이를 코딩하는 폴리뉴클레오티드, 이를 적재한 벡터 및 이를 포함하는 척수성 근위축증 치료용 약학 조성물을 제공한다. 상기 약학 조성물은 인간에 직접적으로 활용 가능한 hSMN1에 변이를 줌으로서, 기존의 SMN1 유전자 치료제에서 나타나는 간 독성을 낮추면서도, 안정성을 높여 같은 용량 대비 효과가 현저하고 효과의 지속성이 좋아 효율적으로 척수성 근위축증을 치료할 수 있다.The present invention provides a human SMN1 protein variant, a polynucleotide encoding the same, a vector loaded therewith, and a pharmaceutical composition for treating spinal muscular atrophy containing the same. The pharmaceutical composition mutates hSMN1, which can be used directly in humans, to lower the liver toxicity seen in existing SMN1 gene treatments, while increasing stability, resulting in a remarkable effect compared to the same dose and good persistence of effect, effectively treating spinal muscular atrophy. can be treated.
도 1은 AAV9-CMV-hSMN1, AAV9-CMV-hSMN1K186R 및 이의 변이체들을 주입하였을 경우 일자에 따른 쥐의 생존률을 나타낸 그래프이다.Figure 1 is a graph showing the survival rate of mice according to date when AAV9-CMV-hSMN1, AAV9-CMV-hSMN1 K186R and their variants were injected.
도 2는 AAV9-CMV-hSMN1, AAV9-CMV-hSMN1K186R 및 이의 변이체들을 주입하였을 경우 일자에 따른 쥐의 무게를 나타낸 그래프이다.Figure 2 is a graph showing the weight of mice according to the date when AAV9-CMV-hSMN1, AAV9-CMV-hSMN1 K186R and their variants were injected.
도 3은 정위반사 테스트에서 AAV9-CMV-hSMN1 주입군 및 AAV9-CMV-hSMN1K186R 주입군이 몸을 뒤집는 정도를 나타낸 이미지이다.Figure 3 is an image showing the extent to which the AAV9-CMV-hSMN1 injected group and the AAV9-CMV-hSMN1 K186R injected group turn over in the righting reflex test.
도 4는 AAV9-CMV-hSMN1 주입군 및 AAV9-CMV-hSMN1K186R 주입군의 정위반사 테스트에서의 뒤집기 시간을 나타낸 그래프이다.Figure 4 is a graph showing the turning time in the righting reflex test of the AAV9-CMV-hSMN1 injection group and the AAV9-CMV-hSMN1 K186R injection group.
도 5는 negative geotaxis 테스트에서 AAV9-CMV-hSMN1 주입군 및 AAV9-CMV-hSMN1K186R 주입군이 몸을 돌리는 정도를 나타낸 이미지이다.Figure 5 is an image showing the degree to which the AAV9-CMV-hSMN1 injected group and the AAV9-CMV-hSMN1 K186R injected group turned their bodies in the negative geotaxis test.
도 6은 AAV9-CMV-hSMN1 주입군 및 AAV9-CMV-hSMN1K186R 주입군의 negative geotaxis 테스트에서의 성공률을 나타낸 그래프이다.Figure 6 is a graph showing the success rate in the negative geotaxis test of the AAV9-CMV-hSMN1 injection group and the AAV9-CMV-hSMN1 K186R injection group.
도 7은 AAV9-CMV-hSMN1 주입군 및 AAV9-CMV-hSMN1K186R 주입군의 negative geotaxis 테스트에서의 몸을 돌린 시간(초)를 나타낸 그래프이다.Figure 7 is a graph showing the body turning time (seconds) in the negative geotaxis test of the AAV9-CMV-hSMN1 injection group and the AAV9-CMV-hSMN1 K186R injection group.
도 8은 Tail suspension 테스트에서 AAV9-CMV-hSMN1 주입군 및 AAV9-CMV-hSMN1K186R 주입군이 다리를 차올리거나 다리를 꼬는 정도를 나타낸 이미지이다.Figure 8 is an image showing the degree to which the AAV9-CMV-hSMN1 injected group and the AAV9-CMV-hSMN1 K186R injected group kicked their legs or crossed their legs in the tail suspension test.
도 9는 AAV9-CMV-hSMN1 주입군 및 AAV9-CMV-hSMN1K186R 주입군의 Tail suspension 테스트에서의 hindlimb clasping 현상 관찰 정도를 나타낸 그래프이다.Figure 9 is a graph showing the degree of hindlimb clasping observed in the tail suspension test in the AAV9-CMV-hSMN1 injection group and the AAV9-CMV-hSMN1 K186R injection group.
도 10은 AAV9-CMV-hSMN1 주입군 및 AAV9-CMV-hSMN1K186R 주입군의 체중 변화를 나타낸 그래프이다.Figure 10 is a graph showing body weight changes in the AAV9-CMV-hSMN1 injection group and the AAV9-CMV-hSMN1 K186R injection group.
도 11은 AAV9-CMV-hSMN1 주입군 및 AAV9-CMV-hSMN1K186R 주입군의 생존률(%)을 나타낸 그래프이다.Figure 11 is a graph showing the survival rate (%) of the AAV9-CMV-hSMN1 injection group and the AAV9-CMV-hSMN1 K186R injection group.
도 12는 AAV9-CMV-hSMN1 주입군 및 AAV9-CMV-hSMN1K186R 주입군으로부터 샘플링한 간 조직의 이미지이다.Figure 12 is an image of liver tissue sampled from the AAV9-CMV-hSMN1 injection group and the AAV9-CMV-hSMN1 K186R injection group.
도 13은 AAV9-CMV-hSMN1 주입군 및 AAV9-CMV-hSMN1K186R 주입군의 SMN 및 GAPDH 단백질의 발현 정도를 나타낸 웨스턴 블랏(14Dpi(Day post infection)) 이미지이다.Figure 13 is a Western blot (14Dpi (Day post infection)) image showing the expression level of SMN and GAPDH proteins in the AAV9-CMV-hSMN1 injection group and the AAV9-CMV-hSMN1 K186R injection group.
도 14는 AAV9-CMV-hSMN1 주입군 및 AAV9-CMV-hSMN1K186R 주입군의 SMN 및 GAPDH 단백질의 발현 정도를 나타낸 웨스턴 블랏(28Dpi) 이미지이다.Figure 14 is a Western blot (28Dpi) image showing the expression levels of SMN and GAPDH proteins in the AAV9-CMV-hSMN1 injection group and the AAV9-CMV-hSMN1 K186R injection group.
도 15는 AAV9-CMV-hSMN1 주입군 및 AAV9-CMV-hSMN1K186R 주입군 간에서 SMN, IGF1및 IGFALS 유전자의 발현 정도를 분석한 qPCR을 수치화해 나타낸 그래프이다.Figure 15 is a graph showing the quantitative qPCR analysis of the expression levels of SMN, IGF1, and IGFALS genes in the AAV9-CMV-hSMN1 injection group and the AAV9-CMV-hSMN1 K186R injection group.
도 16은 AAV9-CMV-hSMN1 주입군 및 AAV9-CMV-hSMN1K186R 주입군의 12일차에 수득한 간 조직 Ki67 및 DAPI 면역 염색 결과를 나타낸 이미지이다.Figure 16 is an image showing the results of liver tissue Ki67 and DAPI immunostaining obtained on day 12 of the AAV9-CMV-hSMN1 injection group and the AAV9-CMV-hSMN1 K186R injection group.
도 17은 AAV9-CMV-hSMN1 주입군 및 AAV9-CMV-hSMN1K186R 주입군의 25일차에 수득한 간 조직 Ki67 및 DAPI 면역 염색 결과를 나타낸 이미지이다.Figure 17 is an image showing the results of liver tissue Ki67 and DAPI immunostaining obtained on day 25 of the AAV9-CMV-hSMN1 injection group and the AAV9-CMV-hSMN1 K186R injection group.
도 18은 AAV9-CMV-hSMN1 주입군 및 AAV9-CMV-hSMN1K186R 주입군 간 조직에서 Ki67 양성 세포의 비율을 나타낸 그래프이다.Figure 18 is a graph showing the ratio of Ki67 positive cells in liver tissue of the AAV9-CMV-hSMN1 injection group and the AAV9-CMV-hSMN1 K186R injection group.
인간 SMN1 단백질 변이체Human SMN1 protein variants
본 발명의 일 측면은 서열번호 1 내지 6으로 구성된 군으로부터 선택된 하나의 아미노산 서열에서 41번째, 51번째, 184번째 및/또는 186 번째 위치의 라이신(Lysine)이 다른 아미노산으로 치환된 인간 SMN1(Survival of motor neuron 1) 단백질 변이체를 제공한다.One aspect of the present invention is a human SMN1 (Survival) in which lysine at positions 41, 51, 184 and/or 186 in an amino acid sequence selected from the group consisting of SEQ ID NOs: 1 to 6 is replaced with another amino acid. of motor neuron 1) Provides protein variants.
본 명세서에서 사용한 용어 “인간 SMN1(Survival of motor neuron 1) 단백질”은 SMN 단백질을 암호화하는 유전자의 텔로머 사본이다. 중심체 사본은 SMN2이며, SMN1 및 SMN2는 염색체 5q13에서 500kbp 역복제의 일부이다. SMN1 및 SMN2는 동일한 단백질을 암호화한다. SMN1 및 SMN2의 구조적 차이는 엑손 스플라이스 인핸서인 엑손 7의 단일 뉴클레오티드 존재 여부이다. SMM1 돌연변이는 척수성 근위축증(SMA)와 관련성이 있으며, SMN2 단독 돌연변이는 질병으로 발현되지 않는다.The term “human SMN1 (Survival of motor neuron 1) protein” used herein is a telomeric copy of the gene encoding the SMN protein. The centromeric copy is SMN2, and SMN1 and SMN2 are part of a 500 kbp retroduplication on chromosome 5q13. SMN1 and SMN2 encode the same protein. The structural difference between SMN1 and SMN2 is the presence of a single nucleotide in exon 7, the exon splice enhancer. SMM1 mutations are associated with spinal muscular atrophy (SMA), and SMN2 mutations alone do not cause the disease.
상기 인간 SMN1 단백질은 야생형 폴리펩티드 형태를 의미할 수 있다. 상기 야생형 폴리펩티드는 자연에서 분리 가능하거나, 재조합 또는 합성에 의해 생산되는 것일 수 있다. 상기 야생형 폴리펩티드는 SMN1 단백질의 자연 발생적으로 절단되는 형태, 자연 발생적으로 분비되는 형태, 자연 발생적 변이 형태를 포함하는 것일 수 있다. 상기 인간 SMN 1 단백질의 야생형 폴리펩티드는 서열번호 1 내지 6으로 이루어진 군으로부터 선택된 어느 하나의 아미노산 서열을 포함하는 것일 수 있다. 구체적으로, 상기 야생형 폴리펩티드는 서열번호 6의 아미노산 서열을 포함하는 것일 수 있다.The human SMN1 protein may refer to a wild-type polypeptide form. The wild-type polypeptide may be isolated from nature, or may be produced recombinantly or synthetically. The wild-type polypeptide may include a naturally cleaved form, a naturally secreted form, or a naturally occurring mutant form of the SMN1 protein. The wild-type polypeptide of the human SMN 1 protein may include any one amino acid sequence selected from the group consisting of SEQ ID NOs: 1 to 6. Specifically, the wild-type polypeptide may include the amino acid sequence of SEQ ID NO: 6.
상기 인간 SMN1 단백질은 인간 SMN1의 야생형 폴리펩티드 또는 이의 동형체(Isoform)일 수 있다. 일 구체예에 있어서, 상기 인간 SMN1 단백질의 동형체는 서열번호 6의 야생형 폴리펩티드와 약 90% 이상의 유사도를 갖는 것일 수 있다. 구체적으로, 상기 인간 SMN1 단백질의 동형체는 SMN1 isoform a, SMN1 isoform b, SMN1 isoform d, SMN1 isoform X1, SMN1 isoform X2 또는 이의 유사체일 수 있다.The human SMN1 protein may be a wild-type polypeptide of human SMN1 or an isoform thereof. In one embodiment, the isoform of the human SMN1 protein may have a similarity of about 90% or more to the wild-type polypeptide of SEQ ID NO: 6. Specifically, the isoform of the human SMN1 protein may be SMN1 isoform a, SMN1 isoform b, SMN1 isoform d, SMN1 isoform X1, SMN1 isoform X2, or analogs thereof.
상기 SMN1 isoform a는 NCBI Reference Sequence는 NP_001284644.1의 아미노산 서열을 포함할 수 있다. 구체적으로, 상기 SMN1 isoform a는 서열번호 2의 아미노산 서열을 포함할 수 있다.The SMN1 isoform a may include the amino acid sequence of NCBI Reference Sequence NP_001284644.1. Specifically, the SMN1 isoform a may include the amino acid sequence of SEQ ID NO: 2.
상기 SMN1 isoform b는 NCBI Reference Sequence는 NP_075012의 아미노산 서열을 포함할 수 있다. 구체적으로, 상기 SMN1 isoform b는 서열번호 3의 아미노산 서열을 포함할 수 있다.The SMN1 isoform b may include the amino acid sequence of NCBI Reference Sequence NP_075012. Specifically, the SMN1 isoform b may include the amino acid sequence of SEQ ID NO: 3.
상기 SMN1 isoform d는 NCBI Reference Sequence는 NP_000335.1의 아미노산 서열을 포함할 수 있다. 구체적으로, 상기 SMN1 isoform d는 서열번호 1의 아미노산 서열을 포함할 수 있다.The SMN1 isoform d may include the amino acid sequence of NCBI Reference Sequence NP_000335.1. Specifically, the SMN1 isoform d may include the amino acid sequence of SEQ ID NO: 1.
상기 SMN1 isoform X1은 NCBI Reference Sequence는 XP_011541898.1의 아미노산 서열을 포함할 수 있다. 구체적으로, 상기 SMN1 isoform X1은 서열번호 4의 아미노산 서열을 포함할 수 있다.The SMN1 isoform X1 may include the amino acid sequence of NCBI Reference Sequence XP_011541898.1. Specifically, the SMN1 isoform X1 may include the amino acid sequence of SEQ ID NO: 4.
상기 SMN1 isoform X2는 NCBI Reference Sequence는 XP_016865275.1의 아미노산 서열을 포함할 수 있다. 구체적으로, 상기 SMN1 isoform X2는 서열번호 5의 아미노산 서열을 포함할 수 있다.The SMN1 isoform X2 may include the amino acid sequence of NCBI Reference Sequence XP_016865275.1. Specifically, the SMN1 isoform X2 may include the amino acid sequence of SEQ ID NO: 5.
구체적으로, 상기 인간 SMN1 단백질의 동형체는 서열번호 1 내지 5로 구성된 군으로부터 선택된 하나의 아미노산 서열을 포함하는 것일 수 있다. 바람직하게는, 서열번호 1을 포함하는 SMN1 isoform d 또는 이의 변이체 일 수 있다.Specifically, the isoform of the human SMN1 protein may include one amino acid sequence selected from the group consisting of SEQ ID NOs: 1 to 5. Preferably, it may be SMN1 isoform d containing SEQ ID NO: 1 or a variant thereof.
본 명세서에서 사용한 용어 “변이체(Variant)”는 야생형 폴리펩티드의 전체 아미노산 서열에서 하나 이상의 아미노산이 결실, 추가, 치환된 형태를 의미한다. 구체적으로, 상기 변이체는 야생형 아미노산 서열의 N 말단 또는 C 말단에서 하나 이상의 아미노산 잔기가 추가되거나 결실된 것일 수 있다. 또한, 상기 변이체는 야생형 아미노산 서열의 일부 아미노산이 치환된 것일 수 있다.The term “variant” used herein refers to a form in which one or more amino acids are deleted, added, or substituted in the entire amino acid sequence of a wild-type polypeptide. Specifically, the variant may be one in which one or more amino acid residues are added or deleted from the N-terminus or C-terminus of the wild-type amino acid sequence. Additionally, the variant may be one in which some amino acids of the wild-type amino acid sequence have been substituted.
상기 인간 SMN1 변이체는 서열번호 1 내지 6으로 구성된 군으로부터 선택된 하나의 아미노산 서열과 비교하여 유비퀴틴화(Ubiquitination)가 저해된 것일 수 있다. 구체적으로, 서열번호 1의 아미노산 서열과 비교하여 유비퀴틴화가 저해된 것일 수 있다.The human SMN1 variant may have its ubiquitination inhibited compared to an amino acid sequence selected from the group consisting of SEQ ID NOs: 1 to 6. Specifically, ubiquitination may be inhibited compared to the amino acid sequence of SEQ ID NO: 1.
본 명세서에서 용어 “유비퀴틴화(Ubiquitination)”는 유비퀴틴 단백질이 기질 단백질에 부착되는 번역 후 변형의 일종이다. 유비퀴틴화는 일반적으로 유비퀴틴의 마지막 아미노산인 글리신이 기질 단백질의 라이신에 결합하여 프로테오좀에 의해 분해되는 것을 의미한다. 구체적으로, 유비퀴틴 글리신 잔기의 카리복실기와 기질 단백질의 엡실론(epsilon)-아미노기 사이에 이소펩티드 결합이 형성되는 것을 의미할 수 있다.As used herein, the term “ubiquitination” refers to a type of post-translational modification in which a ubiquitin protein is attached to a substrate protein. Ubiquitination generally means that glycine, the last amino acid of ubiquitin, binds to the lysine of the substrate protein and is degraded by the proteosome. Specifically, it may mean that an isopeptide bond is formed between the cariboxyl group of the ubiquitin glycine residue and the epsilon-amino group of the substrate protein.
일 구체예에 있어서, 상기 인간 SMN1 변이체는 서열번호 1 내지 6으로 구성된 군으로부터 선택된 하나 이상의 아미노산 서열의 라이신(K)이 다른 아미노산으로 치환되는 것일 수 있다.In one embodiment, the human SMN1 variant may be one in which lysine (K) in one or more amino acid sequences selected from the group consisting of SEQ ID NOs: 1 to 6 is replaced with another amino acid.
상기 치환된 아미노산은 알라닌(A), 알지닌(R), 아스파라진(N), 아스파르트산(D), 시스테인(C), 글루타민(Q), 글루탐산(E), 글라이신(G), 히스티딘(H), 이소류신(I), 라이신(L), 메티오닌(M), 페닐알라닌(F), 프로린(P), 세린(S), 트레오닌(T), 트립토판(W), 타이로신(Y) 및 발린(V)으로 구성된 군에서 선택되는 어느 하나인 것일 수 있다. 바람직하게는, 상기 치환된 아미노산은 비극성 아미노산일 수 있다.The substituted amino acids include alanine (A), arginine (R), asparagine (N), aspartic acid (D), cysteine (C), glutamine (Q), glutamic acid (E), glycine (G), and histidine ( H), isoleucine (I), lysine (L), methionine (M), phenylalanine (F), proline (P), serine (S), threonine (T), tryptophan (W), tyrosine (Y), and valine ( It may be any one selected from the group consisting of V). Preferably, the substituted amino acid may be a non-polar amino acid.
일 구체예에 있어서, 상기 인간 SMN1 변이체는 서열번호 1 내지 6으로 구성된 군으로부터 선택된 하나의 아미노산 서열의 라이신(K)이 알라닌(A)으로 치환되는 것일 수 있다. 구체적으로, 서열번호 1 내지 6으로 구성된 군으로부터 선택된 하나의 아미노산 서열의 C 말단에 존재하는 라이신이 다른 아미노산으로 치환된 형태일 수 있다. In one embodiment, the human SMN1 variant may be one in which lysine (K) in an amino acid sequence selected from the group consisting of SEQ ID NOs: 1 to 6 is replaced with alanine (A). Specifically, the lysine present at the C-terminus of one amino acid sequence selected from the group consisting of SEQ ID NOs: 1 to 6 may be substituted with another amino acid.
구체적으로, 서열번호 1 내지 6으로 구성된 군으로부터 선택된 하나의 아미노산 서열의 186번째 라이신(K)이 다른 아미노산으로 치환된 것일 수 있다. 이때, 상기 라이신(K)은 알라닌(A), 알지닌(R), 세린(S), 글루타민(Q), 아스파르트산(D) 또는 타이로신(Y)으로 치환될 수 있다. 이때, 상기 인간 SMN1 변이체는 서열번호 7 내지 12 및 36 내지 41으로 이루어진 군으로부터 선택된 하나의 아미노산 서열을 포함할 수 있다.Specifically, the 186th lysine (K) of one amino acid sequence selected from the group consisting of SEQ ID NOs: 1 to 6 may be substituted with another amino acid. At this time, the lysine (K) may be replaced with alanine (A), arginine (R), serine (S), glutamine (Q), aspartic acid (D), or tyrosine (Y). At this time, the human SMN1 variant may include one amino acid sequence selected from the group consisting of SEQ ID NOs: 7 to 12 and 36 to 41.
또한, 서열번호 1 내지 6으로 구성된 군으로부터 선택된 하나 이상의 아미노산 서열의 41번째 라이신(K)이 다른 아미노산으로 치환된 것일 수 있다. 이때, 상기 라이신(K)은 알라닌(A) 또는 알지닌(R)으로 치환될 수 있다. 이때, 상기 인간 SMN1 변이체는 서열번호 13 내지 18으로 이루어진 군으로부터 선택된 하나의 아미노산 서열을 포함할 수 있다.Additionally, the 41st lysine (K) of one or more amino acid sequences selected from the group consisting of SEQ ID NOs: 1 to 6 may be substituted with another amino acid. At this time, the lysine (K) may be replaced with alanine (A) or arginine (R). At this time, the human SMN1 variant may include one amino acid sequence selected from the group consisting of SEQ ID NOs: 13 to 18.
또한, 서열번호 1 내지 6으로 구성된 군으로부터 선택된 하나 이상의 아미노산 서열의 51번째 라이신(K)이 다른 아미노산으로 치환된 것일 수 있다. 이때, 상기 라이신(K)은 알라닌(A) 또는 알지닌(R)으로 치환될 수 있다. 이때, 상기 인간 SMN1 변이체는 서열번호 19 내지 24로 이루어진 군으로부터 선택된 하나의 아미노산 서열을 포함할 수 있다.Additionally, the 51st lysine (K) of one or more amino acid sequences selected from the group consisting of SEQ ID NOs: 1 to 6 may be substituted with another amino acid. At this time, the lysine (K) may be replaced with alanine (A) or arginine (R). At this time, the human SMN1 variant may include one amino acid sequence selected from the group consisting of SEQ ID NOs: 19 to 24.
또한, 서열번호 1 내지 6으로 구성된 군으로부터 선택된 하나 이상의 아미노산 서열의 184번째 라이신(K)이 다른 아미노산으로 치환된 것일 수 있다. 이때, 상기 라이신(K)은 알라닌(A) 또는 알지닌(R)으로 치환될 수 있다. 이때, 상기 인간 SMN1 변이체는 서열번호 25 내지 30 및 41으로 이루어진 군으로부터 선택된 하나의 아미노산 서열을 포함할 수 있다.Additionally, the 184th lysine (K) of one or more amino acid sequences selected from the group consisting of SEQ ID NOs: 1 to 6 may be substituted with another amino acid. At this time, the lysine (K) may be replaced with alanine (A) or arginine (R). At this time, the human SMN1 variant may include one amino acid sequence selected from the group consisting of SEQ ID NOs: 25 to 30 and 41.
상기 SMN1 단백질 변이체는, 라이신 잔기가 다른 아미노산으로 치환되어 유비퀴틴화가 상대적으로 저해됨으로써 변이체 단백질의 안정도가 증가하고 효과가 증가하며, 독성이 감소하는 것일 수 있다. In the SMN1 protein variant, the lysine residue is replaced with a different amino acid, thereby relatively inhibiting ubiquitination, thereby increasing the stability and effectiveness of the variant protein, and reducing toxicity.
상기 인간 SMN1 변이체는 인간 SMN1 야생형 아미노산 서열의 라이신 잔기가 다른 아미노산으로 치환됨으로써, SMN1 단백질의 분해가 저해될 수 있다. 따라서, SMN1 단백질의 안정성이 향상되고, 독성이 감소할 수 있다.The human SMN1 variant may inhibit the degradation of SMN1 protein by replacing the lysine residue in the human SMN1 wild-type amino acid sequence with a different amino acid. Therefore, the stability of SMN1 protein may be improved and toxicity may be reduced.
단백질 변이체를 코딩하는 폴리뉴클레오티드Polynucleotides encoding protein variants
본 발명의 다른 측면은, 인간 SMN1 단백질 변이체를 코딩하는 폴리뉴클레오티드를 제공한다. 이때, 상기 폴리뉴클레오티드는 DNA 또는 RNA일 수 있다.Another aspect of the invention provides polynucleotides encoding human SMN1 protein variants. At this time, the polynucleotide may be DNA or RNA.
구체적으로, 상기 인간 SMN1 단백질을 코딩하는 폴리뉴클레오티드는 서열번호 35 및 42 내지 49로 구성된 군으로부터 선택된 하나의 핵산 서열을 포함할 수 있다.Specifically, the polynucleotide encoding the human SMN1 protein may include one nucleic acid sequence selected from the group consisting of SEQ ID NO: 35 and 42 to 49.
이때, 상기 인간 SMN1 단백질을 코딩하는 폴리뉴클레오티드는 서열번호 35 및 42 내지 49로 구성된 군에서 선택된 하나의 폴리뉴클레오티드와 적어도 약 70%, 적어도 약 75%, 적어도 약 80%, 적어도 약 85%, 적어도 약 86%, 적어도 약 87%, 적어도 약 88%, 적어도 약 89%, 적어도 약 90%, 적어도 약 91%, 적어도 약 92%, 적어도 약 93%, 적어도 약 94%, 적어도 약 95%, 적어도 약 96%, 적어도 약 97%, 적어도 약 98%, 적어도 약 99%, 또는 적어도 약 100%의 동일성을 가지는 것일 수 있다.At this time, the polynucleotide encoding the human SMN1 protein is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least one polynucleotide selected from the group consisting of SEQ ID NOs: 35 and 42 to 49. About 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least It may have an identity of about 96%, at least about 97%, at least about 98%, at least about 99%, or at least about 100%.
일 구체예에 있어서, 상기 폴리뉴클레오티드가 코딩하는 폴리펩티드는 서열번호 7 내지 30 및 36 내지 41으로 이루어진 군으로부터 선택된 하나의 아미노산 서열을 포함할 수 있다.In one embodiment, the polypeptide encoded by the polynucleotide may include one amino acid sequence selected from the group consisting of SEQ ID NOs: 7 to 30 and 36 to 41.
이때, 인간 SMN1 변이체의 폴리펩티드는 서열번호 7 내지 30 및 36 내지 41로 구성된 군으로부터 선택된 하나를 코딩하는 폴리펩티드와 적어도 약 70%, 적어도 약 75%, 적어도 약 80%, 적어도 약 85%, 적어도 약 86%, 적어도 약 87%, 적어도 약 88%, 적어도 약 89%, 적어도 약 90%, 적어도 약 91%, 적어도 약 92%, 적어도 약 93%, 적어도 약 94%, 적어도 약 95%, 적어도 약 96%, 적어도 약 97%, 적어도 약 98%, 적어도 약 99%, 또는 적어도 약 100%의 동일성을 가지는 것일 수 있다.At this time, the polypeptide of the human SMN1 variant is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about a polypeptide encoding one selected from the group consisting of SEQ ID NOs: 7 to 30 and 36 to 41. 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about It may have an identity of 96%, at least about 97%, at least about 98%, at least about 99%, or at least about 100%.
상기 폴리뉴클레오티드는 신호서열(Signal sequence) 또는 리더 서열(Leader sequence)을 코딩하는 핵산을 추가적으로 포함할 수 있다. 본 명세서에서 사용한 용어 "신호서열"은 목적 단백질의 분비를 지시하는 신호펩타이드를 의미한다. 상기 신호펩타이드는 숙주 세포에서 번역된 후에 절단된다. 구체적으로, 상기 신호서열은 ER(Endoplasmic reticulum) 막을 관통하는 단백질의 이동을 개시하는 아미노산 서열이다.The polynucleotide may additionally include a nucleic acid encoding a signal sequence or leader sequence. The term “signal sequence” used herein refers to a signal peptide that directs secretion of a target protein. The signal peptide is cleaved after translation in the host cell. Specifically, the signal sequence is an amino acid sequence that initiates the movement of proteins through the ER (Endoplasmic reticulum) membrane.
상기 신호서열은 당업계에 그 특징이 잘 알려져 있으며, 통상 16 내지 30개의 아미노산 잔기를 포함하나, 그보다 더 많거나 적은 아미노산 잔기를 포함할 수 있다. 통상적인 신호 펩타이드는 기본 N-말단 영역, 중심의 소수성 영역, 및 보다 극성인(polar) C-말단 영역의 세 영역으로 구성된다. 중심 소수성 영역은 미성숙 폴리펩티드가 이동하는 동안 막지질 이중층을 통하여 신호서열을 고정시키는 4 내지 12개의 소수성 잔기를 포함한다.The signal sequence has well-known characteristics in the art, and usually contains 16 to 30 amino acid residues, but may contain more or fewer amino acid residues. A typical signal peptide consists of three regions: a basic N-terminal region, a central hydrophobic region, and a more polar C-terminal region. The central hydrophobic region contains 4 to 12 hydrophobic residues that anchor the signal sequence throughout the membrane lipid bilayer while the immature polypeptide moves.
개시 이후에, 신호서열은 흔히 신호 펩티다아제(Signal peptidases)로 알려진 세포 효소에 의하여 ER의 루멘(Lumen) 내에서 절단된다. 이때, 상기 신호서열은 tPa(Tissue Plasminogen Activation), HSV gDs(Signal sequence of Herpes simplex virus glycoprotein D), 또는 성장 호르몬(Growth hormone)의 분비신호서열일 수 있다. 바람직하게, 포유동물 등을 포함하는 고등 진핵 세포에서 사용되는 분비 신호서열을 사용할 수 있다. 또한, 상기 신호서열은 야생형 신호서열을 사용하거나, 숙주세포에서 발현 빈도가 높은 코돈으로 치환하여 사용할 수 있다.After initiation, the signal sequence is cleaved within the lumen of the ER by cellular enzymes commonly known as signal peptidases. At this time, the signal sequence may be a secretion signal sequence of tPa (Tissue Plasminogen Activation), HSV gDs (Signal sequence of Herpes simplex virus glycoprotein D), or growth hormone. Preferably, a secretion signal sequence used in higher eukaryotic cells, including mammals, can be used. In addition, the signal sequence can be used as a wild-type signal sequence, or by replacing it with a codon that is frequently expressed in host cells.
폴리뉴클레오티드가 적재된 벡터Vector loaded with polynucleotide
본 발명의 다른 측면은, 상기 폴리뉴클레오티드가 적재된 벡터를 제공한다.Another aspect of the present invention provides a vector loaded with the polynucleotide.
상기 벡터는 숙주 세포에 도입되어 숙주 세포 유전체 내로 재조합 및 삽입될 수 있다. 또는 상기 벡터는 에피좀으로서 자발적으로 복제될 수 있는 폴리뉴클레오티드 서열을 포함하는 핵산 수단으로 이해된다.The vector can be introduced into a host cell and recombined and inserted into the host cell genome. Alternatively, the vector is understood as a nucleic acid vehicle containing a polynucleotide sequence capable of spontaneous replication as an episome.
상기 벡터는 선형 핵산, 플라스미드, 파지미드, 코스미드, RNA 벡터, 바이러스 벡터 또는 이의 유사체일 수 있다. 구체적으로, 상기 벡터는 플라스미드 DNA, 파아지 DNA 등이 될 수 있고, 상업적으로 개발된 플라스미드(pUC18, pBAD, pIDTSAMRT-AMP 등), 대장균 유래 플라스미드(pYG601BR322, pBR325, pUC118, pUC119 등), 바실러스 서브틸리스 유래 플라스미드(pUB110, pTP5 등), 효모-유래 플라스미드(YEp13, YEp24, YCp50 등), 파아지 DNA(Charon4A, Charon21A, EMBL3, EMBL4, λgt10, λgt11, λZAP 등)일 수 있다.The vector may be a linear nucleic acid, plasmid, phagemid, cosmid, RNA vector, viral vector, or analogues thereof. Specifically, the vector may be plasmid DNA, phage DNA, etc., commercially developed plasmids (pUC18, pBAD, pIDTSAMRT-AMP, etc.), E. coli-derived plasmids (pYG601BR322, pBR325, pUC118, pUC119, etc.), Bacillus subtilis. plasmids (pUB110, pTP5, etc.), yeast-derived plasmids (YEp13, YEp24, YCp50, etc.), phage DNA (Charon4A, Charon21A, EMBL3, EMBL4, λgt10, λgt11, λZAP, etc.).
또한, 상기 바이러스 벡터는 레트로바이러스, 아데노바이러스 벡터, 아데노-바이러스 연관 벡터(AAV), 렌티바이러스 벡터, 곤충 바이러스 벡터(배큘로바이러스(Baculovirus) 등) 또는 백시니아 벡터일 수 있다.Additionally, the viral vector may be a retrovirus, adenovirus vector, adeno-virus associated vector (AAV), lentivirus vector, insect virus vector (Baculovirus, etc.), or vaccinia vector.
일 구체예에 있어서, 상기 바이러스 벡터는 아데노-바이러스 연관 벡터(AAV)일 수 있다. 상기 아데노-바이러스 연관 벡터는 AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAVrh8, AAV9, AAV10, AAVrh10, AAV11 또는 AAV12의 혈청형 캡시드를 포함할 수 있다. In one embodiment, the viral vector may be an adeno-virus associated vector (AAV). The adeno-virus associated vector may include a serotype capsid of AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAVrh8, AAV9, AAV10, AAVrh10, AAV11 or AAV12.
본 명세서에서 사용된 용어, 목적 단백질의 "유전자 발현" 또는 "발현"은, DNA 서열의 전사, mRNA 전사체의 번역 및 융합단백질 생산물 또는 이의 단편의 분비를 의미하는 것으로 이해된다. 유용한 발현 벡터는 RcCMV(Invitrogen, Carlsbad) 또는 이의 변이체일 수 있다. As used herein, the term “gene expression” or “expression” of a protein of interest is understood to mean transcription of a DNA sequence, translation of an mRNA transcript, and secretion of a fusion protein product or fragment thereof. A useful expression vector may be RcCMV (Invitrogen, Carlsbad) or variants thereof.
상기 발현 벡터는 포유류 세포에서 목적 유전자의 연속적인 전사를 촉진하기 위한 프로모터, 또는 전사 후 RNA의 안정상태 수준을 높이기 위한 우태 성장 인자(Bovine growth hormone) 폴리아데닐레이션 신호서열을 포함할 수 있다. 구체적으로, 상기 벡터는 인간 β-글루쿠로니다제 프로모터 또는 닭 β-액틴 프로모터 또는 CMV 프로모터를 코딩하는 폴리뉴클레오티드를 추가적으로 적재할 수 있다.The expression vector may include a promoter to promote continuous transcription of the target gene in mammalian cells, or a bovine growth hormone polyadenylation signal sequence to increase the steady-state level of RNA after transcription. Specifically, the vector can additionally load a polynucleotide encoding the human β-glucuronidase promoter, chicken β-actin promoter, or CMV promoter.
이때, SMN1 유전자 변이체를 코딩하는 폴리뉴클레오티드는 프로모터에 작동 가능하게 연결되는 것일 수 있다. 일 구체예에 있어서, 프로모터는 척수의 신경세포에서 인간 SMN 1 변이체를 코딩하는 폴리뉴클레오티드를 발현시킬 수 있다. 다른 구현예에서, 프로모터는 척수의 운동 신경세포에서 SMN1를 발현시킬 수 있다.At this time, the polynucleotide encoding the SMN1 gene variant may be operably linked to the promoter. In one embodiment, the promoter is capable of expressing a polynucleotide encoding a human SMN 1 variant in neurons of the spinal cord. In another embodiment, the promoter can express SMN1 in motor neurons of the spinal cord.
일 구체예에 있어서, CMV 프로모터를 코딩하는 폴리뉴클레오티드를 추가적으로 적재할 수 있다. 일 구체예에 있어서, 상기 CMV 프로모터는 서열번호 52의 아미노산 서열을 포함할 수 있다.In one embodiment, a polynucleotide encoding a CMV promoter can be additionally loaded. In one embodiment, the CMV promoter may include the amino acid sequence of SEQ ID NO: 52.
일 구체예에 있어서, 상기 벡터는 pAAV9-CMV-hSMN1 K186R, pAAV9-CMV-hSMN1 K186S, pAAV9-CMV-hSMN1 K186Q, pAAV9-CMV-hSMN1 K186D, pAAV9-CMV-K186A, pAAV9-CMV-hSMN1 K186Y, pAAV9-CMV-hSMN1 K184R, pAAV9-CMV-K51R 또는 pAAV9-CMV-hSMN1 K41R의 구조를 가지는 것일 수 있다. In one embodiment, the vector is pAAV9-CMV-hSMN1 K186R, pAAV9-CMV-hSMN1 K186S, pAAV9-CMV-hSMN1 K186Q, pAAV9-CMV-hSMN1 K186D, pAAV9-CMV-K186A, pAAV9-CMV-hSMN1 K186Y, It may have the structure of pAAV9-CMV-hSMN1 K184R, pAAV9-CMV-K51R, or pAAV9-CMV-hSMN1 K41R.
또한, 상기 벡터는 서열번호 33, 34 및 50 내지 57로 이루어지는 군으로부터 선택된 하나 이상의 폴리뉴클레오티드를 포함하는 것일 수 있다.Additionally, the vector may contain one or more polynucleotides selected from the group consisting of SEQ ID NOs: 33, 34, and 50 to 57.
SMN1 단백질 변이체의 용도Uses of SMN1 protein variants
본 발명의 다른 측면은, 상기 벡터를 유효성분으로 포함하는 척수성 근위축증(SMA) 치료 또는 예방용 약학 조성물을 제공한다.Another aspect of the present invention is, remind Provided is a pharmaceutical composition for treating or preventing spinal muscular atrophy (SMA) containing a vector as an active ingredient.
본 발명의 다른 측면은, 상기 벡터 또는 상기 약학 조성물을 개체에 투여하는 단계를 포함하는 척수성 근위축증을 치료 또는 예방하는 방법을 제공한다.Another aspect of the present invention is, The vector or A method of treating or preventing spinal muscular atrophy comprising administering the pharmaceutical composition to a subject is provided.
본 명세서에서 용어,척수성 근위축증(Spinal Muscular Atrophy; SMA)은 퇴행성 신경질환의 일종으로, SMN(survival motor neuron) 단백질을 암호화하는 SMN1 유전자 돌연변이에 의해 발생하는 상염색체 열성의 유전적 질환이다. SMN 단백질의 감소는 척수와 뇌간 사이에 존재하는 운동신경세포의 기능손상을 야기시켜 근육의 동작을 명령하는 신호를 받지 못해 근력저하, 근위축 및 섬유속성 연축 등이 특징이다.As used herein, the term Spinal Muscular Atrophy (SMA) is a type of degenerative neurological disease and is an autosomal recessive genetic disease caused by a mutation in the SMN1 gene, which encodes the SMN (survival motor neuron) protein. . A decrease in SMN protein causes functional impairment of motor neurons that exist between the spinal cord and the brainstem, resulting in the inability to receive signals commanding muscle movement, resulting in muscle weakness, muscle atrophy, and fasciculatory spasms.
상기 척수성 근위축증은 SMA 1형, SMA 2형 또는 SMA 3형인 것일 수 있다. 상기 SMA 1형은 출생 후 6개월 미만에 발병하는 것이 특징으로, 도움 없이 앉는 것이 불가능하며, Werdnig-Hoffmann disease라고도 명명된다. 영아는 보통 2년 이내에 사망하는 것이 특징이다. 상기 SMA 2형은 출생 후 7 내지 18 개월에 발병하는 것이 특징으로, 도움 없이 앉거나 서있는 것은 가능하나 독립적 보행이 불가능하다. 보통 유아기까지 생존하는 것이 특징이다. 상기 SMA 3형은 출생 후 18개월 이상에서 발병하는 것이 특징으로, 독립적인 보행 가능하나, 유아기-점진적인 근육 약화가 발생한다.The spinal muscular atrophy may be SMA type 1, SMA type 2, or SMA type 3. The SMA type 1 is characterized by onset less than 6 months after birth, making it impossible to sit without assistance, and is also called Werdnig-Hoffmann disease. Infants usually die within 2 years. SMA type 2 is characterized by onset 7 to 18 months after birth, and although it is possible to sit or stand without assistance, independent walking is impossible. Their characteristic is that they usually survive until infancy. The SMA type 3 is characterized by onset at more than 18 months after birth, and although independent walking is possible, gradual muscle weakness occurs in infancy.
일부 구현예에서, 상기 개체는 영장류일 수 있으며, 구체적으로 소아 또는 성인 개체일 수 있다. 일 구체예에서, 상기 소아는 2개월령, 3개월령, 4개월령, 5개월령, 6개월령, 7개월령, 8개월령, 9개월령, 10개월령, 11개월령, 12개월령, 13개월령, 14개월령, 15개월령, 16개월령, 17개월령, 18개월령, 1세, 2세, 3세, 4세, 5세, 6세, 7세, 8세, 9세, 10세, 11세, 12세, 13세, 14세, 15세, 16세, 17세, 18세 중 어느 하나 미만이다. 일부 구현예에서, 인간 대상체는 18세 초과이다.In some embodiments, the subject may be a primate, and may specifically be a pediatric or adult subject. In one embodiment, the child is 2 months old, 3 months old, 4 months old, 5 months old, 6 months old, 7 months old, 8 months old, 9 months old, 10 months old, 11 months old, 12 months old, 13 months old, 14 months old, 15 months old, 16 months, 17 months, 18 months, 1 year, 2 years, 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 11 years, 12 years, 13 years, 14 years. , is under any of the following: 15, 16, 17, or 18 years of age. In some embodiments, the human subject is over 18 years of age.
상기 약학 조성물은 간 독성이 개선되어 출생 후 1개월 내지 18개월의 유아의 투여에도 적합하며, 1회의 투여에도 장기간 효과가 지속되는 것일 수 있다.The pharmaceutical composition has improved liver toxicity and is therefore suitable for administration to infants aged 1 to 18 months after birth, and the effect may last for a long time even after a single administration.
상기 약학 조성물은 개체에 유효량 투여될 경우 척추동물 투여 부위의 운동 신경세포에 형질도입될 수 있다. 일 구체예에서, 운동 신경세포의 약 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75% 또는 100% 중 대략 어느 하나의 초과가 형질도입될 수 있다. 일 구체예에서, 척수 전체에 걸친(예를 들어, 허리, 가슴, 및 목 부위 전체에 걸친) 운동 신경세포의 약 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75% 또는 100%로 형질도입될 수 있다. 상기 약학 조성물 투여 후의 SMN1의 변이체가 발현되면, SMA 증상을 갖는 개체가 치료되거나 증상이 완화될 수 있다. When the pharmaceutical composition is administered to an individual in an effective amount, it can be transduced into motor neurons at the site of administration in a vertebrate. In one embodiment, about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70% of the motor neurons. Approximately any excess of %, 75% or 100% may be transduced. In one embodiment, about 5%, 10%, 15%, 20%, 25%, 30%, 35% of motor neurons throughout the spinal cord (e.g., throughout the lumbar, chest, and neck regions) , 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75% or 100%. If a variant of SMN1 is expressed after administration of the pharmaceutical composition, an individual with SMA symptoms may be treated or the symptoms may be alleviated.
상기 약학 조성물의 바람직한 투여량은 환자의 상태 및 체중, 질병의 정도, 약물형태, 투여경로 및 기간에 따라 다르지만, 당업자에 의해 적절하게 선택될 수 있다. 본 발명의 SMA 치료용 또는 예방용 약학 조성물에서 그 유효성분은 SMA 치료 활성을 나타내거나, 특히, SMA에 치료 효과를 나타낼 수 있는 한, 용도, 제형, 배합 목적 등에 따라 임의의 양(유효량)으로 포함될 수 있는데, 통상적인 유효량은 조성물 전체 중량을 기준으로 할 때 0.001 중량% 내지 20.0 중량% 범위 내에서 결정될 것이다. 여기서 "유효량"이란 질환의 상태 개선 또는 치료(treatment) 효과, 특히 SMA의 상태 개선 또는 치료 효과를 유도할 수 있는 유효성분의 양을 말한다. 이러한 유효량은 당업자의 통상의 능력 범위 내에서 실험적으로 결정될 수 있다.The preferred dosage of the pharmaceutical composition varies depending on the patient's condition and weight, degree of disease, drug form, administration route and period, but can be appropriately selected by a person skilled in the art. In the pharmaceutical composition for treating or preventing SMA of the present invention, the active ingredient is used in any amount (effective amount) depending on the use, formulation, purpose of formulation, etc., as long as it exhibits SMA treatment activity or, in particular, can exhibit a therapeutic effect on SMA. It may be included, and a typical effective amount will be determined within the range of 0.001% by weight to 20.0% by weight based on the total weight of the composition. Here, “effective amount” refers to the amount of active ingredient that can improve the condition of the disease or induce a treatment effect, especially improvement of the condition or treatment effect of SMA. Such effective amounts can be determined experimentally within the scope of the ordinary ability of those skilled in the art.
본 명세서에서 사용된 용어, "치료"는 치료학적 처리 및 예방적 처리를 모두 포함하는 의미로 사용될 수 있다. 이때, 예방은 개체의 병리학적 상태 또는 질환을 완화시키거나 감소시키는 의미로 사용될 수 있다. 일 구체예에서, 용어 "치료"는 인간을 포함한 포유류에서 질환을 치료하기 위한 적용이나 어떠한 형태의 투약을 모두 포함한다. 또한, 상기 용어는 질환의 진행을 억제하거나 늦추는 것을 포함하며; 손상되거나, 결손된 기능을 회복시키거나, 수리하여, 질환을 부분적이거나 완전하게 완화시키거나; 또는 비효율적인 프로세스를 자극하거나; 심각한 질환을 완화하는 의미를 포함한다.As used herein, the term “treatment” may be used to include both therapeutic treatment and preventive treatment. At this time, prevention can be used to mean alleviating or reducing the pathological condition or disease of an individual. In one embodiment, the term “treatment” includes any form of administration or application to treat a disease in mammals, including humans. The term also includes inhibiting or slowing the progression of a disease; Restoring or repairing damaged or missing function, thereby partially or completely relieving a disease; or stimulating inefficient processes; It includes the meaning of alleviating serious diseases.
상기 약학 조성물이 비경구용 제형으로 제조될 경우, 적합한 담체와 함께 당업계에 공지된 방법에 따라 주사제, 경피 투여제, 비강 흡입제 및 좌제의 형태로 제제화될 수 있다. 주사제로 제제화할 경우 적합한 담체로서는 멸균수, 에탄올, 글리세롤이나 프로필렌 글리콜 등의 폴리올 또는 이들의 혼합물을 사용할 수 있다.When the pharmaceutical composition is prepared as a parenteral formulation, it can be formulated in the form of injections, transdermal administration, nasal inhalation, and suppositories along with a suitable carrier according to methods known in the art. When formulated as an injection, sterilized water, ethanol, polyols such as glycerol or propylene glycol, or mixtures thereof can be used as suitable carriers.
상기 약학 조성물의 바람직한 투여량은 환자의 상태, 체중, 성별, 연령, 환자의 중증도에 따라 달라질 수 있다. 투여는 1일 1회 또는 수회로 나누어 이루어질 수 있다. 이러한 투여량은 어떠한 측면으로든 본원 발명의 범위를 제한하는 것으로 해석되어서는 아니 된다. The preferred dosage of the pharmaceutical composition may vary depending on the patient's condition, weight, gender, age, and severity of the patient. Administration can be done once a day or divided into several times. These dosages should not be construed as limiting the scope of the present invention in any respect.
상기 약학 조성물이 적용(처방)될 수 있는 대상은 포유동물 및 인간이며, 특히 인간인 경우가 바람직하다. 본원의 약학 조성물은 유효성분 이외에, SMA 치료 효과를 갖는 것으로 공지된 임의의 화합물이나 천연 추출물을 추가로 포함할 수 있다. The subjects to which the pharmaceutical composition can be applied (prescribed) are mammals and humans, and humans are particularly preferred. In addition to the active ingredients, the pharmaceutical composition of the present application may further include any compounds or natural extracts known to have a SMA treatment effect.
이하, 본원 발명을 하기 실시예에 의하여 더욱 상세하게 설명한다. 단, 하기 실시예는 본원 발명을 예시하기 위한 것일 뿐, 본원 발명의 범위가 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail by the following examples. However, the following examples are only for illustrating the present invention and do not limit the scope of the present invention.
실시예 1. hSMN1 변이체를 포함하는 바이러스의 제조Example 1. Preparation of viruses containing hSMN1 variants
실시예 1.1. DNA 형질감염Example 1.1. DNA transfection
하기 표 1은 실험에 사용된 hSMN1 및 hSMN1 K186R의 아미노산 서열을 나타낸 것이다. hSMN1 K186S, hSMN1 K186Q, hSMN1 K186D, hSMN1 K186A, hSMN1 K186Y, hSMN1 K184R, hSMN1 K51R 및 hSMN1 K41R은 각각 서열번호 1의 184번째, 186번째, 41번째 또는 51번째 아미노산 리신(K)을 각 아미노산으로 치환하여 제조하였다.Table 1 below shows the amino acid sequences of hSMN1 and hSMN1 K186R used in the experiment. hSMN1 K186S, hSMN1 K186Q, hSMN1 K186D, hSMN1 K186A, hSMN1 K186Y, hSMN1 K184R, hSMN1 K51R and hSMN1 K41R, respectively, replacing the 184th, 186th, 41st or 51st amino acid lysine (K) of SEQ ID NO: 1 with each amino acid. It was manufactured.
Amino acid sequenceAmino acid sequence
hSMN1(서열번호 1)hSMN1 (SEQ ID NO: 1) MAMSSGGSGGGVPEQEDSVLFRRGTGQSDDSDIWDDTALIKAYDKAVASFKHALKNG
DICETSGKPKTTPKRKPAKKNKSQKKNTAASLQQWKVGDKCSAIWSEDGCIYPATIAS
IDFKRETCVVVYTGYGNREEQNLSDLLSPICEVANNIEQNAQENENESQVSTDESENS
RSPGNKSDNIKP K SAPWNSFLPPPPPMPGPRLGPGKPGLKFNGPPPPPPPPPPHLLSC
WLPPFPSGPPIIPPPPPICPDSLDDADALGSMLISWYMSGYHTGYYMGFRQNQKEGRC
SHSLN
MAMSSGGSGGGVPEQEDSVLFRRGTGQSDDSDIWDDTALIKAYDKAVASFKHALKNG
DICETSGKPKTTPKRKPAKKNKSQKKNTAASLQQWKVGDKCSAIWSEDGCIYPATIAS
IDFKRETCVVVYTGYGNREEQNLSDLLSPICEVANNIEQNAQENENESQVSTDESENS
RSPGNKSDNIKP K SAPWNSFLPPPPPMPGPRLGPGKPGLKFNGPPPPPPPPPPHLLSC
WLPPFPSGPPIIPPPPPICPDSLDDADALGSMLISWYMSGYHTGYYMGFRQNQKEGRC
SHSLN
hSMN1 K186R(서열번호 7)hSMN1 K186R (SEQ ID NO: 7) MAMSSGGSGGGVPEQEDSVLFRRGTGQSDDSDIWDDTALIKAYDKAVASFKHALKNG
DICETSGKPKTTPKRKPAKKNKSQKKNTAASLQQWKVGDKCSAIWSEDGCIYPATIAS
IDFKRETCVVVYTGYGNREEQNLSDLLSPICEVANNIEQNAQENENESQVSTDESENS
RSPGNKSDNIKP R SAPWNSFLPPPPPMPGPRLGPGKPGLKFNGPPPPPPPPPPHLLSC
WLPPFPSGPPIIPPPPPICPDSLDDADALGSMLISWYMSGYHTGYYMGFRQNQKEGRC
SHSLN
MAMSSGGSGGGVPEQEDSVLFRRGTGQSDDSDIWDDTALIKAYDKAVASFKHALKNG
DICETSGKPKTTPKRKPAKKNKSQKKNTAASLQQWKVGDKCSAIWSEDGCIYPATIAS
IDFKRETCVVVYTGYGNREEQNLSDLLSPICEVANNIEQNAQENENESQVSTDESENS
RSPGNKSDNIKP R SAPWNSFLPPPPPMPGPRLGPGKPGLKFNGPPPPPPPPPPHLLSC
WLPPFPSGPPIIPPPPPICPDSLDDADALGSMLISWYMSGYHTGYYMGFRQNQKEGRC
SHSLN
하기 표 2는 실험에 사용된 hSMN1의 핵산 서열을 나타낸 것이다.Table 2 below shows the nucleic acid sequence of hSMN1 used in the experiment.
mRNA sequencemRNA sequence
Human SMN1(서열번호 35)Human SMN1 (SEQ ID NO: 35) atggcgatgagcagcggcggcagtggtggcggcgtcccggagcaggaggattccgtgctgttccggcgcggcacaggccagagcgatgattctgacatttgggatgatacagcactgataaaagcatatgataaagctgtggcttcatttaagcatgctctaaagaatggtgacatttgtgaaacttcgggtaaaccaaaaaccacacctaaaagaaaacctgctaagaagaataaaagccaaaagaagaatactgcagcttccttacaacagtggaaagttggggacaaatgttctgccatttggtcagaagacggttgcatttacccagctaccattgcttcaattgattttaagagagaaacctgtgttgtggtttacactggatatggaaatagagaggagcaaaatctgtccgatctactttccccaatctgtgaagtagctaataatatagaacaaaatgctcaagagaatgaaaatgaaagccaagtttcaacagatgaaagtgagaactccaggtctcctggaaataaatcagataacatcaagcccaaatctgctccatggaactcttttctccctccaccaccccccatgccagggccaagactgggaccaggaaagccaggtctaaaattcaatggcccaccaccgccaccgccaccaccaccaccccacttactatcatgctggctgcctccatttccttctggaccaccaataattcccccaccacctcccatatgtccagattctcttgatgatgctgatgctttgggaagtatgttaatttcatggtacatgagtggctatcatactggctattatatgggtttcagacaaaatcaaaaagaaggaaggtgctcacattccttaaattaa
atggcgatgagcagcggcggcagtggtggcggcgtcccggagcaggaggattccgtgctgttccggcgcggcacaggccagagcgatgattctgacatttgggatgatacagcactgataaaagcatatgataaagctgtggcttcatttaagcatgctctaaagaatggtgacatttgtgaaacttcgggtaaaccaaaaaccacacctaaaagaaaacctgctaagaagaataaaagccaaaagaagaatactgcagcttccttacaacagtggaaagttggggacaaatgttctgccatttggtcagaagacggttgcatttacccagctaccattgcttcaattgattttaagagagaaacctgtgttgtggtttacactggatatggaaatagagaggagcaaaatctgtccgatctactttccccaatctgtgaagtagctaataatatagaacaaaatgctcaagagaatgaaaatgaaagccaagtttcaacagatgaaagtgagaactccaggtctcctggaaataaatcagataacatcaagcccaaatctgctccatggaactcttttctccctccaccaccccccatgccagggccaagactgggaccaggaaagccaggtctaaaattcaatggcccaccaccgccaccgccaccaccaccaccccacttactatcatgctggctgcctccatttccttctggaccaccaataattcccccaccacctcccatatgtccagattctcttgatgatgctgatgctttgggaagtatgttaatttcatggtacatgagtggctatcatactggctattatatgggtttcagacaaaatcaaaaagaaggaaggtgctcacattccttaaattaa
CMV 프로모터를 가지는 아데노-연관 바이러스(AAV) 벡터에 탑재된 돌연변이 인간 SMN1 유전자를 제조하기 위하여, HEK-293T cell에 2 ㎍의 DNA(pAAV9-CMV-hSMN1(서열번호 33), pAAV9-CMV-hSMN1 K186R(서열번호 34), pAAV9-CMV-hSMN1 K186S(서열번호 50), pAAV9-CMV-hSMN1 K186Q(서열번호 51), pAAV9-CMV-hSMN1 K186D(서열번호 52), pAAV9-CMV-K186A(서열번호 53), pAAV9-CMV-hSMN1 K186Y(서열번호 54), pAAV9-CMV-hSMN1 K184R(서열번호 55), pAAV9-CMV-K51R(서열번호 56) 또는 pAAV9-CMV-hSMN1 K41R(서열번호 57)를 각각 8 ㎍의 Rep2/Cap9 플라스미드 (Cell biolabs, VPK-418 플라스미드), (addgene, 112865_Rep2/Cap9) 및 4 ㎍의 p헬퍼(pHelper) 바이러스 플라스미드(addgene, 112867_pAdDeltaF6) 와 함께 삼중 형질감염(triple transfection)시켰다. 이때, 1 ㎕/㎍의 polyethylenimine(PEI)와 Opti-MEMTM을 사용하였다. 형질감염에는 100 mm 디쉬 42장을 각각 사용하였다. 형질감염 후 20시간 후에 새 배지로 교체하였으며, 48시간 동안 더 배양하였다.To prepare a mutant human SMN1 gene loaded into an adeno-associated virus (AAV) vector with a CMV promoter, 2 μg of DNA (pAAV9-CMV-hSMN1 (SEQ ID NO: 33), pAAV9-CMV-hSMN1 was added to HEK-293T cells. K186R (SEQ ID NO: 34), pAAV9-CMV-hSMN1 K186S (SEQ ID NO: 50), pAAV9-CMV-hSMN1 K186Q (SEQ ID NO: 51), pAAV9-CMV-hSMN1 K186D (SEQ ID NO: 52), pAAV9-CMV-K186A (SEQ ID NO: No. 53), pAAV9-CMV-hSMN1 K186Y (SEQ ID No. 54), pAAV9-CMV-hSMN1 K184R (SEQ ID No. 55), pAAV9-CMV-K51R (SEQ ID No. 56) or pAAV9-CMV-hSMN1 K41R (SEQ ID No. 57) Triple transfection with 8 μg each of Rep2/Cap9 plasmid (Cell biolabs, VPK-418 plasmid), (addgene, 112865_Rep2/Cap9) and 4 μg of pHelper virus plasmid (addgene, 112867_pAdDeltaF6). ). At this time, 1 ㎕/㎍ of polyethylenimine (PEI) and Opti-MEM TM were used. For transfection, 42 100 mm dishes were used. 20 hours after transfection, it was replaced with new medium, and 48 hours later. It was further cultured for a while.
실시예 1.2.Example 1.2. AAV 생산 및 정제 AAV production and purification
형질감염 48시간 후 각 디쉬의 세포를 스크래퍼로 긁어 50 ml 튜브에 수집한 뒤, 420xg, 10분, 4℃ 조건에서 원심분리하였다. 상등액은 버리고, 펠렛을 용해 버퍼(5 M NaCl, 1 M Tris HCl, ultrapure water)에 재현탁하고, 동결-해동 과정을 3회 진행하였다. 상기 과정에서 액체질소 및 waterbath를 이용하여 얼리고 녹이는 과정을 반복하여 수행하였다. 상기 과정을 3회 수행한 후, 1,167xg, 15분, 4℃ 조건에서 원심분리하였다. 그 후, 상등액을 다른 50 ml 튜브로 옮겨서 벤조나아제(benzonase)를 50 U/ml로 처리한 뒤, 37℃에서 10분에 한 번씩 휘저어주며 총 30분 동안 유지하였다. 48 hours after transfection, the cells in each dish were scraped with a scraper, collected in a 50 ml tube, and centrifuged at 420xg, 10 minutes, 4°C. The supernatant was discarded, the pellet was resuspended in lysis buffer (5 M NaCl, 1 M Tris HCl, ultrapure water), and the freeze-thaw process was performed three times. In the above process, the freezing and thawing process was repeated using liquid nitrogen and a water bath. After performing the above process three times, centrifugation was performed at 1,167xg, 15 minutes, and 4°C. Afterwards, the supernatant was transferred to another 50 ml tube, treated with 50 U/ml of benzonase, and maintained at 37°C for a total of 30 minutes with agitation once every 10 minutes.
그 후, 13,490xg, 20분, 4℃조건에서 원심분리하였으며, 상등액을 0.45 ㎛ pore 필터로 여과하여 AAV가 포함되어 있는 순수한 분획물인 조 용해물(crude lysate)를 수득하였다. 상기 분획물을 4℃에 보관해놓은 상태에서, 15%, 25%, 40%, 60%의 요오딕사놀 구배(iodixanol gradient)를 형성하기 위해, 초원심분리관에 하기 표 3과 같은 구성으로 요오딕사놀을 넣어 주었다. 하기 표 3은 조성물의 성분을 나타낸 것이다.Afterwards, centrifugation was performed at 13,490 While the fraction was stored at 4°C, iodixanol was added to an ultracentrifuge tube with the composition shown in Table 3 below to form an iodixanol gradient of 15%, 25%, 40%, and 60%. Sanol was added. Table 3 below shows the components of the composition.
조성물 이름 composition name 성분ingredient
15% Iodixanol15% Iodixanol 12.5 ml of Optiprep density gradient medium12.5 ml of Optiprep density gradient medium
10 ml of 5 M NaCl10ml of 5M NaCl
10 ml of 5x PBS-MK10ml of 5xPBS-MK
17.5 ml of Ultrapure water17.5 ml of Ultrapure water
25% Iodixanol25% Iodixanol 20.8 ml of Optiprep density gradient medium20.8 ml of Optiprep density gradient medium
10 ml of 5x PBS-MK10ml of 5xPBS-MK
19.2 ml of Ultrapure water19.2 ml of Ultrapure water
100 μL of phenol red100 μL of phenol red
40% Iodixanol40% Iodixanol 33.3 ml of Optiprep density gradient medium33.3 ml of Optiprep density gradient medium
10 ml of 5x PBS-MK10ml of 5xPBS-MK
6.7 ml of Ultrapure water6.7 ml of Ultrapure water
60% Iodixanol60% Iodixanol 50 ml of Optiprep density gradient medium50 ml of Optiprep density gradient medium
100 μL of phenol red100 μL of phenol red
그 후, 초원심분리관에 15% 요오딕사놀 8 ml을 가장 먼저 넣고, 25% 5.5 ml, 40% 5 ml, 60% 4.5 ml와 같은 순서로 튜브의 밑바닥에 넣음으로써 아래쪽에 더 높은 농도의 요오딕사놀 분획이 위치하도록 하였다. 이 요오딕사놀 구배의 가장 위에 4℃에서 보관하였던 조 용해물을 넣고 301,580xg, 2시간, 12℃ 조건에서 초원심분리하였다. 그 후, AAV가 포함되어 있는 40% 요오딕사놀에 바늘을 꽂고 뽑아내어 새로운 튜브에 옮긴 뒤 4℃에 보관하였다. After that, add 8 ml of 15% iodixanol to the ultracentrifuge tube first, then add 5.5 ml of 25%, 5 ml of 40%, and 4.5 ml of 60% to the bottom of the tube in the same order, so that a higher concentration of iodixanol is added to the bottom. The iodixanol fraction was positioned. Crude lysate stored at 4°C was added to the top of this iodixanol gradient and ultracentrifuged at 301,580xg for 2 hours at 12°C. Afterwards, the needle was inserted into 40% iodixanol containing AAV, extracted, transferred to a new tube, and stored at 4°C.
실시예 1.3. AAV의 탈염 및 농축Example 1.3. Desalting and concentration of AAV
원심분리 필터 튜브에 1xPBS-MK 5 ml을 넣고 4,000xg, 5분, 4℃ 조건에서 원심분리하여 프리-린스(pre-rinse)과정을 진행하였고, 그 사이에 4℃에 보관해놓은 AAV 분획에 1xPBS-MK 5 ml을 넣었다. 웨이스트 튜브(Waste tube)를 비우고 다시 필터를 연결한 뒤 1xPBS-MK를 혼합한 AAV 분획물을 넣은 다음, 4,000xg, 1시간, 4℃ 조건에서 원심분리하였다. 5 ml of 1xPBS-MK was placed in a centrifugal filter tube and centrifuged at 4,000xg, 5 minutes, 4°C to perform a pre-rinse process. Meanwhile, 1xPBS was added to the AAV fraction stored at 4°C. -5 ml of MK was added. After emptying the waste tube and reconnecting the filter, the AAV fraction mixed with 1xPBS-MK was added and centrifuged at 4,000xg for 1 hour at 4°C.
필터 위에 1 ml 정도의 분획물이 남을 때까지 추가적으로 원심분리를 한 뒤, 웨이스트 튜브를 비운 뒤에 필터 위에 1xPBS-MK 13 ml을 넣고 다시 4,000xg, 1시간, 4℃ 조건에서 원심분리하여 탈염화를 진행하였다. 탈염화는 3회 이상 반복하였다. 탈염화가 완료된 상황에서 마지막으로 1xPBS-MK 13 ml에 계면활성제를 0.01%로 혼합해 투여하고, 4,000xg, 1시간, 4℃ 조건에서 최종 볼륨이 200 ㎕이 될 때까지 원심분리하였다. 그 후, 필터위에 남은 AAV 분획물을 새로운 튜브로 옮긴 뒤, 4℃ 조건에서 보관하여 SMN1 유전자를 탑재한 AAV 벡터를 수득하였다.After further centrifugation until about 1 ml of fraction remains on the filter, empty the waste tube, add 13 ml of 1xPBS-MK on the filter, and centrifuge again at 4,000xg, 1 hour, 4°C to perform desalination. did. Dechlorination was repeated three or more times. When desalting was completed, 13 ml of 1xPBS-MK mixed with 0.01% surfactant was administered and centrifuged at 4,000xg, 1 hour, 4°C until the final volume reached 200 ㎕. Afterwards, the AAV fraction remaining on the filter was transferred to a new tube and stored at 4°C to obtain an AAV vector carrying the SMN1 gene.
실시예 1.4. AAV의 역가 확인Example 1.4. Titer confirmation of AAV
SMN1 유전자의 발현 정도를 분석하기 위하여, quantitative PCR(qPCR)을 수행하였다. 구체적으로, 1 uM forward primer, 1 uM reverse primer, 연속 희석한 template DNA, SYBR Green qPCR mix를 이용하여 quantitative PCR(qPCR)을 수행하였다. 하기 표 4는 qPCR에 사용된 프라이머의 서열을 나타낸 것이다.To analyze the expression level of the SMN1 gene, quantitative PCR (qPCR) was performed. Specifically, quantitative PCR (qPCR) was performed using 1 uM forward primer, 1 uM reverse primer, serially diluted template DNA, and SYBR Green qPCR mix. Table 4 below shows the sequences of primers used in qPCR.
방향direction 프라이머 서열primer sequence 서열번호sequence number
Forward primerForward primer 5'-CCCACTTGGCAGTACATCAA-3'5'-CCCACTTGGCAGTACATCAA-3' 3131
Reverse primerReverse primer 5'-GCCAAGTAGGAAAGTCCCAT-3'5'-GCCAAGTAGGAAAGTCCCAT-3' 3232
표준 곡선을 만들기 위해 전이유전자 발현 플라스미드(transgene expressing plasmid)에 제한효소(restriction enzyme)를 처리하여 선형화하였다. 다음으로, 이를 2%의 아가로스 겔에 전기영동하여 정제하였다. 이 DNA는 1x109 vector genomes(VG)/㎕로 희석되었으며, 표준 곡선을 위해서 최종적으로 1x107 부터 1x101까지 1/10 배씩 희석하였다. AAV에 존재하는 유전자의 경우, 먼저 2 ㎕의 AAV vector stock에 DNase1 buffer 198 ㎕, DNase1 2 ㎕(1 U/㎕)를 섞어 1x10-2의 농도를 만든 뒤, 37℃에서 30분간 유지하였다. DNase1을 고온에서 비활성화한 뒤, 프로테나아제 K 2 ㎕(10 mg/ml)를 넣고 50℃에서 1시간 동안 유지한 뒤 다시 고온에서 비활성화시켰다. 다음으로, AAV 게놈용 샘플을 위해 최종 1x10-3부터 1x10-5까지 1/10 배씩 희석하였다. 표준곡선용, AAV 게놈용 샘플에 qPCR mix를 넣고 하기 표 5과 같은 조건에서 qPCR을 수행하였다. To create a standard curve, the transgene expressing plasmid was linearized by treating it with a restriction enzyme. Next, it was purified by electrophoresis on a 2% agarose gel. This DNA was diluted to 1x10 9 vector genomes (VG)/㎕, and was finally diluted 1/10 times from 1x10 7 to 1x10 1 for the standard curve. In the case of genes present in AAV, first, 2 ㎕ of AAV vector stock was mixed with 198 ㎕ of DNase1 buffer and 2 ㎕ of DNase1 (1 U/㎕) to create a concentration of 1x10 -2 , and then maintained at 37°C for 30 minutes. After DNase1 was inactivated at high temperature, 2 ㎕ of proteinase K (10 mg/ml) was added, maintained at 50°C for 1 hour, and then inactivated again at high temperature. Next, the sample for the AAV genome was diluted 1/10 times from the final 1x10 -3 to 1x10 -5 . qPCR mix was added to the samples for the standard curve and AAV genome, and qPCR was performed under the conditions shown in Table 5 below.
단계step 조건condition
Step1Step1 95℃, 5 min, 1 cycle95℃, 5 min, 1 cycle
Step2Step2 95℃, 10 min, 1cycle95℃, 10 min, 1 cycle
Step3Step3 95℃, 10 s / 60℃ 40 s / 72℃, 1 s, 40 cycles95℃, 10 s / 60℃ 40 s / 72℃, 1 s, 40 cycles
Step4Step4 40℃, 10 s, 1 cycle40℃, 10 s, 1 cycle
qPCR 후 AAV 벡터의 농도를 표준 곡선의 Ct값 기준으로 환산하였고, 최종적으로 3x1013 VG/ml의 AAV를 수득하였다.After qPCR, the concentration of the AAV vector was converted based on the Ct value of the standard curve, and ultimately 3x10 13 VG/ml of AAV was obtained.
실시예 2. AAV의 주입 Example 2. Injection of AAV
상기 실시예 1에서 수득한 SMN1을 포함하는 AAV 또는 돌연변이 SMN1을 포함하는 AAV를 새로 태어난 타입 1.5 SMA 쥐에 주입하였다. AAV containing SMN1 obtained in Example 1 or AAV containing mutant SMN1 was injected into newborn type 1.5 SMA mice.
SMA 모델쥐는 Jackson lab에서 SMA type 1 (Smn-/-; SMN2+/+), SMA type 2 (Smn-/-; SMN△7+/+; SMN2+/+)mouse를 각각 구매하였으며, 이 둘을 교배하여 SMA type 1.5 (Smn-/-; SMN△7+/-; SMN2+/+)mouse를 제작하여 실험에 사용하였다.SMA model mice were purchased from Jackson lab, SMA type 1 (Smn-/-; SMN2+/+) and SMA type 2 (Smn-/-; SMN△7+/+; SMN2+/+) mice, respectively, and the two were crossed. Thus, SMA type 1.5 (Smn-/-; SMN△7+/-; SMN2+/+) mouse was produced and used in the experiment.
주입 과정은 다음과 같다. 태어난 새끼의 발가락 일부를 잘라 50mM NaOH가 담겨 있는 튜브에 넣고 95℃에 30분 정도 둔다. 조직이 녹은 것을 확인한 뒤 마우스 SMN 결실을 확인할 수 있는 프라이머로 PCR을 수행하였다. 그 결과 돌연변이(Mutant)로 확인된 개체에 대하여 AAV 주입을 수행하였다. AAV 주입은 태어난 지 24시간 이내에 수행하였으며, 1 ml, 31G, 8 mm 인슐린 주사기를 이용하여 얼음 마취 후 얼굴 정색으로 혈관내 정맥 투여하였다.The injection process is as follows. Cut off part of the toe of a newborn baby, place it in a tube containing 50mM NaOH, and leave it at 95°C for about 30 minutes. After confirming that the tissue had dissolved, PCR was performed using primers that could confirm mouse SMN deletion. As a result, AAV injection was performed on the individual identified as a mutant. AAV injection was performed within 24 hours of birth, and was administered intravenously using a 1 ml, 31 G, 8 mm insulin syringe under ice anesthesia and facial fixation.
실험군으로 AAV9-SMN, AAV9-SMNK186R, AAV9-SMNK186S, AAV9-SMNK186Q, AAV9-SMNK186D, AAV9-SMNK186A, AAV9-SMNK186Y, AAV9-SMNK41R, AAV9-SMNK51R, AAV9-SMNK184R을 1.2 x 1011 VG/g(체중)의 양으로 주입하였다. 주입 후에는 37℃에서 30분 이상 유지하고 개체가 정상적으로 마취에서 회복되는 것을 확인한 뒤 어미가 있는 케이지로 옮겼다. The experimental group was AAV9-SMN, AAV9-SMN K186R , AAV9-SMN K186S , AAV9-SMN K186Q , AAV9-SMN K186D , AAV9-SMN K186A , AAV9-SMN K186Y , AAV9-SMN K41R , AAV9-SMN K51R , AAV9-SMN K184 . R was injected at an amount of 1.2 x 10 11 VG/g (body weight). After injection, the animal was kept at 37°C for more than 30 minutes, and after confirming that the animal had recovered from anesthesia normally, it was transferred to a cage with its mother.
그 후, AAV가 주입된 쥐는 태어난 케이지에 있던 어미의 보살핌을 받는 상태로 유지되었고, 매일 생존 여부 및 무게를 기록하였다. Afterwards, the mice injected with AAV were maintained under the care of their mothers in their birth cages, and their survival and weight were recorded daily.
그 결과, 도 1에 나타낸 것과 같이, 186번째 아미노산의 변이체를 주입한 실험군(K186R, K186S, K186Q, K186D, K186A, K186Y, 세모 형태 표시)은 야생형 대조군(동그라미 형태 표시)와 같이 생존 기간이 증가하여 50일 이상 생존하였다. 그러나, 184번째, 41번째 및 51번째 아미노산의 변이체를 주입한 타 변이군(K41R, K51R, K184R, 네모 형태 표시)은 상대적으로 이른 4주차에 사망하였다. As a result, as shown in Figure 1, the experimental group injected with a variant of the 186th amino acid (K186R, K186S, K186Q, K186D, K186A, K186Y, indicated in the form of a triangle) had an increased survival period like the wild-type control group (indicated in the form of a circle). It survived for more than 50 days. However, other mutant groups (K41R, K51R, K184R, indicated in squares) injected with variants at the 184th, 41st, and 51st amino acids died relatively early at 4 weeks.
이러한 결과는, 41번째, 51번째, 184번째 리신은 치환되더라도 SMN의 기능적 차이가 유발되지 않으나, 186번째 리신은 다양한 아미노산으로 치환되었을 경우에 효과가 증가함을 의미한다.These results mean that functional differences in SMN are not caused even if the 41st, 51st, and 184th lysines are substituted, but the effect increases when the 186th lysine is substituted with various amino acids.
또한, 도 2에 나타낸 것과 같이, K186R, K186S, K186Q, K186D, K186A, K186Y, K41R, K51R, K184R 군 모두 대조군에 비해 무게가 무거운 것을 확인하였다. 특히, 타 변이 군(K186S, K186Q, K186D, K186A, K186Y)을 주입하였을 경우에 쥐의 무게가 현저히 증가하는 것을 확인하였다.Additionally, as shown in Figure 2, it was confirmed that the K186R, K186S, K186Q, K186D, K186A, K186Y, K41R, K51R, and K184R groups all weighed more than the control group. In particular, it was confirmed that the weight of mice significantly increased when other mutant groups (K186S, K186Q, K186D, K186A, K186Y) were injected.
실험예 1. 동물 모델의 정위반사 테스트 Experimental Example 1. Righting reflex test in animal model
운동 기능 테스트로 정위반사(Righting reflex), Negative geotaxis 및 Tail suspension(Hindlimb clasping)의 3가지를 수행하였다. 정위반사는 생후(Postnatal day, PND) 5일경부터, Negative geotaxis 및 Tail suspension(Hindlimb clasping)은 생후 20일경부터 수행하였다.Three motor function tests were performed: righting reflex, negative geotaxis, and tail suspension (Hindlimb clasping). The righting reflex was performed from about 5 days after birth (Postnatal day, PND), and negative geotaxis and tail suspension (Hindlimb clasping) were performed from about 20 days after birth.
정위반사는 쥐를 뒤집었을 때 등쪽 근육을 이용하여 몸을 뒤집어 바로 설 수 있는지를 확인하는 실험으로, 갓 태어난 어린 쥐의 경우는 몸을 뒤집지 못하며, SMA 모델 쥐의 경우에도 몸을 뒤집지 못하는 것으로 보고되어 있다. 오른쪽 등이 땅에 완전히 닺게 하는 경우와 왼쪽 등이 땅에 완전히 닺게 하는 경우를 기준으로 판단하였다. 각 30초씩 관찰하여 뒤집어 섰을 경우 걸린 시간을 기록하였고, 뒤집어 서지 못한 경우는 30초로 기록하였다. 각 3회씩 측정한 평균 시간을 계산하여 기능을 평가하였다. 약 2주 이상의 시간이 흐르고 모든 쥐들이 빠르게 몸을 뒤집어 일어나는 시기부터는 정위반사 측정을 중단하였다. The righting reflex is an experiment to check whether a rat can turn over and stand upright using its dorsal muscles. It is reported that newborn rats are unable to turn over, and SMA model rats are also unable to turn over. It is done. The judgment was made based on cases where the right back was completely flat on the ground and cases where the left back was completely flat on the ground. Each animal was observed for 30 seconds and the time it took to turn over was recorded. If the animal was unable to turn over, it was recorded as 30 seconds. Function was evaluated by calculating the average time measured three times each. After about two weeks or more, when all the rats quickly turned over and woke up, measurement of the righting reflex was stopped.
그 결과, 도 3에 나타낸 것과 같이, AAV9-CMV-hSMN1K186R을 주입한 경우 올바르게 몸을 뒤집는 것을 확인하였다. 더불어, 도 4에 나타낸 것과 같이, AAV9-CMV-hSMN1를 주입한 SMA 모델 쥐의 경우, 생후 약 11일부터 뒤집기 시작하였으며, 점점 뒤집는 속도가 빨라졌으나 PND14가 되었을 때에도 뒤집는 데에 10초 정도가 소요되었다. 그러나, AAV9-CMV-hSMN1K186R을 주입한 경우, 생후 9일부터 약 25초만에 뒤집기 시작함을 확인할 수 있었으며, 약 13일 정도가 되었을 때에는 1 내지 2초만에 몸을 뒤집을 수 있음을 확인하였다.As a result, as shown in Figure 3, it was confirmed that the body turned over correctly when AAV9-CMV-hSMN1 K186R was injected. In addition, as shown in Figure 4, in the case of SMA model mice injected with AAV9-CMV-hSMN1, they began to turn over from about 11 days after birth, and the speed of turning over gradually became faster, but even at PND14, it took about 10 seconds to turn over. It has been done. However, when AAV9-CMV-hSMN1 K186R was injected, it was confirmed that the baby began to turn over in about 25 seconds from the 9th day after birth, and it was confirmed that the body could be turned over in 1 to 2 seconds at about 13 days of age.
실험예 2. Negative geotaxis 테스트 Experimental Example 2. Negative geotaxis test
Negative geotaxis는 기울어진 경사면에서 본능적으로 쥐가 몸을 위쪽으로 틀어서 위로 올라가려고 하는 것을 측정하는 실험으로, 몸에 전체적인 균형이 잡혀 있고 그에 맞춰 근육을 사용하는 경우에 이러한 행동이 가능한 것으로 알려져 있다. 쥐를 약 50도 경사에서 머리가 아래쪽을 향하도록 했을 경우 몸을 얼마나 빨리 반대방향으로 돌리는 지를 각 실험군별로 매일 측정하였다. 몸을 돌리는 정도는 처음 아래쪽을 향하고 있던 것의 180도 반대로 완전히 트는 경우만 유효한 것으로 판단하였다. 10회 반복하여 테스트하였으며, 몸을 돌린 경우에는 돌리는 데까지 걸린 시간을 기록하고 돌리지 못한 경우 30초로 기록하여 돌리는 데에 걸리는 시간과 완전히 돌린 횟수를 기록하였다. Negative geotaxis is an experiment that measures how a rat instinctively tries to climb up by turning its body upward on a tilted slope. It is known that such behavior is possible when the body has overall balance and uses its muscles accordingly. When rats were placed with their heads facing downward at an incline of approximately 50 degrees, how quickly they turned their bodies in the opposite direction was measured daily for each experimental group. The degree of body rotation was judged to be valid only when the body was fully turned 180 degrees opposite to the initial downward direction. The test was repeated 10 times, and if the body turned, the time taken to turn was recorded. If the body could not be turned, it was recorded as 30 seconds, and the time taken to turn and the number of complete turns were recorded.
그 결과, 도 5에 나타낸 것과 같이, AAV9-CMV-hSMN1K186R을 주입한 경우 180도 반대로 몸을 뒤집는 것을 확인하였다. 더불어, 도 6에 나타낸 것과 같이, AAV9-CMV-hSMN1를 주입한 SMA 모델 쥐의 경우, 주입 후 22일이 경과하자 성공률이 50%로 감소하였으나, AAV9-CMV-hSMN1K186R을 주입한 경우, 주입 후 23일까지도 성공률이 100%로 유지되는 것을 확인할 수 있었다. 또한, 도 7에 나타낸 것과 같이, AAV9-CMV-hSMN1K186R을 주입한 경우, 생후 21일 이후에는 몸을 뒤집는 데 5초 이하가 소요되었으나, AAV9-CMV-hSMN1를 주입한 경우 21일에는 10초 이상이, 22일 이후에는 약 25초 이상이 소요되었다.As a result, as shown in Figure 5, it was confirmed that when AAV9-CMV-hSMN1 K186R was injected, the body turned over 180 degrees. In addition, as shown in Figure 6, in the case of SMA model mice injected with AAV9-CMV-hSMN1, the success rate decreased to 50% 22 days after injection, but when AAV9-CMV-hSMN1 K186R was injected, the injection It was confirmed that the success rate was maintained at 100% even until the 23rd day. Additionally, as shown in Figure 7, when AAV9-CMV-hSMN1 K186R was injected, it took less than 5 seconds to turn over after 21 days after birth, but when AAV9-CMV-hSMN1 was injected, it took 10 seconds on day 21. Above, after the 22nd, it took about 25 seconds or more.
실험예 3. Tail suspension 테스트Experimental Example 3. Tail suspension test
Tail suspension(Hindlimb clasping) 테스트는 쥐의 꼬리를 매달아 놓은 경우 뒷발을 배쪽으로 움크리거나 다리를 위쪽으로 차는 현상이 발생하는 것을 측정하는 것이다. 이때, 근육과 신경에 문제가 있는 경우 다리를 차지 못하고 꼬는 특성이 나타난다. SMA, ALS 등 다양한 질병의 모델 쥐에서 상기와 같은 hindlimb clasping 현상이 관찰된다. The tail suspension (Hindlimb clasping) test measures whether a rat moves its hind limbs toward its stomach or kicks its legs upward when its tail is suspended. At this time, if there is a problem with the muscles or nerves, the characteristic of crossing the legs rather than kicking them appears. The hindlimb clasping phenomenon described above is observed in model mice for various diseases such as SMA and ALS.
최대 30초 동안 꼬리를 매달고, 30초 동안 다리를 꼬는 시간을 측정하였다. 회당 총 3번 측정하였으며, 30초 수행 후 1분 정도 휴식을 취하게 한 뒤 2번 더 반복하여 평균 시간을 기록하였다. 다리를 꼰 시간을 비교함으로써 행동학적 차이를 분석하였다.The time for hanging the tail for a maximum of 30 seconds and crossing the legs for 30 seconds was measured. Measurements were made a total of three times per time, and after performing for 30 seconds, the test was allowed to rest for about a minute and then repeated twice more, recording the average time. Behavioral differences were analyzed by comparing the time spent crossing the legs.
그 결과, 도 8에 나타낸 것과 같이, AAV9-CMV-hSMN1K186R을 주입한 쥐의 경우 다리를 꼬지 않고 차는 것을 확인하였다. 또한, 도 9에 나타낸 것과 같이, AAV9-CMV-hSMN1를 주입한 SMA 모델 쥐의 경우, 측정한 30초 중 약 20초 이상의 시간 동안 다리를 꼬고 있었으며, 다리를 위로 차는 모습이 거의 관찰되지 않았다. 그에 비해 AAV9-CMV-hSMN1K186R을 주입한 경우, 다리를 꼬는 시간이 30초 중 3 내지 4초 정도이며, 측정하는 대부분의 시간 동안 위로 다리를 차는 것을 확인할 수 있었다. As a result, as shown in Figure 8, it was confirmed that mice injected with AAV9-CMV-hSMN1 K186R kicked their legs without crossing them. Additionally, as shown in Figure 9, in the case of the SMA model mouse injected with AAV9-CMV-hSMN1, the legs were crossed for more than 20 seconds out of the 30 seconds measured, and kicking the legs upward was rarely observed. In contrast, when AAV9-CMV-hSMN1 K186R was injected, the leg crossing time was about 3 to 4 seconds out of 30 seconds, and it was confirmed that the leg was kicked upward for most of the measurement time.
실험예 4. 동물 모델의 체중 및 생존능 확인 Experimental Example 4. Confirmation of body weight and viability of animal model
실시예 2와 같이 SMA 유전자를 주입한 쥐는 PND10 내지 PND14 이후에 각 실험군별로 체중(body weight)의 차이가 나타났고, PND23 이후에 운동 기능 테스트에서 가장 큰 차이가 관찰되었다.In mice injected with the SMA gene as in Example 2, differences in body weight were observed for each experimental group after PND10 to PND14, and the greatest difference was observed in motor function tests after PND23.
실시예 2와 같이 SMA 유전자를 주입한 쥐에서 체중을 측정한 결과, 도 10에 나타낸 것과 같이, PND10까지는 각 실험군별로 체중(body weight)의 차이가 없었으나, 그 이후에는 각 실험군별로 체중(body weight)의 차이가 나타났다. 구체적으로, AAV9-CMV-hSMN1를 주입한 쥐에 비해 AAV9-CMV-hSMN1K186R를 주입한 쥐의 체중이 현저하게 증가함을 확인하였다.As a result of measuring body weight in mice injected with the SMA gene as in Example 2, as shown in FIG. 10, there was no difference in body weight for each experimental group until PND10, but thereafter, body weight for each experimental group was observed. A difference in weight appeared. Specifically, it was confirmed that the body weight of mice injected with AAV9-CMV-hSMN1 K186R increased significantly compared to mice injected with AAV9-CMV-hSMN1.
또한, 도 11에 나타낸 것과 같이, 아무것도 처리하지 않은 음성대조군 Type 1.5 SMA 쥐는 빨리 사망하였으나, AAV9-CMV-hSMN1를 주입한 경우는 약 4주 정도 생존하다가 죽는 것이 관찰되었다. 그에 비해 AAV9-CMV-hSMN1K186R를 주입한 경우는약 260일 이상 생존하는 것이 관찰되었다.In addition, as shown in Figure 11, negative control Type 1.5 SMA mice that were not treated with anything died quickly, but those injected with AAV9-CMV-hSMN1 were observed to survive for about 4 weeks and then die. In contrast, when AAV9-CMV-hSMN1 K186R was injected, survival was observed for more than 260 days.
실험예 5. 실험군별 간 조직 분석Experimental Example 5. Liver tissue analysis by experimental group
실험예 5.1. 실험군 샘플링Experimental Example 5.1. Experimental group sampling
상기 실험예 4와 같이, 체중에 차이가 나기 시작하는 시점인 PND14, 운동 능력의 차이가 가장 크게 관찰되는 PND28에 AAV9-CMV-hSMN1 및 AAV9-CMV-hSMN1K186R을 주입한 쥐를 수득하여, CNS와 말초(periphery) 비교를 위해 뇌(brain), 척수(spinal cord), 간(liver), 근육(muscle)을 각각 떼어 내서 RIPA와 Trizol에 넣고 샘플링을 진행하였다. 근육은 장딴지근(Gastrocnemius muscle, GA) 부위를 이용하였다. 그 결과, 도 12에 나타낸 것과 같이 실험군 쥐의 간 조직을 수득할 수 있었으며, 각 조직 샘플을 이용하여 하기와 같이 분석을 진행하였다. As in Experimental Example 4, mice injected with AAV9-CMV-hSMN1 and AAV9-CMV-hSMN1 K186R were obtained at PND14, when body weight begins to differ, and at PND28, when the greatest difference in exercise ability is observed. To compare the CNS and the periphery, the brain, spinal cord, liver, and muscle were each removed and placed in RIPA and Trizol for sampling. The muscle used was the gastrocnemius muscle (GA). As a result, as shown in FIG. 12, liver tissue of mice in the experimental group was obtained, and analysis was performed using each tissue sample as follows.
실험예 5.2. 웨스턴 블랏Experimental Example 5.2. western blot
실험군 쥐의 뇌, 척수, 간 및 장딴지근에서 SMN 단백질의 발현량을 확인하기 위해 하기와 같이 웨스턴 블랏을 수행하였다.To confirm the expression level of SMN protein in the brain, spinal cord, liver, and gastrocnemius muscle of the experimental group rats, Western blot was performed as follows.
단백질 영동에는 10% polyacrylamide gel을 사용하였고, PVDF 멤브레인에서 SMN(ms, 1:2,000)과 GAPDH(Rb, 1:1,000)를 이용하여 blotting하였다. A 10% polyacrylamide gel was used for protein electrophoresis, and blotting was performed using SMN (ms, 1:2,000) and GAPDH (Rb, 1:1,000) on a PVDF membrane.
그 결과, 또한, 도 13 및 도 14에 나타낸 것과 같이, 뇌, 척수, 근육에서는 별다른 경향성이 보이지 않았으나, 유독 간에서는 AAV9-CMV-hSMN1을 주입한 경우 SMN이 과도하게 축적되어 있는 것이 관찰되었다.As a result, as shown in Figures 13 and 14, no significant tendency was observed in the brain, spinal cord, and muscles, but excessive accumulation of SMN was observed in the liver when AAV9-CMV-hSMN1 was injected.
실험예 5.3. RNA 추출 및 qRT-PCRExperimental Example 5.3. RNA extraction and qRT-PCR
실험군 쥐의 간 조직에서 SMN과 IGF1, IGFALS mRNA 발현량을 확인하기 위해 하기와 같이 qRT-PCR을 수행하였다.To confirm the expression levels of SMN, IGF1, and IGFALS mRNA in the liver tissue of mice in the experimental group, qRT-PCR was performed as follows.
조직을 Trizol reagent에 넣고 균질화(homogenization)하여 세포 용해(lysis)시킨 후, 클로로포름(Chloroform)을 넣고 상온에서 10분 동안 인큐베이션(incubation)하였다. 이후 12,000 rpm으로 4℃에서 15분간 원심분리(centrifugation)하여 상층액(supernatant)를 분리하고, 새 튜브로 옮긴 뒤 이소프로판올(isopropanol) 및 75% 에탄올 과정을 거쳐 RNA 펠렛을 생성하였다. 만들어진 펠렛은 DEPC-dH2O로 녹여 RNA 농도를 정량하였다. 정량 수치를 바탕으로 동량의 RNA 및 ReverTra Ace reagent를 이용해 cDNA를 합성하고, 이를 이용해 qRT-PCR을 수행하였다. Reference gene으로는 GAPDH를 활용하였다.The tissue was placed in Trizol reagent and homogenized to lyse the cells, then chloroform was added and incubated at room temperature for 10 minutes. Afterwards, the supernatant was separated by centrifugation at 12,000 rpm at 4°C for 15 minutes, transferred to a new tube, and then processed with isopropanol and 75% ethanol to generate an RNA pellet. The resulting pellet was dissolved in DEPC-dH2O and the RNA concentration was quantified. Based on the quantitative values, cDNA was synthesized using an equal amount of RNA and ReverTra Ace reagent, and qRT-PCR was performed using this. GAPDH was used as a reference gene.
그 결과, 도 15에 나타낸 것과 같이, AAV9-CMV-hSMN1을 주입한 경우 SMN의 RNA가 과도하게 축적되어 있는 것이 관찰되었다. 이러한 경향성은 도 13 및 14에 나타낸 웨스턴 블랏의 결과와 일치하였다. 또한, AAV-CMV-hSMN1K186R을 주입한 경우 AAV-CMV-hSMN1을 주입한 경우보다 간에서 IGF1, IGFALS의 발현이 더 높은 것이 관찰되었다.As a result, as shown in Figure 15, when AAV9-CMV-hSMN1 was injected, excessive accumulation of SMN RNA was observed. This trend was consistent with the Western blot results shown in Figures 13 and 14. In addition, when AAV-CMV-hSMN1 K186R was injected, higher expression of IGF1 and IGFALS in the liver was observed than when AAV-CMV-hSMN1 was injected.
실험예 5.4. 면역조직화학 분석Experimental Example 5.4. Immunohistochemical analysis
실험군 쥐의 간 조직의 표현형을 분석하기 위해, 하기와 면역조직화학(Immunohistochemical, IHC) 분석을 수행하였다.To analyze the phenotype of the liver tissue of the experimental group rats, the following immunohistochemical (IHC) analysis was performed.
먼저, 4% PFA를 이용해 조직을 픽싱하였다. 이후 15%, 30% 수크로오스 용액으로 옮겨가면서 조직이 가라앉을 때까지 두고, 이후 가라앉은 조직을 OCT 화합물이 들어있는 튜브에 넣고 액체 질소에 넣어 급속 냉동시켰다. 냉동된 샘플을 저온유지장치(Cryostat)를 이용하여 7 ㎛ 절편으로 만들어 IHC를 수행하였다. IHC 과정은 다음과 같다. 1X PBS로 15분간 워싱하여 OCT를 제거하였으며, 척수 절편의 경우 차가운 메탄올에 30분 동안 넣어 추가적인 픽싱을 진행하였다. 이후 EDTA antigen retrieval buffer(1mM EDTA, 0.05% Tween 20, pH 8.0)에 slide를 넣고 105℃에서 10분간 항원 검색(antigen retrieval)을 진행하였다. 이후 1X PBS 워싱한 절편을 블록킹 한 뒤 1차 항체(primary antibody)를 처리했다. 1차 항체는 rabbit anti-Ki67(1:500 dilution)을 사용하였으며, 4℃에서 밤새 인큐베이션하였다. 이어서 1x PBS 워싱후 각 1차 항체에 맞는 2차 항체(Alexa Fluor 594 염소 항-토끼 IgG(1:400))를 실온에서 1시간 처리한 뒤 DAPI가 포함되어 있는 마운팅 솔루션(mounting solution)을 넣고 커버슬립을 덮어 마무리하였다.First, the tissue was fixed using 4% PFA. Afterwards, the tissue was moved to 15% and 30% sucrose solution and left until the tissue settled. Then, the settled tissue was placed in a tube containing OCT compound and rapidly frozen in liquid nitrogen. IHC was performed by cutting the frozen sample into 7 ㎛ sections using a cryostat. The IHC process is as follows. The OCT was removed by washing with 1X PBS for 15 minutes, and in the case of spinal cord sections, additional fixing was performed by placing them in cold methanol for 30 minutes. Afterwards, the slide was placed in EDTA antigen retrieval buffer (1mM EDTA, 0.05% Tween 20, pH 8.0), and antigen retrieval was performed at 105°C for 10 minutes. Afterwards, the 1X PBS washed section was blocked and then treated with primary antibody. The primary antibody was rabbit anti-Ki67 (1:500 dilution), and was incubated at 4°C overnight. After washing with 1x PBS, the secondary antibody (Alexa Fluor 594 goat anti-rabbit IgG (1:400)) matching each primary antibody was treated at room temperature for 1 hour, and then a mounting solution containing DAPI was added. The process was completed by covering it with a coverslip.
그 결과, 도 16 및 도 17에 나타낸 것과 같이, 체중 차이가 관찰되지 않는 PND12에서는 Ki67 양성 세포의 차이가 관찰되지 않았으나 체중 및 운동능력 차이가 크게 관찰되는 PND25에서는 AAV9-CMV-hSMN1K186R을 주입한 쥐의 간 조직은 AAV9-CMV-hSMN1을 주입한 쥐의 간 조직보다 Ki67 양성 간세포의 밀도가 높은 것을 확인할 수 있었다. 또한, 도 18에 나타낸 것과 같이, Ki67 양성 세포를 정량 하였을 때 AAV9-CMV-hSMN1K186R을 주입한 쥐의 간 조직은 AAV9-CMV-hSMN1을 주입한 쥐의 간 조직보다 PND12에서는 큰 차이가 없었으나 PND25에서 더 많았으며, 이러한 경향성은 도 16 및 17과 일치하였다. 이는 PND25에서 AAV9-CMV-hSMN1K186R을 주입한 쥐의 간세포가 AAV9-CMV-hSMN1을 주입한 쥐의 간세포보다 증식률이 높음을 보여주었고, 또한 정상 개체의 간과 더 유사한 경향을 보였다.As a result, as shown in Figures 16 and 17, no difference in Ki67 positive cells was observed at PND12, where no difference in body weight was observed, but at PND25, where a significant difference in body weight and exercise capacity was observed, AAV9-CMV-hSMN1 K186R was injected. It was confirmed that the rat liver tissue had a higher density of Ki67-positive hepatocytes than the liver tissue of rats injected with AAV9-CMV-hSMN1. In addition, as shown in Figure 18, when Ki67 positive cells were quantified, there was no significant difference in PND12 in the liver tissue of mice injected with AAV9-CMV-hSMN1 K186R compared to the liver tissue of mice injected with AAV9-CMV-hSMN1. There were more at PND25, and this trend was consistent with Figures 16 and 17. This showed that the hepatocytes of mice injected with AAV9-CMV-hSMN1 K186R at PND25 had a higher proliferation rate than the hepatocytes of mice injected with AAV9-CMV-hSMN1, and also showed a tendency to be more similar to the liver of a normal subject.

Claims (16)

  1. 서열번호 1 내지 6으로 구성된 군으로부터 선택된 하나의 아미노산 서열에서 41번째, 51번째, 184번째 및/또는 186 번째 위치의 라이신(Lysine)이 다른 아미노산으로 치환된 인간 SMN1(Survival of motor neuron 1) 단백질 변이체.A human SMN1 (Survival of motor neuron 1) protein in which lysine at positions 41, 51, 184, and/or 186 in an amino acid sequence selected from the group consisting of SEQ ID NOs. 1 to 6 is replaced with another amino acid. variant.
  2. 제1항에 있어서,According to paragraph 1,
    상기 변이체는 서열번호 1 내지 6으로 구성된 군으로부터 선택된 하나의 아미노산 서열을 포함하는 인간 SMN1 단백질과 비교하여 유비퀴틴화(Ubiquitination)가 저해된 것인, 인간 SMN1 단백질 변이체.The variant is a human SMN1 protein variant in which ubiquitination is inhibited compared to the human SMN1 protein containing one amino acid sequence selected from the group consisting of SEQ ID NOs: 1 to 6.
  3. 제1항에 있어서,According to paragraph 1,
    상기 치환된 아미노산은 알라닌(A), 알지닌(R), 아스파라진(N), 아스파르트산(D), 시스테인(C), 글루타민(Q), 글루탐산(E), 글라이신(G), 히스티딘(H), 이소류신(I), 류신(L), 메티오닌(M), 페닐알라닌(F), 프로린(P), 세린(S), 트레오닌(T), 트립토판(W), 타이로신(Y) 및 발린(V)으로 구성된 군에서 선택되는 어느 하나인 것인, 인간 SMN1 단백질 변이체.The substituted amino acids include alanine (A), arginine (R), asparagine (N), aspartic acid (D), cysteine (C), glutamine (Q), glutamic acid (E), glycine (G), and histidine ( H), isoleucine (I), leucine (L), methionine (M), phenylalanine (F), proline (P), serine (S), threonine (T), tryptophan (W), tyrosine (Y) and valine ( V), any one selected from the group consisting of human SMN1 protein variants.
  4. 제1항에 있어서,According to paragraph 1,
    상기 변이체는 서열번호 7 내지 30 및 36 내지 41으로 이루어진 군으로부터 선택된 하나의 아미노산 서열을 포함하는 것인, 인간 SMN1 단백질 변이체.The variant is a human SMN1 protein variant comprising one amino acid sequence selected from the group consisting of SEQ ID NOs: 7 to 30 and 36 to 41.
  5. 제1항 내지 제4항 중 어느 한 항의 인간 SMN1 단백질 변이체를 코딩하는 폴리뉴클레오티드.A polynucleotide encoding the human SMN1 protein variant of any one of claims 1 to 4.
  6. 제5항에 있어서,According to clause 5,
    상기 폴리뉴클레오티드는 DNA 또는 RNA인 것인, 인간 SMN1 단백질 변이체를 코딩하는 폴리뉴클레오티드.A polynucleotide encoding a human SMN1 protein variant, wherein the polynucleotide is DNA or RNA.
  7. 제6항에 있어서, According to clause 6,
    서열번호 35 및 42 내지 49로 이루어진 군으로부터 선택된 하나 이상의 염기서열을 포함하는 것인, 인간 SMN1 단백질 변이체를 코딩하는 폴리뉴클레오티드.A polynucleotide encoding a human SMN1 protein variant, comprising one or more base sequences selected from the group consisting of SEQ ID NOs: 35 and 42 to 49.
  8. 제5항 내지 제7항 중 어느 한 항의 폴리뉴클레오티드가 적재된 벡터.A vector loaded with the polynucleotide of any one of claims 5 to 7.
  9. 제8항에 있어서, According to clause 8,
    상기 벡터는 바이러스 벡터 또는 플라스미드 벡터인 것인, 벡터.The vector is a viral vector or a plasmid vector.
  10. 제9항에 있어서, According to clause 9,
    상기 바이러스 벡터는 아데노바이러스 벡터, 아데노-바이러스 연관 벡터(AAV), 렌티바이러스 벡터 또는 백시니아 벡터인 것인, 벡터.The viral vector is an adenovirus vector, an adeno-virus associated vector (AAV), a lentivirus vector, or a vaccinia vector.
  11. 제8항에 있어서, According to clause 8,
    CMV 프로모터가 추가적으로 적재된 것인, 벡터.A vector additionally loaded with the CMV promoter.
  12. 제8항에 있어서,According to clause 8,
    상기 벡터는 서열번호 33, 34 및 50 내지 57인 것인, 벡터.The vector is SEQ ID NO: 33, 34, and 50 to 57.
  13. 제8항 내지 제12항 중 어느 한 항의 벡터를 유효성분으로 포함하는 척수성 근위축증(SMA) 치료 또는 예방용 약학 조성물.A pharmaceutical composition for treating or preventing spinal muscular atrophy (SMA), comprising the vector of any one of claims 8 to 12 as an active ingredient.
  14. 제13항에 있어서,According to clause 13,
    상기 척수성 근위축증은 SMA 1형, SMA 2형 또는 SMA 3형인 것인, 약학 조성물.A pharmaceutical composition, wherein the spinal muscular atrophy is SMA type 1, SMA type 2, or SMA type 3.
  15. 제13항 내지 제14항 중 어느 한 항의 약학 조성물을 개체에 투여하는 단계를 포함하는 척수성 근위축증 치료 또는 예방 방법.A method of treating or preventing spinal muscular atrophy comprising administering the pharmaceutical composition of any one of claims 13 to 14 to a subject.
  16. 척수성 근위축증(SMA) 치료 또는 예방을 위한 제1항 내지 제4항 중 어느 한 항의 인간 SMN1 단백질 변이체의 용도.Use of the human SMN1 protein variant of any one of claims 1 to 4 for treating or preventing spinal muscular atrophy (SMA).
PCT/KR2023/006293 2022-05-10 2023-05-09 Human smn1 protein variant and use thereof WO2023219394A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20220057031 2022-05-10
KR10-2022-0057031 2022-05-10

Publications (1)

Publication Number Publication Date
WO2023219394A1 true WO2023219394A1 (en) 2023-11-16

Family

ID=88730737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/006293 WO2023219394A1 (en) 2022-05-10 2023-05-09 Human smn1 protein variant and use thereof

Country Status (2)

Country Link
KR (1) KR20230159287A (en)
WO (1) WO2023219394A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160003792A (en) * 2013-05-01 2016-01-11 젠자임 코포레이션 Compositions and methods for treating spinal muscular atrophy
KR101835490B1 (en) * 2009-05-02 2018-03-08 젠자임 코포레이션 Gene therapy for neurodegenerative disorders
KR20180086266A (en) * 2015-12-14 2018-07-30 더 트러스티스 오브 더 유니버시티 오브 펜실바니아 Adeno-associated viral vectors useful for the treatment of spinal muscular atrophy
KR20210099025A (en) * 2018-11-30 2021-08-11 노파르티스 아게 AAV virus vectors and uses thereof
WO2022028472A1 (en) * 2020-08-05 2022-02-10 Hangzhou Jiayin Biotech Ltd. Nucleic acid constructs and uses thereof for treating spinal muscular atrophy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101835490B1 (en) * 2009-05-02 2018-03-08 젠자임 코포레이션 Gene therapy for neurodegenerative disorders
KR20160003792A (en) * 2013-05-01 2016-01-11 젠자임 코포레이션 Compositions and methods for treating spinal muscular atrophy
KR20180086266A (en) * 2015-12-14 2018-07-30 더 트러스티스 오브 더 유니버시티 오브 펜실바니아 Adeno-associated viral vectors useful for the treatment of spinal muscular atrophy
KR20210099025A (en) * 2018-11-30 2021-08-11 노파르티스 아게 AAV virus vectors and uses thereof
WO2022028472A1 (en) * 2020-08-05 2022-02-10 Hangzhou Jiayin Biotech Ltd. Nucleic acid constructs and uses thereof for treating spinal muscular atrophy

Also Published As

Publication number Publication date
KR20230159287A (en) 2023-11-21

Similar Documents

Publication Publication Date Title
US20210340565A1 (en) Methods and pharmaceutical composition for the treatment and the prevention of cardiomyopathy due to energy failure
US10301367B2 (en) Compositions and methods for treatment of muscular dystrophy
EP3030666B1 (en) Compositions and methods for treatment of muscular dystrophy
CN111902539A (en) Hybrid regulatory elements
EP3292138A1 (en) Production of large-sized microdystrophins in an aav-based vector configuration
US20210222200A1 (en) Compositions and methods for hemoglobin production
JP2023542614A (en) Adeno-associated viral vectors for the treatment of Rett syndrome
WO2023219394A1 (en) Human smn1 protein variant and use thereof
JP7289033B2 (en) Neurodegenerative disease therapeutic agent
CN111057157A (en) Fusion protein mDp116 for resisting amyotrophy
CN114521143A (en) Gene therapy expression system for mitigating FKRP cardiotoxicity
US20160256571A1 (en) Invention
WO2023101281A1 (en) Mutant of adeno-associated virus capsid protein
WO2022164259A1 (en) Gene therapy for treating neurodegenerative diseases
US20230256117A1 (en) Gene therapy expression system allowing an adequate expression in the muscles and in the heart of sgcg
US20220409745A1 (en) Compositions and methods of using engineered fusion proteins that bind g4c2 human repeats
US20220204574A1 (en) Production of large-sized quasidystrophins using overlapping aav vectors
CN116194587A (en) Novel muscle-specific promoter
WO2007122976A1 (en) Therapeutic agent or development inhibitor of polyglutamine disease
CN111138549A (en) Fusion protein mUp113 for resisting amyotrophy
EP3823662A1 (en) Compositions for the treatment of sarcopenia or disuse atrophy
RU2807158C2 (en) Genotherapy constructions for treatment of wilson's disease
WO1999010013A1 (en) The use of insulin-like growth factor-i in muscle
WO2023143435A1 (en) Recombinant virus expressing tpk and use thereof in treatment of alzheimer's disease
Neal Prokineticin-2: a novel anti-apoptotic and anti-inflammatory signaling protein in Parkinson’s disease

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803817

Country of ref document: EP

Kind code of ref document: A1