WO2023219022A1 - Power supply device and power supply system - Google Patents

Power supply device and power supply system Download PDF

Info

Publication number
WO2023219022A1
WO2023219022A1 PCT/JP2023/016956 JP2023016956W WO2023219022A1 WO 2023219022 A1 WO2023219022 A1 WO 2023219022A1 JP 2023016956 W JP2023016956 W JP 2023016956W WO 2023219022 A1 WO2023219022 A1 WO 2023219022A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
circuit
supply unit
power
output
Prior art date
Application number
PCT/JP2023/016956
Other languages
French (fr)
Japanese (ja)
Inventor
真理子 和田
知之 神山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2024520416A priority Critical patent/JPWO2023219022A1/ja
Publication of WO2023219022A1 publication Critical patent/WO2023219022A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel

Definitions

  • the present disclosure relates to a power supply device and a power supply system.
  • Patent Document 1 discloses a power supply device including a plurality of power supply units connected in parallel to a load.
  • each power supply unit includes constant current operation in its operating range.
  • the power supply unit in the first order is started by a power-on signal
  • the power supply unit in the second order is started by detecting the constant current operation of the power supply unit in the first order.
  • the third-order power supply unit is activated. In this way, the plurality of power supply units are configured to be activated in sequence according to a preset order.
  • the power supply device described in Patent Document 1 always preferentially starts up the power supply unit in the higher order, so as the operating period of the power supply device becomes longer, the usage time of the plurality of power supply units will vary. As a result, there is a concern that the lifespan of the entire power supply device will depend on the lifespan of the topmost power supply unit.
  • the present disclosure has been made to solve such problems, and the purpose of the present disclosure is to improve the lifespan of a power supply device including a plurality of power supply units connected in parallel to a load.
  • a power supply device includes an input terminal connected to an external power source, an output terminal connected to a load, and N power supply units connected in parallel between the input terminal and the output terminal. Equipped with N is an integer of 2 or more.
  • Each power supply unit includes a power supply circuit that generates power to be supplied to a load based on power supplied from an input terminal, and a control circuit that controls starting and stopping of the power supply circuit.
  • the control circuit receives the activation signal and activates the power supply circuit, and calculates a cumulative output power amount that is a cumulative value of the output power of the power supply circuit since the first activation.
  • the control circuit stops the operation of the power supply circuit in response to the cumulative output power amount reaching the first threshold.
  • the control circuit initializes the cumulative output power amount in response to maintenance being performed, and calculates the cumulative output power amount of the power supply circuit from startup after initialization. .
  • a power supply device includes an input terminal connected to an external power source, an output terminal connected to a load, and N units connected in parallel between the input terminal and the output terminal.
  • a power supply unit is provided.
  • N is an integer of 2 or more.
  • Each power supply unit includes a power supply circuit that generates power to be supplied to a load based on power supplied from an input terminal, and a control circuit that controls starting and stopping of the power supply circuit.
  • the control circuit receives the activation signal and activates the power supply circuit, and calculates a cumulative output power amount that is a cumulative value of the output power of the power supply circuit since the first activation.
  • the control circuit stops the operation of the power supply circuit in response to the cumulative output power amount reaching the first threshold.
  • the control circuit when the control circuit receives the activation signal, the control circuit restarts the power supply circuit and calculates the cumulative output power amount since the initial activation.
  • the control circuit stops the operation of the power supply circuit again in response to the cumulative output power amount reaching a second threshold value that is larger than the first threshold value.
  • a power supply device includes an input terminal connected to an external power source, an output terminal connected to a load, and N units connected in parallel between the input terminal and the output terminal. Equipped with a power supply unit.
  • N is an integer of 2 or more.
  • Each power supply unit includes a power supply circuit that generates power to be supplied to a load based on power supplied from an input terminal, and a control circuit that controls starting and stopping of the power supply circuit.
  • the control circuit receives the activation signal and activates the power supply circuit, and calculates a cumulative output power amount that is a cumulative value of the output power of the power supply circuit since the first activation.
  • the control circuit stops the operation of the power supply circuit in response to the cumulative output power amount reaching the first threshold.
  • the N power supply units are comprised of a first power supply unit to an Nth power supply unit, and I is an integer from 2 to N ⁇ 1.
  • the control circuit of the first power supply unit receives a start signal when the power is turned on and starts the power supply circuit, and also sends a start signal to the control circuit of the second power supply unit in response to the output current of the power supply circuit reaching a reference current. Output.
  • the control circuit of the I-th power supply unit starts the power supply circuit upon receiving a start signal from the control circuit of the (I-1) power supply unit, and also starts the power supply circuit in response to the output current of the power supply circuit reaching the reference current. (I+1) Output a start signal to the control circuit of the power supply unit.
  • a power supply device including a plurality of power supply units connected in parallel to a load
  • maintenance can be performed on each power supply unit at an appropriate timing according to its usage state. As a result, it becomes possible to improve the life of the power supply device.
  • FIG. 1 is a circuit block diagram showing the configuration of a power supply device according to Embodiment 1.
  • FIG. 2 is a circuit block diagram showing the configuration of the power supply unit shown in FIG. 1.
  • FIG. 2 is a block diagram showing an example of a hardware configuration of a control circuit.
  • 5 is a time chart showing an example of the operation of the power supply device.
  • 3 is a circuit block diagram of a power supply unit applied to a power supply device according to a second embodiment.
  • FIG. 3 is a circuit block diagram of a power supply device according to Embodiment 3.
  • FIG. 7 is a diagram illustrating a configuration example of a power supply system according to a fifth embodiment.
  • 8 is a circuit block diagram showing a first configuration example of the power supply device shown in FIG. 7.
  • FIG. FIG. 3 is a diagram for explaining the operation of a communication circuit in each power supply unit.
  • 8 is a circuit block diagram showing a second configuration example of the power supply device shown in FIG. 7.
  • FIG. 1 is a circuit block diagram showing the configuration of a power supply device according to the first embodiment.
  • the power supply device 1 includes an input section 11, an output section 12, N power supply units 10(1) to 10(N), and a communication line 13.
  • N is an integer of 2 or more.
  • the N power supply units 10(1) to 10(N) are composed of the first power supply unit 10(1) to the Nth power supply unit 10(N).
  • the power supply units 10(1) to 10(N) may be collectively referred to as the power supply unit 10.
  • a starting priority order is determined in advance for the first power supply unit 10(1) to the Nth power supply unit 10(N).
  • the number assigned to each power supply unit 10 represents the priority order of its own device. That is, the first power supply unit 10(1) has the first priority, and the Nth power supply unit 10(N) has the Nth priority.
  • the input section 11 is connected to an external power source (not shown).
  • the external power source may be an AC power source or a DC power source.
  • the output section 12 is connected to the load 2.
  • the N power supply units 10(1) to 10(N) are connected in parallel to each other between the input section 11 and the output section 12.
  • Each power supply unit 10 includes an input terminal T1, an output terminal T2, and communication terminals T3 and T4.
  • each power supply unit 10 The input terminal T1 of each power supply unit 10 is connected to the input section 11.
  • the external power supply supplies power to the input terminal T1 via the input section 11.
  • Each power supply unit 10 generates power to be supplied to the load 2 based on the power supplied to the input terminal T1, and outputs the generated power to the output terminal T2.
  • the output terminal T2 of each power supply unit 10 is connected to the output section 12.
  • the load 2 is driven by power supplied from the output terminal T2 of each power supply unit 10 via the output section 12.
  • Communication terminals T3 and T4 of each power supply unit 10 are connected to communication terminals T3 and T4 of other power supply units 10 via communication lines 13.
  • the communication terminal T4 of the first power supply unit 10(1) is connected to the communication terminal T3 of the second power supply unit 10(2) via the communication line 13.
  • the communication terminal T4 of the second power supply unit 10(2) is connected to the communication terminal T3 of the third power supply unit 10(3) via the communication line 13.
  • the communication terminal T3 of the Nth power supply unit 10 (N) is connected to the communication terminal T4 (not shown) of the (N-1)th power supply unit 10 (N-1) via the communication line 13.
  • the communication terminal T3 of the I-th power supply unit 10 (I) is connected to the communication terminal T4 of the (I-1) power supply unit 10 (I-1) via the communication line 13.
  • I is an integer greater than or equal to 2 and less than or equal to N.
  • FIG. 2 is a circuit block diagram showing the configuration of the power supply unit 10 shown in FIG. 1.
  • the power supply unit 10 includes a power supply circuit 101, a current detection circuit 102, a cumulative output power amount detection circuit 103, and a start signal output circuit 104.
  • the power supply circuit 101 generates power to be supplied to the load 2 based on the power supplied from the input terminal T1.
  • the power supply circuit 101 is configured to include a semiconductor switching element such as an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal Oxide Semiconductor Field Effect Transistor), and by controlling the on/off of the semiconductor switching element, it is possible to extract power from the input power. Generate output power.
  • a semiconductor switching element such as an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal Oxide Semiconductor Field Effect Transistor
  • the power supply circuit 101 is, for example, an AC/DC converter that converts AC power supplied from the input terminal T1 into DC power, and/or a DC/AC converter that converts the voltage value of the DC power supplied from the input terminal T1. It is configured to include a power converter such as, and a control circuit for controlling the power converter.
  • the power supply circuit 101 is activated upon receiving the activation signal ST input to the communication terminal T3, and generates power to be supplied to the load 2.
  • the current detection circuit 102 is a circuit for detecting the current Io output from the power supply circuit 101 to the output section 12.
  • the current detection circuit 102 includes, for example, an ammeter for measuring the output current Io and a resistor (shunt resistor) connected in parallel to the ammeter.
  • the current detection circuit 102 uses a resistor to convert the output current Io into a voltage Vo corresponding to the magnitude of the output current Io.
  • Current detection circuit 102 outputs the generated voltage Vo to power supply circuit 101 and activation signal output circuit 104.
  • the power supply circuit 101 can be configured to include constant current operation in its operating range, similar to the power supply unit included in the power supply device described in Patent Document 1.
  • the constant current operation of each power supply unit is controlled by comparing the voltage Vo input from the current detection circuit 102 with a preset reference voltage.
  • the constant voltage control of the output voltage from the power supply circuit 101 is performed by, for example, dividing the output voltage by a resistor connected in parallel to the circuit, and controlling the divided voltage to be maintained constant by comparing the divided voltage with a reference voltage. .
  • the activation signal output circuit 104 compares the output voltage Vo of the current detection circuit 102 and a predetermined reference voltage Vref. When the output voltage Vo becomes equal to or higher than the reference voltage Vref, that is, when the output current Io becomes equal to or higher than the reference current, a startup signal ST is generated, and the generated startup signal ST is output to the communication terminal T4.
  • the activation signal ST output to the communication terminal T4 is transmitted via the communication line 13 to the power supply unit 10(N-1). It is input to the communication terminal T3 of the power supply unit 10 whose startup priority is one level lower.
  • the reference voltage Vref is a voltage according to the magnitude of the reference current, and can be generated by a reference voltage generation circuit provided inside or outside the power supply unit 10. Alternatively, the reference voltage Vref may be stored in advance in a memory built into the power supply unit 10 or an external storage device.
  • the cumulative output power amount detection circuit 103 calculates the cumulative output power amount AE, which is the cumulative value of the output power of the power supply circuit 101 since the first startup. Specifically, the cumulative output power amount detection circuit 103 is connected to the output terminal T2 and is configured to measure the power output from the power supply circuit 101 to the output terminal T2. The cumulative output power amount detection circuit 103 calculates the cumulative output power amount AE by integrating the measured values of the output power of the power supply circuit 101 since the first startup.
  • the cumulative output power amount AE is 0Wh when the usage period of the power supply unit 10 is 0 hours, that is, when the power supply unit 10 is new. As the period of use of the power supply unit 10 becomes longer, the cumulative output power amount AE increases.
  • the cumulative output power amount detection circuit 103 compares the cumulative output power amount AE with a predetermined threshold value E1.
  • the threshold value E1 can be set depending on the period of use during which maintenance of the power supply unit 10 is required, for example, taking into consideration the life span of the power supply unit 10 and the environment in which the power supply device 1 is used.
  • the threshold E1 can be generated by a threshold generation circuit provided inside or outside the power supply unit 10.
  • the threshold value E1 may be stored in advance in a memory built into the power supply unit 10 or an external storage device.
  • the cumulative output power amount detection circuit 103 determines whether maintenance of the power supply unit 10 is necessary based on the comparison result between the cumulative output power amount AE and the threshold value E1. When the cumulative output power amount AE becomes equal to or greater than the threshold value E1, the cumulative output power amount detection circuit 103 determines that maintenance of the power supply unit 10 is necessary. In this case, the cumulative output power amount detection circuit 103 generates a stop signal STP and outputs it to the power supply circuit 101.
  • the power supply circuit 101 When the power supply circuit 101 receives the stop signal STP from the cumulative output power amount detection circuit 103, it stops its operation. The power supply circuit 101 stops generating power to be supplied to the load 2 by stopping the built-in power converter. In this way, in the power supply device 1 according to the first embodiment, the power supply unit 10 that is determined to require maintenance is spontaneously stopped before a failure occurs.
  • the output power (output current Io) of the power supply circuit 101 may be instantly reduced from 100% to 0%, or the output power (output current Io) may be reduced to 100%. It may be gradually decreased from 0% to 0%.
  • the cumulative output power amount detection circuit 103 of the power supply unit 10 is initialized (reset). That is, the cumulative output power amount AE is set to an initial value of 0Wh.
  • the cumulative output power amount detection circuit 103 calculates the cumulative output power amount AE of the power supply circuit 101 since the restart.
  • FIG. 3 is a block diagram showing an example of the hardware configuration of the control circuit.
  • the control circuit includes a processor 20, a RAM (Random Access Memory) 21, a ROM (Read Only Memory) 22, an I/F (Interface) device 23, and a storage device 24.
  • the processor 20, RAM 21, ROM 22, I/F device 23, and storage device 24 exchange various data via a communication bus 25.
  • a CPU Central Processing Unit
  • the processor 20 reads the program from the storage device 24 to the ROM 22 .
  • the RAM 21 functions as a working memory and temporarily stores various data necessary for executing programs.
  • Communication terminals T3 and T4 are connected to the I/F device 23. Thereby, the power supply unit 10 exchanges data with other power supply units 10.
  • the storage device 24 is, for example, a storage medium such as a hard disk or a flash memory, and stores a program executed by the processor 20. Note that the storage device 24 stores not only the program but also information used in the program (eg, reference voltage Vref, threshold value E1).
  • the processor 20 executes a program stored in the storage device 24, thereby executing various controls by the control device.
  • various controls by the control device are not limited to execution by software, but can also be executed by dedicated hardware (electronic circuit).
  • FIG. 4 is a time chart showing an example of the operation of the power supply device 1.
  • FIG. 4 shows the operation of each power supply unit 10 when starting up the power supply device 1.
  • FIG. 4(A) shows the waveform of power supplied from the power supply device 1 to the load 2.
  • FIG. 4(B) shows the waveform of the output voltage Vo1 of the current detection circuit 102 in the first power supply unit 10(1).
  • FIG. 4C shows the waveform of the output voltage Vo2 of the current detection circuit 102 in the second power supply unit 10(2).
  • FIG. 4(D) shows the waveform of the output voltage Vo3 of the current detection circuit 102 in the third power supply unit 10(3).
  • FIG. 4(E) shows the waveform of the output voltage Vo4 of the current detection circuit 102 in the fourth power supply unit 10(4).
  • FIG. 4(F) shows the waveform of the cumulative output power amount AE1 of the first power supply unit 10(1).
  • the first power supply unit 10(1) When power is turned on to the power supply device 1 at time t0, the first power supply unit 10(1) is activated first.
  • the input unit 11 outputs a start signal ST to the first power supply unit 10(1) in response to power being supplied from the external power supply.
  • the power supply circuit 101 In the first power supply unit 10 (1), the power supply circuit 101 is activated upon receiving the activation signal ST from the input section 11, and generates power to be supplied to the load 2.
  • Current detection circuit 102 converts output current Io1 of power supply circuit 101 into voltage Vo1 and outputs it to power supply circuit 101 and activation signal output circuit 104.
  • the output current Io1 of the first power supply unit 10(1) increases, and the output voltage Vo1 of the current detection circuit 102 also increases.
  • the activation signal output circuit 104 compares the output voltage Vo1 and the reference voltage Vref.
  • the activation signal output circuit 104 outputs the activation signal ST to the communication terminal T4.
  • the activation signal ST is input to the communication terminal T3 of the second power supply unit 10(2) via the communication line 13.
  • the power supply circuit 101 is activated in response to the activation signal ST input to the communication terminal T3, and generates power to be supplied to the load 2. That is, the total value of the output power of the first power supply unit 10(1) and the output power of the second power supply unit 10(2) is supplied to the load 2.
  • the output current Io1 of the first power supply unit 10(1) decreases at time t1.
  • the output voltage Vo1 also decreases.
  • the output current Io2 of the second power supply unit 10(2) increases, the output voltage Vo2 increases. Note that since the output current Io1 and the output current Io2 are equal to each other, the output voltage Vo1 and the output voltage Vo are also equal to each other.
  • the activation signal output circuit 104 After time t1, in the second power supply unit 10(2), the activation signal output circuit 104 compares the output voltage Vo2 and the reference voltage Vref. At time t2, when the output voltage Vo2 reaches the reference voltage Vref, the activation signal output circuit 104 outputs the activation signal ST to the communication terminal T4. The activation signal ST is input to the communication terminal T3 of the third power supply unit 10(3) via the communication line 13.
  • the power supply circuit 101 is activated upon receiving the activation signal ST input to the communication terminal T3, and generates power to be supplied to the load 2.
  • the total value of the output power of the first power supply unit 10(1), the output power of the second power supply unit 10(2), and the output power of the third power supply unit 10(3) is supplied to the load 2.
  • the output current Io1 of the first power supply unit 10(1) increases. decreases again, so the output voltage Vo1 also decreases again. Since the output current Io2 of the second power supply unit 10(2) also decreases, the output voltage Vo2 also decreases.
  • the output current Io of each of the three power supply units 10(1), 10(2), and 10(3) also remains constant. value. Therefore, the output voltages Vo1, Vo2, and Vo3 also have constant values.
  • the first power supply unit 10(1) Start in order.
  • the cumulative output power detection circuit 103 of each power supply unit 10 calculates the cumulative output power AE, which is the cumulative value of the output power of the power supply circuit 101 since the first startup.
  • a cumulative output power amount AE1 which is a cumulative value of the output power of the power supply circuit 101 from time t0, is calculated. As shown in FIG. 4(F), the cumulative output power amount AE1 gradually increases.
  • the cumulative output power amount detection circuit 103 compares the cumulative output power amount AE1 with a threshold value E1.
  • the cumulative output power amount detection circuit 103 determines that maintenance of the first power supply unit 10(1) is necessary, and the power supply circuit 101 Outputs a stop signal STP.
  • the power supply circuit 101 stops the generation of the power supplied to the load 2 by stopping the built-in power converter. Since the operation of the power supply circuit 101 is stopped, the output current Io1 of the first power supply unit 10(1) decreases to zero, and therefore the output voltage Vo1 also decreases to zero.
  • the number of power supply units 10 that supply power to the load 2 is reduced from three to two, so that the second power supply unit 10 (2) and the third power supply unit 10
  • the burden of (3) will increase.
  • the output voltages Vo2 and Vo3 also start increasing.
  • the activation signal output circuit 104 compares the output voltage Vo3 and the reference voltage Vref. At time t5, when the output voltage Vo3 reaches the reference voltage Vref, the activation signal output circuit 104 outputs the activation signal ST to the communication terminal T4.
  • the activation signal ST is input to the communication terminal T3 of the fourth power supply unit 10(4) via the communication line 13.
  • the power supply circuit 101 is activated in response to the activation signal ST input to the communication terminal T3, and generates power to be supplied to the load 2.
  • the total value of the output power of the second power supply unit 10(2), the output power of the third power supply unit 10(3), and the output power of the fourth power supply unit 10(4) is supplied to the load 2.
  • the startup priority is lower than that of the first power supply unit 10(1).
  • the fourth power supply unit 10(4) is newly activated and starts supplying power to the load 2. According to this, maintenance of the first power supply unit 10(1) whose operation has been stopped can be performed while continuing power supply to the load 2.
  • each power supply unit 10 can be performed at an appropriate timing depending on its usage state while fulfilling its function as a power supply device. As a result, it becomes possible to improve the life of the entire power supply device.
  • the number N of power supply units 10 included in the power supply device 1 is preferably larger than the number required to supply rated power to the load 2. In this way, even while maintenance is being performed on some of the power supply units 10, it is possible to continue stably supplying power to the load 2 from the remaining power supply units 10.
  • FIG. 5 is a circuit block diagram of the power supply unit 10 applied to the power supply device 1 according to the second embodiment.
  • the overall configuration of the power supply device 1 according to Embodiment 2 is the same as the configuration of the power supply device 1 shown in FIG. 1, so a description thereof will be omitted.
  • the power supply unit 10 differs from the power supply unit 10 shown in FIG. 2 in that it includes a status display circuit 105.
  • the status display circuit 105 is connected to the cumulative output power amount detection circuit 103.
  • the cumulative output power detection circuit 103 generates a stop signal STP and outputs it to the power supply circuit 101 and the status display circuit 105 when the cumulative output power AE of the power supply circuit 101 exceeds the threshold E1.
  • the status display circuit 105 includes, for example, a display installed in the casing of the power supply unit 10. In response to receiving the stop signal STP, the status display circuit 105 displays on the display that the power supply unit 10 is in the stopped state. This allows the user of the power supply device 1 to be notified that the power supply unit 10 requires maintenance.
  • FIG. 6 is a circuit block diagram of the power supply device 1 according to the third embodiment.
  • the power supply device 1 according to the third embodiment differs from the power supply device 1 according to the first embodiment shown in FIG. 1 in the connection of the communication line 13.
  • the communication terminal T4 of the Nth power supply unit 10(N) is connected to the communication terminal T3 of the first power supply unit 10(1) via the communication line 13.
  • the configuration of each power supply unit 10 is the same as that of the power supply unit 10 shown in FIG.
  • the first power supply unit 10(1) is configured to start in response to power being turned on to the power supply device 1 or in response to input of a start signal ST to the communication terminal T3. ing.
  • the power supply circuit 101 starts up in response to the start signal ST input to the communication terminal T3 from the (N-1)th power supply unit 10 (N-1), and supplies the power to the load 2. generate electricity.
  • the activation signal output circuit 104 compares the output voltage Vo of the current detection circuit 102 and the reference voltage Vref.
  • the activation signal output circuit 104 generates a activation signal ST when the output voltage Vo becomes equal to or higher than the reference voltage Vref, and outputs the generated activation signal ST to the communication terminal T4.
  • the activation signal ST outputted to the communication terminal T4 is inputted to the communication terminal T3 of the first power supply unit 10(1) via the communication line 13.
  • the power supply circuit 101 that is in a stopped state starts up again in response to the start-up signal ST input to the communication terminal T3.
  • the power supply circuit 101 of the Nth power supply unit 10 (N) is started and starts supplying power to the load 2.
  • I is an integer from 1 to N-1.
  • the activation signal output circuit 104 of the N-th power supply unit 10(N) outputs the activation signal to the first power supply unit 10(1) in response to the output voltage Vo reaching the reference voltage Vref. ST is output to restart the power supply circuit 101 of the first power supply unit 10(1).
  • This increases the number of power supply units 10 that supply power to the load 2, so it is possible to avoid overloading the power supply circuit 101 of each power supply unit 10 during operation.
  • the output voltage Vo of each power supply unit 10 becomes the reference voltage Vref again.
  • the activation signal output circuit 104 of the first power supply unit 10(1) outputs the activation signal ST to the second power supply unit 10(2).
  • the power supply circuit 101 is activated again in response to the activation signal ST and starts supplying power to the load 2.
  • the power supply unit 10 that has been stopped for maintenance can be restarted to supply power to the load 2.
  • (N-1) power supply units 10 excluding the one power supply unit 10 undergoing maintenance can be operated to continue supplying power to the load 2. Therefore, the number N of power supply units 10 can be suppressed to one more than the number required to supply rated power to the load 2.
  • the cumulative output power amount detection circuit 103 of each power supply unit 10 is configured to calculate the cumulative output power amount AE of the power supply circuit 101 from the initial startup. Ru. Then, when maintenance of the power supply unit 10 is performed, the cumulative output power amount detection circuit 103 is initialized.
  • the cumulative output power amount detection circuit 103 continues to calculate the cumulative output power amount AE from the initial startup until maintenance of the power supply unit 10 is performed. Therefore, even if you try to start up the power supply circuit 101 again without performing maintenance on the power supply unit 10 after receiving the stop signal STP from the cumulative output power detection circuit 103 and stopping the operation of the power supply circuit 101, the cumulative Since the output power amount detection circuit 103 outputs the stop signal STP, the power supply circuit 101 cannot be started.
  • the cumulative output power amount detection circuit 103 of each power supply unit 10 is configured to have a plurality of threshold values.
  • the cumulative output power amount detection circuit 103 has two threshold values E1 and E2.
  • the threshold value E2 is assumed to be larger than the threshold value E1.
  • the threshold E1 corresponds to an example of a "first threshold”
  • the threshold E2 corresponds to an example of a "second threshold”.
  • the cumulative output power amount detection circuit 103 calculates the cumulative output power amount AE of the power supply circuit 101 from the first startup.
  • the cumulative output power amount detection circuit 103 compares the cumulative output power amount AE with a threshold value E1.
  • the cumulative output power amount detection circuit 103 determines that maintenance of the power supply unit 10 is necessary, generates a stop signal STP, and outputs it to the power supply circuit 101.
  • the power supply circuit 101 receives the stop signal STP from the cumulative output power amount detection circuit 103, it stops its operation.
  • the cumulative output power amount detection circuit 103 is not initialized. In this state, when the power supply circuit 101 receives the activation signal ST input to the communication terminal T3, the power supply circuit 101 is activated again and generates power to be supplied to the load 2. The cumulative output power amount detection circuit 103 continues to calculate the cumulative output power amount AE of the power supply circuit 101 since the first startup.
  • the cumulative output power amount detection circuit 103 compares the cumulative output power amount AE and the threshold value E2. When the cumulative output power amount AE becomes equal to or greater than the threshold value E2, the cumulative output power amount detection circuit 103 generates a stop signal STP and outputs it to the power supply circuit 101. The power supply circuit 101 stops operation again upon receiving the stop signal STP.
  • the cumulative output power amount detection circuit 103 is configured to set the threshold value in two stages, and to gradually increase the threshold value for comparison with the cumulative output power amount AE. According to this, even if maintenance of the power supply unit 10 that has been stopped is delayed, the use of the power supply unit 10 can be continued until the cumulative output power amount AE reaches the threshold value E2.
  • the power supply device 1 when the cumulative output power amount AE reaches the threshold value E1 in the cumulative output power amount detection circuit 103 of the Nth power supply unit 10 (N), the Nth power supply unit 10 (N) ) to 10 (N) All operations stop. Thereafter, when power is turned on to the power supply device 1, the first power supply unit 10(1) is restarted in order. If maintenance has not been performed on each power supply unit 10, the power supply circuit 101 starts supplying power in the restarted power supply unit 10, and restarts the power supply circuit 101 in response to the cumulative output power amount AE reaching the threshold value E2. It will stop working. According to this, the power supply device 1 can continue to supply power to the load 2 until the cumulative output power amount AE in the Nth power supply unit 10 (N) reaches the threshold value E2.
  • the first power supply unit 10(1) is activated again in response to the activation signal ST from the activation signal output circuit 104 of the Nth power supply unit 10(N). If maintenance of the first power supply unit 10(1) is not performed, the power supply circuit 101 is restarted and then stops operating again when the cumulative output power amount AE reaches the threshold value E2. That is, the first power supply unit 10(1) can continue to be used until the cumulative output power amount AE reaches the threshold value E2.
  • the cumulative output power amount detection circuit 103 may have three or more threshold values. In this case, after the power supply circuit 101 is restarted without waiting for initialization, the cumulative output power amount detection circuit 103 compares the cumulative output power amount AE with a threshold value that is larger than the previously used threshold value, and the comparison result is The stop signal STP is configured to be output in response to the stop signal STP. According to this, even if maintenance of the power supply unit 10 is delayed, the power supply unit 10 can be continued to be used until the cumulative output power amount AE reaches the largest threshold value.
  • Embodiment 5 In Embodiments 5 to 7, the configuration of a power supply system to which the power supply device 1 according to the present embodiment is applied will be described.
  • FIG. 7 is a diagram illustrating a configuration example of a power supply system according to the fifth embodiment. As shown in FIG. 7, the power supply system includes a plurality of power supply devices 1 and a server 3.
  • the server 3 is a management device for managing the plurality of power supply devices 1.
  • the server 3 is installed, for example, at a service center for maintaining the quality of the plurality of power supply devices 1 and protecting them from failure.
  • Each power supply device 1 is communicably connected to a server 3 via a communication network 5 .
  • the communication network 5 is typically the Internet.
  • the server 3 may be a shared server shared by multiple service centers, or a cloud server provided by a cloud server management company.
  • FIG. 8 is a circuit block diagram showing a first configuration example of the power supply device 1 shown in FIG. 7. As shown in FIG. 8, the power supply device 1 according to the first configuration example differs from the power supply unit 10 shown in FIG. 2 in that it includes a status display circuit 105 and a communication circuit 106. The status display circuit 105 and the communication circuit 106 are connected to the cumulative output power amount detection circuit 103.
  • the cumulative output power amount detection circuit 103 generates a stop signal STP and outputs it to the power supply circuit 101, the status display circuit 105, and the communication circuit 106 when the cumulative output power amount AE of the power supply circuit 101 becomes equal to or higher than the threshold value E1. .
  • the status display circuit 105 displays on the display that the power supply unit 10 is in the stopped state.
  • the communication circuit 106 generates status data indicating the status of the power supply unit 10 and transmits the generated status data to the server 3.
  • FIG. 9 is a diagram for explaining the operation of the communication circuit 106 in each power supply unit 10.
  • the communication circuit 106 of each power supply unit 10 is communicatively connected to the server 3.
  • the communication circuit 106 transmits status data including the identification information of the stopped power supply unit 10 and the identification information of the power supply device 1 including the power supply unit 10. is generated and sent to the server 3.
  • the server 3 outputs the status data received from the power supply unit 10 from an output unit (not shown). Thereby, a worker present at the service center can know which power supply unit 10 requires maintenance from a remote location without going to the site. As a result, the worker can efficiently perform maintenance on the power supply unit 10 of each power supply device 1 at appropriate timing.
  • FIG. 10 is a circuit block diagram showing a second configuration example of the power supply device 1 shown in FIG. As shown in FIG. 10, the power supply device 1 according to the second configuration example is obtained by adding a control device 14 to the power supply device 1 according to the first configuration example shown in FIG.
  • the control device 14 controls the N power supply units 10(1) to 10(N).
  • the control device 14 is connected to the communication circuit 106 of each power supply unit 10.
  • the control device 14 is further configured to exchange data with the server 3.
  • each power supply unit 10 When the communication circuit 106 of each power supply unit 10 receives the stop signal STP from the cumulative output power amount detection circuit 103, it transfers the received stop signal STP to the control device 14.
  • the control device 14 generates status data indicating the status of each power supply unit 10 based on data exchanged with each communication circuit 106, and transmits the generated status data to the server 3. Specifically, when receiving the stop signal STP from the communication circuit 106 of any one of the N power supply units 10(1) to 10(N), the control device 14 10 and the identification information of the power supply device 1 including the power supply unit 10 is generated and transmitted to the server 3.
  • the same effects as in the first configuration example described above can be obtained.
  • the control device 14 since the control device 14 is further configured to generate status data of each power supply unit 10, the communication circuit 106 of each power supply unit 10 needs to hold identification information of the power supply unit 10. There is no. Therefore, the communication circuit 106 can be simplified.
  • Embodiment 7 a configuration has been described in which the cumulative output power amount detection circuit 103 has a plurality of threshold values in each power supply unit 10 of the power supply device 1.
  • the communication circuit 106 or the control device 14 is connected to the server 3.
  • the cumulative output power amount detection circuit 103 has two threshold values E1 and E2. Note that the threshold value E2 is assumed to be larger than the threshold value E1.
  • the cumulative output power amount detection circuit 103 generates the first stop signal STP when the cumulative output power amount AE of the power supply circuit 101 from the first startup becomes equal to or higher than the threshold value E1. It outputs to the power supply circuit 101, the status display circuit 105, and the communication circuit 106. Furthermore, when the cumulative output power amount AE from the first startup exceeds the threshold value E2, the cumulative output power amount detection circuit 103 generates a second stop signal STP and outputs a second stop signal STP to the power supply circuit 101, the status display circuit 105, and the communication circuit. Output to 106.
  • the communication circuit 106 In the first configuration example shown in FIG. 9, the communication circuit 106 generates status data and transmits it to the server 3 in response to receiving the first stop signal STP. At this time, the communication circuit 106 includes the status data indicating that the power supply unit 10 is in a state that requires protection, together with the identification information of the stopped power supply unit 10 and the identification information of the power supply 1 that includes the power supply unit 10. Include information.
  • the communication circuit 106 further generates status data and transmits it to the server 3 in response to receiving the second stop signal STP. At this time, the communication circuit 106 includes the status data indicating that the power supply unit 10 needs to be replaced, along with the identification information of the stopped power supply unit 10 and the identification information of the power supply 1 that includes the power supply unit 10. Include information.
  • the communication circuit 106 of each power supply unit 10 transmits information indicating that the power supply unit 10 is in a state that requires protection, and information indicating that the power supply unit 10 is in a state that requires protection, based on the comparison result between the cumulative output power amount AE and the threshold values E1 and E2.
  • Information indicating that the unit 10 needs to be replaced is sent to the server 3 in stages. Therefore, a worker at the service center can know in detail what state the power supply unit 10 is in based on the state data of each power supply unit 10. Therefore, the worker can perform maintenance on the power supply unit 10 that needs to be replaced with priority over the power supply unit 10 that needs to be protected, and it becomes possible to improve the efficiency of maintenance.
  • the control device 14 receives an initial stop signal STP from the communication circuit 106 of any one of the N power supply units 10(1) to 10(N).
  • state data including the identification information of the stopped power supply unit 10 and the identification information of the power supply device 1 including the power supply unit 10, as well as information indicating that the power supply unit 10 is in a state that requires protection.
  • control device 14 when the control device 14 receives the second stop signal STP from the communication circuit 106 of any one of the N power supply units 10(1) to 10(N), the control device 14 controls the stopped power supply unit 10. and the identification information of the power supply device 1 including the power supply unit 10, and status data including information indicating that the power supply unit 10 needs to be replaced is transmitted to the server 3.
  • a service center worker similarly to the first configuration example, a service center worker can know in detail what state the power supply unit 10 is in based on the state data from each power supply unit 10. Therefore, in the second configuration example as well, the same effects as in the first configuration example can be obtained.
  • Each power supply unit is a power supply circuit that generates power to be supplied to the load based on the power supplied from the input terminal; a control circuit that controls starting and stopping of the power supply circuit;
  • the control circuit includes: Activating the power supply circuit in response to the activation signal, and calculating a cumulative output power amount that is a cumulative value of the output power of the power supply circuit from the initial activation, Stopping the operation of the power supply circuit in response to the cumulative output power amount reaching a first threshold;
  • the control circuit Initializing the cumulative output power amount in response to maintenance being performed;
  • a power supply device that calculates the cumulative output power amount of the power supply circuit from startup after initialization.
  • Each power supply unit is a power supply circuit that generates power to be supplied to the load based on the power supplied from the input terminal; a control circuit that controls starting and stopping of the power supply circuit;
  • the control circuit includes: Activating the power supply circuit in response to the activation signal, and calculating a cumulative output power amount that is a cumulative value of the output power of the power supply circuit from the initial activation, Stopping the operation of the power supply circuit in response to the cumulative output power amount reaching a first threshold;
  • the control circuit When the activation signal is received, the power supply circuit is activated again, and the cumulative output power amount from the initial activation is calculated; A power supply device that stops the operation of the power supply circuit again in response to the cumulative output power amount reaching a second threshold value that
  • Each power supply unit is a power supply circuit that generates power to be supplied to the load based on the power supplied from the input terminal; a control circuit that controls starting and stopping of the power supply circuit;
  • the control circuit includes: Activating the power supply circuit in response to the activation signal, and calculating a cumulative output power amount that is a cumulative value of the output power of the power supply circuit from the initial activation, Stopping the operation of the power supply circuit in response to the cumulative output power amount reaching a first threshold;
  • the N power supply units are comprised of a first power supply unit to an Nth power supply unit, I is an integer from 2 to N-1,
  • the control circuit of the first power supply unit starts the power supply circuit in response to the activation signal when the power is turned on, and starts the control circuit of the second power supply unit in response to the output current of
  • the control circuit of the I-th power supply unit receives the activation signal from the control circuit of the (I-1) power supply unit, starts the power supply circuit, and causes the output current of the power supply circuit to reach the reference current.
  • the power supply device outputs the activation signal to the control circuit of the (I+1)th power supply unit in accordance with the above.
  • the N power supply units are comprised of a first power supply unit to an Nth power supply unit, I is an integer from 2 to N-1,
  • the control circuit of the first power supply unit starts the power supply circuit in response to the activation signal when the power is turned on, and starts the control circuit of the second power supply unit in response to the output current of the power supply circuit reaching a reference current. outputting the activation signal to the control circuit;
  • the control circuit of the I-th power supply unit receives the activation signal from the control circuit of the (I-1) power supply unit, starts the power supply circuit, and causes the output current of the power supply circuit to reach the reference current.
  • the power supply device according to supplementary note 1 or 2, which outputs the activation signal to the control circuit of the (I+1)th power supply unit, depending on the case.
  • the control circuit of the Nth power supply unit receives the start signal from the control circuit of the (N-1)th power supply unit to start the power supply circuit, and causes the output current of the power supply circuit to reach the reference current. 5.
  • the power supply device which outputs the activation signal to the control circuit of the first power supply unit in response to the activation signal.
  • Appendix 6 The power supply device according to appendix 5, wherein N is a number that is one larger than the number of units required to supply rated power to the load.
  • Each of the power supply units further includes a display circuit for displaying the status of the power supply unit, The power supply device according to any one of Supplementary Notes 1 to 6, wherein the display circuit displays that the power supply unit is in a stopped state in response to the stoppage of operation of the power supply circuit.
  • the power supply device according to any one of Supplementary Notes 1 to 7; a management device that is communicatively connected to the power supply device and manages the power supply device; The power supply device is configured to transmit state data indicating the state of each power supply unit to the management device, When the operation of the power supply circuit in any one of the N power supply units stops, the power supply device stores identification information of the power supply unit in the stopped state, and identification information of the power supply device.
  • a power supply system that generates the state data including the state data and transmits the state data to the management device.
  • the control circuit In the power supply unit in which the operation of the power supply circuit is stopped, the control circuit: Initializing the cumulative output power amount in response to maintenance being performed; If the activation signal is received before maintenance is performed, the power supply circuit is activated again, the cumulative output power amount from the initial startup is calculated, and the cumulative output power amount is determined from the first power supply circuit.
  • any one of the N power supply units when the operation of the power supply circuit stops in response to the cumulative output power amount reaching the first threshold, the power supply device , transmitting the state data including information indicating that the power supply unit is in a state requiring protection to the management device that generated it;
  • the power supply unit when the operation of the power supply circuit stops again in response to the cumulative output power amount reaching the second threshold, the power supply device enters a state in which the power supply unit needs to be replaced.
  • the power supply system according to appendix 8, wherein the power supply system transmits the status data including information indicating that the status data is generated to the management device that generated the status data.
  • Each of the power supply units further includes a communication circuit that is communicatively connected to the management device, The power supply system according to appendix 8 or 9, wherein the communication circuit generates the state data and transmits it to the management device.
  • the power supply device further includes a control device communicatively connected to the management device, Each of the power supply units further includes a communication circuit communicatively connected to the control device, The power supply system according to appendix 8 or 9, wherein the control circuit generates the status data based on data exchange with the communication circuit of each of the power supply units, and transmits the generated status data to the management device. .
  • 1 Power supply device 2 Load, 3 Server, 5 Communication network, 10, 10 (1) to 10 (N) Power supply unit, 11 Input section, 12 Output section, 14 Control device, 20 Processor, 21 RAM, 22 ROM, 23 I/F device, 24 Storage device, 25 Communication bus, 101 Power supply circuit, 102 Current detection circuit, 103 Cumulative output power amount detection circuit, 104 Start signal output circuit, 105 Status display circuit, 106 Communication circuit, T1 input terminal, T2 Output terminal, T3, T4 communication terminal, ST start signal, STP stop signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

In the present invention, a power supply device comprises: an input terminal connected to an external power supply; an output terminal connected to a load; and N power supply units (10) connected to each other in parallel between the input terminal and the output terminal. N is an integer of 2 or higher. Each power supply unit (10) includes a power supply circuit (101) that generates power supplied to the load on the basis of power supplied from the input terminal, and a control circuit that controls the starting and stopping of the power supply circuit (101). The control circuit starts the power supply circuit (101) upon receiving a start signal, and calculates the cumulative output power which is the cumulative value of the output power of the power supply circuit (1010) from the first start. The control circuit (101) stops the operation of the power supply circuit in response to the cumulative output power amount reaching a first threshold value.

Description

電源装置および電源システムPower supplies and power systems
 本開示は、電源装置および電源システムに関する。 The present disclosure relates to a power supply device and a power supply system.
 特開2006-34047号公報(特許文献1)には、負荷に対して並列に接続された複数の電源ユニットを備えた電源装置が開示されている。この電源装置において、各電源ユニットは、定電流動作を動作範囲に含んでいる。電源装置の立ち上げ時、投入信号により第1順位の電源ユニットを起動させ、第1順位の電源ユニットの定電流動作の検知により、第2順位の電源ユニットを起動させる。次いで、第2順位の電源ユニットの定電流動作の検知により、第3順位の電源ユニットを起動させる。このようにして、複数の電源ユニットを予め設定された順位に従って、順次起動させていくように構成されている。 Japanese Unexamined Patent Publication No. 2006-34047 (Patent Document 1) discloses a power supply device including a plurality of power supply units connected in parallel to a load. In this power supply device, each power supply unit includes constant current operation in its operating range. When starting up the power supply device, the power supply unit in the first order is started by a power-on signal, and the power supply unit in the second order is started by detecting the constant current operation of the power supply unit in the first order. Next, upon detection of the constant current operation of the second-order power supply unit, the third-order power supply unit is activated. In this way, the plurality of power supply units are configured to be activated in sequence according to a preset order.
特開2006-34047号公報Japanese Patent Application Publication No. 2006-34047
 特許文献1に記載される電源装置は、必ず上位の順位の電源ユニットを優先的に起動させるため、電源装置の運転期間が長くなるに従って、複数の電源ユニットの使用時間にばらつきが生じてしまう。その結果、電源装置全体の寿命が、最上位の電源ユニットの寿命に左右されてしまうことが懸念される。 The power supply device described in Patent Document 1 always preferentially starts up the power supply unit in the higher order, so as the operating period of the power supply device becomes longer, the usage time of the plurality of power supply units will vary. As a result, there is a concern that the lifespan of the entire power supply device will depend on the lifespan of the topmost power supply unit.
 本開示は、かかる課題を解決するためになされたものであり、本開示の目的は、負荷に対して並列に接続された複数の電源ユニットを備えた電源装置の寿命を改善することである。 The present disclosure has been made to solve such problems, and the purpose of the present disclosure is to improve the lifespan of a power supply device including a plurality of power supply units connected in parallel to a load.
 本開示の一態様に係る電源装置は、外部電源に接続される入力端子と、負荷に接続される出力端子と、入力端子と出力端子との間に互いに並列に接続されるN台の電源ユニットを備える。Nは2以上の整数である。各電源ユニットは、入力端子から供給される電力に基づいて負荷に供給する電力を生成する電源回路と、電源回路の起動および停止を制御する制御回路と含む。制御回路は、起動信号を受けて電源回路を起動させるとともに、初回の起動からの電源回路の出力電力の累積値である累積出力電力量を算出する。制御回路は、累積出力電力量が第1の閾値に到達したことに応じて、電源回路の動作を停止させる。電源回路の動作を停止させた電源ユニットにおいて、制御回路は、メンテナンスが実行されたことに応じて累積出力電力量を初期化し、初期化後の起動からの電源回路の累積出力電力量を算出する。 A power supply device according to one aspect of the present disclosure includes an input terminal connected to an external power source, an output terminal connected to a load, and N power supply units connected in parallel between the input terminal and the output terminal. Equipped with N is an integer of 2 or more. Each power supply unit includes a power supply circuit that generates power to be supplied to a load based on power supplied from an input terminal, and a control circuit that controls starting and stopping of the power supply circuit. The control circuit receives the activation signal and activates the power supply circuit, and calculates a cumulative output power amount that is a cumulative value of the output power of the power supply circuit since the first activation. The control circuit stops the operation of the power supply circuit in response to the cumulative output power amount reaching the first threshold. In the power supply unit whose power supply circuit has stopped operating, the control circuit initializes the cumulative output power amount in response to maintenance being performed, and calculates the cumulative output power amount of the power supply circuit from startup after initialization. .
 本開示の別の一態様に係る電源装置は、外部電源に接続される入力端子と、負荷に接続される出力端子と、入力端子と出力端子との間に互いに並列に接続されるN台の電源ユニットとを備える。Nは2以上の整数である。各電源ユニットは、入力端子から供給される電力に基づいて負荷に供給する電力を生成する電源回路と、電源回路の起動および停止を制御する制御回路と含む。制御回路は、起動信号を受けて電源回路を起動させるとともに、初回の起動からの電源回路の出力電力の累積値である累積出力電力量を算出する。制御回路は、累積出力電力量が第1の閾値に到達したことに応じて、電源回路の動作を停止させる。電源回路の動作を停止させた電源ユニットにおいて、制御回路は、起動信号を受けた場合には、電源回路を再び起動させるとともに、初回の起動からの累積出力電力量を算出する。制御回路は、累積出力電力量が第1の閾値よりも大きい第2の閾値に到達したことに応じて、電源回路の動作を再び停止させる。 A power supply device according to another aspect of the present disclosure includes an input terminal connected to an external power source, an output terminal connected to a load, and N units connected in parallel between the input terminal and the output terminal. A power supply unit is provided. N is an integer of 2 or more. Each power supply unit includes a power supply circuit that generates power to be supplied to a load based on power supplied from an input terminal, and a control circuit that controls starting and stopping of the power supply circuit. The control circuit receives the activation signal and activates the power supply circuit, and calculates a cumulative output power amount that is a cumulative value of the output power of the power supply circuit since the first activation. The control circuit stops the operation of the power supply circuit in response to the cumulative output power amount reaching the first threshold. In a power supply unit in which the operation of the power supply circuit has been stopped, when the control circuit receives the activation signal, the control circuit restarts the power supply circuit and calculates the cumulative output power amount since the initial activation. The control circuit stops the operation of the power supply circuit again in response to the cumulative output power amount reaching a second threshold value that is larger than the first threshold value.
 本開示のさらに別の一態様に係る電源装置は、外部電源に接続される入力端子と、負荷に接続される出力端子と、入力端子と出力端子との間に互いに並列に接続されるN台の電源ユニットとを備える。Nは2以上の整数である。各電源ユニットは、入力端子から供給される電力に基づいて負荷に供給する電力を生成する電源回路と、電源回路の起動および停止を制御する制御回路と含む。制御回路は、起動信号を受けて電源回路を起動させるとともに、初回の起動からの電源回路の出力電力の累積値である累積出力電力量を算出する。制御回路は、累積出力電力量が第1の閾値に到達したことに応じて、電源回路の動作を停止させる。N台の電源ユニットは、第1電源ユニットから第N電源ユニットにより構成され、Iは2以上N-1以下の整数である。第1電源ユニットの制御回路は、電源投入時に起動信号を受けて電源回路を起動させるとともに、電源回路の出力電流が基準電流に達したことに応じて、第2電源ユニットの制御回路に起動信号を出力する。第I電源ユニットの制御回路は、第(I-1)電源ユニットの制御回路から起動信号を受けて電源回路を起動させるとともに、電源回路の出力電流が基準電流に達したことに応じて、第(I+1)電源ユニットの制御回路に起動信号を出力する。 A power supply device according to yet another aspect of the present disclosure includes an input terminal connected to an external power source, an output terminal connected to a load, and N units connected in parallel between the input terminal and the output terminal. Equipped with a power supply unit. N is an integer of 2 or more. Each power supply unit includes a power supply circuit that generates power to be supplied to a load based on power supplied from an input terminal, and a control circuit that controls starting and stopping of the power supply circuit. The control circuit receives the activation signal and activates the power supply circuit, and calculates a cumulative output power amount that is a cumulative value of the output power of the power supply circuit since the first activation. The control circuit stops the operation of the power supply circuit in response to the cumulative output power amount reaching the first threshold. The N power supply units are comprised of a first power supply unit to an Nth power supply unit, and I is an integer from 2 to N−1. The control circuit of the first power supply unit receives a start signal when the power is turned on and starts the power supply circuit, and also sends a start signal to the control circuit of the second power supply unit in response to the output current of the power supply circuit reaching a reference current. Output. The control circuit of the I-th power supply unit starts the power supply circuit upon receiving a start signal from the control circuit of the (I-1) power supply unit, and also starts the power supply circuit in response to the output current of the power supply circuit reaching the reference current. (I+1) Output a start signal to the control circuit of the power supply unit.
 本開示によれば、負荷に対して並列に接続された複数の電源ユニットを備えた電源装置において、各電源ユニットをその使用状態に応じた適当なタイミングでメンテナンスを行うことができる。その結果、電源装置の寿命を改善することが可能となる。 According to the present disclosure, in a power supply device including a plurality of power supply units connected in parallel to a load, maintenance can be performed on each power supply unit at an appropriate timing according to its usage state. As a result, it becomes possible to improve the life of the power supply device.
実施の形態1に係る電源装置の構成を示す回路ブロック図である。1 is a circuit block diagram showing the configuration of a power supply device according to Embodiment 1. FIG. 図1に示した電源ユニットの構成を示す回路ブロック図である。2 is a circuit block diagram showing the configuration of the power supply unit shown in FIG. 1. FIG. 制御回路のハードウェア構成の一例を示すブロック図である。FIG. 2 is a block diagram showing an example of a hardware configuration of a control circuit. 電源装置の動作の一例を示すタイムチャートである。5 is a time chart showing an example of the operation of the power supply device. 実施の形態2に係る電源装置に適用される電源ユニットの回路ブロック図である。3 is a circuit block diagram of a power supply unit applied to a power supply device according to a second embodiment. FIG. 実施の形態3に係る電源装置の回路ブロック図である。3 is a circuit block diagram of a power supply device according to Embodiment 3. FIG. 実施の形態5に係る電源システムの構成例を示す図である。FIG. 7 is a diagram illustrating a configuration example of a power supply system according to a fifth embodiment. 図7に示した電源装置の第1構成例を示す回路ブロック図である。8 is a circuit block diagram showing a first configuration example of the power supply device shown in FIG. 7. FIG. 各電源ユニットにおける通信回路の動作を説明するための図である。FIG. 3 is a diagram for explaining the operation of a communication circuit in each power supply unit. 図7に示した電源装置の第2構成例を示す回路ブロック図である。8 is a circuit block diagram showing a second configuration example of the power supply device shown in FIG. 7. FIG.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. Note that the same or corresponding parts in the figures are denoted by the same reference numerals, and the description thereof will not be repeated.
 実施の形態1.
 (電源装置の構成)
 図1は、実施の形態1に係る電源装置の構成を示す回路ブロック図である。図1に示すように、電源装置1は、入力部11と、出力部12と、N台の電源ユニット10(1)~10(N)と、通信線13とを備える。Nは2以上の整数である。
Embodiment 1.
(Configuration of power supply device)
FIG. 1 is a circuit block diagram showing the configuration of a power supply device according to the first embodiment. As shown in FIG. 1, the power supply device 1 includes an input section 11, an output section 12, N power supply units 10(1) to 10(N), and a communication line 13. N is an integer of 2 or more.
 N台の電源ユニット10(1)~10(N)は、第1電源ユニット10(1)から第N電源ユニット10(N)により構成される。以下の説明では、電源ユニット10(1)~10(N)を総称して電源ユニット10と称する場合がある。 The N power supply units 10(1) to 10(N) are composed of the first power supply unit 10(1) to the Nth power supply unit 10(N). In the following description, the power supply units 10(1) to 10(N) may be collectively referred to as the power supply unit 10.
 第1電源ユニット10(1)から第N電源ユニット10(N)には、起動の優先順位が予め定められている。各電源ユニット10に付された番号は、自装置の優先順位を表している。すなわち、第1電源ユニット10(1)の優先順位は第1位であり、第N電源ユニット10(N)の優先順位は第N位である。 A starting priority order is determined in advance for the first power supply unit 10(1) to the Nth power supply unit 10(N). The number assigned to each power supply unit 10 represents the priority order of its own device. That is, the first power supply unit 10(1) has the first priority, and the Nth power supply unit 10(N) has the Nth priority.
 入力部11は、図示しない外部電源に接続されている。外部電源は、交流電源であっても直流電源であってもよい。出力部12は、負荷2に接続されている。 The input section 11 is connected to an external power source (not shown). The external power source may be an AC power source or a DC power source. The output section 12 is connected to the load 2.
 N台の電源ユニット10(1)~10(N)は、入力部11と出力部12との間に互いに並列に接続されている。各電源ユニット10は、入力端子T1と、出力端子T2と、通信端子T3,T4とを含む。 The N power supply units 10(1) to 10(N) are connected in parallel to each other between the input section 11 and the output section 12. Each power supply unit 10 includes an input terminal T1, an output terminal T2, and communication terminals T3 and T4.
 各電源ユニット10の入力端子T1は、入力部11に接続される。外部電源は、入力部11を介して入力端子T1に電力を供給する。各電源ユニット10は、入力端子T1に供給される電力に基づいて負荷2に供給する電力を生成し、生成した電力を出力端子T2へ出力する。各電源ユニット10の出力端子T2は、出力部12に接続される。負荷2は、各電源ユニット10の出力端子T2から出力部12を介して供給される電力によって駆動される。 The input terminal T1 of each power supply unit 10 is connected to the input section 11. The external power supply supplies power to the input terminal T1 via the input section 11. Each power supply unit 10 generates power to be supplied to the load 2 based on the power supplied to the input terminal T1, and outputs the generated power to the output terminal T2. The output terminal T2 of each power supply unit 10 is connected to the output section 12. The load 2 is driven by power supplied from the output terminal T2 of each power supply unit 10 via the output section 12.
 各電源ユニット10の通信端子T3,T4は、通信線13を介して他の電源ユニット10の通信端子T3,T4に接続される。具体的には、第1電源ユニット10(1)の通信端子T4は、通信線13を介して第2電源ユニット10(2)の通信端子T3に接続される。第2電源ユニット10(2)の通信端子T4は、通信線13を介して第3電源ユニット10(3)の通信端子T3に接続される。第N電源ユニット10(N)の通信端子T3は、通信線13を介して第(N-1)電源ユニット10(N-1)の通信端子T4(図示せず)に接続される。このように第I電源ユニット10(I)の通信端子T3は、通信線13を介して第(I-1)電源ユニット10(I-1)の通信端子T4に接続される。Iは2以上N以下の整数である。 Communication terminals T3 and T4 of each power supply unit 10 are connected to communication terminals T3 and T4 of other power supply units 10 via communication lines 13. Specifically, the communication terminal T4 of the first power supply unit 10(1) is connected to the communication terminal T3 of the second power supply unit 10(2) via the communication line 13. The communication terminal T4 of the second power supply unit 10(2) is connected to the communication terminal T3 of the third power supply unit 10(3) via the communication line 13. The communication terminal T3 of the Nth power supply unit 10 (N) is connected to the communication terminal T4 (not shown) of the (N-1)th power supply unit 10 (N-1) via the communication line 13. In this way, the communication terminal T3 of the I-th power supply unit 10 (I) is connected to the communication terminal T4 of the (I-1) power supply unit 10 (I-1) via the communication line 13. I is an integer greater than or equal to 2 and less than or equal to N.
 (電源ユニットの構成)
 図2は、図1に示した電源ユニット10の構成を示す回路ブロック図である。図2に示すように、電源ユニット10は、電源回路101、電流検出回路102、累積出力電力量検出回路103、および起動信号出力回路104を含む。
(Configuration of power supply unit)
FIG. 2 is a circuit block diagram showing the configuration of the power supply unit 10 shown in FIG. 1. As shown in FIG. 2, the power supply unit 10 includes a power supply circuit 101, a current detection circuit 102, a cumulative output power amount detection circuit 103, and a start signal output circuit 104.
 電源回路101は、入力端子T1から供給される電力に基づいて負荷2に供給する電力を生成する。電源回路101は、IGBT(Insulated Gate Bipolar Transistor)またはMOSFET(Metal Oxide Semiconductor Field Effect Transistor)などの半導体スイッチング素子を含んで構成されており、当該半導体スイッチング素子のオンオフを制御することにより、入力電力から出力電力を生成する。 The power supply circuit 101 generates power to be supplied to the load 2 based on the power supplied from the input terminal T1. The power supply circuit 101 is configured to include a semiconductor switching element such as an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal Oxide Semiconductor Field Effect Transistor), and by controlling the on/off of the semiconductor switching element, it is possible to extract power from the input power. Generate output power.
 電源回路101は、例えば、入力端子T1から供給される交流電力を直流電力に変換するAC/DCコンバータ、および/または、入力端子T1から供給される直流電力の電圧値を変換するDC/ACコンバータなどの電力変換器と、当該電力変換器を制御するための制御回路とを含んで構成される。電源回路101は、通信端子T3に入力される起動信号STを受けて起動し、負荷2に供給する電力を生成する。 The power supply circuit 101 is, for example, an AC/DC converter that converts AC power supplied from the input terminal T1 into DC power, and/or a DC/AC converter that converts the voltage value of the DC power supplied from the input terminal T1. It is configured to include a power converter such as, and a control circuit for controlling the power converter. The power supply circuit 101 is activated upon receiving the activation signal ST input to the communication terminal T3, and generates power to be supplied to the load 2.
 電流検出回路102は、電源回路101から出力部12に出力される電流Ioを検出するための回路である。電流検出回路102は、例えば、出力電流Ioを測定するための電流計と、電流計に並列に接続される抵抗器(シャント抵抗器)とを含んで構成される。電流検出回路102は、抵抗器を用いて、出力電流Ioをその大きさに応じた電圧Voに変換する。電流検出回路102は、生成した電圧Voを電源回路101および起動信号出力回路104へ出力する。 The current detection circuit 102 is a circuit for detecting the current Io output from the power supply circuit 101 to the output section 12. The current detection circuit 102 includes, for example, an ammeter for measuring the output current Io and a resistor (shunt resistor) connected in parallel to the ammeter. The current detection circuit 102 uses a resistor to convert the output current Io into a voltage Vo corresponding to the magnitude of the output current Io. Current detection circuit 102 outputs the generated voltage Vo to power supply circuit 101 and activation signal output circuit 104.
 電源回路101は、特許文献1に記載の電源装置に含まれている電源ユニットと同様に、定電流動作を動作範囲に含むように構成することができる。例えば、各電源ユニットの定電流動作の制御は、電流検出回路102から入力される電圧Voと予め設定した基準電圧とを比較して行われる。さらに、電源回路101からの出力電圧の定電圧制御は、例えば、回路に並列接続させた抵抗によって出力電圧を分割し、その分割電圧と基準電圧とを比較して一定に保持する制御が行われる。 The power supply circuit 101 can be configured to include constant current operation in its operating range, similar to the power supply unit included in the power supply device described in Patent Document 1. For example, the constant current operation of each power supply unit is controlled by comparing the voltage Vo input from the current detection circuit 102 with a preset reference voltage. Furthermore, the constant voltage control of the output voltage from the power supply circuit 101 is performed by, for example, dividing the output voltage by a resistor connected in parallel to the circuit, and controlling the divided voltage to be maintained constant by comparing the divided voltage with a reference voltage. .
 起動信号出力回路104は、電流検出回路102の出力電圧Voと、予め定められている基準電圧Vrefとを比較する。出力電圧Voが基準電圧Vref以上になった場合、すなわち出力電流Ioが基準電流以上になった場合に起動信号STを生成し、生成した起動信号STを通信端子T4に出力する。第1電源ユニット10(1)から第(N-1)電源ユニット10(N-1)の各々では、通信端子T4に出力された起動信号STは、通信線13を介して、自装置よりも起動の優先順位が1つ低い電源ユニット10の通信端子T3に入力される。 The activation signal output circuit 104 compares the output voltage Vo of the current detection circuit 102 and a predetermined reference voltage Vref. When the output voltage Vo becomes equal to or higher than the reference voltage Vref, that is, when the output current Io becomes equal to or higher than the reference current, a startup signal ST is generated, and the generated startup signal ST is output to the communication terminal T4. In each of the first power supply unit 10(1) to the (N-1)th power supply unit 10(N-1), the activation signal ST output to the communication terminal T4 is transmitted via the communication line 13 to the power supply unit 10(N-1). It is input to the communication terminal T3 of the power supply unit 10 whose startup priority is one level lower.
 なお、基準電圧Vrefは、基準電流の大きさに応じた電圧であり、電源ユニット10の内部もしくは外部に設けられた基準電圧生成回路によって生成することができる。あるいは、基準電圧Vrefは、電源ユニット10に内蔵されるメモリまたは外部の記憶装置に予め記憶されていてもよい。 Note that the reference voltage Vref is a voltage according to the magnitude of the reference current, and can be generated by a reference voltage generation circuit provided inside or outside the power supply unit 10. Alternatively, the reference voltage Vref may be stored in advance in a memory built into the power supply unit 10 or an external storage device.
 累積出力電力量検出回路103は、電源回路101の起動後、初回の起動からの電源回路101の出力電力の累積値である累積出力電力量AEを算出する。具体的には、累積出力電力量検出回路103は、出力端子T2に接続され、電源回路101から出力端子T2に出力される電力を計測するように構成される。累積出力電力量検出回路103は、初回の起動からの電源回路101の出力電力の計測値を積算することにより、累積出力電力量AEを求める。 After the power supply circuit 101 is started, the cumulative output power amount detection circuit 103 calculates the cumulative output power amount AE, which is the cumulative value of the output power of the power supply circuit 101 since the first startup. Specifically, the cumulative output power amount detection circuit 103 is connected to the output terminal T2 and is configured to measure the power output from the power supply circuit 101 to the output terminal T2. The cumulative output power amount detection circuit 103 calculates the cumulative output power amount AE by integrating the measured values of the output power of the power supply circuit 101 since the first startup.
 累積出力電力量AEは、電源ユニット10の使用期間が0時間のとき、すなわち、電源ユニット10が新品のときには0Whとなる。電源ユニット10の使用期間が長くなるに従って、累積出力電力量AEは大きくなる。累積出力電力量検出回路103は、累積出力電力量AEと予め定められた閾値E1とを比較する。閾値E1は、例えば、電源ユニット10の寿命および電源装置1の使用環境などを考慮して、電源ユニット10のメンテナンスが必要とされる使用期間に応じて設定することができる。 The cumulative output power amount AE is 0Wh when the usage period of the power supply unit 10 is 0 hours, that is, when the power supply unit 10 is new. As the period of use of the power supply unit 10 becomes longer, the cumulative output power amount AE increases. The cumulative output power amount detection circuit 103 compares the cumulative output power amount AE with a predetermined threshold value E1. The threshold value E1 can be set depending on the period of use during which maintenance of the power supply unit 10 is required, for example, taking into consideration the life span of the power supply unit 10 and the environment in which the power supply device 1 is used.
 なお、閾値E1は、電源ユニット10の内部もしくは外部に設けられた閾値生成回路によって生成することができる。あるいは、閾値E1は、電源ユニット10に内蔵されるメモリまたは外部の記憶装置に予め記憶されていてもよい。 Note that the threshold E1 can be generated by a threshold generation circuit provided inside or outside the power supply unit 10. Alternatively, the threshold value E1 may be stored in advance in a memory built into the power supply unit 10 or an external storage device.
 累積出力電力量検出回路103は、累積出力電力量AEと閾値E1との比較結果から、電源ユニット10のメンテナンスが必要であるか否かを判断する。累積出力電力量AEが閾値E1以上となった場合、累積出力電力量検出回路103は、電源ユニット10のメンテナンスが必要であると判断する。この場合、累積出力電力量検出回路103は、停止信号STPを生成して電源回路101へ出力する。 The cumulative output power amount detection circuit 103 determines whether maintenance of the power supply unit 10 is necessary based on the comparison result between the cumulative output power amount AE and the threshold value E1. When the cumulative output power amount AE becomes equal to or greater than the threshold value E1, the cumulative output power amount detection circuit 103 determines that maintenance of the power supply unit 10 is necessary. In this case, the cumulative output power amount detection circuit 103 generates a stop signal STP and outputs it to the power supply circuit 101.
 電源回路101は、累積出力電力量検出回路103からの停止信号STPを受けると、その動作を停止する。電源回路101は、内蔵する電力変換器を停止させることにより、負荷2に供給する電力の生成を停止する。このようにして実施の形態1に係る電源装置1では、メンテナンスが必要と判断された電源ユニット10を、故障に至る前に自発的に停止させる。 When the power supply circuit 101 receives the stop signal STP from the cumulative output power amount detection circuit 103, it stops its operation. The power supply circuit 101 stops generating power to be supplied to the load 2 by stopping the built-in power converter. In this way, in the power supply device 1 according to the first embodiment, the power supply unit 10 that is determined to require maintenance is spontaneously stopped before a failure occurs.
 なお、電源回路101の動作を停止させる際には、電源回路101の出力電力(出力電流Io)を100%から0%へ瞬時に減少させてもよく、出力電力(出力電流Io)を100%から0%へ徐々に減少させてもよい。 Note that when stopping the operation of the power supply circuit 101, the output power (output current Io) of the power supply circuit 101 may be instantly reduced from 100% to 0%, or the output power (output current Io) may be reduced to 100%. It may be gradually decreased from 0% to 0%.
 電源回路101の停止後に電源ユニット10のメンテナンスが実行された場合、当該電源ユニット10の累積出力電力量検出回路103は初期化(リセット)される。すなわち、累積出力電力量AEは初期値である0Whとされる。メンテナンス後に電源ユニット10が再起動されたことに応じて、累積出力電力量検出回路103は、再起動からの電源回路101の累積出力電力量AEを算出する。 When maintenance of the power supply unit 10 is performed after the power supply circuit 101 is stopped, the cumulative output power amount detection circuit 103 of the power supply unit 10 is initialized (reset). That is, the cumulative output power amount AE is set to an initial value of 0Wh. In response to the restart of the power supply unit 10 after maintenance, the cumulative output power amount detection circuit 103 calculates the cumulative output power amount AE of the power supply circuit 101 since the restart.
 図2に示した電源ユニット10において、電流検出回路102、累積出力電力量検出回路103および起動信号出力回路104は、電源回路101の起動および停止を制御するための「制御回路」を構成する。図3は、制御回路のハードウェア構成の一例を示すブロック図である。 In the power supply unit 10 shown in FIG. 2, the current detection circuit 102, the cumulative output power amount detection circuit 103, and the start signal output circuit 104 constitute a "control circuit" for controlling the start and stop of the power supply circuit 101. FIG. 3 is a block diagram showing an example of the hardware configuration of the control circuit.
 図3に示すように、制御回路は、プロセッサ20、RAM(Random Access Memory)21、ROM(Read Only Memory)22、I/F(Interface)装置23、および記憶装置24を含む。プロセッサ20、RAM21、ROM22、I/F装置23および記憶装置24は、通信バス25を通じて各種データを遣り取りする。 As shown in FIG. 3, the control circuit includes a processor 20, a RAM (Random Access Memory) 21, a ROM (Read Only Memory) 22, an I/F (Interface) device 23, and a storage device 24. The processor 20, RAM 21, ROM 22, I/F device 23, and storage device 24 exchange various data via a communication bus 25.
 プロセッサ20には、例えばCPU(Central Processing Unit)が採用される。プロセッサ20は、記憶装置24からROM22にプログラムを読み出す。RAM21は、ワーキングメモリとして機能し、プログラムの実行に必要な各種データを一時的に格納する。I/F装置23には、通信端子T3,T4が接続される。これにより、電源ユニット10は、他の電源ユニット10とデータを遣り取りする。記憶装置24は、例えば、ハードディスクまたはフラッシュメモリなどの記憶媒体であり、プロセッサ20で実行されるプログラムを記憶する。なお、記憶装置24には、プログラムのほか、プログラムで使用される情報(例えば、基準電圧Vref、閾値E1)が記憶されている。 For example, a CPU (Central Processing Unit) is employed as the processor 20. The processor 20 reads the program from the storage device 24 to the ROM 22 . The RAM 21 functions as a working memory and temporarily stores various data necessary for executing programs. Communication terminals T3 and T4 are connected to the I/F device 23. Thereby, the power supply unit 10 exchanges data with other power supply units 10. The storage device 24 is, for example, a storage medium such as a hard disk or a flash memory, and stores a program executed by the processor 20. Note that the storage device 24 stores not only the program but also information used in the program (eg, reference voltage Vref, threshold value E1).
 実施の形態1では、記憶装置24に記憶されているプログラムをプロセッサ20が実行することで、制御装置による各種制御が実行される。ただし、制御装置による各種制御は、ソフトウェアによる実行に限られず、専用のハードウェア(電子回路)で実行することも可能である。 In the first embodiment, the processor 20 executes a program stored in the storage device 24, thereby executing various controls by the control device. However, various controls by the control device are not limited to execution by software, but can also be executed by dedicated hardware (electronic circuit).
 (電源装置の動作)
 次に、図4を用いて、実施の形態1に係る電源装置1の動作について説明する。
(Operation of power supply device)
Next, the operation of the power supply device 1 according to the first embodiment will be described using FIG. 4.
 図4は、電源装置1の動作の一例を示すタイムチャートである。図4には、電源装置1を起動させるときの各電源ユニット10の動作が示されている。 FIG. 4 is a time chart showing an example of the operation of the power supply device 1. FIG. 4 shows the operation of each power supply unit 10 when starting up the power supply device 1.
 図4(A)は、電源装置1から負荷2に供給される電力の波形を示す。図4(B)は第1電源ユニット10(1)における電流検出回路102の出力電圧Vo1の波形を示す。図4(C)は第2電源ユニット10(2)における電流検出回路102の出力電圧Vo2の波形を示す。図4(D)は第3電源ユニット10(3)における電流検出回路102の出力電圧Vo3の波形を示す。図4(E)は第4電源ユニット10(4)における電流検出回路102の出力電圧Vo4の波形を示す。図4(F)は、第1電源ユニット10(1)の累積出力電力量AE1の波形を示す。 FIG. 4(A) shows the waveform of power supplied from the power supply device 1 to the load 2. FIG. 4(B) shows the waveform of the output voltage Vo1 of the current detection circuit 102 in the first power supply unit 10(1). FIG. 4C shows the waveform of the output voltage Vo2 of the current detection circuit 102 in the second power supply unit 10(2). FIG. 4(D) shows the waveform of the output voltage Vo3 of the current detection circuit 102 in the third power supply unit 10(3). FIG. 4(E) shows the waveform of the output voltage Vo4 of the current detection circuit 102 in the fourth power supply unit 10(4). FIG. 4(F) shows the waveform of the cumulative output power amount AE1 of the first power supply unit 10(1).
 時刻t0にて、電源装置1に電源が投入されると、最初に第1電源ユニット10(1)が起動する。入力部11は、外部電源から電力が供給されたことに応じて、第1電源ユニット10(1)に起動信号STを出力する。第1電源ユニット10(1)において、電源回路101は、入力部11からの起動信号STを受けて起動し、負荷2に供給する電力を生成する。電流検出回路102は、電源回路101の出力電流Io1を電圧Vo1に変換し、電源回路101および起動信号出力回路104へ出力する。 When power is turned on to the power supply device 1 at time t0, the first power supply unit 10(1) is activated first. The input unit 11 outputs a start signal ST to the first power supply unit 10(1) in response to power being supplied from the external power supply. In the first power supply unit 10 (1), the power supply circuit 101 is activated upon receiving the activation signal ST from the input section 11, and generates power to be supplied to the load 2. Current detection circuit 102 converts output current Io1 of power supply circuit 101 into voltage Vo1 and outputs it to power supply circuit 101 and activation signal output circuit 104.
 時刻t0以降、負荷2に供給される電力が増加するに従って第1電源ユニット10(1)の出力電流Io1が増加し、電流検出回路102の出力電圧Vo1も増加する。起動信号出力回路104は、出力電圧Vo1と基準電圧Vrefとを比較する。 After time t0, as the power supplied to the load 2 increases, the output current Io1 of the first power supply unit 10(1) increases, and the output voltage Vo1 of the current detection circuit 102 also increases. The activation signal output circuit 104 compares the output voltage Vo1 and the reference voltage Vref.
 時刻t1にて、出力電圧Vo1が基準電圧Vrefに到達すると、起動信号出力回路104は、通信端子T4に起動信号STを出力する。起動信号STは、通信線13を介して第2電源ユニット10(2)の通信端子T3に入力される。 At time t1, when the output voltage Vo1 reaches the reference voltage Vref, the activation signal output circuit 104 outputs the activation signal ST to the communication terminal T4. The activation signal ST is input to the communication terminal T3 of the second power supply unit 10(2) via the communication line 13.
 第2電源ユニット10(2)において、電源回路101は、通信端子T3に入力される起動信号STを受けて起動し、負荷2に供給する電力を生成する。すなわち、第1電源ユニット10(1)の出力電力および第2電源ユニット10(2)の出力電力の合計値が負荷2に供給されることになる。 In the second power supply unit 10 (2), the power supply circuit 101 is activated in response to the activation signal ST input to the communication terminal T3, and generates power to be supplied to the load 2. That is, the total value of the output power of the first power supply unit 10(1) and the output power of the second power supply unit 10(2) is supplied to the load 2.
 負荷2への電力供給が2台の電源ユニット10(1),10(2)で分担されることによって、時刻t1にて、第1電源ユニット10(1)の出力電流Io1が減少する。その結果、出力電圧Vo1も減少する。一方、第2電源ユニット10(2)の出力電流Io2が増加するため、出力電圧Vo2が増加する。なお、出力電流Io1と出力電流Io2とは互いに等しいため、出力電圧Vo1および出力電圧Voも互いに等しくなる。 By sharing power supply to the load 2 between the two power supply units 10(1) and 10(2), the output current Io1 of the first power supply unit 10(1) decreases at time t1. As a result, the output voltage Vo1 also decreases. On the other hand, since the output current Io2 of the second power supply unit 10(2) increases, the output voltage Vo2 increases. Note that since the output current Io1 and the output current Io2 are equal to each other, the output voltage Vo1 and the output voltage Vo are also equal to each other.
 時刻t1以降、第2電源ユニット10(2)において、起動信号出力回路104は、出力電圧Vo2と基準電圧Vrefとを比較する。時刻t2にて、出力電圧Vo2が基準電圧Vrefに到達すると、起動信号出力回路104は、通信端子T4に起動信号STを出力する。起動信号STは、通信線13を介して第3電源ユニット10(3)の通信端子T3に入力される。 After time t1, in the second power supply unit 10(2), the activation signal output circuit 104 compares the output voltage Vo2 and the reference voltage Vref. At time t2, when the output voltage Vo2 reaches the reference voltage Vref, the activation signal output circuit 104 outputs the activation signal ST to the communication terminal T4. The activation signal ST is input to the communication terminal T3 of the third power supply unit 10(3) via the communication line 13.
 第3電源ユニット10(3)において、電源回路101は、通信端子T3に入力される起動信号STを受けて起動し、負荷2に供給する電力を生成する。その結果、第1電源ユニット10(1)の出力電力、第2電源ユニット10(2)の出力電力および第3電源ユニット10(3)の出力電力の合計値が負荷2に供給される。 In the third power supply unit 10(3), the power supply circuit 101 is activated upon receiving the activation signal ST input to the communication terminal T3, and generates power to be supplied to the load 2. As a result, the total value of the output power of the first power supply unit 10(1), the output power of the second power supply unit 10(2), and the output power of the third power supply unit 10(3) is supplied to the load 2.
 負荷2への電力供給が3台の電源ユニット10(1),10(2),10(3)で分担されることによって、時刻t2にて、第1電源ユニット10(1)の出力電流Io1が再び減少するため、出力電圧Vo1も再び減少する。第2電源ユニット10(2)の出力電流Io2も減少するため、出力電圧Vo2も減少する。 By sharing the power supply to the load 2 among the three power supply units 10(1), 10(2), and 10(3), at time t2, the output current Io1 of the first power supply unit 10(1) increases. decreases again, so the output voltage Vo1 also decreases again. Since the output current Io2 of the second power supply unit 10(2) also decreases, the output voltage Vo2 also decreases.
 一方、第3電源ユニット10(3)の出力電流Io3が増加するため、出力電圧Vo3が増加する。なお、出力電流Io1,Io2,Io3は互いに等しいため、出力電圧Vo1,Vo2,Vo3も互いに等しくなる。 On the other hand, since the output current Io3 of the third power supply unit 10(3) increases, the output voltage Vo3 increases. Note that since the output currents Io1, Io2, and Io3 are equal to each other, the output voltages Vo1, Vo2, and Vo3 are also equal to each other.
 時刻t3にて負荷2に供給される電力の増加が止まり、電力が一定値となると、3台の電源ユニット10(1),10(2),10(3)の各々の出力電流Ioも一定値となる。そのため、出力電圧Vo1,Vo2,Vo3も一定値となる。 When the increase in the power supplied to the load 2 stops at time t3 and the power becomes a constant value, the output current Io of each of the three power supply units 10(1), 10(2), and 10(3) also remains constant. value. Therefore, the output voltages Vo1, Vo2, and Vo3 also have constant values.
 以上説明したように、時刻t0にて電源装置1に電源が投入されると、負荷2に供給する電力の増加に伴って、予め定められた優先順位に従って、第1電源ユニット10(1)から順番に起動する。各電源ユニット10の累積出力電力量検出回路103は、電源回路101の起動後、初回の起動からの電源回路101の出力電力の累積値である累積出力電力量AEを算出する。 As explained above, when power is turned on to the power supply device 1 at time t0, as the power supplied to the load 2 increases, the first power supply unit 10(1) Start in order. After the power supply circuit 101 is started, the cumulative output power detection circuit 103 of each power supply unit 10 calculates the cumulative output power AE, which is the cumulative value of the output power of the power supply circuit 101 since the first startup.
 第1電源ユニット10(1)では、時刻t0からの電源回路101の出力電力の累積値である累積出力電力量AE1が算出される。図4(F)に示すように、累積出力電力量AE1は徐々に増加する。累積出力電力量検出回路103は、累積出力電力量AE1と閾値E1とを比較する。 In the first power supply unit 10(1), a cumulative output power amount AE1, which is a cumulative value of the output power of the power supply circuit 101 from time t0, is calculated. As shown in FIG. 4(F), the cumulative output power amount AE1 gradually increases. The cumulative output power amount detection circuit 103 compares the cumulative output power amount AE1 with a threshold value E1.
 時刻t4にて、累積出力電力量AE1が閾値E1に到達した場合、累積出力電力量検出回路103は、第1電源ユニット10(1)のメンテナンスが必要であると判断して、電源回路101に停止信号STPを出力する。電源回路101は、停止信号STPを受けると、内蔵する電力変換器を停止させることにより、負荷2に供給する電力の生成を停止する。電源回路101の動作が停止したことにより、第1電源ユニット10(1)の出力電流Io1が零に低下するため、出力電圧Vo1も零に低下する。 If the cumulative output power amount AE1 reaches the threshold value E1 at time t4, the cumulative output power amount detection circuit 103 determines that maintenance of the first power supply unit 10(1) is necessary, and the power supply circuit 101 Outputs a stop signal STP. When receiving the stop signal STP, the power supply circuit 101 stops the generation of the power supplied to the load 2 by stopping the built-in power converter. Since the operation of the power supply circuit 101 is stopped, the output current Io1 of the first power supply unit 10(1) decreases to zero, and therefore the output voltage Vo1 also decreases to zero.
 第1電源ユニット10(1)の運転停止によって負荷2に電力を供給する電源ユニット10の台数が3台から2台に減少したことにより、第2電源ユニット10(2)および第3電源ユニット10(3)の分担が増加する。時刻t4にて出力電流Io2,Io3が増加に転じたことに応じて、出力電圧Vo2,Vo3も増加に転じる。 Due to the suspension of operation of the first power supply unit 10 (1), the number of power supply units 10 that supply power to the load 2 is reduced from three to two, so that the second power supply unit 10 (2) and the third power supply unit 10 The burden of (3) will increase. In response to the output currents Io2 and Io3 starting to increase at time t4, the output voltages Vo2 and Vo3 also start increasing.
 第3電源ユニット10(2)において、起動信号出力回路104は、出力電圧Vo3と基準電圧Vrefとを比較する。時刻t5にて、出力電圧Vo3が基準電圧Vrefに到達すると、起動信号出力回路104は、通信端子T4に起動信号STを出力する。起動信号STは、通信線13を介して第4電源ユニット10(4)の通信端子T3に入力される。 In the third power supply unit 10(2), the activation signal output circuit 104 compares the output voltage Vo3 and the reference voltage Vref. At time t5, when the output voltage Vo3 reaches the reference voltage Vref, the activation signal output circuit 104 outputs the activation signal ST to the communication terminal T4. The activation signal ST is input to the communication terminal T3 of the fourth power supply unit 10(4) via the communication line 13.
 第4電源ユニット10(4)において、電源回路101は、通信端子T3に入力される起動信号STを受けて起動し、負荷2に供給する電力を生成する。その結果、第2電源ユニット10(2)の出力電力、第3電源ユニット10(3)の出力電力および第4電源ユニット10(4)の出力電力の合計値が負荷2に供給される。 In the fourth power supply unit 10 (4), the power supply circuit 101 is activated in response to the activation signal ST input to the communication terminal T3, and generates power to be supplied to the load 2. As a result, the total value of the output power of the second power supply unit 10(2), the output power of the third power supply unit 10(3), and the output power of the fourth power supply unit 10(4) is supplied to the load 2.
 時刻t5にて、負荷2に電力を供給する電源ユニット10の台数が3台に復帰したことによって、3台の電源ユニット10(2),10(3),10(4)の各々の出力電流Ioは一定値となり、出力電圧Vo2,Vo3,Vo4も一定値となる。 At time t5, the number of power supply units 10 supplying power to load 2 has returned to three, so that the output current of each of the three power supply units 10(2), 10(3), and 10(4) increases. Io is a constant value, and the output voltages Vo2, Vo3, and Vo4 are also constant values.
 このようにして累積出力電力量AEが閾値E1に達した第1電源ユニット10(1)の運転を停止させたことに伴って、第1電源ユニット10(1)よりも起動の優先順位が低い第4電源ユニット10(4)が新たに起動されて負荷2への電力供給を開始する。これによると、負荷2への電力供給を継続しつつ、運転を停止させた第1電源ユニット10(1)のメンテナンスを実行することができる。 As the operation of the first power supply unit 10(1) whose cumulative output power amount AE has reached the threshold value E1 is stopped in this way, the startup priority is lower than that of the first power supply unit 10(1). The fourth power supply unit 10(4) is newly activated and starts supplying power to the load 2. According to this, maintenance of the first power supply unit 10(1) whose operation has been stopped can be performed while continuing power supply to the load 2.
 このように実施の形態1によれば、電源装置としての機能を果たしつつ、各電源ユニット10をその使用状態に応じた適当なタイミングでメンテナンスを実行することができる。その結果、電源装置全体の寿命を改善することが可能となる。 As described above, according to the first embodiment, maintenance can be performed on each power supply unit 10 at an appropriate timing depending on its usage state while fulfilling its function as a power supply device. As a result, it becomes possible to improve the life of the entire power supply device.
 なお、電源装置1に含まれる電源ユニット10の台数Nは、負荷2に定格電力を供給するために必要な台数よりも多いことが好ましい。このようにすると、一部の電源ユニット10のメンテナンスを実行している間も、残りの電源ユニット10から負荷2に安定的に電力を供給し続けることができる。 Note that the number N of power supply units 10 included in the power supply device 1 is preferably larger than the number required to supply rated power to the load 2. In this way, even while maintenance is being performed on some of the power supply units 10, it is possible to continue stably supplying power to the load 2 from the remaining power supply units 10.
 実施の形態2.
 図5は、実施の形態2に係る電源装置1に適用される電源ユニット10の回路ブロック図である。実施の形態2に係る電源装置1の全体構成は、図1に示した電源装置1の構成と同じであるため、説明を省略する。
Embodiment 2.
FIG. 5 is a circuit block diagram of the power supply unit 10 applied to the power supply device 1 according to the second embodiment. The overall configuration of the power supply device 1 according to Embodiment 2 is the same as the configuration of the power supply device 1 shown in FIG. 1, so a description thereof will be omitted.
 図5に示すように、実施の形態2に係る電源ユニット10は、図2に示した電源ユニット10とは、状態表示回路105を含む点が異なる。状態表示回路105は、累積出力電力量検出回路103に接続されている。 As shown in FIG. 5, the power supply unit 10 according to the second embodiment differs from the power supply unit 10 shown in FIG. 2 in that it includes a status display circuit 105. The status display circuit 105 is connected to the cumulative output power amount detection circuit 103.
 累積出力電力量検出回路103は、電源回路101の累積出力電力量AEが閾値E1を以上となったときに、停止信号STPを生成して電源回路101および状態表示回路105へ出力する。 The cumulative output power detection circuit 103 generates a stop signal STP and outputs it to the power supply circuit 101 and the status display circuit 105 when the cumulative output power AE of the power supply circuit 101 exceeds the threshold E1.
 状態表示回路105は、例えば、電源ユニット10の筐体に設置されたディスプレイを含む。状態表示回路105は、停止信号STPを受けたことに応じて、電源ユニット10が停止状態であることをディスプレイに表示する。これにより、電源装置1のユーザに対して、電源ユニット10がメンテナンスを必要としていることを知らせることができる。 The status display circuit 105 includes, for example, a display installed in the casing of the power supply unit 10. In response to receiving the stop signal STP, the status display circuit 105 displays on the display that the power supply unit 10 is in the stopped state. This allows the user of the power supply device 1 to be notified that the power supply unit 10 requires maintenance.
 実施の形態3.
 図6は、実施の形態3に係る電源装置1の回路ブロック図である。実施の形態3に係る電源装置1は、図1に示した実施の形態1に係る電源装置1とは、通信線13の接続が異なる。図6に示すように、第N電源ユニット10(N)の通信端子T4は、通信線13を介して第1電源ユニット10(1)の通信端子T3に接続されている。各電源ユニット10の構成は、図2に示した電源ユニット10の構成と同じである。
Embodiment 3.
FIG. 6 is a circuit block diagram of the power supply device 1 according to the third embodiment. The power supply device 1 according to the third embodiment differs from the power supply device 1 according to the first embodiment shown in FIG. 1 in the connection of the communication line 13. As shown in FIG. 6, the communication terminal T4 of the Nth power supply unit 10(N) is connected to the communication terminal T3 of the first power supply unit 10(1) via the communication line 13. The configuration of each power supply unit 10 is the same as that of the power supply unit 10 shown in FIG.
 実施の形態3では、第1電源ユニット10(1)は、電源装置1に電源が投入されたこと、もしくは、通信端子T3に起動信号STが入力されたことに応じて起動するように構成されている。 In the third embodiment, the first power supply unit 10(1) is configured to start in response to power being turned on to the power supply device 1 or in response to input of a start signal ST to the communication terminal T3. ing.
 第N電源ユニット10(N)において、電源回路101は、第(N-1)電源ユニット10(N-1)から通信端子T3に入力される起動信号STを受けて起動し、負荷2に供給する電力を生成する。起動信号出力回路104は、電流検出回路102の出力電圧Voと基準電圧Vrefとを比較する。 In the Nth power supply unit 10 (N), the power supply circuit 101 starts up in response to the start signal ST input to the communication terminal T3 from the (N-1)th power supply unit 10 (N-1), and supplies the power to the load 2. generate electricity. The activation signal output circuit 104 compares the output voltage Vo of the current detection circuit 102 and the reference voltage Vref.
 起動信号出力回路104は、出力電圧Voが基準電圧Vref以上となった場合に、起動信号STを生成し、生成した起動信号STを通信端子T4に出力する。通信端子T4に出力された起動信号STは、通信線13を介して、第1電源ユニット10(1)の通信端子T3に入力される。第1電源ユニット10(1)において、停止状態となっている電源回路101は、通信端子T3に入力される起動信号STを受けて、再び起動する。 The activation signal output circuit 104 generates a activation signal ST when the output voltage Vo becomes equal to or higher than the reference voltage Vref, and outputs the generated activation signal ST to the communication terminal T4. The activation signal ST outputted to the communication terminal T4 is inputted to the communication terminal T3 of the first power supply unit 10(1) via the communication line 13. In the first power supply unit 10(1), the power supply circuit 101 that is in a stopped state starts up again in response to the start-up signal ST input to the communication terminal T3.
 ここで、起動の優先順位が上位の電源ユニット10(I)の運転が停止されたことによって、第N電源ユニット10(N)の電源回路101が起動されて負荷2への電力供給を開始した場合を想定する。Iは1以上N-1以下の整数である。 Here, since the operation of the power supply unit 10 (I) with a higher startup priority is stopped, the power supply circuit 101 of the Nth power supply unit 10 (N) is started and starts supplying power to the load 2. Assume a case. I is an integer from 1 to N-1.
 この場合、第(I+1)電源ユニット10(I+1)から第N電源ユニット10(N)によって負荷2の電力供給が継続される。しかしながら、負荷2へ供給する電力が増加したときには、各電源ユニット10において、電源回路101の出力電流Ioが増加するため、出力電圧Voが基準電圧Vrefを超える可能性がある。そのため、各電源ユニット10の電源回路101が過負荷状態となることが懸念される。 In this case, power supply to the load 2 is continued from the (I+1)th power supply unit 10 (I+1) to the Nth power supply unit 10 (N). However, when the power supplied to the load 2 increases, the output current Io of the power supply circuit 101 increases in each power supply unit 10, so the output voltage Vo may exceed the reference voltage Vref. Therefore, there is a concern that the power supply circuit 101 of each power supply unit 10 may become overloaded.
 実施の形態3によれば、第N電源ユニット10(N)の起動信号出力回路104は、出力電圧Voが基準電圧Vrefに到達したことに応じて、第1電源ユニット10(1)に起動信号STを出力して、第1電源ユニット10(1)の電源回路101を再び起動させる。これにより負荷2に電力を供給する電源ユニット10の台数が増えるため、運転中の各電源ユニット10の電源回路101が過負荷状態となることを回避することができる。 According to the third embodiment, the activation signal output circuit 104 of the N-th power supply unit 10(N) outputs the activation signal to the first power supply unit 10(1) in response to the output voltage Vo reaching the reference voltage Vref. ST is output to restart the power supply circuit 101 of the first power supply unit 10(1). This increases the number of power supply units 10 that supply power to the load 2, so it is possible to avoid overloading the power supply circuit 101 of each power supply unit 10 during operation.
 なお、さらに負荷2へ供給する電力が増加した場合、もしくは、第(I+1)電源ユニット10(I+1)の運転が停止された場合には、再び各電源ユニット10において出力電圧Voが基準電圧Vrefに到達することがある。この場合、第1電源ユニット10(1)の起動信号出力回路104は、第2電源ユニット10(2)に起動信号STを出力する。第2電源ユニット10(2)が停止状態である場合、起動信号STを受けて電源回路101が再び起動して負荷2への電力供給を開始することになる。 Note that when the power supplied to the load 2 further increases, or when the operation of the (I+1)th power supply unit 10 (I+1) is stopped, the output voltage Vo of each power supply unit 10 becomes the reference voltage Vref again. may be reached. In this case, the activation signal output circuit 104 of the first power supply unit 10(1) outputs the activation signal ST to the second power supply unit 10(2). When the second power supply unit 10(2) is in a stopped state, the power supply circuit 101 is activated again in response to the activation signal ST and starts supplying power to the load 2.
 このように実施の形態3によれば、メンテナンスのために停止させた電源ユニット10を再び起動させて負荷2に電力を供給することができる。これによると、メンテナンスの実行中の1台の電源ユニット10を除いた(N-1)台の電源ユニット10を運転させて負荷2に電力を供給し続けることができる。したがって、電源ユニット10の台数Nを、負荷2に定格電力を供給するために必要な台数よりも1多い数に抑えることができる。 As described above, according to the third embodiment, the power supply unit 10 that has been stopped for maintenance can be restarted to supply power to the load 2. According to this, (N-1) power supply units 10 excluding the one power supply unit 10 undergoing maintenance can be operated to continue supplying power to the load 2. Therefore, the number N of power supply units 10 can be suppressed to one more than the number required to supply rated power to the load 2.
 実施の形態4.
 上述した実施の形態1から3に係る電源装置1では、各電源ユニット10の累積出力電力量検出回路103は、初回の起動からの電源回路101の累積出力電力量AEを算出するように構成される。そして、電源ユニット10のメンテナンスが実行された場合に、累積出力電力量検出回路103は初期化される。
Embodiment 4.
In the power supply device 1 according to the first to third embodiments described above, the cumulative output power amount detection circuit 103 of each power supply unit 10 is configured to calculate the cumulative output power amount AE of the power supply circuit 101 from the initial startup. Ru. Then, when maintenance of the power supply unit 10 is performed, the cumulative output power amount detection circuit 103 is initialized.
 これによると、電源ユニット10のメンテナンスが実行されるまで、累積出力電力量検出回路103は、初回の起動からの累積出力電力量AEを算出し続けることになる。そのため、累積出力電力量検出回路103からの停止信号STPを受けて電源回路101の動作が停止した後、電源ユニット10のメンテナンスを実行することなく、再び電源回路101を起動させようとしても、累積出力電力量検出回路103から停止信号STPが出力されるため、電源回路101を起動させることができない。 According to this, the cumulative output power amount detection circuit 103 continues to calculate the cumulative output power amount AE from the initial startup until maintenance of the power supply unit 10 is performed. Therefore, even if you try to start up the power supply circuit 101 again without performing maintenance on the power supply unit 10 after receiving the stop signal STP from the cumulative output power detection circuit 103 and stopping the operation of the power supply circuit 101, the cumulative Since the output power amount detection circuit 103 outputs the stop signal STP, the power supply circuit 101 cannot be started.
 このことは、電源ユニット10のメンテナンスの実行をユーザに促すことができるという効果がある一方で、何等かの事情によってメンテナンスが遅れた場合には、使用できる電源ユニット10の台数が制限されてしまうため、電源装置1から負荷2に必要な電力を供給することができなくなることが懸念される。また、運転中の電源ユニット10が過負荷状態になることが懸念される。 While this has the effect of prompting the user to perform maintenance on the power supply unit 10, if maintenance is delayed for some reason, the number of power supply units 10 that can be used is limited. Therefore, there is a concern that the power supply device 1 may not be able to supply the necessary power to the load 2. Furthermore, there is a concern that the power supply unit 10 during operation may become overloaded.
 そこで、実施の形態4では、各電源ユニット10の累積出力電力量検出回路103は複数の閾値を有する構成とする。以下の説明では、累積出力電力量検出回路103が2つの閾値E1,E2を有する場合を想定する。なお、閾値E2は、閾値E1よりも大きいものとする。閾値E1は「第1の閾値」の一実施例に対応し、閾値E2は「第2の閾値」の一実施例に対応する。 Therefore, in the fourth embodiment, the cumulative output power amount detection circuit 103 of each power supply unit 10 is configured to have a plurality of threshold values. In the following description, it is assumed that the cumulative output power amount detection circuit 103 has two threshold values E1 and E2. Note that the threshold value E2 is assumed to be larger than the threshold value E1. The threshold E1 corresponds to an example of a "first threshold", and the threshold E2 corresponds to an example of a "second threshold".
 各電源ユニット10において、累積出力電力量検出回路103は、電源回路101の起動後、初回の起動からの電源回路101の累積出力電力量AEを算出する。累積出力電力量検出回路103は、累積出力電力量AEと閾値E1とを比較する。累積出力電力量AEが閾値E1以上となった場合、累積出力電力量検出回路103は、電源ユニット10のメンテナンスが必要であると判断し、停止信号STPを生成して電源回路101へ出力する。電源回路101は、累積出力電力量検出回路103からの停止信号STPを受けると、その動作を停止する。 In each power supply unit 10, after the power supply circuit 101 is started, the cumulative output power amount detection circuit 103 calculates the cumulative output power amount AE of the power supply circuit 101 from the first startup. The cumulative output power amount detection circuit 103 compares the cumulative output power amount AE with a threshold value E1. When the cumulative output power amount AE exceeds the threshold value E1, the cumulative output power amount detection circuit 103 determines that maintenance of the power supply unit 10 is necessary, generates a stop signal STP, and outputs it to the power supply circuit 101. When the power supply circuit 101 receives the stop signal STP from the cumulative output power amount detection circuit 103, it stops its operation.
 電源回路101の停止後、電源ユニット10のメンテナンスが実行されない場合、累積出力電力量検出回路103は初期化されない。この状態で、電源回路101は、通信端子T3に入力される起動信号STを受けると、電源回路101が再び起動し、負荷2に供給する電力を生成する。累積出力電力量検出回路103は、初回の起動からの電源回路101の累積出力電力量AEを算出し続ける。 If maintenance of the power supply unit 10 is not performed after the power supply circuit 101 is stopped, the cumulative output power amount detection circuit 103 is not initialized. In this state, when the power supply circuit 101 receives the activation signal ST input to the communication terminal T3, the power supply circuit 101 is activated again and generates power to be supplied to the load 2. The cumulative output power amount detection circuit 103 continues to calculate the cumulative output power amount AE of the power supply circuit 101 since the first startup.
 このとき、累積出力電力量検出回路103は、累積出力電力量AEと閾値E2とを比較する。累積出力電力量AEが閾値E2以上となった場合、累積出力電力量検出回路103は、停止信号STPを生成して電源回路101へ出力する。電源回路101は、停止信号STPを受けて再び動作を停止する。 At this time, the cumulative output power amount detection circuit 103 compares the cumulative output power amount AE and the threshold value E2. When the cumulative output power amount AE becomes equal to or greater than the threshold value E2, the cumulative output power amount detection circuit 103 generates a stop signal STP and outputs it to the power supply circuit 101. The power supply circuit 101 stops operation again upon receiving the stop signal STP.
 このように累積出力電力量検出回路103は、閾値を二段階で設定し、累積出力電力量AEと比較する閾値を段階的に上げていくように構成されている。これによると、一旦停止させた電源ユニット10のメンテナンスが遅れた場合であっても、累積出力電力量AEが閾値E2に到達するまでは、当該電源ユニット10の使用を継続することができる。 In this way, the cumulative output power amount detection circuit 103 is configured to set the threshold value in two stages, and to gradually increase the threshold value for comparison with the cumulative output power amount AE. According to this, even if maintenance of the power supply unit 10 that has been stopped is delayed, the use of the power supply unit 10 can be continued until the cumulative output power amount AE reaches the threshold value E2.
 例えば、実施の形態1に係る電源装置1では、第N電源ユニット10(N)の累積出力電力量検出回路103において累積出力電力量AEが閾値E1に到達すると、N台の電源ユニット10(1)~10(N)全ての運転が停止する。その後、電源装置1に電源が投入されると、第1電源ユニット10(1)から順番に再び起動する。各電源ユニット10のメンテナンスが実行されていない場合には、再起動した電源ユニット10において、電源回路101は電力の供給を開始し、累積出力電力量AEが閾値E2に到達したことに応じて再び動作を停止することになる。これによると、第N電源ユニット10(N)における累積出力電力量AEが閾値E2に到達するまで、電源装置1は負荷2に電力を供給し続けることができる。 For example, in the power supply device 1 according to the first embodiment, when the cumulative output power amount AE reaches the threshold value E1 in the cumulative output power amount detection circuit 103 of the Nth power supply unit 10 (N), the Nth power supply unit 10 (N) ) to 10 (N) All operations stop. Thereafter, when power is turned on to the power supply device 1, the first power supply unit 10(1) is restarted in order. If maintenance has not been performed on each power supply unit 10, the power supply circuit 101 starts supplying power in the restarted power supply unit 10, and restarts the power supply circuit 101 in response to the cumulative output power amount AE reaching the threshold value E2. It will stop working. According to this, the power supply device 1 can continue to supply power to the load 2 until the cumulative output power amount AE in the Nth power supply unit 10 (N) reaches the threshold value E2.
 あるいは、実施の形態3に係る電源装置1では、第N電源ユニット10(N)の起動信号出力回路104からの起動信号STに応答して、第1電源ユニット10(1)が再び起動する。第1電源ユニット10(1)のメンテナンスが実行されていない場合には、電源回路101は、再起動した後、累積出力電力量AEが閾値E2に到達したときに再び動作を停止する。すなわち、累積出力電力量AEが閾値E2に到達するまで、第1電源ユニット10(1)を使用し続けることができる。 Alternatively, in the power supply device 1 according to the third embodiment, the first power supply unit 10(1) is activated again in response to the activation signal ST from the activation signal output circuit 104 of the Nth power supply unit 10(N). If maintenance of the first power supply unit 10(1) is not performed, the power supply circuit 101 is restarted and then stops operating again when the cumulative output power amount AE reaches the threshold value E2. That is, the first power supply unit 10(1) can continue to be used until the cumulative output power amount AE reaches the threshold value E2.
 なお、累積出力電力量検出回路103は、3つ以上の閾値を有してもよい。この場合、累積出力電力量検出回路103は、初期化を待たずに電源回路101が再起動した後には、前回用いた閾値よりも大きい閾値と累積出力電力量AEとを比較し、その比較結果に応じて停止信号STPを出力するように構成される。これによると、電源ユニット10のメンテナンスが遅れた場合であっても、累積出力電力量AEが最も大きい閾値に到達するまで電源ユニット10を使用し続けることができる。 Note that the cumulative output power amount detection circuit 103 may have three or more threshold values. In this case, after the power supply circuit 101 is restarted without waiting for initialization, the cumulative output power amount detection circuit 103 compares the cumulative output power amount AE with a threshold value that is larger than the previously used threshold value, and the comparison result is The stop signal STP is configured to be output in response to the stop signal STP. According to this, even if maintenance of the power supply unit 10 is delayed, the power supply unit 10 can be continued to be used until the cumulative output power amount AE reaches the largest threshold value.
 実施の形態5.
 実施の形態5から7では、本実施の形態に係る電源装置1が適用される電源システムの構成について説明する。
Embodiment 5.
In Embodiments 5 to 7, the configuration of a power supply system to which the power supply device 1 according to the present embodiment is applied will be described.
 (電源システムの構成)
 図7は、実施の形態5に係る電源システムの構成例を示す図である。図7に示すように、電源システムは、複数の電源装置1と、サーバ3とを備える。
(Power system configuration)
FIG. 7 is a diagram illustrating a configuration example of a power supply system according to the fifth embodiment. As shown in FIG. 7, the power supply system includes a plurality of power supply devices 1 and a server 3.
 サーバ3は、複数の電源装置1を管理するための管理装置である。サーバ3は、例えば、複数の電源装置1の品質を保ち、故障から守るためのサービスセンターに設置されている。各電源装置1は、通信網5を介してサーバ3と通信可能に接続されている。通信網5は、代表的にはインターネットである。サーバ3は、複数のサービスセンターによって共有されるシェアードサーバであってもよいし、クラウドサーバ管理会社により提供されるクラウドサーバであってもよい。 The server 3 is a management device for managing the plurality of power supply devices 1. The server 3 is installed, for example, at a service center for maintaining the quality of the plurality of power supply devices 1 and protecting them from failure. Each power supply device 1 is communicably connected to a server 3 via a communication network 5 . The communication network 5 is typically the Internet. The server 3 may be a shared server shared by multiple service centers, or a cloud server provided by a cloud server management company.
 (電源装置の構成)
 図8は、図7に示した電源装置1の第1構成例を示す回路ブロック図である。図8に示すように、第1構成例に係る電源装置1は、図2に示した電源ユニット10とは、状態表示回路105および通信回路106を含む点が異なる。状態表示回路105および通信回路106は、累積出力電力量検出回路103に接続されている。
(Configuration of power supply device)
FIG. 8 is a circuit block diagram showing a first configuration example of the power supply device 1 shown in FIG. 7. As shown in FIG. 8, the power supply device 1 according to the first configuration example differs from the power supply unit 10 shown in FIG. 2 in that it includes a status display circuit 105 and a communication circuit 106. The status display circuit 105 and the communication circuit 106 are connected to the cumulative output power amount detection circuit 103.
 累積出力電力量検出回路103は、電源回路101の累積出力電力量AEが閾値E1以上となった場合に、停止信号STPを生成して電源回路101、状態表示回路105および通信回路106へ出力する。 The cumulative output power amount detection circuit 103 generates a stop signal STP and outputs it to the power supply circuit 101, the status display circuit 105, and the communication circuit 106 when the cumulative output power amount AE of the power supply circuit 101 becomes equal to or higher than the threshold value E1. .
 状態表示回路105は、停止信号STPを受けたことに応じて、電源ユニット10が停止状態であることをディスプレイに表示する。 In response to receiving the stop signal STP, the status display circuit 105 displays on the display that the power supply unit 10 is in the stopped state.
 通信回路106は、電源ユニット10の状態を示す状態データを生成し、生成した状態データをサーバ3へ送信する。図9は、各電源ユニット10における通信回路106の動作を説明するための図である。 The communication circuit 106 generates status data indicating the status of the power supply unit 10 and transmits the generated status data to the server 3. FIG. 9 is a diagram for explaining the operation of the communication circuit 106 in each power supply unit 10.
 図9に示すように、各電源ユニット10の通信回路106は、サーバ3と通信接続されている。累積出力電力量検出回路103から停止信号STPを受けたとき、通信回路106は、停止した電源ユニット10の識別情報、および、当該電源ユニット10が含まれる電源装置1の識別情報を含んだ状態データを生成してサーバ3へ送信する。 As shown in FIG. 9, the communication circuit 106 of each power supply unit 10 is communicatively connected to the server 3. When receiving the stop signal STP from the cumulative output power amount detection circuit 103, the communication circuit 106 transmits status data including the identification information of the stopped power supply unit 10 and the identification information of the power supply device 1 including the power supply unit 10. is generated and sent to the server 3.
 サーバ3は、電源ユニット10から受信した状態データを図示しない出力部から出力する。これにより、サービスセンターに存在する作業員は、現地に行かずとも離れた場所から、メンテナンスが必要な電源ユニット10を知ることができる。その結果、作業員は、各電源装置1の電源ユニット10のメンテナンスを適切なタイミングで効率的に実行することが可能となる。 The server 3 outputs the status data received from the power supply unit 10 from an output unit (not shown). Thereby, a worker present at the service center can know which power supply unit 10 requires maintenance from a remote location without going to the site. As a result, the worker can efficiently perform maintenance on the power supply unit 10 of each power supply device 1 at appropriate timing.
 実施の形態6.
 (電源装置の構成)
 図10は、図7に示した電源装置1の第2構成例を示す回路ブロック図である。図10に示すように、第2構成例に係る電源装置1は、図8に示した第1構成例に係る電源装置1に制御装置14を追加したものである。
Embodiment 6.
(Configuration of power supply device)
FIG. 10 is a circuit block diagram showing a second configuration example of the power supply device 1 shown in FIG. As shown in FIG. 10, the power supply device 1 according to the second configuration example is obtained by adding a control device 14 to the power supply device 1 according to the first configuration example shown in FIG.
 制御装置14は、N台の電源ユニット10(1)~10(N)を統括する。制御装置14は、各電源ユニット10の通信回路106に接続されている。制御装置14はさらに、サーバ3とデータを遣り取りするように構成されている。 The control device 14 controls the N power supply units 10(1) to 10(N). The control device 14 is connected to the communication circuit 106 of each power supply unit 10. The control device 14 is further configured to exchange data with the server 3.
 各電源ユニット10の通信回路106は、累積出力電力量検出回路103から停止信号STPを受けた場合には、受信した停止信号STPを制御装置14へ転送する。 When the communication circuit 106 of each power supply unit 10 receives the stop signal STP from the cumulative output power amount detection circuit 103, it transfers the received stop signal STP to the control device 14.
 制御装置14は、各通信回路106と遣り取りされるデータに基づいて、各電源ユニット10の状態を示す状態データを生成し、生成した状態データをサーバ3へ送信する。具体的には、N台の電源ユニット10(1)~10(N)のうちの何れかの電源ユニット10の通信回路106から停止信号STPを受け付けた場合、制御装置14は、停止した電源ユニット10の識別情報、および、当該電源ユニット10が含まれる電源装置1の識別情報を含んだ状態データを生成してサーバ3へ送信する。 The control device 14 generates status data indicating the status of each power supply unit 10 based on data exchanged with each communication circuit 106, and transmits the generated status data to the server 3. Specifically, when receiving the stop signal STP from the communication circuit 106 of any one of the N power supply units 10(1) to 10(N), the control device 14 10 and the identification information of the power supply device 1 including the power supply unit 10 is generated and transmitted to the server 3.
 第2構成例においても、上述した第1構成例と同様の効果を得ることができる。第2構成例ではさらに、制御装置14が各電源ユニット10の状態データを生成するように構成されるため、各電源ユニット10の通信回路106は、電源ユニット10の識別情報を保持しておく必要がない。そのため、通信回路106を簡素化することができる。 In the second configuration example as well, the same effects as in the first configuration example described above can be obtained. In the second configuration example, since the control device 14 is further configured to generate status data of each power supply unit 10, the communication circuit 106 of each power supply unit 10 needs to hold identification information of the power supply unit 10. There is no. Therefore, the communication circuit 106 can be simplified.
 実施の形態7.
 実施の形態4では、電源装置1の各電源ユニット10において、累積出力電力量検出回路103が複数の閾値を有する構成について説明した。実施の形態5および6で示した電源システム(図7参照)に含まれる電源装置1に実施の形態4に係る電源装置1を適用した場合には、通信回路106または制御装置14は、サーバ3に対して、各電源ユニット10の状態データを段階的に送信するように構成することが可能となる。
Embodiment 7.
In the fourth embodiment, a configuration has been described in which the cumulative output power amount detection circuit 103 has a plurality of threshold values in each power supply unit 10 of the power supply device 1. When the power supply device 1 according to the fourth embodiment is applied to the power supply device 1 included in the power supply system (see FIG. 7) shown in the fifth and sixth embodiments, the communication circuit 106 or the control device 14 is connected to the server 3. In contrast, it is possible to configure the state data of each power supply unit 10 to be transmitted in stages.
 例えば、累積出力電力量検出回路103が2つの閾値E1,E2を有する場合を想定する。なお、閾値E2は、閾値E1よりも大きいものとする。 For example, assume that the cumulative output power amount detection circuit 103 has two threshold values E1 and E2. Note that the threshold value E2 is assumed to be larger than the threshold value E1.
 図8に示す電源ユニット10において、累積出力電力量検出回路103は、初回の起動からの電源回路101の累積出力電力量AEが閾値E1以上となったとき、初回の停止信号STPを生成して電源回路101、状態表示回路105および通信回路106へ出力する。累積出力電力量検出回路103は、さらに、初回の起動からの累積出力電力量AEが閾値E2を超えたときには、2回目の停止信号STPを生成して電源回路101、状態表示回路105および通信回路106へ出力する。 In the power supply unit 10 shown in FIG. 8, the cumulative output power amount detection circuit 103 generates the first stop signal STP when the cumulative output power amount AE of the power supply circuit 101 from the first startup becomes equal to or higher than the threshold value E1. It outputs to the power supply circuit 101, the status display circuit 105, and the communication circuit 106. Furthermore, when the cumulative output power amount AE from the first startup exceeds the threshold value E2, the cumulative output power amount detection circuit 103 generates a second stop signal STP and outputs a second stop signal STP to the power supply circuit 101, the status display circuit 105, and the communication circuit. Output to 106.
 図9に示した第1構成例では、通信回路106は、初回の停止信号STPを受けたことに応じて、状態データを生成してサーバ3へ送信する。このとき、通信回路106は、状態データに、停止した電源ユニット10の識別情報および当該電源ユニット10が含まれる電源装置1の識別情報とともに、電源ユニット10の保護が必要な状態であることを示す情報を含める。 In the first configuration example shown in FIG. 9, the communication circuit 106 generates status data and transmits it to the server 3 in response to receiving the first stop signal STP. At this time, the communication circuit 106 includes the status data indicating that the power supply unit 10 is in a state that requires protection, together with the identification information of the stopped power supply unit 10 and the identification information of the power supply 1 that includes the power supply unit 10. Include information.
 通信回路106はさらに、2回目の停止信号STPを受けたことに応じて、状態データを生成してサーバ3へ送信する。このとき、通信回路106は、状態データに、停止した電源ユニット10の識別情報および当該電源ユニット10が含まれる電源装置1の識別情報とともに、電源ユニット10の交換が必要な状態であることを示す情報を含める。 The communication circuit 106 further generates status data and transmits it to the server 3 in response to receiving the second stop signal STP. At this time, the communication circuit 106 includes the status data indicating that the power supply unit 10 needs to be replaced, along with the identification information of the stopped power supply unit 10 and the identification information of the power supply 1 that includes the power supply unit 10. Include information.
 これによると、各電源ユニット10の通信回路106は、累積出力電力量AEと閾値E1,E2との比較結果に基づいて、電源ユニット10の保護が必要な状態であることを示す情報と、電源ユニット10の交換が必要な状態であることを示す情報とを段階的にサーバ3へ送信することになる。したがって、サービスセンターにいる作業員は、各電源ユニット10の状態データに基づいて、電源ユニット10がどのような状態であるかを詳細に知ることができる。したがって、作業員は、交換が必要な電源ユニット10を、保護が必要な電源ユニット10よりも優先的にメンテナンスを実行することができ、メンテナンスの効率を向上させることが可能となる。 According to this, the communication circuit 106 of each power supply unit 10 transmits information indicating that the power supply unit 10 is in a state that requires protection, and information indicating that the power supply unit 10 is in a state that requires protection, based on the comparison result between the cumulative output power amount AE and the threshold values E1 and E2. Information indicating that the unit 10 needs to be replaced is sent to the server 3 in stages. Therefore, a worker at the service center can know in detail what state the power supply unit 10 is in based on the state data of each power supply unit 10. Therefore, the worker can perform maintenance on the power supply unit 10 that needs to be replaced with priority over the power supply unit 10 that needs to be protected, and it becomes possible to improve the efficiency of maintenance.
 図10に示した第2構成例では、制御装置14は、N台の電源ユニット10(1)~10(N)のうちの何れかの電源ユニット10の通信回路106から初回の停止信号STPを受信したときには、停止した電源ユニット10の識別情報および当該電源ユニット10が含まれる電源装置1の識別情報とともに、当該電源ユニット10の保護が必要な状態であることを示す情報を含んだ状態データをサーバ3へ送信する。 In the second configuration example shown in FIG. 10, the control device 14 receives an initial stop signal STP from the communication circuit 106 of any one of the N power supply units 10(1) to 10(N). When received, state data including the identification information of the stopped power supply unit 10 and the identification information of the power supply device 1 including the power supply unit 10, as well as information indicating that the power supply unit 10 is in a state that requires protection. Send to server 3.
 また、制御装置14は、N台の電源ユニット10(1)~10(N)のうち何れかの電源ユニット10の通信回路106から2回目の停止信号STPを受信したときには、停止した電源ユニット10の識別情報および当該電源ユニット10が含まれる電源装置1の識別情報とともに、当該電源ユニット10の交換が必要な状態であることを示す情報を含んだ状態データをサーバ3へ送信する。これによると、第1構成例と同様に、サービスセンターの作業員は、各電源ユニット10からの状態データに基づいて、電源ユニット10がどのような状態であるかを詳細に知ることができる。したがって、第2構成例においても、第1構成例と同様の効果を得ることができる。 Further, when the control device 14 receives the second stop signal STP from the communication circuit 106 of any one of the N power supply units 10(1) to 10(N), the control device 14 controls the stopped power supply unit 10. and the identification information of the power supply device 1 including the power supply unit 10, and status data including information indicating that the power supply unit 10 needs to be replaced is transmitted to the server 3. According to this, similarly to the first configuration example, a service center worker can know in detail what state the power supply unit 10 is in based on the state data from each power supply unit 10. Therefore, in the second configuration example as well, the same effects as in the first configuration example can be obtained.
 今回開示された実施の形態は、全ての点で例示であって制限的なものではないと考えられるべきである。矛盾のない限り、今回開示された実施の形態の少なくとも2つを組み合わせてもよい。本開示により示される技術的範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be illustrative in all respects and not restrictive. Unless there is a contradiction, at least two of the embodiments disclosed herein may be combined. The technical scope indicated by the present disclosure is indicated by the claims rather than the description of the embodiments described above, and is intended to include meanings equivalent to the claims and all changes within the scope. .
 以下、本開示の諸態様を付記としてまとめて記載する。
 (付記1)
 外部電源に接続される入力端子と、
 負荷に接続される出力端子と、
 前記入力端子と前記出力端子との間に互いに並列に接続されるN台の電源ユニットを備え、Nは2以上の整数であり、
 各電源ユニットは、
 前記入力端子から供給される電力に基づいて前記負荷に供給する電力を生成する電源回路と、
 前記電源回路の起動および停止を制御する制御回路と含み、
 前記制御回路は、
 起動信号を受けて前記電源回路を起動させるとともに、初回の起動からの前記電源回路の出力電力の累積値である累積出力電力量を算出し、
 前記累積出力電力量が第1の閾値に到達したことに応じて、前記電源回路の動作を停止させ、
 前記電源回路の動作を停止させた前記電源ユニットにおいて、前記制御回路は、
 メンテナンスが実行されたことに応じて前記累積出力電力量を初期化し、
 初期化後の起動からの前記電源回路の前記累積出力電力量を算出する、電源装置。
Hereinafter, various aspects of the present disclosure will be collectively described as supplementary notes.
(Additional note 1)
An input terminal connected to an external power supply,
an output terminal connected to the load;
comprising N power supply units connected in parallel to each other between the input terminal and the output terminal, where N is an integer of 2 or more,
Each power supply unit is
a power supply circuit that generates power to be supplied to the load based on the power supplied from the input terminal;
a control circuit that controls starting and stopping of the power supply circuit;
The control circuit includes:
Activating the power supply circuit in response to the activation signal, and calculating a cumulative output power amount that is a cumulative value of the output power of the power supply circuit from the initial activation,
Stopping the operation of the power supply circuit in response to the cumulative output power amount reaching a first threshold;
In the power supply unit in which the operation of the power supply circuit is stopped, the control circuit:
Initializing the cumulative output power amount in response to maintenance being performed;
A power supply device that calculates the cumulative output power amount of the power supply circuit from startup after initialization.
 (付記2)
 外部電源に接続される入力端子と、
 負荷に接続される出力端子と、
 前記入力端子と前記出力端子との間に互いに並列に接続されるN台の電源ユニットを備え、Nは2以上の整数であり、
 各電源ユニットは、
 前記入力端子から供給される電力に基づいて前記負荷に供給する電力を生成する電源回路と、
 前記電源回路の起動および停止を制御する制御回路と含み、
 前記制御回路は、
 起動信号を受けて前記電源回路を起動させるとともに、初回の起動からの前記電源回路の出力電力の累積値である累積出力電力量を算出し、
 前記累積出力電力量が第1の閾値に到達したことに応じて、前記電源回路の動作を停止させ、
 前記電源回路の動作を停止させた前記電源ユニットにおいて、前記制御回路は、
 前記起動信号を受けた場合には、前記電源回路を再び起動させるとともに、初回の起動からの前記累積出力電力量を算出し、
 前記累積出力電力量が前記第1の閾値よりも大きい第2の閾値に到達したことに応じて、前記電源回路の動作を再び停止させる、電源装置。
(Additional note 2)
An input terminal connected to an external power supply,
an output terminal connected to the load;
comprising N power supply units connected in parallel to each other between the input terminal and the output terminal, where N is an integer of 2 or more,
Each power supply unit is
a power supply circuit that generates power to be supplied to the load based on the power supplied from the input terminal;
a control circuit that controls starting and stopping of the power supply circuit;
The control circuit includes:
Activating the power supply circuit in response to the activation signal, and calculating a cumulative output power amount that is a cumulative value of the output power of the power supply circuit from the initial activation,
Stopping the operation of the power supply circuit in response to the cumulative output power amount reaching a first threshold;
In the power supply unit in which the operation of the power supply circuit is stopped, the control circuit:
When the activation signal is received, the power supply circuit is activated again, and the cumulative output power amount from the initial activation is calculated;
A power supply device that stops the operation of the power supply circuit again in response to the cumulative output power amount reaching a second threshold value that is larger than the first threshold value.
 (付記3)
 外部電源に接続される入力端子と、
 負荷に接続される出力端子と、
 前記入力端子と前記出力端子との間に互いに並列に接続されるN台の電源ユニットを備え、Nは2以上の整数であり、
 各電源ユニットは、
 前記入力端子から供給される電力に基づいて前記負荷に供給する電力を生成する電源回路と、
 前記電源回路の起動および停止を制御する制御回路と含み、
 前記制御回路は、
 起動信号を受けて前記電源回路を起動させるとともに、初回の起動からの前記電源回路の出力電力の累積値である累積出力電力量を算出し、
 前記累積出力電力量が第1の閾値に到達したことに応じて、前記電源回路の動作を停止させ、
 前記N台の電源ユニットは、第1電源ユニットから第N電源ユニットにより構成され、Iは2以上N-1以下の整数であり、
 前記第1電源ユニットの前記制御回路は、電源投入時に前記起動信号を受けて前記電源回路を起動させるとともに、前記電源回路の出力電流が基準電流に達したことに応じて、第2電源ユニットの前記制御回路に前記起動信号を出力し、
 第I電源ユニットの前記制御回路は、第(I-1)電源ユニットの前記制御回路から前記起動信号を受けて前記電源回路を起動させるとともに、前記電源回路の出力電流が前記基準電流に達したことに応じて、第(I+1)電源ユニットの前記制御回路に前記起動信号を出力する、電源装置。
(Additional note 3)
An input terminal connected to an external power supply,
an output terminal connected to the load;
comprising N power supply units connected in parallel to each other between the input terminal and the output terminal, where N is an integer of 2 or more,
Each power supply unit is
a power supply circuit that generates power to be supplied to the load based on the power supplied from the input terminal;
a control circuit that controls starting and stopping of the power supply circuit;
The control circuit includes:
Activating the power supply circuit in response to the activation signal, and calculating a cumulative output power amount that is a cumulative value of the output power of the power supply circuit from the initial activation,
Stopping the operation of the power supply circuit in response to the cumulative output power amount reaching a first threshold;
The N power supply units are comprised of a first power supply unit to an Nth power supply unit, I is an integer from 2 to N-1,
The control circuit of the first power supply unit starts the power supply circuit in response to the activation signal when the power is turned on, and starts the control circuit of the second power supply unit in response to the output current of the power supply circuit reaching a reference current. outputting the activation signal to the control circuit;
The control circuit of the I-th power supply unit receives the activation signal from the control circuit of the (I-1) power supply unit, starts the power supply circuit, and causes the output current of the power supply circuit to reach the reference current. The power supply device outputs the activation signal to the control circuit of the (I+1)th power supply unit in accordance with the above.
 (付記4)
 前記N台の電源ユニットは、第1電源ユニットから第N電源ユニットにより構成され、Iは2以上N-1以下の整数であり、
 前記第1電源ユニットの前記制御回路は、電源投入時に前記起動信号を受けて前記電源回路を起動させるとともに、前記電源回路の出力電流が基準電流に達したことに応じて、第2電源ユニットの前記制御回路に前記起動信号を出力し、
 第I電源ユニットの前記制御回路は、第(I-1)電源ユニットの前記制御回路から前記起動信号を受けて前記電源回路を起動させるとともに、前記電源回路の出力電流が前記基準電流に達したことに応じて、第(I+1)電源ユニットの前記制御回路に前記起動信号を出力する、付記1または2に記載の電源装置。
(Additional note 4)
The N power supply units are comprised of a first power supply unit to an Nth power supply unit, I is an integer from 2 to N-1,
The control circuit of the first power supply unit starts the power supply circuit in response to the activation signal when the power is turned on, and starts the control circuit of the second power supply unit in response to the output current of the power supply circuit reaching a reference current. outputting the activation signal to the control circuit;
The control circuit of the I-th power supply unit receives the activation signal from the control circuit of the (I-1) power supply unit, starts the power supply circuit, and causes the output current of the power supply circuit to reach the reference current. The power supply device according to supplementary note 1 or 2, which outputs the activation signal to the control circuit of the (I+1)th power supply unit, depending on the case.
 (付記5)
 前記第N電源ユニットの前記制御回路は、第(N-1)電源ユニットの前記制御回路から前記起動信号を受けて前記電源回路を起動させるとともに、前記電源回路の出力電流が前記基準電流に達したことに応じて、前記第1電源ユニットの前記制御回路に前記起動信号を出力する、付記3または4に記載の電源装置。
(Appendix 5)
The control circuit of the Nth power supply unit receives the start signal from the control circuit of the (N-1)th power supply unit to start the power supply circuit, and causes the output current of the power supply circuit to reach the reference current. 5. The power supply device according to supplementary note 3 or 4, which outputs the activation signal to the control circuit of the first power supply unit in response to the activation signal.
 (付記6)
 Nは、前記負荷に定格電力を供給するために必要な台数よりも1大きい数である、付記5に記載の電源装置。
(Appendix 6)
The power supply device according to appendix 5, wherein N is a number that is one larger than the number of units required to supply rated power to the load.
 (付記7)
 前記各電源ユニットは、前記電源ユニットの状態を表示するための表示回路をさらに含み、
 前記表示回路は、前記電源回路の動作が停止したことに応じて、前記電源ユニットが停止状態であることを表示する、付記1から6のいずれか1項に記載の電源装置。
(Appendix 7)
Each of the power supply units further includes a display circuit for displaying the status of the power supply unit,
The power supply device according to any one of Supplementary Notes 1 to 6, wherein the display circuit displays that the power supply unit is in a stopped state in response to the stoppage of operation of the power supply circuit.
 (付記8)
 付記1から7のいずれか1項に記載の電源装置と、
 前記電源装置に通信接続され、前記電源装置を管理する管理装置とを備え、
 前記電源装置は、前記各電源ユニットの状態を示す状態データを前記管理装置へ送信するように構成され、
 前記N台の電源ユニットのうちの何れかの電源ユニットにおいて前記電源回路の動作が停止した場合には、前記電源装置は、停止状態である当該電源ユニットの識別情報、および前記電源装置の識別情報を含む前記状態データを生成して前記管理装置へ送信する、電源システム。
(Appendix 8)
The power supply device according to any one of Supplementary Notes 1 to 7;
a management device that is communicatively connected to the power supply device and manages the power supply device;
The power supply device is configured to transmit state data indicating the state of each power supply unit to the management device,
When the operation of the power supply circuit in any one of the N power supply units stops, the power supply device stores identification information of the power supply unit in the stopped state, and identification information of the power supply device. A power supply system that generates the state data including the state data and transmits the state data to the management device.
 (付記9)
 前記電源回路の動作を停止させた前記電源ユニットにおいて、前記制御回路は、
 メンテナンスが実行されたことに応じて前記累積出力電力量を初期化する一方で、
 メンテナンスが実行される前に前記起動信号を受けた場合には、前記電源回路を再び起動させるとともに、初回の起動からの前記累積出力電力量を算出し、前記累積出力電力量が前記第1の閾値よりも大きい第2の閾値に到達したことに応じて、前記電源回路の動作を再び停止させるように構成され、
 前記N台の電源ユニットのうちの何れかの電源ユニットにおいて、前記累積出力電力量が前記第1の閾値に到達したことに応じて前記電源回路の動作が停止した場合には、前記電源装置は、当該電源ユニットの保護が必要な状態であることを示す情報を含んだ前記状態データを生成した前記管理装置へ送信し、
 当該電源ユニットにおいて、前記累積出力電力量が前記第2の閾値に到達したことに応じて前記電源回路の動作が再び停止した場合には、前記電源装置は、当該電源ユニットの交換が必要な状態であることを示す情報を含んだ前記状態データを生成した前記管理装置へ送信する、付記8に記載の電源システム。
(Appendix 9)
In the power supply unit in which the operation of the power supply circuit is stopped, the control circuit:
Initializing the cumulative output power amount in response to maintenance being performed;
If the activation signal is received before maintenance is performed, the power supply circuit is activated again, the cumulative output power amount from the initial startup is calculated, and the cumulative output power amount is determined from the first power supply circuit. configured to stop the operation of the power supply circuit again in response to reaching a second threshold that is larger than the threshold;
In any one of the N power supply units, when the operation of the power supply circuit stops in response to the cumulative output power amount reaching the first threshold, the power supply device , transmitting the state data including information indicating that the power supply unit is in a state requiring protection to the management device that generated it;
In the power supply unit, when the operation of the power supply circuit stops again in response to the cumulative output power amount reaching the second threshold, the power supply device enters a state in which the power supply unit needs to be replaced. The power supply system according to appendix 8, wherein the power supply system transmits the status data including information indicating that the status data is generated to the management device that generated the status data.
 (付記10)
 前記各電源ユニットは、前記管理装置と通信接続される通信回路をさらに含み、
 前記通信回路は、前記状態データを生成して前記管理装置へ送信する、付記8または9に記載の電源システム。
(Appendix 10)
Each of the power supply units further includes a communication circuit that is communicatively connected to the management device,
The power supply system according to appendix 8 or 9, wherein the communication circuit generates the state data and transmits it to the management device.
 (付記11)
 前記電源装置は、前記管理装置と通信接続される制御装置をさらに含み、
 前記各電源ユニットは、前記制御装置と通信接続される通信回路をさらに含み、
 前記制御回路は、前記各電源ユニットの前記通信回路とのデータの遣り取りに基づいて前記状態データを生成し、生成した前記状態データを前記管理装置へ送信する、付記8または9に記載の電源システム。
(Appendix 11)
The power supply device further includes a control device communicatively connected to the management device,
Each of the power supply units further includes a communication circuit communicatively connected to the control device,
The power supply system according to appendix 8 or 9, wherein the control circuit generates the status data based on data exchange with the communication circuit of each of the power supply units, and transmits the generated status data to the management device. .
 1 電源装置、2 負荷、3 サーバ、5 通信網、10,10(1)~10(N) 電源ユニット、11 入力部、12 出力部、14 制御装置、20 プロセッサ、21 RAM、22 ROM、23 I/F装置、24 記憶装置、25 通信バス、101 電源回路、102 電流検出回路、103 累積出力電力量検出回路、104 起動信号出力回路、105 状態表示回路、106 通信回路、T1 入力端子、T2 出力端子、T3,T4 通信端子、ST 起動信号、STP 停止信号。 1 Power supply device, 2 Load, 3 Server, 5 Communication network, 10, 10 (1) to 10 (N) Power supply unit, 11 Input section, 12 Output section, 14 Control device, 20 Processor, 21 RAM, 22 ROM, 23 I/F device, 24 Storage device, 25 Communication bus, 101 Power supply circuit, 102 Current detection circuit, 103 Cumulative output power amount detection circuit, 104 Start signal output circuit, 105 Status display circuit, 106 Communication circuit, T1 input terminal, T2 Output terminal, T3, T4 communication terminal, ST start signal, STP stop signal.

Claims (14)

  1.  外部電源に接続される入力端子と、
     負荷に接続される出力端子と、
     前記入力端子と前記出力端子との間に互いに並列に接続されるN台の電源ユニットとを備え、Nは2以上の整数であり、
     各電源ユニットは、
     前記入力端子から供給される電力に基づいて前記負荷に供給する電力を生成する電源回路と、
     前記電源回路の起動および停止を制御する制御回路と含み、
     前記制御回路は、
     起動信号を受けて前記電源回路を起動させるとともに、初回の起動からの前記電源回路の出力電力の累積値である累積出力電力量を算出し、
     前記累積出力電力量が第1の閾値に到達したことに応じて、前記電源回路の動作を停止させ、
     前記電源回路の動作を停止させた前記電源ユニットにおいて、前記制御回路は、
     メンテナンスが実行されたことに応じて前記累積出力電力量を初期化し、
     初期化後の起動からの前記電源回路の前記累積出力電力量を算出する、電源装置。
    An input terminal connected to an external power supply,
    an output terminal connected to the load;
    N power supply units connected in parallel between the input terminal and the output terminal, where N is an integer of 2 or more,
    Each power supply unit is
    a power supply circuit that generates power to be supplied to the load based on the power supplied from the input terminal;
    a control circuit that controls starting and stopping of the power supply circuit;
    The control circuit includes:
    Activating the power supply circuit in response to the activation signal, and calculating a cumulative output power amount that is a cumulative value of the output power of the power supply circuit from the initial activation,
    Stopping the operation of the power supply circuit in response to the cumulative output power amount reaching a first threshold;
    In the power supply unit in which the operation of the power supply circuit is stopped, the control circuit:
    Initializing the cumulative output power amount in response to maintenance being performed;
    A power supply device that calculates the cumulative output power amount of the power supply circuit from startup after initialization.
  2.  外部電源に接続される入力端子と、
     負荷に接続される出力端子と、
     前記入力端子と前記出力端子との間に互いに並列に接続されるN台の電源ユニットとを備え、Nは2以上の整数であり、
     各電源ユニットは、
     前記入力端子から供給される電力に基づいて前記負荷に供給する電力を生成する電源回路と、
     前記電源回路の起動および停止を制御する制御回路と含み、
     前記制御回路は、
     起動信号を受けて前記電源回路を起動させるとともに、初回の起動からの前記電源回路の出力電力の累積値である累積出力電力量を算出し、
     前記累積出力電力量が第1の閾値に到達したことに応じて、前記電源回路の動作を停止させ、
     前記電源回路の動作を停止させた前記電源ユニットにおいて、前記制御回路は、
     前記起動信号を受けた場合には、前記電源回路を再び起動させるとともに、初回の起動からの前記累積出力電力量を算出し、
     前記累積出力電力量が前記第1の閾値よりも大きい第2の閾値に到達したことに応じて、前記電源回路の動作を再び停止させる、電源装置。
    An input terminal connected to an external power supply,
    an output terminal connected to the load;
    N power supply units connected in parallel between the input terminal and the output terminal, where N is an integer of 2 or more,
    Each power supply unit is
    a power supply circuit that generates power to be supplied to the load based on the power supplied from the input terminal;
    a control circuit that controls starting and stopping of the power supply circuit;
    The control circuit includes:
    Activating the power supply circuit in response to the activation signal, and calculating a cumulative output power amount that is a cumulative value of the output power of the power supply circuit from the initial activation,
    Stopping the operation of the power supply circuit in response to the cumulative output power amount reaching a first threshold;
    In the power supply unit in which the operation of the power supply circuit is stopped, the control circuit:
    When the activation signal is received, the power supply circuit is activated again, and the cumulative output power amount from the initial activation is calculated;
    A power supply device that stops the operation of the power supply circuit again in response to the cumulative output power amount reaching a second threshold value that is larger than the first threshold value.
  3.  外部電源に接続される入力端子と、
     負荷に接続される出力端子と、
     前記入力端子と前記出力端子との間に互いに並列に接続されるN台の電源ユニットとを備え、Nは2以上の整数であり、
     各電源ユニットは、
     前記入力端子から供給される電力に基づいて前記負荷に供給する電力を生成する電源回路と、
     前記電源回路の起動および停止を制御する制御回路と含み、
     前記制御回路は、
     起動信号を受けて前記電源回路を起動させるとともに、初回の起動からの前記電源回路の出力電力の累積値である累積出力電力量を算出し、
     前記累積出力電力量が第1の閾値に到達したことに応じて、前記電源回路の動作を停止させ、
     前記N台の電源ユニットは、第1電源ユニットから第N電源ユニットにより構成され、Iは2以上N-1以下の整数であり、
     前記第1電源ユニットの前記制御回路は、電源投入時に前記起動信号を受けて前記電源回路を起動させるとともに、前記電源回路の出力電流が基準電流に達したことに応じて、第2電源ユニットの前記制御回路に前記起動信号を出力し、
     第I電源ユニットの前記制御回路は、第(I-1)電源ユニットの前記制御回路から前記起動信号を受けて前記電源回路を起動させるとともに、前記電源回路の出力電流が前記基準電流に達したことに応じて、第(I+1)電源ユニットの前記制御回路に前記起動信号を出力する、電源装置。
    An input terminal connected to an external power supply,
    an output terminal connected to the load;
    N power supply units connected in parallel between the input terminal and the output terminal, where N is an integer of 2 or more,
    Each power supply unit is
    a power supply circuit that generates power to be supplied to the load based on the power supplied from the input terminal;
    a control circuit that controls starting and stopping of the power supply circuit;
    The control circuit includes:
    Activating the power supply circuit in response to the activation signal, and calculating a cumulative output power amount that is a cumulative value of the output power of the power supply circuit from the initial activation,
    Stopping the operation of the power supply circuit in response to the cumulative output power amount reaching a first threshold;
    The N power supply units are comprised of a first power supply unit to an Nth power supply unit, I is an integer from 2 to N-1,
    The control circuit of the first power supply unit starts the power supply circuit in response to the activation signal when the power is turned on, and starts the control circuit of the second power supply unit in response to the output current of the power supply circuit reaching a reference current. outputting the activation signal to the control circuit;
    The control circuit of the I-th power supply unit receives the activation signal from the control circuit of the (I-1) power supply unit, starts the power supply circuit, and causes the output current of the power supply circuit to reach the reference current. The power supply device outputs the activation signal to the control circuit of the (I+1)th power supply unit in accordance with the above.
  4.  前記N台の電源ユニットは、第1電源ユニットから第N電源ユニットにより構成され、Iは2以上N-1以下の整数であり、
     前記第1電源ユニットの前記制御回路は、電源投入時に前記起動信号を受けて前記電源回路を起動させるとともに、前記電源回路の出力電流が基準電流に達したことに応じて、第2電源ユニットの前記制御回路に前記起動信号を出力し、
     第I電源ユニットの前記制御回路は、第(I-1)電源ユニットの前記制御回路から前記起動信号を受けて前記電源回路を起動させるとともに、前記電源回路の出力電流が前記基準電流に達したことに応じて、第(I+1)電源ユニットの前記制御回路に前記起動信号を出力する、請求項1に記載の電源装置。
    The N power supply units are comprised of a first power supply unit to an Nth power supply unit, I is an integer from 2 to N-1,
    The control circuit of the first power supply unit starts the power supply circuit in response to the activation signal when the power is turned on, and starts the control circuit of the second power supply unit in response to the output current of the power supply circuit reaching a reference current. outputting the activation signal to the control circuit;
    The control circuit of the I-th power supply unit receives the activation signal from the control circuit of the (I-1) power supply unit, starts the power supply circuit, and causes the output current of the power supply circuit to reach the reference current. The power supply device according to claim 1, wherein the activation signal is output to the control circuit of the (I+1)th power supply unit in accordance with the above.
  5.  前記N台の電源ユニットは、第1電源ユニットから第N電源ユニットにより構成され、Iは2以上N-1以下の整数であり、
     前記第1電源ユニットの前記制御回路は、電源投入時に前記起動信号を受けて前記電源回路を起動させるとともに、前記電源回路の出力電流が基準電流に達したことに応じて、第2電源ユニットの前記制御回路に前記起動信号を出力し、
     第I電源ユニットの前記制御回路は、第(I-1)電源ユニットの前記制御回路から前記起動信号を受けて前記電源回路を起動させるとともに、前記電源回路の出力電流が前記基準電流に達したことに応じて、第(I+1)電源ユニットの前記制御回路に前記起動信号を出力する、請求項2に記載の電源装置。
    The N power supply units are comprised of a first power supply unit to an Nth power supply unit, I is an integer from 2 to N-1,
    The control circuit of the first power supply unit starts the power supply circuit in response to the activation signal when the power is turned on, and starts the control circuit of the second power supply unit in response to the output current of the power supply circuit reaching a reference current. outputting the activation signal to the control circuit;
    The control circuit of the I-th power supply unit receives the activation signal from the control circuit of the (I-1) power supply unit, starts the power supply circuit, and causes the output current of the power supply circuit to reach the reference current. The power supply device according to claim 2, wherein the activation signal is output to the control circuit of the (I+1)th power supply unit in accordance with the above.
  6.  前記第N電源ユニットの前記制御回路は、第(N-1)電源ユニットの前記制御回路から前記起動信号を受けて前記電源回路を起動させるとともに、前記電源回路の出力電流が前記基準電流に達したことに応じて、前記第1電源ユニットの前記制御回路に前記起動信号を出力する、請求項3から5のいずれか1項に記載の電源装置。 The control circuit of the Nth power supply unit receives the start signal from the control circuit of the (N-1)th power supply unit to start the power supply circuit, and causes the output current of the power supply circuit to reach the reference current. The power supply device according to any one of claims 3 to 5, wherein the activation signal is output to the control circuit of the first power supply unit in response to the activation.
  7.  Nは、前記負荷に定格電力を供給するために必要な台数よりも1大きい数である、請求項6に記載の電源装置。 7. The power supply device according to claim 6, wherein N is a number that is one larger than the number required to supply rated power to the load.
  8.  前記各電源ユニットは、前記電源ユニットの状態を表示するための表示回路をさらに含み、
     前記表示回路は、前記電源回路の動作が停止したことに応じて、前記電源ユニットが停止状態であることを表示する、請求項1から3のいずれか1項に記載の電源装置。
    Each of the power supply units further includes a display circuit for displaying the status of the power supply unit,
    The power supply device according to any one of claims 1 to 3, wherein the display circuit displays that the power supply unit is in a stopped state in response to the stoppage of operation of the power supply circuit.
  9.  請求項1に記載の電源装置と、
     前記電源装置に通信接続され、前記電源装置を管理する管理装置とを備え、
     前記電源装置は、前記各電源ユニットの状態を示す状態データを前記管理装置へ送信するように構成され、
     前記N台の電源ユニットのうちの何れかの電源ユニットにおいて前記電源回路の動作が停止した場合、前記電源装置は、停止状態である当該電源ユニットの識別情報、および前記電源装置の識別情報を含む前記状態データを生成して前記管理装置へ送信する、電源システム。
    The power supply device according to claim 1;
    a management device that is communicatively connected to the power supply device and manages the power supply device;
    The power supply device is configured to transmit state data indicating the state of each power supply unit to the management device,
    When the operation of the power supply circuit in any of the N power supply units stops, the power supply device includes identification information of the power supply unit in a stopped state and identification information of the power supply device. A power supply system that generates the state data and transmits it to the management device.
  10.  請求項2に記載の電源装置と、
     前記電源装置に通信接続され、前記電源装置を管理する管理装置とを備え、
     前記電源装置は、前記各電源ユニットの状態を示す状態データを前記管理装置へ送信するように構成され、
     前記N台の電源ユニットのうちの何れかの電源ユニットにおいて前記電源回路の動作が停止した場合、前記電源装置は、停止状態である当該電源ユニットの識別情報、および前記電源装置の識別情報を含む前記状態データを生成して前記管理装置へ送信する、電源システム。
    The power supply device according to claim 2;
    a management device that is communicatively connected to the power supply device and manages the power supply device;
    The power supply device is configured to transmit state data indicating the state of each power supply unit to the management device,
    When the operation of the power supply circuit in any of the N power supply units stops, the power supply device includes identification information of the power supply unit in a stopped state and identification information of the power supply device. A power supply system that generates the state data and transmits it to the management device.
  11.  請求項3に記載の電源装置と、
     前記電源装置に通信接続され、前記電源装置を管理する管理装置とを備え、
     前記電源装置は、前記各電源ユニットの状態を示す状態データを前記管理装置へ送信するように構成され、
     前記N台の電源ユニットのうちの何れかの電源ユニットにおいて前記電源回路の動作が停止した場合、前記電源装置は、停止状態である当該電源ユニットの識別情報、および前記電源装置の識別情報を含む前記状態データを生成して前記管理装置へ送信する、電源システム。
    A power supply device according to claim 3;
    a management device that is communicatively connected to the power supply device and manages the power supply device;
    The power supply device is configured to transmit state data indicating the state of each power supply unit to the management device,
    When the operation of the power supply circuit in any of the N power supply units stops, the power supply device includes identification information of the power supply unit in a stopped state and identification information of the power supply device. A power supply system that generates the state data and transmits it to the management device.
  12.  前記電源回路の動作を停止させた前記電源ユニットにおいて、前記制御回路は、
     メンテナンスが実行されたことに応じて前記累積出力電力量を初期化する一方で、
     メンテナンスが実行される前に前記起動信号を受けた場合には、前記電源回路を再び起動させるとともに、初回の起動からの前記累積出力電力量を算出し、前記累積出力電力量が前記第1の閾値よりも大きい第2の閾値に到達したことに応じて、前記電源回路の動作を再び停止させるように構成され、
     前記N台の電源ユニットのうちの何れかの電源ユニットにおいて、前記累積出力電力量が前記第1の閾値に到達したことに応じて前記電源回路の動作が停止した場合には、前記電源装置は、当該電源ユニットの保護が必要な状態であることを示す情報を含んだ前記状態データを生成した前記管理装置へ送信し、
     当該電源ユニットにおいて、前記累積出力電力量が前記第2の閾値に到達したことに応じて前記電源回路の動作が再び停止した場合には、前記電源装置は、当該電源ユニットの交換が必要な状態であることを示す情報を含んだ前記状態データを生成した前記管理装置へ送信する、請求項9から11のいずれか1項に記載の電源システム。
    In the power supply unit in which the operation of the power supply circuit is stopped, the control circuit:
    Initializing the cumulative output power amount in response to maintenance being performed;
    If the activation signal is received before maintenance is performed, the power supply circuit is activated again, the cumulative output power amount from the initial startup is calculated, and the cumulative output power amount is determined from the first power supply circuit. configured to stop the operation of the power supply circuit again in response to reaching a second threshold that is larger than the threshold;
    In any one of the N power supply units, when the operation of the power supply circuit stops in response to the cumulative output power amount reaching the first threshold, the power supply device , transmitting the state data including information indicating that the power supply unit is in a state requiring protection to the management device that generated it;
    In the power supply unit, when the operation of the power supply circuit stops again in response to the cumulative output power amount reaching the second threshold, the power supply device enters a state in which the power supply unit needs to be replaced. The power supply system according to any one of claims 9 to 11, wherein the power supply system transmits the state data including information indicating that the state data is generated to the management device that generated the state data.
  13.  前記各電源ユニットは、前記管理装置と通信接続される通信回路をさらに含み、
     前記通信回路は、前記状態データを生成して前記管理装置へ送信する、請求項9から11のいずれか1項に記載の電源システム。
    Each of the power supply units further includes a communication circuit that is communicatively connected to the management device,
    The power supply system according to any one of claims 9 to 11, wherein the communication circuit generates the state data and transmits it to the management device.
  14.  前記電源装置は、前記管理装置と通信接続される制御装置をさらに含み、
     前記各電源ユニットは、前記制御装置と通信接続される通信回路をさらに含み、
     前記制御回路は、前記各電源ユニットの前記通信回路とのデータの遣り取りに基づいて前記状態データを生成し、生成した前記状態データを前記管理装置へ送信する、請求項9から11のいずれか1項に記載の電源システム。
    The power supply device further includes a control device communicatively connected to the management device,
    Each of the power supply units further includes a communication circuit communicatively connected to the control device,
    Any one of claims 9 to 11, wherein the control circuit generates the status data based on data exchange with the communication circuit of each power supply unit, and transmits the generated status data to the management device. Power system as described in section.
PCT/JP2023/016956 2022-05-10 2023-04-28 Power supply device and power supply system WO2023219022A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024520416A JPWO2023219022A1 (en) 2022-05-10 2023-04-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022077335 2022-05-10
JP2022-077335 2022-05-10

Publications (1)

Publication Number Publication Date
WO2023219022A1 true WO2023219022A1 (en) 2023-11-16

Family

ID=88730466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016956 WO2023219022A1 (en) 2022-05-10 2023-04-28 Power supply device and power supply system

Country Status (2)

Country Link
JP (1) JPWO2023219022A1 (en)
WO (1) WO2023219022A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006006019A (en) * 2004-06-17 2006-01-05 Daihen Corp Control method of inverter device
JP2006034047A (en) * 2004-07-20 2006-02-02 Oki Power Tech Co Ltd Power supply unit
JP2012249450A (en) * 2011-05-30 2012-12-13 Fuji Electric Co Ltd Charger
JP2014007868A (en) * 2012-06-25 2014-01-16 Osaka Gas Co Ltd Electric power supply
JP2019126256A (en) * 2017-03-30 2019-07-25 株式会社Gsユアサ Server and electric power unit management system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006006019A (en) * 2004-06-17 2006-01-05 Daihen Corp Control method of inverter device
JP2006034047A (en) * 2004-07-20 2006-02-02 Oki Power Tech Co Ltd Power supply unit
JP2012249450A (en) * 2011-05-30 2012-12-13 Fuji Electric Co Ltd Charger
JP2014007868A (en) * 2012-06-25 2014-01-16 Osaka Gas Co Ltd Electric power supply
JP2019126256A (en) * 2017-03-30 2019-07-25 株式会社Gsユアサ Server and electric power unit management system

Also Published As

Publication number Publication date
JPWO2023219022A1 (en) 2023-11-16

Similar Documents

Publication Publication Date Title
US9223394B2 (en) Rack and power control method thereof
US8001392B2 (en) Battery load allocation in parallel-connected uninterruptible power supply systems
TWI675288B (en) Server rack
CN108781034A (en) controlled adaptive power limiter
TW201006081A (en) Power supply and over voltage protection apparatus and method therein
US20110029788A1 (en) Power Limiting In Redundant Power Supply Systems
TWI767399B (en) Voltage regulator with piecewise linear loadlines
CN112154598B (en) Power conversion device
TW201314431A (en) Power supply control system and method
CN102789299B (en) CPU voltage protecting circuit
WO2023219022A1 (en) Power supply device and power supply system
JP2018029408A (en) Power supply device
US20170031410A1 (en) Systems and methods for enhancing system hold up time using reverse charging of power supply unit
CN102480225B (en) Direct voltage supplying device
EP3352363A1 (en) Power converter control device
EP3627657A1 (en) Controller, electricity storage system, and program
US9354695B2 (en) Power supply apparatus, processing apparatus, and information processing system
JP2008204231A (en) Power supply system, power supply unit, and method for enhancing efficiency of power supply
JP6994673B2 (en) Power conversion system
CN107731260B (en) SSD power supply method and system and SSD
TWI842866B (en) A power supply system and a method for providing power in the power supply system
US8595534B2 (en) Method for system energy use management of current shared power supplies
JP7129661B2 (en) control system, power conversion system, control method, program
CN105340151A (en) Interruption of output power and auxiliary power
TW201249044A (en) Power protecting circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803500

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024520416

Country of ref document: JP

Kind code of ref document: A